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To the clouds that are fuzzy,
to the brooks that babble,

and to curiosity.
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Preface

I think we may yet be able to [understand atoms].
But in the process we may have to learn what

the word “understanding” really means.
— Niels Bohr, cited by W. Heisenberg [267, p.41]

P
HYSICS MAY BE DEFINED AS THE DISCIPLINE OF UNDERSTANDING NATURE. This definition

is about as good as any other I can think of, although – or perhaps exactly because –
much of the material in the following chapters is required even just to more precisely
describe what it is we are to understand under discipline, understanding and Nature.

That is, what is the nature of disciplining our understanding of something of which we ourselves
are a part: Nature.

True to the meaning of the Greek original (ϕύσις), physics is indeed concerned with all as-
pects of Nature. Molecular phenomena are the objects of study in both chemistry and physics,
which disciplines are separate but tightly related through quantum physics [477]. The science
with which we study phenomena of continental proportions is called geology (but areology on
Mars), whereas (planetary, stellar, galactic, cosmic) events that are at least a few orders of magni-
tude larger are labeled as astrophysics. Living things and events are the object of study in biology,
but life itself and its characteristics quite probably derive from quantum physics [477]. Extend-
ing this point of view, phenomena of thought and feeling (commonly labeled as “psychology”)
may well be shown to be caused and determined by definite physical processes in the brain, so
that social phenomena may be regarded as the “psychology of large ensembles of people,” just as
thermodynamics is the “mechanics of large ensembles of particles.”1

Of course, a mere reduction of all phenomena to a common denominator achieves very little
other than irking those who would rather keep up the appearance of separateness or those who in-
sist on “irreducible wholeness.” Hoping that this has nudged the Reader to think along (or against)
such sweepingly unifying avenues of human understanding of Nature, let us turn to the real focus
of this tome: to the fundamental physics of elementary particles.

Subject This book represents an attempt of a compact but comprehensive review of some of the
key questions in contemporary fundamental physics, traditionally called both elementary particle
physics and high energy physics. The correlation between these concepts is not at all accidental: The
voyage towards an idealized but also pragmatically useful fundamental understanding of Nature
really does lead through the world of ever smaller objects, the study of which requires ever larger
energies in a complementary way.

The concept of “elementary particles” is in this sense a Democritean ideal, but it is also an
evolving idea: On one hand, we follow this twenty-five-century hypothesis that the World around
us may be understood as a complex system, ultimately consisting of certain basic and indivisible

1 This paragraph was evidently meant provocatively; other fields of study do not reduce to physics, but emerge from it,
and are “caused and determined” by it. Similarly, the babbling of a brook and the fluffiness of a cloud “derives” from
hydrodynamics, but additional ideas from acoustics, nonlinear dynamics, turbulence, chaos, etc., are indispensable in a
fuller (and still incomplete) understanding of these phenomena.

xi
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objects – elementary particles. On the other hand, the past two centuries of the history of science
warn us that concrete things (and ideas) in Nature, which we at times identify as elementary, not
infrequently later turn out to be themselves composed of more elementary things (and ideas). In
this sense, the list of elementary particles was very short in the first third of the twentieth century.
Everything in Nature was understood to consist of either the elementary particles (matter) the
electron e−, the proton p+, the neutron n0 and (hypothetically) the neutrino νe – or a form of their
interaction, which could also be represented in terms of exchanging elementary particles such as
the photon γ. Soon enough, however, hundreds of new particles were discovered. Already their
unrelentingly growing number vanquished all hope that all these particles could really be elemen-
tary. Indeed, even the proton and the neutron were soon shown to be consistently describable as
composite systems; they both consist of more elementary quarks.

To date, no experiment indicates revoking “elementariness” from quarks (u, d, c, s, t, b) and
leptons (e−, νe, μ−, νμ, τ−, ντ); see Table 2.3 on p. 67. Similarly, the electroweak, strong nuclear
and gravitational fundamental interactions exhaustively describe all the known interactions of
these particles. The model that includes these particles and their interactions is then rightfully
called the Standard Model. As understood today, this model also requires the existence of the
so-called Higgs particle, which has only recently been experimentally confirmed [25, 109]; see
also [493, 494, 475]. Besides, the intricate structure and symmetries of the Standard Model also
indicate a possible more fundamental description of physics.

Inspired tourist guides (see, for example, Refs. [329, 469, 162, 183, 184, 551, 404, 405, 585,
166, 267, 161, 34, 553, 164, 119, 163, 231, 263, 456, 232, 449, 233, 389, 505, 93, 234, 94, 27]
but also a critique of superstring theory [489, 490, 577] and a recent response [145]), very recent
lecture notes [525, 384, 539, 448, 427], textbooks (such as [407, 35, 64, 63, 306, 48, 106, 45,
218, 257, 238, 580, 241, 239, 307, 249, 240, 221, 554, 555, 159, 504, 422, 423, 538, 484, 250,
116, 588, 355, 243, 589, 7, 590] and worked out problem collections [107, 341, 446], among
others) certainly provide excellent sources. In addition, internet sources such as Wikipedia are
ever better organized and increasingly more complete – web-pages may be and are constantly
corrected, amended and extended. No book can possibly compete with that. Instead, the aim of
this book is fourfold:

1. a review of our subject matter and its central ideas, sharpened and re-focused by the benefit
of hindsight,

2. a presentation of the structure of the theoretical description of fundamental physics and its
origins within experimental results,

3. an indication of some recent additions in this structure, to some less traveled avenues, some
shortcuts, some detours, and even some traps,

4. a general overview for novices as well as the more relaxed but valiant Readers.

This book makes it possible to present the Reader with the facts of the (fundamental) physics
of elementary particles and their organization. This is accompanied by my view of the unifying
philosophical woof that permeates not only this subject, but also the contemporary understanding
of fundamental physics and science in general: Nature is one and can only so be understood. Since
our goal is the description of the fundamental basics of understanding Nature, a discussion of this
philosophical woof is an unavoidable part of the journey.

In turn, the intent of this review is to present the main factors in the challenging process
of fully grokking2 Nature. This intent stems from the Democritean idea that substance is finitely
divisible, and that it has ultimately indivisible parts – elementary particles. This then provides

2 To fully grok the meaning of the verb to grok, the Reader is kindly referred to Ref. [266], the title of which aptly
summarizes the feelings of most sincere Students of the (fundamental) physics of elementary particles.
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the warp (to the philosophical woof from the previous paragraph) of the fabric of contemporary
theoretical fundamental physics. By the end of the twentieth century it became evident that these
elementary objects cannot be the “material points” used in classical physics, and we are led to
fundamental strings. Our discussion therefore must also include the questions: what are strings,
where does “stringiness” manifest, why strings and not points or something else, and how are
strings woven into our incessantly and asymptotically improved understanding of Nature?

Aperitif The gauge principle and its consequences constitute our contemporary description of
all fundamental interactions, and form the third strand – weft – in the triply woven fabric
of our current understanding of Nature [☞ lexicon entry on p. 508, in Appendix B.1]. Gauge
theories of the commutative and non-commutative (Yang–Mills) type, the corresponding con-
servation laws and interactions are the subject matter of Chapters 5 and 6, but are also the
quoin of the Standard Model from the very description of the subject matter. Formal similar-
ities between the gauge theories (models) of Yang–Mills type and Einstein’s general theory of
relativity are exhibited in Chapter 9. This clearly implies that this (gauge) principle unifies
all symmetries, all conserved quantities and conservation laws of the Noether–Gauss–Ampère
type, and all known fundamental interactions. It also gives them all a geometrical description
[☞ Chapter 11].

Similarly, quantumness is also an indubitable feature of Nature. Students are well acquainted
with this, although mostly within the non-relativistic formalism. However, the study of quantum
and relativistic gauge theories discovered the phenomenon of anomalies as well as the unques-
tionable necessity of canceling these indicators of inconsistency [☞ especially Section 7.2.3]. By
including finally also the only known universal mechanism for stabilizing the vacuum – supersym-
metry – we arrive at the complete picture displayed in Table P.1, the business card of understanding
Nature as presented herein.

Table P.1 A telegraphic summary of the characteristics of our description of Nature; see Section 11.2

Characteristic Universal property Unifies/describes

Quantumness Stabilizes atoms Waves and particles

G
au

g
e

p
ri

n
ci

p
le Special relativity

Links symmetries,
conservation laws,
forces/interactions

and geometry

Spacetime, energy–momentum

General relativity Acceleration–gravitation, mass–inertia

Relativity of phases
(of wave-functions)

(Electro-magneto)+weak,
and strong interactions

Supersymmetrya Stabilizes vacuum Bosons and fermions
aSupersymmetry is the only characteristic listed here that is not yet experimentally verified, but is the
only (known!) universal characteristic the consequences of which include vacuum stabilization.

Organization This extended textbook is written for courses such as Elementary Particle Physics and
High Energy Physics, and for Students near their undergraduate to graduate education transition. It
aims to remind us that Nature is one; that the various courses the Student has so far mastered are
only perforce separated parts of a whole, the reintegration of which into a coherent single vision
remains with the Student.

The structure of this book largely follows that of the two-week block-course Elementary Parti-
cle Physics, as I have been teaching it annually since 2009 at the Department of Physics, University
of Novi Sad. This was extended into a regular two-semester course taught in 2011/12 at the
Department of Physics and Astronomy, Howard University. That plan started with D. Griffiths’s
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textbook [243], but was iteratively and repeatedly modified, in response to student questions but
also rooted in my own learning. A detailed map of all sources and their influences on this book
is thus impossible; the unavoidably limited list of references and citations will, I hope, provide a
reasonable collection of starters.

The book starts with an introductory chapter, numbered 1, where I summarize my philosoph-
ical and formal motivations for the study of the ( fundamental) physics of elementary particles.
Chapter 2 gives a historical review of the developments in this field of physics and so presents
a rationale for the final structure, since the latter half of the twentieth century called the
Standard Model. The technically (read: mathematically and predictively) detailed description
of this subject begins with Chapter 3 and gradually introduces the elements of the Standard
Model, through Chapters 4–7. Chapters 8, 9 and 10 give a basic introduction to the contem-
porary developments in this field and the research beyond the Standard Model. This leads
towards a “unified theory of everything” for which the current favorite is described in Chap-
ter 11. That chapter also summarizes the physical and philosophical sense of this subject, and
the birth of a new subject in studying Nature: the study of complex systems and their emer-
gent characteristics, complementing the Democritean idea. The appendices summarize various
technical results and data that are useful in reading the main part of the book – and working
through it.

The presentation and organization of the subject matter has a few formatting elements in-
tended to help with the reading: Other than the main body, the book has a lexicon of less familiar
terms and concepts in Appendix B, an index of main terms at the end of the book, as well as
indicated digressions, conclusions and worked examples scattered throughout. The digressions
(boxed) contain detailed computations and derivations that are not mandatory for following the
main narrative. The impatient Reader is welcome to skip them on first reading. Similarly, the
worked examples and comments (also boxed) serve to additionally illustrate and discuss the main
narrative, and provide the derivations of results that are used later, but the mastering of which
is not necessary for following through the main narrative. The in-line questions [ ✎so labeled]
prompt the Reader to pause, think through the presented argument and verify it. Frequent refer-
ences and explicit citation of earlier results, conclusions, examples, etc., will hopefully help the
Reader to find their way in the unavoidably multiply and nonlinearly connected presentation, and
to find the information sought.

Research in contemporary fundamental physics is technically extraordinarily demanding:
On one hand, the historical development and the very nature of fundamental physics indicate
a synthesis of ideas and methods from many diverse areas in physics. On the other, one uses
methods and results from many areas of mathematics such as the theory of groups and alge-
braic structures, differential geometry, topology, homological algebra, etc. A complete review of
these areas is impossible within the confines of any one book, and the Reader is directed to
the indicated references as well as earlier courses. The more ambitious Readers are directed to
the textbooks [18, 457, 508, 62, 536, 287, 210, 565, 258, 581, 201, 256, 80, 260, 333, 447],
with the ominous warning: it is impossible to first learn “all the necessary mathematics,” and
then turn to understanding physics. The mathematical language is best learned en route, as
needed. In this, we are frequently limited to citing the needed results, presenting concrete
examples and perhaps the motivation or basic idea behind the so-borrowed methods and tech-
niques. In spite of this and for the sake of a minimal notion of completeness, this book
contains more than enough material for a standard course, and choosing the route through
the book is left to the instructor. In this, the diagram of dependencies in Figure P.1 should be
useful.

Finally, most sections end with a list of problems. The serious Student is expected to work
through these problems and solve them as completely as possible, first using only the material
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Figure P.1 The arrows indicate the dependencies between chapters and appendices, implying the
recommended sequence of reading. The appearance of the boxes and chapter numbers indicates
the relative significance of the chapters. The package-framed boxes indicate the minimal con-
tent, (2→)3→4→5→6→7 (skipping the technically demanding sections), for a one-semester course
“elementary particle physics.”

presented herein, then comparing with the cited literature – and certainly before looking up a
solution on the internet.

— ❦ —

I am grateful, first of all, to the Department of Physics at the University of Novi Sad, Serbia, where I
have been lecturing annually on elementary particle physics since May 2009, and especially to my
friend and colleague, Professor Miroslav Vesković (Department of Physics, University of Novi Sad),
for making this possible. In turn, I am grateful to the Department of Physics and Astronomy at
Howard University, Washington DC, for presenting the opportunity to translate this course a quar-
ter of the Earth’s circumference westward, and present this interactively modified version to the
Washington DC metropolitan area students. This book would of course not exist were it not for my
three decades of research in this field, and I am grateful to all my collaborators and colleagues for
their uncountable corrections and comments, which have in so many ways shaped my understand-
ing. Even just listing their names is prohibitive and I cannot but resort to a simple collective “thank
you, all.” I should like to thank all the Students and Colleagues who have attended my lectures
and contributed to the evolution of the course – not the least of which by proofreading. In par-
ticular, Shawn Eastmond, Tehani Finch, Philip Kurian, Henry Lovelace, Sidi Maiga and Branislav
Nikolić have contributed diligently to the current version. I can only hope for such a continued
evolution of both the course and this book. Special thanks go to Prof. Darko Kapor (Department
of Physics, University of Novi Sad), whose astute, critical and exacting reading of the first drafts
provided the invaluable and inexorable impetus for persevering through the project and eventually
completing it. Finally, I should also like to thank the staff at Cambridge University Press for their
help in finalizing the project, and especially Ms. Patterson for her constructive proofreading.

All the remaining errors3 are, however, entirely and solely mine.

Tristan Hübsch

3 ERRARE DIVINE EST, ALITER NOS NON SIMUS.
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Preliminaries





1
The nature of observing Nature
1.1 Fundamental physics as a natural science

The ultimate aim of this course is to present the contemporary attempt to perceive the (funda-
mental) structure and nature of Nature. First, however, we must examine the (methodo-)logical
framework at the foundation of this aim.

1.1.1 Not infrequently, things are not as they seem

Although an erudite historian will certainly and readily cite earlier quotations of the thought ex-
pressed in the title of this section, I should like to introduce this leitmotif as a Copernican legacy.
The readiness to abandon the “obvious,” “generally accepted” and “common sense” for unusual
insights – those we can actually check – is certainly an essential element. This motif perme-
ates the development of our understanding of Nature, and reappears in its contemporary form
as duality [☞ Section 11.4].

Of course, not just any unusual insight will do: a lunicentric or an iovicentric system, for
example, would offer no advantage over the geocentric cosmological system. Most significantly,
heliocentricity simplifies both the conceptual structure and the practical application of the plane-
tary system, and makes it more uniform. Although still assuming circular orbits and so in need of
corrections,1 Copernicus’ model is essentially simpler; maybe this could be regarded as a variant of
Ockham’s principle.

This idea is not yet Newton’s universal law of gravity, but already contains its germ, its unify-
ing motif: all planets follow the same type of regular motion and only appear to wander randomly
(as their original Greek name implies). Also, the ultimate test of this model is easily identifiable:
the positions and the motions of the planets determined by (the simpler) computations within the
heliocentric system agree with astronomical observations.

Examples of this leitmotif begin at such a simple level that they are rarely noticed:

1. The shadow of an object is often distorted and many times larger than the object itself.
Nevertheless, only very little children are afraid of the shadow of a wolf or a monster,
however aptly conjured by the artists in a puppet theater.

1 Only after Kepler’s ad hoc postulate of elliptical orbits (which Newton explained a posteriori) did heliocentricity achieve
its really convincing technical simplicity and precision.



4 The nature of observing Nature

2. Viewed from a large plateau (without mountains on the horizon), the Earth does look flat.
Yet, Eratosthenes (c. 276–195 BC) not only proved that the Earth was round, but even
computed its size (to about 10–15% of the modern-day value!). This computation was
based on the length of the summer solstice noon shadows in Syene (a.k.a. Aswan) and in
Alexandria, the distance between these cities, and using geometry that is two millennia later
regarded as elementary. In time, Eratosthenes’ results and reasoning became “politically
inconvenient,” were suppressed and forgotten for some sixteen centuries, and were re-
discovered in the West only centuries later, in the Renaissance. Although by now few people
doubt that the Earth is round, when (if?) humankind expands into Space, the once obvious
flatness of the Earth will become unthinkable; just as once its roundness was.

Sunshine

The shadows
have equal

lengths

Syene (Aswan) Alexandria

This is not how things are (flat Earth)

Sunshine

The shadows
have different

lengths

Syene (Aswan) Alexandria

This is how things are (round Earth)

Figure 1.1 Eratosthenes’ analysis which, by means of measuring angles and distances, gives (depending
on the precise value of ancient units he would have used) the size of our planet Earth to about 16% at
worst and 2% at best! (The shadows in the illustration are exaggerated.)

3. Everyday experience convinces us: the Sun and the Moon revolve around the Earth. This
was indeed known to the ancient Greek science, as reported in Claudius Ptolemy’s (c. AD
90–165) Almagest. This suppressed the teachings of Aristarchus (c. 310–230 BC), who not
only advocated the heliocentric system, but also estimated that the Sun is about 20 times
further away from Earth than the Moon and about 20 times bigger.2 It took sixteen centuries
for the West to rediscover this.

4. To the naked eye, our blood seems homogeneous and continuous. So it was believed to be
until 1683, when the Royal Society published the first detailed pictures of red blood cells,
as seen through a microscope and drawn by Antoni van Leeuwenhoek (1632–1723). In
1932, Ernst August Friedrich Ruska (1906–88) designed the first electronic microscope, the
modern versions of which permit us to see – in the most direct way possible – individual
molecules and even atoms, of which all matter around and within us is composed.

This last insight (quite literally!) is due to technical development, and it fully convinces us of
the finite divisibility of things around us. Seemingly continuous things: fluids, air, metals. . . in fact
consist of an enormous number of teensy particles! Whence stems the conviction that there exist
“elementary particles” – the smallest building blocks of which everything else consists. Although

2 The 20-fold error in Aristarchus’ result stems from insufficient precision in angular measurements of the time; his
reasoning and geometry were essentially correct. Also, the ratio of the diameters of the Sun and the Moon indeed does
equal the corresponding ratio of their average distances from the Earth, but is ≈ 400, not 20.
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this idea is fantastically successful in explaining Nature and even predicting its behavior, it be-
hooves us to keep in mind that the “particulate nature” of Nature mirrors our gradually improving
understanding of Nature, and that this insight is subject to verification and periodic audits.

Earth,Water
Air and Fire...

Atoms, electrons, protons,
gazillions and jigazillions...

Figure 1.2 What at humanly characteristic scales seems smooth, homogeneous and continuous, may
well look completely different under sufficiently closer scrutiny.

The Reader will certainly have no difficulty extending this list with many other and possibly
more interesting and amusing examples, evidencing our basic leitmotif. Standard human percep-
tion, so well adapted to our daily routine, does not serve us well when concerning scales and
proportions that are not as commonplace. From the typical, everyday vantage point and at char-
acteristic human scales, planetary and stellar events appear warped. We must apply our (patiently
educated and disciplined) mind to correct this picture. Indeed, once so educated, the Sun in the
sky never again seems the same! In our mind’s eye, we can actually see the Earth upon which we
stand, as it rotates around the star we call the Sun. Similarly, once educated about the blood cells,
our mind’s eye has no difficulty seeing the erythrocytes as they stream through the blood plasma in
our veins, and the leukocytes as they attack the blood-borne bacterial invaders.

Yesterday’s unbelievable and ridiculed “nonsense” (that diseases are caused by germs too tiny
to be visible was indeed widely ridiculed) may well turn out to become an evident truth of today –
and such realizations turn out well remembered. So-called “evident” truths must not be exempt
from verification just because they are considered evident: not infrequently, “evident” is simply
that which is familiar and what are we used to. Not yet having doubted something is no guarantee
of its truth.

However, we must then inquire which claims should we doubt and how do we establish
the truth of any particular claim if everything is to be doubted? Following Descartes’ rationale,
everything that may be doubted without self-contradiction should be doubted. However, physicists
are usually more pragmatic than that.3 With a nod to the principle “if it ain’t broke, don’t fix it,”
physics models and theories are doubted and re-examined when they start predicting things that
are not, or fail to predict the things that are. . . And, predictions are derived from a model as much
as technically and practically possible.

In fact, it is our duty to “churn out” everything one possibly can from every scientific model.
This is both for the sake of economy (the predictions of a model are its “products”) and in order
to establish if the model is in as full an agreement with Nature as it is possible to determine at any
given time.

3 . . . and even without the persnickety conclusion that Descartes’ motto cogito, ergo sum leads into solipsism, or recalling
Hume’s demonstration just how destructive such infinitely regressive doubting may be. . .
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1.1.2 The black box: a template of learning

To formalize our approach, let us picture the scrutinized system as a black box, representing the
lack of knowledge about its contents. What follows may then be regarded as the three pillars of
(exact, natural) science.

I. To learn something of the contents of the box, an input (controlled or otherwise known) is
directed at the box, and we observe the outcome. The input may be something as simple as
knocking, shaking, or maybe something more technical, such as X-rays or ultrasound. The
outcome is whatever emerges from the box in response. For example, as the box is shaken,
its weight might move in a way suggesting that it is concentrated in several distinct sub-
systems inside the box. Or, the box may ring hollow to knocking. Or, X-rays may show the
image of Thumbelina’s skeleton. . .

Input signal

knock
knock

Outcome signal

Let me sleep, already!

Figure 1.3 The black box experiment template.

II. Using the information about the box in the form of a “response to the input,” where both in-
put and outcome are adequately quantified, we develop a mathematical model that faithfully
reproduces all received outcome signals as a response to the corresponding input signals.
Needless to say, both input and outcome signals must be measured, and will therefore be
known only up to measurement errors. This defines the resolution/precision/tolerance of
the model. Of course, a resolution of the mathematical model cannot be guaranteed to be
better than this; and this must then be understood as the resolution of the model as a whole.

III. This mathematical model is then used to derive the consequences of the conceptual model:
One computes the response of the system (as represented by our model, in the role of the
black box) to new, as yet untested input signals. These responses then need to be tested, if
and when that becomes possible.

Herein then lies the clue as to “what and when to doubt” and “how to test truthfulness.”
Physics (and, more generally, scientific) models must be re-verified, wherein one or more of the “in-
gredients” are doubted and perhaps even replaced, if the model does not reproduce and correctly
correspond to Nature to within the resolution of the model [☞ also Comment 10.5 on p. 388]. This
shows that:

Conclusion 1.1 Exact science always errs, but is exact about how much.

Comment 1.1 “Physics students learn this very quickly, through a shock, when they proudly
obtain the required results of the first lab exercise, and the teaching assistants quiz them
about the errors at least as much as about the obtained results.” D. Kapor
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This three-step process, “observe–model4–predict,” repeats iteratively and infinitely, in coun-
terpoint to the above-cited leitmotif, and guaranteed by Gödel’s incompleteness theorem,5 since
the research subject is sufficiently complex and is not easily exhaustible (unlike, e.g., “tic-tac-toe,”
which is exhaustible as a game of strategy) [211]; see the lexicon entry in Appendix B.1, as well
as Appendix B.3. When the model is constructed, the predictions of the model are derived and
checked experimentally, as well as possible in practice. As human ingenuity incessantly improves
the technology, and new techniques and methods (both experimental and theoretical) are being
continually developed, new predictions are being continually derived and checked with an increas-
ing precision. Sooner or later, these new checks (both experimental and theoretical) indicate the
shortcomings and uncover statements that can be neither proven nor disproven within the given
theoretical system.6 If such a new statement can be experimentally checked as true or false, the
model needs to be extended so as to include this new fact about Nature. When the so-extended
model successfully reproduces all (known) “new” facts, additional predictions of the now extended
model are derived and checked, and these typically indicate further directions of extension and
improvement, upon which yet more additional predictions may be derived, and so on.

Comment 1.2 To illustrate, the phenomena we now label as electrodynamics are describ-
able by equations that are easily written down within the theoretical system of classical
mechanics of particles and fields, but can be neither proven nor disproven within this
system. The Maxwell equations (5.72) and the electrodynamics laws that they represent,
provide new axioms to the theoretical system of the classical mechanics of particles and
fields applied to charged particles and electromagnetic fields. In turn, Section 5.1 shows
these equations to follow from the gauge principle, which therefore is the one (overarching)
new axiom; see also Appendix B.3.

1.1.3 Philosophers are not scientists
A second glance at this framework of thought reveals something extraordinary! The scientific mod-
els7 described here, and systems of such models forming theories and theoretical systems, are
improved and extended, but not literally falsified, i.e., proven to be unconditionally false! (For the
most part, it is rather our mental imagery and philosophical “underpinnings” of the scientific model
that are taken too seriously, and may have to be abandoned as false.) Radical revisions of course
do occur in scientific research – and not so infrequently – but that does not falsify established
models and theories, only perhaps an unwarranted trust that those models and theories would be
exact and absolute truths. Properly understood within their qualifications, models and theories of
fundamental physics have not been falsified throughout the past three centuries, but have been
and continue to be refined, extended and often united.

Reasons for this are found in comparing scientific models with earlier efforts and doctrines.
Scientific models unify the inspiration of (experimental) induction with the rigor, self-consistency
and persistence of (rigorous mathematical and logical) deduction.

4 In this context, the verb “to model” encompasses the creation of the mathematical model that describes the scrutinized
phenomenon, and that can be summarized into an applicable formula. Whence stems the law for the system wherein
the phenomenon is observed, and “to model” then includes “to introduce as a law of Nature.” However, this is not
an absolute and inviolable law by decree, but one that is subject to verifications in comparisons with Nature, and
adaptations to this one and ultimate arbiter.

5 . . . barring the dismal logical possibility of the scientific spirit dying out or becoming exterminated. . .
6 These are essentially undecideable statements; see the lexicon entry on Gödel’s incompleteness theorem, in Ap-

pendix B.1, and Appendix B.3 in particular.
7 A scientific model includes the mathematical model together with its concrete interpretation: formulae, algorithms,

programs, together with their physical meaning, i.e., a dictionary between the symbols of the mathematical model and
the corresponding quantities in Nature. In this sense, a “model” then also implies a “law” – in the sense of Newton’s,
Ampère’s or Gauss’s law, not in the sense of a decree of some legislative body. The notion of “natural law” is thus
integrally woven into the scientific modeling of Nature, far from it having been abandoned, as sometimes opined [533].
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This complementary combination of quantitative measurements and mathematical modeling
is often attributed to the revolution in the philosophical approach in studying Nature, and is most
often linked to Galileo and Newton. However, Eratosthenes’ and Aristarchus’ above-cited planeto-
logical results were clearly based on this same combination of methods. This idea is therefore over
two millennia old. Suppressed through most of the past two millennia, this same combination of
measurements and mathematics was methodically and consistently revived by Galileo, Newton
and their followers. With the development of mathematics – and especially of calculus, invented
for that purpose by Newton, Leibniz and contemporaries8 – physics engaged into warp drive (the
superluminal propulsion from the sci-fi series Star Trek).

Roughly, measurements translate quantities describing observed natural phenomena into cor-
responding quantities in a mathematical model. This model is then used as a faithful (as best as
known) representative and replacement of the natural phenomenon. It is also a persistently rig-
orous tool for deductive predictions about that natural phenomenon. Those predictions are then
checked in turn, the model adapted, corrected and improved, if and when the predictions turn out
to differ from what is observed in Nature.

Thus, Einstein’s theory of relativity does not falsify Newton’s mechanics but extends it: When
all relative speeds in a system are much less than the speed of light in vacuum, relativistic correc-
tions to Newton’s mechanics are negligible and Newton’s mechanics yields a perfectly usable model
of reality. If some of the relative speeds increase, the corresponding corrections become relevant,
Newton’s mechanics is no longer a good enough approximation (the errors, about which physics
always must be precise, become unacceptably large), and we must use the relativistic formulae. In
turn, Einstein’s relativistic physics cannot be claimed to be absolutely true/exact either, but merely
that it is more accurate than Newton’s. After all, we already know that quantum physics may well
force us to revise the structure (and perhaps even the nature) of spacetime itself when approach-
ing Planck-length scales. Science can only make qualified statements, the “truth” of which will
always depend on precision (resolution) – and which continues to improve in ways that no one
can foresee.

Insisting on the iteration of this precision-sensitive “observe–model–predict” cycle immedi-
ately discards “theories” such as the one about phlogiston, the supposed intangible substance of
heat. That “theory” neither explained nor predicted quantitative data, and may be called a “the-
ory” only in common, non-technical parlance. A similar fate befell the so-called “plum pudding”
model of the atom, which explained and predicted very little (and incorrectly), and which its Au-
thor humbly called a “model” worth exploring, and mercilessly abandoning if found faulty; which
it was – both faulty and abandoned.

