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Desenvolvimento de Algoritmos de Detecção e Quantificação de Doenças
Reumáticas para Ecografia Músculo-Esquelética

por Nelson MARTINS

As doenças reumáticas são a maior causa de dor e perda de mobilidade nos paı́ses de-
senvolvidos, fazendo delas um grave problema social, económico e de saúde pública.
Devido às suas vantagens, a ecografia tem vindo a ser introduzida na prática clı́nica
dos reumatologistas de forma a facilitar o diagnóstico e o seguimento dos pacientes.
Ao contrário da radiografia, que é atualmente a modalidade imagiológica standard, a
ecografia não utiliza radiação ionizante e permite uma detecção mais precoce e mel-
hores seguimentos de algumas doenças. No entanto, a dificuldade na interpretação
e aquisição das imagens ecográficas reduz a sua aceitação e, por esse motivo, são
necessárias soluções inovadoras que potenciem a sua utilização em contexto clı́nico.

Neste trabalho utilizam-se imagens da segunda articulação metacarpofalângica pela
sua importância para o diagnóstico de doenças reumáticas tal como a Artrite Reumatóide.
Relativamente a estas imagens, foram identificadas problemas em aberto na literatura,
os quais se procuraram responder com as abordagens descritas ao longo deste tra-
balho.

Segmentação do metacarpo e da falange utilizando contornos ativos locais. Esta tec-
nica permitiu identificar 80% das imagens com uma distância média de Hausdorff infe-
rior a 3 pixels;

A identificação do tendão extensor foi alcançada aplicando uma variante do algoritmo
de contornos ativos abertos, utilizando simetria de fase como preprocessamento e
dados de forma do tendão para reforçar o modelo. Por fim, o tendão foi obtido pela op-
timizacão dos valores das energias recorrendo a algoritmos genéticos. Os resultados
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alcançados apontam para uma distância média de Hausdorff inferior a 10 pixels (ou
0.5 mm) em 95% das imagens;

Para a identificação da cápsula articular foram testadas duas abordagens distintas,
uma baseada no algoritmo SLIC, e outra baseada em redes neuronais convolucionais,
mais propriamente o modelo UNet. Os resultados indicam uma clara superioridade
do modelo UNet que tem ainda a vantagem de não depender de outros métodos de
segmentação (como é o caso do SLIC) no processo de inicialização. Os resultados
demonstraram que 90% das imagens foram identificadas com um coeficiente de Dice
superior a 0.6.

Por fim, foi testada uma abordagem preliminar de extração de caraterı́sticas e classifica-
ção para o problema especı́fico da sinovite. Esta abordagem partiu das segmentações
do metacarpo, falange e tendão extensor para criar um conjunto de máscaras para
caracterizar localmente a imagem e identificar as alterações criadas na mesma devido
a sinovite. Tendo sido obtido um index de Youden’s de 0.84 para a identificação de
sinovite e de 0.94 para a classificação.

Palavras-chave: Doenças Reumáticas; Artrite Reumatóide; Sinovı́te; Articulação Metacar-
pofalangica; Ecografia; Contornos ativos; Simetria de Fase; SLIC; Redes Neuronais
Convolucionais; Máquinas de Vectores de Suporte; Extracção de Caracterı́sticas.
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by Nelson MARTINS

Rheumatic diseases are the main cause of impairment and pain in developed countries,
which makes them a critical social, health and economic problem. Due to their main
advantages, ultrasounds are now being used in rheumatology to diagnosis and evalu-
ate rheumatic diseases in their early stages. Unlike radiography, which is the current
standard, ultrasounds are less expensive, do not use ionizing radiation and can lead to
better early diagnosis and follow-up outcomes. The difficulties in the interpretation and
acquisition of this type of image reduce its acceptance, and thus, new and innovative
solutions are needed to help doctors in the diagnostic process.

In this study, images of the second metacarpophalangeal joint will be used because
they are of great importance in the diagnosis of rheumatic diseases such as Rheuma-
toid Arthritis. Regarding these images, there are image processing problems that are
still unsolved, and this work aims to solve them.

The segmentation of the metacarpus and phalangeal bone was achieved using Local-
izing Active Contours. This approach allowed the identification of 80% of the images
with a Modified Hausdorff Distance below 3 pixels.

The extensor tendon was identified with the proposal of an Open Ended Active Con-
tours method using Phase Symmetry pre-processing, prior structure knowledge and
Genetic Algorithm based optimization. The results show that the segmentation was
achieved with a confidence of 95% for a Modified Hausdorff Distance below 10 pixels;
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For the segmentation of the joint capsule, two distinct approaches were tested: one
using the Simple Linear Iterative Clustering algorithm followed by a special shape con-
strained merge strategy, and the other using convolutional neural networks, more pre-
cisely the UNet model. The results show that the UNet model outperforms the clus-
tering method, without the necessity of other segmentation methods to limit the joint
capsule search zone, as is the case for the Simple Linear Iterative Clustering method.
The segmentation was achieved with a Dice Coefficient higher than 0.6 in 90% of the
images.

Finally, a preliminary feature extraction and classification study was presented, specif-
ically addressing the synovitis. The proposed approach started from the segmentation
of the metacarpus, phalange and extensor tendon to create a set of masks. These
masks were used to locally characterize the images and detect the anatomical changes
provoked by the synovitis.

Keywords: Rheumatic Diseases; Rheumatoid Arthritis; Synovitis; Metacarpophalangeal
Joint; Ultrasounds; Active Contours; Phase Symmetry; Simple Linear Iterative Cluster-
ing; Convolutional Neural Networks; Support Vector Machines; Feature Extraction.
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1.1 Motivation

Rheumatic diseases are pathologies that affect bones, joints and connective tissues.

They are the main cause of impairment and pain in developed countries, making them

a serious health problem with high social and economic implications [1]. Due to the in-

crease in longevity and negative lifestyles, the number of rheumatic problems is likely to

grow in the coming years. This creates pressure for the diagnosis of these diseases be-

cause, if not diagnosed and treated properly and in time, they progress faster, causing

severe and irreversible physical deformations and, leading to incapacity [2]. An early

diagnosis is then fundamental to give the patient a better quality of life and prevent

faster deterioration of his/her condition.

The number of rheumatic diseases is very large and covers a broad range of different

types of pathologies, but their assessment is usually based on physical exams, imaging

techniques and sample based analysis [3]. A physical exam tests the mobility of the

joints, pain, and other movement characteristics, such as morning stiffness and lack of
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strength. Sample based analysis tests the presence and concentration of specific anti-

bodies and other substances in the body [4]. The imaging techniques allow visualization

of the internal body structures. In rheumatology, the most common imaging techniques

are magnetic resonance imaging (MRI), radiography and ultrasound imaging. Due to

their characteristics, ultrasounds have seen their use increase in the last few years.

These characteristics include their low cost, ease of operation, ease of acceptance by

patients, possibility of acquiring several images in different positions, and comparable

results to the other imaging techniques [5, 6]. One limitation of the imaging techniques

is the subjectivity of the diagnosis and the difficulty of image interpretation. This is es-

pecially true in ultrasound images, because the images tend to be more noisy and their

acquisition more operator dependent. Moved by this problem and its potential impact,

the research, development and testing of new advanced image processing algorithms

are proposed in this work. Due to the previously mentioned advantages, ultrasound

imaging was selected for use in this study. The aim is to contribute to the creation of

a computer aided diagnosis (CAD) system to automatically extract meaningful informa-

tion from the images that complements the information that the rheumatologists already

extract from them empirically. In this manner, it is also expected to help improve the

diagnosis and follow up for rheumatic diseases.

In medicine, and rheumatology in particular, the use of quantitative information is es-

sential to obtain an evidence based diagnosis. Consequently, a CAD system can be

an added value for doctors and their patients. In fact, such systems have been used

to help visualize and extract information from medical information. The introduction of

digital images and videos created the opportunity to use digital manipulation. From

simple contrast enhancement, zooming and panning to more complex tools, such as

statistical analysis and even artificial intelligence, they all help handle and enhance the

information present in the images.

To achieve the proposed CAD system, work on automatic detection of physiologi-

cal structures will be conducted, as well as quantification and classification of rele-

vant physiological parameters. In this manner, it is expected that the assessment of

rheumatic diseases will be improved, making it less subjective and reducing the vari-

ability intra and inter observer. Moreover, with more precise measures, the follow-up for

these diseases could be more accurate and the treatment adjustment more assertive,
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allowing a direct comparative analysis of the treatment responses for each patient. Ide-

ally, this could also be used to create gold standards, improving the diagnosis even

further.

Given that the number of possible acquisition protocols is very broad, it was decided

to narrow the scope and focus the work on a single acquisition. The longitudinal-

dorsal view of the metacarpophalangeal joint (MCPJ) was selected because it provides

clues regarding the hand small joint, which is often the first structure to be affected by

rheumatic diseases, such as rheumatoid arthritis. In Fig. 1.1 an illustration of the hand

bone structure can be seen.

FIGURE 1.1: Illustration of the bone anatomy of the hand and respective nomencla-
ture.1

The metacarpals are the bones in the palmar region of the hand; they are directly

connected to the phalanges and carpal bones, which are, respectively, the fingers and

wrist bones. The numbers above each finger in Fig. 1.1 indicates the convention in the

naming of each finger, which is used to facilitate communication between medical staff.

The rule is that the thumb is the first finger, the index finger is the second, and so on,

until the pinky, which is the fifth finger. This is used for both hands and feet.
1Adapted from: Blausen.com staff. Medical gallery of blausen medical 2014. WikiJournal of Medicine

1 (2), 2014
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The selection of the longitudinal-dorsal view was based on a literature review (explained

in more detail in Chapter 3) and the experience of the rheumatologist that contributed

in the creation of this work. Nevertheless, the proposed algorithms and metrics might

be useful for other ultrasound images, such as metatarsophalangeal joints and inter-

phalangeal joints, because the image characteristics are similar.

1.2 Research Questions

Three main research questions will be addressed during this PhD:

• Is it possible to, accurately and automatically, identify the structures present in

ultrasound images of the MCPJ (bones, tendon and joint capsule)?

• Using feature extraction techniques, is it possible to classify an image regarding

the presence or absence of pathology?

• Can this approach improve diagnosis and/or follow up for rheumatic diseases?

Regarding the last question we assume that, given its complexity and necessary re-

sources, we may not fully answer it. It involves several patients and Rheumatologists

and a long period of time to track the evolution of the disease. Because of that we will

aim for a preliminary study and move later to a larger study.

1.3 Scientific Contributions

Throughout the PhD work several contributions were proposed; next, a summary of all

contributions is presented:

Journal publications

• N. Martins, S. Sultan, D. Veiga, M. Ferreira, F. Teixeira, and M. Coimbra. A new

active contours approach for finger extensor tendon segmentation in ultrasound

images using prior knowledge and phase symmetry. IEEE Journal of Biomedical

and Health Informatics, pages 1–1, 2018. ISSN 2168-2194. doi: 10.1109/JBHI.

2017.2723819
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Conference publications

• N. Martins, M. S. Sultan, D. Veiga, M. Ferreira, and M. Coimbra. Segmentation of

the metacarpus and phalange in musculoskeletal ultrasound images using local

active contours. In 2016 38th Annual International Conference of the IEEE Engi-

neering in Medicine and Biology Society (EMBC), pages 4097–4100, Aug 2016.

doi: 10.1109/EMBC.2016.7591627

• N. Martins, M. S. Sultan, D. Veiga, M. Ferreira, and M. Coimbra. Joint capsule

segmentation in ultrasound images of the metacarpophalangeal joint using a split

and merge approach. In 2018 IEEE EMBS International Conference on Biomed-

ical Health Informatics (BHI), pages 243–246, March 2018. doi: 10.1109/BHI.

2018.8333414

• Martins, N., et al. ”Fully Automatic Finger Extensor Tendon Segmentation in Ul-

trasound Images of the Metacarpophalangeal Joint.” Engineering in Medicine and

Biology Society (EMBC), 2018 IEEE 40th Annual International Conference of the.

IEEE, 2018.

Other Contributions

• M. S. Sultan, N. Martins, M. J. Ferreira, and M. T. Coimbra. Segmentation of

bones mcp joint region of the hand from ultrasound images. In 2015 37th An-

nual International Conference of the IEEE Engineering in Medicine and Biology

Society (EMBC), pages 3001–3004, Aug 2015. doi: 10.1109/EMBC.2015.7319023

• Malik Saad Sultan, Nelson Martins, Diana Veiga, Manuel Ferreira, and Miguel

Coimbra. Automatic segmentation of extensor tendon of the mcp joint in ultra-

sound images. In Proceedings of the International Joint Conference on Biomed-

ical Engineering Systems and Technologies, BIOSTEC 2016, pages 71–76, Por-

tugal, 2016. SCITEPRESS - Science and Technology Publications, Lda. ISBN

978-989-758-170-0. doi: 10.5220/0005692500710076

• M. S. Sultan, N. Martins, D. Veiga, M. J. Ferreira, and M. T. Coimbra. Tracking

of the anterior mitral leaflet in echocardiographic sequences using active con-

tours. In 2016 38th Annual International Conference of the IEEE Engineering
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in Medicine and Biology Society (EMBC), pages 1074–1077, Aug 2016. doi:

10.1109/EMBC.2016.7590889

• Malik Saad Sultan, Nelson Martins, Eva Costa, Diana Veiga, Manuel João Fer-

reira, Sandra da Silva Mattos, and Miguel Tavares Coimbra. Real-time ante-

rior mitral leaflet tracking using morphological operators and active contours.

In Proceedings of the 10th International Joint Conference on Biomedical En-

gineering Systems and Technologies (BIOSTEC 2017) - Volume 2: BIOIMAG-

ING, Porto, Portugal, February 21-23, 2017., pages 39–46, 2017. doi: 10.5220/

0006244700390046

• Eva Costa, Nelson Martins, Malik Saad Sultan, Diana Veiga, Manuel João Fer-

reira, Sandra da Silva Mattos, and Miguel Tavares Coimbra. A preliminary ap-

proach for the segmentation of mitral valve regurgitation jet in doppler ecocar-

diography images. In Proceedings of the 10th International Joint Conference on

Biomedical Engineering Systems and Technologies (BIOSTEC 2017) - Volume 2:

BIOIMAGING, Porto, Portugal, February 21-23, 2017., pages 47–54, 2017. doi:

10.5220/0006248900470054

• M. S. Sultan, N. Martins, E. Costa, D. Veiga, M. J. Ferreira, S. Mattos, and M. T.

Coimbra. Tracking large anterior mitral leaflet displacements by incorporating

optical flow in an active contours framework. In 2017 39th Annual International

Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),

pages 3244–3247, July 2017. doi: 10.1109/EMBC.2017.8037548

• M. S. Sultan, N. C. Martins, E. Costa, D. Veiga, M. J. Ferreira, S. Mattos, and

M. T. Coimbra. Virtual m-mode for echocardiography: A new approach for the

segmentation of the anterior mitral leaflet. IEEE Journal of Biomedical and Health

Informatics, pages 1–1, 2018. ISSN 2168-2194. doi: 10.1109/JBHI.2018.2799738

• M.S. Sultan, N. Martins, E. Costa, D. Veiga, M.J. Ferreira, S. Mattos, and M.

Coimbra, “A New Method for the Anterior Mitral Leaflet Segmentation in Echocar-

diography Videos by Using the Virtual M-mode Space”, in Proc. of IEEE EMBC

2018, Honolulu, USA, Jul 2018.
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• L. Pires, M.S. Sultan, N. Martins, E. Costa, D. Veiga, M.J. Ferreira, S. Mattos, and

M. Coimbra, “Extracting Thickness Profiles of Anterior Mitral Leaflets in Echocar-

diography Videos”, in Proc. of IEEE EMBC 2018, Honolulu, USA, Jul 2018.

1.4 Thesis Outline

This PhD thesis is divided into nine chapters, each as independent as possible from

the others to facilitate the reading. There was care to separate the background fun-

damentals from the contributions, and the structure of this thesis is thus organized as

follows:

Chapter 1 - Introduction creates the basis for the entire thesis; it presents the general

problem and addresses the motivation and expected contributions.

Chapter 2 - Ultrasound Imaging introduces the acquisition system and the resultant

images and justifies its choice over other imaging techniques, as well as its advantages

and disadvantages.

Chapter 3 - Rheumatology Background introduces the clinical point of view of the

problem; it presents a brief overview of rheumatic diseases with a higher focus on

rheumatoid arthritis, the MCPJ and the ultrasound imaging, which are the main topics

in the study.

Chapter 4 - Image Processing and Analysis Background presents the main frame-

works used in this work. This chapter is composed of existing works, which are used

as bases for the proposals in the following chapters.

Chapter 5 - Metacarpus and Phalange Identification addresses the automatic seg-

mentation of the metacarpus and phalange in the ultrasound images of the MCPJ using

Localizing Active Contours.

Chapter 6 - Extensor Tendon Identification addresses the segmentation of the ex-

tensor tendon in the ultrasound images of the second MCPJ using a new open-ended

active contours framework with phase symmetry pre-processing and anatomical prior

knowledge constraints.

7



Chapter 1 Introduction

Chapter 7 - Joint Capsule Identification addresses the segmentation of the joint cap-

sule in the ultrasound images of the second MCPJ using two approaches. One is using

a split and merge approach, where the Simple Linear Iterative Clustering algorithm is

used, followed by region growing with shape constraints. The other is based on convo-

lutional neural networks, or more precisely, the UNet model.

Chapter 8 - Synovitis Detection and Grading addresses the detection and quantifica-

tion of synovitis in the ultrasound images of the second MCPJ using a set of proposed

masks and features in an SVM model.

Chapter 9 - Conclusions and Future work is the final chapter and the one that ag-

gregates all of the main conclusions achieved in this work. It points out the main ideas

that can be extracted from the work, and based on that, it proposes possible paths for

future work.
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Ultrasound Imaging

Contents

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Acquisition Equipment . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Image Characteristics . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Doppler Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Introduction

Ultrasound Imaging is a diagnostic tool used to visualize the internal structure of the hu-

man body using sound waves with high frequency (above 20 kHz). The main principle

is that a portion of the sound waves’ energy is reflected when they hit an acoustic tran-

sition, while the remaining energy continues on its path. An acoustic transition exists

when materials with different acoustic impedances are in contact, for example, blood

and cardiac muscle or muscle and bone. The percentage of reflected energy is depen-

dent on the characteristics of the acoustic transition and can be used to characterize

tissues or other structures [18]. It is one of the most used medical imaging systems due

to its advantages when compared with other techniques. The low cost, highly informa-

tive outputs and real-time visualization and interaction with the patient are among them.

Additionally, ultrasounds do not use ionizing radiation, while the results are comparable

with the remaining techniques [19]. Looking at ultrasound disadvantages, the images

are difficult to read because of several artifacts that the user needs to be aware of. The
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depth to which the ultrasound can penetrate is limited, and the spatial resolution of the

image is inversely proportional to the depth. It is also impossible to visualize bones’

interiors, because they are acoustic barriers. Finally, the lack of agreement regarding

the metrics and parameters to be used in specific cases is problematic. With research

and technology progression, most of these limitations are expected to be reduced.

2.2 Acquisition Equipment

The ultrasound equipment has a specific set-up that is needed to acquire the ultrasound

images. In Fig. 2.1, the typical apparatus used in medical ultrasound imaging is shown.

FIGURE 2.1: Typical acquisition system used in medical ultrasound imaging.

It consists of: a processing unit (a computer or embedded device), which is also respon-

sible for the data storage; a visualization unit (screen); and a transducer. Regarding the

processing unit, it should be able to handle and store all of the information, and thus

sufficient processing power and data space need to be available for these tasks. The vi-

sualization unit should have high contrast so that small changes in the gray-scale image

are easily detected by the human eye. Finally, the transducer is a critical component

10
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and should be chosen according to the structure we want to visualize. In Fig. 2.2, some

ultrasound transducers are shown.

FIGURE 2.2: Example of ultrasound transducers, adapted from [20]. 1 and 2 - 2D
linear probes used to visualize small body parts; 3, 4 and 5 - 2D convex probes used
to visualize larger body parts; 6 - 4D probe used to visualize larger structures in 3D
+ time; 7 and 8 - 4D and 2D endocavity probes used to visualize internal structures

using the patient’s cavities.

The transducers have different shapes, characteristics and purposes, which need to

be taken into account during the diagnosis. The first feature that needs to be selected

is the probe shape, with the most common being linear, curvilinear and endocavity.

The first is used for smaller parts and typically has higher frequencies values, providing

higher details and lower depths. The curvilinear probes are used in obstetrics and gen-

eral abdominal applications, and they have lower frequency values and higher depths

compared to linear probes. The endocavity is a special type used for vaginal, rectal

and transesophageal applications, where the probe needs to be positioned inside the

cavities of patients. For each probe type, it is also necessary to select the most suitable

probe size and other characteristics, such as Doppler support. One additional and fun-

damental component is the ultrasound gel. It is used to reduce the acoustic impedance

between the transducer and the skin, allowing the sound waves to travel from the trans-

ducer to the interior of the patients without significant signal loss. In rheumatology, the

most commonly used probes are linear ones with high frequencies so that higher detail

is obtained. For the case of small joints, it is preferable to use smaller probes so that

contact with the surface of the skin is easier.
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2.3 Image Characteristics

Ultrasound images have a characteristically noisy appearance, which is known as

speckle. It is considered a multiplicative noise and, therefore, proportional to the lo-

cal gray-level intensity of the signal. Moreover, there are several artifacts that may

occur during the image acquisition [21]. Both are considered limitations of ultrasound

acquisition systems and will be discussed in more detail next.

