
Hybrid static/dynamic scheduling for already optimized dense matrix factorization

Simplice Donfack∗, Laura Grigori∗, William D. Gropp† and Vivek Kale†
∗INRIA Saclay-Ile de France, Universite Paris-Sud 11, 91405 Orsay,France

E-mail: {simplice.donfack, laura.grigori}@lri.fr
†Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

E-mail: {wgropp, vivek}@illinois.edu

Abstract—We present the use of a hybrid static/dynamic
scheduling strategy of the task dependency graph for direct
methods used in dense numerical linear algebra. This strategy
provides a balance of data locality, load balance, and low
dequeue overhead. We show that the usage of this scheduling in
communication avoiding dense factorization leads to significant
performance gains. On a 48 core AMD Opteron NUMA
machine, our experiments show that we can achieve up to 64%
improvement over a version of CALU that uses fully dynamic
scheduling, and up to 30% improvement over the version of
CALU that uses fully static scheduling. On a 16-core Intel Xeon
machine, our hybrid static/dynamic scheduling approach is up
to 8% faster than the version of CALU that uses a fully static
scheduling or fully dynamic scheduling. Our algorithm leads
to speedups over the corresponding routines for computing
LU factorization in well known libraries. On the 48 core AMD
NUMA machine, our best implementation is up to 110% faster
than MKL, while on the 16 core Intel Xeon machine, it is up
to 82% faster than MKL. Our approach also shows significant
speedups compared with PLASMA on both of these systems.

Keywords-dynamic scheduling, communication-avoiding,
dense matrix factorization, numerical linear algebra

I. INTRODUCTION

One of the most important goals in high-performance
computing is the design and development of efficient al-
gorithms that can be portable for a diverse set of node ar-
chitectures and scale to emerging high-performance clusters
with an increasing number of nodes. Many parallel scientific
applications are written using routines from numerical linear
algebra libraries. Several methods have been used to make
such routines more tunable to a particular architecture,
particularly due to the sensitivity of architectural parameters.
In an effort to provide well-optimized BLAS [2] that is
portable, numerical libraries such as GOTOBLAS [11] or
ATLAS [1] detect parameters of the user’s system during
installation, and tune the library for a specific configuration.
Cache-oblivious algorithms [9], [23] avoid tuning for matrix
computations by using the optimal data layout independent
of the size of the cache.

Despite various optimizations provided by vendors, the
performance of such routines may still be dramatically
affected by architectural characteristics that are hard to tune
code for, particularly characteristics that cause dynamic per-
formance variations during execution of the routine. In order

Figure 1. Profile of CALU using static scheduling on 16 cores of an AMD
Opteron machine.

to be scalable for future high-performance clusters(i.e. ex-
ascale), the code running within a node of a cluster must be
tuned such that it achieves not simply “high-performance”,
but also “performance consistency” [14], [16]. Such static
tuning techniques provide few guarantees on performance
consistency.

The problem becomes evident in a profile of a highly
(statically scheduled) optimized communication avoiding
LU (CALU) factorization. As can be seen in Figure I,
there are several pockets of thread idle time (shown through
white spaces), indicating that even a statically optimized and
tuned code still leads to idling cores during execution. This
suggests that the code is not able to completely harness the
true (or peak) performance of an architecture. In addition,
there are almost no patterns seen for the pockets of idle time,
suggesting a transient, dynamic performance variation of
the architecture that cannot necessarily be predicted through
static techniques.

The emerging complexities of multi- and many-core archi-
tectures and the need for performance consistency suggests
making codes more self-adaptive to the wide variety of
different architectural characteristics that are difficult to
predict. Examples of such self-adaptive techniques are work-
stealing [6], [5] and openMP guided self-scheduling [20].

These self-adaptive strategies allow work to be dynami-
cally scheduled to cores (during execution of the linear al-
gebra routine), rather than to be statically scheduled (before
execution of the routine). Using such dynamic scheduling
techniques in numerical library routines gives the advantage
that available threads execute tasks as soon as they are ready.
Even if one thread becomes slow or inactive due to transient
performance variation induced by system events such as I/O
or OS daemons, the other threads will not be affected. The
fundamental disadvantages of dynamic scheduling are the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4835577?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


dequeue overhead and loss of data locality that these strate-
gies introduce; the conventional static scheduling would not
have caused overheads for such load balancing. The dequeue
overhead to pull a task from a work queue can become non-
negligible especially on an architecture with a large number
of cores. Dynamic scheduling provides no guarantee for
threads to reuse data resident in their local cache. The act
of such dynamic migration of data has a significant cost,
especially on architectures with large differences in access
time between cache and main memory. Thus, due to these
potentially large scheduling overheads, it may seem more
appropriate to simply continue to use conventional static
scheduling for these cases.

What is needed for such codes is a tunable scheduling
strategy that maintains load balance across cores while also
maintaining data locality and low dequeue overhead. To
achieve this, we use a strategy that combines static and dy-
namic scheduling. This approach was shown to be successful
on regular mesh computations [16]. This tunable scheduling
strategy allows us to flexibly control the percentage of tasks
that can be scheduled dynamically; this gives to a knob to
control load balancing so that it occurs only at the point
in computation when the benefits it provides outweighs
the costs it induces. On NUMA machines where remote
memory access is costly, the percentage of work scheduled
dynamically should be small enough to avoid excessive
cache misses, but large enough to keep the cores busy during
idle times in the static part.

In this work, we show the effectiveness of this method
in the context of already highly-optimized dense matrix
factorizations. We focus in particular on communication
avoiding LU (CALU), a recently introduced algorithm which
offers minimal communication [12]. We choose LU because
of its tight synchronization and communication constraints.
Most of the discussion applies to other routines in dense
numerical linear algebra also. Our prior work on multi-
threaded CALU [8] was based on dynamic scheduling. The
algorithm performed well on tall and skinny matrices, but
became less scalable on square matrices with increasing
numbers of processors. When the input matrix is tall and
skinny, the fast factorization of the panel usually surpasses
the various types of scheduler optimizations. However, when
the matrix is large, it becomes important to modify the
properties of the scheduler to take into account memory
bandwidth bottlenecks and data locality.