It is absolutely crucial that what we intend to call a scientific theory must be subject to ver-
ification through comparison with Nature, at least in principle. This implies that a theory must
be quantitative, i.e., a theory must explain and predict experimental data, which can be checked.
Quantitative predictions may be as simple as “yes/no” results; whether one predicts a single bit of
information or an entire googolplex9 of them – predictions must contain new information.

A word of warning: “subject to testing” does not mean that we can simply call up the local lab,
order some results, and expect a twenty-minute delivery. Nor does it mean that even a planetary
budget could fund the required experiment (not that there will be a planetary budget any time
soon). Nor does it mean that anyone has even the faintest hint of an idea for a concrete experiment,
even with a pan-galactic budget and a post-Star Trek technology. However, the theory must be

8 It has recently been discovered that Archimedes knew about the concepts of limit and the principle of exhaustion [382],
but that this knowledge has been neglected and forgotten for the better part of two millennia.

9 Googol (which must not be confused with Google) is the number 10100; googolplex is the number 1010100
. For comparison,

there are only about N := 1080 � 10100 particles in the universe, but the number of all their k-fold relations is immensely
larger than googol, ∑k(

N
k ) = 2N ≫ 10100, and the number of all relationships between those relationships (as a

second-order estimate of complexity) is much larger than googolplex, 22N ≫ 1010100
.
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“subject to testing, in principle”: thought experiments may be envisioned rigorously, and their
execution is obstructed by neither political economy nor practical “minutiae” such as magnetizing
a mountain-size apparatus. Of course, the models that may be tested may be either demonstrated
as tentatively established,10 or discarded if they can be shown to disagree with Nature.

It cannot be over-emphasized (see, however, also Digression 1.1 below, as well as Sec-
tions 8.3.1 and 11.1.4 and Appendix B.3):

Conclusion 1.2 Models that can (in principle) be refuted are scientific.

Interestingly, a verb (in Chinese) is, by definition, a word that can be negated [578]. However,
the correct application of this criterion, so simply stated, supposes a detailed understanding of the
structure of scientific systems, to which we return in Section 8.3.

Digression 1.1 The principle of Conclusion 1.2 reminds us of the principle of falsifiability,
popularized by Karl Popper [443, 444]. Intending to describe the historical process of the
evolution of science, he concluded that experiments about atoms falsify classical physics,
which is then substituted by quantum physics since that successfully describes atoms. So
understood, the principle of falsifiability harbors at least two equivocations: (1) the naive
version equates it with the related “testability” and presupposes direct and unequivocal
experimental testing, and (2) equivocation in categories. Both equivocations are danger-
ous to the socio-political status of science. Also, the tacit assumption that all statements
of a model are necessarily either confirmable or falsifiable, which simply need not be the
case [☞ the lexicon entry on Gödel’s incompleteness theorem, in Appendix B.1, and also
Appendix B.3].

The first equivocation is based on a restriction of physics as a science to a “di-
rectly empirical” science, whereby a theory that we cannot experimentally test is being
denied its “scientificity.” However, there exist (in the scientific and the sci-fi literature
and media) effects that contradict no known science, but for the experimental testing of
which [☞ also Refs. [171, 505]]:

1. the resources are too expensive (e.g., a synchrotron around the Earth or
around the Sun and Proxima Centauri, not to dream of a tokamak from here
to Andromeda),

2. the requisite procedures are prohibited by moral or ethical reasons (e.g.,
cloning, bionic, and certain educational, behavioral and nutritional experi-
mentation),

3. the resources require an as yet unknown technology (e.g., painting the ceiling
of a room with neutronium would cancel gravity in the room – if “only” we
knew how to produce neutronium paint and how to paint the ceiling without
it caving in),

4. a new concept and/or methodology is needed (e.g., for a direct measurement
of an upper limit of the proton’s lifetime).

It is already intuitively clear that not one of these obstructions for experimental testing
should take away from the “scientificity” of a theory. And, even simpler, it is clear that
experiments with stars, positions of the constellations and the development of our own
universe cannot be performed at will, nor is setting up an experimental control group

10 Being forever subject to future and additional testing, “established” can in this context only ever be understood as
tentative; this is a “small” detail that is rarely stated explicitly, but must always be understood.
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possible even in principle! Nevertheless, it is just as clear that astrophysics, astronomy
and cosmology are no less “scientific” for this.

— ❦ —

The second possible equivocation is more subtle, and so also more dangerous. Also, it has
at least two aspects. On one hand, there is the danger of confusing the category to which
a certain theoretical structure belongs. For example, “classical physics” is not a particu-
lar model with particular predictions that may be experimentally tested, but a scientific
system of assumptions (axioms) and procedures of derivation; this then may be applied
to concrete phenomena, such as a pendulum, a bob on a spring, or the atom. The incor-
rectness of any one concrete model – as in the case of the classical model of the atom
(see however Footnote 11 on p. 310 as well as example B.2) – may imply an error in the
application of classical mechanics or in classical mechanics itself , or perhaps even else-
where in the underlying complete chain of reasoning. We must explore precisely which of
the assumptions lead to the observed disagreement with Nature. In fact, the application
itself may turn out to harbor an error for various reasons, from a minor technicality to a
fundamental inappropriateness. That, after all, is the usual advisory about all proofs by
contradiction. However, it would evidently be silly to deny the “scientificity” of classical
physics as a whole because of its inability to model the atom.

On the other hand, the very idea that a scientific theory falsifies another is a dan-
gerous equivocation. Both in common parlance and in legal practice, the verb “to falsify”
implies that the statement being falsified is being shown to be a falsehood. This, in turn,
implies the tacit expectation of a binary true/false value. However, it is – or should be –
very well known that the relation between quantum and classical physics is continuous
and depends on the context and “resolution.” For any process under scrutiny, we must
compute the ratio of h̄ with all characteristic actions and all other commensurate physical
quantities.11 If each of these ratios is sufficiently smaller than 1, the numerical errors in
the results computed using classical physics are negligible. It is evident that “sufficiently
small” here implies a finite and an a-priori established tolerance. Therefore, the answer
to questions such as “is classical physics applicable even to a single particular event?”
essentially depends on at least one continuous parameter, and the answer cannot pos-
sibly be an unconditional “yes/no.” Classical physics is therefore extended/generalized
and not falsified by quantum physics. The situations with relativity, field theory, and even
superstring theory are analogous.

Generally, physicists understand that quantum physics does not simply falsify clas-
sical physics, but extends it into a domain where classical physics is not sufficiently precise.
Unfortunately, philosophers of science are not physicists. This pragmatic approach should
be compared with a similar vantage point of philosophers of natural sciences such as
Thomas S. Kuhn [323], where one needs to know that Kuhn obtained his BS (1943), MS
(1946) and PhD (1949) degrees in physics at Harvard, where he lectured on history of
physics 1948–56. However, Kuhn opines that theories (and paradigms) are chosen by the
group of researchers that is more successful than others, and assigns this choice a degree
of socio-politically pliable subjectivity. This seems all too alien to most physicists I know,

11 In elementary particle physics one uses so-called natural units, based on the natural constants h̄ and c, whereupon
these are not written explicitly, and formally one says that “h̄ = 1 = c.” This practice may well be used in any complete
unit system: once in agreement to use SI units, “length of 10” may only mean “10 m,” “force of 5” may only mean
“5 N=5 kg m/s2,” etc. However, as the purpose of this book is to introduce the Reader into this practice, factors of h̄ and
c are herein written explicitly, but in gray ink.
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and which I myself (perhaps all too naively) cannot accept for physics itself, nor any
other science, but only and at most for the admittedly capricious socio-historical process
of development in a particular subfield.

Suffice it here then to just assert without a historically and statistically justified
argument – as a manifesto, if need be: Theories and theoretical systems in physics are
chosen by Nature itself, through our long and patient communication with it (in the
sense of the caricature in Figure 1.3 on p. 6). Albeit extremely challenging and difficult
at times, this is always well worth the effort and ardor.

Of course, it is logically impossible for a science to be exact without being quantitative.
That is, “exactness” must be accepted as the requirement that it must be possible to develop a
system of questions that can be answered by precise yes/no answers. Subsequently, these answers
(easily written as a binary number) may quantitatively characterize the events to be modeled –
and to be predicted. If these yes/no answers follow a statistical (probabilistic) distribution, this is
only a technical complication and does not take away from the “exactness” in this sense.12 This
is always true of all branches of physics. While statistical physics and quantum mechanics are
probabilistic, this only complicates the techniques and dictates the style of research. In fact, many
fine (mathematical) techniques of statistics specify precisely which questions are meaningful to
ask, which are meaningless, and which among the former ones have a definitive answer, which
“only” a probabilistic one. For example, the temperature (as the average kinetic energy) of a fluid
may be predicted precisely, but the kinetic energy of a single molecule is subject to fluctuations;
the distribution of these fluctuations is predictable precisely, but not their individual values in
practice, owing to the too large number of contributing factors, such as the repeated collisions
with 1026’s of molecules. The kinetic energy of a single molecule may in practice then only be
known probabilistically – even if it were possible to mark and follow a single molecule without
disturbing and changing it.

From this point of view, physics and science in general may be accused of being pragmatic,
which they indeed are to a considerable degree. However, it is pragmatic physics and science that
brought us Moon rocks, pictures of the surface of Jupiter’s satellites and of distant galaxies and
nebulae, and which can find extrasolar planets; that produce artificial heart valves that the human
immune system accepts; that can provide early signs of hurricanes, cyclones and tsunamis so as
to warn the endangered population. Unfortunately, ethically and morally wrong, and just plain
uninformed application of science may also lead to our planet radioactively glowing in the dark of
the universe, or “only” to lose all ice and heat up to a point where life as we know it is no longer
possible. Through this feedback, science also affects our thinking, our opinions and convictions,
and so influences almost everything else, thereby being far more than “just pragma.”

The foregoing also uncovers the price to pay: although physics is about Nature, it describes
Nature indirectly, by way of the models that are sufficiently (and ever more) precise.

Example 1.1 The statement “in Rutherford’s planetary model, the atom consists of a nu-
cleus at the center and the electrons orbiting around it” does not mean that atoms literally
exist in such simple tinkertoy form. More precisely, one means that the mathematical
model developed from this mental caricature nevertheless reproduces the so far addressed
real observations with sufficient accuracy.

12 Let’s recall: exact science always errs, but knows precisely how much [☞ Conclusion 1.1 on p. 6].
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In fact, the stability of atoms requires that Rutherford’s planetary model is amended by addi-
tional “quantization” rules, which in turn lead to Bohr’s model and the “old quantum mechanics.”
Subsequent observations caused a further development of this and subsequently developed mod-
els, leading through “quantum mechanics” to “quantum field theory,” and even to “quantum theory
of (super)strings.” In this development, each stage completely contains the previous. Of course, it
must be admitted that the current favorite for the fundamental theory – (super)string theory –
is (by far) not confirmed experimentally as a theory of Nature: It has not even been shown that
(super)string theory really can reproduce all the details of the “real World” as known so far, but it
is the first one for which no indication to the contrary is currently known.

To be fair, (super)string theory is not one concrete theory but a theoretical system, just as clas-
sical mechanics is not limited to the description of a concrete physical system, but is a systematic
approach to describing a class of concrete physical systems. The surprising abundance of unex-
plored possibilities in the theoretical system of (super)strings and the fact that no contraindication
has been found, together provide hope that amongst the (super)string models an optimal candi-
date for the so-called Theory of Everything [☞ Chapter 11.5] can be found – with the requisite
warning: this will continue to require a lot of hard work.

1.1.4 Scientific predictions: useful and inevitable
We are already acquainted with the three-step, observe–model–predict, as well as the logical in-
evitability of repeating this iterative cycle infinitely while developing, testing and asymptotically
improving scientific models. Indeed, we may regard it both as a curse and as a boon that the idea of
an ultimate and complete Theory of Everything is a vanishing point: a theory to which all scientific
endeavors aim, asymptotically [☞ Section 11.5].

Apart from this asymptotic (un)reachability, Theory of Everything is also a misnomer, since
it refers only to fundamental interactions in Nature. However, neither does a pile of rocks (and
other building blocks) make a palace, nor does a few pounds of protein, lipids, some fat and
calcium make a Schrödinger’s cat. Even if the “ultimate” theory of all fundamental interactions
were known, a hazy road would remain to lead from there, through atoms and molecules, to. . .
us, our ambitious thoughts, and beyond.

Not only is there much room for “filling in the details” even if we stick to this 1-dimensional
arrangement by size, but very often tiny portions in this all-encompassing size scale produce “pock-
ets of knowledge” of fantastic and baffling complexity, a characteristic perhaps not unlike fractals.
Suffice it here just to mention that the complexity of collective phenomena (behaviors beyond
the “thermodynamic” average, such as eddies, tornadoes, the shapes and the dynamics of clouds,
market crashes. . . ) has only recently been subject to serious scientific thought. Also, life as we
know it – and so biology – occupies merely a few orders of magnitude, roughly between 10−6 and
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Figure 1.4 A logarithmic scale of sizes, from the Planck length, where everything looks like a black
hole (from within which no information can be extracted), to the largest distances, from which the
light only now reaches us (and from beyond which information has not yet reached us).
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102 m; chemistry occupies an even smaller niche around 10−9 m. Their complexity and richness
are, however, obvious to every Student who has taken exams in these subjects.

Heeding the adage “when eating an elephant, take a bite at a time,” physics analyzes natural
phenomena (systems), identifying their sub-processes (sub-systems). These are usually more easily
grasped and understood, upon which it however remains to (re-)integrate them. Along this journey,
certain characteristics of the whole are recognized simply as a sum of these parts, while others are
identified as intrinsically “collective” – unexplained by the characteristics of the integral parts and
inextricably rooted in the complexity of the whole rather than the nature of the constituents.
Whereas the analysis of the “parts” says little about the collective phenomena, it certainly permits
a better specification and discussion of the properties that are not collective, thereby leaving a
clearer path towards this complementary front in understanding Nature.

Following this “glory road” of scientific discovery, it is important to realize that:

Claim 1.1 Whatever follows logically from the assumed axioms/postulates of a model is a
prediction of the model.

That is, if a model reproduces perfectly the original input/output data, and produces a number of
testable predictions even just one of which turns out to disagree with Nature, there is something
wrong about the model. It may happen that its minor modification will both fix the glitch and
retain the model’s fidelity otherwise; if so, this modification must be incorporated as an integral
element of the (revised) model, subject of course to any further test that can be conjured. If such
a revision or extension cannot be found – off with its head.13

All predictions are derived as unavoidable consequences of the given assumptions, and are
ensured by the rigor of mathematical deduction. Those very consequences and predictions are
sometimes precisely the goal of developing the model; at other times, those are byproducts or
afterthoughts. Once in a while, however, they are quite spectacularly unexpected discoveries:

The Heitler–London bond is a unique, singular feature of the [quantum] theory, not
invented for the purpose of explaining the chemical bond. It comes in quite by itself,
in a highly interesting and puzzling manner, being forced upon us by entirely different
considerations. Erwin Schrödinger [477]

The Heitler–London bond is one of the basic “ingredients” in modern chemistry, and we may rightly
understand chemistry as based upon quantum statistical physics. Similarly spectacular was Dirac’s
prediction of the anti-electron (positron), and with it – as a logical consequence – an antiparticle
for each other type of matter particle, as well as Pauli’s prediction of the particle that Fermi named
“neutrino,” and which was confirmed experimentally only two decades later!

1.2 Measurement units and dimensional analysis
An exhaustive and detailed description of most real-life physical phenomena is often complex
and requires technically demanding computations. However, satisfactory estimates may often
be obtained by comparison with a similar and well-known case, by means of “dimensional
analysis.”

The next few examples in Section 1.2.1 illustrate this practice, using straightforward similar-
ity in the form of simple proportions (scaling) of physical dimensions. Sections 1.2.3 through 1.2.5
show that dimensional analysis and a few other general properties of the quantities that interest

13 Fortunately, and unlike their human inventors, theories can be resurrected, and this happens on occasion. The glitch
that had formerly killed off a model may turn out to be “repairable” at a later time, when a better understanding of
the model and requisite techniques and methods of analysis are attained [☞ Section 11.1, for example]. In turn, it can
(and does) also happen that the experiments were carried out or analyzed in error, and this is revealed only much later.
The corrected analysis may well turn out to agree with what was formerly thought of as a glitch of the model.
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us importantly limit the possible answers, and may well at times even fully determine the form of
those answers.

1.2.1 Lilliputians

In Jonathan Swift’s Gulliver’s Travels, Lemuel Gulliver meets the people of Lilliput, who are identical
to humans, but smaller: their average height is 45 mm. In other words, Lilliputians are about
λ = 40 times smaller copies of ordinary humans.

1. How much weight (in units of their own weight) can a Lilliputian lift?
(a) The weight of the burden is determined by the force available for lifting it, and force is

proportional to the area of the muscle cross-section. As the Lilliputian is built just like
a normal human, the cross-section of his muscle is λ2 = 1,600 times smaller.

(b) The weight of the Lilliputian himself is mg = ρVg, where g is the gravitational con-
stant, ρ the density which equals that of ordinary humans, and V is the volume. Since
the Lilliputian is 40 times shorter, his volume is λ3 = 64,000 times smaller than in
ordinary humans, so that his weight is also 64,000 times smaller.

It follows that a Lilliputian can lift a 1/1,600 of the burden an ordinary human can, which
is however λ−2/λ−3 = λ = 40 times more – in units of his own (64,000 times smaller)
weight – than an ordinary human. Proportionally, Lilliputians are λ = 40 times stronger
than ordinary humans: if an ordinary human can lift his own weight, a Lilliputian can lift
40 times that much!

2. How fast does the heart of a Lilliputian beat?
The frequency with which the heart pumps blood is determined by the quantity of blood it
moves in a single beat, and by the quantity of blood needed to circulate in a unit of time.
In warm-blooded beings, one of the main functions of blood circulation is to maintain the
temperature and life in tissues by carrying oxygen. (When the circulation fails, tissues die
and cool.)
(a) The volume of a Lilliputian’s heart is λ3 = 64,000 times smaller than the volume in an

ordinary human. The same holds for the volume of blood that the heart pumps in a
single beat.

(b) The body cools through the surface of the skin, which is λ2 = 1,600 times smaller in a
Lilliputian than in an ordinary human.

It follows that a Lilliputian’s heart must beat λ−2/λ−3 = λ = 40 times faster than that in
an ordinary human, so it would achieve the circulation of λ−2 times smaller volume with
its (λ−3 times smaller) “pumping units.” That is about 40×70 = 2,800 times per minute,
or about 46.67 times every second. That is the tone of 46.67 Hz frequency, very near the
second “F-sharp” from left, on a standard piano: A Lilliputian’s heart thus hums – a little
deeper than the humming of an AC/DC adapter. The skin of most small warm-blooded
animals is covered by fur to reduce the heat loss, among other things, also so that their
heart will not have to beat so fast.

3. How high can a Lilliputian jump?
The jump-height is determined by the energy available for lifting the body: Energy E lifts a
body of mass m to a height of h = E/mg.
(a) The mass of a Lilliputian is λ3 = 64,000 times smaller than the mass of an ordinary

human.
(b) The energy available for the jump stems from the work invested by the muscle force

F that contracted �L: E = F �L. The muscle force is proportional to the area of its
cross-section, which is λ2 = 1,600 times smaller in a Lilliputian than in an ordinary
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human. The change in the muscle length is λ = 40 times shorter, making the energy
available for the jump (λ2)(λ) = 64,000 times smaller.

(c) Since both the energy and the mass in a Lilliputian are λ3 = 64,000 times smaller than
in an ordinary human, and the gravitational constant is a constant, it follows that the
height of the jump is also a constant: a Lilliputian can jump just as high as an ordinary
human. In units of his own height, however, an ordinary Lilliputian can jump λ = 40
times as high as an ordinary human.

— ❦ —

Only the physical proportions of the human body were considered in these examples – height
and width, in correlation with the basic function of some of the body parts and the survival of
the whole. Rightly, the above examples may seem like a pastime and are indeed too naive for a
complete account [☞ Exercise 1.2.3, then e.g. Ref. [561], to begin with], but it should be clear
that they indicate some of the basic principles behind the fact that there are no insects as big as
storks (or horses), nor can warm-blooded animals be as small as an ant, nor can land animals grow
(akin to King Kong) to the size of the largest whales.14

Let’s turn, however, to more “concrete” applications, and with a more detailed application of
physical “dimensions,” i.e., units. Students of natural sciences are familiar with unit systems based
on specifying the units for some three “basic” physical quantities; by a conventional standard, these
are mass (M), length (L) and time (T). Table 1.1 on p. 24 gives numerical data for the unit systems
that we use. Suffice it to say, every physical quantity may be measured in units that are of the form
Mα Lβ Tγ, for some (α, β,γ) [☞ also Table C.4 on p. 527]. In the next examples, our goal is to
determine the triple (α, β,γ) for the desired physical quantities and thereby, to a large extent, the
physical quantities themselves. A more general treatment of this “dimensional analysis” may be
found in the book [208], and the books [244, 415, 416] abound with examples from everyday
life where a little critical and mathematical analysis leads to sometimes unexpected results.

1.2.2 Characteristic scales

Take, for instance, a pendulum of length � and mass m. Without writing down and solving the
equations of motion, we can estimate the frequency as follows:

1. Neglecting dissipative forces, the frequency may depend only on the physical properties of
the pendulum, length � and mass m, and the gravitational constant g.

2. Using dimensional analysis, we have

[�] = L, [m] = M, [g] =
L

T2 , we need [ν] =
1
T

. (1.1)

Assuming that the frequency ν is an analytic function of �, m and g, we seek solutions of the
form ν ∝ kα mβ gγ, and find

1
T

= [ν] = [�]α [m]β [g]γ = Lα Mβ
( L

T2

)γ
=

Lα+γ Mβ

T2γ . (1.2)

14 A mature blue whale (Balaenoptera musculus) can reach 30 m in length. Fossils indicate that some of the prehistoric,
swamp-dwelling animals could reach the length of ∼ 60 m (Amphicoelias fragilimus). However, the build of such animals
was mostly horizontal, with a long and massive neck and tail, considerably different from modern warm-blooded land
animals; T. Rex, built akin to a kangaroo, was no longer than about 13 m.
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This implies the system of equations

α+ γ = 0,
β = 0,

2γ = 1,

⎫⎬⎭ ⇒
⎧⎨⎩

α =− 1
2 ,

β = 0,
γ = 1

2 .
(1.3)

Note that this result indicates that the frequency of oscillations is independent of the mass
of the swinging bead, and specifies

ν ∝
√

g
�

. (1.4)

Up to a numerical factor that depends on the definition of “frequency” (ν vs. ω = 2πν), the
expression (1.4) is in fact the exact formula, even for large oscillations (while the oscillation angle
remains within π

2 to either side of the equilibrium point)! The result (1.4) merely acquires an
overall O(1) multiplicative numerical correction, growing monotonously from 1 to about 1.18 as
a function of the amplitude. The fact that the frequency of (small) oscillations does not depend
on the mass of the pendulum (β = 0) may come as a surprise, but is easily verified by simple
experiments.

— ❦ —

A similar, but in some ways more interesting, example is presented by a bead of mass m, oscillating
at the end of an elastic spring, well described as producing a linear restoring force, F = −kx,
when stretched or compressed a length x. Now consider having this spring with the bead hanging
vertically, and we proceed as before:

1. The frequency may depend only on the physical properties of the hanging spring, (k, m),
and the gravitational constant g, where we again neglect dissipative forces.

2. To use dimensional analysis, we must first determine the dimensions (physical units) of the
spring constant k. To this end, we may use the restoring force law, F = −kx, knowing that
a force must have units in agreement with Newton’s 2nd law:

[F] = [m a] = M · L
T2 , [F] = [−k m] so [k] =

[F]
[x]

=
M
T2 . (1.5)

3. To use dimensional analysis, we again list

[k] =
M
T2 , [m] = M, [g] =

L
T2 , we need [ν] =

1
T

, (1.6)

and again seek solutions in the form ν ∝ kαmβgγ:

1
T

= [ν] = [k]α [m]β [g]γ =
( M

T2

)α
Mβ

( L
T2

)γ
=

Lγ Mα+β

T2α+2γ . (1.7)

This implies the system of equations

γ = 0,
α+ β = 0,

2α+ 2γ = 1,

⎫⎬⎭ ⇒

⎧⎪⎨⎪⎩
α = 1

2 ,
β =− 1

2 ,
γ = 0.

(1.8)

This result clearly indicates that the frequency of oscillation of the bead on the spring is
independent of the gravitational acceleration (γ = 0). This implies that the bead on the
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spring oscillates with the same frequency regardless of the orientation of the spring in the
gravitational field – and even in the absence of any gravitational field! The result (1.8)
implies

ν ∝

√
k
m

, (1.9)

which is, up to the numerical factor 2π, again the exact formula and holds even for large
oscillations as long as the spring “constant” is an analytic function of the displacement x.

Comment 1.3 Note that no combination of �, m, g and of k, m, g, respectively, is dimen-
sionless. [ ✎Verify.] With the uniqueness of the solutions (1.3) and (1.8), this implies
the exactness of the results (1.4) and (1.9), respectively. Compare this with the situation
described in Section 1.2.4.

Comment 1.4 Mathematically, the results (1.3) and (1.8) are very similar. Physically, how-
ever, the facts that the result (1.4) does not depend on the mass of the pendulum nor the
result (1.9) on the gravitational acceleration both imply a much wider applicability of these
results than initially conceived – but in two different ways. The first lets us freely swap the
bobs of a fixed-length pendulum near the surface of the Earth, while the latter lets us predict
the oscillations of a spring in Skylab, on the surface of the Moon or Mars, or anywhere else
where the gravitational acceleration is approximately constant!

This realization – that a given mathematical model may be far more widely applicable
than originally intended – tends to be extremely important in practice.

1.2.3 Larmor’s formula
Larmor’s formula for the energy per unit time (therefore, power) that an electric charge q loses
during deceleration�a is

P =
2
3

q2 a2

c3 (cgs), P =
q2 a2

6πε0 c3 =
2
3

1
4πε0

q2 a2

c3 (SI), where a = |�a|. (1.10)

Dimensional analysis We are interested in power – energy loss per unit time, for which the units
are

[P] =
[�E]
[�t]

=
M L2/T2

T
=

M L2

T3 . (1.11)

Energy that changes (decreases) in the process of electromagnetic radiation is certainly of
electromagnetic origin, and for electrostatic (Coulomb potential) energy VC the units are

M L2

T2 =
[
VC

]
=

[ 1
4πε0

q1 q2

r

]
, ⇒

[ q√
4πε0

]
=

M1/2 L3/2

T
. (1.12)

The electric charge may thus be expressed in “mechanical” units,
√

kg m3/s. The so rescaled quan-
tity q′ := q√

4πε0
is sometimes called the rationalized electric charge [☞ [407, 29, 339] for an

application in quantum mechanics].
The power lost through electromagnetic radiation through deceleration must depend on the

acceleration, �a. As this is a vector and power is a scalar, the power may depend only on the mag-
nitude of the acceleration, |�a|β = aβ. Other than this, the power may only depend on the universal
constant, c (speed of light in vacuum) – and, of course, on the electric charge15:

[qα aβ cγ] =
( M L3

T2

)α/2( L
T2

)β( L
T

)γ
=

Mα/2 L3α/2+β+γ

Tα+2β+γ
!=

M L2

T3 . (1.13)

15 The symbol “ !=” denotes an equality that is required to hold [☞ Tables C.7 and C.8 on p. 529].
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Comparing, it follows that

1
2α = 1,
3
2α + β + γ = 2,
α + 2β + γ = 3,

⎫⎬⎭ ⇒
⎧⎨⎩

α = 2,
β = 2,
γ = −3,

(1.14)

so that

P ∝
q2 a2

c3 . (1.15)

The numerical factor 2
3 in Larmor’s formula (1.10) cannot be determined by dimensional analysis,

whereas the presence or absence of the 1
4πε0

factor is determined by the choice of units – SI or cgs,
for example.

1.2.4 Perturbations of stationary states in quantum mechanics
Assume a 1-dimensional (non-relativistic) quantum system specified with the Hamiltonian16 H0,
for which the stationary solutions are known:

H0|n〉 = E(0)
n |n〉, U0|n〉 = e−iωnt|n〉, ωn := E(0)

n /h̄, (1.16a)

H0Ψn(x, 0) = E(0)
n Ψn(x, 0), Ψn(x, t) = e−iωnt Ψn(x, 0). (1.16b)

In addition, using the Gram–Schmidt orthogonalization procedure, we may always arrange the
space of solutions so that

H :=
{
|n〉 : H0|n〉 = E(0)

n |n〉, 〈n|m〉 = δn,m, ∑
n
|n〉〈n| = 1

}
(1.16c)

is the Hilbert space of states of the system. The notation must be understood symbolically: Here,
n represents any system of numbers: one or more, discrete and/or continuous, including also
hybrid value-sets. The latter is the case with the familiar hydrogen atom, where the symbol n in
the results (1.16) stands for the familiar collection of “quantum numbers” (n, �, m, ms). For bound
states with negative energies, all four of these numbers vary over discrete values; for scattering
states with positive energies, one of those numbers [ ✎which one?] varies over continuous values,
while the other three remain quantized.