Speckle noise:

Every acquisition system is susceptible to noise interference, and in ultrasound imaging

devices, this problem is especially relevant. The speckle noise appears as a granular

structure and results from the interaction between scattered sound waves and signal

sound waves. It is typically found in other acquisition systems, such as sonar, synthetic

aperture radar and optical coherence tomography. Objects smaller than the wavelength

of the transmitted wave are also promoters of speckle noise, resulting in the cancellation

or enhancement of the signal [22]. There are some ways to reduce the speckle noise.

One possible method is to increase the transducer frequency, which decreases the

wavelength of the transmitted signal, making it less prone to these effects. The problem,

when using ultrasounds is that higher frequencies result in lower penetration depths,

which can be problematic in some applications. Additionally, the frequency is limited

by the equipment and the technology development. Another method is to use filters to

remove or minimize the noise. In Fig. 2.3, the effect of a digital speckle reduction filter

is shown.

Artifacts:

One additional characteristic of ultrasound imaging systems is the presence of artifacts.

Artifacts differ from noise in that they are not caused by the random interference of

the sound waves but rather are due to interactions that result in visible structures in

the image that do not exist in the real world. Artifacts can be divided into two main

groups: those that carry information and are useful in the diagnosis and those that do

not carry meaningful information and only make the diagnosis more difficult. Both can

be minimized with proper selection of the acquisition parameters, but the former are

sometimes created on purpose to help in the diagnosis. In Fig. 2.4, some examples of

possible artifacts are shown.
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FIGURE 2.3: Example of image visualization enhancement by speckle noise reduction.
Image courtesy of ContextVision.

In Fig. 2.4 - A, a shadow cast by the patella can be seen. This artifact occurs when

the ultrasound waves find a transversal high acoustic impedance transition, such as a

bone, calcification or gas collection. In these cases, the structures beyond the high

transitions are not visible because no ultrasound waves can reach them. In Fig. 2.4 -

B, a lateral acoustic shadowing can be seen due to the presence of a tangential high

acoustic impedance transition; it works in a similar manner to the acoustic shadowing,

but because the acoustic transition is tangential, the shadowing is only visible in the

laterals, parallel to the sound waves. In Fig. 2.4 - C, a posterior acoustic enhancement

can be seen due to the presence of an anechoic region (liquid). These structures create

a signal response that is over-enhanced by the ultrasound device, resulting in a bright

structure after the anechoic region. Finally, in Fig. 2.4 - D, a reverberation artifact

is shown. It occurs when the sound waves travel back and forth reflecting several

times between two structures. As the sound wave goes back and forth, the transducer

receives several echoes that are seen as sequential acoustic transitions parallel to each

other.

2.4 Doppler Mode

The Doppler Mode is a special ultrasound acquisition mode that uses the Doppler effect

to capture motion patterns. The Doppler effect is observed when a wave hits a moving
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(A) (B)

(C) (D)

FIGURE 2.4: Examples of artifacts found in ultrasound images; A) acoustic shadowing
on a patella - dark region; B) lateral acoustic shadowing on a finger extensor tendon
- darker regions pointed by the arrows; C) posterior acoustic enhancement - brighter
region pointed by the arrows; D) reverberation - successive parallel lines. Adapted

from [19].

object. When that happens, the reflected wave has its frequency changed proportion-

ally to the velocity of the object. For instance, if the object is moving towards the wave

source, the echo will have a higher frequency than the sent wave. For the opposite

case of an object moving away from the wave, the frequency of the echo will be lower.

This mode is commonly used to capture the blood direction and velocity, as well as

inflammatory activity. The power Doppler mode is a variation of the Doppler mode in

which the direction of the object is discarded and only the magnitude is used to capture

the presence of small movements. This is especially interesting in inflammatory activity,

where the direction is not as important as the presence of movement. Fig. 2.5 presents

three images acquired with the B-mode, Doppler and Power Doppler.

14



Chapter 2 Ultrasound Imaging

FIGURE 2.5: Examples of a B-Mode, Doppler and Power Doppler images of the kidney
from different patients.

From Fig. 2.5, it is possible to gain an idea of the output of the Doppler and power

Doppler modes. On the right, a B-Mode image is presented in which different tissues

are visible. In the middle, the Doppler signal is visualized over the B-Mode; the pseudo-

color presented in the Doppler mode represents the direction, where blue is moving

away and red is moving towards the probe. The power Doppler is on the right and only

has one color, representing the presence or absence of movement.
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3.1 Introduction

Rheumatology is a sub-specialty of internal medicine that focuses on the diagnosis and

therapy of rheumatic diseases. These diseases involve clinical problems in the mus-

culoskeletal system, such as bones, muscles and connective tissues. They can affect

individuals of all ages, with greater incidence in older people [23]. If not diagnosed and

treated properly and in a timely manner, they can cause severe and irreversible phys-

ical deformations that considerably reduce the quality of life of those who suffer from

these diseases. In fact, they are the main cause of impairment and pain in developed
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countries, which makes them a serious health problem with high social and economic

implications [2].

The most common manifestations of rheumatic diseases are pain, inflammation, swelling,

movement stiffness and fatigue, but other symptoms can be present in the eyes, mouth

and skin, such as dryness and rashes. The location and distribution of the symptoms

will dictate the first diagnosis, and the complementary exams will confirm or disprove

the prognosis. A correct early diagnosis is crucial to the treatment, significantly reduc-

ing the long-term consequences and possible functional limitations [2]. To achieve this,

diagnostic tools are essential to achieve evidence-based decisions. The follow-up is as

important as the initial diagnosis, ensuring that the condition of the patient is improved

or kept as stable as possible over his/her life. Here, the diagnosis tools also play an

important role and will be discussed in more detail later in this document.

3.1.1 Causes

Gout, ankylosing spondylitis, osteoarthritis, Sjogren’s syndrome and rheumatoid arthri-

tis are some examples of rheumatic diseases. Their causes are related to lifestyle, age,

genetics, autoimmunity, trauma, biochemical abnormalities, inflammation and other fac-

tors [23, 24]. Lifestyle is a cause also associated with the age, since a negative lifestyle

will accelerate the natural aging processes of the body. For instance, smoking, drinking

alcohol and a sedentary lifestyle are potential promoters of early rheumatic problems

since they create additional unwanted stress in the body. A patient’s profession may

also be a risk factor. Whenever a worker needs to perform repetitive tasks or when they

have bad posture in the work-place, it is common to have higher incidences of some

rheumatic conditions. The previous causes are time-related, and the first signs can

take years to manifest; because of that, they are often overlooked. Genetic causes are

associated with the individual predisposition to these problems. Here, the patient’s fam-

ily history is important because genetic causes can be traceable to the same disease

in other family members. The autoimmune causes are not yet fully understood and are

often associated with genetics, where an abnormal response of the immune system

triggers an attack on healthy body structures. The trigger for this abnormal response is

still to be discovered and is an open research topic. Trauma concerns the conditions
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associated with accidents, falls, hits, and their severity is variable. They can be tem-

porary or cause permanent disability or even death. Finally, biochemical abnormalities

may trigger rheumatic diseases due to the lack or excess of a given component in the

body. Lifestyle can also play an important role here, but it is not the only contributor.

One example is that the presence of abnormal quantities of uric acid in the blood may

trigger joint paint because of crystal deposits or gout [24].

3.1.2 Epidemiology

Although the associated mortality is low, the mid- and long-term effects of rheumatic

diseases are huge. A study [25] concluded that, in the United States of America,

rheumatic diseases affect approximately 21.6% of the population, with higher incidence

in women than men (25.4% vs. 17.6%). An incidence of 50% was observed in the pop-

ulation over 65 years old. The authors also presented the incidence results for two

age groups, those 18-44 years old and 45-64 years old, with incidence values of 7.9%

and 29.3%, respectively. Finally, it was also concluded that, of these cases, 34% and

41% experience some physical limitation, which is especially problematic because it

affects the active population. In Portugal, there are some projects that have studied the

population, such as RheumaPT [26] and EpiReumaPt [27, 28]. These studies suggest

that 30% of the Portuguese population have some type of musculoskeletal rheumatic

manifestation. Of these, 20% have some significant problem, which means that they

are classified as ill, 7% have some degree of incapacity, and 0.5% are dependent on

others. The study of Monjardino et. al. [29] concluded that the prevalence of rheumatic

diseases in Portugal is between 16% and 24%, affecting more women than men and

increasing with age. According to the Second National Program for the Rheumatic Dis-

eases [2], these diseases represent approximately 16%-23% of all General Practice

consultations, are the first cause of temporary incapacity, are responsible for 30% of all

domicile mobility limitations and 40%-60% of prolonged limitation for daily activities and

are the cause of most early retirements (35%-41%). In Table 3.1, the epidemiology of

the most frequent rheumatic diseases is shown.
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TABLE 3.1: Epidemiology of major rheumatic diseases [30].

Point prevalence Incidence Age Ration Gender ratio
Disease /1000 /1000 (65:25yr) (F:M)
Rheumatoid arthritis 8.0 0.5 6:1 2.5:1
Juvenile chronic arthritisa 0.7 0.1 N/A 2:1-7:1
Osteoarthritis (knee)b 100 N/A 0 2:1
Ankylosing spondylitis 2.0 0.07 0 1:3
Systemic lupus erythematosus 0.4 0.05 1.5:1 3:1-9:1
Systemic sclerosis 0.1 0.01 3:1 4:1
Gout N/A 1.0 2:1 1:6
a Children <15yr
b Prevalence among persons aged 35-74 yr.

3.2 Rheumatoid Arthritis

Rheumatoid arthritis (RA) is a chronic, systemic, autoimmune disorder that manifests it-

self as a disabling inflammatory activity, mostly in the synovial joints. This inflammatory

activity has the long-term effect of joint destruction, which, in later stages, creates high

disability (Fig. 3.1). The cause of this disease is not yet fully understood, but it is known

that it involves the immune system targeting healthy joints, resulting in the thickening of

the joint capsule and the destruction of the cartilage and bone. It affects from 0.5% to

1.0% of the population, with a higher incidence in women than in men (approximately

3 to 5 times more often) [31]. The first manifestations are mostly between 40 and 50

years of age in women and later in men. Given its progressive nature, it is crucial to

achieve early detection so that the inflammatory activity is reduced and the damage to

the joints minimized.

FIGURE 3.1: Example of the progression of Rheumatoid Arthritis on the hands.
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Other complications may also appear due to RA [32]. Because some of the medications

used target the immune system, it gets less effective, and the patients are more prone

to infections, which are among the main causes of death in people with RA. A higher

risk of heart attacks and strokes is also associated with the pericardium being attacked

by the RA. Anemia, osteoporosis, leg ulcers, and pleural effusions are also possible

complications [32]. They all lead to a loss in a patient’s quality of life, which is also a

trigger for depression, which is increased in these patients.

3.2.1 Diagnosis

Medical diagnosis is a difficult task involving the analysis of different sources of in-

formation. The rheumatology field is no different, and the gathering of information is

fundamental for a good diagnosis and follow-up for the diseases. Regarding RA, early

diagnosis is crucial for a proper follow-up to slow the disease progression. The chal-

lenge lies in the identification of the subtle changes that the RA causes in the patient.

To help the rheumatologist in this task, the American College of Rheumatology (ACR)

and the European League against Rheumatism (EULAR) created a set of guidelines in

2010. In Table 3.2, a short version of the criteria is presented:

From Table 3.2 different sources of information can be seen. Some are objective, such

as the serology, and others are more subjective, such as the duration of symptoms.

The joint involvement is dependent on the rheumatologist’s experience and the patient

deployment. Given its importance, the use of imaging techniques is advised so that a

more precise diagnosis can be obtained. Note that the joint involvement can add up

to 5 to the score, which is especially important since 6 is the threshold for a decision.

Among all joints, it is also possible to verify that the small joints are more important than

the large ones. An example is that a large joint adds 0 to the score, while a small joint

can add 2.

The criteria presented in Table 3.2 are enabled by the diagnosis tools available to the

rheumatologist. In general, they can be divided into three categories, each with a

specific role and importance: physical exams, imaging techniques and sample-based

analysis. Next, each one will be addressed in more detail:
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TABLE 3.2: 2010 ACR/EULAR classification criteria for RA [3].

Feature Details Score

Joint Involvement

1 large* joint 0
2-10 large joints 1
1-3 small** joints (+/- large joints) 2
4-10 small joints(+/- large joints) 3
>10 joints (at least 1 small joint) 5

Serology
Negative RF and anti-CCP antibodies 0
Low# positive RF or anti-CCP antibodies 2
High## positive RF or anti-CCP antibodies 3

Acute Phase Reactants
Normal CRP and ESR 0
Abnormal CRP or ESR 1

Duration of Symptoms
<6 weeks 0
>6 weeks 1

Classification criteria are applicable to patients with synovitis in at least one
joint without an alternative clear explanation. Joint involvement includes any
tender or swollen joint.
* Large joints refer to shoulders, elbows, hips, knees and ankles.
**Small joints refer to metacarpophalangeal, proximal interphalangeal, second
to fifth metatarsophalangeal, thumb interphalangeal joints and wrists.
# Low positive refers to values higher than and up to three times the upper
limit of normal.
## High positive refers to values three times above the upper limit of normal.
A score of at least 6/10 is needed for classification of a patient as having definite
RA.
CCP cyclic citrullinated peptide, CRP C-reactive protein, ESR erythrocyte sed-
imentation rate, RF rheumatoid factor

Physical exams test the mobility of the joints and the presence of swelling, pain, and

other movement characteristics, such as morning stiffness. The rheumatologist also

takes into account the patient’s history, such as professional or family disease history,

since it carries important information. It is the first line of examination and of major

importance considering that it creates the first prognosis and will dictate which steps to

take next. Its limitations are the subjectivity of the exam since it is heavily dependent

on the experience of the rheumatologist. Another limitation is the patient’s complaints,

since some of the indicators are dependent on their opinions. Pain, discomfort and

other sensorial aspects are subjective concepts and hard to quantify for different pa-

tients. Nevertheless, it is crucial for the diagnosis and is not replaceable by any other

diagnostic tool.
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The laboratory tests look for deviations from the normal homeostasis and, the pres-

ence and concentration of specific antibodies and other substances in the body fluids,

such as blood, urine and synovial fluid. These tests include, for example, the presence

of immunoglobulin M-rheumatoid factor, in rheumatoid arthritis and inflammatory analy-

sis, such as the erythrocyte sedimentation rate and the C-reactive protein [4]. The main

advantage is that quantitative results are obtained, independent from the patient and

medical experience. The disadvantages are that the results are not obtained during the

consultation time. This may require the patient to visit several locations, wait for the

results and book additional consultations. This not only disrupts their normal personal

and professional routines but creates anxiety in the patients since these results can

have a huge impact on their lives. Another limitation is the fact that some results are

not specific, and conclusions can only be taken if the results are, for example, positive

or supported by other evidence [3].

The imaging techniques test the visual aspect of the anatomical structures based

on their expected normality pattern [33]. The typical modalities used in rheumatology

are radiography, magnetic resonance imaging (MRI) and ultrasound. Radiography is

helpful for understanding the internal structure of the patient’s body to identify bone

pathology and some soft-tissue problems. Its limitations are the use of ionizing radia-

tion and that some indicators, such as synovitis and bone erosion, are only visible in

more advanced stages, which makes it more interesting for monitoring than for early

diagnosis. The MRI is used to study the presence of pathology in tendons, ligaments

and cartilage. It is especially important to study the spine since it can create a 3D

model of the anatomical structure. Its disadvantages are the cost of the equipment

and the exam, which make it harder to perform in smaller medical institutions or as a

mass diagnosis tool. Unlike radiography or CT, it does not use ionizing radiation, but in

some cases, intravenous contrast is used, which is prone to other unwanted reactions.

Ultrasound imaging is useful for studying soft tissues, specifically the more superficial

ones. It is used to identify early synovitis, effusions and bone erosions and abnormal

changes in the tendons, muscles and ligaments. The power Doppler mode can also

be used to identify blood flow and obtain further information regarding the presence of

active inflammation. Further advantages are the low cost of the equipment and exams,

which is lower than those of other imaging modalities, such as MRI. It can be performed

during the consultation, it is well accepted by patients, and some studies hint that the

23



Chapter 3 Rheumatology Background

results are comparable to MRI and better than radiography [5, 6]. These advantages

have increased its acceptance to the point that it is now an important tool for rheumatol-

ogists [34, 35], for example, in the assessment of rheumatoid arthritis (RA)[5, 36]. The

limitation of an ultrasound exam is that it is complex to perform, both its gesture and

image understanding, require intensive training and experience [35]. Computer sys-

tems could help doctors in this interpretation by using image processing and analysis

techniques, enhancing the visualization, and helping in the identification of structures

and extraction of objective clinical measures.

3.2.2 Treatment

RA has no known cure, but some treatments are helpful in slowing the disease pro-

gression and stabilizing it. There are different treatment possibilities that need to be

discussed with the rheumatologist. They differ considerably in their efficiency, side ef-

fects and cost, and the idea is to get to a point of remission or a stable condition with

low symptoms so that the patients can perform their daily activities. The ACR and EU-

LAR provide guidelines to help with the treatment planning because a single treatment

that works for all patients does not exist. The drug groups used in the management of

RA are:

• Analgesics

• Non-steroidal anti-inflammatory drugs

• Disease-modifying anti-inflammatory drugs

• Corticosteroids

• Biologic agents

Disease-modifying antirheumatic drugs (DMARDs) are the most effective, and it is rec-

ommended that the treatments start early and aggressively [37]. DMARD is an umbrella

term for a somewhat unrelated set of drugs that are known to improve the condition of

patients with rheumatoid arthritis. The most-used DMARD is methotrexate, but other

alternatives exist, which are normally used when methotrexate does not produce the

desired effects. Because they are unrelated, combinations of DMARDs are frequently
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used and combined with analgesics to help with pain management. Same patients ben-

efit from the use of non-steroidal anti-inflammatory drugs to reduce the inflammatory

activity, but due to their side effects, some precautions must be taken, such as gastro

protectants. Corticosteroids are also used to decrease the inflammatory activity, acting

quickly and improving the condition of the patients. Some side effects are attributed

to this treatment, and oral administration is not advised over long periods of time. It

is often used as a primary drug in the beginning of the treatment and as a bridging

agent, when a therapy change occurs [38]. An alternative to DMARDs are biologic

agents, also known as biosimilar DMARDs, bsDMARDs or simply Biologics. They are

protein-based drugs engineered to inhibit or augment part of the immune system [38].

They have a higher probability of secondary effects, such as infections and are more

expensive, which justifies their use only in special cases, for which methotrexate and

other DMARDs do not produce the desired effects.

3.2.3 Costs

The cost of RA treatment is an important aspect to take into consideration when choos-

ing a treatment. It is estimated that the medication costs can range from $1,500 to

$30,000 annually for a single patient in the USA. Other expenses might also be asso-

ciated, such as movement helpers, hospital expenses and missing work days for the

patient and family. A study from GBI Research estimated that, in the USA, the RA mar-

ket might grow from $6.4 billion in 2013 to $9.3 billion in 2020. This clearly indicates

that the burden of such diseases is not negligible, and because of that, measures to

reduce their impact need to be taken. This growth is associated with new and more

expensive treatments and with the increase in longevity and negative lifestyles, which

promote the occurrence of such diseases.

3.3 Ultrasound for Rheumatoid Arthritis

The use of ultrasounds in rheumatology, and more precisely in the assessment of RA,

is a relatively recent topic when compared with other well-established protocols, such

as neonatal and cardiovascular assessment. Advances in equipment capabilities, with
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the spread of probes with higher frequencies (above 10 MHz), have allowed the ac-

quisition of images with better spatial resolution. These high frequency probes allow

the differentiation of the small structures present in the joints [34, 35, 39]. Note that, in

the case of Rheumatoid Arthritis assessment, the loss in depth penetration due to the

increase in frequency is not a problem since the structures to be analyzed are mostly

superficial.

Regarding the use of ultrasounds to infer the presence of RA, some studies were found

in the literature. In [40], a scoring system was proposed where the implication of the

proximal interphalangeal (PIP) and metacarpophalangeal joints (MCPJ) was studied on

the palmar and dorsal sides. The ”3 finger method” achieved the best results (using the

index, middle and ring fingers), and the palmar acquisitions lead to better sensitivities,

while no differences were found between the PIP and MCPJ. Alternately, [41] studied

the second MCPJ on 8 different planes and concluded that the longitudinal dorsal was

more important than the palmar view. These articles are somehow contradictory and

show that the assessment of RA is not yet fully understood. Another finding in MCPJ

US images related to RA is bone erosion. The authors in [42] studied the specificity of

US to detect bone erosions. The results showed that, although bone erosions are not

specific to RA, large erosions in the second and fifth MCPJ, fifth metatarsophalangeal

joint (MTPJ) and distal ulna were highly specific to RA assessment.

Based on the literature review and the advice of expert rheumatologists, the longitudinal

view of the second MCPJ was selected. Nevertheless, the remaining MCPJ, as well as

the PIP joints, are very similar, and thus most of the work proposed here might be easily

applicable to them.

