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Prostate cancer diagnosis is performed under ultrasound-guided puncture for

pathological cell extraction. However, determining accurate prostate location

remains a challenge from two aspects: (1) prostate boundary in ultrasound

images is always ambiguous; (2) the delineation of radiologists always occupies

multiple pixels, leading to many disturbing points around the actual contour.

We proposed a boundary structure-preserving U-Net (BSP U-Net) in this paper

to achieve precise prostate contour. BSP U-Net incorporates prostate shape

prior to traditional U-Net. The prior shape is built by the key point selection

module, which is an active shape model-based method. Then, the module

plugs into the traditional U-Net structure network to achieve prostate

segmentation. The experiments were conducted on two datasets: PH2 + ISBI

2016 challenge and our private prostate ultrasound dataset. The results on PH2

+ ISBI 2016 challenge achieved a Dice similarity coefficient (DSC) of 95.94%

and a Jaccard coefficient (JC) of 88.58%. The results of prostate contour based

on ourmethod achieved a higher pixel accuracy of 97.05%, amean intersection

over union of 93.65%, a DSC of 92.54%, and a JC of 93.16%. The experimental

results show that the proposed BSP U-Net has good performance on PH2 +

ISBI 2016 challenge and prostate ultrasound image segmentation and

outperforms other state-of-the-art methods.

KEYWORDS

prostate ultrasound image segmentation, ASM-based key points selection, U-Net
architecture, deep learning, shape prior
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Introduction

Prostate cancer is the most common cancer among

American men. The American Cancer Society estimated about

191,930 new cases of prostate cancer and about 33,330 deaths

from prostate cancer in 2020 (1).

Ultrasound images can be applied for diagnosis and guide

puncture and radiotherapy (2). The accurate delineation of the

prostate boundary in ultrasound images is crucial for

intraoperative navigation to help medical physicists operate,

especially in ultrasound-guided puncture. Ultrasound-guided

puncture as one of the monitoring means can reflect prostate

deformation in real time.

In the era of deep learning, many convolutional neural

network (CNN)-based segmentation approaches have been

proposed for medical image segmentation. Fully convolutional

network (FCN) is an innovative network for semantic

segmentation (3). U-Net is the first CNN-based network with

skip layers for biomedical image segmentation and is employed

for biological microscopy images (4). 3D U-Net extends the

typical U-Net architecture by replacing all 2D operations with

their 3D counterparts and is applied in the volumetric

segmentation of sparsely annotated volumetric images (5). U-

Net++ is a new, more powerful architecture for medical image

segmentation (6). The architecture of U-Net++ is a deeply

supervised encoder–decoder network, where the encoder and

decoder sub-networks are connected through a series of nested,

dense skip pathways. The re-designed skip pathways aim at

reducing the semantic gap between the feature maps of the

encoder and decoder sub-networks. V-Net is employed for 3D

image segmentation based on a volumetric fully convolutional

neural network (FCNN) (7). The authors introduce a novel

objective function based on Dice similarity coefficient (DSC).

Progressive Dense V-net (PDV-Net) was employed as a 3D-

CNN encoder for fast and automatic segmentation (8) to deal

with situations where the number of foreground and background

voxels has a strong imbalance. These U-Net architecture

networks are useful for many modalities of medical image

segmentation. However, they can hardly be used directly for

ultrasound image segmentation because of the several defects of

ultrasound imaging (e.g., attenuation, speckle, signal drop-out,

low contrast, and signal shadowing).

Shape information and boundary information play a critical

role in ultrasound image segmentation (9–14). Shape models bring

essential information, particularly in prostate segmentation, because

the anatomical structure of a healthy prostate is more likely an

ellipse shape. Gong et al. (15) proposed a deformable super-ellipse

model that drives shape evolution by an efficient and robust

Bayesian segmentation algorithm. Badiei et al. (16) utilized image

warping and ellipse fitting for prostate ultrasound segmentation.

Shen et al. (17) used a statistical shape model that adopts

normalized features to make prostate shape invariant to probe
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rotation. The experimental results of the aforementioned works

showed that incorporating tissue shape information can improve

segmentation accuracy. As a kind of shape model, the active shape

model (ASM) can describe various shapes based on amean position

and variant modes (18). Hodge et al. extended ASM from 2D to 3D

ultrasound prostate image segmentation (19). Some methods that

combine ASM with other models have been proposed to improve

the segmentation accuracy. Yan et al. proposed a discrete

deformable model guided by partial ASM for transrectal

ultrasound image segmentation (20). Bi et al. proposed a fast and

accurate segmentation method using ASM with Rayleigh mixture

model clustering for prostate ultrasound images (21).