Consider now a similar quantum system, differing from (1.16a)–(1.16c) by a perturbation
Hamiltonian, H ′ = H − H0. To begin with, let H ′ be independent of time and let H ′ – as an opera-
tor! – be small. That is, the effect of the change H0 → H on the energies of stationary states and
on the states themselves is, we assume, small. More precisely, we assume that these changes are
analytic, i.e., may be expanded in a power series, which has been named after Brook Taylor since
1715. We then have that

E(1)
n = 〈n|H′|n〉; (1.17)

|n〉(1) = −∑
∫

m �=n

〈m|H′|n〉
E(0)

m − E(0)
n

|m〉; (1.18)

E(2)
n = −∑

∫
m �=n

∣∣〈m|H′|n〉∣∣2
E(0)

m − E(0)
n

; etc. (1.19)

16 After the Irish mathematician William Rowan Hamilton.
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A “shoestring” explanation Perturbation corrections of kth order must be proportional to the kth
power of the perturbation operator H ′ – were it not for H ′, there would be no corrections. Thus:

1. E(1)
n is a real quantity that must be proportional to the first power of H ′. Other than this, E(1)

n
may depend only on the nth state, and so must be the expectation value of H′ in the nth
state, as given in equation (1.17). Besides, however |n〉 and 〈n| may be normalized, 〈n|m〉
must be dimensionless; thus 〈m|A|n〉 must have the same dimensions (physical units) and
physical character (scalar, vector. . . time dependence. . . ) as does A, so that the dimensions
(physical units) in equation (1.17) also agree.

2. The first correction of the |n〉 state cannot be proportional to that same state, as an addition
of such a correction to a state would change the norm:∥∥|n〉∥∥2 = 1 → ∥∥|n〉 + ε|n〉∥∥2 = 〈n|n〉 + 2ε〈n|n〉 + ε2〈n|n〉

= 1 + 2ε+ O(ε2) �≈ 1. (1.20)

Whence “m �= n” in the sum/integral (1.18), and∥∥|n〉∥∥2 = 1 → ∥∥|n〉 + ε|m〉∥∥2 = 〈n|n〉 + ε
(〈m|n〉 + 〈n|m〉) + ε2〈m|m〉

= 1 + O(ε2) ≈ 1, (1.21)

since 〈m|n〉 = 0 for m �= n. Furthermore, since |m〉 form a complete basis (cf. Sturm–
Liouville theorem for eigen-problems of Hermitian operators), |n〉(1) must be expandable in
|m〉’s, as in equation (1.18). Comparing the left- and the right-hand side, the coefficients in
the sum must be proportional to a matrix element of H ′. Since |n〉 is on the left-hand side of
the equation, it must also occur on the right-hand side, so that a linear change in the basis
|n〉 would change both sides of the equation equally.

It follows that the coefficient in the right-hand sum must depend linearly on 〈m|H′|n〉,
which is the amplitude of probability that H′ will change |n〉 → |m〉. As that matrix element
has the dimensions of energy as does H ′, it must be divided by some energy – whence
“E(0)

m −E(0)
n ” in the denominator, which is the energy of the transition |n〉 → |m〉 described

by the matrix element 〈m|H′|n〉.
3. The result (1.19) follows on applying first H ′ and then 〈n| to equation (1.18).

Assume now that the perturbation Hamiltonian depends on time, H ′ = H ′(t). The probability
amplitude for the transition from the initial (i) into the final ( f �= i) state17 is then

a(1)
f i (T) =

1
ih̄

∫ T>t0

t0

dτ
〈

f
∣∣H ′(τ)

∣∣i〉 eiω f iτ , ω f i := |Ef − Ei|/h̄, (1.22)

to first order in perturbation theory. This result may be – up to the 1/i factor – explained by the
same type of “shoestring” arguments and dimensional analysis as the above results for stationary
perturbative corrections.

Note that for transitions with very large differences in energies, the frequency is very large,
the eiω f iτ factor oscillates very fast, and this causes an effective cancellation in the integral. By
contrast, for transitions with very small energy difference, the frequency is very small, and the
eiω f iτ factor a priori does not diminish the contribution to the integral. A very similar behavior in
integration occurs in the Feynman–Hibbs method of quantization [☞ Procedure 11.1 on p. 416,
and Ref. [165]].
17 More precisely, this is the probability amplitude that if the system was prepared in the initial system i at time t0, at a

later time T > t0 it may be detected in the state f �= i.
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1.2.5 And, caution!
Consider now a hydrogen-type atom. The binding energy of such an atom must depend on the
(reduced) electron mass, me, the electron charge, −e, and the charge of the nucleus, +Ze. The
Coulomb force, which holds the atom together, is proportional to the product of charges, for which
the relation (1.12) holds. Notice that the atomic number Z always accompanies e2, going with the
one factor of e that stems from the electric charge of the nucleus, which has Z protons. It then
follows that the combination (me)α(Ze2)β has units of Mα+β L3β T−2β and there is no choice of
α, β for (me)α(Ze2)β to have the dimensions (units) of energy, ML2

T2 . For a formula that specifies the
energy of a hydrogen-type atom, we need at least one more characteristic quantity, the dimensions
(units) of which differ from those of all monomials (me)α(Ze2)β.

Such a characteristic quantity may well be provided by the natural constant c; its units indeed
differ from those of (me)α(Ze2)β. More importantly, however, although the electron and the proton
may be moving non-relativistically within the atom, they are connected by the electromagnetic
field, which certainly does propagate relativistically. We thus seek a Coulomb solution to

[EC] =
M L2

T2 = [(me)x][(Ze2)y][cz] = Mx
( M L3

T2

)y ( L
T

)z
=

Mx+y L3y+z

T2y+z , (1.23)

i.e.,
x + y = 1,

3y + z = 2,
2y + z = 2,

⎫⎬⎭ ⇒
⎧⎨⎩

x = 1,
y = 0,
z = 2,

(1.24)

and obtain
EC ∝ mec2 ≈ 0.511 MeV. (1.25)

This is, of course, incorrect: EC = 0.511 MeV
 |E1| = 13.6 eV. Besides, this estimate for EC turns
out to be independent of the electric charge, which is just plain wrong for the binding energy of
the atom: were it not for the electric charge, there would be no atom as a bound state. Moreover,
it is impossible to construct a dimensionless quantity

[(me)x][(Ze2)y][cz] = Mx
( M L3

T2

)y ( L
T

)z
=

Mx+y L3y+z

T2y+z
!=

M0 L0

T0 , (1.26)

i.e.,
x + y = 0,

3y + z = 0,
2y + z = 0,

⎫⎬⎭ ⇒
⎧⎨⎩

x = 0,
y = 0,
z = 0.

(1.27)

The binding energy of a hydrogen-type atom therefore must depend on a fourth characteristic
quantity! Only then will it be possible to construct a dimensionless monomial from these four
characteristic quantities. A suitable power of this dimensionless monomial could then rescale EC =
0.511 MeV→ |E1| = 13.6 eV.

Bohr’s postulate introduces just such a “new” characteristic quantity: h̄, a unit of angular
momentum, with physical dimensions [h̄] = ML2

T . With this new quantity, we have

[EH] =
M L2

T2 = [(me)x][(Ze2)y][cz][h̄w] = Mx
( M L3

T2

)y ( L
T

)z ( M L2

T

)w

=
Mx+y+w L3y+z+2w

T2y+z+w , (1.28)

and it follows that
x + y + w = 1,

3y + z + 2w = 2,
2y + z + w = 2,

⎫⎬⎭ ⇒
⎧⎨⎩

x = 1,
y = −w,
z = 2 + w,

(1.29)
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or
EH ∝ me (Ze2)−w c2+w h̄w =

( h̄ c
Ze2

)w
mec2. (1.30)

Owing to the fact (1.12), the quantity raised to the wth power is dimensionless. Leaving Z to vary
with the atom, we evaluate (4πε0)h̄ c

e2 ≈ 137.036 and see that the value w = −2 would indeed
provide the desired EC = 0.511 MeV→ |E1| = 13.6 eV rescaling.

Indeed, equation (1.30) is remarkably close to Bohr’s formula, which may be written as

En = −2α2
e (mec2)

Z2

(2n)2 , αe :=
e2

(4πε0)h̄ c
≈ 1

137.036
. (1.31)

The so-called “fine structure constant” (coupling parameter) αe is indeed the dimensionless mono-
mial predicted by equation (1.30). To be precise, dimensional analysis can predict only that

En ∝ f (αe; n) (mec2), (1.32)

with no information about the arbitrary dimensionless function f (αe; n).
It is also known that the “fine structure” corrections to the energy levels depend on relativistic

corrections and the spin–orbital interaction – neither of which introduces a new physical quantity:

�Efs = −α4
e (mec2)

1
(2n)2

(
2n

j+ 1
2
− 3

2

)
, j := � ± 1

2 → degeneracy. (1.33)

This degeneracy refers to the spectrum (the collection of all eigenvalues) of the Hamiltonian, as
there exist two states with the same energy for every �, having j = �± 1

2 . Since the rest energy of
the electron is mec2, the sequence

|mec2| : |En| : |�Efs| = α0
e : α2

e : α4
e (1.34)

suggests that the hydrogen atom energy is an analytic function of the formal variable “α2
e ” and not

of αe:

En(αe) = mec2
∞

∑
k=0

Ck α
2k
e , (1.35)

C0 = 1, C1 = − 1
2n2 , C2 = − 1

4n2

(
2n

j+ 1
2
− 3

2

)
, etc. (1.36)

Indeed, Sommerfeld’s relativistic formula18 [407] from 1915:

Enk =
mec2√

1 +
(

αe
n−k+

√
k2−(Zαe)2)

)2
, k = 1, 2, . . . , n, n = 1, 2, . . . (1.37)

gives an excellent description of the bound states of hydrogen-type atoms and supposes elliptic
orbits for the electron, where n, k quantify the size and ellipticity of the classical orbit. It is easy to
see that Sommerfeld’s expression (1.37) depends analytically on αe and that the Taylor expansion
only has even powers.

18 Sommerfeld’s derivation assumes that k = � + 1 measures the electron’s angular momentum. Subsequent deriva-
tions [122, 121, 216] based on Dirac’s relativistic theory of the electron obtain the same final result, but with k = j + 1

2 ,
where j = � ± 1

2 owing to the electron’s spin, which explains the residual and observed two-fold degeneracy of the
bound states.
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Digression 1.2 However, the conclusion that the energy is an analytic function of α2
e is

not completely true of the hydrogen-type atoms: There exists the so-called Lamb shift, for
which

�ELamb ≈ α5
e (mec2)

1
(2n)2

1
n

(
EL(n, �) ± 1

π(j+ 1
2 )(�+ 1

2 )

)
(1.38a)

is an adequate approximation, with |EL(n, �)| < 0.05 and where an odd power of αe
appears manifestly. Also, this “hyperfine” structure of the energy levels is further compli-
cated by contributions from the interactions with the nucleus. These contributions then
depend also on the proton mass mp, through its magnetic moment:

�μp := γp
e

mpc
�Sp as compared to �μe :=

e
mec

�Se; γp = 2.7928. (1.38b)

The ratio (me/mp) ≈ 1/2,000 provides a new dimensionless constant, whereby the
energy formula complicates additionally:

�Ehfs =
( me

mp

)
α4

e (mec2)
4γp

2n3
±1

( f + 1
2 )(�+ 1

2 )
+ · · · , (1.38c)

where f ( f +1)h̄2 is the eigenvalue of the operator (�L + �Se + �Sp)2.

Comment 1.5 Expanding on the result (1.30), a general property of hydrogen-type atoms
is worth noting: The binding energy of hydrogen-type atoms must depend on four
characteristic constants of the system:

1. the reduced mass19 of a sub-system that is bound to the other – here, me;
2. the interaction coefficient – here, the product of charges, (Ze2);
3. the speed with which the interaction travels between the sub-systems – here, c,

for the electromagnetic interaction;
4. the unit (quantum) of the interaction action (since the classical atom is unstable,

and is stabilized by angular momentum quantization) – here, h̄.

The existence of more than three characteristic constants of the system (me, e, c, h̄) guar-
antees the existence of a dimensionless characteristic constant αe = e2

(4πε0)h̄ c , since the
system (1.29) consists of only three linear equations in four unknowns. The existence of the
dimensionless αe then permits a formula such as (1.32), which we may expand:

En = En,0 + αe En,1 + α2
e En,2 + · · · (1.39a)

and notice that for the binding energy of a hydrogen-type atom:

En,0 = 0, En,1 = 0, En,2 �= 0. (1.39b)

Only the coefficients of the second (and fourth, then fifth. . . ) order in the αe-expansion
differ from zero!

19 By “mass” of a particle, we always mean the relativistic-invariant quantity, which is also (needlessly) called the “rest
mass” [☞ Section 3.1.3, and especially the result (3.36)].
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Definition 1.1 Bound-state systems may be roughly classified as:

weakly bound < 1, (1.40a)

strongly bound

⎫⎬⎭ if
(

binding energy
rest energy

) ⎧⎨⎩ ≈ 1, (1.40b)

very strongly bound > 1. (1.40c)

Conclusion 1.3 Since αe ≈ 1
137 < 1, the result (1.39b) implies that the hydrogen atom is a

weakly bound system. Indeed, the ratio 13.6 eV/mec2 = α2/2 ≈ 2.67× 10−5.

1.2.6 Exercises for Section 1.2

✎ 1.2.1 Taking into account that both the load-bearing ability of bones and the muscle force is
proportional to the cross-section area, and the height of a Lilliputian is λ = 40 times smaller
than the height of an ordinary human, estimate:

1. the width of the legs and torso in a Lilliputian body for which the strain in the
bones and muscles are about the same as in ordinary humans;

2. the weight of a typical Lilliputian;
3. the ensuing corrections in the previous estimates of weight-bearing, heartbeat and

height of jump.

✎ 1.2.2 In his subsequent travels, Lemuel Gulliver found himself in Brobdingrag,20 where the
population is about Λ = 40 times taller than ordinary humans. Estimate:

1. How much weight (in units of their own weight) can a Brobdingragian lift?
2. How fast is a Brobdingragian’s heartbeat?
3. How high can a Brobdingragian jump?
4. If a Brobdingragian is Λ = 40 times taller than an ordinary human, estimate:

(a) the width of the legs and torso in a Brobdingragian body for which the strain
in the bones and muscles are about the same as in ordinary humans;

(b) the weight of a typical Brobdingragian;
(c) the ensuing corrections in the previous estimates of weight-bearing, heart-

beat and height of jump.

✎ 1.2.3 If humankind ever colonizes Mars, one would expect that the native generations will
in time adapt to the four times weaker gravity. (Suppose that the breathing equipment is
of negligible weight.) Estimate the changes in the height : width ratio in the body of a fully
adapted Homo Aresiensis, and from there the other characteristics mentioned in the previous
questions.

✎ 1.2.4 Estimate the lifetime of the hydrogen atom caused by electron bremsstrahlung, using
the Larmor formula to estimate the radiation energy loss. The atom may be regarded as
collapsed when the electron “falls” into the nucleus, i.e., when the radius of the electron’s
orbit reduces from ∼10−10 m to about ∼10−15 m.

✎ 1.2.5 Prove the statement made in Comment 1.3 on p. 17.

20 Complete editions of Jonathan Swift’s novel contain a note supposedly added after the first printing wherein the fictitious
Lemuel Gulliver explains to his cousin Sympson (who mediated the publishing of the novel) that the printers erroneously
printed the name of the land as “Brobdingnag.”
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✎ 1.2.6 Considering the discussion around the equations (1.16) in the first paragraph of
Section 1.2.4, identify which of the quantum numbers (n, �, m) in the Bohr model of the
hydrogen atom becomes continuous for scattering states and which must remain discrete.
Prove this by re-examining the familiar wave-function (4.8c) upon changing (E < 0) →
(E > 0); the discussion in Appendix A.3 should be helpful for the complementary part of
the question.

✎ 1.2.7 Compute what exactly changes in the formulae (1.31) and (1.33):

1. if the electron in a hydrogen atom is replaced by a muon: mμ ≈ 207 me;
2. if the electron in a hydrogen atom is replaced by an antiproton: mp ≈ 1, 836 me;
3. if the proton in a hydrogen atom is replaced by a positron, e+: me+ = me.

✎ 1.2.8 Would the formulae (1.31) and (1.33) hold for a hypothetical Z > 137 atom? Why?
(Hint: consider the consequences of the relations (1.40a)–(1.40c).)

1.3 The quantum nature of Nature and limits of information
Nature is both quantum and relativistic; the constants h̄ and c are universal. Also, Newton’s law
of gravity – extended by Einstein’s general theory of relativity – is also universal, and so also is
Newton’s constant, GN. Its units are

FG = GN
m1 m2

r2 , ⇒ [GN ] =
[FG][r2]
[m2]

=
M L L2

T2 M2 =
L3

T2 M
. (1.41)

Table 1.1 Natural (Planck) units and their SI equivalent values

Name Expression SI equivalent Practical equivalent

Length �P =
√

h̄GN
c3 1.616 25×10−35 m

Mass MP =
√

h̄ c
GN

2.176 44×10−8 kg 1.220 86×1019 GeV/c2

Time tP =
√

h̄GN
c5 5.391 24×10−44 s

El. chargea qP =
√

4πε0 h̄ c 1.875 55×10−18 C e
/√
αe ≈ 11.706 2 e

Temperature TP = 1
kB

MPc2 1.416 79×1032 K

aαe ≈ 1/137.035 999 679 in low-energy scattering experiments, but grows to about 1/127 near
∼200 GeV energies [☞ Section 5.3.3].

From this, we define the Planck, i.e., natural units, listed in Table 1.1. A comparison with SI
equivalents makes it clear that the natural units are in no way reasonable when describing everyday
events of typical human proportions: it would be hilariously ridiculous to try buying milk in units of
Planck volume (1 gal = 8.964× 1098 � 3

P ), hot dogs in units of Planck mass (16 oz = 2.084× 107 MP),
or measure the time to the recess bell in units of Planck time (45 min = 5.008 × 1046 tP). However,
natural units do indicate certain limiting values, and this is worth exploring when considering ever
smaller systems.

In fact, the natural units in Table 1.1 are not very convenient even for typical contemporary
elementary particle physics: the electron mass is me = 4.185 45 × 10−23 MP! Therefore, one fre-
quently uses units such as “MeV/c2,” so me = 0.510 999 MeV/c2. In this system of “particle physics”
units, we formally state h̄ = 1 = c – that is, we use the unit system where h̄ and c are two of
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the basic three units, and then do not write them. All physical quantities can then be expressed as
various powers of one particular unit of measurement, for which the usual choice is energy. For
this, one typically uses the “eV” unit, with the usual SI prefixes. Table 1.2 lists some relations useful
in typical calculations.

Table 1.2 Some typical physical quantities, expressed in “particle physics” and SI units

Quantity Particle physics SI equivalent

Energy x MeV = x × 1.602 18 × 10−13 J
Mass x MeV/c2 = x × 1.782 66 × 10−30 kg
Length x h̄c/MeV = x × 1.973 27 × 10−13 m
Time x h̄/MeV = x × 6.582 12 × 10−22 s

1.3.1 Smaller, and smaller, and . . .
To a great extent, the division and analysis of phenomena, processes and systems happens just as
it does in the most obvious application of the black box paradigm, e.g., in microscopy. Light hits
the object under scrutiny (figuratively, the black box) and the reflected light is guided through a
system of lenses and/or mirrors to form a magnified image for the observer to see. The difference
between the so-reflected light and that which would have arrived at the observer’s eye had the
observed object not interfered is the image of the object contrasted with its background. As an
amplification of our natural eye, a microscope is used to (quite literally) see into the structure
of various material objects. In this, it is worth noting the important limitation. Standard optical
microscopes cannot resolve structures finer than 10−6 m, regardless of the precision and perfection
of the optical elements: lenses, mirrors, etc. The reason for this is the wave nature of visible light,
with wavelengths in the range of about 380–760 nm. When considering an object that is smaller
than that, light diffracts around it. The image is so fuzzy that no detail smaller than ∼380 nm can
be discerned.

In perfect analogy, the sounds that humans normally hear easily circumnavigate objects of
sizes smaller than about 17 mm. It is therefore humanly impossible to hear a marble that stands
between us and the sound source. Humanly audible sounds have wavelengths within the 17 mm–
17 m range, and all but the shortest wavelengths (which only a small number of people can hear
well and which are also typically masked by sounds of longer wavelengths) easily circumnavigate
objects of typical hand-held sizes. We say that the resolution is of the order of magnitude of the
wavelength, understanding that only objects larger than the wavelength of the probing wave may
be successfully resolved.

The alert Reader will, however, recall that ultrasound can be used to image objects of human
size and smaller – and is routinely used to make a sonogram of, e.g., a fetus inside the womb. As
a higher frequency corresponds to a shorter wavelength, the resolution of ultrasound is better, i.e.,
ultrasound may be used to image finer details than one can do with humanly audible sounds. Recall
that the humanly visible light is but a tiny portion of the spectrum of electromagnetic waves. In full
analogy, electromagnetic waves of a frequency higher than those in visible light (and so of shorter
wavelengths) should produce finer resolution in appropriately constructed microscopes. Indeed,
there are many types of electromagnetic waves with wavelengths that are shorter than those in
visible light (ultraviolet light, X-rays, etc.), which could be used to construct stronger microscopes.
In practice, however, the construction of such microscopes is hampered by the fact that very few if
any materials can be used for lenses: ordinary optical lenses do not refract X-rays, the wavelengths
of which are much smaller than those in visible light.

A solution is presented by the quantum nature of Nature: Material particles, such as electrons,
also can behave like waves, and the basic relationship is that the wavelength of the probing beam
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Table 1.3 Some “landmark” objects and events, and their characteristic sizes and the corresponding
characteristic energies. Compare with Figure 1.4 on p. 12; 1 eV ≈ 1.6×10−19 J.

Objects, events Size Energy (in eV)

Crystalline lattice spacing ∼10−10 m ∼103 (∼1 keV)
Typical size of atomsa ∼10−10 m ∼103 (∼10 eVa)
Typical size of atomic nuclei ∼10−15 m ∼108 (∼100 MeV)
Proton radius ∼10−16 m ∼109 (∼1 GeV)
Range of weak nuclear interaction ∼10−18 m ∼1011 (∼100 GeV)
So-called “Grand unification” ∼10−31 m ∼1024 (∼1015 GeV)
Quantum gravity, strings ∼10−35 m ∼1028 (∼1019 GeV)
a The Bohr radius is α−1

e ≈ 137 times smaller than the naive estimate ∼h̄ c/EC [☞ Section 2.4].

is inversely proportional to the energy of the probe. (Even a single electron can exhibit wave-like
behavior, so that by a “beam” we mean herein one or arbitrarily many particles, as the case may
be.) Table 1.3 lists a few objects and events in Nature, together with their characteristic size and
corresponding energy; that is, the listed energies provide a minimum that a probe must have
to resolve the details of the given size. Thus, to any “probe” (beam, ray, test-particle, radiation,
etc.) with energy less than about 10 keV, typical atoms appear to be indivisible, structureless and
featureless, point-like objects. Of course, a probe with (much) less energy would not even “see” an
atom, but instead only the (much) larger structure comprised of atoms. To “see” the structure of
the atom, one needs a probe with more than about 10 keV energy (per particle). This principle –
that seeing ever smaller structures requires ever bigger energies – is the reason for the dual name
of the game: “elementary particle physics” is rightfully also called “high energy physics.”

With increased energy, the probability that the probe will change the scrutinized object (or
at least some of its characteristics) also grows. What is observed is then not the exclusive property
of the scrutinized object, but of the interacting object–probe system. This non-negligibility of the
probe and its interaction with the scrutinized object is of essential importance and is a basic fact
of quantum theory – and especially of atomic and sub-atomic systems. In this sense, testing and
observing of a system irreversibly changes this system. This is sometimes expressed by saying that
quantum observation – and so all empirical knowledge – is achieved with active participation
of the observer. This causes an essential indeterminacy in all kinds of empirical exploration, and
therefore also in all empirical knowledge. This quality is expressed in Heisenberg’s “indeterminacy
principle,” which may be regarded as one of the fundamental principles of quantum theory.

The principle of indeterminacy is very precisely stated starting with quantities defined in
classical (pre-quantum) theory. Again, quantum theory does not falsify but rather extends classical
theory. To every degree of freedom and its corresponding variable (coordinate) that is used in
the description of a physical system, classical theory corresponds a precisely defined conjugate
momentum: let q and p denote such a pair. The indeterminacy relation then reads:

�q �p � 1
2 h̄ , (1.42)

where �q and �p are the indeterminacies in observation and measurement of q and of p, respec-
tively. Thus, if the position of a particle is measured to, say, 1.00× 10−15 m precision, its (linear)
momentum in the same direction cannot be measured better than to 0.525× 10−19 kg m/s. The
errors caused by apparatus imperfections are typically bigger than this, but there do exist mea-
surements where this essential indeterminacy is detectable. To repeat: exact science always errs,
but it knows precisely how much [☞ Conclusion 1.1 on p. 6]. Furthermore, the measurement of
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another quantity q′, which is independent of q and p,21 does not affect the measurements of q and
p. That is, once we have measured q′ with arbitrary resolution of the measuring instrument, the
precision of the simultaneous measurements22 of either q or p is limited only by the precision of
the measuring instrument. For the general and precise statement, see Digression 2.7 on p. 73.

1.3.2 Breaking up is hard to do
The careful Reader may have questioned the persistent use of “structure” instead of “divisibil-
ity.” The latter term is often taken to be a synonym of “being a composite,” i.e., that the object
“has/shows structure.” This tacitly implies that a system that shows structure is in fact composite,
and furthermore that it may somehow be divided into its constituent parts. Unfortunately, this is
only a prejudice, borne out by everyday experiences: once broken, an egg can no longer be put
back together whole; it may be possible to glue a broken glass goblet together with superglue, but
the cracks remain, however fine.

In turn, something unusual happens when we divide something as teensy as an atom. Imagine
ionizing a hydrogen atom, separating its nucleus (a single, positively charged proton) from its
negatively charged electron. This may be accomplished, for example, by applying a sufficiently
strong electrostatic field (with �13.6 eV potential energy). That proton and that electron can thus
be moved away from each other arbitrarily many light years; at least in a thought experiment such
as this, the rest of the universe may be ignored. Leave them so separated for some time, and. . .
the electrostatic force will reunite them! Owing to the unbounded distances to which electrostatic
forces reach, the electron and the proton that once formed an atom are never truly separated; their
mutual interaction (via the electrostatic field) remains present through the whole “separation”
experiment, so that this “separation” is quite fictitious.

This brings up another question. The forces that held the parts of the glass goblet together
before it was broken in fact also reach to infinite distances. So, how is it that these forces do
not reunite the parts of the broken goblet (however long the Reader is prepared to wait)? The
answer is not only in the distance of the action, but also in the dependence of the force intensity
on the distance. The intensity of the electrostatic force decays with the distance as 1/r2, while the
intensity of “molecular forces” decays much faster. Imagine now testing the action of such a force
at a distance of r, and assume, for simplicity, that the force field is spherically symmetric. That is,
we observe the same action at every point of a radius-r sphere centered at the source of the force.
As the surface area of the sphere grows as r2, the flux (the product of the surface area and the
electrostatic field) through the whole surface of the sphere remains unchanged. Through the same
sphere, however, molecular forces that decay as ∼1/r6 (or faster) produce a flux that decays as
∼1/r4 (or faster) and so quickly fades at ever larger distances from the source.

Conclusion 1.4 Molecular forces are said to be localized and have finite range (although
the force need not in fact vanish at arbitrarily large distance). Coulomb-like forces that obey
the “inverse square law” are said to have infinite range .

So, the intensity of both molecular and Coulomb-like forces decays with distance. Distant
particles interact weakly, whereas those near each other interact strongly. Thus, low-energy probes
are deflected gently from their initial direction, while high-energy probes (with a small wavelength
and fine resolution) are sometimes deflected at a large angle – as much as 180◦! Precisely this cor-
relation of the angular distribution and probe energy is the “hallmark” of Rutherford’s experiments
that confirmed the existence of a positively charged nucleus within the atom.
21 The technical requirement is that q′ commutes with both q and p; see Digression 2.7 on p. 73.
22 In the context of quantum physics, “simultaneous measurements” do not mean “at the same time” – most often, this is

trivially impossible. Instead, it implies successive measurement of two quantities, which is independent of the order in
which the measurements are done.
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However, this is not so in collision experiments that are essentially the same as Rutherford’s,
but where the probes have >100 MeV energy [☞ Table 1.3 on p. 26]: These interactions differ sig-
nificantly from Coulomb-like forces, and may be ascribed to so-called strong nuclear interactions.
At distances where the action of these strong nuclear forces may be measured, their intensity stag-
nates with the distance between the colliding centers – as if the connection between those could
be represented (modeled) by a string [☞ Chapter 11]! By itself, this may not seem unusual, but
some of its consequences definitely are; see Chapter 6.

To stretch a string, one must invest work, and this increases the potential energy of the
stretched string. At a certain point, determined by the string elasticity, it simply breaks. Analo-
gously, two particles (so-called quarks) bound by the strong nuclear interaction may be separated
to ever larger distances only by incessant investment of ever more energy. This could be done arbi-
trarily long, and the two quarks could be separated arbitrarily far from each other, except that the
invested work sooner or later becomes sufficient to create a particle–antiparticle pair. Each one of
these newly created particles then binds with one of the “old” ones, so that the attempt to separate
two quarks to more than about 10−15 m fails. Instead of having separated one quark from the other,
the quark we were trying to move becomes bound with the newly created antiquark, and the other
“old” quark is joined by the newly minted quark replacing the old one. These quark–antiquark
pairs form two new systems (so-called mesons) that really can be separated arbitrarily far, but the
original quarks remain confined within these newly minted mesons [☞ Figure 1.5].

Meson

Energy

Meson

Energy EnergyOld

Newly
minted

Old

Old New

New

Old

Meson

Meson

Figure 1.5 Inseparability of quarks and antiquarks in spite of investing ever more energy.