3.3.1 Metacarpophalangeal Joint

As previously shown, the small joints play a vital role in the assessment of RA. Among

all small joints, the MCPJ was also shown to be an important structure, and thus it

was selected for this work as the object of study. In Fig. 3.2, a healthy MCPJ can be

visualized.
1Adapted from: Blausen.com staff. Medical gallery of blausen medical 2014. WikiJournal of Medicine

1 (2), 2014
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FIGURE 3.2: Illustration of a healthy metacarpophalangeal joint.1

From Fig. 3.2, it is possible to visualize the metacarpus in the proximal region and the

phalange in the distal. Their main function is to give mechanical support to the hand

and finger. The extensor and flexor muscles, together with the tendons, are responsible

for the movement of the finger, where the first generates force and the second transfers

this force from the muscles to the bones. The ligaments are responsible for limiting the

movements so that unwanted movements are prevented. The bursa is a structure that

reduces the friction between the tendon and the bones. Finally, the articular cartilage,

joint capsule, synovial membrane and synovial fluid all work together to ensure that

the bones do not deteriorate with movement by reducing the friction between them.

The synovial membrane is responsible for keeping the synovial fluid in good condition,

i.e., responsible for its renewal, so that the lubrication between the bones is proper

maintained.

One of the indicators of RA is the presence of inflammatory activity in the synovial

membrane, known as synovitis [4]. In Fig. 3.3, it is possible to see a representation of

a normal joint and a joint affected by RA.
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FIGURE 3.3: Illustration of a normal joint and a joint with synovitis.2

In RA, the immune system attacks the synovial membrane, making it thicker and com-

promising the normal lubrication process. The first effect is that the joint movement

is less efficient due to the increase of the friction between the bones, which promotes

cartilage deterioration. The other effect is the joint capsule swelling due to the accu-

mulation of synovial fluid, which creates a distention of the joint capsule. [4]. These

problems have long-term effects as already discussed in this chapter.

3.3.2 Selected Acquisition Protocol

The study of the MCPJ using ultrasound images can follow different acquisition pro-

tocols. In this work, the dorsal longitudinal view was selected, because it allows the

visualization of the joint capsule, cartilage and possible bone erosions and other ten-

don problems, in a single acquisition. In Fig. 3.4, the probe positioning and the resultant

image are shown.

The metacarpus are the bones of the hand that are connected to the first bone of the

fingers, called phalanges and have high brightness in the ultrasound images. The skin

line is the most external organ and the first protection layer of the hand, and it also has

a bright appearance with a darker region below it due to the presence of a fat layer. The

extensor tendon, responsible for the opening of the hand, is situated between the bones

and the skin and is darker than its surroundings. Between the metacarpus, phalange

and extensor tendon is the joint capsule, responsible for the friction reduction of the
2Adapted from: February 2016. URL https://www.niams.nih.gov/Health_Info/Rheumatic_

Disease/default.asp
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FIGURE 3.4: Representation of the second MCPJ ultrasound image acquisition.
Adapted from [12]

fingers due to their natural movement. In the ultrasound images, it is not always visible,

but when synovitis is present, it is usually visible as a darker structure. In the head of

the metacarpus, it is also possible to see a small darker region, which is the cartilage.

The use of the power Doppler mode is also important in the analyses of synovitis. A

high Doppler signal is indicative of inflammation activity since more blood movement is

involved in these cases. Our choice in this work was to focus on the B-mode ultrasound

images, but power Doppler should be considered by future computer vision researchers

given its usefulness to rheumatologists.
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4.1 Ultrasound Imaging Existing Work

As stated in Chapter 2, ultrasound images are usually corrupted by noise and arti-

facts. This characteristic increases the interest in image processing techniques that

allow better image interpretation [44]. Several areas already use image processing

techniques with success, such as echocardiography, breast ultrasound, vascular ul-

trasound and gynecological and obstetric ultrasound [21, 45–48]. The typical image

processing pipeline can be divided into four main steps: pre-processing; segmentation;

feature extraction and classification. The literature review, which will be presented next,

follows this division.

4.1.1 Pre-Processing

Image pre-processing can be defined in several ways, but the main idea is to start from

an image and obtain a new image with less variability and greater information availability

with the aim to improve and simplify the overall processing pipeline. This includes crop-

ping, color/gray-scale rearrangements, noise removal, and others. Because ultrasound

images are frequently corrupted by noise, it will be the focus of this subsection. The

main type of noise found in ultrasound images is speckle. Some studies suggest that it

can be modeled as a Rayleigh distribution [44, 49], while others suggest that Gamma

or Fisher-Tippett distributions are good approximations [21, 50, 51], or even a multi-

plicative model [52]. Several methods to remove speckle have been proposed: some

use the wavelet transform [53–56], others are based on anisotropic diffusion [57–59],

and others are based on partial differential equations [60]. In [61], three pre-processing

methods were tested in the classification of ultrasound kidney images: the median filter,

wiener filter and histogram equalization. The results showed that the median filter was

the best among these three.

In [62], a modeling system is proposed to recover the radio frequency original signal

from the log-compressed ultrasound images outputted by the equipment systems. The

authors argue that the post-processing, used for display, results in better looking images

but compromise the use of realistic models in image analysis. It is reported that, with the

proposed framework, the observed data is better represented for modeling purposes

using a Rayleigh distribution.
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In [63], a decomposition method for ultrasound images is proposed, where the input

image is separated into two distinct images, the de-speckle and the speckle image. The

authors argue that the speckle, often considered as noise, carries information regarding

the underlying tissues scanned with the ultrasounds and should be considered as signal

instead of noise.

4.1.2 Segmentation

Regarding the segmentation of structures in musculoskeletal ultrasound images, sev-

eral works can be found in the literature. [64] proposed a bone fracture detection sys-

tem where the segmentation of the bone was achieved using phase symmetry and

Log-Gabor 2D filters. These filters are used to find local properties of the image by

calculating the signal magnitude and phase at a given scale and location. The au-

thors in [65] developed a bone contour detection algorithm based on ultrasound prin-

ciples. Each pixel is mapped to a probability of belonging to the bone surface, whose

value is based on the combination of the shadow effect and reflection of the bone. Af-

ter that, a line model is created where the probabilities are used to minimize a cost

function that converges to the bone surface using dynamic programming techniques.

Because the ultrasound images are very granular and the contours are not easily iden-

tifiable, some authors have noted that segmentation methods that incorporate prior

knowledge, such as shape, movement and localization, achieve better results. In [66],

the use of a Bayesian approach is proposed to segment the prostate, while other con-

tributions used active contours and active shape models [67, 68], as well as level-sets

[69]. Other segmentation techniques are based on machine learning methods, where

a model is trained with known cases and later used for unknown images. Some works

have been published in this field using AdaBoost, Probabilistic Boosting Trees and Ran-

dom Forests [45, 70]. The use of Deep Learning (DL) approaches is increasing in all

fields, and in a survey conducted by [71], some of the most recent developments in the

medical field were addressed. There, the authors divided the approaches into several

categories, and regarding the musculoskeletal field, only one work was presented, fo-

cusing on ultrasound images [72], while the remaining ones focused on MRI, CT and

X-ray images. The field in which ultrasound imaging and DL are more explored is the
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analysis of cardiac images [73–75]. In [76], CNN’s were used to identify the edges in

musculoskeletal ultrasound images of the shoulder.

4.1.3 Feature Extraction and Classification

The detection and quantification of findings in musculoskeletal ultrasound images is a

relatively recent topic when compared with other well-established ultrasound acquisition

protocols. Regarding the detection of findings, several works used first-order statistics,

Haralick and Law features, Hu moments, wavelet- and Fourier-based features and oth-

ers [61, 77–81]. In these works, Neural Networks and/or SVM were used to create

the decision models, with no apparent advantage or significant preference for one or

the other. These techniques were used to propose solutions in kidney, heart and liver

ultrasound images.

In [61], a classification system for kidney ultrasound images is proposed. It assumes a

5-class classification problem (normal, cyst, stone, tumor and failure) and starts with a

pre-processing step to remove noise and reduce the variability between images. The

authors compare two features sets, one based on the Haralick features [82] and the

other using wavelet features. The principal component analysis (PCA) is used in the

wavelet features to reduce the dimensionality of the feature vector. Finally, a Neural

Network is used to create the decision model. A correct classification rate of 97% was

achieved using the wavelet-based features, which outperforms the 95% achieved with

the Haralick features.

A more recent work proposes the use of CNNs to automatically characterize plaque

composition in carotid ultrasound images [83]. Approximately 90,000 patches with

15x15 pixel sizes were used to create the model. The authors reported a correlation

of 0.9 with the clinical assessment for the estimation of the lipid core, fibrous cap and

calcified tissue areas.

In [81], an ultrasound imaging system for fatty and normal liver classification is pro-

posed. The authors reported 95% accuracy and 100% sensitivity using a pre-processing

step to recover an image with the speckle information and using the Haar wavelet de-

composition on that speckle image.
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Regarding the musculoskeletal ultrasound classification methods, [84] proposed a carpal

tunnel syndrome classification system and compared electromyography with ultrasound

imaging. The author concluded that the first is better, but the ultrasound achieved com-

parable results, which makes it an interesting alternative for daily use.

4.2 Active Contours Model

The active contours model is a well-known framework used to solve image processing

problems, such as segmentation and tracking. The algorithm looks for a set of con-

nected points, v
i

, that define a line around the object of interest. These points are

allowed to move under certain restrictions, which are referred to as energies. The ob-

jective is to find the the points v
i

that minimize the energy, E(v
i

):

argmin
v

i

E(v
i

) (4.1)

There are several ways to formulate the energies, but they are usually divided into two

main groups. The internal energy, E
int

, referring to the line itself, is responsible for

imposing the expected shape of the object, and the external energy, E
ext

, referring to

the image, I, is responsible for the adaptation of the expected shape of the object to

the image. Equation 4.2 presents the general energy measurement equation using the

continuous representation of v
i

as v(s).

E(v(s)) =

Z
E

int

(v(s)) ds+

Z
E

ext

(I, v(s)) ds (4.2)

Note that, to obtain v(s) from v
i

, we need to define an interpolation model. The typi-

cal method is piece wise linear interpolation, but other methods can be used as well,

such as polynomial and spline interpolation. Next, the internal and external energy cal-

culation will be explained, and possible solutions to optimize 4.1 will be presented as

well.
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4.2.1 Internal Energy

The internal energy, E
int

, refers to the energies that only take into consideration the

solution, v(s). The most common way to express the internal energy is by using the

first and second derivative of v(s), which are respectively known as the continuity and

the curvature:

E
int

(v(s)) = ↵(s)

����
dv

ds
(s)

����
2

+ �(s)

����
d2v

d2s
(s)

����
2

(4.3)

where ↵(s) and �(s) are weight values used to control the importance of the continuity

and the curvature, respectively. The continuity ensures that a continuous line is ob-

tained, instead of scattered points, by limiting the distance between successive points.

The curvature penalizes oscillations, making the line more or less smooth.

4.2.2 External Energy

External Energy refers to the energies that take into consideration the solution, v(s),

and the information present in the image, I. The most common external energies are

related to the image intensity, edges or other pre-processing techniques:

E
ext

(I, v(s)) = w
L

E
Line

(I, v(s)) + w
E

E
Edge

(I, v(s)) + w
F

E
Filter

(I, v(s)) (4.4)

where w
L

, w
E

and w
F

are, respectively, the weights of the line, edge and filter energies

used to control the relative importance of each. The E
Filter

component is a generic

formulation of E
Edge

, where the filter is chosen for the specific problem. The E
Edge

en-

ergy is obtained from the application of an edge detector to the image. In this field, the

number of possible formulations is huge and dependent on the image characteristics,

but the main idea is to enhance the objects of interest by creating regions of low values

that v(s) should move to.
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4.2.3 Optimization

After the energies formulations, equation 4.1 needs to be solved to obtain the final

solution. Gradient descent based methods are the most common approaches [85].

They use the derivatives of the energies functions to conduct a pre-defined coarse

segmentation to a local minimum, taking into consideration that, at the minimum, the

gradient should be zero. Other methods use the Euler-Lagrange equation, which is also

based on the energies derivatives, but with a different formulation [85]. Both methods

work well in cases where the number of local minimums is small or the confidence in the

initialization is good. However, these two characteristics are not always met, so other

optimization methods or strategies might be needed. For these cases, Grid search,

Monte Carlo and Evolutionary Algorithms [86] are possible solutions since no precise

initialization is needed and local minimums can be avoided to a certain degree.

4.3 Localizing Active Contours

The Localizing Active Contours technique (LAC) was proposed by [87], and like most

active contours methods, it starts from a coarse segmentation and iteratively, converges

to a more precise segmentation. In the LAC method, the energies are calculated locally,

allowing a natural adaptation to background non-uniformities. Following the definition of

[87], the localizing active contour model is defined as the sum of all the local energies

along the contour line:

E(�) =

Z

⌦
x

��(x)

Z

⌦
y

B(x, y) · F (I(y),�(y)) dydx+ �

Z

⌦
x

��(x) k 5�(x) k dx. (4.5)

where, ��(x) is a portion of the line centered in x, B(x, y) is the area around the point

(x, y) and is used to define the localizing area. F is the internal energy function, and

the last term refers to the continuity of the contour line and is scaled by �. To help

understand each variable, a representation of each is presented in Fig. 4.1.

To use gradient descent methods, the derivative of the energy with respect to � is used

to obtain an evolution equation:
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FIGURE 4.1: Representation of the Localizing Active Contour algorithm; In green is
the contour line, that separates the interior and exterior of the image. The red circle is

the neighborhood, B, of the point (x, y), which is represented in yellow.
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@t
(x) = ��(x)

Z

⌦
y

B(x, y) ·5
�(y)F (I(y),�(y)) dy + ���(x)div

✓
5�(x)

|5�(x)|

◆
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The internal energy, F , used was the Uniform Model (UM) defined as:

F
UM

= H�(y) (I(y)� u
x

)2 + (1�H�(y)) (I(y)� v
x

)2 (4.7)

where u
x

and v
x

are, respectively, the mean intensity of the exterior (1 � H�(y)) and

the interior (H�(y)) of the contour in a given point neighborhood:

u
x

=

R
⌦

y

B(x, y) ·H�(y) · I(y)dy
R
⌦

y

B(x, y) ·H�(y)dy
(4.8)

v
x

=

R
⌦

y

B(x, y) · (1�H�(y)) · I(y)dy
R
⌦

y

B(x, y) · (1�H�(y)) dy
(4.9)

For more implementation details or other internal energy formulations please refer to

[87].
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4.4 Phase Symmetry

Symmetry is an important characteristic of objects and signals. The general definition

states that an object is symmetric if it remains invariant under some transformation.

The most common case is bilateral symmetry, where one part of the object is equal to

the reflection of the other part, as shown in Fig. 4.2.

FIGURE 4.2: Example of a symmetric object in the left and an asymmetric object in
the right.

The problem with finding symmetry in an object is that the object needs to be identified

first. In [88], a method for symmetry identification without prior segmentation was pro-

posed. The main idea is to use wavelet filters to study the signal in the phase domain.

These filters must preserve the phase information and, therefore, must be an even-

symmetric odd-symmetric pair (low-pass and high-pass, respectively). The complex-

valued Gabor Functions wavelets, or more precisely, the LogGabor functions, meet this

requirement and were used in this work. Let S denote a 1D signal and M e

n

and Mo

n

denote even-symmetric and odd-symmetric wavelet filters at scale n. The convolution

of the signal with the filters is represented as:

[e
n

(x), o
n

(x)] = [S(x) ⇤M e

n

, S(x) ⇤Mo

n

] (4.10)

where e
n

(x) and o
n

(x) are, respectively, the even and odd responses. Assuming that

they are orthogonal to each other, the first being the real and the second the imaginary,

it is possible to calculate the amplitude A
n

(x) and the phase �
n

(x) as follows:

39



Chapter 4 Image Processing and Analysis Background

A
n

(x) =
p
e
n

(x)2 + o
n

(x)2 (4.11)

and

�
n

(x) = atan2(e
n

(x), o
n

(x)) (4.12)

For the case of a symmetric object, the amplitude response of the even filter is expected

to be high and the amplitude response of the odd filter low, which in practice implies that

the phase, �, will control the proximity of the response to the even or odd component

as shown in Fig. 4.3.

FIGURE 4.3: Representation of the odd and even orthogonal filters. When an object
is perfectly symmetric the response will be a vector parallel to the even axis, and the
other way around for the asymmetric case. Note that the frequency axis is related to

the wavelet multi-resolution

Thus it is possible to use the cosine and the sine of the phase to measure the symmetry,

that is, subtract the absolute value of cosine from the sine. To include the multi-scale

component, n, the weighted sum of all scales is done, resulting in equation 4.13.

Sym(x) =

P
n

bA
n

(x)[| cos (�
n

(x))|� | sin (�
n

(x))|]� T cP
n

A
n

(x) + ✏
(4.13)

After Simplification1, the final equation is obtained:
1
cos (atan2(x, y)) =

xp
x

2+y

2

and sin (atan2(x, y)) =

yp
x

2+y

2
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Sym(x) =

P
n

b[|e
n

(x)|� |o
n

(x)|]� T cP
n

A
n

(x) + ✏
(4.14)

Here, a new term, T , is introduced that acts as a noise reduction component, and its

value should be equal to the maximum noise response. To extend 4.14 from 1D signals

to 2D, the 1D approach is applied to multiple orientations and weight sum all in the

same manner used in the scale. Hence, it is also possible to control in which directions

test the symmetry. This property is particularly interesting in ultrasound images since

they tend to have more horizontal structures, and consequently, the vertical symmetry

is more important than the horizontal.

4.5 Simple Linear Iterative Clustering

The Simple Linear Iterative Clustering (SLIC) method was proposed by [89] and con-

sists of an adaptation of the k-means algorithm that uses the intensity and spatial infor-

mation, ensuring connectivity between the pixels in each cluster, which are referred to

as super-pixels. The term super-pixel is used to identify a set or cluster of pixels with

similar characteristics. Because they can incorporate several pixels, they are a more

compact representation of the image, reducing redundancy and possibly accelerating

existing algorithms.

The SLIC algorithm was first proposed to process color images in the CIELAB color

space, but the extension to gray-scale images is trivial. The algorithm starts with an ini-

tialization phase similar to k-means, where a set of k centroids, C
i

= [l
i

a
i

b
i

x
i

y
i

]T , is

calculated from the input image. Here, the first three coordinates are the CIELAB color

centroid, and the last two are the spatial centroid. The samples are extracted using a

grid approach with a step of S =
q

N

k

, where N is the number of pixels in the image.

Next, a rearrangement of the centroids is performed in which the centroid is moved to

the lowest gradient position in a 3x3 neighborhood. This step reduces the noise sen-

sitivity of the algorithm. Next, each pixel is iteratively assigned to the closest centroid,

and the centroids are recomputed at the end of each iteration in a manner similar to

k-means. The main differences lie in the search space and the distance metric. The

search space for each cluster is limited to a window of size 2Sx2S, ensuring that the
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pixels assigned to the centroid are in a controlled neighborhood and considerably re-

ducing the computational time. The distance metric incorporates the spatial distance,

4.15, and the color distance, 4.16:

d
s

=
q
(x

j

� x
i

)2 + (y
j

� y
i

)2 (4.15)

d
c

=
q

(l
j

� l
i

)2 + (a
j

� a
i

)2 + (b
j

� b
i

)2 (4.16)

where j and i refer to the pixels and the centroids, respectively. The distance, D, is the

combination of these two distances:

D =

s✓
d
c

m

◆2

+

✓
d
s

S

◆2

(4.17)

where m is a parameter that controls the relative importance of d
s

and d
c

. If m is small,

the color prevails over the spatial distance, making the super-pixels less regular. If m is

large, the super-pixels get more regular but less uniform in terms of color. When using

the CIELAB color space, values between 1 and 40 are advised for m. Equation 4.16

can be adapted from the CIELAB color space to gray-scale by changing d
c

to:

d
c

=
q
(g

j

� g
i

)2 (4.18)

where g is the gray level at the respective indexes of j and i.

4.6 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are the current state-of-the-art approach for

solving complex classification, identification and segmentation tasks. The concept is

an extension of the well-known Neural Network framework, and it uses the same prin-

ciples and tools, such as inspiring in the human brain and multiple layers of artificial

neurons. One key aspect of the CNNs is that the numbers of layers and neurons are

much larger than those typically used in Neural Networks. Because of that, CNNs are
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able to create complex nonlinear relationships between the input data and achieve re-

sults comparable to humans. CNN models can take several forms, but they all use the

same basic modules, which are the convolutional layers. These layers have special

properties that are interesting for image processing tasks. They replace the typical fully

connected layers, allowing the models to have much fewer parameters and therefore a

more efficient and easy training. In Fig. 4.4, the difference between a fully connected

and a convolutional layer is visualized.

FIGURE 4.4: Difference between a fully connected layer (left) and a convolutional layer
(right).

In a convolutional layer, each neuron only looks to a limited portion of the image at a

time, while a fully connected layer looks to all pixels at once. This difference implies that

convolutional layers are only able to capture local information while fully connected lay-

ers capture global information. To overcome this limitation and obtain global relations

between the pixels (context), several convolutional layers are concatenated, which in-

creases the receptive field of deeper layers in relation to the input image, as depicted

in Fig. 4.5.

This concatenation has an additional effect of successively capturing more complex

information from the image. In fact, it is possible to observe that the first layers capture

low-level features, and deep layers capture high-level features Fig. 4.6.

From Fig. 4.6, it is possible to see that, in the first layers, the information extracted is

mostly based on gradients, and as successive layers are concatenated, more complex

information is obtained. Next, a brief explanation of the main building blocks of a CNN

model will be presented.

CNN building blocks

43



Chapter 4 Image Processing and Analysis Background

FIGURE 4.5: Example of receptive field growth in deeper layers.