In our hybrid scheduling approach, the percentage of
computation that is allotted to be dynamic scheduled can
be tuned based on the underlying architecture and the input
matrix size. An important factor that impacts performance
is the data layout of the input matrix. Hence, we also
investigate three data layouts: a classic column major format,
a block cyclic layout, and a two level block layout. Table
I describes the design space we explore. By avoiding load
balancing until it is absolutely needed, we are able to acheive

significantly higher performance gains over a fully static or
a fully dynamic scheduling strategy, and also can provide
better performance compared to two well-known numerical
linear algebra libraries, MKL and PLASMA. While the
paper focuses specifically on CALU, most of the discussion
applies to other methods of factorization such as QR, rank-
revealing QR, and to a certain degree the Cholesky and
LDLT factorizations.

CALU
Data Layout \ Scheduling Static Dynamic static (number%

dynamic)
Block cyclic layout (BCL)

√ √ √

2-level block layout (2l-BL)
√ √ √

Column major layout (CM)
√

Table I
DESIGN SPACE. IN THE HYBRID VERSION, NUMBER% REPRESENTS THE

PERCENTAGE OF THE DYNAMIC PART

This paper is organized as follows. In the section 2, we
briefly give a background of LU and CALU factorization.
In the section 3, we show how to combine static and dy-
namic scheduling to achieve good performance in numerical
librairies. In section 4, we discuss the data layout we use for
the matrices. In section 5, we present experimental results.
In section 6, we present a theoretical analysis. In section
7, we present a discussion and broader impact to future
machines(e.g. exascale). In section 8, we discuss relevant
related work. In section 9, we conclude the paper and discuss
future work.

II. DIRECT METHODS IN DENSE LINEAR ALGEBRA

In this section we briefly introduce the direct methods
of factorization, and in particular the LU factorization and
its communication avoiding variant, CALU. The LU factor-
ization decomposes the input matrix A of size m × n into
the product of L · U , where L is a lower triangular matrix
and U is an upper triangular matrix. In a block algorithm,
the factorization is computed by iterating over blocks of
columns (panels). At each iteration, the LU factorization of
the current panel is computed, the U factor of the current
block row is determined, and then the trailing matrix is
updated. This last step is computationally the most expensive
part of the algorithm. It can be performed efficiently since
it exploits BLAS 3 operations, and it exposes parallelism.
The panel factorization, even if it does not dominate the
computation in terms of flops, is a bottleneck in terms of
parallelism and communication. This is because the update
of the trailing matrix can be performed only once the
panel is factored. Hence, it is important to perform the
panel factorization as fast as possible. For example, the
multithreaded LAPACK [3] performs the panel factorization
sequentially, and this leads to poor performance, even if the
update is performed in parallel.



However, due to partial pivoting, its parallelization is not
an easy task. The panel factorization requires communica-
tion (or synchronization in a shared memory environment)
for the computation of each column, and this leads to an al-
gorithm which communicates asymptotically more than what
the lower bounds on communication require. An efficient
sequential algorithm is the recursive LU factorization [23],
[13]. However, a parallelization of this approach will likely
have scalabiltity limits due to the recursive formulation of
the algorithm.

Communication avoiding algorithms introduced in the last
years provide a solution to this problem. In the case of
the LU factorization, its communication avoiding version
CALU [12] uses a different pivoting strategy, tournament
pivoting, which is shown to be as stable as partial pivoting
in practice. With this strategy, the panel factorization can be
efficiently parallelized, and the overall algorithm is shown to
provably minimize communication. The panel factorization,
refered to as TSLU, is computed in two steps. The first
preprocessing step identifies, with low communication cost,
pivots that can be used for the factorization of the entire
panel. These pivots are permuted into the diagonal positions,
and the second step computes the LU factorization with
no pivoting of the entire panel. The preprocessing step is
performed as a reduction operation, with LU factorization
with partial pivoting being the operator used at each step of
the reduction. We use a binary tree for the reduction, which
is known to minimize communication.

In CALU, the panel factorization remains on the critical
path. However, current research indicates that this is required
for obtaining a stable pivoting strategy and a stable factoriza-
tion. A different pivoting strategy known as block pairwise
pivoting removes the panel factorization from the critical
path, but this strategy requires more investigation in terms
of stability. This approach was explored in previous versions
of PLASMA [7] and FLAME [21].

The scheduling strategy that we present in the following
section relies on the task dependency graph of CALU. We
consider that the input matrix A is partitioned into blocks
of size b× b as

A =


A11 A21 . . . A1N

A21 A22 . . . A2N

...
...

...
AM1 AM2 . . . AMN

 ,

where M = m/b and N = n/b.
The task dependency graph is obtained by considering

that the computation of each block Aij is associated with a
task. We distinguish the following tasks:

• task P: participates in the preprocessing step of the
panel factorization TSLU.

• task L: computes part of the L factor of the current
panel, by using the pivots identified in task P.

• task U: computes a block of the U factor in the current
row.

• task S: updates a block of the trailing matrix.
With these notations, a matrix partitioned into 4×4 blocks

is showed in Figure 2, and its task dependency graph (DAG)
is displayed in Figure 3.

Figure 2. Example of execution of CALU static(20%) dynamic on a matrix
partitioned into 4× 4 blocks using P=4 threads.

Figure 3. Task dependency graph of CALU static/dynamic of a matrix
partitioned into 4×4 blocks. The red arrows indicate the critical path of the
static section of the algorithm, while the green arrows indicate the critical
path of the dynamic section of the algorithm.

III. SCHEDULING BASED ON A HYBRID STATIC/DYNAMIC
STRATEGY

In this section, we describe our hybrid static/dynamic
scheduling strategy that aims at exploiting data locality,
ensuring good load balance, reducing scheduling overhead,
and being able to adapt to dynamic changes in the system.
The hybrid scheduling is obtained by spliting the task
dependency graph into two parts, a first part which is
scheduled statically, and a second part which is scheduled
dynamically. Given a parameter Nstatic, tasks that operate
on blocks belonging to the first Nstatic panels are scheduled
statically, while tasks that operate on blocks belonging to the



last (N−Nstatic) panels are scheduled dynamically. Hence,
the tasks that lie on the critical path of the algorithm are
scheduled statically. During the factorization, each thread
executes in priority tasks from the static part, to ensure
progress in the critical path of the algorithm. When there are
no ready static tasks, then the thread picks up a task from
the dynamic part. Thus, the two parts of the task dependency
graph are not independent.

