4,480 research outputs found

    High performance deep packet inspection on multi-core platform

    Get PDF
    Deep packet inspection (DPI) provides the ability to perform quality of service (QoS) and Intrusion Detection on network packets. But since the explosive growth of Internet, performance and scalability issues have been raised due to the gap between network and end-system speeds. This article describles how a desirable DPI system with multi-gigabits throughput and good scalability should be like by exploiting parallelism on network interface card, network stack and user applications. Connection-based parallelism, affinity-based scheduling and lock-free data structure are the main technologies introduced to alleviate the performance and scalability issues. A common DPI application L7-Filter is used as an example to illustrate the applicaiton level parallelism

    A Message-Passing, Thread-Migrating Operating System for a Non-Cache-Coherent Many-Core Architecture

    Get PDF
    The difference between emerging many-core architectures and their multi-core predecessors goes beyond just the number of cores incorporated on a chip. Current technologies for maintaining cache coherency are not scalable beyond a few dozen cores, and a lack of coherency presents a new paradigm for software developers to work with. While shared memory multithreading has been a viable and popular programming technique for multi-cores, the distributed nature of many-cores is more amenable to a model of share-nothing, message-passing threads. This model places different demands on a many-core operating system, and this thesis aims to understand and accommodate those demands. We introduce Xipx, a port of the lightweight Embedded Xinu operating system to the many-core Intel Single-chip Cloud Computer (SCC). The SCC is a 48-core x86 architecture that lacks cache coherency. It features a fast mesh network-on-chip (NoC) and on-die message passing buffers to facilitate message-passing communications between cores. Running as a separate instance per core, Xipx takes advantage of this hardware in its implementation of a message-passing device. The device multiplexes the message passing hardware, thereby allowing multiple concurrent threads to share the hardware without interfering with each other. Xipx also features a limited framework for transparent thread migration. This achievement required fundamental modifications to the kernel, including incorporation of a new type of thread. Additionally, a minimalistic framework for bare-metal development on the SCC has been produced as a pragmatic offshoot of the work on Xipx. This thesis discusses the design and implementation of the many-core extensions described above. While Xipx serves as a foundation for continued research on many-core operating systems, test results show good performance from both message passing and thread migration suggesting that, as it stands, Xipx is an effective platform for exploration of many-core development at the application level as well

    RELEASE: A High-level Paradigm for Reliable Large-scale Server Software

    Get PDF
    Erlang is a functional language with a much-emulated model for building reliable distributed systems. This paper outlines the RELEASE project, and describes the progress in the first six months. The project aim is to scale the Erlang’s radical concurrency-oriented programming paradigm to build reliable general-purpose software, such as server-based systems, on massively parallel machines. Currently Erlang has inherently scalable computation and reliability models, but in practice scalability is constrained by aspects of the language and virtual machine. We are working at three levels to address these challenges: evolving the Erlang virtual machine so that it can work effectively on large scale multicore systems; evolving the language to Scalable Distributed (SD) Erlang; developing a scalable Erlang infrastructure to integrate multiple, heterogeneous clusters. We are also developing state of the art tools that allow programmers to understand the behaviour of massively parallel SD Erlang programs. We will demonstrate the effectiveness of the RELEASE approach using demonstrators and two large case studies on a Blue Gene

    Hybrid static/dynamic scheduling for already optimized dense matrix factorization

    Get PDF
    We present the use of a hybrid static/dynamic scheduling strategy of the task dependency graph for direct methods used in dense numerical linear algebra. This strategy provides a balance of data locality, load balance, and low dequeue overhead. We show that the usage of this scheduling in communication avoiding dense factorization leads to significant performance gains. On a 48 core AMD Opteron NUMA machine, our experiments show that we can achieve up to 64% improvement over a version of CALU that uses fully dynamic scheduling, and up to 30% improvement over the version of CALU that uses fully static scheduling. On a 16-core Intel Xeon machine, our hybrid static/dynamic scheduling approach is up to 8% faster than the version of CALU that uses a fully static scheduling or fully dynamic scheduling. Our algorithm leads to speedups over the corresponding routines for computing LU factorization in well known libraries. On the 48 core AMD NUMA machine, our best implementation is up to 110% faster than MKL, while on the 16 core Intel Xeon machine, it is up to 82% faster than MKL. Our approach also shows significant speedups compared with PLASMA on both of these systems
    • 

    corecore