Thus, quarks (to most precise experimental verification and theoretical prediction) cannot be
extracted arbitrarily far from one another, and remain “confined” – either in the original system,
or in a newly minted system, joined with (anti)quarks created by investing ever more energy.

However, as long as the distance between the quarks is less than about 10−15 m, their binding
energy is sufficiently small and they move effectively freely. Thus, the concept of “divisibility” (as
it is usually understood) is definitely not synonymous with the concept of “compositeness,” and
those two notions must be clearly distinguished:

1. In all experiments performed to date, the electron behaves as a point-like particle, i.e., it
shows no structure.

2. The proton shows structure (three quarks) through the complexity of the angular depen-
dence in scattering, i.e., through deviations from Rutherford’s formula – and does so when
the collision energy surpasses a well-defined threshold; however, the quarks cannot be
extracted arbitrarily far without creating new quark–antiquark pairs [☞ Figure 1.5].

3. Atomic nuclei show structure in collisions: they may be broken into smaller nuclei and/or
their constituents, protons and neutrons (jointly called nucleons); the resulting parts may
be permanently separated, i.e., the restoring forces have a limited, finite range.

4. Atoms show structure in collisions: they may be ionized by extracting one or more electrons;
the restoring force between the positive ion and the extracted electron, however, has an
infinite range, and the separation is not permanent: if left alone, the atom recombines.
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5. Molecules show structure in collisions: they may be broken (dissociated) into smaller
molecules and/or atoms; the resulting parts may be permanently separated, i.e., the
restoring forces have a finite range.

A remark is in order. Strong nuclear interactions that bind quarks into a proton are related
to but not the same as the forces between the proton and the neutron (within atomic nuclei). The
latter forces are called “residual,” just as some of the molecular forces between otherwise neutral
atoms stem from electromagnetic interactions between somewhat separated constituent parts of
these atoms (electrons and nuclei). However, even these residual forces are much stronger than the
electromagnetic ones, as they overpower the Coulomb repulsion between positive protons within
the nucleus. The weak nuclear interaction also has the characteristics of a string-like restoring
force, but its characteristic short range and weakness stem from being mediated by the massive
particles W± and Z0. In turn, both the strong nuclear force and the electromagnetic force are
mediated by massless particles, called gluons and photons, respectively.

1.3.3 . . . and smallest: limits of information
It would seem that the (spatial) resolution of measuring devices could, at least in principle, be
made arbitrarily fine, but this is not the case. A glance at Figure 1.4 on p. 12 shows that something
unusual should happen if the spatial resolution were to improve to the point of detecting details
smaller than about 10−35 m, around the Planck length; see Ref. [518] and Ref. [99] for a recent
discussion. Recall that, for detecting ever smaller details, the probe must have an ever larger energy,
since the de Broglie wavelength of the probe is

λp =
2π h̄
pp

=

{ 2π h̄√
2mpTp

, (non-relativistic)

2π h̄ c
Tp

, (relativistic)
(1.43)

where

Tp =

{ p 2
p

2mp
, (non-relativistic)√

p 2
p c2 + m 2

p c4 − mpc2, (relativistic)
(1.44)

is the kinetic energy of the probe of mass mp [☞ Section 3.1.3].
During interaction with the “target,” the probe and the target temporarily form a combined

system. The total mass of this combined system is greater than or equal to the sum of the target
mass and the probe mass-equivalent of the total energy of the probe: mt+p = mt + (mp + Tp/c2).
Thus, as the kinetic energy of the probe grows, so does the total mass of the temporary
target+probe system during the interaction.

Now, the situation becomes interesting owing to gravitational effects, and the fact that the
gravitational field of the system grows (linearly) with the total mass of the system. Since the
gravitational field grows, so does the “separation speed,” vsep.23 Furthermore, the gravitational
field is not constant but grows unboundedly, as 1/r when r → 0, so that the separation speed is
much larger near the gravitating center than further away from it. If the target and the probe are
both smaller than the distance between them, at the Schwarzschild distance between their centers,

rS =
2 GN mt+p

c2 , so that vsep :=

√
2GN mt+p

r

r→rS−−−→ c. (1.45)

23 This speed is often called the “escape velocity,” as it pertains to the successful launching of a projectile with a speed
that suffices for the projectile to escape from the gravitational field of a (much larger) planet. The principle is, however,
perfectly general, and applies equally to the separation of two objects after their collision.
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That is, the separation speed vsep becomes equal to the speed of light in vacuum, and no probe can
separate from the target it has hit. This result holds (both the target and the probe are “sufficiently
small”) if neither the target nor the probe has any structure larger than the distance rS as given in
equation (1.45).

Alternatively, recall that a probe may be treated as a wave with the de Broglie wavelength
λ = 2π h̄/p, owing to the quantum nature of Nature. This wavelength is smallest for ultra-
relativistic probes with pp ≈ Ep/c, so λp � 2π h̄ c/Ep. When the de Broglie wavelength becomes as
small as the Schwarzschild radius, i.e., when the probe energy grows so that its resolution equals
the Schwarzschild radius, the target “swallows” the probe and it cannot extract any information
from within a sphere of radius rS: the target+probe system now looks like a black hole:

λp ∼ rS ⇒ 2π h̄ c
Ep

∼ 2 GN (mtc2 + Ep)
c4 , (1.46a)

⇒ Ep ∼ 1
2

[√
4πM 2

P + m 2
t − mt

]
c2, (1.46b)

mt→0−−−→ Ep ∼ √
π MP c2, (1.46c)

where we used that MP =
√

h̄ c/GN [☞ Table 1.1 on p. 24]. The formal limit notation mt → 0 may
also be obtained using the leading term in the expansion of the equation (1.46a) when mtc2 � Ep,
or as the leading term in the expansion of the result (1.46b) when mt � MP. Indeed, for an ultra-
relativistic probe, Ep/c2 
 mt, mp, and pp ≈ Ep/c. (In the non-relativistic limiting case, when
Ep/c2 � mt, mp and pp ≈ √

2mpEp, the probe has insufficient resolution to approach the target
and test its structure.)

Of course, this argument extrapolates over many orders of magnitude in distances, and
is based on current understanding of gravity and quantum mechanics. However, note that the
qualitative part of the argument relies on the facts:

1. the minimal size of resolved details decreases (the resolution improves) with increasing
probe energy,

2. the distance where the “separation speed” becomes inaccessibly big increases with the total
mass of the source of gravity,

3. the mass (source of gravity) and the rest energy (measure of the ability to do work not
owing to motion) are proportional to each other.

This already implies that there exists a minimal object (system) size or distance in Nature. If we
can furthermore rely on the quantitative details of the argument, the minimal resolvable distance
of about �P ∼ 10−35 m follows unambiguously.

If Nature consists of elementary particles (which, by definition, have no constituents), then
they must seem like miniature black holes. Their event horizon24 must form a closed surface of
which no detail smaller than ∼10−35 m can be resolved. This suggests that massless elementary
particles would have to look like minimal, ∼10−35 m, spherically symmetric black holes. Massive
particles could have a bigger horizon and a more complicated shape, but again the resolvable
details must be bigger than about 10−35 m [☞ Digression 9.5 on p. 340].

Conclusion 1.5 The unknowability of the “inside” of the event horizon of elementary parti-
cles indicates that there is no sense in regarding them as ideal point-like objects. Willy-nilly,
elementary particles are extended in space.

24 The term “event horizon” denotes the border (bordering surface) in space that fully encloses a black hole, and from
within which nothing can come out because of confiningly strong gravity. It is believed that all naturally occurring black
holes are so wrapped by an event horizon; see Comment 9.4 on p. 337.
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This conflict between (1) the extrapolated results of the general theory of relativity (which de-
scribes gravity) for point-like elementary particles, and (2) quantum mechanics (whereby the points
cannot really be smaller than about 10−35 m in diameter) is of course a prediction of such a com-
bined model, and a result of the model itself. To avoid the conflict, we must leave behind some
aspects of this model of gravitating point-like quantum elementary particles, but retain enough of
it so as to continue reproducing its experimentally verified properties, for energies � 102 GeV, i.e.,
for distances � 10−18 m.

There is another (also intuitive and not formally rigorous) argument that indicates the in-
compatibility of the general theory of relativity and the quantum theory of point-like particles:
Heisenberg’s principle of indeterminacy implies that the position and the linear momentum in
the same direction cannot both be determined with infinite precision. On the other hand, in
the general theory of relativity, the presence of matter curves spacetime and so defines a class
of coordinate systems: a massive point-like particle curves spacetime in which the position of
this particle is determined with perfect precision. Furthermore, this particle is at perfect rest in
this class of coordinate systems, so that both the position and the linear momentum are de-
termined with infinite precision. This is in direct and unavoidable contradiction with quantum
theory.

— ❦ —

In turn, Conclusion 1.5 has a very important consequence: The variables with which we represent
physical objects depend on the variables with which we represent spacetime and the abstract
space of various other properties of this physical object. Thereby, for example, the wave-function
of an electron is a function of spacetime coordinates and also of numbers that determine its mass,
charge, spin, chirality. . . Recall that every function is simply a rule that assigns to every value of its
arguments – a point in the domain space – a value of its own. This value is represented as a point
in the target space, i.e., the range of the function. Since spacetime coordinates of any physical
system cannot be specified within the event horizon of that system but only up to the surface of this
horizon, it follows that the domain spaces of the functions with which we describe physical systems
are not volumes that permeate the open sets of spacetime, but the surfaces that enclose such
volumes. This insight may be argued to engender the holography principle, which was introduced
into the fundamental physics of elementary particles by Gerardus ’t Hooft and which was in the
1990s gradually built into the (super)string theory and its M-theoretical extension [☞ Chapter 11]
(first by Leonard Susskind, and then in his collaboration with Tom Banks, Willy Fischler, and
Stephen Shenker).

1.3.4 Unification: the smaller, the more similar
Technically, the incompatibility between the general theory of relativity and quantum theory for
point-like elementary particles introduces unavoidable divergences: When computing physically
measurable quantities, prediction results are obtained in the form of hopelessly divergent (indefi-
nite) mathematical expressions. By contrast, in the amalgamation of the special theory of relativity
and quantum theory, in “relativistic field theory,” formally divergent results may be removed
through the process of “renormalization.” The quantum theories of electromagnetic, weak, and
strong nuclear interactions (together with all known matter) really do include the special theory
of relativity and form a logically consistent structure.25 Developed akin to quantum electrodynam-
ics (the predictions of which are confirmed to an amazing 12 significant figures [293, 1]), the
quantum field theory of electroweak interaction describes the observed electromagnetic and weak

25 In fact, the existence of the “top” quark (which was only recently convincingly confirmed in experiments) was predicted
using so-called anomaly cancellations. That is, without the “top” quark, the Standard Model of elementary particles and
interactions would be self-contradictory!
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Figure 1.6 A logarithmic plot of coupling parameters, from 1 GeV (≈ proton’s rest energy, ≈105 times
bigger than the hydrogen atom ionization energy), to 1019 GeV, where gravity becomes confiningly
strong and point-like theories become nonsense, while string theories “pass” through a phase transition
of sorts, albeit insufficiently known so far.

nuclear interactions as well as their unification very precisely. Both the theoretical and the experi-
mental precision in both the electroweak and the strong interaction model are considerably more
humble, but the results do agree. Several models of quantum field theory have been developed
that describe the unification of the electroweak and the strong interaction [☞ Figure 1.6], but only
further experiments, starting with the LHC facility at CERN, can decide which of these unifying
models – if any – describes the “real World.”

In all of these cases, the transition regimes (the shaded areas in Figure 1.6) where a unifica-
tion happens indicate a phase transition of sorts, in the sense that the qualitative properties of the
theory are drastically different on one and the other “side” of the transition region. While these may
well be related to (World-scale) bulk-material phase transitions that have presumably happened
in the early universe, the subject of particle physics probes the related physics phenomena in indi-
vidual particle collision experiments performed at high energies – where no actual bulk-material
phase transition occurs. For example, below about 102 GeV, there is a clear distinction between
electromagnetic and weak nuclear processes, each of which can happen without the other. At en-
ergies above about 102 GeV, however, these processes mix inseparably. This situation is very similar
to the fact that electric and magnetic phenomena are well distinguished in stationary systems and
often occur one without the other, but become inseparably united and involve electromagnetic
waves when the electric charges move and create non-stationary currents.

In the case of electro-magnetic unification, whether or not electric and magnetic fields
are distinguishable depends on the speeds, taken in ratio with the speed of light in vacuum
(c ≈ 299, 792 km/s). For example, it is well known that an electrical current (flow of electric
charges) creates a magnetic field around it. The speed of the individual charged particles is typi-
cally small as compared to the speed of light in vacuum. However, the speed of momentum transfer
within that current is very close to the speed of light in vacuum. In turn, the electromagnetic
field itself adapts to the motion of electric charges – of course – at the speed of light. When
the electric charges either do not move at all or form stationary currents, the ratio of the speed
of changes in this current and the speed of light in vacuum (which is the reference parameter
here) is zero, and the electric and the magnetic fields are well distinguishable. When the electric
charges move so they do not form stationary currents, this ratio is (near or equal to) one, and the
electromagnetic field can no longer be separated into an independent electric and an independent
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magnetic field. Furthermore, non-stationary currents cause a variable magnetic field, the changes
in which create an additional electric field, the changes in which modify the magnetic field, etc.
This feedback between the electric and the magnetic field for non-stationary currents produces the
new phenomenon: electromagnetic waves, which carry away some of the energy carried by the
current.

For the electro-weak unification (“electro-magneto-weak” would be more accurate, but is too
much of a mouthful), the unifying parameter is the ratio of energies of the processes as compared
to the W± and Z0 particle masses. (Just a few years after their discovery at CERN, these particles
were routinely observed and studied; their masses are close to 102 GeV/c2.) By contrast, the mass
of the particles of light is zero; the total energy of light is entirely of kinetic nature and there
is no coordinate system in which light is at rest. Clearly, when an experiment is conducted at
energies much below about 102 GeV, real W± and Z0 particles cannot be produced and cannot
contribute to the processes we study. Weak nuclear processes then happen by exchanging virtual26

W± and Z0 particles [☞ Definition 3.5 on p. 104]. This happens owing to the Heisenberg principle
of indeterminacy and the fact (Pauli, 1933 [29, p. 334]) that the energy and the characteristic
duration of time of every process also satisfy the indeterminacy relations:

�E �τ � 1
2 h̄ . (1.47)

Roughly, during the time �τ � h̄
2�E for �E ∼ 102 GeV, a W± or a Z0 particle may be freely

produced – if it also decays within this time. The necessity that two consecutive processes (cre-
ation and decay) must happen in such a short time decreases the probability of the joint process
mediated by an intermediate W±- or Z0-boson, and this permits an unambiguous identification of
the said process as weak nuclear, rather than electromagnetic. However, when the energies in the
experiment become much bigger than 102 GeV, real W± and Z0 particles are produced with the
same probability as the electromagnetic waves (photons). Owing to charge conservation, W+- and
W−-radiation do not mix with the others, but the Z0-radiation and electromagnetic radiation do
mix, inextricably, and form new kinds of phenomena – very similar to the unification of (variable
and mutually inducing) electric and magnetic fields [☞ comparative Table 8.1 on p. 299].

A similar novel phenomenon is expected around �1015 GeV, where the electroweak and the
strong interactions tend towards having the same strength. The entire graph in Figure 1.6 on
p. 32, is, however, based on experimental data at currently available energies, �102 GeV, and so
is necessarily an extrapolation. The assumption that neither new phenomena nor new particles
will be found between ∼102 GeV and ∼1015 GeV is often called the “grand desert hypothesis.”
This follows from Ockham’s principle, whereby novelties are introduced only if necessary. The
subsequent ideas and arguments rely on this at least in part, and must be re-examined as soon
as there is compelling evidence that the “grand desert” turns out to be populated. Several so-
called Grand-Unified Theory (GUT) models have been developed attempting to sort through the
possible phenomena that could occur in this region, but in ways that leave the physics below
∼102 GeV unchanged, in agreement with the experiments performed so far. Such (and all other)
models are expected to predict at least some event that could soon be experimentally verified (or
refuted).

— ❦ —

A few quick and perhaps overdue remarks: Just what exactly do these weak and strong nuclear
interactions in fact do? Besides esoteric phenomena of particle physics, these interactions are in
fact responsible for our own existence! Electromagnetic radiation – and in particular light – is what
brings the energy from the Sun to the Earth and makes life as we know it possible. The fundamen-
tal process that produces the immense energy of our Sun is nuclear fusion, in which the nuclei of
26 In distinction from real particles, the virtual ones – by definition – cannot be directly observed.
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deuterium and tritium (two heavier isotopes of hydrogen) fuse into helium and release a neutron
and energy. The reason that there is surplus energy is due to the details of strong nuclear interac-
tions. Finally, note that nuclei of pure hydrogen would not fuse; instead, deuterium and tritium are
needed. The hydrogen nucleus is a single proton; deuterium and tritium nuclei consist of a proton
and respectively one and two neutrons – all held together by strong nuclear forces. These much
needed neutrons are all being produced in weak nuclear interactions such as the inverse β-decay,
p+ + e− → n0 + ν. These can – and indeed do – occur within stars [☞ equations (7.118)], and
also occurred in the young universe, long before the stars were formed. In addition to providing
the required fuel for (strong nuclear) fusion, weak nuclear interactions also moderate this process,
thereby preventing our Sun from burning out in one brilliant explosion.

Conclusion 1.6 Thus, by making the Sun burn in the first place, by making it burn at a
steady pace that we are familiar with, and by bringing its energy to the Earth, the strong
nuclear, the weak nuclear, and the electromagnetic interactions, respectively, bring about the
conditions on the Earth that sustain our life and our asking about it. Finally, the fourth
fundamental interaction – gravity – keeps the Earth from flying asunder and also keeps it in
a stable orbit near the Sun. Were it not for these four interactions, dear Reader, you would
not exist to read this book.

1.3.5 A shift in understanding
The relativity of Nature prevents us from thinking of space and time as two disparate “things,” and
forces us to join them into a single, undivided spacetime. The concept of simultaneity is recognized
to be relative, which then disperses the so-called paradoxes of twins/clocks, of the ladder and the
barn, of the ruler and the hole in the table, etc.

The quantumness of Nature disillusions us from thinking of “things” around us as unchanged,
and clearly separable from their environment, and forces us to think of them as determined by im-
posed circumstances. Thus, the electron may behave both as a point-like particle and as a wave –
and is in fact neither, but “something” that in appropriate circumstances may look like a parti-
cle or like a wave. Similarly, instead of talking about entangled states of two separate objects in
EPR (Einstein–Podolsky–Rosen)-type experiments, it would be wiser to talk about a single, undi-
vided state of a single system, which in certain circumstances may be interpreted as two spatially
separated sub-systems.

Besides, the quantumness of Nature indicates the importance of the Hilbert space as a very
real space in which processes occur – although neither the Hilbert space nor the unfolding of events
in it can ever be seen by unaided human eye or mind. By contrast, although the very spacetime itself
is just as “invisible,” we do see the unfolding of events in spacetime. This makes thinking about
events unfolding in spacetime intuitively easier, while thinking of events unfolding in the Hilbert
space appears to be much less natural and very counter-intuitive. That makes the quantumness of
Nature baffling.

The combination of (special-)relativistic and quantum physics is then doubly baffling and
counter-intuitive, but is no less rigorous as a scientific discipline than the familiar and intuitive clas-
sical mechanics. In fact, the most precise agreement between theoretical and experimental physics
occurs exactly in the realm of quantum field theory. For some of the characteristic and observable
quantities such as the fine structure constant and the so-called magnetic moment anomaly, the
comparison of various measurements and theoretical computations in quantum electrodynamics
agrees with experimental data to an all-time record of 12 significant figures [1, 293]!

The fundamental physics and its description of Nature – which must include both quantum
physics and general (not only special) relativity – are then even more baffling as compared to
commonplace experiences. Onward then, into this mutliply baffling journey!
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1.3.6 Exercises for Section 1.3

✎ 1.3.1 Express the value of Newton’s gravitational constant, GN = 6.674 2 × 10−11 m2

kg s , in
“particle units,” h̄xcy(MeV )z, for some (x, y, z).

✎ 1.3.2 Using the definitions in Table 1.1 on p. 24, compute the value in Planck units (suitable
powers of �P, MP and tP) of the SI units: (a) 1 m/s (speed), (b) 1 m/s2 (acceleration),
(c) 1 N s (linear momentum), (d) 1 J s (angular momentum), (e) 1 J (work and energy), and
(f) 1 W (power).

✎ 1.3.3 Using the data in Table 1.2 on p. 25, compute the MeV↔ SI conversion factors
for (a) speed, (b) angular speed, (c) acceleration, (d) angular acceleration, (e) linear
momentum, (f) angular momentum, (g) work, and (h) power.

✎ 1.3.4 Using the definitions in Table 1.1 on p. 24, compute the value in Planck units (suitable
powers of �P, MP and tP) of the SI units: (a) 1 C (charge), (b) 1 N/C (electric field), (c) 1 T
(magnetic field), (d) 1 A (electric current), (e) 1 V (voltage), and (f) 1 K (temperature).

✎ 1.3.5 Using Table 1.2 on p. 25, and the result (1.12),27 compute the MeV↔ SI conversion
factors for (a) charge, (b) electric field (from �FC = q�E), (c) magnetic field (�FM = q�v ×
�B), (d) electric current (I := dq/dt), (e) voltage, a.k.a. potential (from P = VI), and
(f) temperature (= average kinetic energy/kB).

✎ 1.3.6 Using that MP =
√

h̄ c/GN , verify that the leading term in the expansion of the re-
sult (1.46b) when mt � MP agrees with the solution of the leading term in the expansion
of the equation (1.46a) when mtc2 � Ep, i.e., with the result (1.46c).

✎ 1.3.7 Considering that MP = 2.18× 10−8 kg does not seem very large in everyday terms,
obtain the leading term in the expansion of the result (1.46b) when mt 
 MP, and compute
the corresponding range of values for Ep. How feasible is it to provide an elementary particle
probe with the lowest such energy?

27 Recall that the speed of light c = 1/
√
ε0μ0, and that the Boltzmann constant kB = 1.38× 10−23 J/K is a conversion factor

between units of energy and units of temperature, which statistical physics defines as average translational kinetic
energy of molecules in some large ensemble, while other forms of energy of the molecules (vibrational, rotational,
binding. . . ) contribute to the so-called internal energy.





2
Fundamental physics: elementary
particles and processes
This chapter serves to familiarize the Student with the physics of elementary particles, where new
concepts are introduced in their historical context and without a precise, technical definition. The
subsequent chapters will clarify these concepts with more details, examples and applications.

2.1 The subject matter
The task of elementary particle physics is explaining of what and how the World is fundamen-
tally made. Amazingly, and almost exactly in a Democritean sense, substance (tangible matter)
comprises tiny particles, and our task includes a coherent classification:

1. both a systematic inventory of these “elementary particles,”
2. and an understanding of the “elementary processes” between them,

i.e., their “fundamental interactions.”

In principle, these fundamental interactions determine how collections of otherwise independent
elementary particles bind into ever larger structures, to macroscopical and even astronomical pro-
portions. However, all except the teeniest in this hierarchy of structures are outside the scope of
this subject.

One must actively keep in mind that the seemingly homogeneous and continuous substance
consists of only a few types of particles, amongst which each one occupies but a tiny volume,
and between which most of the space is practically empty. Less than a trillionth of the volume of
any given substance is occupied by the particles forming the substance. Corresponding to their
tininess, these particles come in fantastic numbers, and these countless copies are all identical. Not
only “practically equal,” but two particles of the same kind really cannot possibly be distinguished
from one another: any one of the 1029−30 electrons in our body is identical and exchangeable with
any of the other electrons. It is absolutely impossible to distinguish one electron from another,
except by the state in which an electron is and by its interactions with the rest of the considered
system. The same holds for protons and neutrons.

We will see that elementary particles are determined by their types of interaction with other
particles. The seeming void between particles is in fact filled with interaction fields: in ordinary
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substances, this is the electromagnetic field. In this sense, it is incorrect to focus exclusively on
particles, however elementary. However, the whole image of particles is just a picturesque model,
a caricature; we must recall the quantum nature of Nature, and the particle–wave duality. Ele-
mentary particles must be thought of as neither particles nor waves, but as objects that in certain
circumstances appear as very tiny and precisely localized particles, and in other circumstances
look like dispersed, continuous waves. Similarly, the electromagnetic field is an object that in cer-
tain circumstances behaves as a continuous and spatially very much extended wave, but in other
circumstances it looks like a well-localized elementary particle, the photon. Thus, there is no con-
ceptual difference between the objects that we most often encounter as either particles, waves or
fields; in field theory, all objects are represented by fields, the quanta of which may be particles.

— ❦ —

We manipulate macroscopic objects directly. Thus, Coulomb could experiment with mica spheres
suspended by silk thread, and Cavendish with lead spheres suspended on a torsion swing. Particle
physicists, however, cannot catch an electron with tweezers or string up a few protons on a thread.
Experiments in elementary particle physics are thus reduced to studying (1) collisions and scatter-
ing,1 (2) decays, and (3) bound states of elementary particles. The laws and rules of interactions
are then reconstructed from the results of such studies.

As is well known, if any relative speed of any two sub-systems is comparable with the speed
of light in vacuum, one must use relativistic mechanics. Also, if the Hamilton action2 for a given
process is comparable with h̄, one must use quantum mechanics. In our case, we have to use
physics that is both relativistic and quantum, i.e., quantum field theory. On the other hand, in an
introduction such as this, we do not have to introduce the whole mathematical–technical apparatus
of field theory, but rely as much as possible on picturesque models and analysis that is conceptually
not much more demanding than the usual mathematical apparatus of non-relativistic quantum
mechanics.

Some of the characteristics of elementary particle physics are essentially relativistic effects,
while other properties stem from quantumness. For example, the 4-vector of energy and momen-
tum (henceforth, “4-momentum”) is always conserved in so-called real states – i.e., states that may
be observed and measured, but mass is not. On the other hand, in virtual states the 4-momentum
conservation laws need not hold; see Section 2.4.2. Also, Nature’s relativity permits the existence
of particles with identically vanishing mass: The particle of the electromagnetic field, the photon,
makes no sense in non-relativistic physics; see p. 94. Moreover, the combination of relativity and
quantum theory leads to results that can be obtained in neither the theory of relativity nor quantum
mechanics. The existence of antiparticles, the proof of Pauli’s exclusion principle (1925) and the
so-called spin-statistics theorem and the so-called “CPT-theorem” all stem from the combination
of quantum and relativistic, and all relativistic quantum models must include them.

By about 1978, the so-called Standard Model had taken form in elementary particle physics;
it encompasses all phenomena involving the elementary particles and their interactions as known
to date, and is in full agreement with the experimental data observed in the last three decades;
see [307, 221, 422, 159, 423, 538, 250, 243] and also [458] for a first-person account of the
1960/70s excitements from an experimentalist’s vantage point. Our main goal is to acquaint
ourselves with that Standard Model and the basic principles of its structure, such as the gauge

1 While the terms “collision” and “scattering” are often used interchangeably, the former will here tend to refer to the
physical event of colliding or its bringing about, while the latter will tend to refer to the process and its results, often
focusing on the individual particles involved, and often being inelastic.

2 This is indeed Hamilton’s principal function, the time-integral of the Lagrangian, familiar to Students from classical
physics, where the integrand determines the physical system, and the boundary data and limits of integration specify
the process considered.
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principle, which is at the foundation of all fundamental interactions and links symmetries3 with
conservation laws via Noether’s theorem.

That is, here we are interested in the theoretical physics of elementary particles and their
elementary processes, via fundamental interactions. However, we must first, even if briefly, turn
to the experimental aspects – to know what it is that we have set out to explore and describe
theoretically.

2.2 Elementary particles: detection and predisposition in experiments

2.2.1 Production
Most instrumentation used in experimental elementary particle physics is familiar from the
literature in nuclear physics, so only a brief review is given here.

Producing electrons for laboratory use is almost trivial: Metals, when heated or irradiated
with UV light, emit electrons, which are then easy to “catch” and direct with electric and magnetic
fields. Protons – when needed, say, in a beam – may be produced by ionizing hydrogen. Since
protons are charged, they can be directed with electric and magnetic fields, just as the electrons.
On the other hand, since the electron mass is ∼1, 836 times smaller than the proton mass, the
electrons may be neglected for many experimental purposes, so that a tank full of hydrogen is in
practice a tank full of protons. Of course, many more particles were discovered in the past century,
and these particles stem, mainly, from three sources:

Cosmic rays and their interaction with the atmosphere. It is not possible to identify the particular
process at the source of any particular cosmic ray, nor do we know all the types of processes
that create them; we do know, however, that particles of even very high energy incessantly
bombard the Earth and collide with the atomic nuclei of atmospheric gases. Particles resulting
from these collisions further collide with atomic nuclei of atmospheric gases, in cascading
collisions. Clearly, this way of producing elementary particles is completely uncontrolled and
subject to happenstance. However, it is a source of extremely high-energy particles, which
we otherwise cannot produce in the lab. Besides, this source is also completely free.

Nuclear reactors and sources Atomic nuclei in radioactive materials spontaneously decay and in
such processes not infrequently emit neutrons, α-particles (helium atomic nuclei), β-particles
(electrons or positrons, depending on the source) and γ-particles (photons). Also, irradiating
materials with so-called synchrotron (electromagnetic) radiation frequently either directly
produces new particles, or makes those materials radioactive.