Algorithm 1 describes CALU with hybrid static/dynamic
scheduling. In the static part of the DAG, the matrix is
distributed to threads using a classic two-dimensional block-
cyclic distribution. The algorithm proceeds as follows. For
the first Nstatic iterations, once the panel K is factored stat-
ically, several tasks become ready. These tasks are grouped
into two distinct sets. The first set is formed by tasks that
update blocks A:,J , with K +1 ≤ J ≤ Nstatic. These tasks
are scheduled statically. They are inserted into the queue
of ready tasks of the thread which owns the blocks A:,J .
The second set is formed by tasks that operate on blocks
A:,J with Nstatic < J ≤ N . These tasks are scheduled
dynamically, they are inserted in a shared global queue of
ready tasks. For clarity of the presentation, the algorithm
does not present the insertion of ready tasks in the dynamic
queue.

For the last N − Nstatic iterations, the algorithm uses a
fully dynamic scheduler. While the same pattern of execution
is used as in the static part, the main difference is that now
the tasks are scheduled dynamically when they are ready.

The static part of Algorithm 1 uses the routine ”dy-
namic tasks()”, which is described in Algorithm 2. This
routine selects one task in the dynamic part of the matrix
when a thread requests it. The task is selected by traversing
the DAG associated with the dynamic part using a depth-
first search approach. With this approach, the columns are
updated from left to right. This ensures that the execution
follows in priority the critical path when the algorithm will
reach the dynamic section. The tasks selected by the routine
are removed from the global queue.

We note that a static/dynamic approach makes two critical
paths appear. The first path corresponds to the critical part
of the task dependency subgraph scheduled statically. In our
case, this corresponds to the critical path of the whole task
dependency graph of CALU. The second path corresponds to
the critical path of the task dependency subgraph scheduled
dynamically. The two paths are displayed in Figure 3 on our
task dependency graph example. The second path is executed
in parallel with the first one. We consider the second path
as important as the first one; otherwise, the algorithm can
stagnate when it arrives at the dynamic section.

We use the following notation and routines in Algo-
rithm 1:

• I Own(panel(K)): returns true if the thread executing
this instruction owns a block of panel K.

• I Own(block-row(K)): returns true if the thread execut-
ing the instruction owns a block of block-row K.

• task P: each thread executing this task performs a
reduction operation to identify b pivots that will be used
for the panel factorization of the current panel. The
reduction operator is Gaussian elimination with partial
pivoting, and for this the best available sequential
algorithm can be used. In our experiments we use
recursive LU [23].

• ”do task L (on LK:M,K) in parallel”: computes the
L factor of panel K in parallel. In the static section,
each thread computes the blocks of L of panel K
that it owns. In the dynamic section, available threads
compute blocks of L of panel K until the whole panel
is finished.

• ”do task S (on AK+1:M,J ) in parallel”: panel J is
updated in parallel. In the static section, each thread
updates the blocks of panel J that it owns (if any). In
the dynamic section, available threads update blocks of
panel J until the whole panel is finished.

We show an example of execution of our algorithm on
the same matrix formed by 4× 4 blocks from Figure 2 and
its task dependancy graph from Figure 3. In Figure 2, the
exponent indicates the thread which executes the task. At
steps 5 and 6, we observe that instead of becoming idle
while waiting for the completion of the factorization of the
third panel, two threads execute a task from the dynamic
section. This avoids unnecessary idle time.

In our current work, the percentage of the dynamic
part dratio is a tuning parameter, which determines the
number of panels that will be executed statically (Nstatic) or
dynamically (N −Nstatic). It is therefore possible to switch
from a 100% static version to a 100% dynamic version.
In practice, a particular scheduling technique can be highly
efficient on one architecture, but less efficient on another. In
the experiemental section, we show that the best scheduling
strategy depends not only on the architecture on which it
is executed, but also on the size of the matrix, the data
layout of the matrix, and the number of processors. The
flexibility to choose the percentage of the dynamic section in
our algorithm will allow it to adapt on different architectures.

As explained in section II, for factorizations that use some
form of pivoting as CALU or Gaussian elimination with
partial pivoting, the panel factorization lies on the critical
path. In a fully static approach, this can be a bottleneck and
may cause inactivity due to lack of tasks. The combined
static/dynamic scheduling helps to overcome this problem.
Threads that are idle waiting for the completion of the
panel factorization perform tasks from the dynamic part.
This is illustrated in Figure 4 where a static (20% dynamic)
scheduling is used to factor a matrix of size 5000 × 5000.
The red tasks represent the panel factorizations and the
green tasks represent the updating computation. We observe
that some of the threads finish earlier than others the panel



Algorithm 1 CALU with hybrid static/dynamic scheduling
1: Input: m× n matrix A, block size b, percentage of dynamic

section dratio
2: Nstatic = N ∗ (1 − dratio)
3: /* static section*/
4: for K = 1 to Nstatic do
5: if I Own(panel(K)) then
6: do task P Preprocessing of TSLU(AK:M,K ) in paral-

lel
7: endif
8: while taskP [K] not done
9: do dynamic tasks()

10: end while
11: Let ΠKK be the permutation performed for panel K such

that ΠKKA1:b,1:b = LKKUKK

12: do task L LK:M,K = AK:M,KU−1
KK in parallel

13: if I Own(block-row(K)) then
14: for J = K + 1 to Nstatic

15: if I Own(panel(J)) then
16: do right swap AK:M,J = ΠKKAK:M,J

17: do task U UK,J = L−1
KKAK,J

18: endif
19: end for
20: endif
21: for J = K + 1 to Nstatic

22: if I Own(panel(J)) then
23: while the block UK,J not computed
24: do dynamic tasks()
25: end while
26: do task S AK+1:M,J− = LK+1:M,KUK,J in

parallel
27: endif
28: end for
29: end for
30: /* dynamic section*/
31: for K = Nstatic to N do
32: do task P Preprocessing of TSLU(AK:M,K ) in parallel

and dynamically
33: Let ΠKK be the permutation performed for panel K such

that ΠKKA1:b,1:b = LKKUKK

34: do task L LK:M,K = AK:M,KU−1
KK in parallel and

dynamically
35: for J = K + 1 to N do in parallel and dynamically
36: do task U AK,J = L−1

KKAK,J

37: end for
38: for J = K + 1 to N do in parallel and dynamically
39: do task S AK+1:M,J -= LK+1:M,KUK,J in parallel
40: end for
41: end for
42: /* Apply permutations to the left */
43: L1:M,1:N = ΠNN . . .Π11L1:M,1:N in parallel /*

dlaswap */

Algorithm 2 dynamic task
1: Let K0 be the panel currently computed in the static

section.
2: for J = N STATIC + 1 to N do
3: for K = 1 to K0 − 1 do
4: if UK,J not computed
5: do task U UK,J = L−1

KKAK,J
6: endif
7: if A:,J not updated by panel K
8: do task S AI,J = AI,J −LI,K ∗UK,J for all

I with K + 1 ≤ I ≤M
9: endif

10: endfor
11: end for

factorization. In a fully static approach, they would become
idle. In the hybrid approach, they execute tasks from the
dynamic section, and there is almost no idle time in this
example.