FIGURE 4.6: Example of the low level and high-level features learn in shallow and
deep layers (from the bottom to the top).

To create a CNN model, there are several blocks that can be used to solve each spe-

cific problem. In this subsection, a brief introduction to the most common blocks is

presented.

Convolutional Layer : this layer is the most import one in CNNs, and it is responsible

for the information enhancement observed in Fig. 4.6. They have two main parameters

and several secondary parameters. The two main parameters are the convolutional fil-

ter size and the number of neurons. The first is used to define the receptive field of each

neuron and is normally set to a small odd number, and the second is dependent on the

application but is typically set to a base-2 number. The other secondary parameters
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are the stride, which defines the jumps that the neuron does in the convolutional oper-

ation, and typical values are 1 and 2. The use of padding so that the dimensions are

preserved and the use of dilated filters to increase the receptive field without increasing

the number of parameters are also used in this type of layer.

Activation Layer : this layer adds non-linearity to the model. Note that a set of succes-

sive linear operations result in a linear operation, and thus by introducing a non-linear

operation, complex relations between components can be created. Common activation

functions are:

• Rectified Linear Unit - Relu

• Exponential Linear Unit - Elu

• Sigmoid

• Softmax

Pooling Layer : this layer samples the resulting features from the convolutional layers

so that the number of parameters is decreased, as well as the model complexity. This

layer also helps increase the receptive field of the next neurons, because it compresses

local information. Typical pooling layers are the max-pooling and average pooling with

a down-scaling factor of 2.

Batch Normalization: this layer is used to normalize the features created by the convo-

lutional layers. This allows the inputs of the following layers to have standardized input

values, which helps in the convergence process, making it more stable and faster.

4.7 Performance Metrics

4.7.1 Modified Hausdorff Distance

The Hausdorff Distance is a metric used to quantify the closeness between two lines,

planes or sets of points. It is defined as the maximum minimum distance between two

sets, A and B, as shown in Fig. 4.7:
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FIGURE 4.7: Examples of the Hausdorff distance between two lines. Black - Hausdorff
distances; Gray - Lines. Adapted from [90]

Mathematically, it is defined as:

H(A,B) = max(h(A,B), h(B,A)) (4.19)

with:

h(A,B) = max
a2A

min
b2B
ka� bk (4.20)

where k.k is the Euclidean distance, between two points.

One limitation of the Hausdorff Distance is that it is highly sensitive to outliers. To over-

come this limitation, other variations of the Hausdorff Distance have been proposed.

Here, the Modified Hausdorff Distance (MHD) [91] will be presented in more detail.

As previously said, the MHD [91] aims to reduce the impact of outliers in the tested

sets, and thus h(A,B) was replaced with h
mod

(A,B), which is defined as:

h
mod

(A,B) =
1

|A|
X

a2A
min
b2B
ka� bk (4.21)

In this manner, instead of the maximum minimum distance between the point sets,

the MHD calculates the average minimum distance between points, which reduces the

impact of a single point since all points are taken into account.
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4.7.2 Dice Similarity Coefficient

The Dice Coefficient is a metric that quantifies the overlap between two regions. It

is commonly used in segmentation problems to compare the performance of different

algorithms and parameterizations. Given two regions, A and B, the Dice Coefficient,

DICE, is defined as:

DICE(A,B) =
2|A \B|
|A|+ |B| (4.22)

From 4.22, it is possible to conclude that, if the regions are almost coincident, DICE

will be 1, and if they are totally separated, DICE will be 0. Fig. 4.8 provides a visual

representation of these special cases.

A B

A \ B

DC ⇡ 0.25

A B

A \B

DC ⇡ 0.91

A B

A \ B = ;

DC = 0.0

FIGURE 4.8: Visual representation of the Dice Coefficient in three different cases.
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5.1 Introduction

In this chapter, the segmentation of the metacarpus and phalange bones is presented,

which is the first contribution of this thesis. This chapter is mostly based on the work

published in [9], along with a new contribution involving additional extended results

over an enlarged dataset. In ultrasound images, the only visible part of the bones is

their surface. Due to their high density when compared to the surrounding structures,

they reflect all the sound waves that reach them. Therefore, the only information that
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might appear below the bones is noise or artifacts. This is an interesting property

since it allows for the reduction of the search zone of other structures once the bone

surface is detected. Moreover, correct identification of the bones can be used to extract

information regarding the presence of bone erosion, osteophytes or other bone-related

conditions visible on their surface. Fig. 5.1 presents some examples of ultrasound

images of the dorsal view of the second MCPJ and the expected challenges of the

segmentation of the metacarpus and phalange.

(A) (B)

(C) (D)

FIGURE 5.1: Examples of ultrasound images of the dorsal view of the second metacar-
pophalangeal joint. A) normal image; B) bone erosion with subluxation; C) osteophyte;

D) reverberation artifact.

Findings, such as osteophytes and erosions, create discontinuities in the bone surface,

the presence of reverberation can create structures similar to the bones, and subluxa-

tions change their normal and expected position. An automatic tool, such as the one

proposed here, needs to be able to handle these findings and achieve results similar to

those achieved in normal images. In the case of anatomical findings, a proper segmen-

tation of the bones can be a major step in the characterization of the patient’s condition

(e.g., the quantification of missing bone when bone erosion is present). Previous works

proposed some solution for this problem: In [92], the author proposes the use of confi-

dence maps improved with the use of a Trimmed Non-Local Means filtering to improve
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the results of a conventional segmentation method. The confidence maps are directly

related to the likelihood of the ultrasound being transmitted and reflected along the tis-

sues, and trimmed Non-Local Means filtering was used to reduce the image noise and

improve the confidence maps results. The segmentation is then achieved using the

well-known Otsu method on the confidence map, followed by morphologic operations

on the resulting blobs to improve the contours. In [11], the log Gabor filter is used to

reduce noise and enhance ridge-like structures (bones), and a global threshold is then

used to extract the bone candidates. Using prior knowledge of the bone shapes, a

score system is used to remove outliers. These two last works are the closest found in

the literature, addressing the segmentation problem of the metacarpus and phalange.

5.2 Proposed Work

The segmentation of the metacarpus and the phalange was divided into 4 main steps,

as depicted in Fig. 5.2: pre-processing, contour initialization, the Localizing Active

Contours (LAC) algorithm, and finally, upper line extraction. Next, each step will be

addressed in detail.

Original Image Pre-processing Contour
Initialization

Localizing
Active

Contours

Upper Line
Extraction

Metacarpus
and Phalange
Identification

FIGURE 5.2: Proposed pipeline for the identification of the metacarpus and phalange.
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5.2.1 Pre-processing

The proposed method starts with the trimming of the bottom half of the image, followed

by a down-sampling by a factor of 2. These procedures reduce the amount of informa-

tion to be processed and increase the processing speed. From Fig. 5.1, it is possible

to see that the bottom halves of the images have no useful information since the ultra-

sounds are not able to reach so deep into the tissue. Regarding the down-sampling,

there was no visual evidence that it interfered with the overall segmentation perfor-

mance. These steps were empirically selected, and further down-sampling or trimming

can be performed if the processing speed is critical.

5.2.2 Contour Initialization

For the initialization of the LAC algorithm, a template approach was used. It is known

that the bones are brighter than the background and have a horizontal linear shape.

Moreover, they do not overlap at any point, and the end of the metacarpus is close to

the beginning of the phalange. Based on these assumptions, a rectangular structuring

element was used to locate possible bone regions. To do so, the template was moved

vertically, looking for the region of maximum integral (inside the template), which is set

to the foreground at the end of each vertical sweep. Thereafter, the template is moved

horizontally to the right to perform another vertical sweep. Based on the continuity

assumption, we also impose that, from one template to the next, there should be some

overlap, and thus the horizontal step is set to half of the structuring element width. The

vertical step was set to 1 pixel, and the template size was 5% of the trimmed image

size (height and width).

5.2.3 Contour Refinement - LAC

After contour initialization, the LAC algorithm is used to improve the segmentation.

This technique was based on the work of [87], which was briefly explained in Chapter

4. Like most of the active contours methods, it starts from a coarse segmentation

and iteratively converges to a more precise segmentation. In the LAC method, the

energies are calculated locally, allowing a natural adaptation to non-uniformities of the
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background. This characteristic is useful because, in the MCPJ images, the background

and foreground are different along the image and within the same objects. For instance,

the joint capsule area is usually darker than the peripheral zones (Fig. 5.1). The use of

other techniques, such as Chan-Vese, that take into consideration the characteristics

of all interior and exterior regions of the contour would require a pre-processing stage

to reduce the image non-uniformities.

The parameters were empirically selected as follows: 800 iterations and a neighbor-

hood radius of the local component of 5 pixels. The resulting mask is up-sampled

to the original size, and artifacts (small structures) are removed. Fig. 5.3 shows the

evolution of the LAC algorithm, from column 1 and 2 (iteration 10 and 800).

5.2.4 Upper Line Extraction

The upper line extraction module aims to identify the bone surface. It uses the mask

obtained from the LAC and assumes that there are no structures under the bones since

they are highly reflective of ultrasound waves. Following this idea, the vertical first

derivative of the mask is computed, and only the positive values are kept (background

to foreground transitions). The resulting image is dilated with a 3x3 square kernel,

and the centerline is extracted to ensure connectivity and slightly smooth the result.

Afterwards, the two biggest lines are selected as the bones, and lines in the same

columns as these two lines are removed. As previously said, there is no bone overlap,

and therefore only one line should be present in the vertical direction. At this point, it

is expected that only two lines are present in the image, one for the metacarpus and

another for the phalange. To separate them, the line on the left is assigned to the

metacarpus and the one on the right to the phalange. In some cases, the algorithm

returns more than two structures due to discontinuities in the bone, as in the case

of osteophytes or bone erosions. In these cases, the lines between the metacarpus

and phalange lines are connected to the closest one until only two lines remain. The

closeness measure is the horizontal Euclidean distance from the tips of the lines. This

choice was based on visual inspection of the results. In some cases, the metacarpus

discontinuities create a vertical gap larger than the typical horizontal gap between the

phalange and the metacarpus (5.3 - case 3); consequently, the inclusion of the vertical

distance would force the connection of the tip of the metacarpus to the phalange.
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5.3 Results and Discussion

To test the proposed method, a database of 164 images from the second MCPJ was

used. The images were acquired with the collaboration of Unidade Local de Saúde do

Alto Minho and manually annotated by two rheumatologists using dedicated software.

The annotations consisted of the identification of the metacarpus and phalange upper

line and the tendon. The images were acquired with a high-frequency ultrasound de-

vice, a GE Healthcare LOGIC-S8, and saved in anonymized DICOM format. Regarding

the image characteristics, its size is {448x760} (rows, columns) pixels with 8 bits and a

spatial resolution variable between 40 µm and 55 µm.

Fig. 5.3 shows some examples of intermediate stages and the final results of the pro-

posed method.

FIGURE 5.3: Visual results of the metacarpus and phalange segmentation using the
LAC algorithm. In the lines it is possible to see different cases; in the first column, the
results after 10 iterations, in the second the final LAC results, in the third the upper line

extraction and in the last column the manual segmentation.

Attending to the results, it is possible to conclude that, for cases 1, 2 and 3, the al-

gorithm performs as expected. In 3, the effect of the metacarpus discontinuity was

compensated by the proposed change in the line detection. Alternately, in case 4, the

horizontal distance was not a good measure to overcome the phalange discontinuity.

To test the algorithm’s capacity to detect the bones, the average segmentation error

was calculated. The metric used was the pixel-wise vertical Euclidean distance. If

this distance was smaller than a given threshold, it was considered a true positive;

otherwise, it was considered a false positive. A set of thresholds was used to create

a plot with the segmentation error and the respective confidence. In this manner, it is

possible to gain a better understanding of the confidence intervals for each error and

select the desired operation point.
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FIGURE 5.4: Segmentation error for the metacarpus and phalange, using the vertical
distance in pixels.

Looking at Fig. 5.4, it is possible to conclude that the segmentation of the metacarpus

and the phalange led to similar results. Approximately 95% of the pixels were seg-

mented with an error smaller than 10 pixels (corresponding to approximately 0.5 mm).

5.4 Complementary Results

Throughout the development of the work presented in this thesis, the database got

larger with the inclusion of additional data and annotations. Because of that, an ad-

ditional section was added to this chapter so that the results of the entire database

are known. To allow better comparison with the previous work, the same performance

measure was used, which is the vertical distance in pixels between the resulting seg-

mentation and the ground truth. After that, and to achieve an improved metric, the

modified Hausdorff distance, 4.7.1, in mm was used.

Fig. 5.5 shows the results for all 240 images, expanded from the original 164 published

in [9].

The results for all 240 images show that the segmentation of the metacarpus was very

close to that presented in [9], with the same 95% confidence for an error of less than
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FIGURE 5.5: Segmentation error for the metacarpus and phalange using the vertical
distance in pixels, in all dataset.

10 pixels. For a smaller error of 4 pixels, the results were slightly worst on the new

dataset (80% vs 85% confidence). Looking at the phalange segmentation results, they

were better in the new dataset. For 95% confidence, an error of 6 pixels was obtained,

where [9] achieved an error of 10 pixels for the same confidence. These results prove

that the proposed algorithm was robust enough to be used on new images without new

parameterizations.

An improved metric is also presented here, using the modified Hausdorff distance,

4.7.1, instead of the vertical distance. This metric is more realistic because both di-

mensions are taken into account; moreover, the image analysis is more interesting

because the number of pixels is not constant in all images, and merging them into one

result could thus shadow some results. In this manner, it is possible to obtain a better

idea of the percentage of images that are well segmented and identify the ones with

the worst results. In Fig. 5.6, the improved metric results are shown.

The results presented in Fig. 5.6 reinforce the ones previously obtained. The phalange

was segmented with higher confidence than the metacarpus for small errors. For an

error of 0.3 mm, both structures present similar results, with slightly better results for
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FIGURE 5.6: Segmentation error for the metacarpus and phalange using the Modified
Hausdorff Distance in millimeters, in all dataset.

the metacarpus on errors above 0.3 mm. Overall, 95% of the images were segmented,

both with errors of less than 0.3 mm.

5.5 Conclusions

A new method for the segmentation of the metacarpus and phalange in images of the

second MCPJ was proposed. The results obtained showed that it is possible to auto-

matically identify these structures, with a confidence of 95% for an MHD error bellow

0.3 mm. Additional tests in new data and with new measures reinforced the robust-

ness of the proposed segmentation method. We believe that these are acceptable

results, but an extensive study should be conducted to understand the clinical impli-

cations of such values. From the present results it is also possible to observe that, in

some cases, the results obtained on the phalange are better than the ones obtained on

the metacarpus. One possible justification is the fact that the metacarpus has higher

shape variability and that more pathologies are found on it, namely bone erosions and

osteophytes. Nevertheless, they are sufficient to reduce the search area of other struc-

tures, such as the extensor tendon and joint capsule, which are still open problems, as
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well as the classification of MCPJ images as pathological or non-pathological. The use

of this technique in other ultrasound segmentation problems is possible, and this work

can be used as a starting point due to its simplicity and relatively fast processing.
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6.1 Introduction

The extensor tendon is the structure responsible for the opening of the hand by con-

necting the extrinsic extensor muscles of the hand to the fingers. In the ultrasound
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images, they are visible as a dark line between the skin and the metacarpus and pha-

lange (Fig. 6.1). The segmentation of this structure is one of the most challenging

steps of this work since the tendon is not always visible and has an appearance similar

to other structures present in the image, such as the fat layer below the skin. Moreover,

the presence of pathologies can change its appearance and position, as shown in Fig.

6.1.

(A) (B)

(C) (D)

FIGURE 6.1: Examples of ultrasound images of the dorsal view of the second MCPJ.
The white arrows indicate the position of the extensor tendon.

From Fig. 6.1, it is possible to visualize the previously discussed challenges. In Fig.

6.1 - A, C, the tendon and a fat layer are visible. They are very similar in echogenicity

and shape, and the most distinguishing aspect between them is that the fat layer is

always above the tendon. In Fig. 6.1 - B, the tendon is only visible in the right half

of the image; in the left half, the rheumatologist typically infers the rest of the tendon,

assuming continuity. In Fig. 6.1 - C, an artifact known as tendon anisotropy can be

seen, where the tendon creates a shadow effect below itself, making the structures

darker and with an echogenicity similar to the joint capsule. This artifact can also be

confused with synovitis since the region that gets darker might be the same that gets

affected in synovitis. In Fig. 6.1 - D, it is possible to see the effect of the synovitis in

the position of the tendon, moving it closer to the skin. The correct identification of this
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structure on the MCPJ images can be used to separate the joint capsule region from

the skin region, making it easier to identify and analyze the joint capsule.

Attending to the literature, it is possible to find several works regarding the segmen-

tation of tendons in ultrasound images [48, 93–95], but most of them target large ten-

dons, such as the Achilles and knee tendons. Unfortunately, these tendons are much

thicker and have a different appearance from the extensor tendon of the fingers in the

ultrasound images. Because of that, the frameworks used for large tendons are not

applicable for the problem presented here. Regarding the identification of the extensor

tendon, only a preliminary approach was found in the literature [12]. In this work, the

segmentation was achieved using a pre-processing based on the Log Gabor transform

to enhance ridge-like structures and reduce speckle noise. Then, a medial axis trans-

form is used, followed by a filtering of the vertical connected lines. The resulting lines

are adjusted using morphological operators, and small lines are discarded. Finally, the

tendon is selected from the remaining lines using anatomical references. The limitation

of this method was related to the fact that the tendon was not always fully identified. In

some cases, the tendon was only segmented in one portion, and the remaining (less

visible) part was discarded. Based on the problems identified in [12] and the image

characteristics, a segmentation by fitting using an active contours framework was cho-

sen. This framework is robust against speckle noise and allows the incorporation of

shape knowledge, which is helpful to enforce the model to missing structures in the

image. Next, the complete framework will be discussed in detail, which is based on the

work presented in [8].

6.2 Segmentation Framework

To identify the extensor tendon in an image I(x, y), we modeled the active contour

line as a set of N two-dimensional points, v
i

= {(v
x1, vy1), (vx2, vy2), ..., (vxN , v

yN

)},

spaced along the image. These points are used to obtain the complete tendon line,

v
s

(x), by applying an interpolation function. This model is interesting for reduction of

the optimization search space, because v
i

is a subset of v
s

. Knowing that the tendon

is a continuous structure and that it behaves like a string under horizontal tension with

vertical forces applied due to the joint capsule, bones and skin, we selected a spline
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interpolation. However, other interpolation methods could be used, such as linear in-

terpolation, without significantly changing the algorithm implementation. We also intro-

duce here the neighborhood of v
s

(x), as v
s

(x, j), where j is the perpendicular distance

from the point v
s

(x), negative values of j are assumed to represent below or inside and

positive values above or outside the contour, and a value of zero is the line itself, i.e.,

v
s

(x, 0) = v
s

(x). The energies are calculated using v
s

(x, j), and the challenge lies in

identifying the position of each point in v
i

, as shown in Fig. 6.2.

FIGURE 6.2: Proposed open ended active contour model framework. The white di-
amonds represent v

i

, the horizontal blue (above), yellow (middle) and green (below)
lines are, respectively, v

s

(x,�1), v
s

(x, 0), v
s

(x, 1). The transparent squares are the
allowed moving zones of each point v

i

, which are delimited by the lower and Upper
bounds, LB

i

and UB
i

(explained in more detail in Section 6.2.4).

To identify the coordinates of the points v
i

, we used a modified version of the active

contours formulation briefly presented in Section 4.2. The identification of the proper

metrics for the internal energy (E
int

), external energy (E
ext

) and additional constraints

are the key points of this work. Next, each one will be addressed in more detail.

6.2.1 Internal Energy

In this model, the connectivity is guaranteed because of the use of a sparse represen-

tation and interpolation, which simplifies the E
int

formulation to some degree. However,

it is still necessary to impose some constraints. The first one is to limit the slope of the

tendon. Given the hand anatomy and acquisition protocol, we know that the tendon

should be mostly horizontal. Due to pathologies, bad hand posture or even natural vari-

ations, the tendon can have higher curvatures, so we imposed a tendon slope limit and

modeled it as the soft constraint (6.1).
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E
Slope

(v
s

(x)) =
X

x

max(0, |v0
s

(x)|� tg(✓)) (6.1)

where v0
s

(x) is the first derivative of v
s

(x) and ✓ is the slope threshold. Based on the

anatomical aspect of the tendon and acquisition method, a value of 25o was used in

this implementation. The second constraint is that the line, v
s

(x), should not have more

than 2 concavities, one due to the joint capsule and the other due to the metacarpus or

phalanx. One way to quantify this is by counting the number of zero-crossings of v0
s

(x)

and applying a decision function (6.2).

E
Concavity

(v
s

(x)) =
1

1 + e�p1(ZC(v0
s

(x))�p2)
(6.2)

where p1 is the parameter that controls the variation of the function and p2 is the point

where the energy is equal to 0.5. ZC(v0
s

(x)) is the number of zero-crossings of v0
s

(x); be-

cause it is an integer and, in this case, has a limited number of allowed values {0, 1, 2},

we set the parameters p1 and p2 to 10 and 2.5, respectively. This ensures that all al-

lowed values have energy close to 0 and the others close to 1. In practice, this makes

the energy behave like a hard constraint.