Remarkably, authors started to combine shape information

and deep learning. Mishra et al. proposed an FCNN with

attention to boundaries conducted on the MICCAI 2011 IVUS

challenge dataset resulting in a Dice index value of 0.91 (22).

Chen et al. developed a new model based on deep learning,

which takes into account boundary information (23).

Murugesan et al. proposed a Psi-Net that joins shape and

boundary into a multitask deep network that aids in ensuring

the smoothness of segmentation prediction (24). Nguyen et al.

proposed a consecutive deep encoder–decoder network

combined with a boundary-emphasization data augmentation

(25). Hou et al. proposed a robust 3D CNN with boundary

correction (26). Soliman et al. proposed a novel CNN

segmentation framework based on shape features described by

the seventh-order Markov–Gibbs random field, which reached a

high DSC of 98.37% ± 0.68% on 95 CT lung images (27). Hesse

et al. improved U-Net segmentation by adding an active contour

step to correct the imperfect ground-truth labels (28). Qin et al.

combined superpixel and boundary information with CNNs for

liver segmentation (29). Lee et al. proposed a novel image

segmentation network for medical images with ambiguous

boundaries (30). In summary, boundary information is helpful

to improve segmentation accuracy by combining it with a

neural network.

However, boundary representation remains a challenge in

two aspects: (1) the contour of the existing dataset is implicit

because the ground truth always provides semantic

segmentation (Figure 1A), and (2) the actual contour is

surrounded by many disturbing points (Figure 1E). In our

work, we proposed a model that combines boundary

information with deep learning for prostate ultrasound image

segmentation. The contributions of our work are as follows: (1)

we built an end-to-end neural network for prostate ultrasound

segmentation; (2) an ASM-based method was utilized for

boundary information extraction; (3) the key point selection

models were easy to plug into any network. This paper is

organized as follows. Section 2 presents the mathematical

background of ASM. Section 3 describes the selection of the

key points of initialization. Section 4 provides the experimental

results, and Section 5 presents the concluding remarks.
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Materials and methods

Materials

Two medical image segmentation datasets, namely, PH2 +

ISBI 2016 Skin Lesion Challenge (31, 32) and our private dataset,

were applied in the experiments. The PH2 + ISBI 2016 dataset,

which is a publicly available dataset for evaluating skin lesion

segmentation, includes 900 multi-size skin lesion images and

200 dermoscopic images. The private dataset is from the Second

People’s Hospital of Changzhou Affiliated with Nanjing Medical

University, which was approved by the Ethics Committee of the

Second People’s Hospital of Changzhou. All subjects agreed to

participate in the study and signed the informed consent. All

data, including 100 prostate images, are desensitization data. The
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ground truth was based on the average delineation from

three radiologists.
Methods

Figure 2 shows the overview of the proposed network

architecture. It consists of one encoder–decoder network and a

boundary map generation module (BMGM). The BMGM was

utilized to incorporate boundary information in different scales

of the image within the network.

Boundary map generation module
Figure 1E shows that the points extracted from semantic

segmentation have two deficiencies: (1) in each dimension,
FIGURE 2

Overview of the proposed network architecture.
B C

D E

A

FIGURE 1

(A) Semantic segmentation of prostate ultrasound image. (B) Edge detection of the prostate. (C) Prostate boundary after erosion. (D) Erode
prostate boundary after dilation. (E) Prostate contour.
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several points make key points implicit; (2) the points are

chaotic. Hence, we proposed a BMGM to alleviate this situation.

First, rough prostate boundary detection was processed,

including binarization, edge extraction, and morphological

operation. The adaptive threshold binarization of the Otsu

algorithm and the edge extraction of the Canny algorithm

were adopted for ultrasound images as shown in Figure 1B. A

morphological operation consisting of erosion and dilation was

conducted to remove the disturbing points and connect the

isolated points (Figures 1C, D). Then, the rough boundary of the

prostate was detected, and its pixel points formed the rough

point set.