Figure 4. First steps of the factorization of a matrix of size 5000× 5000
using a static (20% dynamic) scheduling

Several other optimizations are used in our algorithm that
are important for its performance, but we do not describe
them in detail in this paper. For example, the static section
employs look-ahead, a technique used in dense factorizations
to allow the panel factorizations to be performed as quickly
as possible. The granularity of the tasks used during the
update of the trailing matrix has a direct impact on the
performance of BLAS 3 operations (dgemm or cgemm
in our case). The best granularity is a trade-off between
parallelism (there should be enough tasks to schedule) and
BLAS 3 performance. In the static section, a thread can
update the blocks it owns one by one, or it can group them
together and update using one single call to BLAS 3. The
latter option leads to a better performance of BLAS 3, and
also to a reduction in the number of messages transfered
(if an appropriate data layout is used). However the number
of words transfered stays the same. In our experiments, the
threads update the trailing matrix by using blocks of size
kb, k ≥ 1, with k = 3.

IV. DATA LAYOUT

Classic libraries such as Lapack and Scalapack store
the matrices using a column major layout. However, novel
algorithms that minimize communication such as CALU
require the usage of novel data layouts, based on blocking or



recursive blocking. In this paper, we investigate the impact
on performance of two data layouts that are adapted to our
algorithm. We describe them in the following.

A. Block cyclic layout (BCL)

This layout aims at enabling data locality in the static
section of our algorithm. The static section considers that
the matrix is distributed using a 2D block cyclic layout
over a 2D grid of threads. Then, during the algorithm, each
thread modifies the blocks that it owns. The block cyclic
layout stores contigously in memory, for each thread, the
blocks that it owns. In other words, the matrix is partitioned
into as many submatrices as threads. Each submatrix is
stored in memory using a column major layout. Note that
a submatrix is formed by blocks issued from the 2D block
cyclic layout; that is, their column indices and row indices
are not contiguous (except inside the small blocks of size
b× b).

The block cyclic layout is displayed at the left of figure 5.
The matrix was partitioned into blocks of size 2× 2 which
were distributed using the 2D block cyclic layout over a grid
of 4 threads. The main avantage of this storage compared
to full column major layout as implemented in LAPACK is
that in the static section, the data of each thread is stored
contiguously in its local memory. Another avantage is the
possibility of improving BLAS 3 performance, described in
the previous section. Each thread can simply call dgemm (or
cgemm) on a block which can be larger than b× b.

B. Two level block layout (2l-BL)

This layout can be seen as a recursive block layout,
with the recursion being stopped at depth two (with the
exception that at the first level, the matrix is partitioned
using a block cyclic layout). At the second level of the
recursion, the submatrix belonging to each thread is further
partitioned into blocks of size b× b and each block is stored
contigously in memory. This partitioning is shown at the
right of Figure 5. The main avantages of this storage is that,
with an appropriate value of b, the block (sometimes refered
as tile) can fit in cache at some level of the hierarchy. Hence
any operation on the block can be performed with no extra
memory transfer.

However, with this layout, it is not straightforward to
increase the size of the blocks used during the update of the
trailing matrix using BLAS 3. This would require a copy of
the data, which could add extra time. We do not explore this
option in this paper.

V. EXPERIMENTAL RESULTS

In this section we evaluate the performance of our al-
gorithms on a four-socket, quad-core machine based on
Intel Xeon EMT64 processor and on an eight-socket, six-
core machine based on AMD Opteron processor running

Figure 5. Data layout. The figure at left displays the partitioning of the
matrix into four blocks using a 2D block cyclic layout (BCL) based on
blocks of size b × b. Each of the four blocks is stored contiguously in
memory. The figure at right displays the two level block layout (2l-BL)
layout, which further stores contigously in memory blocks of size b×b for
each of the four blocks.

on Linux. The Intel machine has a theoretical peak per-
formance of 85.3 Gflops/second in double precision. Each
core has a frequency of 2.67GHz, a private L1 cache of
size 32 Kbytes, an L2 cache of size 512 Kbytes, and an
L3 cache of size 8192 Kbytes shared with the others cores.
The AMD machine has a theoretical peak performance of
539.5 Gflops/second in double precision. Each core has a
frequency of 2.1 GHz, a private L1 cache of size 64 Kbytes,
a private L2 cache of size 512 Kbytes, and an L3 cache of
size 5118 Kbytes shared with the other cores of the same
socket.

We first present the performance of hybrid static/dynamic
scheduling compared to fully static and a fully dynamic
scheduling, while also discussing the impact of the data
layout on performance. We then compare the performance
with the corresponding routines from MKL 10.3.2 vendor
library and PLASMA 2.3.1.

A. Performance of static/dynamic scheduling

In the following, CALU static refers to the version
of CALU based on fully static scheduling, while CALU
dynamic refers to the version of CALU based on fully
dynamic scheduling. CALU static/dynamic refers to the
version of CALU based on combined static and dynamic
scheduling. When we want to identify the percentage of
the dynamic part, we use CALU static(number% dynamic),
where number% specifies the percentage of the computation
scheduled dynamically.

1) Comparison with static and dynamic scheduling using
block cyclic layout: We first discuss the performance of
CALU using a block cyclic layout. As explained earlier, one
of the advantages of this layout is that during the update of
the trailing matrix, we can call dgemm on larger blocks by
grouping together blocks that are stored in the same memory.
While we can group together blocks that share the same rows
or the same columns, we choose the latter option such that
the algorithm can make progress on its critical path.