6.2.2 External Energy

Regarding the external energy formulation, the ultrasound image is very noisy, and

some structures may be missing due to inadequate probe position; because of that,

gradients are not good energy measures. To overcome this problem, pre-processing

techniques are used to reduce the noise and enhance the objects of interest. Here, we

propose the use of phase symmetry to enhance the extensor tendon. As previously

shown, the phase symmetry has several parameters, with the most important being

the angle span and the bandwidth. The angle span, �, was set to 90o because the

tendon is a horizontal structure. For the bandwidth, we chose to analyze 4 scales,

starting from 0.2 mm (4 pixels in size) and a step of 0.15 mm (3 pixels), performing the

analysis up to 0.8 mm (16 pixels). These values were empirically chosen, based on the

spatial resolution (⇠ 50 µm) and typical tendon thickness. Finally, we also choose to

use both positive and negative concavity structures (the ridge and valley-like structures,
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respectively). Note that both valleys and ridges are symmetric, but they have inverse

concavities. Given that the problem formulation implies a minimization, we choose to

penalize the ridges and enforce the valleys via (6.3).

I
Sym

(x, y) =
Sym�(x, y)� Sym (x, y) + 1

2
(6.3)

where Sym�(x, y) is the positive concavity, Sym (x, y) is the negative concavity, and

I
Sym

(x, y) is the transformed input image I(x, y). Fig. 6.3 shows the resulting images

for 3 cases.

FIGURE 6.3: Example of the phase symmetry pre-processing results; on the left the
original image, I(x, y), and on the right the resultant image, I

Sym

(x, y).

Finally, the E
PhaseSymmetry

is equal to the sum of the values of I
Sym

along v
s

, (6.4).

E
PhaseSymmetry

=
1

N

X

j

w
n

[j]
X

x

I
Sym

(x, v
s

(x, j)) (6.4)

where w
n

[j] is the weight of each neighborhood line j. Here, we used j = {�1, 0, 1, 2}

with the respective weights of {1.0, 1.0,�0.5,�0.5}. This choice was based on the fact

that we wanted to identify the tendon from its upper limit, and thus the neighborhood

lines are used to detect bright-to-dark region transitions. Even with a noisy image, we

decided to include the original image in the energy formulation to verify if it is possible

to use it as a metric despite the known limitations. Additionally, it will be used to test
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the hypothesis that the phase symmetry is a valid pre-processing method. In (6.5), the

energy calculation for this is presented as:

E
Intensity

=
1

N

X

j

w
n

[j]
X

x

I(x, v
s

(x, j)) (6.5)

Once again, w
n

[j] are the neighborhood weights, and the image, I, is assumed to

be normalized between 0 and 1. The values of j and w
n

[j] are the same as the

E
PhaseSymmetry

.

6.2.3 Area Constraints

The position of the tendon is expected to be somewhere between the skin line and

the metacarpus and phalanx bones. To incorporate this knowledge in our model, we

propose the use of the area between the tendon and the skin line, A
Up

, and the area

between the bones and the tendon, A
Down

, as references. It is expected that these

areas have similar values with some variations due to natural anatomical differences.

One way to quantify this is to calculate the percentage of the area above the tendon,

referred to as A
Ratio

, using (6.6).

A
Ratio

=
A

Up

A
Up

+A
Down

(6.6)

Given the previous assumptions and a safety margin of 30%, we assume that A
Ratio

is

normal if its value is approximately 50% +/- 15%. To validate our premise, we used the

expert annotations to extract measurements in a controlled environment. The distribu-

tions of these areas are shown in Fig. 6.4.

From Fig. 6.4, it is possible to conclude that A
Up

and A
Down

have similar area distri-

butions and that A
Down

has one outlier. Alternately, A
Ratio

has no outliers, it is inde-

pendent in spatial resolution, and the distribution is slightly more compact, with all its

values between 34% and 64% (49% +/- 15%). Based on this, we concluded that our

assumptions regarding the relative position of the tendon are correct. These values

were used to create the energy function (6.7).

65



Chapter 6 Extensor Tendon Identification

A
Down

A
Up

0.2

0.4

0.6

0.8

1

1.2
A
re
a
(c
m

2

)

A
Ratio

20

40

60

80

R
a
ti
o
(%

)

FIGURE 6.4: Box plot of the area measurements, the cross indicates the value of the
biggest outliers.

E
AreaRatio

= max(|A
Ratio

� p3|� p4, 0) (6.7)

where E
AreaRatio

is the energy metric, p3 is the minimum energy point, and p4 is the

variation of the energy. Based on Fig. 6.4 and using a [0, 1] interval, we set the values

of p3 and p4 to 0.5 and 0.1, respectively. This ensures that E
AreaRatio

is low (<0.05) in

the 50% +/- 15% interval and that it increases as A
Ratio

moves away from this region.

6.2.4 Additional Constraints

To promote better results and faster convergence, we decided to impose some addi-

tional constraints. The lower and upper bound limits are used to reduce the search

space of the points v
i

. Letting LB
i

and UB
i

represent the lower and upper bounds of

v
i

, respectively, we impose that:

LB
i

< v
i

< UB
i

, 8i 2 {1, 2, ..., N} (6.8)

Fig. 6.2 shows the regions delimited by LB
i

and UB
i

. Note that, in this case, the

horizontal limits (upper and lower) are equally spaced because no relevant information
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can be extracted from this component. Regarding the vertical component, both limits

are dependent on the anatomical structures. For instance, we know that the tendon

should be between the skin line and the bones, so these two structures are used to

impose the limits.

6.2.5 Implementation

Based on the previous formulations, the final energy is presented in (6.9).

E(v
s

) =
X

k

w
e

[k] ⇤ E
k

(6.9)

where w
e

[k] are the weights used to scale and control the importance of each energy

term, E
k

, with k = {PhaseSymmetry, Intensity, Slope, Concavity, AreaRatio}, sub-

ject to (6.8).

Once the energy formulations are completed, (6.9) needs to be solved. The gradient

descent method [85] is commonly used, where the derivative of the energy is used to

conduct a pre-defined coarse segmentation to a finer segmentation (local minimum).

Another alternative involves the Euler-Lagrange equation, which uses the same idea

of the derivative, moving the contour with the gradient, but with a different formulation

[85]. Both methods work well in cases where the number of local minimums is small

or the confidence in the initialization is good. However, these two characteristics are

not always met, as is the case for this work. Furthermore, the implementation of a

gradient-based approach is not always possible since the derivative of the energy must

be calculated. A Genetic Algorithm (GA) approach was chosen since no explicit ini-

tialization is needed and local minimums can be avoided to a certain point because of

the multiple random initializations [96]. Other optimization methods could also be used,

such as greedy or Monte Carlo approaches, but since the optimization method is not

a key feature of this work, we decided to use GA to validate our energy formulation.

The GA implementation of the MathWorks MATLAB R� R2015b ”Global Optimization

Toolbox” was used, with the default parameters.
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6.3 Results and Discussion

The proposed method was tested on a 4 GHz iMac with 32 GB of RAM. For this study,

we used the manual segmentation of the metacarpus, phalanx and skin line to remove

possible interferences caused by automatic segmentation methods, which are them-

selves prone to errors. In that manner, we measure the isolated performance of the

automatic tendon segmentation.

6.3.1 Dataset and Metrics

The proposed algorithm was tested on images of the dorsal view of the second MCPJ

extracted from 83 patients. Images with no visible tendon were discarded, and the re-

maining were manually annotated by two expert rheumatologists, resulting in a total of

175 images. The annotations consisted of the identification of the metacarpus, pha-

lanx, skin line and extensor tendon. The images were acquired with a high-frequency

ultrasound device (12 MHz), a GE Healthcare LOGIQ-S8, and saved in anonymized

DICOM format. Regarding the image characteristics, their size was cropped to 448x760

(rows, columns) pixels with 8bits/pixel and a spatial resolution between 40 µm and 55

µm. The set of images is unbalanced, with more cases without pathology (137) than

with pathology (38). There was no special care in the balancing of the gender, age or

other person-related characteristic. The MHD (4.7.1) was used as metric to compare

the results obtained with different parameters. It outputs a segmentation error for each

image, and so it is possible to create a cumulative distribution by calculating the per-

centage of correctly identified images (confidence) for different MHD threshold values.

The correctly segmented images will be the ones with a MHD below the threshold while

the incorrectly segmented are the ones with a MHD above threshold. In this way, it is

possible to easily compare different configurations by looking at the plots. Additionally,

the best method should be the one with the higher area under the curve (AUC), which

is easy to measure and visualize in a cumulative graph.
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6.3.2 Number of Points Optimization

First, we looked for the number of points, N , knowing that high values will allow more

complex shapes but might also promote local minimums and increase the computa-

tional time. Alternately, low values will make the line less deformable, and it might not

be able to fit all needed shapes. Given this trade-off, the value of N should be the

lowest possible without compromising the results. Note that local minimums can be

reduced using additional constraints, such as the E
Slope

and E
Concavity

. To study N ,

we extract equally spaced points from the manual segmentation. These points are then

used to create a new approximated tendon using spline interpolation. The error is cal-

culated using the MHD between the interpolated and reference tendon, and the results

are shown in Fig. 6.5.
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FIGURE 6.5: Approximation error using different number of points.

From Fig. 6.5, it is possible to verify that the error decreases with increasing number

of points. Assuming a mean error equal to the mean spatial resolution (50 µm), a

minimum of 6 points should be used, and because of that, N , was set to 6.
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6.3.3 Weights Optimization

In this section, we want to verify the performance of the proposed method and obtain

the configuration that yields the highest segmentation performance. To achieve this,

we created two main test sets, one where the external energy was calculated with

PhaseSymmetry and the other with Intensity. In this manner, we can verify which

one works best. Then, for these two main sets, we tested the inclusion of the line

neighborhood information, w
n

[j], (hereafter referred to as NeighborhoodWeights), and

optimized the weights, w
e

[k], for k = {Slope, Concavity, AreaRatio}. These weights

were learned from a random balanced set of 50 samples (25 pathological and 25 non-

pathological) using grid search, and the remaining samples (125) were used in the

tests. The grid search parameters were set between 0 and 2 with a step of 0.2 for the

Slope and AreaRatio; for the Concavity, the allowed values were 0 and 1 since it is

a hard constraint. The metric used to compare each configuration was the AUC, as

presented in Section 6.3.1, using a threshold range from 0.0 mm to 1.0 mm, with a

step of 0.005 mm. The results obtained on the test set are shown in Fig. 6.6.

Based on Fig. 6.6, it is possible to correlate the segmentation error and the confidence

in that error. In this manner, it is possible to verify if the proposed method is suitable or

not for a given problem. Regarding improvement proposals for the open-ended active

contours framework, it is possible to conclude that the PhaseSymmetry clearly im-

proved the segmentation results in all configurations, achieving the best AUC of 0.786.

Alternately, the best Intensity achieved an AUC of 0.698. Regarding the Neighbor-

hoodWeights the results showed a clear improvement in all cases. For instance, in the

PhaseSymmetry, the AUC increased from 0.694 to 0.786. The NeighborhoodWeights

forces the curve to move to transition zones, which is more restrictive than low-intensity

zones, since it is dependent on the tendon thickness and more prone to ultrasound

artifacts (tendon anisotropy). The Slope, Concavity and AreaRatio also improved the

overall results, but their impact is more noticeable on the Intensity formulation, increas-

ing from 0.623 to 0.698. In the configuration with PhaseSymmetry, the improvement

was residual, approximately 0.015 in the AUC, and more significant for errors between

the 0.3 mm and 0.6 mm. This observation was attributed to the fact that, in the Inten-

sity formulation, the problem is much more loose since the information in the image
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FIGURE 6.6: Results obtained for different parameter configurations of the proposed
method. On the left are the results of the method using no pre-processing (Intensity ),
and on the right are the results with phase symmetry pre-processing (PhaseSymme-
try ). The parameters used in each configuration are in the respective tables. MHD is
Modified Hausdorff Distance, NB the NeighborhoodWeights, (6.4) and (6.5), and AUC

is the area under the curve.

has more noise, and thus additional constraints help in the correct convergence. Al-

ternately, in the PhaseSymmetry formulation, the images have less noise, and thus
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the line converges more easily to the correct position without the need for additional

constraints. Assuming a confidence of 95%, the best PhaseSymmetry configuration

was able to identify the tendon with an error below 0.5 mm, whereas methods with

Intensity achieved a 90% confidence for an error below 0.75 mm. This enforces the

PhaseSymmetry as a valid pre-processing method in this application.

Even though the number of pathological images is smaller than the non-pathological,

we decided to separate them and measure the algorithm performance for the best

PhaseSymmetry and Intensity configurations, giving us better insights into the per-

formance of our proposed algorithm. The results show that the AUC is smaller for

pathological images, but in the PhaseSymmetry configuration, the reduction was much

smaller (from 0.786 to 0.732) than in the Intensity (from 0.698 to 0.386). These results

reinforce the utility of the PhaseSymmetry pre-processing.

6.3.4 Visual Results

(A) (B)

(C) (D)

(E) (F)

FIGURE 6.7: Visual results of the extensor tendon segmentation. In red are the upper
and lower limits, in green (thicker) the reference segmentation and in white the results;
Left column - pathological; Right column - non-pathological; A, B, E with MHD above

6 pixels and C, D, F with MHD below 6 pixels.
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Finally, some visual examples are shown in Fig. 6.7. It can be seen that the tendon

position and shape are highly variable, as well as the size of each finger joint. Nev-

ertheless, the segmentation was achieved even when the image was more complex

(Fig. 6.7 - A, C). In Fig. 6.7 - F, the image is considered to have very good quality, and

the subsequent segmentation was almost perfect. Looking at images with worst visual

results, Fig. 6.7 - A, B, E, we can observe that the error was higher in the peripheral

regions, which correspond to the areas of less clinical interest.

6.4 Complementary Results

Following the same idea of Chapter 5, it was decided to extend the results so that the

all new data acquired along the project is included in this work. In [8], the proposed

method was tested on 175 images (50 to train the parameters and 125 to test), and

the results that follow include 65 new images, for a total of 240 images. The best

parameter configuration obtained in [8] is used here without further parameterizations,

and the manual annotations will also be used. After that, a fully automatic method is

presented, where the manual annotations are replaced by automatic methods.

6.4.1 New Data Results

Fig. 6.8 presents the results for the 65 new images added after the publication of the

work presented in [8]. The metrics used are the same so that a direct comparison is

possible.

From Fig 6.8, it is possible to conclude that the results obtained on the new dataset

are comparable with those presented in [8]. For 95% confidence, the error obtained on

the new dataset was 0.6 mm, 0.1 mm higher than the results of the original dataset.

These differences are acceptable and still proves the efficiency of the algorithm. A

study on a larger database would be a plus for this work since small databases are

more susceptible to the variability of the data.
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FIGURE 6.8: Results obtained for the segmentation of the extensor tendon, in all
database.

6.4.2 Fully Automatic Segmentation

The segmentation of the extensor tendon was achieved with satisfactory results using

manual annotations of the bones and skin line. However to achieve a fully automatic

system, these two components need to be obtained automatically. Automatic bone

segmentation was proposed in Chapter 5 and will be used. The skin line was not

addressed, and a simple approach based on [97], is used here.

In Fig. 6.9 is presented the diagram of the proposed fully automatic extensor tendon

segmentation method.

The input image is processed independently to extract the skin line and the bones

(metacarpus and phalange). The metacarpus and phalange segmentation follow the

proposal of Chapter 5, and the skin line will be briefly explained next. The extensor

tendon segmentation uses the information of the input image and the results of the

bones and skin line segmentation to obtain the final result. Regarding the skin line, the

method starts with a pre-processing phase, using the Total Variation Denoising method

(TVD) [98] with lambda equal to 4.0 and 40 iterations. Then, a global threshold equal to

the 30% percentile is used, followed by an area blob filter (50 pixels) and a region filter
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Original Image

Skin Line
Identification

Bones
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Extensor
Tendon

Identification
Output

FIGURE 6.9: Diagram of the fully automatic extensor tendon segmentation method.

that keeps only the objects in the top of the image (10% of the top rows). The resulting

objects are used as the input of the LAC (4.3) to refine the contours, resulting in the

final skin line segmentation.

Fig. 6.10 shows the results for the fully automatic segmentation method on the original

125 test images.
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FIGURE 6.10: Results obtained in the test data for the different automatic and manual
segmentation settings.
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From Fig. 6.10, it is possible to see that, as expected, the results are best when the

ground truth is used. Alternately, when automatic segmentation methods are used,

the confidence decreases, which is justifiable due to the bone and skin line not be-

ing perfect. Nevertheless, the decrease in performance is acceptable, dropping from

approximately 95% to 88% for a 0.5 mm error. From these results, it is also possible

to verify the importance of the skin line in the tendon segmentation of the proposed

method. When no skin line information is used, the confidence dropped from 89% to

84% for the same 0.5 mm error. In Table 6.1, we present three specific MHD errors.

TABLE 6.1: Confidence obtained for the different configurations and for three MHD.

0.2 mm 0.5 mm 0.8 mm

Manual Bone and Skin 52% 95% 100%
Auto Bone and Manual Skin 52% 90% 95%

Auto Bone and Skin 52% 88% 96%
Auto Bone Without Skin 52% 84% 91%

From Table 6.1, it is easy to see that the confidence for small errors (less than 0.2 mm)

are equal for all configurations, indicating that some images are not affected by the

inclusion of the automatic segmentations. After visual inspection, it was concluded that

they represented images with less challenging characteristics, that is, no pathology

and well-defined structures, which lead to perfect bone and skin line segmentations.

Alternately, for high errors, only the configuration with manual bones and skin line lead

to 100% confidence, where the other methods stayed at 96%, 95% and 91%. This is

due to failings in the bone or skin line segmentation because of extreme deformations

in the joints. We consider these extreme cases to be out of the scope of this work

because they represent patients with advanced disease stages where early detection

is not possible and follow-up is not as important as in other stages. In Fig. 6.11, some

of the visual results obtained are presented.

In the first and second rows, it is possible to observe the importance of the skin line to

avoid local minimums related with the sub-cutaneous fat layer. In the second row, the

automatic skin line detector failed to detect the left portion of the skin line and the fake

skin line (present on both sides), which compromise the final results on the left side. In

the third row, it is possible to see an example where an inefficient segmentation of the

bone and skin line did not interfere significantly with the extensor tendon segmentation.

This result was only possible due to the sparse representation of the tendon, using a
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FIGURE 6.11: Visual results of the fully automatic segmentation of the extensor ten-
don for different configurations. In the rows are different cases and, in the columns,
the different configurations, respectively from left to right: manual bone and skin line;
automatic bones without skin line; all automatic. The green top region is the region
above the skin line, the green lines are the bones and the red line is the automatic

tendon segmentation.

small number of points in the interpolation and the use of additional restrictions that

impose continuity and shape constraints. In this case, due to the small size of the skin

line region, its identification was not fundamental to a proper segmentation.

6.5 Conclusions

A new algorithm for the segmentation of the extensor tendon using an active contours

framework with phase symmetry pre-processing and prior knowledge energy formula-

tions was proposed. It has the advantages of not requiring an initialization and that the

derivative of the energies does not need to be computed, which allows more flexible en-

ergy formulations. The results showed that segmentation is possible with an error below

0.5 mm for a confidence of 95%. Although lacking more robust medical evidence, this

not only seems to be a small error from a clinical perspective but a surprisingly good

one from a visual segmentation problem perspective since the tendon is not always vis-

ible and the number of similar structures in the image creates several local minimums.

Nevertheless, further work needs to be done, to verify if this error is indeed acceptable

when extracting information from images. Regarding the pre-processing, we concluded

that the PhaseSymmetry is a valid option for this application, considerably improving

the segmentation. Attending to the energies, the inclusion of the NeighborhoodWeights
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also led to an improvement of the results. For the Slope, Concavity and AreaRatio en-

ergies, the improvement in the final solution was small but important in the Intensity

formulation. Regarding the parameters, most of them can be obtained from the images

using statistics and prior knowledge of the structures under study, for example, the

AreaRatio and Slope. Alternately, the energy weights are harder to infer, and because

of that, a grid search approach was used. It is possible that some of our proposed

constraints may not be valid for extreme deformations. Given that, we are motivated by

the screening and quantification of rheumatic diseases, and these extreme deforma-

tions are considered beyond the scope of this work. They are typically easy to identify

by visual inspection alone and without the need for precise quantifications such as the

ones this work aims to contribute. The database size is acceptable but unbalanced,

with less pathological entries than non-pathological, which might create a bias in the

results. This problem was minimized using a balanced set in the training.

An extension of the work proposed in [8] was also presented, by including additional

data and proposing a fully automatic method. Quantitative and qualitative results have

shown that the extensor tendon method is robust when noise from other automatic

methods is added, instead of a perfect scenario where manual annotations are used. It

was able to handle some missing information due to the use of different energies, which

enforced the model. From the results, it is possible to conclude that fully automatic

segmentation is possible, despite a loss of 7% in the overall confidence. Improvements

in the bone and skin line segmentation could lead to an increase in the performance

and approximate it to the results of [8]. Another possible improvement is the use of

cross information from the different segmentation methods instead of independent skin

line and bones segmentations, which might improve the performance of all methods,

for instance, in the cases where one of the structures is less visible. A relaxation of the

problem, allowing user interaction with the input of a small number of points, could also

be interesting, since it is a middle point between the best results and the less manual

effort.