Second, prostate boundary finer was processed, including

key point initialization and interpolation generation. Key point

initialization is adopted to eliminate the disturbance of messy

points. As shown in Figure 3A, the green circles denote only two

points left on each vertical axis. Then, four salient points {kp11,

kp12, kp13, kp14} were used as the initialization to demonstrate

the prostate shape, where footnote 1 indicates the first iteration

selection, 4 indicates the order of the points in the set

(Figure 3B), and the red stars denote the key point set of the

boundary. Then, interpolation generation was adopted to

supplement the shape points to finish the finer contour

detection. The interpolation needs to find the perpendicular

direction of any two adjacent points. The normal direction of the

perpendicular line connected to two points was achieved using

Eq. (1):

(Dx ,Dy) =
x1 − x2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(x1 − x2)
2 + (y1 − y2)

2
p ,

y1 − y2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x1 − x2)

2 + (y1 − y2)
2

p !
(1)

where Dxand Dy are the coordinates in the x-axis and y-axis,

respectively; x1, y1 are the coordinates of point 1; and x2, y2 are

the coordinates of point 2. Taking kp13 and kp14 as examples, the

red line denotes the connected line, whereas the blue line denotes

the perpendicular line. The point was interpolated through the

candidate points. Euclidean distance was used to select the

candidate points so that kp24 was added to the point set as
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shown in Figure 3C. Finally, we achieved the key points as

Figure 3D shows.
Network Backbone
As an attractive structure-preserving method, Lee’s model

(30) selects an optimal solution from a set of random sampling on

the target contour, but the extracted points are not evenly

distributed. Our proposed work generates the key points over

the boundary map generation module, called the BMGM, to

obtain a more uniform repartition of the key points along the

contour. As the replacement of the random sampling module of

Lee’s model, the BMGM is proposed to provide a more accurate

information on the tissue boundary in our segmentation network.

The BMGM module is utilized to evaluate the intermediate

segmentation at the different stages of the network after the

convolutional block. The prediction at different scales is used to

restrain the segmentation stage. The prediction module was

constructed directly by an upsampling block.

The network is a typical U-Net architecture that has encoder

and decoder parts besides skip layers as shown in Figure 2. The

encoder part is used for semantic feature extraction, and the

decoder part helps with generator segmentation. The BMGM

was placed after the convolution block. In the network, the

BMGMwas utilized to generate the predicted map to restrain the

intermediate segmentation. The BMGMwas used in the encoder

and decoder parts. The BMGM at different scales was used to

compare the stage with the ground-truth map.

We utilized cross-entropy to evaluate the stage with the

ground truth and restrain the segmentation with the true

boundary in different stages. The map loss Lmap is defined as:

Lmap =on
i=1 − MilogcMi + 1 −Mi½ �log 1 −cMi

h i� �
, (2)

where Mi is the boundary map generated by the ground

truth, and M̂iis the map achieved by the network in the ith stage.

We also used cross-entropy to evaluate the segmentation

result with the ground truth and restrain the segmentation with

the true boundary. Segment loss Lseg is defined as:
B C DA

FIGURE 3

Illustration of candidate point selection and finer boundary detection. (A) Green—point selection after extra point removal; red—key points. (B)
Detection of four salient points. (C) Interpolation of the first iteration. (D) Finer contour.
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Lseg = −GlogS − 1 − GÞlog 1 − Sð Þ,�
(3)

where G is the ground truth, and S is the segmentation

achieved by the network.

Total loss Ltotal is defined as follows:

Ltotal = Lmap + Lseg : (4)
Experimental implementation

BMGM implementation details
In the coarse boundary step, we detected the edge of the

prostate based on Otsu’s algorithm. Then, all-one template size

2×2 for image erode and disk template size 5×5 for image dilate

were implemented (Figure 4). Figure 4A depicts the semantic

segmentation of the prostate. The edge of the prostate can be

detected through image binarization as shown in Figure 4B.

Figure 4B shows that more than two points along each

dimension are disturbing points. Thus, image erosion was

implemented to solve this issue. Figure 4 illustrates that the

points were reduced along each dimension; however, the

operation led to some disconnection along the contour. Image

dilation was implemented to make contour connections as

shown in Figure 4D. The closed contour is smooth and can be

seen as the coarse contour of the prostate.

The proposed method was compared with the point

selection method proposed in (30) to evaluate the proposed

method qualitatively. We conducted experiments on 100

prostate ultrasound images. Four representative demos were

used as Figure 5 shows. The first column represents the

semantic segmentation responding to each ultrasound image.

The second column is the point selection based on Lee’s method

(30). As the figure shows, some overlap points are present inside

the red box, and disconnection occurred along the boundary.
Frontiers in Oncology 05
The third column shows the points selected by the proposed

method. The points have an equidistant distribution along the

boundary and do not overlap.