Particle accelerators and colliders The basic idea is to direct and accelerate previously produced
particles along well-established paths, and then either bombard a target with these particles,
or direct two such beams at one another.4 Let us mention here Van de Graaff’s machine,
Cockcroft and Walton’s linear accelerator, Lawrence’s cyclotron, and finally Wildröe and Tou-
schek’s betatron. In this last device, oppositely charged particles are accelerated in opposite
directions and within nearly identical and approximately circular paths. These then collide
at the intersections of these paths; this is the basic idea in contemporary colliders. Since par-
ticles are directed and accelerated using electric and magnetic fields, this clearly applies only
to charged particles. In contemporary practice, particles are mostly directed along circular
paths – following huge circular tunnels of miles-long radii. Thus, particles that “missed” in
one “turn” get to collide again in the next one. As we will show in Section 3.2.2, the energy

3 Symmetries have the mathematical structure of groups, so the mathematical subject of group theory turns out to be
very useful in studying and using this structure. Appendix A provides a telegraphical review of the most needed results
from this mathematical subject.

4 Apparati for colliding beams of particles against each other are called colliders.
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available in such collisions is “used” for creating new particles. Creation of lighter particles of
course requires less energy, so that lighter particles are produced and discovered more easily,
and the heavier ones are harder – or have not yet been created/discovered.

2.2.2 Nomenclature
In 1899, after having become known for his “investigations into the disintegration of elements
and the chemistry of radioactive substances” (for which he would be awarded the Nobel Prize in
Chemistry in 1908), Ernest Rutherford classified the radioactivity emitted by natural samples as α-
and β-rays, distinguishing them by their penetrating power. Four years later, he found that radium,
discovered in 1900 by Paul Villard, emitted a type of radiation that surpassed both α- and β-rays
in penetrating power and named it γ-rays. By this time, he had (1) explaned that radioactivity in
natural samples is caused by spontaneous disintegration of the atoms of the sample, (2) identified
the exponential decay law and its application to use the constant decay rate as a “clock,” and
(3) identified the particles of α-rays as probably fully ionized helium atoms, i.e., helium nuclei. His
classification was merely refined over the years and is still in use:

α-rays and particles are helium nuclei and consist of two protons and two neutrons.
β-rays and particles may be either electrons (also known as cathode rays), or positrons, depending

on the process that created them. For example, the negatively charged cathode has a surplus
of electrons, which a strong electric field may be able to free from the cathode and direct as a
cathode ray. In nuclear processes, the so-called weak interaction can produce both electrons
(in the β-decay of the neutron) and positrons (in the β-decay of the proton5), which are then
emitted from the source material.

Table 2.1 The names of various bands of electromagnetic radiation

Name Frequencies Wavelength Energy

γ-rays > 30 EHz < 10 pm > 124 keV
Hard X-rays 3 – 30 EHz 10 – 100 pm 12.4 – 124 keV
Medium X-rays 0.3 – 3 EHz 0.1 – 1 nm 1.24 – 12.4 keV
Soft X-rays 30 – 300 PHz 1 – 10 nm 0.124 – 1.24 keV
Ultraviolet rays 0.79 – 30 PHz 10 – 380 nm 3.27 – 124 eV
Visible light 400 – 790 THz 380 – 750 nm 1.65 – 3.27 eV
Near infrared 30 – 400 THz 0.75 – 10 µm 0.124 – 1.65 meV
Medium infrared 3 – 30 THz 10 – 100 µm 12.4 – 124 meV
Far infrared 0.3 – 3 THz 0.1 – 1 mm 1.24 – 12.4 meV
Radio and micro-waves < 0.3 THz > 1 mm < 1.24 meV
Standard prefixes: E = 1018, P = 1015, T = 1012, k = 103, m = 10−3, µ = 10−6, n = 10−9, p = 10−12.

γ-rays and particles (photons) are the known quanta of electromagnetic radiation. More precisely,
Table 2.1 shows the division of the electromagnetic radiation spectrum and names the various
bands. Traditionally, “γ-rays” meant electromagnetic radiation that stems from spontaneous
nuclear γ-decay, while “X- or Röntgen-rays” referred to electromagnetic radiation produced
artificially. Initially, γ-rays were meant to denote electromagnetic radiation with energies
higher than in X-rays, but contemporary accelerators produce X-rays with energies far above
the energy of typical γ-rays, and these two bands overlap. By tradition and for simplicity,

5 A free proton cannot decay into a positron and a neutron because of energy conservation. [ ✎Verify.]
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high-energy electromagnetic radiation is called γ-radiation regardless of its origin. In fact,
“γ” is used as a symbol for the photon, the particle (quantum) of electromagnetic radiation
in general and regardless of its frequency (energy) and wavelength.

Independently of this nomenclature, particles in relativistic physics are also classified
depending on their mass and possible speeds of propagation, as compared with photons:

Tardion is a particle that in vacuum moves slower than light and has a real and positive mass; all
known matter (and antimatter!) consists of tardions; see below.

Luxon is a particle that moves in vacuum at the speed of light in vacuum, c, and has no mass. All
particles mediating gauge interactions that correspond to unbroken gauge symmetries are
luxons.

Tachyon is a particle that moves in vacuum faster than light, and has an imaginary mass. The
emergence of tachyons indicates that the ground state of the system (i.e., vacuum) is not
stable [☞ Digression 7.1 on p. 261].

This classification refers to the Lorentz-invariant mass, defined precisely in Section 3.1.3.

2.2.3 Detection

Particle detection relies on the interaction between the particle and its environment, so that all
detectors are more or less selective.

Geiger counter detects ionizing radiation, usually β- and γ-radiation, but there exist models that
can also detect α-particles. It consists of a tube filled with an inert gas (usually helium, neon
or argon, with halogen additives) that becomes conducting when radiation (partially) ionizes
it. The spark created between the electrodes when the gas becomes conducting because of
ionization provides a signal that is amplified by a cascading array of electrodes. The so-
produced current is usually shown on a galvanometer, a pilot-lamp or by a speaker – hence
the characteristic crackling. As the density of the gas in the tube is relatively small, very high-
energy particles pass through without detectable interaction.

Neutrons are neutral and by themselves do not trigger the Geiger counter; however, they
can be detected indirectly, by using boron trifluoride and a moderator that slows neutrons
and in the process creates (charged and easily detectable) α-particles.

Scintillation counter consists of a transparent crystal and a fluorescent material that reacts to
ionizing radiation; a sensitive photo-multiplier is used to amplify the signal.

Cherenkov counter is based on the fact that there exist materials through which some particles
can travel faster than light, albeit slower than the speed of light in vacuum. Such particles
also interact with this material and emit electromagnetic radiation, which then forms a cone-
shaped shock wave with the opening angle θc = arccos(c/nv), where v is the speed of the
particles and n is the refraction index of this material. This effect was discovered by Pavel
Cherenkov, while Ilja Frank and Igor Tamm explained it theoretically, for which the three of
them shared the 1958 Nobel Prize.

Cloud chamber also known as the Wilson chamber, after Charles T. R. Wilson, is filled with super-
cooled vapor (water or alcohol), in which the passing particle engenders condensation. This
forms a sequence of condensed droplets that faithfully trace the particle’s passage.

Bubble chamber (invented by Donald Glaser) is filled with superheated liquid (usually liquid
hydrogen at −253 ◦C, propane or some other appropriate liquid), in which the passing par-
ticle engenders evaporation. As in the (Wilson) cloud chamber, this forms a sequence of
evaporated bubbles that faithfully trace the particle’s passage.
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Spark chamber (invented by Shuji Fukui and Sigenori Miyamoto) is woven through with wires
that are kept at various voltages, in very short (∼10 ns) impulses. When a particle passes
between two wires and ionizes the gas between the wires, the gas (specially chosen for
this purpose, usually an argon–methane mixture) becomes conducting and a spark jumps
between the wires; the brevity of the voltage pulses prevents an avalanche of sparks. The
spatial distribution and time sequence of the sparks faithfully trace the particle’s passage and
also depict its speed.

Proportional chamber is Georges Charpak’s modification of the spark chamber that enables mea-
surement of the quantity of ionized gas, which is proportional (whence the name) to the
kinetic energy of the particle that produced the ionization. Charpak received the 1992 Nobel
Prize for this invention.

Photographic emulsion contains molecules of silver halide, which react with passing charged par-
ticles. When the film is processed afterwards, the trace in the emulsion faithfully depicts
the particles’ paths. Clearly, this method captures faithfully only two-dimensional events that
happen to be coplanar with the emulsion.

2.2.4 Predisposition in experiments
Experiments in elementary particle physics grew from the relatively humble confines of individuals’
labs, such as Rutherford’s in Manchester at the turn of the twentieth century, into humongous
multi-national installations such as CERN. This evolution of experimental physics has side-effects
that in many ways limit the scope, variety and intellectual freedom of the experiments and so limit
the advancement of elementary particle physics, and even physics in general.

Even in principle, experiments are performed to test one concrete hypothesis or another,
and hypotheses are of course limited by the imagination of the physicists who design the
experiments. This creates a selection effect in experimental science: On one hand, we can
derive/compute a result from a given concrete theoretical model and then design an experi-
ment to test this result. Or, we can re-test some earlier result, but to a greater precision than
was possible up to that point. Not infrequently, the crucial improvements in such experiments
require an ingenuity and inspiration that is rightfully impressive and even awesome. How-
ever, the fact remains that such experiments – for the most part – “only” test existing/known
theory.

On the other hand, experiments may also be designed to test hypotheses that are inspired
by science fantasy or even child’s play, which start with “what if . . . ” questions, where the ellipses
represents a hypothesis not limited by any concrete result from any concrete theoretical model. One
would expect such experiments to have a much larger chance of discovering wholly unexpected
effects and phenomena. To list but a few examples:

1. Thales (of Miletus, c. 620–625 BC!) noted that, after being rubbed against fur, amber attracts
particles of dust.

2. The more systematic experiments of Alessandro Volta (1745–1827) showed that frog legs
were induced to twitch by poking them with wires of certain metals, although the legs were
cut off from the frogs and so were evidently dead.

3. Hans Christian Ørsted (1777–1851) observed that the magnetic compass needle changes its
direction when brought near a wire through which a current is passing.

4. Henri Becquerel (1852–1908) discovered that certain (radioactive) materials affect photo-
graphic material via means wholly invisible to the human eye.

Many discoveries have occurred exactly through such “unbridled” and even entirely acciden-
tal activity. Had it not been for such spontaneously freewheeling experiments, who knows if
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electrodynamics would ever have developed into the theoretical model (and its ubiquitous prac-
tical applications!) that we know today? It is certain, however, that the history of physics would
have turned out very differently.

Returning to elementary particle physics: evidently, such “unbridled” experiments were pos-
sible to design up to the mid-twentieth century, and there did indeed occur some completely
accidental discoveries. However, in a situation where new discoveries – such as are expected of
the LHC experiment at CERN – require budgets, logistics and political agreements of dozens of
countries and over several years and even decades, for “unbridled” and “accidental” experiment-
ing there is no chance. Even when these big experiments are very carefully and diligently designed,
the socio-political climate can cancel them – or worse, can nix them half-way through (as happened
with the Superconducting Super Collider, in 1993) – because of reasons that are not directly related
to physics and research.

Conclusion 2.1 This very nonlinear feedback between experimental physics, finance and the
socio-political climate amplifies the selection effect, and produces an ever stronger and lim-
iting influence – a predisposition – on the types of experiments that we can at least hope
to perform. It is easily possible that this is one of the most important factors in the evi-
dent slow-down in experimental physics discoveries during the last quarter of the twentieth
century and the first decade of the third millennium.

As it is hard to believe that the financial and socio-political aspects will radically improve,
experimental elementary particle physics must adapt if it is to survive; hopefully, by means of
some radically new and clever (financially and socio-politically less limited) methodology [☞ also
Digression 1.1 on p. 9].

2.3 A historical inventory of the fundamental ingredients of the World
The Democritean6 idea of the smallest, indivisible constituents of the World was revived as the
idea that there exists a smallest quantity of every chemical substance that retains the chemical
properties unchanged. Carefully following the proportions in which chemical substances interact,
chemists have established the existence of molecules and atoms, and even estimated their size,
∼ 10−10 m. The tininess of the molecules and atoms reciprocally implies their enormous number in
macroscopically “normal” quantities of such substances. For example,

there are ≈ 6.69 × 1026 molecules in a (2 dl) glass of water. (2.1)

Molecules were known to consist of atoms, and – within the methods and techniques of nineteenth
century chemistry – atoms are really indivisible: ἀτομος is ancient Greek for “uncuttable.”

2.3.1 The electron
In 1897, Joseph J. Thomson showed that atoms are not indivisible, and that a much smaller electron
may be extracted from them: He showed that the cathode rays may be bent using electric and
magnetic fields. The deflection in the electric field depends only on the electric charge of the
particles that form the cathode ray, and the deflection in the magnetic field depends both on

6 D. Griffiths [243] refers to Democritus as a metaphysicist, and rightly so: many ancient Greek philosophers’ teachings
have reached us as “armchair philosophy” and with no reference to experimental data in support. We thus carefully
ascribe the scientific idea of atoms to the nineteenth century chemists, but the inspiration for that worldview to the
philosophy of Democritus and Leucippus. It is worth noting that these Democritean ideas have spread mostly by way of
the Latin epic De rerum natura [Titus Lucretius Carus, first century BC], which has been fully preserved till today. In six
books, it presents the naturalist philosophy of the ancient Greek philosopher Epicurus, according to which the World
consists of atoms that move in otherwise empty space.
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the electric charge and on the particle speed. Thus, by manipulating the electric and the magnetic
fields through which he let the cathode rays pass, Thomson determined that the ratio of the electric
charge to the mass of the particles that form the cathode ray is several thousand times larger than
the same ratio for any then known ion. It follows that cathode rays consist of particles of which
either the electric charge is several thousand times larger, or the mass is several thousand times
smaller than those of the then known ions.

Digression 2.1 If a particle enters with the speed v, in the direction of the positive x-axis,
into a region with a constant electric field �E = E0 êy and a constant magnetic field
�B = B0 êz, it is affected by the Lorentz force

�F = q �E + q�v × �B = q E0 êy + q v B0 (êx × êz) = q
(

E0 − v B0

)
êy. (2.2a)

If the particle does not deflect from its straight path, it follows that the total force
vanishes, from which it follows that

v =
E0

B0
. (2.2b)

If we now switch the electric field off, leaving the particle to follow a circular path
of radius R, it follows that the magnetic (Lorentz) force provides the centripetal
acceleration, so

q v B0 = m
v2

R
⇒ q

m
=

v
B0 R

=
E0

B 2
0 R

. (2.2c)

Between the two possible interpretations, the one stating that cathode rays consist of particles
smaller than atoms seemed much more reasonable to Thomson. He referred to these particles
as corpuscles and to their electric charge as the electron, but the latter name became universally
accepted for the particles themselves.

Digression 2.2 Ironically, Walter Kaufmann (Berlin, Germany) had performed the
same experiments as J. J. Thomson – at about the same time and more precisely! How-
ever, he did not leap to the same conclusion as Thomson. Adhering to the philosophical
(epistemological) doctrine of positivism,7 he could/would not conceive of the explana-
tion in Democritean atomistic terms, explaining the cathode ray as a beam of particles
too little to observe [553].

2.3.2 The proton
Since atoms were known to be electrically neutral, it followed that atoms consist of electrons and a
positive part that is thousands of times more massive than electrons. The simplest supposition was
that this positive part fills the volume of each atom and that the electrons are embedded within
this positively charged mass; this was J. J. Thomson’s so-called plum pudding model.

7 Roughly, positivism restricts science to only address directly observable phenomena and discuss them only in terms of
directly observable quantities.
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In contrast, Ernest Rutherford8 had, with his students Hans Geiger and Ernest Marsden,
performed an epoch-making experiment in 1909: Bombarding a thin golden foil with α-particles,
it was shown that atoms of gold (and so also of all other elements) are mostly empty. In 1911,
Rutherford derived his classical formula, which is easy to rewrite into a contemporary form:

dσ
dΩ

=
( e2/4πε0

2mαv 2
0

)2 1
sin4(θ/2)

e2
4πε0

→αe h̄ c
−−−−−−−→

( αe h̄ c
2mαv 2

0

)2 1
sin4(θ/2)

, (2.3)

where αe =
e2

(4πε0)h̄ c
is the fine structure constant, mα the α-particle mass, v0 their speed of

approach to the foil, and θ the angle of deflection from the original direction of motion. The ratio
dσ
dΩ

is called the differential cross-section, and gives the probability distribution as a function of the
probe’s deflection angle θ. Besides, α-particles are positively charged, and owing to the Coulomb
repulsion can approach the positively electrically charged portion of the atom only to a distance b,
which is determined from equating the energies:

1
2 mα v2 =

1
4πε0

qAu qα
b

⇒ b =
1

4πε0

2qAu qα
mαv2 , (2.4)

where qAu and qα are the electric charges of the positive part of the gold atom and the α-particles.
Direct measurements show that the minimal value for b was around 2.7 × 10−14 m, which is three
to four orders of magnitude smaller than the size of the gold atom.

These initially established characteristics of the α-particle scattering pattern clearly “mapped”
the Coulomb repulsive force field of the positively charged parts of the gold atom. Further exper-
iments and more detailed analysis of this α-particle scattering pattern during the next decade
managed to obtain indications of non-Coulomb scattering and so establish that the positively
charged part of the gold atom is localized within a radius of only about 3.5 × 10−15 m.

This gave rise to the so-called planetary model of the atom, in which all atoms have a pos-
itively charged nucleus, of a radius ∼10−15 m, around which electrons revolve in orbits of radii
∼10−10 m. The nucleus of the simplest atom, hydrogen, was named proton by Rutherford.

Having obtained his PhD in May 1911 and spent six months at Cambridge working with
J. J. Thomson, Niels Bohr came to the University of Manchester in May 1912 to work with Ruther-
ford. By 1913, he had postulated that the electron’s angular momentum in these orbits is limited to
integral multiples of a constant, h̄. With this ad hoc quantization, Bohr successfully computed not
only the binding energies of the electron in the hydrogen atom, but also derived a general formula
for the wavelengths of the photons emitted in transitions, and which was in full agreement with
the observed series in the line spectra named after Balmer, Lyman, Paschen, etc.

Digression 2.3 In the last decades of the twentieth century it became clear that the
integrality of the angular momentum in atoms of the hydrogen type – Bohr’s ad hoc
postulate – is also the essential characteristic that stabilizes atomic orbitals, and in fact a
concrete manifestation of a general principle. The modern understanding of theoretical
physics uses the language of geometry and topology; topological invariants are, roughly,

8 Rutherford was J. J. Thomson’s graduate student at Cambridge, but these atomic nuclei experiments were designed
and conducted (a decade after Thomson’s) at the University of Manchester, where Rutherford was chair of physics from
1907 – after eight years at McGill University in Canada during which he worked on radioactive materials and for which
he was awarded the 1908 Nobel Prize in Chemistry. A decade later, in 1919, Rutherford succeeded Thomson as the
director of the Cavendish Laboratory at Cambridge.
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quantities that depend on integers in a critical way, so that invariance follows from the
impossibility of a continuous change of these integral characteristic quantities.

In retrospect then, with the benefit of hindsight, we may conclude that Bohr’s pos-
tulate must be accepted because it stabilizes the atomic orbitals. On the other hand, it
may in turn be explained by (reduced to) the de Broglie particle–wave duality. [ ✎Why?]

By 1917, Rutherford’s experiments had shown that atoms can split in collisions, and by
1932, Rutherford and his students John Cockroft and Ernest Walton had developed experimental
techniques to split some atoms in a fully controlled fashion.

The “natural” assumption that atomic nuclei then consist of just the right number of protons
to neutralize the total charge of the electrons that are in orbit around that particular nucleus,
however, did not find support in experimental data: Even in the late nineteenth century, it was
known that the next atom by mass, the helium atom, has two electrons, but a mass that is not
twice but fourfold larger than the hydrogen atom. Lithium is the next element, with three electrons,
but the mass of its atom is six or seven times bigger than that of the hydrogen atom. This exemplifies
the tendency of atoms to be two or more times heavier than the product of their atomic number in
the periodic table and the mass of the hydrogen atom.

2.3.3 The neutron
The disproportionally larger masses of atomic nuclei were explained in 1932, when James Chad-
wick (Rutherford’s student) discovered that atomic nuclei contain another type of particle, besides
protons. As that other kind of particle is neutral, he called them neutrons. Being the building blocks
of nuclei, protons and neutrons are collectively called nucleons.

Also, the existence of neutrons helped explain the mismatch in many heavier nuclei: it
was known that the nuclear masses are generally (for the first few rows in the periodic table)
about twice as large as the electric charge of the nucleus. This induced the supposition that
nuclei are composed of twice as many protons as necessary to cancel the charge of the orbit-
ing electrons, and that the surplus of positive charge in the nuclei is neutralized by additional
electrons that are confined to the nucleus. However, it was also known that protons and elec-
trons have an intrinsic angular momentum (spin) of 1

2 h̄. In many nuclei the total sum of angular
momenta from both the protons and the electrons – both those in the ∼10−10 m orbits and
those (hypothetical ones) inside the nuclei – did not agree with experimental data on angular
momenta.

For example, nitrogen-14 would in this model have 14 protons and 7 electrons in the nucleus,
and 7 electrons in orbit, a total of 28 spin- 1

2 particles. The total angular momentum of nitrogen-
14 would then have to be an integral multiple of h̄. By contrast, the measured value of the total
angular momentum of nitrogen-14 atoms is always a half-integral multiple of h̄. The discovery
of the neutron made it clear that the nitrogen-14 nucleus consists of 7 protons and 7 neutrons,
which guarantees the total angular momentum of the nucleus to be an integral multiple of h̄ (and
half-integral for the whole atom), in agreement with all observations.

Conclusion 2.2 In hindsight, the 1932 theory of elementary particles now seems fantas-
tically simple: The World consisted of electrons , protons and neutrons , it was already
known that the first two of these interacted by exchanging photons , and it “only” re-
mained to figure out how these particles form the bigger structures: atoms, molecules, etc.
Of course, that turned out to be a very naive point of view, and as we will soon see, one that
is rather far from the full picture.
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2.3.4 The photon
Newton’s original idea that light consists of corpuscles did not stand the test of experiments of his
day: By the twentieth century, the wave nature of light was fully obvious. This implied the same
wave-like nature for all the different types of electromagnetic radiation, in the spectrum of which
the visible light occupies but a tiny region.

True to our leitmotif from the introductory Section 1.1.1, the twentieth century began with a
systematic demolition of this image: At the turn of the nineteenth into the twentieth century, Max
Planck studied the problem of the so-called ultraviolet catastrophe. Classical statistical physics had
up to that point in time perfectly explained all known thermodynamic processes. However, its ap-
plication to electromagnetic waves emitted by all hot objects, such as a piece of ember or a star,
produced nonsense – that the total power of the emitted radiation is infinite, as well as that the ra-
diation intensity grows unboundedly with growing frequency. Experimental data with no exception
show that the intensity does grow with frequency, but only up to a particular maximum (propor-
tional to the temperature of the hot object) and decays thereafter. Also, it is patently obvious that
the total power emitted by a hot object must be finite.

In 1900, Planck showed that the ultraviolet catastrophe may be avoided and the experimen-
tally known spectra may be explained theoretically – if we assume that hot objects emit radiation
in “packets,” the action (roughly, energy times the duration of time) of which is an integral mul-
tiple of a constant, h – soon enough called the Planck constant. No other viable resolution of this
problem has been found since.

In 1905, Albert Einstein showed that the photoelectric effect unambiguously indicates that
electrons also absorb electromagnetic radiation in the same “packets,” with identically(!) the same
constant h. From this, Einstein concluded that not only is electromagnetic radiation both emit-
ted and absorbed in such “packets,” but that it also exists only in the form of such packets. This
revolutionary idea encountered enormous resistance: Even a decade later and its quantal emis-
sion and absorption notwithstanding, most physicists agreed that electromagnetic radiation was
nevertheless of wave-like nature.

In 1910, Peter Debye proved that Planck’s result follows from supposing that the Fourier
modes of the electromagnetic field have energies that are integral multiples of the hν product.
Nevertheless, only 15 years after that (in 1925, by which time the quantum nature of the electro-
magnetic radiation was largely accepted) had Max Born, Werner Heisenberg and Pascual Jordan
correctly interpreted the electromagnetic field Fourier mode of energy nhν as n particles with
energy hν each.

In the interim, Arthur H. Compton showed in 1923 that Einstein’s claim of the quantum na-
ture of electromagnetic radiation is the only known one that successfully explains the scattering of
visible light and “soft” X-rays on free electrons. Compton showed that the analysis of the scattering
as a collision of particles of light with electrons – by using the 4-momentum conservation laws –
gives the formula that today bears his name:

λ′ = λ+ λc(1 − cos θ), λc =
h

m c
=

2π h̄
m c

, (2.5)

where λc is the so-called Compton wavelength for a particle of mass m. Compton’s original analysis
was meant for electrons, m = me, but it is obvious that the formula applies to the scattering of elec-
tromagnetic radiation on any free charged particle; see Exercise 2.4.2. The classical wave analysis
of the scattering of electromagnetic radiation from charged particles, the so-called Thomson scat-
tering, predicts a change in the radiation wavelength for sufficient radiation intensity. However,
when the intensity is too small, Thomson’s effect vanishes. By contrast, Compton’s effect gives the
correct change in the wavelength of the scattered photon regardless of the radiation intensity, and
even for a single photon of energy Eγ = 2π h̄ν = 2π h̄ c/λ.
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The name photon itself was given to the particles of light by the chemist Gilbert Lewis, as
late as 1926, together with his proposal that photons can be neither destroyed nor created; the
details of Lewis’s proposal proved not to be what Nature has to offer, but the name stuck. Niels
Bohr, Hendrik Kramers and John Slater as late as 1924 tried to “save” the non-corpuscular nature
of the electromagnetic field, by proposing the so-called “BKS model” [70], which required that:

1. energy and momentum are conserved only in the average, but not in processes where a
single charged elementary particle absorbs or emits electromagnetic radiation;

2. causality should not hold in such elementary processes.

The BKS model was swiftly given a “decent burial” [406], but inspired Werner Heisenberg in 1925
to co-develop with Max Born and Pascual Jordan the so-called “matrix mechanics” [547]. Also,
Einstein received the Nobel Prize only in 1921 “for his services to theoretical physics, and especially
for his discovery of the law of the photoelectric effect” – and not for the quantal understanding
of light. It thus took over a quarter of a century from Planck’s original hypothesis for physicists to
accept the quantum nature of light.

2.3.5 Duality and locality
In 1924, de Broglie defended his doctoral dissertation with the fundamental idea of the duality
between particles and waves (for which he received the 1929 Nobel Prize), whereby every particle
of momentum �p may be represented by a wave of

wavelength λ =
h
|�p| , i.e., wave-vector �k =

h
�p 2�p, (2.6)

and vice versa. Thus, by about 1926, accepting the particle-like nature of light no longer im-
plied abandoning the wave-like nature, but accepting a more general view whereby the objects
we call electron, proton, neutron, photon, etc., under certain circumstances behave as particles,
but as waves under other circumstances. We will see later, combining quantum theory and the
special theory of relativity in field theory, all these objects may be unambiguously represented by
appropriate fields, of which “particles” and “waves” are certain limiting forms.

— ❦ —

The quantum nature of electromagnetic radiation was at first very hard to accept, and even then
mostly owing to the practical ease in explaining Compton’s effect. It turns out, however, that such
an understanding of electromagnetic radiation has a very deep consequence regarding the essential
understanding of the fundamental electromagnetic interaction – and following this template, later,
also the other interactions.

The classical understanding of the interaction between two charged bodies relies on the idea
that each charged particle creates around itself an electric field. Then, on any other charged particle
probing this field there acts a force equal to the product of the probing charge and the electric field
being probed. This electric field then simply equals the Coulomb force per unit probing charge. By
its definition, the electric field is thus a crutch for predicting the Coulomb force – which then acts at
a distance. The role of the magnetic field is, in this classical understanding of the electromagnetic
interaction, conceptually identical, and their sum gives the full Lorentz force.

One might argue that this action at a distance does not literally contradict the special theory
of relativity, according to which all information propagates locally, from a point to another in a
continuous space and at most at the speed of light in vacuum. That is, the establishing and all
changes in this classical electromagnetic field travel at the speed of light in vacuum or slower
than that when traversing a substance that interacts with the electromagnetic field. However, once
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established, the Coulomb field instantaneously produces the force upon a test charge, regardless
of how far the test charge is from the source of the Coulomb field. It is this assumed instantaneity
that does contradict the fundamental idea of locality, which is in turn woven into the special theory
of relativity. Thus, classical field theory in fact does incorporate a conceptual contradiction.

The quantum nature of light replaces the concept of an everywhere present electromag-
netic field (that instantaneously produces a force at a distance) with the concept wherein charged
particles constantly emit and re-absorb photons, and this continual exchange of photons be-
tween two charged particles mediates the electromagnetic interaction between the two charges.
The elementary interaction here is a charged particle emitting or absorbing a photon. Then,
(1) a charged particle at some point emits a photon, (2) which travels at the speed of light
in vacuum to another charged particle, (3) which then absorbs it. This photon has thereby
mediated the interaction between the two charged particles. As this mediating photon can-
not possibly be observed without changing the interaction it mediates, it is a virtual particle.
The 4-momentum conservation laws cannot be applied to it, since neither energy nor momen-
tum can be observed and measured so as to check. Therefore, there may well be an infinite
number of emitted and absorbed virtual mediating photons, and only their combined effect is
observed as the effective interaction between the two charged particles. The electromagnetic
interaction between two charged particles thus occurs not via an instantaneous action at a dis-
tance, but at the speed of light and via the exchange of photons that mediate the electromagnetic
interaction.