Figure 6 shows the performance of CALU static, CALU
dynamic and CALU static/dynamic with varying the per-



centage of the dynamic scheduled work on the 16 core
Intel Xeon machine. We observe that hybrid static/dynamic
scheduling is more efficient than either of static or dynamic
scheduling. In particular, CALU static(10% dynamic) is
8.20% faster than CALU static, and is 1.4% faster than
CALU dynamic. However, the difference obtained by vary-
ing the percentage of the dynamic section is not signifi-
cant. On this machine, the static scheduling is the least
efficient, while the dynamic scheduling is closer to the best
performance obtained by the static/dynamic approach. This
performance is explained by the fact that the scheduler
overhead and the cache miss penalties of the dynamic
approach are less significant than the idle time introduced
by load imbalance in the static approach.

Figure 6. Performance of CALU with static/dynamic scheduling on Intel
16-core machine. The percentage of the dynamic part is varied from 10%
to 75%. The matrix of size M = N = 5000 is stored using block cyclic
layout.

Figure 7 shows the performance obtained on the 48
core AMD Opteron machine. On NUMA machines, the
memory latency plays an important role on performance.
Static scheduling is very appropriate in this case because of
its good use of data locality. However, the best performance
is obtained by combining static with a small percentage of
dynamic (10% or 20%), which is sufficient to reduce the
thread idle time that cannot be handled by using purely static
scheduling.

Figure 7. Performance of CALU with static/dynamic scheduling on the 48
core AMD opteron machine. The percentage of the dynamic part is varied
from 10% to 75%. The matrix is stored using the block cyclic layout.

Figure 8 shows the percentage of improvement of CALU

a. Experiments on 24 cores b. Experiments on 48 cores
Figure 8. Percentage of improvement of CALU static(10% dynamic) and
CALU static(20% dynamic) over CALU static and CALU dynamic on the
AMD 48-core machine. The matrix is stored using a block cyclic layout.

static(10% dynamic) and CALU static(20% dynamic) over
CALU static and CALU dynamic. The best improvement is
observed on 48 cores with M = N = 4000, where CALU
static(10% dynamic) is 30.3% faster than CALU static and
10.2% faster than CALU dynamic. For M = N = 10000
on 48 cores, CALU static(10% dynamic) is 6.9% faster than
CALU static and 8.4% faster than CALU dynamic. This
suggests that, especially for smaller matrices, using just a
small percentage of dynamic scheduling can provide signif-
icant performance benefits. When we do these experiments
using only 24 cores, CALU static(20% dynamic) is slightly
faster than CALU static(10% dynamic). This suggests that in
some cases, increasing the percentage of dynamic scheduling
could lead to better performance, and that this percentage
should be appropriately tuned.

2) Comparison with static and dynamic scheduling using
2-level block layout: We now discuss the performance of
CALU when using a 2-level block layout. Figure 9 shows
the performance obtained on the 16 core Intel Xeon machine.
The behavior is the same as observed with the block cyclic
layout. Increasing the percentage of dynamic in CALU
static/dynamic does not have a large impact on performance.
Again, the static scheduling is less efficient than all the
other approaches. The greatest improvement is obtained with
CALU static(10% dynamic) for M = N = 4000, where it
is 10.6% faster than static and 1.7% faster than dynamic.

Figure 9. Performance of CALU with static/dynamic scheduling on Intel
16 core machine. The percentage of the dynamic part is varied from 10%
to 75%. The matrix is stored using 2-level block layout.

Figure 10 shows the performance obtained on the 48 core



AMD Opteron machine. In this case, varying the percentage
of the dynamic part in the hybrid static/dynamic scheduling
leads to significant differences in performance. CALU dy-
namic is the least efficient approach. There are three main
reasons for this. First, the blocks are stored contiguously in
memory such that they fit in cache, but due to the dynamic
scheduling, the data might not be reused. Second, when
the matrix size increases along with the number of blocks,
the dequeue overhead of the dynamic scheduler becomes
significant. Third, due to the storage of the matrix, we do
not group blocks together to improve the performance of
BLAS operations and reduce scheduling overhead. Due to
these reasons, increasing the percentage of the dynamic part
in CALU static/dynamic does not lead to better performance.

Figure 10. Performance of CALU with static/dynamic scheduling on AMD
Opteron 48 core machine. The percentage of the dynamic part is varied from
10% to 75%. The matrix is stored using 2-level block layout

Figure 11 shows the percentage of improvement of CALU
static(10% dynamic) and CALU static(20% dynamic) over
CALU static and CALU dynamic. In the best case, CALU
static(10% dynamic) is 5.9% faster than static, and 64.9%
faster than dynamic on 48 cores. On 24 cores, CALU
static(10% dynamic) is up to 10% faster than CALU static,
and up to 16% faster than CALU dynamic.

3) Summary of results: Figures 12 and 13 show a sum-
mary of our results on both machines. (In the figures,
dynamic rectangular refers to a column major layout of the
input matrix.) We note that the performance of the algorithm
depends on the matrix size, the data layout used, and is
architecture dependent. However, several trends appear. On

a. Experiments on 24 cores b. Experiments on 48 cores
Figure 11. Percentage of improvement of CALU static(10% dynamic)
and CALU static(20% dynamic) over CALU static and CALU dynamic on
AMD 48 core machine. The matrix is stored using a 2-level block layout.

the Intel Xeon machine, the dynamic scheduling is fairly
efficient. For this machine, the time to transfer data from
main memory to the cache of each core does not hinder the
performace of a fully dynamic scheduling strategy. However,
on a NUMA machine like the AMD Opteron, fully dynamic
scheduling is highly inefficient due to the cost of cache
misses, and so exploiting locality through constraining data
migration is essential on such a machine.

When the matrix is small (n ≤ 5000), the two-level
block cyclic layout leads to good performance. But with
increasing matrix size, the block cyclic layout leads to better
performance than the two-level block layout. This is mainly
due to our approach of performing BLAS 3 operations on
larger blocks when the block cyclic layout is used. When the
matrix is large enough, there are enough tasks to schedule,
the synchronization is reduced, and the BLAS 3 operations
are more efficient.

Figure 12. Impact of data layout and scheduling on the Intel 16 core
machine.