Furthermore, we used the intersection over union (IOU) to

evaluate the proposed method quantitatively using Eq. (5),

where SL denotes the region generated by the points based on

Lee’s method and SP denotes the region generated by the points

based on the proposed method. IOU equals the ratio of the

overlap of SL and SP to the union of SL and SP. We calculated the

mean and variance of 100 prostate ultrasound images, and

representative images are shown in Table 1. Most key points

generated based on the proposed method showed higher IOU

than those generated by Lee’s method. Furthermore, the mean

(0.7280) and variance (0.0173) of the proposed method were

higher than those of Lee’s method (0.7134 and 0.0191,

respectively).

IOU =
SL ∩ SP
SL ∪ SP

(5)
BSP U-Net Implementation Details
All the experiments were implemented in TensorFlow 1.4.0

with an NVIDIA GeForce RTX 2080Ti GPU. We used a robust

model training schema by 10-fold cross-validation and

randomly shuffled all images. We trained the model by Adam

optimization algorithm with an initial learning rate of 1e−4, a

maximum epoch of 1,200, and a batch size of 8. The

automatically saved optimal model was used to evaluate the

testing set.

We evaluated the proposed method by the test set. We

trained and tested other classic deep-learning based models,

including U-Net (27), FCN (3), and Lee’s network (30), using the

same dataset in the paper to evaluate the performance of our

network objectively.
B

C D

A

FIGURE 4

Illustration of coarse boundary detection.
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Discussion

Structure information is crucial for medical image

segmentation within a deep learning network. Derived from

the capability of ASM-based methods to capture the shape

variability of the prostate within an ultrasound image, we

employed ASM to generate a key point map from the

delineated boundary based on physicians.

Though several methods are proposed to generate shape

information, the demonstration of the prostate in ultrasound

images is still a challenge because of the inhomogeneous images.

Lee proposed a boundary key point selection algorithm for a

selected point set to demonstrate the target object. In our work,

we considered the prostate boundary as an ASM model to

demonstrate an inhomogeneous prostate. ASM is applied to

generate the key points of a prostate boundary to achieve more

homogeneous tissue information, which is helpful for

ultrasound image segmentation. This assumption was verified

through experiments about plugging a key point selection

module based on ASM in a CNN. The key point selection

module based on ASM is simple to implement and

conveniently attached to a network in a plug-and-play manner.
Frontiers in Oncology 06
The proposed ASM-based method outperformed Lee’s method

in terms of IOU. Compared with Lee’s method, the mean

intersection over union (MIOU) of the proposed ASM-based

method was improved by 1.3%, and the standard deviation

declined by 9.4%. The larger mean IOU means higher accuracy,

and the smaller standard deviation means more stability. The reason

the proposed method showed better performance is that BMGM re-

partitions the key points along the prostate contour. Compared with

Lee’s method, BSP U-Net had better constraints on prostate shape.

In terms of segmentation results, the proposed ASM-based

method’s key point map generation plugin (traditional U-net

network) achieved considerable accuracy. We conducted

experiments on two datasets. PH2 data: Compared with

SCDRR, the segmentation accuracy of our method improved

by 11.56% for DSC and 16.55% for Jaccard coefficient (JC) as

Table 2 shown. Compared with JCLMM, the segmentation

accuracy of our method improved by 15.80% for DSC.

Compared with MSCA, the segmentation accuracy of our

method improved by 17.62% for DSC and 22.47% for JC.

Compared with SSLS, the segmentation accuracy of our

method improved by 22.40% for DSC and 29.36% for JC.

Compared with FCN, the segmentation accuracy of our
FIGURE 5

Comparison of boundary detection. The first column is the original image, the second column is the boundary detection based on Lee’s
method, and the third column is the boundary detection based on the proposed method.
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method improved by 7.30% for DSC and 7.82% for JC.

Compared with Bi, the segmentation accuracy of our method
Frontiers in Oncology 07
improved by 5.82% for DSC and 5.46% for JC. Compared with

Lee, the segmentation accuracy of our method improved by

4.46% for DSC, and 5.08% for JC. Prostate ultrasound data:

Compared with FCN, the segmentation accuracy of our method

improved by 2.93% for pixel accuracy (PA), 4.84% for MIOU,

8.39% for DSC, and 5.16% for JC. Compared with U-Net, the

segmentation accuracy of our method improved by 1.69% for

PA, 2.95% for MIOU, 5.70% for DSC, and 3.27% for JC as Table

3 shown. Compared with Lee, the segmentation accuracy of our

method improved by 0.84% for PA, 1.42% for MIOU, 2.05% for

DSC, and 1.74% for JC. The reason is that the proposed method

had a better performance in homogeneous tissue presentation to

achieve more accurate segmentation results.

Furthermore, we compared the performance of using a

boundary mask (Figure 4A) and a boundary-preserving

module (Figure 4D). The results are shown in Table 4.