However, it should be clear that this is not a simple kinematic exchange. For example, two
ice skaters (to limit the relevance of friction) throwing snowballs at each other certainly exert an
interaction mediated by the snowballs. However, this purely kinematic method cannot describe an
attractive force: electromagnetic forces may well also be attractive, and even more complicated
than that when the charges move with respect to each other.9

It will turn out that understanding interactions as mediated is generally applicable and
in fact a fundamental idea, which will lead to a unified understanding of all fundamental
interactions [☞ Chapters 5–7 and 9 for details].

With this in mind, and for ease of locution, we will speak of elementary particles, but implic-
itly understand the de Broglie duality with waves, as well as the essentially more fundamental but
technically more demanding representation by fields, the quanta (smallest packets) of which are
the elementary particles.

2.3.6 Mesons
Elementary particle physics as described so far had no answer to the obvious question: What keeps
the nucleons (protons and neutrons) within the atomic nucleus? It is clear that this force cannot
be of electromagnetic origin – neutrons are neutral, and protons repel each other. What’s more,
this strong nuclear force must be stronger than the electromagnetic one, so as to overpower the
Coulomb repulsion between protons – at least as long as they are within the atomic nucleus, i.e.,
at distances no larger than ∼10−15 m. However, at distances much larger than ∼10−15 m, this
nuclear force must become negligible even between neutrons, and certainly as compared with
the Coulomb repulsion between protons. Since the Coulomb force decays uniformly as ∼1/r2, it
follows that at distances larger than ∼10−15 the strong nuclear force must decay suddenly, much
faster than ∼1/r2.

In 1932, Werner Heisenberg proposed the formalism of isospin,10 to explain the significant
similarity between protons and neutrons: their masses differ only by 0.14%, they both have spin 1

2 ,

9 For example, the force with which a small magnetic dipole acts upon an approaching charged particle is orthogonal to
the direction between the dipole and the charged particle in motion.

10 The name itself was bestowed by Eugene Wigner, in 1937.
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and the strong interaction within the atomic nuclei does not differentiate between protons and
neutrons. Heisenberg thus assigned [☞ Section 4.3 for details]

p+ �→ | 1
2 , + 1

2 〉 and n0 �→ | 1
2 ,− 1

2 〉, (2.7)

with formal operators �I 2, I3 defined after those of angular momentum [☞ Appendix A], so that

�I 2| 1
2 ,± 1

2 〉 = 1
2 ( 1

2 +1) | 1
2 ,± 1

2 〉 and I3| 1
2 ,± 1

2 〉 = ± 1
2 | 1

2 ,± 1
2 〉. (2.8)

This model implies that the exchange of isospin occurs by exchanging the isospin states

|1, +1〉 : |1, +1〉| 1
2 ,− 1

2 〉 → | 1
2 , + 1

2 〉,
|1, 0〉 : |1, 0〉| 1

2 ,± 1
2 〉 → | 1

2 ,± 1
2 〉,

|1,−1〉 : |1,−1〉| 1
2 , + 1

2 〉 → | 1
2 ,− 1

2 〉,
(2.9)

so that by absorbing the state |1, +1〉, the state | 1
2 ,− 1

2 〉 = |n0〉 becomes | 1
2 , + 1

2 〉 = |p+〉, etc.
Overall, in all such processes isospin is conserved.

In 1934, Hideki Yukawa proposed the potential

V(r) = −g2 e−r/rY

r
, (2.10)

where the coefficient g2 is analogous to the product of two electric charges in Coulomb’s law, and
rY is the effective range of the force, for which experiments produce a value of about rY ∼ 10−15 m.
Unlike the Coulomb potential that is established by photons – particles with no mass,11 Yukawa’s
potential is mediated by particles with mass

mπ ∼ h̄
rY c

, so that mπ ∼ 150–200 MeV/c2, (2.11)

and this mass is responsible for the exponential decay of the potential (2.10). Yukawa’s proposal
thus predicted a new particle, the pion, with a mass (2.11) that is between the electron mass
(me ≈ 0.511 MeV/c2) and the proton mass (mp ≈ 938 MeV/c2). Combining with Heisenberg’s
isospin proposal, Yukawa’s theory predicts three pions:

π+ ↔ |1, +1〉, π0 ↔ |1, 0〉, π− ↔ |1,−1〉, (2.12)

so that the relations (2.9) correspond to the processes

|1, +1〉| 1
2 ,− 1

2 〉 → | 1
2 , + 1

2 〉, π+ + n0 → p+,

|1, 0〉| 1
2 ,± 1

2 〉 → | 1
2 ,± 1

2 〉, π0 + (p+ or n0) → (p+ or n0),

|1,−1〉| 1
2 , + 1

2 〉 → | 1
2 ,− 1

2 〉, π− + p+ → n0.

(2.13)

What is unusual as compared with electromagnetic interactions: unlike the photon, which is single
and electrically neutral, Yukawa’s proposal included three pions, with charges −1, 0, +1, and they
would span the 3-dimensional (nontrivial!) representation of the non-abelian (non-commutative)
isospin group SU(2)I . This proposal is the forerunner of so-called non-abelian theories of gauge
symmetry, which would be introduced two decades later by Chen-Ning Yang and Robert L. Mills,
and independently also by Ronald Shaw in his PhD dissertation under Abdus Salam [473].12

11 For a particle of mass m, we have that E2 = �p2c2 + m2c4; for photons mγ = 0, so that Eγ = |�pγ|c.
12 Ironically, Ernst Stückelberg had independently come up with a proposal very similar to Yukawa’s, but Pauli’s critique

discouraged him from developing his idea. On the other hand, Pauli himself worked independently on a non-abelian
generalization of electromagnetism, but was discouraged by his own critical views regarding difficulties in applications
to weak interactions – which were resolved only much later by means of the Higgs mechanism – so that he never
published on this topic [538].
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In 1937, two groups of researchers (C. D. Anderson and S. H. Neddermeyer on the West
Coast and J. C. Street and E. C. Stevenson on the East Coast of the USA) independently verified
the existence of particles with a mass of the order of magnitude (2.11) when analyzing cosmic
ray processes. Later and more precise measurement showed that the particles observed in cos-
mic rays have a mass very close to 100 MeV/c2 – which is less than Yukawa’s result (2.11), and
soon enough different measurements started showing differing results. World War II interrupted
these studies, but in 1946, it was shown in Rome, Italy, that the particles of mass ∼ 106 MeV/c2

discovered in cosmic rays interact very weakly with atomic nuclei – completely contrary to the
particles in Yukawa’s proposal that were supposed to be the very mediators of the strong nuclear
force!

In 1947, Robert Marshak and Hans Bethe proposed, and Cecil Powell (in collaboration with
C. M. G. Lattes, H. Muirhead and G. P. Ochialini) also verified experimentally that cosmic rays
actually involved two types of particles:

1. μ±-particles with a mass of mμ ≈ 106 MeV/c2, which interact very weakly with atomic nuclei
and behave like a ∼206 times more massive copy of the electron;

2. π-particles with masses of 135 MeV/c2 (π0) and 140 MeV/c2 (π±), which interact strongly
with atomic nuclei, and do fit Yukawa’s prediction of 12 years earlier.

Later measurements and the quark model would show that the pions cannot be identified with
the mediators of the strong interaction, although they do interact by means of the strong interac-
tion, both amongst each other, and also with protons and neutrons; see the discussion leading to
equation (6.77).

2.3.7 Antiparticles
Non-relativistic quantum mechanics was completed in only three years, 1923–6: it was conceptu-
ally clear that the Schrödinger equation could be adapted to every quantum system, whereupon
it “only” remained to solve the differential equation subject to appropriate boundary conditions.
Relativistic quantum theory, however, was a tougher nut to crack.

In 1927, Paul Dirac discovered the equation that bears his name, and which was sup-
posed to describe free electrons. However, that differential equation has a solution of energy
E = −√

�p 2c2 + m2c4 for every solution of energy E =
√

�p 2c2 + m2c4. To avoid the preposter-
ous possibility that the electron interminably loses energy as it successively falls into states of ever
lower negative energy, Dirac initially proposed that all (infinitely many!) negative-energy states are
filled, so that Pauli’s principle prevents free electrons from falling into any of those filled states.
This “sea” of infinitely many negative-energy electrons (one in each negative-energy state) is totally
uniform, so that only the individual electrons with positive energy may be observed.

Furthermore, if any one of these negative-energy electrons were to acquire enough energy to
become a positive-energy electron, in its former place in the infinite “Dirac sea” there would remain
a “hole” with positive electric charge. Dirac initially hoped that these positively charged holes might
be identified with protons, but Hermann Weyl soon showed that the inertial mass of these “holes”
is equal to the mass of the free electrons, and so about 1,836 times too small for protons. The other
problem with Dirac’s idea of an infinite “sea” of electrons with arbitrarily negative energies is that
the universe would have an infinitely negative total electric charge, and an infinitely large total
mass. Ernst Stückelberg, and then Richard Feynman a little later and in more detail, re-interpreted
the theory by introducing the concept of antiparticles (although Feynman attributes this invention
to Dirac [166]): according to this by now standard understanding, an antiparticle is a particle
traveling backwards in time (both with positive eneries), so that there is no infinitely deep and
infinitely charged (for charged particles) Dirac sea [☞ Chapter 3.3].
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Digression 2.4 The following is a simplified discussion from Ref. [166]: In all versions
of the Fourier transformation there is a factor e−i(E/h̄)t. Changing the sign of energy E
is here equivalent to flipping the direction of the passage of time t. Also, the Fourier
transform f̃ (ω) := 1√

2π

∫
dt eiωt f (t) has the key property that if f̃ (ω) �= 0 for only ω :=

(E/h̄) � 0, then f (t) does not vanish in any continuous interval of time. It then follows
that for a process that happens as a successive occurrence of two sub-processes (which are
not observed/measured separately and independently but where all exchanged particles
have non-negative energy), the time sequence of the two sub-processes depends on the
(relativistic!) choice of observer’s coordinate system and is not Lorentz-invariant. In turn,
it then follows that:

1. antiparticles with positive energy are ordinary particles with positive energy
traveling backwards in time;

2. the operations of parity (P ), time-reversal (T ) and charge conjugation (C )
satisfy the relation PT = C [☞ Section 4.2.3];

3. a particle–antiparticle pair may be created from vacuum and may
(re-)annihilate;

4. for probability conservation:
(a) two fermions must not be in the same quantum state, so the creation and the

re-annihilation of a fermion–antifermion pair contributes to the amplitude of
probability negatively,

(b) two bosons can be in the same quantum state, and that increases the
amplitude of probability of the (sub-)process.

See the diagrams (3.82) as well as Feynman’s very intuitive and yet sufficiently detailed
explanation in [166], where most of Feynman’s “half” is dedicated to this connection.

In 1931, Anderson experimentally verified the existence of the positron and so also Dirac’s
theory. However, this implied that all other particles also must have their antiparticles,13 of the
same mass and of the opposite electric charge. Indeed, the antiproton was experimentally verified
in 1955, and the antineutron the very next year.

Standard notation for antiparticles is the symbol of the particle with an over-bar: a proton
is denoted by p, an antiproton by p; n denotes a neutron, n an antineutron. However, charged
leptons [☞ Table 2.3 on p. 67] are customarily denoted by means of the positive charge in the
superscript: e− denotes an electron while e+ is a positron; μ− denotes a muon while μ+ is an anti-
muon; τ− is a tau lepton while τ+ is the anti-tau lepton. Some of the neutral particles are their
own antiparticles, such as the photon, γ, the neutral pion, π0, and the weak nuclear interaction
mediator, Z0.

2.3.8 Crossing symmetry and detailed balance
There exists a general principle called crossing symmetry, according to which for every process

A + B → C + D, (2.14a)

where A, B, C, D are particles partaking in the process, the following processes are also possible:

A → B + C + D, (2.14b)

13 Strictly, this prediction of antiparticles pertains only to particles of spin 1
2 h̄, to which Dirac’s equation applies.
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A + C → B + D, (2.14c)

C + D → A + B, etc., (2.14d)

provided that the kinematic (4-momentum) conservation laws permit them. In addition, the
principle of detailed balance further predicts the existence of the reverse processes:

C + D → A + B, etc., (2.14e)

again, provided that the kinematic conservation laws permit them. We will see later that the com-
putations of the probability for these processes consist of two stages. The first is identical for all
of the listed processes (2.14), while the second depends on the kinematics and the 4-momentum
conservation laws and may well be drastically different.

Comment 2.1 Note the difference between the “crossing symmetry” and the “principle of
detailed balance” in their present use: The process (2.14d), obtained from (2.14a) using the
crossing symmetry, certainly differs from the process (2.14e), which was obtained applying
the principle of detailed balance. In this sense, the crossing symmetry permits “moving” any
one particle amongst the results of a process into its antiparticle at the input of the process.
On the other hand, the application of the principle of detailed balance is equivalent to
reversing the direction of time: compare the process (2.14a) with (2.14e) [☞ Section 4.2.2].

One of the direct applications of the crossing symmetry is the relationship between Compton
scattering

e− + γ→ e− + γ (2.15)

and electron–positron annihilation

e− + e+ → 2γ, (2.16)

which shows that the electron–positron annihilation produces two photons. That it cannot produce
a single photon follows from 4-momentum conservation; see Exercise 3.2.7.

2.3.9 Neutrinos
Lisa Meitner and Otto Hahn had shown in 1911 that the β-decay of atomic nuclei seems to violate
the energy conservation law.14 In decays

A
Z X

β−→ A
Z+1Y + e−, such as 40

19K
β−→ 40

20Ca + e−, (2.17)

the electron’s total relativistic energy (and also the magnitude of the linear momentum) is
completely determined by the 4-momentum conservation law [☞ Digression 3.8 on p. 96]:

Ee =
(m 2

X + m 2
e − m 2

Y

2 mX

)
c2 = c

√
m 2

e c2 +�p 2
e , (2.18)

|�pe| = c

√[
(mX + me)2 − m 2

Y

][
(mX − me)2 − m 2

Y

]
2 mX

. (2.19)

Measurements of all energies and linear momenta in β-decays of the type (2.17) showed that the
value (2.18) is only the maximal value, and that the electron energy varies from case to case. Niels
14 The neutron was first discovered in 1932, so that one did not know about its role in β-decays of atomic nuclei.
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Bohr thus proposed that the 4-momentum conservation laws do not hold in processes involving
such small particles.15

Opposing Bohr, Wolfgang Pauli proposed in 1930 that – so as to preserve the energy con-
servation law – β-decay (2.17) actually produces a third particle, with a very small mass and no
electric charge, and so difficult to observe. However, this third particle carries away some of the
energy, so that the measured values of the electron energy vary from case to case. Pauli proposed
the name neutron, but was “scooped” for this name by Chadwick, who already used it (in published
form by 1932) for the neutral particles that are a little heavier than the protons and which make
up about half of the atomic nuclei of most elements.

In 1931, Enrico Fermi named Pauli’s particle the neutrino16 and by 1934 had published his
theory of β-decay, based on the neutron decay

n
β−→ p + e− + νe, (2.20)

which was very successful in describing the experimental observations and measurements. Only
later was it established that Pauli’s particle was in fact the antineutrino and of the electron species,
as correctly denoted in the process (2.20).

2.3.10 Leptons
During 1937–47, particles of about 100–150 MeV/c2 mass were found in photographs of cosmic ray
induced processes, and these were at first identified with Yukawa’s mediators of the strong inter-
action. However, in 1947, Cecil Powell showed that these photographs involve two very different
kinds of particles: In a characteristic cascade decay (frequently found on the same photograph) we
have

π− −→ μ− + νμ, (2.21a)
↘

e− + νe + νμ. (2.21b)

Using the derivation (3.44)–(3.49) below, the first decay (2.21a) shows that precisely one particle
is not recorded in the photograph (because it is not charged), as the energy of the recorded muon
is fixed. Again using the derivation (3.44)–(3.49) below, the second decay (2.21b) produces two
invisible particles, because the energy of the visible electron varies. The invisible particles pro-
duced in the processes (2.21a) and (2.21b) have here been correctly denoted as νμ and νe + νμ,
respectively, although in the analyses before 1962 [☞ Table 2.4 on p. 69] one did not know about
the difference between the electron- and the muon-neutrino, nor which one in these processes is
an antineutrino.

In the first two decades of Pauli’s proposal, theoretical proofs that neutrinos must exist
abounded. However, no experimental verification was known.

In 1956, Frederick Reines and Clyde Cowan published the results of one of the first big
“waiting experiments”: a huge tank of water with detector-studded walls, where they waited to
observe the so-called inverse β-decay, the process

νe + p+ −→ n0 + e+, (2.22)

guaranteed to exist by the crossing symmetry. By clever and detailed analysis of a large number of
measurements, Reines and Cowan managed to provide an unambiguous experimental proof of the
15 Supposedly [243], Bohr also vigorously fought Einstein’s proposal that electromagnetic radiation exists in quanta; he

opposed Dirac’s electron theory and Pauli’s neutrino proposal, ridiculed Yukawa’s π-meson theory, and discouraged
Feynman from his diagrammatic approach to quantum electrodynamics; he also advised Heisenberg against publishing
his uncertainty relation [119].

16 In Italian, “neutrino” is the diminutive of “neutron,” i.e., the “little neutron.”
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neutrino’s existence. Additionally, their analysis showed that antineutrinos interact with ordinary
matter extraordinarily feebly: By contemporary estimates (which are by now independently con-
firmed) the antineutrino flux through their detector was ∼5 × 1017 antineutrinos per second per
meter squared (obtained from the Los Alamos reactor), yet only a handful of type (2.22) reactions
were registered per hour.

Thus, in 1956 – a quarter of a century after his original proposal – Pauli’s insistence on pre-
serving the conservation laws triumphed! As we will see later, conservation laws are directly related
to symmetries – which is the content of Amalie Emmy Noether’s theorem. Reliance on symmetries
and conservation laws was thereby irrevocably infused into the understanding of Nature – which is
highly ironic, given Pauli’s denigrating attitude towards group theory [☞ p. 150], which however
governs the structure of symmetries. We will see that the success of relativistic physics also may be
understood from the point of view of symmetries, although this was definitely not evident at the
time.

Applying crossing symmetry to the processes (2.20) and (2.22), we know that the process

νe + n0 −→ p+ + e− (2.23)

must also occur. To check if the neutrino is its own antiparticle, Raymond Davis, Jr. and Donald
S. Harmer then looked for signals of the analogous reaction

νe + n0 −→ p+ + e−, (this does not occur!) (2.24)

and found no signal although the set-up and analysis was analogous to that of the earlier Reines–
Cowan experiment. From the fact that the process (2.22) does occur while (2.24) does not, it
follows that a neutrino is distinguishable from an antineutrino, and that we may associate with
them opposite values of a conserved quantity.

In fact, in 1953, Konopinski and Mahmoud [319] proposed such a conserved quantity. With a
small adaptation of their original proposal, we may call this conserved quantity the lepton number,
so that

L = +1 : e−, νe; μ−, νμ; τ−, ντ ; (2.25a)

L = −1 : e+, νe; μ+, νμ; τ+, ντ ; (2.25b)

L = 0 : all other particles. (2.25c)

Of course, in 1953 one knew nothing of the existence of the τ±-leptons and tau-neutrinos, and even
the existence of muon-neutrinos (as distinct from electron-neutrinos) was not clear. Nevertheless,
using the values (2.25), the reactions (2.20)–(2.23) are permitted, whereas (2.24) is forbidden by
the lepton number conservation law.

Conservation of the lepton number – as defined by the values (2.25) – is a law that may be
used much as electric charge conservation, although the values (2.25) are ascribed to particles so as
to explain the occurrence of processes like (2.20)–(2.23) and the absence of processes like (2.24).
Just as electric charge conservation is related to a certain continuous U(1) symmetry [☞ Chap-
ter 5.1–5.3], so lepton number conservation has its “own” symmetry, which will be important
when discussing the Lagrangian for the theory of lepton interactions.

Finally, none of the so far mentioned conservation laws prevents the potential decay

μ− ?−→ e− + 2γ, (2.26)

but this process was never observed. Experience with quantum physics of atomic transitions
and reactions and also the increasing number of processes with elementary particles indicates
the rule:
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Conclusion 2.3 (Murray Gell-Mann’s “totalitarian principle,” cited from Ref. [567])
Everything not forbidden is compulsory.

Thus, the absence of the decay (2.26) requires an explanation17 in the form of a proposal that
leptons e±, νe and νe have a separately conserved number, as do μ±, νμ and νμ, and also the later
discovered τ±, ντ and ντ.

The absence of the process (2.26) is thus seen as the manifestation of the ban imposed by
the separate muon- and electron-number conservation laws. These laws in turn do permit the
decays (2.21a)–(2.21b): the net sum of each of the three separate lepton numbers on the “before”
side of either of those processes equals the sum of those same lepton numbers on the “after”
side. The same holds for all other listed processes, including Fermi’s formula (2.20) for β-decay.
This illustrates the basic principle that laws of Nature must have no exception and must hold
universally.18

This analysis, following the proposal by Konopinski and Mahmoud [319], formally intro-
duced a separate conservation law for the electron-, muon- and tau-lepton numbers, in addition
to the conservation laws of electric charge, 4-momentum (i.e., energy and 3-dimensional linear
momentum), and of the angular momentum.

— ❦ —

Finally, it is worth noting that the name lepton stems from the Greek adjective λεπτός (light),
because of the relatively small electron mass, as compared to that of the proton and the neutron.
For the latter two, the collective name is baryon, from the Greek adjective βαρύς (heavy). Particles
with masses between me ≈ 0.511 MeV/c2 and mp ≈ 938 MeV/c2 were thus named mesons, from
the Greek word μέσος (middle). However, the discovery of the muon and the verification that it is
identical to the electron – except for being ∼206 times heavier – suggested that the original and
naive nomenclature had to change. By the mid-twentieth century, these names were re-purposed
according to the interaction type, as shown in Table 2.2. The fact that the lepton and the baryon
numbers are conserved in all processes, whereas the number of mesons is not, is a feature of Nature
that slowly became ever clearer, through the analysis of an ever larger number of processes. The
name hadron stems from the Greek word ἁδρός (thick, bulky).

Table 2.2 Defining collections of elementary particles according to their interactions

Group Nuclear interactions Spin Number

Leptons Only weak Half-integral Conserved

Hadrons

{
Mesons Both strong and weak Integral Not conserved
Baryons Both strong and weak Half-integral Conserveda

aBaryon number (albeit not under that name) conservation proposed in 1938 by Ernst Stückelberg,
to explain the absence of the p+ → e+ + π0 proton decay.

2.3.11 Strange particles
By mid-1947, there was perfect experimental proof of the existence of the electron, the proton
and the neutron, of which practically all substance around us is composed. Yukawa’s π-meson
17 Candidates for a law of Nature are not proven but disproven by exceptions.
18 One often says that for small speeds non-relativistic physics holds and that for speeds that are near the speed of light in

vacuum relativistic physics holds. Literally taken, this is false: what is true is that relativistic physics holds always, but
that for small enough speeds the non-relativistic approximations suffice in practice. That is, the difference between par-
ticular concrete results of relativistic computations and their non-relativistic approximations cannot be experimentally
detected.
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was also experimentally detected, so that there existed a real chance for a theoretical description
of the strong nuclear interactions to be developed so as to adequately reproduce the experimen-
tal facts about atomic nuclei. Fermi’s theory of β-decay adequately described all known effects of
weak nuclear interaction. The antiparticle of the electron that Dirac predicted was also detected
experimentally and there was no doubt that, upon appropriate development of experimental de-
vices, all other antiparticles would be experimentally produced. The existence of the neutrino had
experimentally still not been verified, but at least ever more theorists agreed that it did have to
exist.

Thus, only the existence of the muon presented a capricious puzzle of Nature: this about 206
times heavier copy of the electron was completely unexpected and unexplained.

— ❦ —

In December of 1947, George D. Rochester and Clifford C. Butler opened Pandora’s box: They
published the results of their analysis of photographs of cosmic rays in the (Wilson) cloud chamber,
from which it followed that there existed a neutral particle with a mass of about half the neutron
mass, and which decays

K0 −→ π+ + π−. (2.27)

In 1949, Cecil Powell published the experimental discovery of a new charged particle that decays

K+ −→ π+ + π+ + π−. (2.28)

In 1950, Carl D. Anderson’s group at CalTech discovered a new neutral particle that decays

Λ0 −→ p+ + π−. (2.29)

Only by 1956 did it transpire that K0 and K+ are closely related, just as if they were heavier
copies of π0 and π+, but even in these early years it was clear that these new particles were rather
unusual: K0, K±, Λ0 – and soon several more were discovered – were all produced in very fast
(∼10−23 s) reactions, but their half-life (and lifetime) was relatively long: ∼10−10–10−8 s.

It soon turned out that these new particles were created in pairs, so Abraham Pais pro-
posed the concept of “associated production.” In 1953, Kazuhiko Nishijima and Tadao Nakano
transformed this proposal into a concept of the “eta charge,” and in 1965, Murray Gell-Mann in-
dependently introduced the “strangeness” charge. Under that name, the idea was finally adopted:
When “strange” particles are created, they are created in “strange–antistrange” pairs, which indi-
cates a strangeness conservation law. Thereafter, the decay of a “strange” (S0 �= 0) particle into
a collection of particles the total strangeness of which is ∑i Si �= S0 would be forbidden by this
strangeness conservation law, and so could happen only via an interaction that violates this law
explicitly. This then establishes that strange particles are created by one (strong) interaction, and
decay by another (weak). In addition, this proposal also contained the so-called GNN formula:

Q = I3 + 1
2 (B + S), (2.30)

after the initials of Gell-Mann, Nishijima and Nakano. Here, Q denotes the electric charge, I3 is
the isospin [☞ discussion around relations (2.7)–(2.12)], B the baryon number and S denotes
the strangeness. The fact that these quantum numbers may be consistently assigned to a growing
number of particles (both mesons and hyperons19) while satisfying the relation (2.30) indicates a
regularity that needed an explanation.

19 The word “hyperon” was initially used for particles heavier than the neutron; nowadays, it is used for strange baryons
with neither charm, nor beauty, nor truth [☞ table in display (2.44a)].
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2.3.12 The eightfold way

In the early 1930s, the list of elementary particles was short and really simple: Substance consists
of electrons, protons and neutrons. These particles interact via electromagnetic forces, mediated
by photons, weak nuclear forces formulated by Fermi as a so-called contact interaction (with no
mediator), and strong nuclear forces for which Yukawa’s theory with pions as mediators seemed
a good candidate. The fourth fundamental interaction, gravitation, had by then been described by
Einstein’s general theory of relativity.

However, by 1960, this list of elementary particles was joined by so many new particles that
a systematization became necessary, somewhat akin to Mendeleev’s periodic table of elements.
Murray Gell-Mann noticed that a 2-dimensional plot of the first eight pseudo-scalar20 mesons:

S

−1

0

+1

I3−1 0 +1

Q

−1

0

+1

K̄ 0

K+K 0

K–

mπ0 = 135.0 MeV/c2

mπ± = 139.6 MeV/c2

mη = 547.9 MeV/c2

mK± = 493.7 MeV/c2

mK0 = 497.6 MeV/c2

spin = 0,

(2.31)

looks very similar to the analogous plot of baryons:

mp+ = 938.3 MeV/c2

mn0 = 939.6 MeV/c2

mΛ = 1.116 GeV/c2

mΣ+ = 1.189 GeV/c2

mΣ0 = 1.193 GeV/c2

mΣ− = 1.197 GeV/c2

mΞ0 = 1.315 GeV/c2

mΞ− = 1.322 GeV/c2

spin = 1
2 .

(2.32)

Besides, Gell-Mann had in 1961, and Susumu Okubo independently in 1962, noticed that the
masses of the particles in these diagrams satisfy (up to a small percentage error) the relations

2
[(mK− + mK̄0

2

)2
+

(mK0 + mK+

2

)2] ≈ 3m 2
η +

(mπ− + mπ0 + mπ+

3

)2
, (2.33)

2
[mp + mn

2
+

mΞ− + mΞ0

2

]
≈ 3mΛ +

mΣ− + mΣ0 + mΣ+

3
. (2.34)

20 A scalar function has spin 0, and does not change under rotations; the prefix pseudo then indicates that unlike real
scalars that are invariant also with respect to the�r → −�r reflection, pseudo-scalars change their sign.
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The next collection of baryons forms a somewhat different figure:

mΔ = 1.231–1.233 GeV/c2

mΣ∗ = 1.383–1.387 GeV/c2

mΞ∗ = 1.532–1.535 GeV/c2

mΩ = 1.672 GeV/c2

spin = 3
2 ,

(2.35)

and where Ω− has not yet been discovered. Following the approximate relation

9mΛ + mΣ− + mΣ0 + mΣ+

12
− mp + mn

2
≈ mΞ− + mΞ0

2
− 9mΛ + mΣ− + mΣ0 + mΣ+

12
, (2.36)

between the masses of the baryons in the octet (2.32), i.e., that their average masses grow uni-
formly with the increasing of the absolute value of strangeness,21 Gell-Mann postulated the relation

mΔ − mΣ∗ = mΣ∗ − mΞ∗ = mΞ∗ − mΩ, (2.37)

where mΔ, mΣ∗ and mΞ∗ are the average masses of the particles in the upper three rows in the
plot (2.35). This predicted the existence of the Ω− particle with a mass of about 1.70 GeV/c2, up
to a small percentage. In 1964, this particle was experimentally detected, with a mass that differs
only 0.6 % from the value predicted by Gell-Mann’s relation (2.37). The Reader may have asked
why, e.g., four Δ-particles are not in the same collection with the proton, the neutron, and the Λ-
and Σ-particles, since the masses of these baryons are closer to the mass of the Δ-particle than to
the mass of the Ξ-particle. As it was done in those early 1960s, the answer is pragmatic: because
the values of the spin indicated in the plots (2.32) and (2.35), and the formulae (2.34), (2.36)
and (2.37) gather particles into collections as shown and not otherwise; [☞ Section 4.4].