In general, CALU static with a small percentage of
dynamic leads to the best performance gains, and can
achieve performance that is closer to peak performance on
both machines. On the Intel machine, CALU static(10%
dynamic) achieves up to 67.4 Gflops/s, which is 79% of the
peak performance. On the AMD machine, CALU static(10%
dynamic) achieves up to 264.1 Gflops/s that is 49% of the
peak performance. Both results were obtained for a matrix
of size m = n = 15000 stored using a block cyclic layout.

Figure 13. Impact of data layout and scheduling on AMD 48 core machine.



B. Profiling
We observe the timelines of our algorithm on a matrix of

size 2500 × 2500 with a block size of b = 100 using 16
cores of the AMD machine. Figure 14 shows the profiling
of the dynamic version of CALU using a column major
layout. We observe that 90% of threads become idle after
only 60% of the total factorization time, while for the other
variants of scheduling, this happens towards the very end,
after 80%-90% of the total factorization time.

Figure 14. CALU dynamic with column major layout on AMD machine.

As presented in the Introduction, Figure I shows the
profiling of the static version of CALU, we observe pockets
of idle times during the factorization.

Figure 15 shows the profiling of static(10% dynamic)
version of CALU. We observe that a small percentage of
dynamic helps to keep the cores busy, and reduces drastically
the idle time.

Figure 15. CALU static (10% dynamic) with 2-level block layout on
AMD using 16 cores

C. Comparison with MKL and PLASMA
We compare in Figures 16 and 17 the performance of

CALU static(10% dynamic) against the dgetrf routine from
MKL and dgetrf incpiv from PLASMA. The routine from
MKL implements Gaussian Elimination with partial pivot-
ing. Since the initial data placement may have a dramatic
impact on the performance of an application running on
NUMA machines [17], we distribute the input matrix to all
the cores before calling MKL. This distribution was done
using existing numactl (with argument –interleave), which
controls NUMA policy for shared memory. This improves
dramatically the performance of the routine MKL dgetrf on
the AMD 48 core machine.

Our algorithm outperforms MKL on both the Intel and
AMD machines. On the 16 core Intel Xeon machine, for
M = N = 10000, CALU static(10% dynamic) with both
BCL layout and 2l-BL layout is about 60% faster than MKL.
The best improvement is obtained with CALU static(10%
dynamic) (2l-BL) for M = N = 4000, where it is 82%
faster than MKL. On the 48 core AMD machine, for M =
N = 10000, CALU static(10% dynamic) with both data
layouts is about 100% (up to 110% faster than MKL.

Figure 16. Performance of CALU, MKL, and PLASMA on the 16 core
Intel machine.

We also observe improvements (up to 20% - 30% for
larger matrices) with respect to the dgetrf incpiv routine
from PLASMA. This routine implements the LU factor-
ization using incremental pivoting (which can be seen as
a block version of pairwise pivoting, whose stability is
still under investigation), in which the panel factorization is
removed from the critical path. This leads to a task depen-
dency graph that is different from CALU’s task dependency
graph. In the recently released version of PLASMA, there is
also an implementation of Gaussian elimination with partial
pivoting, but we do not have a thorough comparison against
this new routine for the moment.

Figure 17. Performance of CALU, MKL, and PLASMA on the 48 core
AMD Opteron machine.

VI. THEORETICAL ANALYSIS

To understand these results, we provide a basic
performance model and theoretical analysis. Because we
want to avoid load balancing as much as possible until
it is absolutely needed (due to the overheads it incurs,
such as coherence cache misses and dequeue overheads),
we aim to minimize the percent dynamic. Thus, we ask
the following question: given a particular algorithm and
a particular architecture, what is the minimum percentage
dynamic dratio(defined in the algorithm section) that should
be used in an algorithm to obtain the best performance?
To understand this, we formalize the problem as follows.
Let fs be the fraction of work done statically. Note the
dratio = 1 − fs. Let p be the number of cores. Let T1 be
the serial time for the computation. Let Tp = T1

p be the
time for computation to be done in parallel across p cores.



We formalize our question by asking the following: what
is the largest static fraction fs that will make it feasible
to attain ideal execution time tideal, given a compute core
i has excess work δi

1? Let δmax be the maximum excess
work across all cores. Let δavg be the average excess work
across all cores. Theorem 1 provides the bound for this
static fraction.

Theorem 1: fs ≤ 1− δmax−δavg
Tp

Proof: In the presence of some excess work δi (e.g. system
noise) that is forced on core i, let tideal be the ideal time
for computation for a given number of cores p when excess
work can be load balanced, and let tactual be the worst-case
time taken when the excess work cannot be load balanced.
This means that:

tideal =
T1+
∑n

i=1
δi

p and tactual = fs × T1

p + max δi

To find the breakpoint at which static scheduling will
induce load imbalance, we set tactual ≤ tideal. Given
this, the time for the case when the compuation is load
imbalanced, tactual, will be no worse than the time for the
case when compuation is completely load balanced, tideal.
Expanding this inequality, we have:

fs × T1

p +maxpi=1 δi ≤
T1+
∑n

i=1
δi

p

Solving for the static fraction fs, we have:

fs ≤
(
T1+
∑n

i=1
δi

p −maxpi=1 δi

)
× p

T1

= fs ≤
T1+
∑n

i=1
δi

T1
− maxp

i=1
δi×p

T1

= fs ≤ 1− (maxp
i=1

δi)×p−
∑n

i=1
δi

T1

= fs ≤ 1− (maxp
i=1

δi)−

∑n

i=1
δi

p
T1
p

Based on our assumptions of Tp, and our definition of
δmax, δavg:

fs ≤ 1− δmax−δavg
Tp

Note that this analysis assumes that the parallel time
includes no overheads. Due to the communication on critical
path of LU (even for the communication-avoiding case), a
full analysis of our LU factorization cannot ignore the term
of communication cost, TcriticalPath. If p ≺ T1

TcriticalPath
,

the TcriticalPath does not dominate the total execution time
of parallel CALU. Our analysis presented is easily extensible

1More realistically, this excess work occurs with some probability φ,
and thus we weight each load imbalance δi by φi. However, we make the
simplifying assumption that we know that this transient load imbalance will
definitely occur. In other words, our analysis assumes φ = 1.0.

though for the case when p ≥ T1

TcriticalPath
; this term of

communication cost can be added to the denominator of
the right-hand side of Theorem 1. Thus, the denominator
will be T1

p + TcriticalPath. If we also assume there is a
cost of migration of tasks Tmigration (due to coherence
cache misses that scheduling incurs), then the denominator
becomes T1

p + TcriticalPath + Tmigration. The model can
be made even more accurate by incorporating other costs
of load balancing (e.g. dequeue overheads). In general,
these additional relevant costs can be captured by adding
a single term, Toverhead to the term in the denominator
T1

p , effectively providing a more realistic value for Tp that
incorporates both communication cost and load balancing
cost.