In the future, more tests will be conducted on images with pathologies and integrated

with other automatic skin line and bone segmentation methods aiming to improve the

results of the fully automatic segmentation system. Tests on other types of images

may also be conducted since this algorithm is not specific to the segmentation of the
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extensor tendon. Extension of the framework for 3D images (surfaces) is also possible

but out of the scope of this work.
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7.1 Introduction

This chapter addresses the joint capsule identification in ultrasound images of the

metacarpophalangeal joint (MCPJ). The joint capsule is one of the main structures

studied in this work. This structure gives clues about the presence of synovitis and

bone erosions, which are related with the presence of Rheumatoid Arthritis (RA). As

previously discussed in Chapter 3, RA affects primarily the joint capsule of the small

joints as a persisting inflammation, which causes joint damage over time. The cor-

rect identification and measurement of the swelling created by this inflammation could
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be used as a direct measure of RA progression. Given this, the main motivation for

this work is the automatic identification of the joint capsule in ultrasound images of the

MCPJ. Then, this information can be used to automatically identify and quantify the

presence of synovitis and RA.

The segmentation of the joint capsule is not a trivial task, due to the presence of artifacts

and high shape variability, as seen in Fig. 7.1.

(A) Grade 0 (B) Grade 1

(C) Grade 2 (D) Grade 3

FIGURE 7.1: Example of ultrasound images of the second MCPJ with different joint
capsules aspects and synovitis grades. Small arrows indicate the joint capsule exten-

sion and big arrow indicates the joint.

Fig. 7.1, gives an idea of the shape variability of the joint capsule. From Fig. 7.1-

A to Fig. 7.1 - D increasing synovitis degrees are presented (degree 0 to 3, respec-

tively) and it is possible to see the joint capsule growth pattern. It starts in the MCPJ,

then grows over the metacarpus and after that over the phalange, resembling a bal-

loon inflating. Regarding the expected variations and artifacts, Fig. 7.1 - A shows an

anisotropy artifact. This artifact creates a region with the same gray-scale pattern as

the typical synovitis region, which increases the difficulty of the segmentation. In Fig 7.1

- C the joint capsule is not totally connected, which creates two structures that belong

to the same bone structure. Moreover, the joint capsule and the cartilage have similar
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echogenicity patterns and, because of that, it was decided to identify both as the same

structure leaving as future work the creation of classification criteria to separate them.

Attending to the literature, it is possible to conclude that the detection of the joint capsule

is still an open problem. Given that the automatic identification of this structure is far

from trivial, some authors used semi-automatic approaches, which reduce considerably

the complexity of the segmentation. In [99], the authors, proposed a semi-automatic

method for the detection of the synovitis contours in ultrasound images of the MCPJ and

proximal interphalangeal joint. The algorithm starts with a pre-processing step, which is

based on the minimization of local variations and the assumption that the noise follows

a Rice distribution. Then, the user must choose three points, two in the synovial limits in

the bones and the third point is used to define the synovial extension between the limits

of the bones and the articulation. After that two sets of active contours are created.

The first defines the contours of the hyper proliferation of the synovial membrane and is

used to initialize the second contour that will separate the synovial membrane and the

soft tissues. In [97] and [100], the authors proposed an automatic method to identify

the joint capsule. The algorithm starts with the identification of the skin border and

bones; then a coarse segmentation is performed using a global threshold obtained

from the accumulative histogram (at 65%). This coarse segmentation is improved using

the skin border, the bones’ segmentation and a confidence map. The author reported

satisfactory visual results from experts. In terms of Deep Learning techniques in the

ultrasound images of the MCPJ, there were no works found in the literature. The closest

one was the work of [72], where CNNs were used to identify hip dysplasia in ultrasound

images. In [71] there is a broad overview of the existing methods using DL in the

medical field. With respect to the segmentation of 2D images, the authors emphasize

the UNet model, published by [101], which leads to a significant improvement in the

segmentation of cells in electron microscopic stacks using a small training set. Given

that the database available in the present work is also limited, it was decided to use the

UNet as a starting point for this task.
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7.2 Proposed Work

Following the ideas presented with Fig. 7.1, it was decided to create an algorithm that

mimics the growth of the joint capsule when synovitis is present. A split and merge

approach is proposed because it allows the use of region growing strategy that can

be constrained to force the final shape to resemble the joint capsule. Additionally, an

approach using CNNs, more precisely the UNet model, was included, because these

models are the current state of the art approach for segmentation and classification.

Next, both approaches will be discussed in more detail.

7.2.1 Split and Merge

The diagram of the proposed method is shown in Fig. 7.2.

Original
Image

Metacarpus
and Phalange
Annotations

Extensor
Tendon

Annotations

Region of
Interest

Split
(SLIC)

Merge
(Region Growing)

Refine
(LAC)

FIGURE 7.2: Joint capsule segmentation pipeline using a Split-Merge-Refine ap-
proach (SM �R).

The first step defines the region of interest using as input the location of the metacarpus,

phalange and extensor tendon. Afterwards, the SLIC method [89] is used in the split

step to reduce the number of elements in the merging step by grouping pixels with

high similarity in individual sets, i.e., super-pixels (SPs). This step also improves the

robustness, because the new sets are less related with their neighbors. The merging

step is achieved with an adapted region growing method where shape constraints are

added to force the final shape to be similar to the typical and expected joint capsule

shape. Finally, the Localizing Active Contours (LAC) method [87] is used to smooth the

final contours while adapting them to small intensity transitions.

84



Chapter 7 Joint Capsule Identification

Region of Interest

The first step of the proposed method uses the annotations of the metacarpus, pha-

lange and extensor tendon to reduce the search region. This restriction reduces the

variability between images and removes the interference from other structures, such

as the skin line and the extensor tendon. The metacarpus and phalange annotations

were also used to obtain the reference joint point, P0 = (x0, y0) (big arrow in Fig. 7.1),

which will be used to start the merge process. P0 is calculated using the metacarpus

rightmost point, P
m

= (x
m

, y
m

), and the phalange leftmost point, P
p

= (x
p

, y
p

) as:

P0 =

✓
x
m

+ x
p

2
,max(y

m

, y
p

)

◆
(7.1)

In short, x is the middle point between the end of metacarpus and the beginning of the

phalange and y is the deepest point between the two.

Split

Starting from the region of interest previously obtained, the SLIC algorithm [89] groups

individual pixels in clusters (SPs) attending to their spatial and intensity distances. This

algorithm can be seen as a k-means algorithm with an intensity and a spatial compo-

nent. The idea is that closer pixels with similar intensities belong to the same SP , while

pixels that are spatially distant and/or with distinct intensity values belong to different

SPs. This is achieved by defining a distance metric, D, that is influenced by the spatial

distance and the distance between intensities:

D =

s✓
d
c

m

◆2

+

✓
d
s

S

◆2

(7.2)

where d
s

is the spatial Euclidean distance between a pixel and the SPs centroids, d
c

is

the intensity (or color) distance, m is a control variable that balances the contribution of

d
s

and d
c

. S is the expected size of each SP and is defined as:

S =

r
N

k
(7.3)
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where N is the number of pixels in the image and k is the approximated number of

SPs. For more details, please refer to Chapter 4 Section 4.5. Fig. 7.3 shows the result

of the SLIC, with k = 2000 and m = 15.

FIGURE 7.3: Results of the SLIC algorithm in the MCPJ images.

Merge

The problem with the SLIC method is that it creates many more objects than the ones

present in the image (over-segmentation), consequently, the resulting SPs need to be

merged into the final object. The DBSCAN [102] is typically used in these situations,

but, in our case, it was not producing the expected results since it does not take into

account the expected shape of the object. Because of that, an alternative approach

is proposed for this specific problem. Taking into account that the bones and tendon

segmentation is available, it was decided to create an adapted version of the Region

Growing algorithm. It is similar to the original algorithm, but instead of pixels, the growth

is done in the SP domain. To do so, the seed point P0 is used to identify the first super-

pixel, SP0, which is used to start the growing process. The pixel neighbors of the region

growing method are replaced by a neighborhood vector, N , which identifies the super-

pixels that are connected to the growing object. The super-pixels are then iteratively

joined until no more objects in N can be added. In Algorithm 1, the pseudo-code of the

merging process is presented.
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Algorithm 1: Super-pixel merging process with shape constraints.
1 Merge (SP0, SP

All

);
Input : SP0 - Seed Super-pixel;

SP
All

- All Super-pixels;
Output: SP

F

- Final Super-pixel results;
2 SP

F

 SP0;
3 N  Get Neighbors of SP

F

from SP
All

;
4 while N 6= ; do
5 (SP

n

,�g) Find SP
n

2 N with smaller gray scale distance (�g) from SP0;
6 if (�g > T�g

) then
7 break;
8 end
9 if (SP

F

[ SP
n

) results in allowed shape then
10 SP

F

 SP
F

[ SP
n

;
11 N  Get Neighbors of SP

F

from SP
All

;
12 else
13 N  N \ SP

n

;
14 end
15 end
16 return SP

F

;

The Merge algorithm has two main components, one related with the intensity (gray-

scale) and another related with the expected shape. The first is present in Algorithm

1 - Line 5 and is defined as the Euclidean distance from the median intensity of the

elements in SP
n

and SP0. If all SPs distances are greater than a given threshold, T�g

,

the merging process stops. If the distance of one SP is smaller than T�g

then it is

verified if the inclusion of SP
n

in the final object creates an allowed shape (Algorithm

1 - Line 9). This is achieved using a shape constraint defined as the DICE between

SP
F

[ SP
n

, and its own convex hull. This is based on the assumption that the joint

capsule behaves like a balloon and, therefore, it should have a shape that is nearly

convex. Given that, it is expected that the DICE between these two objects produces

a high value, and thus, a threshold of 0.5 was empirically selected for this problem.

Finally, T�g

was empirically set to 30.

Refine

The segmentation result obtained from the merge process creates a spiky appearance.

Since the joint capsule is expected to be a smooth region, it was decided to add an

additional shape smoothing step using the LAC algorithm. Other post-processing tech-

niques could be used, such as morphological operators, but the LAC was selected

since the results were more consistent. The uniform model [87] was used with a small
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number of iterations (25) because the LAC is used here for refinement and not for seg-

mentation.

7.2.2 Convolutional Neural Networks

One limitation of the previously method is that it needs additional information other than

the image itself, to segment the joint capsule, i.e., the metacarpus, phalange, and ex-

tensor tendon locations. This increases the complexity of the method and creates a

dependency on other segmentation methods. In order to overcome this problem, it is

proposed the use of CNNs to identify the joint capsule in a single step. This is the

current state of the art approach to solve several image processing problems. From

classification to segmentation, the CNNs achieved better results than most of the pre-

viously used techniques [100, 101, 103]. One problem, is that the typical approaches

using CNNs require an extensive database to properly parameterize the network. Be-

cause of that, and after the literature review, the UNet model seamed promising and it

was included in the present study. Next it will be presented in more detail.

The UNet model

As previously said, the number of images available in this work is relatively small. To

overcome this limitation, the work of [101] was used since it proposes an architecture

that was able to train with small number of observations. This new architecture is called

UNet and tries to capture local and global information in a single model, by adding skip

connections before every max� pool operation. This ensures that the local information

lost after the max� pool is kept and added later in the network. Moreover, the authors

used data augmentation to create synthetic data and an improved objective function to

enforce separation between classes. Fig 7.4 allows a better visualization of the UNet

model.

The addition of skip connections (represented by the gray arrows in Fig. 7.4) increases

the detail of the segmentation by preserving the local information before pooling oper-

ations. This architecture creates a multi-scale representation where coarse information

is gathered in the bottom and finer details in the top of the model, as seen in Fig. 7.4.

In the work of [104, 105], this effect was clearly shown.
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FIGURE 7.4: The UNet model proposed by [101], with a depth of 4 and 64 neurons in
the first layer.

Fig. 7.5 shows that every additional skip connections increases the detail in the output

mask.

As referred earlier, the main advantage of this approach is that only the image is used

as input, reducing the dependency on other inputs. The main disadvantage is that a

training phase is needed to parameterize the network and, depending on its size and

on the problem complexity, the number of examples necessary can be higher than the

ones available. Nevertheless, it was decided to include it in this study because there is

evidence that CNNs can perform well for complex tasks and there are ways to reduce

the number of examples necessary to train the network, by creating synthetic data.

Model adaptation

The UNet model proposed in [101] was formulated to solve a multi-object segmentation

problem with touching boundaries. Here, the problem is the detection of a single object
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FIGURE 7.5: Result of adding skip connections. FCN-32s - no skip connections; FCN-
16s - 1 skip connections; FCN-8s - 2 skip connections. Image from [105].

(joint capsule) and consequently, the UNet model needs to be adapted to this specific

problem. Those changes will be addressed in the following subsections.

Architecture:

The architecture proposed for this problem is depicted in Fig. 7.6. The first architec-

tural change is the use of zero padding in the convolutions instead of the valid val-

ues. The authors of [101] proposed the use of the valid values with a mirror padding

pre-processing, so the final outputs have the same spatial dimensions as the original

input image. They argue that this accelerates the training, however this was not ob-

served during preliminary tests and therefore, it was decided to use zero padding in all

convolutions. The second change is the use of batch normalization layers before the

concatenation steps. This adds a regularization effect by ensuring that the concate-

nated feature maps have the same order of magnitude. In the last convolution layer,

the Softmax activation function was changed to a Sigmoid function.

Data Augmentation:

Along with the UNet architecture, [101] used a special data augmentation technique to

compensate the reduced number of training samples. In that work, elastic transforms

were used to simulate the possible deformations that a cell can experience. In the

MCPJ images, that same technique is not usable, since the deformation is constrained

by many other factors, like the presence of bones, tendons and rotation points. Because

of that, it was decided to create a different set of augmentation techniques. These
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FIGURE 7.6: Proposed changes to the UNet model using normalizing layers before
every max � pool operation and with same padding in all convolutional layers. N

x

stands for the number of filters used, D for depth and S for the spatial size of the
feature map.

techniques are expected to improve the generalization capabilities of the models by

creating additional artificial data with different characteristics, not present in the original

database.

• Scale - simulates anatomical differences in size (larger/smaller joints) and the

ultrasound device acquisition parameters: depth, probe width;

• Horizontal shifts - simulates different probe positions along the joint;

• Illumination - simulates different gray-scale maps used by the ultrasound device

operators;

• Noise - simulates the noise from different equipment;

• Horizontal flips - simulates the transformation that occurs when the operator ro-

tates the probe 180�.
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The input image was scaled using a bicubic interpolation, while the output mask was

scaled using the nearest neighbor interpolation. The range of the scale parameter was

empirically selected to be from 0.8 to 1.2. The horizontal shift was done using a random

crop operation inside the valid zone of the resulting scaled image. The illumination was

achieved using a random scalar value added to the input image between -20 and 20.

The noise was added using a random noise generator with mean zero and standard

deviation 10. The horizontal flips were done with a simple mirror operation in the image.

In each epoch, 10 new images are randomly created for each original image. In this

way, it is expected to increase the variability of the training data.

Other changes:

The input image was trimmed to 256 lines and 736 columns to avoid rounding errors

when performing downsampling and upsampling and to reduce the bottom dark region

of the images. The optimization method was the adaptive momentum (Adam) with

default parameters.

The objective function was the mean squared error instead of the one proposed in [101],

which took into account the existence of touching boundaries and multiple objects on

the image, which is not adequate for this situation.

7.3 Results and Discussion

In this chapter, two new approaches for the segmentation of the joint capsule are pro-

posed and compared with the work of [100] (hereinafter referred as Ref ). In order to

do so, a database consisting of 243 ultrasound images of the MCPJ was used (around

110 patients). The phalange, metacarpus, skin line, extensor tendon, and joint cap-

sule were manually annotated in all images, using a self owned dedicated software as

described in A.1.

The SM and Ref algorithms were evaluated in all images of the database and the

inclusion of the post-processing was also tested. The UNet models were trained in a

set of 193 images and tested in 50 different images. The division was done manually to

ensure that different cases are present in each set. The database is relatively small and,

because of that, a random split method might create bias in the results. The manual
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division took into account the synovitis degree and the presence of other conditions

such as osteophytes and bone erosions. The test set of the UNet was used to compare

the three methods, since it is the only set that contains unbiased images (not used to

train the UNet).

7.3.1 Metrics

In order to compare the proposed methods, the Boxplot of the Dice Similarity Coefficient

(DICE) will be used.

The DICE Boxplots are useful to visualize the distribution of the results and the Welch0s

t � test will be used to verify the statistical significance among them. Finally, in order

to understand the overall performance of each method, a plot of DICE vs confidence

was created. The confidence is the percentage of images segmented with a DICE

higher than a given threshold (between 0 and 1). This plot is helpful to study the pos-

sible operation points by looking at the trade-off between the confidence and DICE.

More detail on the DICE was presented on Section 4.7.2

7.3.2 Results - SM

The SM approach was tested with and without post-processing and compared with the

algorithm proposed by [100], creating a total of four possible configurations (Ref , SM ,

Ref � R and SM � R). From the whole dataset, 8 images were discarded since they

did not have a visible joint capsule, resulting in DICE values of 0 in all configurations.

The results for the remaining images are shown in Fig. 7.7

From the analysis of Fig. 7.7, it is possible to see that the SM and Ref have very

similar results. The refinement step has a positive effect, improving the results in both

with higher impact on the SM , which lead to the SM � R to outperform the Ref � R.

All methods have several outliers in the bottom, pointing that some images were poorly

handled by these methods.

The Welch0s t� test was used to calculate the p-values between each configuration. In

Table 7.1 these results are shown.
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Joint Capsule Segmentation Results

FIGURE 7.7: Boxplot of the DICE values obtained for the different configurations; SM
- Split and Merge; R - Refine; Ref - [100]. The ⇥ are the outliers.

TABLE 7.1: p-values resulting from the Welch0s t� test of different pairs of methods.

Method 1 Method 2 p-value

Ref SM 0.45694
Ref Ref �R 0.04172
SM SM �R 3.24E�6

SM �R Ref �R 0.00143

Table 7.1 confirms that the differences previously pointed out are indeed statistically

significant (p-value<0.05). It is also possible to verify that the Ref and SM are statisti-

cally equivalent (p-value=0.46).

In Fig. 7.8, the plot of the confidence vs the DICE is presented.

Fig. 7.8 confirms the results shown in Fig. 7.7 and Table 7.1. Furthermore, it is also

possible to verify that, for a confidence of 95%, the results are far from the optimal,

with a DICE smaller than 0.2. For a DICE 0.7, the best confidence value was in the

SM �R method with 60% of the images correctly identified.

In Fig. 7.9, it is possible to visualize some of the outputs of each method.
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Joint Capsule Segmentation Results

SM(0.61)
SM �R(0.68)
Ref(0.60)

Ref �R(0.63)

FIGURE 7.8: Segmentation results obtained for the different configurations. The val-
ues between round brackets are the Area Under the Curve (AUC); SM - Split and

Merge; R - Refine; Ref - [100].

Ref

Ref �R

SM

SM �R

FIGURE 7.9: Visual results obtained for the segmentation of the joint capsule for dif-
ferent configurations. In the columns are different cases and, in the rows, the different
configurations: Ref - [100]; SM - Split & Merge; R - Refine. In green is the ground

truth and in red is the respective automatic results.
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Fig. 7.9 shows the effect of the refinement step (from row 1 to 2 and from row 3 to

4). After the LAC, the contours are much smoother and closer to the manual seg-

mentation/delineations. The last column puts in evidence one of the main limitations

of the Ref method when an ultrasound shadowing artifact created by the tendon is

present. The Ref method only takes into account the intensity values, which results in

a segmentation that incorrectly includes the artifact region. The inclusion of the shape

information in the SM method improves the results by stopping the growing process,

once the shape starts getting irregular.

7.3.3 Results - CNN

The proposed changes to the UNet model were implemented using Python and the

TFLearn API with Tensorflow as engine. In order to have a better understanding and

achieve the most accurate results, a study of the depth, D, and number of neurons, N
x

,

of the model was done. Since the number of neurons in each layer is different, it was

decided to follow the rule that after every max� pool operation the number of neurons

is doubled. In this way, only the number of neurons of the first depth level, N0, needs to

be parameterized. The results obtained in the test set are presented in Table 7.2.

TABLE 7.2: Mean DICE results in the test set. In bold are the top 3 results.

D
N0 2 4 8 16 32

2 0.643 0.671 0.663 0.668 0.673
3 0.714 0.702 0.715 0.728 0.739
4 0.765 0.766 0.795 0.771 0.786
5 0.820 0.795 0.739 0.786 0.731

Table 7.2 allows to conclude that the best model was the one with D = 5 and N0 = 2,

followed by the models with D = 5 and N0 = 4 and D = 4 and N0 = 8. In general, the

results improved as the depth increases from 2 to 4, while in the depth 5 that trend is

not verified. Moreover, the results are more sensitive to the depth of the network than

to the number of filters. In Fig. 7.10, it is possible to visualize the outputs of the best

configuration of each depth, D.

Fig. 7.10 shows clearly the effect of increasing D, for small values the output has some

granularity, while higher values of D result in a smoother output. For small values of
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D = 2;N
0

= 32

D = 3;N
0

= 32

D = 4;N
0

= 8

D = 5;N
0

= 2

FIGURE 7.10: Visual results obtained for the segmentation of the joint capsule for
different UNet parameterizations (on top of the images are the values of D and N

0

).
Each column presents a different case. The delineations is green and red refer to the

manual and automatic segmentations, respectively.

D, it is also possible to observe some scattered false positives, which would be easy to

remove in a post-processing step, but still they would hardly compare to the results of

higher D values.

7.3.4 Comparative Results and Discussion

In this section, the best methods achieved in the previous tests are compared. Fig.