This proved the classifying scheme that Gell-Mann called the “eightfold way” (alluding to
the “noble eightfold way” of Buddhism). Even though in the 1960s this was not entirely clear,
these results crucially use SU(3) symmetry – because of which the plots (2.31), (2.32) and (2.35)
are nowadays usually drawn with the S-axis at an angle of 120◦ with respect to the Q-axis, as is
customary for the root system of the SU(3) group [581, 105, 256, 447].

It should be noted that the meson collections, such as (2.31), contain both particles and
antiparticles, in diametrically opposite positions: π− is anti-π+, K− is anti-K+, etc. On the other
hand, the baryon groups (2.32) and (2.35) contain only particles, and their antiparticles form
identical collections but with charges that all have opposite signs.

2.3.13 Quarks
The true meaning of Gell-Mann’s “eightfold way,” however, is the systematic use of group theory
in particle classification, as was independently proposed by Yuval Ne’eman about the same time.
Whereas Mendeleev’s periodic table (1869) waited many years for a final explanation (1925) by

21 The sign and an additive constant in the definition of the quantum number of strangeness are for all present purposes
completely arbitrary.
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way of quantum mechanics and Pauli’s exclusion principle, the “eightfold way” was explained as
early as 1964: Murray Gell-Mann and George Zweig independently proposed the quark model,22

whereby mesons are quark–antiquark bound states, and baryons three-quark bound states. This ex-
plained all the hadrons in a fast growing list as composite systems, consisting of only three quarks:

Name q : Q I3 B S

Up u : + 2
3 + 1

2
1
3 0

Down d : − 1
3 − 1

2
1
3 0

Strange s : − 1
3 0 1

3 −1

(2.38)

the various charges of which satisfy the GNN formula (2.30). These three quarks span the 3
representation of the SU(3) group, and all the hadrons then must form as groupings according
to [☞ Appendix A]

mesons = (q q) : 3 ⊗ 3∗ = 1 ⊕ 8, (2.39)

baryons = (q q q) : 3 ⊗ 3 ⊗ 3 = 1 ⊕ 8 ⊕ 8 ⊕ 10, (2.40)

which predicts that mesons must form singlets (separate states) or octets (collections of eight),
whereas baryons must form singlets or octets or decuplets; see Example A.6. This is consistent
with experiments: for each collection of particles there exist formulae of the forms (2.33)–(2.34)
and (2.36)–(2.37). The combinatorial details of the quark model (and why there are in fact no
singlet baryons) are the subject matter of Chapter 4.

Together with the success in classifying hadrons, the quark model also had two important
problems:

1. no experiment could produce a free quark;
2. in some baryons it seemed that the existence of the three-quark state violated Pauli’s

exclusion principle.

The impossibility of extracting free quarks does not imply that they were impossible to verify
experimentally: One merely needs an adequate probe to “see” the composite structure of a hadron
without freeing its constituent building blocks, just as Rutherford bombarded gold atoms with
α-particles and “saw” the atomic nuclei without (even partially) ionizing the atoms. In the late
1960s such deep inelastic collisions were performed at SLAC (Stanford Linear Accelerator Center),
bombarding protons with electrons, and later in the 1970s at CERN,23 bombarding protons with
neutrinos, and then also with protons. Much as in Rutherford’s experiment, the probes pass right
through the protons – in growing number at growing energies and with little deflection, while
a small number deflect at a large angle (even to 180◦). However, the details of the scattering
indicate that the proton is very well represented as a composite system consisting of three particles,
in agreement with the quark model. Also, while we can ionize atoms and so fully liberate their
nuclei, quarks cannot be extracted free from the hadrons. Repeated failures to do so created an
undercurrent of mistrust in the quark model, whereby most experimentalists rather used Feynman’s
term, partons, for the scattering centers within the hadrons.
22 Interestingly, Gell-Mann nevertheless advocated that the quarks are not necessarily “real,” concrete particles in the usual

sense with well-localized and detectable position [☞ Digression 4.2 on p. 151]. In this respect, he drastically differed
from Richard Feynman (also at CalTech). Feynman advocated for real particle constituents, but called them “partons” to
avoid Gell-Mann’s quarks. A decade later, Gell-Mann’s quarks (together with gluons) proved to be Feynman’s partons.
On the other hand, Zweig used the term “ace” (presumably alluding to “ace up the sleeve”) for quarks, but that never
caught on [592, 119].

23 In 1954, CERN was established as Conseil Europeen pour la Recherche Nucleaire, the provisional council that established
the laboratory Organisation Europeenne pour la Recherche Nucleaire, keeping however the acronym.
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On the other hand, in 1964, Oscar W. Greenberg noticed that the quark model seems to
violate Pauli’s exclusion principle: certain spin- 3

2 states such as Δ− = (d d d), Δ++ = (u u u)
and the celebrated Ω− = (s s s) should be forbidden owing to Pauli’s exclusion principle. In all
three of these cases, experiments indicate that the three otherwise identical quarks are in the S-
state, with parallel spins, and so in the very same quantum state – contradicting Pauli’s exclusion
principle. Greenberg thus proposed [229] that quarks satisfy para-fermionic (anti-)commutation
rules: Formally, while bosonic creation and annihilation operators commute and the analogous
fermionic operators anticommute,[

bi , b †
j
]

= δij,
[

bi , b j
]

= 0 = [b †
i , b †

j ], bosons, (2.41a){
fi , f †

j
}

= δij,
{

fi , f j
}

= 0 =
{

f †
i , f †

j
}

, fermions, (2.41b)

para-fermion creation and annihilation operators satisfy the hybrid relations:{
f̃i,α , f̃ †

j,α
}

= δij,
{

f̃i,α , f̃ j,α
}

= 0 =
{

f̃ †
i,α , f̃ †

j,α
}

, (2.41c)[
f̃i,α , f̃ †

j,β
]

= δij,
[

f̃i,α , f̃ j,β
]

= 0 =
[

f̃ †
i,α , f̃ †

j,α
]
, α �= β,

}
para-fermions,

(2.41d)

where α, β = 1, 2, 3. In January 1965, Boris V. Struminsky proposed in a paper presented at Dubna
(Moscow region, Russia) an “additional” quantum number to resolve this problem, and contin-
ued working on this with his mentor Nikolay Bogolyubov, and collaborator Albert Tavchelidze. In
May 1965, Tavchelidze presented this idea at ICTP, in Trieste (Italy), without his collaborators’
knowlege. Six months later, Moo-Young Han and Yoichiro Nambu independently proposed a model
where a new degree of freedom, α, β in (2.41c)–(2.41d) is a new kind of “charge” and has its
own interaction with eight new “photons,” gαβ where gαα = 0. This is what is called color to-
day, and which differentiates the quarks in the hadrons Δ−, Δ++, Ω− so Pauli’s exclusion principle
would not forbid their existence. In their model, quarks had integer, but color-dependent electric
charges [☞ Digression 5.14 on p. 214]. The final version of the formalism of color as a charge for
strong interaction and which is independent from the electric charge was completed by William
Bardeen, Harald Fritzsch and Murray Gell-Mann, in 1974.

On the third hand, in 1964, Sheldon L. Glashow and James D. Bjorken had proposed the
existence of a fourth quark, dubbed charm, and with it an extension of the classification SU(3)
group into SU(4). In 1970, Glashow, John Iliopoulos and Luciano Maiani provided a theoretical
proof that the fourth quark must exist based on the absence of weak decays that would change
strangeness:

K+ → π+ + ν+ ν

K+ → π0 + μ+ + μ−
=

(us) Z0−→ (ud) + ν+ ν

(us) W+−−→ (uu) + μ+ + μ−
< 10−5. (2.42)

Besides, the appearance of the so-called Adler–Bell–Jackiw (ABJ) U(1) anomaly [☞ Section 7.2.3,
and the lexicon entries about anomaly and canonical quantization] indicates an inconsistency
in the gauge theory of weak interaction: the quark model with only three quarks exhibits a
symmetry that is broken by quantum effects, but this breaking cancels through contributions
from the fourth quark. That is the first application of a detailed quantum analysis of sym-
metries; this was later developed into a very powerful theoretical method and gave rise to
certain exact (non-perturbative) results in field theory. The c-quark was experimentally discov-
ered four years later. However, a more detailed analysis requires details of both gauge theories
and of left–right asymmetric weak interactions, and we will return to this topic in Sections 7.2.2
and 7.2.3.

Finally, in 1973, Makoto Kobayashi and Toshihide Maskawa showed that the so-called indirect
CP-violation – which James W. Cronin and Val L. Fitch observed back in 1964 (and for which they
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received the Nobel Prize as late as 1980) in the unevenness of the K0 ↔ K̄0 transmutation –
can happen only if there exist at least six quarks. The direct CP-violation was observed in the
1990s, in agreement with the Kobayashi–Maskawa proposal. By that time the fifth, b-quark had
been experimentally produced, while the sixth, t-quark was produced five years later, in 1995. The
species of quarks

u (up), d (down), s (strange), c (charm), b (bottom), t (top), (2.43)

are dubbed flavors, so that the symmetry group that arises from approximate identification of these
quarks: SU(3), SU(4), SU(5) and SU(6) is typically labeled by the subscript “ f .” These SU(n) f
approximate “flavor” symmetries are less and less practical for larger and larger n. The quark
masses are more and more different, and the symmetries are less and less precise:

Name q Mass∗
(MeV/c2) Q I3 B S C B′ T Y

Up u : 1.5–3.3 + 2
3 + 1

2
1
3 0 0 0 0 + 1

3

Down d : 3.5–6.0 − 1
3 − 1

2
1
3 0 0 0 0 + 1

3

Strange s : 105{+25
−35 − 1

3 0 1
3 −1 0 0 0 − 2

3

Charm c : 1,270{ +70
−110 + 2

3 0 1
3 0 +1 0 0 + 4

3

Bottom b : 4,200{+170
−70 − 1

3 0 1
3 0 0 −1 0 − 2

3

Top t : 171,300{+1,100
−1,200 + 2

3 0 1
3 0 0 0 +1 + 4

3
∗ Inertial mass without the binding energy, which depends on the hadron

(2.44a)

Q = I3 + 1
2 (Baryon + Strange + Charm + B′eauty + Truth︸ ︷︷ ︸

=Y, so-called (strong) hypercharge [☞ Section 7.2.1]

) (2.44b)

During 1964–74, feelings about the quark model were rather mixed. While experimentalists
rightfully decried the fact that quarks seemed to be impossible to extract free – for which there was
no theoretical explanation – even the quantum number of color, introduced to reconcile the quark
model with Pauli’s exclusion principle, seemed more of a mnemonic crutch than a real physical
property. Just as the quarks seemed impossible to extract, so was the color impossible to detect
directly: The three quarks in a baryon each have a different color, red–blue–yellow, so that baryons
are “colorless.” The quark and the antiquark in a meson have opposite colors (red–green, blue–
orange, or yellow–purple), so that mesons are also “colorless.” As a classifying system, this rule
perfectly predicted hadronic states [☞ Chapter 4]. However, the skeptical physicists could not
escape the impression that the color formalism was “invented” so as to “explain” the otherwise
unexplained fact: the formalism gave no reason for hadrons to be “colorless” [☞ Section 6.1].

Finally, note that the quark model revised the elementary particle image: all substance con-
sists of quarks (u, d, s, c, b, t) and leptons (e−, νe, μ−, νμ, τ−, ντ), which returns simplicity into the
list of elementary constituents of the World: by 1974, the number of hadrons had approached a
hundred and no one could possibly consider them elementary. By contrast, the list of (then known)
quarks and leptons was short and even fairly “symmetric.”

In spite of this theoretical and aesthetic attractiveness, the event that was crucial in winning
the confidence of most physicists in the quark model was the experimental detection of the so-
called J/ψ particle, towards the end of 1974. During the summer of 1974, C. C. Samuel Ting’s
research group in Brookhaven discovered a 3.096 9 GeV/c2-mass particle (a little over three times
the proton mass), and with a half-life measured to be around 10−20 s – which is some 1,000 times
longer than the typical hadron half-life! Ting insisted on careful checking of this astounding result,
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so that the discovery remained a secret till November of that year, when Burton Richter’s research
group at SLAC discovered the same particle, and the two research groups published their results
back-to-back.

Over the next few months, it became clear that the J/ψ particle was a (c c) bound state, i.e.,
a meson,24 which, being akin to positronium, is called “charmonium.” The stability of this system
follows from the combination of the so-called OZI rule (Susumu Okubo, George Zweig and Jugoro
Iizuka) and the fact (discovered soon) that the pair of lightest mesons with a single c- or a single
c-quark (the so-called D, i.e., D̄ meson, respectively) is heavier than the J/ψ particle. Thus, a
J/ψ does not have enough mass to decay into a D–D̄ pair, and the decays that require the c–c
annihilation are slowed down by the OZI rule.25 When the J/ψ particle was discovered, it became
obvious that its existence fits so perfectly in the quark model that all doubt in the model vanished:
As should be clear from the foregoing, and also Table 2.4 on p. 69, the fourth quark was already
predicted, both from aesthetic (Bjorken and Glashow) and also technical (what was only later
understood as most stringent and rigorous) reasons of anomaly cancellation (Glashow, Iliopoulos
and Maiani).

In 1975, a new lepton, τ−, was discovered, supporting the prediction (Kobayashi and
Maskawa, two years earlier) of another lepton and quark pair, so as to explain CP-violation. Just
as with the J/ψ particle, a (b b) bound state was discovered in 1977 and dubbed Υ. The sixth,
t-quark was finally detected in 1995, and the τ-neutrino, ντ, in 2000. Thus, by the dawn of the
third millennium, the list of elementary particles (2.44a) was experimentally confirmed.

Digression 2.5 It should be noted that the charming story with charmonium, and even
with bottomonium (i.e., with the (b b)-state Υ) will probably not be repeated with to-
ponium: The t-quark itself has a 174.2 GeV/c2 mass, so that according to Ref. [215]
and contemporary data [293] the (t t)-state would have to have a mass of about
344.4 GeV/c2, and a standard deviation of σ ≈ 193.6 MeV/c2. Thus, even when the
experiments reach energies over about 344.4 GeV, the large absolute value of the stan-
dard deviation implies that the toponium will decay much faster than the J/ψ and the
Υ [☞ Section 2.4], and it may well turn out that it will behave practically as a virtual
particle, which by definition cannot be detected directly.

2.3.14 Nuclear force intermediaries

The introduction of color, the new quantum number assigned to quarks but not to leptons, not only
explained the existence of spin- 3

2 baryons such as Δ−, Δ++, Ω− in terms of three-quark S-state
bound states, but also brought about the ultimate explanation of the strong nuclear interaction.
The exchange of color between quarks is mediated by gluons, which thus mediate the strong
interaction; the details of this mechanism will be examined in Chapters 5–6. Suffice it to say,
the theoretical basis for the so-called Yang–Mills theory of non-abelian (non-commutative) gauge
symmetry had been introduced back in 1954–5: Chen-Ning Yang and Robert L. Mills and, indepen-
dently, Ronald Shaw in his PhD dissertation under Abdus Salam, showed how the electromagnetic

24 By 1974, it became evident that the old motivation for the nomenclature, whereby mesons had masses between those of
the electron and the proton, was no longer practical. Instead, the quark model convention was adopted, wherein every
three-quark bound state was called a baryon, and every quark–antiquark bound state was called a meson. Hypothetical
states of other composition, such as (q q), (q q q), (q q q q), etc., were referred to as exotic particles.

25 A decade later, the OZI rule was derived from quantum chromodynamics, but in 1974 it was still only a phenomenolog-
ical rule.
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interaction with U(1) symmetry group [☞ Sections 5.1–5.3] can be generalized into a gauge inter-
action with a non-abelian (non-commutative) symmetry [☞ Section 6.1, as well as Appendix A].
However, the crucial (and in fact complementary) qualities of the quark model,

1. that quarks cannot be extracted free from hadrons (so-called confinement), and
2. that the closer quarks are to each other, the weaker they interact (so-called asymptotic

freedom, experimentally observed as early as 1967)

are not obvious consequences of the model. This latter quality was discovered by David Gross with
his student Frank Wilczek, and independently by David Politzer in 1973,26 almost two decades
after the discovery of non-abelian gauge theory itself. Although the theoretical proof of the first
quality (confinement) is still not rigorously complete☞ , the proof of asymptotic freedom as its
complementary quality caused an overnight universal acceptance of quantum chromodynamics
(QCD) as the theory of strong nuclear interactions. In addition, numerical computations in so-called
“lattice QCD” (where the infinite and continuous spacetime is approximated by a finite-size lattice
with a nonzero lattice spacing) and “Monte Carlo simulations” soon showed that QCD correctly
reproduces many of the ratios of hadron masses as well as many other parameters of so-called
hadron spectroscopy, so that the crucial unsolved problem☞ is “only” to compute the absolute
value of a characteristic mass unit for hadrons. It is worth noting that the theoretical discovery
of asymptotic freedom and the experimental discovery of the J/ψ particle practically coincided.
Without a doubt, that tandem advancement was decisive in the sudden turn of tide in accepting the
quark model together with quantum chromodynamics, and this combination of events is sometimes
referred to as the “November Revolution” of 1974.

— ❦ —

Meanwhile, for weak nuclear interactions, Enrico Fermi formulated the so-called 4-fermion
contact interaction in 1931–4, which within the quark model stated is as

d → u + e− + νe, (2.45a)

together with all possible related processes obtained via crossing symmetry and the principle of
detailed balance (2.14), such as

d + u → e− + νe, d + e+ → u + νe, u + e− → d + νe, etc. (2.45b)

Since the range of the weak interactions is small (∼10−15 m), Fermi’s approximation, where the
weak interaction happens in a point, is quite satisfactory up to energies of about h̄ c/(10−15 m)
∼ 200 MeV. However, within two decades after Fermi’s theory, such energies had been surpassed
in accelerators and a better theory was needed. The contact interaction (2.45b) is analogous to
describing a scattering such as of a positron and a proton, e+ + p+ → e+ + p+, by neglecting
the repulsive interaction field and pretending that the two like-charged particles actually touch
during the collision. Akin to electromagnetic interactions, these processes may be described also
by introducing intermediaries:

26 There is a sad story tied to this discovery [366]: David Gross mentored two students, Frank Wilczek and William
E. Caswell. Gross asked Wilczek to compute the so-called β-function for the SU(n) gauge theory to first order in per-
turbation theory and Caswell to second. When Wilczek discovered that the β-function had the opposite sign from the
abelian case, Gross realized the fantastic importance of the result – the theoretical proof that non-abelian gauge theory
guarantees asymptotic freedom – and published this immediately with Wilczek. This is one of the most cited papers
in the second half of the twentieth century; Gross and Wilczek shared with Politzer, the 2004 Nobel Prize. Caswell’s
contribution, which confirmed Wilczek’s and correctly showed that second-order perturbations do not spoil the newly
discovered asymptotic freedom was hardly noticed. William E. Caswell died in the Pentagon crash of the American
Airlines Flight 77, on September 11, 2001.
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d → u + W− → u + (e− + νe), (2.46a)

d + u → W− → e− + νe, (2.46b)

d + e+ → (u + W−) + e+ → u + νe, (2.46c)↘
d + (W+ + νe) → u + νe, (2.46d)

u + e− → (d + W+) + e− → d + νe, (2.46e)↘
u + (W− + νe) → u + e−, (2.46f)

and so on. These examples make it clear that we have postulated the intermediaries W± for the
weak interaction. Their elementary processes,

d + u ↔ W−, d + u ↔ W+, (2.47)

e− + νe ↔ W−, e+ + νe ↔ W+, (2.48)

as well as all related processes obtained using the crossing symmetry and the principle of detailed
balance (2.14), and by replacing the u, d quarks with the heavier pair c, s (and also t, b), as well
as by replacing the e−, νe lepton pair with μ−, νμ (and also τ−, ντ) might seem amply sufficient to
describe all known examples of weak interaction. However, that would be false: From the observed
decay

K0 = (d s) → π+ + π− = (ud) + (d u) (2.49)

it follows that the weak elementary processes

s + u → W−, s + u → W+ (2.50)

must also exist, which then also explains the decay

Λ0 = (u d s) → (u d W− u) → (u u d) + W− → (u u d) + (d u) = p+ + π−, (2.51)

and so on. Comparing the elementary processes (2.47) and (2.50), it follows that the weak decays
“mix” the d- and the s-quark and so violate the conservation of strangeness. That is, the true
eigenstates of the Hamiltonian terms responsible for weak interactions27 are not the u, d, s, . . .
quarks, but the combinations

|u〉, |dw〉 := cos(θc)|d〉 + sin(θc)|s〉, |sw〉 := cos(θc)|s〉 − sin(θc)|d〉, . . . (2.52)

This was proposed in 1963 – before the discovery of the c-quark – by Nicola Cabibbo and after
whom the angle θc was named. In 1973, Kobayashi and Maskawa generalized this parametrization
by proposing⎡⎣|dw〉

|sw〉
|bw〉

⎤⎦ :=

⎡⎣Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

⎤⎦⎡⎣|d〉|s〉
|b〉

⎤⎦ , (2.53a)

=

⎡⎣ c12c13 s12c13 s13 e−iδ13

−s12c23 − c12s23s13 eiδ13 c12c23 − s12s23s13 eiδ13 s23c13
s12s23 − c12c23s13 eiδ13 −c12s23 − s12c23s13 eiδ13 c23c13

⎤⎦⎡⎣|d〉|s〉
|b〉

⎤⎦ , (2.53b)

where cij := cos(θij), sij := sin(θij), i, j = 1, 2, 3 = d, s, b,

27 The Student is expected to remember how one computes with Hamiltonians of the form H = H0 + H ′ in quantum
mechanics, where the eigenstates and eigenvalues for H0 are known, where H′ is treated as a perturbation, and where
the eigenstates of H0 need not be the eigenstates of H ′, i.e., [H0, H′] �= 0.
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where in the second row the now standard parametrization is given in terms of Euler angles in the
(d, s, b)-space. The general form and parametrization of non-Hermitian matrices were known back
in 1939 [151], from which it follows that a non-Hermitian n× n matrix has (n−1

2 ) complex phases.
It follows that one needs at least three quarks of − 1

3 electric charge for the Cabibbo–Kobayashi–
Maskawa (CKM) matrix to be able to contain one non-removable complex phase, which then can
parametrize CP-violation, as observed back in 1964. The elements of the matrix V (2.53) are
denoted to indicate their application:

Probability
(
d + W+ → u

)
=

∣∣〈u|W+|d〉∣∣2 ∝ |Vud|2, (2.54a)

Probability
(
s + W− → u

)
=

∣∣〈u|W+|s〉∣∣2 ∝ |Vus|2, (2.54b)

and so on. Present-day observed values are θ12 = θds = (13.04 ± 0.05)◦, θ13 = θdb = (0.201 ±
0.011)◦, θ23 = θsb = (2.38 ± 0.06)◦, and δ13 = δdb = (1.20 ± 0.08)◦, giving⎡⎣|Vud| |Vus| |Vub|

|Vcd| |Vcs| |Vcb|
|Vtd| |Vts| |Vtb|

⎤⎦ ≈
⎡⎣0.974 0.226 0.004

0.226 0.973 0.041
0.009 0.041 0.999

⎤⎦ . (2.55)

To estimate the W± particle mass, we need an estimate for the range of weak nuclear forces,
and such a direct estimate does not exist. It is known, however, that the weak nuclear interaction
does occur within the atomic nucleus in the form of the β-decay, but it is not known how close the
particles must be for the scattering to also include weak interactions. For example, in antineutrino–
proton scattering, the contribution of the weak interaction would be seen also as the inelastic
collision (2.22), which the quark model represents as the consequence of two alternative collisions:

(2.56)

The range of the weak nuclear interaction mediated by W± is thus probably not larger than the
diameter of the nucleus where the process takes place, and may well be (much) smaller than the
proton and neutron diameter. Taking R < 10−15 m for the range produces mW > h̄

R c ∼ 200 MeV/c2,
which is a lower limit, and very weak as an estimate: It was known by the late 1940s that no
appropriate particle of such a mass exists. As the experiment energies grew, it was expected that
the scatterings would begin to show traces of the intermediary bosons W±, but such data would
be obtained only in January of 1983 (and the Z0 particle by mid-1983), for which Carlo Rubbia
and Simon van der Meer were to receive the 1984 Nobel Prize.

By about 1958, the possibility was noted that there might exist weak neutral processes of
the type

q + q′ ↔ Z0, and � + � ↔ Z0, (2.57)

where q and q′ are any two different quarks of the same electric charge – revealing the “mixing”
parametrized by the CKM matrix (2.53). Such processes would also produce a correction of the
electromagnetic interactions based on the elementary processes

q + q ↔ γ and � + � ↔ γ, (2.58)

without the CKM mixing and which, of course, do not include the neutrinos as they are electrically
neutral. In the processes where q and q′ are not the same quark, such as

s → Z0 + d, (2.59)
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the quark “flavor” changes, and such hypothetical processes were dubbed “flavor-changing
neutral currents” (FCNC). The experimental detection of such processes was crucial for con-
firming the Glashow–Weinberg–Salam model of electroweak interaction unification based on the
SU(2)× U(1) symmetry group, and the refutation of the competing model based on the SO(3)
symmetry group, which was proposed by Sheldon Glashow,28 developing the idea of his mentor,
Julian Schwinger, and with later collaboration by Howard Georgi. Based on this crucial confirma-
tion of their weak interaction model, Glashow, Salam and Weinberg were awarded the 1979 Nobel
Prize – five years before the direct detection of W± and Z0 bosons!

The point is that the proof of existence of the FCNC processes sufficed to establish the
existence of a Z0 virtual particle, which then exists only during a time shorter than that estimated

by Heisenberg’s indeterminacy relations �t <
h̄

2 mZ c2 , and which was therefore not yet directly

detected at the time. Such processes can happen (and were detected for the first time in 1973,
at CERN) even when the total energy of the collision is not enough to create a “real” Z0 particle,
which then could have been detected directly. It took several years to “improve the statistics” of the
results, i.e., to remove the “noise” of the much stronger electromagnetic interaction: In collisions of
two particle beams, most processes occur via the much stronger electromagnetic interaction. The
probability of identifying a “true” individual process for analyzing the weak interaction in the sea
of electromagnetic processes is then very small and requires ingenious technique and methodology
in detection as well as an enormous investment in the form of patience.

2.3.15 The Standard Model
By the mid-1980s, the universally accepted list of elementary particles was as given in Table 2.3,
and presents the so-called Standard Model in its most succinct form. The subsequent chapters will
discuss the details of this model (and there are plenty!), but let us note here that the listed 12
spin- 1

2 particles also have their antiparticles, and that every quark, in addition, has the additional
degree of freedom called color, with three distinct values. Thus some Authors [243] count 12
leptons and 36 quarks in Table 2.3. Of course, since these are spin- 1

2 particles, one should also
count the fact that each one of these 48 particles has spin projections ± 1

2 , which may be regarded
as a doubling in counting “particles.” Similarly, the photon is usually regarded as a single particle,
but one must know that every photon has two possible polarizations, which according to this logic
should be counted as two photons. For nuclear interaction mediators, this number is bigger: For
weak interactions there are three intermediary bosons: W±, Z0 and each has three polarizations,29

which then gives 3 × 3 = 9 particles. Section 6.1 will show that there are 8 gluons and that

Table 2.3 The content of the Standard Model of elementary particle physics; see equation (2.44a)

Substance (spin- 1
2 fermions)

Gen. Leptons Quarks

1. νe e− u d
2. νμ μ− c s
3. ντ τ− t b

Interactions (bosons)

γ
W±, Z0

}{electromagnetic
weak nuclear

}
interaction (spin 1)

gluons strong nuclear interaction (spin 1)

δgμν gravitation (spin 2)

Higgs boson: gives mass to the particles with which it interacts (spin 0)

28 Yes, it is the same Sheldon Lee Glashow, a coauthor of both competing proposals [☞ Footnote 12 on p. 276].
29 Since the W±, Z0 particle mass is not zero, these move with a speed smaller than the speed of light, and have a

longitudinal polarization. This is unlike with photons that move at the speed of light so the amplitude of the longitudinal
polarization reduces to zero owing to FitzGerald–Lorentz contraction.
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they are massless and so have two polarizations each: that adds 8 × 2 = 16 particles. Table 2.3
includes gravity, although it is, strictly speaking, not part of the Standard Model; the gravitational
field quanta are represented by fluctuations of the metric, and so by a rank-2 tensor. However,
those fluctuations propagate at the speed of light and have no mass, and so again have only two
polarizations [☞ Chapter 9].

Finally, an integral part of the Standard Model is also the Higgs scalar, which has now been
confirmed experimentally [293], the detection of which was one of the original goals of the LHC
(Large Hadron Collider) at CERN. Chapter 7 will show that a single real, scalar (spin-0) elementary
Higgs particle is predicted, which must be its own antiparticle. While the photon γ, the weak
intermediaries W± and Z0, the gluons and even the gravitons are mediating quanta of fundamental
interactions, the one real Higgs particle, which has been detected, is a remnant: Chapter 7 will
show that the Higgs field has four real degrees of freedom, three of which are Goldstone modes for
spontaneously broken SU(2)L symmetry. The practical role of the Higgs field is to mediate in giving
masses to particles, including the mediating gauge bosons W±, Z0 – as if the Higgs field were to
slow the particles with which it interacts, reminiscent of the effect of viscosity in materials.