This simple theoretical analysis allows us to more clearly
understand the impact of application parameters in our
experimental results. Given the time complexity of the paral-
lelized version of the computation Tp of a dense factorization
(again assuming there is no cost of data movement), the
above formula gives us the ability to plug in the expression
for Tp to find the upper-bound on the static fraction. Increas-
ing matrix size can cause an increase in T1 in Theorem
1. From Theorem 1, we see that increasing matrix size
allows us to increase the maximum static fraction that we
can use. In general, as the total cost of the algorithm T1
increases and we keep the two architectural parameters p
and δmax− δavg constant, we can use a larger percent static
to avoid scheduling overheads.

The static fraction can also be affected by architectural
parameters. On the Intel machine, for example, communi-
cation compared to computation is negligible, due to the
low-latency of coherence cache misses. This decreases the
percentage of the dynamic fraction, and increases the static
fraction fs. Thus, as the penalty for coherence cache misses
becomes higher, the percentage static will need to increase
to avoid such coherence cache misses.

VII. DISCUSSION

A more detailed theoretical analysis for regular mesh
codes has been established through the follow-up studies
of the work by V. Kale et al [16]. The adoption of this
model will allow us to calculate expected completion time
of a dense matrix factorization in the presence of transient
load imbalances(e.g. noise). Given this, we can couple
our performance model with auto-tuning techniques and
heuristics[10] for optimizing the scheduling strategy for a
particular architecture, allowing us to significantly prune the
search space of parameter configurations for our scheduling
approach.

The problem of noise amplification has been projected
(most recently through simulation) to seriously impede per-
formance at very large scale [14]. In earlier work [16], it was
shown that by improving performance consistency of the 3D
regular mesh code, one can mitigate the impact of the noise



amplification problem. Some early results of the reduced
standard deviations of wall clock times across multiple runs
of our code under hybrid static/dynamic scheduling is in
accord with the performance consistency results in [16].

With our theoretical analysis, we can provide projections
for the upper-bound on the static fraction to be used within
many-core nodes of an exascale machine. Keeping the work
per core constant, the term (δmax − δavg) in Theorem 1 can
increase in the presence of noise amplification. Given this,
we project that the lower-bounds for percentage dynamic for
numerical linear algebra routines will have to increase for
use on future high-performance clusters.

VIII. RELATED WORK

The idea of combining static and dynamic scheduling
has been studied in different contexts in the literature,
but to the best of our knowledge none of the approaches
focuses on dense numerical linear algebra. V. Kale et al.
suggested a hybrid static/dynamic approach in [16] that
can be incorporated into current MPI implementations of
structured grid codes to improve the load balancing of
the initial static decompositions. This work embraces the
fundamental principles advocated in[16], and applies it in the
context of dense matrix factorizations. Xue et al. introduced
an approach in [24] that improves the data locality when
executing loop iterations in codes. This is done in the
context of chip multi-processors. The authors show that
the different loops of many codes may be decomposed
into two parts: in one part, iterations are distributed across
processors at compilation time; in the other part, iterations
are distributed at runtime to available processors to improve
the load balancing.

Our approach has some similarity with work-stealing, but
proceeds more efficiently. In work stealing, the work is
initially (statically) distributed almost equally to each thread.
During the algorithm, each inactive thread (the thief) can
pick a task from the queue of tasks of another thread (the
victim). An important question is: from which other thread
will this thread steal work? The approach of randomized
work-stealing from the queue of another thread is imple-
mented in Cilk [5]. Cilk is founded on theoretical analysis
and proofs on its efficiency. It has been shown to offer
acceptable performance, particularly for multi-programmed
workloads on multi-cores.

In the LU factorization, the update of the trailing sub-
matrix is performed from left to right, to maintain the exe-
cution of the algorithm on the critical path and to guarantee
that the panel factorization will be able to start as soon as
possible even if the updates of the columns of the previous
steps are not completely done. In other words, columns close
to the panel have high priority. Although random stealing can
help balancing work among processors during execution, it
might not follow the critical path of the factorization. In
typical implementations of work stealing, when the queue

of a particular thread is empty, that thread attempts to pick
a task either at the top, or at the bottom, of a victim queue.
Whether chosen from the top or the bottom of the queue,
this approach is not optimal for many computations, and
in particular for dense factorizations. Picking a task at the
beginning of the queue (FIFO) may lead to non-negligible
synchronization overheads with the victim, or may cause
false sharing due to two threads accessing data in two
regions in memory in close proximity. While picking a task
at the end of the queue (LIFO) may lead to acceptable load
balancing in general, for computations in LU/CALU, the last
columns have the least priority within the computation. This
inhibits the progression of the critical path. Other work such
as [22] suggests that the steal is done from the queue of the
thread having the highest number of tasks. This cannot be
applied directly to dense factorizations, where the number
of tasks of a thread is not proportional to its workload.

IX. CONCLUSION

We have designed and implemented a strategy that com-
bines static and dynamic scheduling to improve data locality,
load balancing, and exploit the power of current and emerg-
ing multi-core architectures. Our hybrid static/dynamic
scheduling strategy applied to CALU leads to performance
improvements over the fully static CALU and fully dynamic
CALU, and also provides performance improvements over
the corresponding routines in MKL and PLASMA. Our
performance results show that the combination of static
and dynamic scheduling is effective for dense commu-
nication avoiding LU factorization. In our experiements,
we determine the best percentage of the dynamic part by
running variations of the algorithm with different dynamic
percentages. We show that, usually, 10% dynamic leads to
good performance because it provides the best compromise
between data locality, load balancing, and minimal dequeue
overhead. While in this paper we focus on CALU, the
same techniques can be applied to other dense factorizations
as Cholesky, QR, rank revealing QR, LDLT , and their
communication avoiding versions. This remains future work.