7.11, shows the Boxplot obtained from the DICE extracted from the 50 test images:

The bloxplot graph indicates that the UNet model achieved better results than the SM�

R and Ref � R methods. The distribution of the UNet is more compact and has less

outliers (only one) than the other methods. Both, the SM � R and Ref � R have

two outliers each with DICE of 0, which correspond to images without a visible joint
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Joint Capsule Segmentation Results in the Test Set

FIGURE 7.11: Boxplot of the DICE values obtained for the test images in the best
Ref �R, SM �R and UNet methods. The ⇥ are the outliers.

capsule. In these cases, these methods do not have the capacity to output an empty

segmentation, resulting in false positives.

The statistical significance of these results was evaluated using a Welch0s t� test and

observing the respective p-values, which are presented in Table 7.3.

TABLE 7.3: p-values resulting from the Welch0s t� test of different pairs of methods.

Method 1 Method 2 p-value

Ref �R SM �R 0.01542
Ref �R UNet 9.21E�9

SM �R UNet 0.00084

Therefore the SM �R is statistically more accurate than the Ref �R and the UNet is

statistically more accurate than the other two methods.

In order to understand the possible operating points of the models, it was decided to

include the graphic of the percentage of correctly segmented images for different values

of the DICE, Fig. 7.12
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Comparative Results of the Joint Capsule Segmentation

UNet(0.82)
SM �R(0.66)
Ref �R(0.57)

FIGURE 7.12: Results obtained for the segmentation of the joint capsule using three
different methods. The values between round brackets are the Area Under the Curve

(AUC);

From the analysis of Fig. 7.12, it is possible to conclude that the UNet outperforms

by far the other two methods with a confidence of 90% for a DICE higher than 0.67,

while the Ref �R and the SM �R achieved the same confidence for a DICE of 0.20

and 0.34, respectively. The UNet model was also the only one that achieved 100%

confidence for a DICE higher than 0.44.

From the analysis of Fig. 7.13 is possible to verify that the UNet tends to produce re-

sults that are closer to the manual segmentations. The second row shows one example

without joint capsule, which was correctly identified by the UNet. This image is respon-

sible for the value 0 of the DICEs in the Ref � R and SM � R observed in Fig. 7.11.

In the fourth row, it is shown the example where the UNet achieved the worst results

(outlier of Fig. 7.11). In this case, the UNet was not able to properly identify the joint

capsule, even though it seems a trivial case. In this example, the SM � R was able to

achieve better results, but they are still far from optimal.
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Ref �R SM �R D = 5;N
0

= 2

FIGURE 7.13: Visual results obtained for the segmentation of the joint capsule for the
Ref � R, SM � R and UNet with D = 5 and N

0

= 2. In the rows are different cases,
in green is the ground truth and in red is the respective automatic results.

7.4 Conclusions

Two new methods for the segmentation of the joint capsule in ultrasound images of the

MCPJ were proposed, as well as an improvement of the [100] method. Results have

shown that the UNet method can segment 95% of the images with a DICE higher than

0.6. The UNet outperformed the Ref � R and SM � R methods by a large margin.

Furthermore, the UNet model only uses the information of the image itself, opposing

the other methods. which require additional information.

Both the SM�R and Ref�R require annotations to create the initial region of interest.

The main difference is that the Ref � R needs the annotations of the skin line and

the SM � R method needs the annotations of the extensor tendon. The extensor

tendon creates a smaller region of interest, which is more relevant for the identification

of the joint capsule. The skin line might be easier to obtain manually and automatically,

however it does not remove the sub-cutaneous layer and the extensor tendon, which

have intensity values similar to those of the joint capsule. The refinement step used in
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the Ref � R and SM � R leads to significant improvements in both methods, mainly

because this post-processing step produces smoother contours that were less sensitive

to noise and artifacts.

One advantage of the SM � R method over the UNet is that the formulation and pa-

rameterization are easier to understand and have direct implications on the results. On

the other hand, the UNet is a black box system, which is not always well accepted by

some clinical personnel. The disadvantage of the SM �R and Ref �R methods is that

the results assumed a perfect scenario since the manual annotations were used. In or-

der to achieve a fully automatic system, the bones and the extensor tendon need to be

identified first. Knowing that no perfect automatic segmentation method exists for these

structures, it is expected that the results deteriorate once the automatic identifications

are added.

In the future, the dataset will be expanded with new examples, with focus on images

with pathology. This expansion may improve considerably the results of all methods and

specially the UNet. These segmentation methods will also be included in the automatic

synovitis detection and quantification.
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Synovitis Detection and Grading
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8.1 Introduction

This chapter presents the study for the synovitis detection (presence or absence) and

grading in ultrasound images of the metacarpophalangeal joint (MCPJ).

As stated in Chapter 3, synovitis is one of the most important indicators of the pres-

ence of Rheumatoid Arthritis (RA). It consists on the inflammation of the synovium and

the long-term effects of this condition are the joint degradation and mobility loss. It is

classified in 4 grades, from 0 to 3, depending on the severity, where 0 refers to the ab-

sence of synovitis (or normal) and 3 is the most severe grade [106]. Fig. 8.1 represents

the joint capsule morphology for each synovitis grade in the ultrasound images of the

MCPJ dorsal view.
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FIGURE 8.1: Representation of the synovitis grades convention. This convention is
also used in the metatarsophalangeal joints and interphalangeal joints [107]. In gray

is the joint capsule; M - Metacarpus; P - Phalange.

Fig. 8.1 indicates that in a healthy patient, classified with grade 0, the joint capsule is

almost imperceptible. When synovitis is present, the normal synovial fluid circulation is

compromised. This results in joint capsule swelling due to the accumulation of synovial

fluid, which occurs as a darker region in the joint capsule area. As the severity increases

the joint capsule grows, first near the joint region, then over the metacarpus, and after

that over the phalange, representing respectively grades 1, 2 and 3. In Fig. 8.2, it is

possible to visualize some examples of real images with different synovitis grades.

In Fig. 8.2 - A, a normal joint capsule is visible, with normal tissues between the bones

extremities. In Fig. 8.2 - B, a small darker zone is visible between the bones extremities

and this image is considered as grade 1. In the third image (Fig. 8.2 - C), it is possible

to see that the darker zone has reached the metacarpus, making it a grade 2. In the

last image (Fig. 8.2 - D), a larger swelling is visible, with the joint capsule extending

over the phalange, which is considered as grade 3.

Typically, the distinction between grade 0 and 3 is fairly consensual, however, the dif-

ferences between successive grades are much harder to determine. This is due to

the image quality, artifacts and the inherent limitations of discretely quantifying a pro-

gressive condition. This is the main motivation for this chapter, since the automatic

quantification of the synovitis grade could be of great help to the rheumatologist by

reducing the diagnosis subjectivity.

As previously stated, the automatic quantification of synovitis in ultrasound images of
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(A) Grade 0 (B) Grade 1

(C) Grade 2 (D) Grade 3

FIGURE 8.2: Example of images with different synovitis grades.

the MCPJ is still an open problem. In [108], a machine learning approach was pro-

posed to identify the joint in ultrasound images of the MCPJ. The authors used a set of

convolutional masks to capture local and contextual information and, in that way, find

the joint location. Several descriptors were extracted from these masks (such as SIFT,

FAST, ORB, BRISK, FREAK and SURF) and tested with different classifiers: Decisions

Trees, Neural Networks and SVM. The authors concluded that the best results were

obtained using a SVM classifier and SURF descriptors, achieving sensitivities above

98%, for a false positive rate of 10%. In a posterior work, [109], a clinical validation was

presented, and the authors concluded that the algorithm has fair agreement with three

expert rheumatologists, but it is not ready for clinical usage.

8.2 Proposed Work

Based on the literature review presented in Chapter 4 and the work of [108], the present

study proposes the creation of a set of masks to capture image patterns caused by

synovitis. These masks are obtained from the bones and extensor tendon locations
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(Fig. 8.3), a set of metrics is extracted from each mask and two SVM models are

applied to classify the image. One SVM model for the synovitis detection, and the other

to infer the synovitis grading.

FIGURE 8.3: Manual annotations used in the feature extraction. Blue - metacarpus
and phalange; Orange - extensor tendon; Green - skin line; White - joint capsule.

Additionally, a feature selection phase was conducted to extract the most informative

features and exclude those that do not provide relevant information. The joint capsule

area will also be taken into account to verify if the proposed masks are able to ac-

curately classify the images, without identify the joint capsule. The advantage of this

approach is that it might reduce the complexity of the system by removing the joint

capsule segmentation, which is a challenging procedure.

8.2.1 Feature Extraction

As presented in Fig.8.1, the synovitis appears as a darker structure growing from the

joint capsule region, which stands between the metacarpus and phalange bones. It

was also shown that the synovitis grade is dependent on the size of this dark region

and that it follows some specific patterns. Attending to this information, a set of masks

is proposed, as depicted in Fig. 8.4.

Starting with the joint masks (Fig. 8.4 - C), they were created having in mind the distinc-

tion between image with and without synovitis. They consist on elliptical and concentric

regions, centered in P0, where the regions belonging to the bone are excluded. Their

purpose is to capture the gray-scale signature of the joint region when the image is
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(A) Metacarpus and phalange masks.

(B) Input image

(C) Joint masks

FIGURE 8.4: Proposed masks for the synovitis identification and grading. The arrow
indicates the point P

0

, which stands between the metacarpus and the phalange. The
numbers in each mask are the nomenclature used to facilitate the reference to each
feature. The even numbers refer to the means and the odd numbers to the standard

deviations of the respective regions.

classified as grade 0 or 1, 2 and 3. Attending to the size and shape of the finger joints,

4 regions with 20 pixels (1 mm) thickness were empirically defined.

The masks of the metacarpus and phalange (Fig. 8.4 - A) were defined to identify the

synovitis grades 2 and 3, respectively. Vertically, they are limited by the metacarpus,
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phalange and extensor tendon and are split into 3 regions with equal thickness. Hori-

zontally, they start at the tip of the respective bone and grow outwards. The metacarpus

masks were further divided into three horizontal regions with 100 pixels of width (5 mm),

while for the phalange, a single horizontal region was defined with the same 100 pixels

width (5 mm). The number of regions in the metacarpus and phalange is different be-

cause the morphological changes, caused by synovitis, are more significant above the

metacarpus than above the phalange.

From each mask region, the pixels intensity mean and standard deviation was calcu-

lated using the input image after a Z-normalization. The Z-normalization parameters

were computed for each image from the pixels of the merged regions of the metacar-

pus and phalange masks. Therefore, the variability between the images acquired with

different settings is reduced. The features extracted from each mask region capture

the intensity and variation of the gray-scale, which are two of the main features that the

ultrasonographers take into consideration when interpreting the images.

In addition to these intensity-based features, it was also included the mean Euclidean

distance between the bones and extensor tendon and the joint capsule area. These

two metrics were correlated with the synovitis grade. The mean distance can be easily

obtained from the same annotations used to create the previously presented masks

(bones and extensor tendon annotations). The joint capsule area requires the segmen-

tation of the joint capsule, which in a fully automatic system, would require an additional

segmentation step. Therefore, a separated test was created, where the classifier will

be tested with and without the inclusion of the joint capsule area.

8.2.2 Feature Selection

A feature selection phase was included in this study. By excluding features that do

not have relevant information and selecting the most informative ones, it is possible to

create a simpler model with better generalization capabilities. There are several fea-

ture selection techniques; in this work, a greedy forward approach was used, due to

its simplicity. This strategy starts with an empty model and iteratively adds the feature

that increased more significantly the classifier performance. The limitation of this ap-

proach is that it does not take into account the relationship between features. An SVM

classifier was used and the classification performance was calculated using the mean
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Youden’s index [110] after a Monte Carlo cross-validation (MCCV) [111]. This metric

and procedure were used because the dataset is highly unbalanced. The Youden’s

index is defined as:

J = Sensitivity + Specificity � 1 =
TP

TP + FN
+

TN

TN + FP
� 1, (8.1)

where J is the Youden’s index and TP , FP , TN and FN are the number of true

positives, false positives, true negatives and false negatives, respectively. This met-

ric merges the sensitivity and the specificity in a single value, thus avoiding biases

between classes. This is achieved because the detection performance of each class is

calculated independently, i.e., the capacity to detect the positive outcome (sensitivity)

and the capacity to detect the negative outcome (specificity). Using this formulation,

the mean Youden’s index is expected to be low at the beginning, and then increases for

several iterations until a point where it starts to decrease due to the inclusion of non-

informative features. The point where the Youden’s index is maximum will represent the

optimal set of features.

8.3 Results and Discussion

The proposed features were implemented and tested on a database with 240 ultra-

sound images of the MCPJ acquired with a high frequency ultrasound device (12-15

MHz), and saved in anonymized DICOM format. The images have a spatial resolution

between 40 µm and 55 µm and were cropped to 448x760 (rows, columns) pixels. In all

images, the phalange, metacarpus, skin line, extensor tendon, and joint capsule were

manually identified as well as the synovitis grade using a self-owned dedicated software

as shown in Fig. 8.3. The tests were firstly divided in two distinct configurations, one

for synovitis identification (grade 0 vs grade 1, 2 and 3) and other for synovitis grading

(grade 1 vs grade 2 vs grade 3). These two configurations were then divided in two,

where the effect of adding the joint capsule area was measured. Given the reduced

number of images with grade 3, it was decided to merge them with the images of grade

2. Table 8.1 presents the distribution of the images as well as the number of images

used in the training and validation phases.
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TABLE 8.1: Database organization and number of images used in the Monte Carlo
cross-validation train and validation (Train/Validation) attending to the synovitis grade.

Grade 0 1 2 3

Total 183 25 24 8

1 Vs 2+3 - (17/8) (17/15)

0 Vs All (39/144) (39/18)

Since the database is unbalanced, and a balanced training set is preferable, the sepa-

ration attended to the less represented class (70% to train and 30% to validate). From

the other classes, the same number of training examples was randomly extracted for

training, and the remaining were used in the validation. The splitting was performed on

every MCCV iteration, which was empirically set to 2000 repetitions.

To help understand the results, the numeration presented in Fig. 8.4 was used. The

mean bone to extensor tendon distance and the joint capsule area (when added) were

also added to the feature vector and were represented with the numbers 32 and 33,

respectively.

Table 8.2 describes the results obtained in the previously refereed configurations using

the greedy forward MCCV feature selection.

The results in Table 8.2 indicate that the number of features can be reduced using the

proposed strategy. Moreover, the results were significantly improved after the feature

selection phase when compared with the case where all features were used. In Table

8.3 a summary of Table 8.2 is presented.

Furthermore, the inclusion of the joint capsule area leads to a considerable improve-

ment of the results, from a mean Youden’s index of 0.812 to 0.937 in the synovitis grading

and from 0.706 to 0.838 in the synovitis detection. Moreover, the use of the joint capsule

area also leads to a reduction in the total number of features necessary, from 6 to 5 in

the synovitis detection and from 18 to 9 in the synovitis grading. When included, the

joint capsule area was always selected first, which highlights its importance to the syn-

ovitis identification and grading. The mean distance between the bones and extensor

tendon was selected in two cases, the synovitis identification with the joint capsule area

and the synovitis grading without the joint capsule area, which does not point to a clear

conclusion, reducing the importance of this metric.
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TABLE 8.2: Feature selection results in the four tested configurations. µ
J

is the mean
Youden’s index from the Monte Carlo cross-validation and in bold are the best results.

JCA - Joint Capsule Area

Synovitis (Y/N) Synovitis Grading

No JCA With JCA No JCA With JCA

Iteration µ
J

Added µ
J

Added µ
J

Added µ
J

Added
1 0.445 30 0.772 33 0.603 12 0.871 33
2 0.644 17 0.812 31 0.671 13 0.903 6
3 0.689 7 0.825 4 0.697 23 0.907 4
4 0.687 6 0.829 30 0.757 17 0.912 13
5 0.685 31 0.838 32 0.743 27 0.910 21
6 0.706 9 0.824 18 0.744 29 0.910 12
7 0.691 18 0.821 13 0.714 31 0.920 29
8 0.677 12 0.819 23 0.709 0 0.935 9
9 0.667 5 0.816 15 0.795 32 0.937 7

10 0.657 4 0.822 2 0.773 2 0.930 15
11 0.672 20 0.818 5 0.769 28 0.925 16
12 0.673 23 0.820 28 0.784 14 0.908 1
13 0.673 32 0.823 17 0.800 10 0.909 26
14 0.679 11 0.824 16 0.782 8 0.870 23
15 0.685 8 0.819 7 0.780 7 0.867 32
16 0.673 24 0.828 27 0.783 19 0.851 19
17 0.664 10 0.823 29 0.797 16 0.861 27
18 0.675 28 0.819 14 0.812 30 0.842 0
19 0.681 26 0.815 10 0.779 11 0.835 28
20 0.696 19 0.810 21 0.766 24 0.808 18
21 0.687 27 0.810 3 0.757 22 0.808 22
22 0.671 29 0.803 19 0.769 4 0.807 14
23 0.672 2 0.802 8 0.764 15 0.816 10
24 0.662 16 0.790 9 0.736 9 0.804 8
25 0.662 14 0.794 26 0.720 5 0.782 5
26 0.660 22 0.788 22 0.696 1 0.769 17
27 0.660 13 0.788 11 0.658 26 0.781 24
28 0.656 0 0.787 0 0.674 3 0.786 11
29 0.649 15 0.775 6 0.635 25 0.748 2
30 0.643 21 0.768 25 0.620 20 0.732 31
31 0.651 3 0.758 12 0.588 21 0.760 30
32 0.638 25 0.750 24 0.576 6 0.721 20
33 0.607 1 0.742 1 0.568 18 0.726 25
34 - - 0.729 20 - - 0.732 3

To help visualize the features selected in each configuration, an example with the masks

and the respective selected features is presented in Fig. 8.5.

Attending to Fig. 8.5 - A and B, where the synovitis detection results of the feature

selection are presented, it is observable that the phalange features were never used.
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TABLE 8.3: Summary of the results obtained before and after the feature selection
phase for each configuration. JCA - Joint Capsule Area

Synovitis (Y/N) Synovitis Grading

No JCA With JCA No JCA With JCA

All Features 0.607 0.729 0.568 0.732
Selected Features 0.706 0.838 0.812 0.937

# of Features 6 5 18 9
Bone-Tendon Distance N Y Y N

This result is not surprising, since the difference between the grade 0 and the other

grades is mostly in the joint capsule and metacarpus regions, while the phalange is

mostly used to distinguish between grade 2 and 3. This fact also justifies the selection of

the features in the outer ring of the joint capsule masks and the ones in the metacarpus

area. In the synovitis grading, Fig. 8.5 - C and D, features from all regions were

used. Once again, the phalange features were not selected as much as those of the

metacarpus or joint capsule. The merge of the grades 2 and 3 may have decreased

the importance of the phalange, since they were expected to help in that particular

distinction.

It is also interesting to note that the features extracted from the joint capsule mask, near

the bones meeting point (features 24, 25 and 26) were never selected (and the 27 only

once). In this region, the gray scale pattern is often darker than the surroundings, due

to the metacarpus and phalange cartilage and due to the normal synovial fluid. Even

when synovitis is present, this region is expected to maintain its appearance (i.e., dark),

which explains why these features are not useful for detecting or grading synovitis.

8.4 Conclusions

In this chapter, a new set of masks was proposed to extract information from the ul-

trasound images of the MCPJ, and to classify the joints in terms of synovitis presence

and grading. The best configurations achieved a Youden’s index of 0.838 and 0.937 for

the synovitis identification and grading, respectively. These results are mainly indica-

tive because the database size is small and potentially biased. In fact, this is the main
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(A) Synovitis (Y/N) test without joint capsule area.

(B) Synovitis (Y/N) test with joint capsule area (Feature 33).

(C) Synovitis grade test without joint capsule area.

(D) Synovitis grade test with joint capsule area (Feature 33).

FIGURE 8.5: Selected features for the different synovitis detection and grading tests.
The features included in each test are highlighted in red. In B) and C), the area be-

tween the bones and the extensor tendon was also included (Feature 32).

limitation of this approach, especially in the number of images with grade 3. A large-

scale database is advised to properly validate these masks and extend the grading to

discriminate between grade 2 and 3.

The proposed work could be further improved by studying parameters that were em-

pirically defined when computing the features, i.e., the number of mask and their sizes.
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The width of the metacarpus and phalange masks could be obtained automatically for

each case by taking into account the anatomical structures. For example, the metacar-

pus head could be used to limit the first set of regions (features 0 to 5 in Fig. 8.4 -

A), which would cover the metacarpus cartilage and would be more precise in the dis-

tinction between grade 1 and 2. The same could be done for the joint capsule masks,

attending to the size of the joint. Finally, additional features could be extracted for the

mask regions, and therefore to capture additional important image characteristics.

In the future, the anatomical structures should be identified automatically, thus providing

a fully automated system. The database should be improved by acquiring more images

particularly from pathological cases, and results on a test set reported. Follow-up ex-

ams should also be included to conduct a longitudinal study to evaluate the diseases

progression, and correlated it with the proposed metrics. A continuous grading system,

obtained automatically, could also be a useful addition for the ultrasonographers and it

is present here as a possible future work.
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Conclusions and Future work

The main objective of this PhD thesis was the proposal of automatic image process-

ing strategies to extract information from the ultrasound images of the metacarpopha-

langeal joint. Because the state of the art was short in this theme, a focus on the

identification of structures was also carried out. This work creates the basis for pos-

sible future works and new automatic systems for the detection and quantification of

rheumatic diseases using ultrasound imaging. A total of four specific contributions were

produced during this work, that contribute to this objective.

