25 research outputs found

    Characterization of Neutral Trapped Antihydrogen in the ALPHA Experiment

    Get PDF
    One of the pivotal principles of physics is the C (charge) P (parity) T (time reversal) (CPT) theorem. One method for testing the CPT symmetry is to investigate the properties of antihydrogen. The Antihydrogen Laser PHysics Apparatus (ALPHA) experiment aims at creating, confining and applying spectroscopic techniques to probe the atomic structure of antihydrogen anti-atom with the same accuracy as that of the hydrogen atom. There are several non-trivial experimental challenges that must be overcome in antihydrogen studies. One major challenge is the detection of antihydrogen anti-atoms. This is done by identifying the antihydrogen annihilation. This thesis presents both a new method for identifying signal pulses from the background electric pulses of the silicon strips (Alternative Pedestal Analysis (APA), see Appendix A) as well as a completely new and enhanced vertex reconstruction method (Alternative Reconstruction Method (ARM), see Appendix C). The ARM is based on implementing a set of filtration mechanisms to identify the track candidates. Moreover, the reconstruction of the tracks is accomplished by adapting a numerical approach. Combining the APA and the ARM schemes has led to an increase in the vertex reconstruction efficiency by 1.5%. The alternative approaches for pedestal analysis and vertex reconstruction utilize a considerably more versatile algorithm. This feature allows greater control over variables and selection parameters employed for the reconstruction of vertices. The conclusive verifications of the performances of the new approaches are based on their visualization capabilities, the key aspect in devising the APA and the ARM, see Appendices B and D. The scripts in Appendices A-D haven been written solely by the author and are completely independent of pedestal and even vertex reconstruction algorithms currently implemented in the ALPHA experiment. The full commented versions of the scripts in Appendices A-D are available via the accompanying website

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Advanced Concepts in Particle and Field Theory

    Get PDF
    Uniting the usually distinct areas of particle physics and quantum field theory, gravity and general relativity, this expansive and comprehensive textbook of fundamental and theoretical physics describes the quest to consolidate the elementary particles that are the basic building blocks of nature. Designed for advanced undergraduates and graduate students and abounding in worked examples and detailed derivations, as well as historical anecdotes and philosophical and methodological perspectives, this textbook provides students with a unified understanding of all matter at the fundamental level. Topics range from gauge principles, particle decay and scattering cross-sections, the Higgs mechanism and mass generation, to spacetime geometries and supersymmetry. By combining historically separate areas of study and presenting them in a logically consistent manner, students will appreciate the underlying similarities and conceptual connections across these fields. This title, first published in 2015, has been reissued as an Open Access publication

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    Advanced Concepts in Particle and Field Theory

    Get PDF
    Uniting the usually distinct areas of particle physics and quantum field theory, gravity and general relativity, this expansive and comprehensive textbook of fundamental and theoretical physics describes the quest to consolidate the elementary particles that are the basic building blocks of nature. Designed for advanced undergraduates and graduate students and abounding in worked examples and detailed derivations, as well as historical anecdotes and philosophical and methodological perspectives, this textbook provides students with a unified understanding of all matter at the fundamental level. Topics range from gauge principles, particle decay and scattering cross-sections, the Higgs mechanism and mass generation, to spacetime geometries and supersymmetry. By combining historically separate areas of study and presenting them in a logically consistent manner, students will appreciate the underlying similarities and conceptual connections across these fields. This title, first published in 2015, has been reissued as an Open Access publication

    Preface

    Get PDF

    Factors Influencing Customer Satisfaction towards E-shopping in Malaysia

    Get PDF
    Online shopping or e-shopping has changed the world of business and quite a few people have decided to work with these features. What their primary concerns precisely and the responses from the globalisation are the competency of incorporation while doing their businesses. E-shopping has also increased substantially in Malaysia in recent years. The rapid increase in the e-commerce industry in Malaysia has created the demand to emphasize on how to increase customer satisfaction while operating in the e-retailing environment. It is very important that customers are satisfied with the website, or else, they would not return. Therefore, a crucial fact to look into is that companies must ensure that their customers are satisfied with their purchases that are really essential from the ecommerce’s point of view. With is in mind, this study aimed at investigating customer satisfaction towards e-shopping in Malaysia. A total of 400 questionnaires were distributed among students randomly selected from various public and private universities located within Klang valley area. Total 369 questionnaires were returned, out of which 341 questionnaires were found usable for further analysis. Finally, SEM was employed to test the hypotheses. This study found that customer satisfaction towards e-shopping in Malaysia is to a great extent influenced by ease of use, trust, design of the website, online security and e-service quality. Finally, recommendations and future study direction is provided. Keywords: E-shopping, Customer satisfaction, Trust, Online security, E-service quality, Malaysia
    corecore