On future high-performance clusters planned within the
timespan of 5 years, often termed as exascale, each node
will be comprised of many levels of parallelism, with
possibly on the order of 100s of cores per node. Choosing
between purely static and purely dynamic scheduling for
numerical linear algebra routines will escape the problem
of trying to gradually evolve, rather than radically change,
our codes for use on emerging and future high-performance
clusters. Our hybrid approach allows for self-adaptivity of
the numerical linear algebra routines to the transient dynamic
variations of the architecture, without loss of data locality
that is so fundamentally important to a large class of HPC
applications.

In future work, we opt to design a stronger model to
determine the percentage of the dynamic section. We provide



an approach to theoretically determine the percentage of the
dynamic section, but we believe we can obtain even tighter
bounds, given knowledge of scheduling costs. Furthermore,
this theoretical analysis can be applied to other numerical
linear algebra routines, as well as to full-fledged appli-
cations, given the expression for parallel execution time.
We plan to enhance our scheduling technique so that tasks
are chosen from the queue such that the data that these
tasks operate on is highly likely to be in a core’s cache
already, allowing for fewer coherence cache misses due to
task migration. Such intelligent selection of tasks can be
implemented by adding locality tags(e.g. the thread on which
the task ran on last) within the task data structure, and
incorporating heuristics that make more accurate predictions
on the task that is least likely to incur a migration overhead,
if chosen.

ACKNOWLEDGMENT

We would like to thank James Demmel for his early
input and support for the importance of data locality to
the scheduling scheme. We would also like to thank Jack
Dongarra for the access to the machines at University of
Tennessee. This work was done in the context of the INRIA-
Illinois joint-laboratory of PetaScale Computing.

REFERENCES

[1] ATLAS homepage. http://http://acts.nersc.gov/atlas/.

[2] Basic linear algebra subprogram. http://www.netlib.org/blas/.

[3] LAPACK. http://www.netlib.org/lapack/.

[4] SCALAPACK. http://www.netlib.org/scalapack/.

[5] R.D. Blumofe, C.F. Joerg, B.C. Kuszmaul, C.E. Leiserson,
K.H. Randall, and Y. Zhou. Cilk: An efficient multithreaded
runtime system. In ACM SigPlan Notices, volume 30, pages
207–216. ACM, 1995.

[6] Robert D. Blumofe and Charles E. Leiserson. Scheduling
multithreaded computations by work stealing. J. ACM,
46:720–748, September 1999.

[7] A Buttari, J Langou, J. Kurzak, and J. Dongarra. A class of
parallel tiled linear algebra algorithms for multicore architec-
tures. Parallel Computing, 35(1):38–53, 2009.

[8] S. Donfack, L. Grigori, and A.K. Gupta. Adapting
communication-avoiding LU and QR factorizations to mul-
ticore architectures. In Parallel & Distributed Processing
(IPDPS), 2010 IEEE International Symposium on, pages 1–
10. IEEE, 2010.

[9] M. Frigo, C.E. Leiserson, H. Prokop, and S. Ramachandran.
Cache-oblivious algorithms. In focs, page 285. Published by
the IEEE Computer Society, 1999.

[10] Archana Ganapathi, Kaushik Datta, Armando Fox, and David
Patterson. A case for machine learning to optimize multicore
performance. In Proceedings of the First USENIX conference
on Hot topics in parallelism, HotPar’09, pages 1–1, Berkeley,
CA, USA, 2009. USENIX Association.

[11] K. Goto. Gotoblas homepage.
http://www.tacc.utexas.edu/tacc-projects/gotoblas2.

[12] L. Grigori, J.W. Demmel, and H. Xiang. Communication
avoiding Gaussian elimination. In Proceedings of the 2008
ACM/IEEE conference on Supercomputing, page 29. IEEE
Press, 2008.

[13] F. Gustavson. Recursion leads to automatic variable blocking
for dense linear-algebra algorithms. IBM Journal of Research
and Development, 41(6):737–755, 1997.

[14] T. Hoefler, T. Schneider, and A. Lumsdaine. Characteriz-
ing the influence of system noise on large-scale applica-
tions by simulation. In International Conference for High
Performance Computing, Networking, Storage and Analysis
(SC’10), Nov. 2010.

[15] Intel. Math kernel library (MKL).
http://www.intel.com/software/products/mkl/.

[16] Vivek Kale and William Gropp. Load balancing for regular
meshes on SMPs with MPI. In EuroMPI’10, pages 229–238.
Springer, 2010.

[17] A. Kleen. A numa API for Linux. Novel Inc, 2005.

[18] N. Park, B. Hong, and V.K. Prasanna. Tiling, block data lay-
out, and memory hierarchy performance. IEEE Transactions
on Parallel and Distributed Systems, pages 640–654, 2003.

[19] PLASMA. PLASMA. http://icl.cs.utk.edu/plasma/.

[20] C. D. Polychronopoulos and D. J. Kuck. Guided self-
scheduling: A practical scheduling scheme for parallel super-
computers. IEEE Trans. Comput., 36:1425–1439, December
1987.

[21] G. Quintana-Orti, E. S. Quintana-Orti, E. Chan, F. G.
Van Zee, and R.̃ van de Geijn. Programming algorithms-
by-blocks for matrix computations on multithreaded archi-
tectures. Technical Report TR-08-04, University of Texas at
Austin, 2008. FLAME Working Note 29.

[22] L. Rudolph, M. Slivkin-Allalouf, and E. Upfal. A simple load
balancing scheme for task allocation in parallel machines. In
Proceedings of the third annual ACM symposium on Parallel
algorithms and architectures, pages 237–245. Citeseer, 1991.

[23] S. Toledo. Locality of reference in LU decomposition with
partial pivoting. SIAM Journal on Matrix Analysis and
Applications, 18(4):1065–1081, 1997.

[24] L. Xue, M. Kandemir, G. Chen, F. Li, O. Ozturk, R. Rama-
narayanan, and B. Vaidyanathan. Locality-aware distributed
loop scheduling for chip multiprocessors. In 20th Interna-
tional Conference on VLSI Design, 2007. Held jointly with
6th International Conference on Embedded Systems, pages
251–258. IEEE Computer Society, 2007.