The first contribution was the automatic identification of the metacarpus and phalange

bones. These structures are of major importance, because they are the most visible

ones in the image, providing spatial references for the other structures. Additionally, it is

possible to find signs of erosions, osteophytes and subluxation, three important clinical

findings. It should be noted that the ultrasound waves do not penetrate bones due to

high acoustic impedance and so only noise and artifacts are found beneath them. The

identification of both bones used a localizing active contours approach, which achieved

a confidence of 90% for an MHD error bellow 0.3 mm. This method could be further

improved by adding shape constraints to the model. This could reduce the burden on

the post-processing and create a more robust model, especially in cases where the

contours diverge from the bone location due to artifacts or low contrast.

The second contribution was the identification of the extensor tendon. This structure

can be used to detect tendon related diseases, such as tenosynovitis. Together with

the metacarpus and phalange, it is also useful to create a region of interest around the
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joint capsule. The identification was achieved with a new proposed open-ended-active-

contours framework with phase symmetry pre-processing and contextual information

constrains based on the expected shape and relative position to the bones and skin

line. A confidence of 95% for an MHD bellow 0.5 mm was achieved, proving that the

proposed framework is suitable for this task. The phase symmetry was proved to be

better than the same formulation without pre-processing. The energy formulation was

also added to a fully automatic segmentation pipeline, resulting in a loss of 7% in the

overall confidence for the same MHD of 0.5 mm mainly due to the segmentation errors

from the previous steps (bone and skin line segmentations). The main drawbacks of

this proposal are the dependency on the other segmentation methods to create the

search limits and the low scalability due to the exponential complexity growth with the

number points to be fit. The main advantages are that the inclusion of new constrains

is simple and no precise initialization is needed.

The third contribution was the identification of the joint capsule. This is the main struc-

ture of study when addressing rheumatoid arthritis, and so its identification can be

used as a direct measure of swelling. Two segmentation methods were proposed for

this problem. One uses a split and merge approach, SM � R, where the simple linear

iterative clustering algorithm was used to split the image in small clusters and then a

special region growing with shape restrictions was used to merge them into a coherent

shape. The other approach uses the state of the art UNet model with data augmenta-

tion to directly identify the joint capsule. In the SM�R method, the inclusion of a shape

constraint metric helped the region growing process to stop when the joint capsule lim-

its were not visible. The use of the DICE coefficient between the object and its own

convex hull was proved to enforce the expected balloon shape of the joint capsule. The

results obtained with the UNet model showed that it outperforms the SM � R method

by a considerable margin. It identified 95% of the images with a DICE higher than

0.6 in contrast with the SM � R that identified 90% of the image with a DICE higher

than 0.34. The UNet method is also expected to scale better with more data, while the

SM�R would require the inclusion of additional constrains or a deeper rework to catch

the UNet performance.

The last contribution was the identification and quantification of the synovitis grading.

For this task, the segmentation of the bones and extensor tendon was used to create

a set of masks from where features were extracted (mean and standard deviation).
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These masks capture local information from the images, which is then used on two

SVM models. One SVM model for detection and the other to classify the synovitis

grading. A feature selection phase was conducted and a Youden’s index of 0.838 and

0.937 was achieved for the synovitis identification and grading, respectively. The feature

selection phase highlighted the importance of specific regions of the image, namely, in-

tensity changes over the metacarpus region for the synovitis identification and over the

phalange area for the synovitis grading. Given the results obtained with deep learning

techniques in the joint capsule segmentation, it would be interesting to test those ap-

proaches for the direct identification and/or quantification of synovitis and other possible

image findings.

In the future, it is advised the creation of an improved database with all fingers included

and with metatarsophalangeal joint and carpal bones images. The inclusion of other

non-imaging parameters such as age, sex and blood tests would also be interesting for

a complete diagnosis tool. This database would be helpful to validate and potentially

improve the proposed algorithms.
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[3] Daniel Aletaha, Tuhina Neogi, Alan J Silman, Julia Funovits, David T Felson,

Clifton O Bingham, Neal S Birnbaum, Gerd R Burmester, Vivian P Bykerk,

Marc D Cohen, et al. 2010 rheumatoid arthritis classification criteria: an ameri-

can college of rheumatology/european league against rheumatism collaborative

initiative. Arthritis & Rheumatism, 62(9):2569–2581, 2010.

[4] Esperanza Naredo, Marı́a Montoro, and Iustina Janta. Musculoskeletal Ultra-

sonography in Rheumatic Diseases, chapter 3 - Rheumatoid Arthritis. Springer,

2015.

[5] Richard J Wakefield, Wayne W Gibbon, Philip G Conaghan, PHILIP O’Connor,

Dennis McGonagle, Colin Pease, Michael J Green, Douglas J Veale, John D

Isaacs, and Paul Emery. The value of sonography in the detection of bone

erosions in patients with rheumatoid arthritis. Arthritis Rheum, 43(12):2762–70,

2000.

[6] Pravin Patil and Bhaskar Dasgupta. Role of diagnostic ultrasound in the assess-

ment of musculoskeletal diseases. Therapeutic advances in musculoskeletal dis-

ease, 4(5):341–355, 2012.

119



Bibliography

[7] Blausen.com staff. Medical gallery of blausen medical 2014. WikiJournal of

Medicine 1 (2), 2014.

[8] N. Martins, S. Sultan, D. Veiga, M. Ferreira, F. Teixeira, and M. Coimbra. A new

active contours approach for finger extensor tendon segmentation in ultrasound

images using prior knowledge and phase symmetry. IEEE Journal of Biomedical

and Health Informatics, pages 1–1, 2018. ISSN 2168-2194. doi: 10.1109/JBHI.

2017.2723819.

[9] N. Martins, M. S. Sultan, D. Veiga, M. Ferreira, and M. Coimbra. Segmentation of

the metacarpus and phalange in musculoskeletal ultrasound images using local

active contours. In 2016 38th Annual International Conference of the IEEE Engi-

neering in Medicine and Biology Society (EMBC), pages 4097–4100, Aug 2016.

doi: 10.1109/EMBC.2016.7591627.

[10] N. Martins, M. S. Sultan, D. Veiga, M. Ferreira, and M. Coimbra. Joint cap-

sule segmentation in ultrasound images of the metacarpophalangeal joint us-

ing a split and merge approach. In 2018 IEEE EMBS International Confer-

ence on Biomedical Health Informatics (BHI), pages 243–246, March 2018. doi:

10.1109/BHI.2018.8333414.

[11] M. S. Sultan, N. Martins, M. J. Ferreira, and M. T. Coimbra. Segmentation of

bones mcp joint region of the hand from ultrasound images. In 2015 37th Annual

International Conference of the IEEE Engineering in Medicine and Biology Soci-

ety (EMBC), pages 3001–3004, Aug 2015. doi: 10.1109/EMBC.2015.7319023.

[12] Malik Saad Sultan, Nelson Martins, Diana Veiga, Manuel Ferreira, and Miguel

Coimbra. Automatic segmentation of extensor tendon of the mcp joint in ultra-

sound images. In Proceedings of the International Joint Conference on Biomed-

ical Engineering Systems and Technologies, BIOSTEC 2016, pages 71–76, Por-

tugal, 2016. SCITEPRESS - Science and Technology Publications, Lda. ISBN

978-989-758-170-0. doi: 10.5220/0005692500710076.

[13] M. S. Sultan, N. Martins, D. Veiga, M. J. Ferreira, and M. T. Coimbra. Tracking

of the anterior mitral leaflet in echocardiographic sequences using active con-

tours. In 2016 38th Annual International Conference of the IEEE Engineering

120



Bibliography BIBLIOGRAPHY

in Medicine and Biology Society (EMBC), pages 1074–1077, Aug 2016. doi:

10.1109/EMBC.2016.7590889.

[14] Malik Saad Sultan, Nelson Martins, Eva Costa, Diana Veiga, Manuel João Fer-

reira, Sandra da Silva Mattos, and Miguel Tavares Coimbra. Real-time ante-

rior mitral leaflet tracking using morphological operators and active contours.

In Proceedings of the 10th International Joint Conference on Biomedical En-

gineering Systems and Technologies (BIOSTEC 2017) - Volume 2: BIOIMAG-

ING, Porto, Portugal, February 21-23, 2017., pages 39–46, 2017. doi: 10.5220/

0006244700390046.

[15] Eva Costa, Nelson Martins, Malik Saad Sultan, Diana Veiga, Manuel João Fer-

reira, Sandra da Silva Mattos, and Miguel Tavares Coimbra. A preliminary ap-

proach for the segmentation of mitral valve regurgitation jet in doppler ecocar-

diography images. In Proceedings of the 10th International Joint Conference on

Biomedical Engineering Systems and Technologies (BIOSTEC 2017) - Volume

2: BIOIMAGING, Porto, Portugal, February 21-23, 2017., pages 47–54, 2017.

doi: 10.5220/0006248900470054.

[16] M. S. Sultan, N. Martins, E. Costa, D. Veiga, M. J. Ferreira, S. Mattos, and M. T.

Coimbra. Tracking large anterior mitral leaflet displacements by incorporating

optical flow in an active contours framework. In 2017 39th Annual International

Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),

pages 3244–3247, July 2017. doi: 10.1109/EMBC.2017.8037548.

[17] M. S. Sultan, N. C. Martins, E. Costa, D. Veiga, M. J. Ferreira, S. Mattos, and M. T.

Coimbra. Virtual m-mode for echocardiography: A new approach for the segmen-

tation of the anterior mitral leaflet. IEEE Journal of Biomedical and Health Infor-

matics, pages 1–1, 2018. ISSN 2168-2194. doi: 10.1109/JBHI.2018.2799738.

[18] Anahi Perlas Vincent Chan. Atlas of ultrasound-guided procedures in interven-

tional pain management, chapter Chapter 2 - Basics of Ultrasound Imaging.

Springer Science; Business Media, 2010.

[19] Fabio Martino, Enzo Silvestri, Walter Grassi, and Giacomo Garlaschi. Muscu-

loskeletal sonography: technique, anatomy, semeiotics and pathological findings

in rheumatic diseases, chapter 1. Springer Science and Business Media, 2007.

121



Bibliography

[20] URL http://www3.gehealthcare.com.sg/~/media/images/product/

product-categories/ultrasound/voluson/voluson{%}20transducers/

voluson_transducers_lg.jpg.

[21] Zhong Tao, Hemant D. Tagare, and J. D. Beaty. Evaluation of four probability

distribution models for speckle in clinical cardiac ultrasound images. IEEE Trans.

Med. Imaging, 25(11):1483–1491, 2006. doi: 10.1109/TMI.2006.881376. URL

http://doi.ieeecomputersociety.org/10.1109/TMI.2006.881376.

[22] S Kalaivani Narayanan and RSD Wahidabanu. A view on despeckling in ultra-

sound imaging. 2009.

[23] Margeret Callan, editor. The Rheumatology Handbook. Imperial College Press,

2012.

[24] Ade Adebajo. ABC of Rheumatology, volume 189, chapter 26. John Wiley &

Sons, 2011.

[25] Charles G Helmick, David T Felson, Reva C Lawrence, Sherine Gabriel, Rose-

marie Hirsch, C Kent Kwoh, Matthew H Liang, Hilal Maradit Kremers, Maureen D

Mayes, Peter A Merkel, et al. Estimates of the prevalence of arthritis and other

rheumatic conditions in the united states: Part i. Arthritis & Rheumatism, 58(1):

15–25, 2008.

[26] Helena Canhao, Augusto Faustino, Fernando Martins, and Joao Eurico Fonseca.

Reuma. pt-the rheumatic diseases portuguese register. Acta reumatologica por-

tuguesa, 36(1):45–56, 2010.

[27] Jaime C Branco, Ana M Rodrigues, Nélia Gouveia, Mónica Eusébio, Sofia
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Appendix A

Database Information and Study

A.1 Database Characteristics

In order to implement and test the proposed algorithms, a new database with images

of the second MCPJ was created. The images were acquired with the collaboration

of Unidade Local de Saúde do Alto Minho using a high frequency ultrasound equip-

ment (12 or 15 MHz), GE Healthcare LOGIQ-S8, and saved in anonymised DICOM

format. With respect to image characteristics, their size was cropped to 448x760 (rows,

columns) pixels with 8 bits/pixel and a spatial resolution between 40 µm and 55 µm.

There was no special care in the balancing of the gender, age or other person related

characteristic. In all images, the phalange, metacarpus, skin line, extensor tendon and

joint capsule were manually identified using a self-owned dedicated software. In Fig.

A.1 it is possible to visualize the annotations used in this study.

Additionally, all images were graded according to the presence of synovitis attending to

the 4 grade synovitis criteria.

In Table A.1 it is possible to see the number of images acquired for each synovitis

grade.

TABLE A.1: Final database size according to the synovitis grade.

Grade 0 1 2 3

Total 183 25 24 8
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FIGURE A.1: Manual annotations used to validate the proposed algorithms. Blue -
metacarpus and phalange; Orange - extensor tendon; Green - skin line; White - joint

capsule.

A.2 Clinical Visual Features

In this section, a preliminary study of the images characteristics and annotations is

presented in the context of synovitis quantification and detection. Since the state of

the art is limited in this field, it was decided to correlate the images changes with the

presence of synovitis. The anatomical implications of the synovitis were addressed

in Chapter 3 and here, the aim is to confirm the theoretical background using image

processing analysis. For that, the following set of features will be study:

• Mean distance between bones and extensor tendon;

• Mean distance between extensor tendon and skin line;

• Joint capsule area;

• Mean intensity inside and outside the joint capsule;

• Intensity standard deviation inside and outside the joint capsule.

These metrics were extracted from the database previously described in Section A.1.
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A.2.1 Distances Between Bones, Extensor Tendon and Skin Line

The first two tests were performed using only the manual annotation. The mean verti-

cal Euclidean distance between the bones and the extensor tendon, and between the

extensor tendon and the skin line were computed.

These features are based on the idea that the joint capsule swelling should move the

extensor tendon away from the bones. Additionally, since the swelling occurs in the

upward direction, it is possible that the distance between the tendon and the skin line

is decreased due to tissue compression. In Fig. A.2 and A.3, it is possible to visualize

the results of these two metrics.
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FIGURE A.2: Box plot of the mean distances between the bones and the extensor
tendon.

From Fig. A.2, it is possible to verify that the mean distance between the bones and

the extensor tendon carries relevant information about the progression of synovitis, be-

cause the distance increases as the synovitis grade increases. The mean distance be-

tween the extensor tendon and the skin line do not to provide useful information, since

the distribution of the distances exhibit a considerable overlap in all grades, Fig. A.3.

The Welch’s T-test was used to verify if these differences were statistically significant

and the results are presented in Table A.2.

Table A.2 corroborates the observations presented in Fig. A.2 and A.3. The mean

distance between the bones and the extensor tendon is a discriminative measurement
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FIGURE A.3: Box plot of the mean distances between the extensor tendon and the
skin line.

TABLE A.2: Statistical significance (p-values) between the mean distance measure-
ment and the synovitis degree.

Grades Bones-Tendon Tendon-Skin Line

0 V s 1 1.61E�5 0.0002
1 V s 2 0.0260 0.7584
2 V s 3 0.0042 0.7440

in all synovitis grades. In turn, the mean distance between the extensor tendon and

the skin line only has significant differences in the distinction between grade 0 and

1. This result indicates that the swelling does not cause a significant compression of

tissues above the extensor tendon. Moreover, the mean distance between the extensor

tendon and the skin line from grade 0 to grade 1 increased instead of decreasing, which

contradicts the initial idea of tissue compression.

A.2.2 Joint Capsule Area

The third feature extracted from the manual annotations was the joint capsule area. In

Fig. A.4, it is possible to see the results for each synovitis grade.

From Fig. A.4, it is clearly visible that the joint capsule area increases with the increase

in the synovitis grade. This result is in accordance with the theoretical background,
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FIGURE A.4: Box plot of the joint capsule area extracted from the manual annotations
for each synovitis grade.

because the synovitis progression is characterized by the swelling of the joint capsule.

Nevertheless, this difference alone is not enough to classify the MCPJ images with

high confidence. There is still a considerable overlap between the measured areas of

each grade and, consequently, additional features are needed to accurately classify the

images. In the grade 0, there is a big number of outliers, because most of the images

have no visible joint capsule (area equal to zero).

The p-values of the Welch’s T-test are presented in Table A.3, which confirm the obser-

vations made in Fig. A.4: the differences between the joint capsule areas of successive

synovitis grades are statistical significant (p-values < 0.05).

TABLE A.3: Statistical significance of the difference in the joint capsule area in different
synovitis grades.

Grades p-value

0 V s 1 1.63E�18

1 V s 2 5.99E�13

2 V s 3 4.63E�5

The joint capsule area and the mean distance between the bones and the extensor

tendon are influenced by the same anatomical alteration, .i.e., the joint capsule swelling.

To verify that these two features provide different types of information, it was computed
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the correlation between the two for each synovitis grade. Table A.4 presents those

correlation values.

TABLE A.4: Correlation between the joint capsule area and the mean distance be-
tween the bones and the extensor tendon for each synovitis grade.

Grade Correlation

0 0.062
1 0.428
2 0.378
3 0.885

From Table A.4, it is possible to conclude that for the grade 0 the correlation is almost

none. This is due to the fact that the mean distance is still possible to calculate, while

the joint capsule area is not possible to measure for most grade 0 cases, which results

in an area of 0. In the pathological cases there is some correlation, however only the

most severe cases (grade 3) exhibits a high correlations. Given these results, it is

concluded that these features have some similarity, but they provide different types of

information.

A.2.3 Intensity Based

The last two features are the mean and standard deviations of the pixels inside and

outside the joint capsule region. The joint capsule swelling is typically darker than the

surrounding structures, because it is composed of synovial fluid. Here, the joint capsule

region is defined by the manual joint capsule identification and the outside is defined

as the region between the tendon and the bones without this joint capsule region. This

way, the darker region of the extensor tendon and the brighter regions of the bones are

not included. The proposed measurements are depicted in Fig. A.5 and Fig. A.6.

From Fig. A.5, it is possible to verify that the mean intensity is always higher outside the

joint capsule region when compared with the inside. Regarding the standard deviation,

it is also possible to verify that in most cases it is higher outside the joint capsule, Fig.

A.6. These observations are in agreement with the theoretical background.
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FIGURE A.5: Plot of the mean intensity extracted from inside and outside the joint
capsule manual annotations.
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FIGURE A.6: Plot of the intensity standard deviation extracted from inside and outside
the joint capsule manual annotations.

139




	Acknowledgements
	Resumo
	Abstract
	Contents
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Research Questions
	1.3 Scientific Contributions
	1.4 Thesis Outline

	2 Ultrasound Imaging
	2.1 Introduction
	2.2 Acquisition Equipment
	2.3 Image Characteristics
	2.4 Doppler Mode

	3 Rheumatology Background
	3.1 Introduction
	3.1.1 Causes
	3.1.2 Epidemiology

	3.2 Rheumatoid Arthritis
	3.2.1 Diagnosis
	3.2.2 Treatment
	3.2.3 Costs

	3.3 Ultrasound for Rheumatoid Arthritis
	3.3.1 Metacarpophalangeal Joint
	3.3.2 Selected Acquisition Protocol


	4 Image Processing and Analysis Background
	4.1 Ultrasound Imaging Existing Work
	4.1.1 Pre-Processing
	4.1.2 Segmentation
	4.1.3 Feature Extraction and Classification

	4.2 Active Contours Model
	4.2.1 Internal Energy
	4.2.2 External Energy
	4.2.3 Optimization

	4.3 Localizing Active Contours
	4.4 Phase Symmetry
	4.5 Simple Linear Iterative Clustering
	4.6 Convolutional Neural Networks
	4.7 Performance Metrics
	4.7.1 Modified Hausdorff Distance
	4.7.2 Dice Similarity Coefficient


	5 Metacarpus and Phalange Identification
	5.1 Introduction
	5.2 Proposed Work
	5.2.1 Pre-processing
	5.2.2 Contour Initialization
	5.2.3 Contour Refinement - LAC
	5.2.4 Upper Line Extraction

	5.3 Results and Discussion
	5.4 Complementary Results
	5.5 Conclusions

	6 Extensor Tendon Identification
	6.1 Introduction
	6.2 Segmentation Framework
	6.2.1 Internal Energy
	6.2.2 External Energy
	6.2.3 Area Constraints
	6.2.4 Additional Constraints
	6.2.5 Implementation

	6.3 Results and Discussion
	6.3.1 Dataset and Metrics
	6.3.2 Number of Points Optimization
	6.3.3 Weights Optimization
	6.3.4 Visual Results

	6.4 Complementary Results
	6.4.1 New Data Results
	6.4.2 Fully Automatic Segmentation

	6.5 Conclusions

	7 Joint Capsule Identification
	7.1 Introduction
	7.2 Proposed Work
	7.2.1 Split and Merge
	7.2.2 Convolutional Neural Networks

	7.3 Results and Discussion
	7.3.1 Metrics
	7.3.2 Results - SM
	7.3.3 Results - CNN
	7.3.4 Comparative Results and Discussion

	7.4 Conclusions

	8 Synovitis Detection and Grading
	8.1 Introduction
	8.2 Proposed Work
	8.2.1 Feature Extraction
	8.2.2 Feature Selection

	8.3 Results and Discussion
	8.4 Conclusions

	9 Conclusions and Future work
	A Database Information and Study
	A.1 Database Characteristics
	A.2 Clinical Visual Features
	A.2.1 Distances Between Bones, Extensor Tendon and Skin Line
	A.2.2 Joint Capsule Area
	A.2.3 Intensity Based