Compared with using a boundary mask, the segmentation

accuracy of using boundary sample points improved by

10.56% for PA, 11.73% for MIOU, 5.39% for DSC, and 10.42%

for JC. The reason is that boundary-preserving points are more

adaptive to curve changes, which represent better constraints on

prostate shape.

We also conducted experiments using boundary-preserving

modules in the encoder layer, decoder layer, and both layers. The

results are shown in Table 5. The performance of boundary

preservation in both layers was better than that in the encoder

layer; the segmentation accuracy improved by 2.14% for PA,

3.26% for MIOU, 3.28% for DSC, and 2.08% for JC. The

boundary preservation performance in the encoder layer was

better than that in the decoder layer; the segmentation accuracy
TABLE 1 Intersection over union (IOU) of representative prostate
ultrasound images.

Patient number/IOU Lee’s method BSP U-Net
#1 0.7167 0.7316

#2 0.6954 0.7143

#3 0.7297 0.7144

#4 0.7210 0.7439

#5 0.7207 0.7128

#6 0.7211 0.7369

#7 0.7198 0.7334

#8 0.6914 0.7363

#9 0.7174 0.7325

#10 0.7322 0.7087

#11 0.7249 0.7308

#12 0.7207 0.7461

#13 0.7378 0.7404

#14 0.7294 0.7400

#15 0.7206 0.7474

#16 0.7149 0.7435

#17 0.7285 0.7362

#18 0.7303 0.7293

#19 0.7140 0.7421

#20 0.7278 0.7463

Mean 0.7134 0.7280

Std 0.0191 0.0173
Bold values means best values.
TABLE 3 Evaluation of U-Net, FCN, Lee’s network, and the proposed network on prostate ultrasound images.

Method PA MIOU Dice Coefficient Jaccard Coefficient
FCNN (3) 94.29 89.33 85.38 88.59

U-Net (4) 95.44 90.97 87.55 90.21

Lee’s Method (30) 96.24 92.34 90.68 91.57

BSP U-Net 97.05 93.65 92.54 93.16
Bold values means best values.
TABLE 2 Evaluation of U-Net, FCN, Lee’s network, and the proposed network on PH2 + ISBI 2016 challenge.

Method Dice Coefficient Jaccard Coefficient
SCDRR (33) 86.00 76.00

JCLMM (34) 82.85 –

MSCA (35) 81.57 72.33

SSLS (36) 78.38 68.16

FCN (3) 89.40 82.15

Bi et al., 2017 (37) 90.66 83.99

Lee’s method (30) 91.84 84.30

BSP U-Net 95.94 88.58
Bold values means best values.
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improved by 2.57% for PA, 1.45% for MIOU, 1.44% for DSC,

and 2.63% for JC. The reason is that the decoder layer also can

obtain boundary information using boundary preservation in

the encoder layer. The shape constraint is augmented into the

information forward transmission.

This work focused on tumor and gland segmentation for

ultrasound images with smooth and non-convex targets. The

generation of key points would drop some points when

encountering the bottleneck. In the future, we will conduct

further research on tissues containing a bottleneck and to

make our method effective on convex and non-smooth objects.

In addition, considering the relatively small dataset of

ultrasound images, the 10-fold cross-validation was adopted to

evaluate the proposed method. In the future, for further

evaluation of the proposed method, we will collect more kinds

of ultrasound images and promote the proposed method for use

in other organs, such as the thyroid, uterus, and liver.
Conclusion

BSP U-Net was proposed to obtain accurate prostate

location during ultrasound-guided puncture. The ASM-based

method was applied for key point selection in the segmentation

of prostate ultrasound images from coarse to fine points. The

BMGM is easy to plug into any network. The experimental

results show that the proposed BSP U-Net has good

performance on prostate ultrasound image segmentation in

terms of several evaluation indexes.
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TABLE 4 Evaluation of using boundary mask and boundary-sampled points on prostate ultrasound images.

Method PA MIOU Dice Coefficient Jaccard Coefficient

Boundary mask 87.88 83.82 87.80 84.37

Boundary sampled points 97.05 93.65 92.54 93.16
Bold values means best values.
TABLE 5 Evaluation of using BSP U-Net in the encoder layer, decoder layer, and both layers on prostate ultrasound images.

Method PA MIOU Dice Coefficient Jaccard Coefficient

Boundary preserving in encoder layer 95.01 90.69 89.60 92.26

Boundary preserving in decoder layer 92.63 89.39 88.33 88.92

Boundary preserving in both encoder and decoder layers 97.05 93.65 92.54 93.16
Bold values means best values.
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