The Goldstone modes in the Higgs field cannot be detected as separate particles, but they
can be identified as the additional longitudinal polarizations of the W± and Z0 gauge bosons: In
the phase without symmetry breaking there are two complex degrees of freedom of Higgs particles
(which may be counted as 2 × 2 real particles) and three massless gauge bosons of the weak
interaction – and so with two polarizations each tallying up to 3 × 2 real particles; together, that’s
10 real particles. In the phase with broken symmetry there is only one real Higgs particle and three
massive gauge bosons (three polarizations each), tallying up to 3× 3 real particles; together, that’s
again 10 real particles.

The final sum in this detailed counting is

fermions = (3 × 2 × 2 × 2) + (3 × 2 × 2 × 2) × 3 = 96,
bosons = 1 × 2 + 3 × 3 + 8 × 2 + (1 × 2) + 1 = 30,

= 126.
(2.60)

In some ways, this is the correct counting – and we will see subsequently in what sense one needs
to distinguish all these degrees of freedom, as there are physical observables that depend on this
level of detail. However, I should like to hope it is clear to the Reader that the complaint “a system
of 126 particles does not look elementary” is not fair: It is crucial that these 126 degrees of freedom
are systematically presented in the simple Table 2.3. Finally, the particles listed in that table fully
explain the by now many hundreds of experimentally detected mesons and baryons, and so all
experimentally detected forms of substance (atoms, molecules, etc.), while they themselves show
no sign of compositeness or structure. Therefore, the so-called Standard Model with the business
card in Table 2.3, and described in more detail in subsequent chapters, fully satisfies the goal of
our original search.

Table 2.4 lists a telegraphic review of the most prominent elementary particle physics
milestone discoveries.

— ❦ —

Motivated mostly by the economy of symmetries in Table 2.3 on p. 67, and a little also by the large
number of degrees of freedom (2.60), as early as 1974, there were classification systems that in
various ways represent at least some of the 126 particles (2.60) as bound states of even more
elementary constituents. Generally speaking, in these proposals quarks (and sometimes also the
leptons, and/or the mediating bosons) are bound states of preons. Different preon models suppose
different dynamics, and then also different combinatorial rules for preons, all with the aim to faith-
fully reproduce the contents of Table 2.3, and the counting (2.60). However, except for economy
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Table 2.4 A timeline of significant discoveries in elementary particle physics

Year Particle Discovered

1895 X-rays Wilhelm C. Röntgen (X-rays were later identified as photons)
1897 e− Joseph J. Thomson
1899 α-particle Ernest Rutherford
1900 γ-rays Paul Villard (γ-rays were later identified as photons)
1911 Atomic nucleus Hans Geiger and Ernest Marsden, under Ernest Rutherford
1919 p+ Ernest Rutherford
1932 n0 James Chadwick
1932 e+ Carl D. Anderson (predicted by Paul A. M. Dirac, 1927)
1937 μ− Seth H. Neddermeyer and Carl D. Anderson, Jabez C. Street and Edward

C. Stevenson (erroneously identified as pion until 1947)
1947 π±,π0 Cecil Powell (predicted by Hideki Yukawa, 1935)
1947 K0 George D. Rochester and Clifford C. Butler
1949 K± Cecil Powell
1947–1953 Λ0, Σ±, Σ0 Several research groups
1955 p−, n0 Owen Chamberlain, Emilio Segrè, Clyde Wiegand and Thomas Ypsilantis
1956 ν (directly) Frederick Reines and Clyde Cowan (predicted by Wolfgang Pauli, 1931)
1962 νμ �= νe Leon M. Lederman, Melvin Schwartz and Jack Steinberger
1969 Partons, and

u, d, s quarks
So-called deep inelastic collisions, SLAC (predicted by Murray Gell-Mann
and George Zweig, 1963)

1974 J/ψ
([c-c]-state)

Burton Richter and C. C. Samuel Ting, proof of the c-quark existence
(predicted by James D. Bjorken and Sheldon L. Glashow in 1964, and
Glashow, John Iliopoulos and Luciano Maiani in 1970)

1975 τ-lepton Martin Perl and collaborators, SLAC
1977 Υ (upsilon)

([b-b]-state)
Leon Lederman and collaborators, Fermilab (b-quark predicted by Makoto
Kobayashi and Toshihide Masakawa in 1973)

1979 Gluon e−– e+ collisions in PETRA experiment at DESY
1983 W±, Z0 Carlo Rubbia, Simon van der Meer, CERN UA-1 collaboration (predicted by

Sheldon L. Glashow in 1963, Abdus Salam and Steven Weinberg in 1967)
1995 t-quark Tevatron, Fermilab (predicted by Makoto Kobayashi and Toshihide

Masakawa in 1973)
2000 ντ DONUT collaboration, Fermilab
2012 Higgs ATLAS and CMS collaborations, LHC at CERN – pending interaction

details [25, 109]☞

in classification and “purely aesthetic” advantages, there exists no experimental reason for preon
models. In all experiments thus far (at distances � h̄ c/E, where E ≈ 250 GeV/c2 is the maximal
collision energy), quarks, leptons and gauge bosons behave as ideal point-like (elementary) parti-
cles. That is, they show no internal structure [☞ Conclusion 1.5 on p. 30]. Of course, the absence
of a proof of a structure within quarks and leptons is not a proof of the absence of such a structure.

2.4 Lessons

During the twentieth century the quantumness and relativity of Nature became universally ac-
cepted basic ideas of fundamental physics. The third idea that had similarly taken root in our
understanding of Nature is the fundamental role of symmetry. On one hand, this links symmetries
and conserved quantities: in the form of Amalie Emmy Noether’s theorem in classical physics,
rather directly in quantum mechanics, and via so-called Ward–Takahashi identities for gauge
theories in quantum field theory. On the other hand, this also links symmetries and interactions, in



70 Fundamental physics: elementary particles and processes

the form of the gauge principle. Especially in the second half of the twentieth century, symmetries
and the algebraic structure of groups that those symmetries form so focused the research in fun-
damental physics that some philosophers of natural sciences [533] acquired the impression that
the concept of law had been abandoned for symmetry principles. However, the point of view of
those who actually do such research is that symmetry groups provide the much needed cohesive
(algebraic) structure both to various conservation laws and to the modes of interaction. Symme-
tries have thus become an integral part of the contemporary understanding of laws of Nature.30

This difference in understanding the link between symmetries and the laws of Nature reminds us
of the comments in Digression 1.1 on p. 9.

The link between symmetry and interaction in the form of gauge theory will be explored in
detail in subsequent chapters. Here, we review the conservation laws: We reconsider the logic and
rules of their application, provide some cautionary remarks about that application, and list the
conservation laws as they are used in elementary particle physics.

2.4.1 The logic and rules of application
The growing majority of particles that are studied in elementary particle physics – the hundreds of
mesons and baryons – actually are not elementary, but are bound states of quarks and/or anti-
quarks. All hadrons (except the proton) as well as the μ±- and τ±-leptons decay, and rather
fast [293]: A free n0 in 15 min, μ± decays in 2.2 × 10−6 s, π+ in 2.6 × 10−8 s, π0 in 8.4 × 10−17 s,
the J/ψ-particle in 7.05 × 10−21 s, and most of the hadrons decay in a time of about 10−23 s! From
all those hundreds of particles, only the electron and the proton are stable in the traditional sense –
the decay of not one of these has ever been observed.

During 10−23 s, light passes only about 3 × 10−15 m in vacuum, which is the order of mag-
nitude of the diameter of the atomic nucleus. It is clear that such short decay lifetimes cannot be
measured with a stop-watch. Instead, we use the indeterminacy relation, �E�τ � 1

2 h̄, so that
�E = (�m)c2 implies

τ :=
h̄

(�m)c2 , t1/2 := ln(2) τ =
ln(2) h̄
(�m)c2 . (2.61)

From the experimentally obtained distribution of the values of the particle mass, one computes
the standard deviation of mass and uses it as �m in equation (2.61). The so-computed average
duration time of the particle (state), τ, is used as the particle lifetime. Then, t1/2 is its half-life:
N(t) = N(0) e−t/τ = N(0) 2−t/t1/2 is the number of a certain type of particles at the time t > 0 in
a sample where the number at the time t = 0 was N(0).

Also, many hadrons (and leptons too!) can decay in several distinct ways; a few examples for
illustration purposes are [293]:

Decay results Decay results

Λ0 → p+ + π− (35.8 ± 0.5)%, → n0 + π0 (63.9 ± 0.5)%, etc.

K+ → μ+ + νμ (63.44 ± 0.14)%, → π+ + π0 (20.9 ± 0.12)%,
→ 2π+ + π− (5.590 ± 0.031)%, → π+ + e+ + νe (4.98 ± 0.07)%, etc.

τ− → μ− + ντ + νμ (17.36 ± 0.05)%, → all else: (82.64 ± 0.05)%.

(2.62)

30 Roughly, all laws of Nature, as they are understood here, contain both conservation laws and interaction laws.
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One of the tasks of elementary particle physics is the computation of the relative probabilities of
decay, as well as the total lifetimes of various particles. This includes both the elementary parti-
cles [☞ Table 2.3 on p. 67], such as the τ-lepton, and also the bound states of these elementary
particles. This second group, much larger and growing, consists of hadrons (mesons and baryons)
as well as the so far only hypothetical and experimentally unverified bound states that consist
purely of gluons,31 and possibly also the so-called exotic hadrons – quark bound states that are
neither mesons, (q q), nor baryons, (q q q); for example, so-called dibaryons are hypothetical bound
states of six quarks.

Conclusion 2.4 The primary focus of the so-called “elementary particle physics” is on the
elementary particles as identified in the Standard Model [☞ Table 2.3 on p. 67]. However,
this then covers also the dynamics of these elementary particles, and so also their bound
states: all mesons and all baryons [☞ Table 2.5 and Section 11.2].

By the feature indicated in this conclusion, high energy physics currently differs from all other dis-
ciplines in physics: The domains of study of several closely related physics disciplines are sketched
in Table 2.5. Unlike all other disciplines in this table, “elementary particle physics” (also known as
“high energy physics”) studies (at least) two levels of elementarity.

Table 2.5 The domains of several physics disciplines of “small” systems and objects

Discipline Domain of study

Molecular physics Molecules (chemically bound states of atoms)
Atomic physics Atoms (electromagnetic bound states of a nucleus and electrons)
Nuclear physics Atomic nuclei (bound states of protons and neutrons)
Elementary particle physics
a.k.a. High energy physics

} {
Elementary particles [☞ Table 2.3 on p. 67]
Bound states of these (mesons and baryons)

Finally, by the end of the twentieth century, high energy physics had also brought on an es-
sential shift in the understanding of the Democritean idea of “elementary particles”: The hierarchy

1. molecules consist of atoms,
2. atoms consist of electrons and a nucleus,
3. nuclei consist of nucleons (protons and neutrons),
4. nucleons (and all other hadrons) consist of quarks,

experimentally stops here, for now. It is reasonable to expect that contemporary “high energy
physics” will soon effectively split into “hadron physics” and “fundamental physics,” although their
respective domains do not yet seem to be sufficiently differentiated.

According to (super)string theory, this hierarchical halt is also conceptually significant: In
that theoretical system, the fundamental objects are not any new (smaller, constituent) particles,
but (super)strings; the particles of the Standard Model, as given in Table 2.3 on p. 67, are not
bound states of these more elementary (super)strings, but are their modes of vibration. This is an
essential shift in understanding: quarks, leptons, gauge and Higgs bosons are not at all bound
states consisting of other, more elementary things! Rather, the same string contains amongst its
vibrations (its Fourier modes) all the elementary particles of the Standard Model (and indefinitely
more) simultaneously [☞ Chapter 11].

31 Unlike the chargeless photons in abelian (commutative) gauge theory of quantum electrodynamics, the mediators of
non-abelian (non-commutative) interactions in quantum chromodynamics (the gluons) themselves have color charge
and so can form bound states, so-called glueballs [☞ Chapter 6.2].
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Returning then to elementary particle physics, consider the correlation between the mass of
a fundamental interaction mediator and the range of that interaction. In 1931, Yukawa reasoned
that the total energy is E = c

√
m2c2 +�p 2 � mc2 for a mediating particle of mass m. To produce

such a particle during the interaction, at least mc2 energy is needed. Heisenberg’s indeterminacy
relations permit “borrowing” that much energy for no longer than ∼ h̄

E � h̄
mc2 , during which this

mediating particle may traverse a distance no larger than [ ✎why?]

R ∼ h̄
mc

. (2.63)

Numerical factors such as 1
2 in �E�τ � 1

2 h̄ were neglected here as the estimate (2.63) is a rough
upper limit. Using the fact that the strong interaction must have a range that is at least comparable
to the size of the atomic nucleus – so as to keep the nucleons in the bound state – Yukawa estimated
the mass of the mediators for the strong nuclear interaction as m ∼ h̄

Rc ≈ 200 MeV/c2.

Digression 2.6 Warning! Using the same reasoning to estimate the range of the electro-
magnetic interaction from the size of the atom, a0 = 5.291 772 108× 10−10 m, implies that
the photon mass is ∼4 keV/c2 – which is wrong. Of course, we know that the range of the
electromagnetic interaction is infinite, which agrees with the relation (2.63) and the fact
that the photon mass is zero. The error in the first estimate stems from the fact that the
binding energy of the hydrogen atom (1.31) is less than the rest energy of the electron
by the dimensionless factor α2 ∼ 5.33 × 10−5; bound states where the binding energy is
a few orders of magnitude smaller than the rest energy are called “weakly bound” [☞ re-
lations (1.40)]. Heisenberg’s relations are inequalities, and thus can only provide a lower
limit for the mass of the mediating particle from the size of the bound state, and usefully
so only for “strongly bound” states!

In the case of weak interactions, the mass estimate for the mediating bosons, W±, Z0, is addi-
tionally hampered by the fact that there do not exist states bound by the weak nuclear interaction.
Since the β-decay evidently does happen within the atomic nucleus, we know that the range may
well be of the order of the atomic nucleus diameter, but this does not permit estimating either limit
for the range: The range may be smaller and the β-decay occurs at distances much smaller than the
nucleus diameter. Or, it may be much larger than the nucleus – the involved particles are confined
within the nucleus anyway, by the strong interactions.

Complementary to the range, we may compare the times required for a decay to happen.
Strong interaction decays typically happen within 10−23 s, while electromagnetic decays occur
within 10−16 s – ten million times slower. Weak interactions, however, vary: decays may be as
fast as 10−13 s (for the τ-lepton) to as long as 881.5 s (for the free neutron) [293] – which is a
spectrum of 16 orders of magnitude! If the decay results in photons, it happened by means of the
electromagnetic interaction; similarly, the appearance of a neutrino in the decay results is the “hall-
mark” of weak interactions. For decays where the result contains neither a photon nor a neutrino,
the type of the interaction is harder to determine, so the duration of the decay is a useful indicator.

While it is known that all particles except e−, p+, νe and γ decay, the decay patterns of all
particles are very regular. A systematic analysis of their decays, and also of their inelastic collisions
and scatterings then implies:

Conclusion 2.5 All particles decay into lighter particles, and in all manners that are permit-
ted by conservation laws. (The electron, for example, does not decay as there are no lighter
particles into which to decay.)
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This conclusion is related to Conclusion 2.3 on p. 56. This logic led to a successful application of
the SU(3) f and later also of the SU(4) f approximate symmetries, as well as several conservation
laws that became an integral part of the Standard Model. The subsequent review of these laws will
have to be amended later, when the technical details become familiar.

2.4.2 Strict conservation laws
By “strict conservation laws” we understand those laws that hold for all interactions and in all
situations. For each of these laws, the Standard Model exhibits an explicit symmetry, linked with
that conservation law by way of Emmy Noether’s theorem. The book [383] is dedicated to various
forms and applications (not only in physics!) of this important theorem.

4-momentum, angular momentum, parity
One of the most important lessons from the historical review in Section 2.3 is the reliance on
conservation laws of the 4-momentum: both the (relativistic) total energy and the vector of linear
momentum are strictly conserved quantities in so-called real states – i.e., in states where these
quantities can be observed and measured. On the other hand, in virtual states neither the total
energy nor the momentum can be measured, and the conservation laws are not applicable. Thus,
it is not that the energy and/or momentum conservation law is violated in virtual states, but rather
there is neither measurable energy nor measurable momentum for which to apply the law.

The conservation of the 4-momentum is the consequence of Noether’s theorem for the
spacetime translation symmetry, for a system’s real states.

Digression 2.7 Heisenberg’s indeterminacy relations are not infrequently cited as the as-
sertion that physical quantities that can be simultaneously measured must correspond to
operators that commute. That, in fact, is not quite true, because it neglects the essen-
tial dependence in quantum mechanics on the state, or a class of states, in which the
considered system is prepared.

A very general proof32 of this statement follows from considering two Hermitian
operators, A and B, which define

C := −i
[

A , B
]
, C† = C. (2.64a)

Defining A0 := A − 〈A〉 and B0 := B − 〈B〉, we have[
A0 , B0

]
:=

[
(A − 〈A〉) , (B − 〈B〉) ] = iC, (2.64b)

so that

0 � 〈∣∣A0 − iωB0
∣∣2〉 = 〈A 2

0 〉 − iω〈[A0 , B0
]〉 +ω2〈A 2

0 〉 (2.64c)

= Δ 2
A +ω〈C〉 +ω2Δ 2

B . (2.64d)

The right-hand side expression is minimized by min(ω) = −〈C〉/2Δ 2
B , producing

Δ 2
A Δ 2

B � 1
4 〈C〉2, that is, ΔA ΔB � 1

2 |〈C〉| = 1
2 |〈[A, B]〉| , (2.64e)

which are Heisenberg’s indeterminacy relation for the physical quantities represented
by the operators A, B. This manifestly depends on the state in which the indicated
expectation values 〈C〉 and 〈[A, B]〉 are computed – and may well be zero although
[A, B] �= 0.

32 This follows the variational derivation in Refs. [295, 97], refining the original derivation by Robertson [460] and
Schrödinger [476]; see also Ref. [242].
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Example 2.1 In the best known example, we have A = px and B = x, and C = h̄1 is a
constant, and the non-vanishing of the right-hand side of equation (2.64e) is in fact state
independent. However, for the case of the angular momentum,[

J x , J y
]

= ih̄ J z ⇒ ΔJ x ΔJ y � 1
2

∣∣〈J z〉
∣∣. (2.65)

For states where 〈J z〉 = 0 we have that ΔJ x ΔJ y � 0. Thus, although the operators J x and
J y do not commute, the product of their indeterminacies may well vanish in states of the
system where 〈J z〉 = 0. In those quantum states, Heisenberg’s indeterminacy principle
does not preclude the simultaneous measurement of J x and J y although they do not
commute as operators.

Just like 4-momentum, angular momentum is strictly conserved in real states. The conserva-
tion law is a consequence of Noether’s theorem for rotation symmetry.

Parity, P, is the operation that changes the sign of all Cartesian spatial coordinates; in spheri-
cal coordinates, this is the (r, θ, φ) → (r,π−θ, φ+π) transformation. With respect to this, so-called
polar vectors (position, velocity, acceleration, electric field, etc.) all change sign. In turn, so-called
axial vectors (angular momentum, torque, magnetic field, etc.) do not change sign. Scalar func-
tions of position (temperature, atmospheric pressure, density, etc.) are invariant and do not change
sign, while pseudo-scalar functions of position (e.g., the volume element d3�r ) change sign. Tsung
Dao Lee and Chen Ning Yang discovered that parity is strictly conserved in all electromagnetic and
strong processes, but that by 1956 parity conservation had not been verified in weak interactions.
Thus, they proposed several direct experimental tests. During 1956–7, Madam Chien-Shiung Wu
found, with her collaborators, clear indication of P-violation in the 60

27Co β-decay, which was imme-
diately confirmed by R. L. Garwin, L. Lederman and R. Weinrich by means of precise measurements
of cascading decays (2.21). It later turned up that R. T. Cox, C. G. McIlwraith and B. Kurrelmeyer
had published experimental results back in 1928 [118, 245] about double scattering β-particles
(e±), which indicated P-violation, but those 28 years earlier no one was willing to consider that as
an explanation.

Electric charge
The Maxwell equations (5.72) straightforwardly produce the so-called equation of continuity:

�∇·�E =
1

4πε0
4π ρe ⇒ ∂(�∇·�E)

∂t
=

1
4πε0

4π
∂ρe

∂t
,

�∇×(c�B) − 1
c
∂�E
∂t

=
1

4πε0

4π
c

�je ⇒ �∇·(�∇×(c2�B)
)− ∂(�∇·�E)

∂t
=

1
4πε0

4π�∇·�je,

⇒ 0 =
∂ρe

∂t
+ �∇·�je,

(2.66)

since �∇·(�∇×�X) ≡ 0 for all �X. It follows, integrating

∂ρe

∂t
= −�∇·�je ⇒ dQe,V

dt
= −

∮
∂V

d2�r ·�je, (2.67)

so that the change of the total amount of electric charge Qe,V contained within a volume V equals
the flux of the electric current through the (surface) boundary of that volume. The conservation
law of electric charges is thus an exact and inevitable consequence of the fundamental laws of
electromagnetism.
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A violation of this law in any process would then indicate a contradiction with the Maxwell
equations, and so also with electrodynamics as a whole. In the weak interactions, such as

(2.56)

the electric charge of individual particles transfers: the neutral antineutrino becomes the positive
positron and the positive proton becomes the neutral neutron. However, the total electric charge
remains conserved in any arbitrarily small volume that contains the interacting particles. In the al-
ternative intermediate processes, we see that the W± also carry electric charge, so that the electric
charge is conserved in each of the individual elementary processes:

νe → e+ + W−, u → W+ + d, W− + u → d, W+ + νe → e+. (2.68)

Digression 2.8 The very fact that the weak nuclear interaction mediators carry also
electric charge indicates that the weak nuclear interaction is not fully independent
of the electromagnetic one. Chapter 7.2 will more precisely examine this link. How-
ever, one of the consequences of this link has already emerged, in the generalized GNN
formula (2.44b).

Color
Chapter 6.1 will show that the color in quantum chromodynamics generalizes the electric charge:
whereas the electric charge is a scalar quantity, color is a 3-component quantity, i.e., a 3-vector in
an abstract 3-dimensional space, just as the 3-vectors of position, velocity and force are vectors in
the “real” space in which we ourselves move.

The fundamental differential equations of chromodynamics are the corresponding general-
ization of the Maxwell equations, and so also follow a corresponding conservation law of color
as a charge. During elementary chromodynamical processes, quarks change their color, but this
change is carried by gluons (the strong nuclear interaction mediators), so that color is conserved
in every process. Since all detectable (real) particles are colorless, the color conservation law and
the corresponding global symmetry are somewhat trivial. However, the gauge (local, i.e., space-
time variable) color symmetry is the reason for the existence of the strong nuclear interaction; see
Chapter 6.

Lepton numbers
Unlike electric charge and color, which are conserved charges of gauge symmetries and which thus
correspond to electromagnetic and strong nuclear interactions, the lepton numbers are strictly
conserved, but are not the conserved charges of a gauge symmetry and do not correspond to any
interaction. For example, in the decay

μ− → e− + νe + νμ, (2.69)

the muon lepton number (Lμ = +1) is carried by μ− and νμ, and we have Lμ = +1 input,
Lμ = +1 output. The electron lepton number is carried by e− and νe: Le(e−) = Le(νe) = +1, so
that Le(νe) = −1. Here we have Le = 0 input, Le = +1 + (−1) = 0 output. Following the original
proposal [319], a systematic analysis of all so far observed processes (except for neutrino mixing;
see Section 7.3.2) indicates a strict conservation of all three lepton numbers, Le, Lμ, Lτ, as defined
in the table:
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νe, e− νe, e+ νμ, μ− νμ, μ+ ντ , τ− ντ , τ+

Le = +1 −1 0 0 0 0
Lμ = 0 0 +1 −1 0 0
Lτ = 0 0 0 0 +1 −1

(2.70)

An analogous conservation of quark numbers, separately for the (u, d), (c, s), and (t, b) pairs
does not exist, because of the CKM mixing (2.53) of so-called “lower” quarks, d, s, b. The question
of lepton mixing, i.e., neutrino mixing, will be addressed in Section 7.3.2; let us note here merely
that this possibility was proposed back in 1962 [353], although there was no strong experimental
indication until recently that such a mixing really happens [369, 370].

In this sense is the reason for the existence of the (approximate) conservation law of three
separate lepton numbers and the absence of a conservation law of three separate quark numbers a
phenomenological and not a fundamental law – and an open question☞ !

Baryon/quark number
The quark model redefined the baryon number simply as the triple of the quark number, where
antiquarks have negative quark number. In the Standard Model, that definition remains, and also
explains the absence of a meson conservation number: since mesons are (q q) bound states, their
quark number is zero. Since quarks cannot be extracted, it remains a convention to count baryons,
and quarks have 1

3 of the baryon number.
The baryon number conservation law is also strict – in that it holds in all processes. However,

just as the (separate) lepton number conservation laws, this too is a phenomenological and not a
fundamental law.

2.4.3 Approximate conservation laws
Besides strict conservation laws, there also exist approximate conservation laws, which are never-
theless useful precisely because of their approximate validity, whereby they help in estimates and
computations.

Flavor

Figure 2.1 Quark (�) and charged lepton (◦) masses plotted on a logarithmic scale.

Table (2.44a) shows that the differences between the consecutive quark masses grow with these
masses, as seen on the plot 2.1. In experiments done at the average energy of ΛQCD = 200 MeV/c2

per process and with the experimental error at about 10% (so about 20 MeV/c2), it is not possible
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to distinguish u- and d-quarks purely by their masses; within experimental error, their masses are
the same. On the other hand, there is enough energy to produce an s-quark, which indeed can be
distinguished from the u- and the d-quarks purely by its mass: 105± 20 MeV/c2 cannot be confused
for mu, md even when identified within the ±20 MeV/c2 experimental error.

Nevertheless, Gell-Mann proposed to:

1. First consider mu, md, ms as sufficiently near in masses to be distinguished;
this indicated an SU(3) f symmetry.

2. Then take into account the difference between ms vs. mu ≈ md;
this breaks the symmetry SU(3) f → SU(2)u,d.

This strategy led to his classification system “eightfold way,” the plots such as (2.31), (2.32)
and (2.35), the phenomenological formulae (2.33)–(2.34), and also to the discovery of the
Ω− baryon. Thereby, Gell-Mann introduced and established the use of symmetry – even if only
approximate.

Within the Standard Model, such classifying schemes are, based on the “flavor” SU(n) f sym-
metry, very clearly phenomenological schemes. The conservation laws of individual “flavors” or
groups of “flavors” are also only approximate rules, broken by the CKM mixing (2.53)–(2.55).

Digression 2.9 This induced the idea that approximate symmetries are (perhaps, some-
times) “only” broken symmetries, prompting us to uncover the reason and mechanism
of breaking. In this sense is the origin of quark masses, and lepton masses too, as well
as the CKM matrix, one of the basic questions to which the Standard Model has no an-
swer☞ . The quest for this origin is one of the basic motivations for most proposals that go
“beyond” the Standard Model. This includes various electroweak and strong interaction
unification models, and in these models at least some of the unexplained characteristics
of the Standard Model are supposed to be derived and “predicted.”

The OZI rule
There is a very general regularity in decays: The speed and probability of a decay,

X −→ Y1 + Y2 + · · · + Yk, (2.71)

both grow with the change in mass, �m := (mX − ∑i mYi ). Thus, between two decays that occur
by means of the same kind of interaction, the one for which �m is larger happens more often.
Deviations from this regularity require an explanation.

In the 1960s, Susumu Okubo [392], George Zweig [593] and Jugoro Iizuka [289] in-
dependently discovered a significant correlation: decays that require the full annihilation of all
“incoming” quarks and antiquarks are delayed (i.e., the probability of such decays is diminished)
as compared to decays of the same system where at least some of the incoming quarks or an-
tiquarks pass through into the decay result. During the 1960s, his correlation so successfully
“explained” the delayed decays that it acquired the nickname the “OZI rule.” For example, the
probability of the φ → π+ + π− + π0 decay is diminished as compared to the probability of the
φ → K+ + K−, K0 + K

0 decay; experiments show that φ decays over 83% of the time into kaons
and not into pions, although

�m(φ→ 2K) ≈ 32.1 MeV/c2, while �m(φ→ 3π) ≈ 605 MeV/c2. (2.72)
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Analogously, the J/ψ particle was supposed to decay predominantly into the pair of mesons
D+ = (c d) and D− = (d c). However, the total mass of the D+ + D− meson pair is larger
than the mass of the J/ψ meson, so that the decay J/ψ → D+ + D− is kinematically forbid-
den [☞ Section 3.2], and only the decays into charmless hadrons remain possible, for all of which
the probability is diminished by the OZI rule. This then is the combination of reasons that induces
J/ψ to have unusually long (∼10−20 s) lifetime, which is some 1,000 times longer than most other
hadrons.

Symmetries and models
Symmetries have now been mentioned and even used several times, relying on the intuitive un-
derstanding of their nature and physical meaning. However, to be more precise – and especially
with the discussion of (mathematical) models started in Section 1.1.2 in mind – recall that these
mathematical models serve to faithfully reproduce all characteristics of the considered system. The
model is therefore automatically identified with the physical system, object or quantity that the
model represents [☞ Section A.1.3].

For example, strictly speaking, the 3-dimensional vector �B is the abstract mathematical con-
struct used as a model for the magnetic field of a concrete magnet, in a concrete point of space
and in a concrete moment in time. The union of continuously many vectors �B in space around the
particular magnet in the same moment in time provides the abstract mathematical construct (it
is impossible to measure continuously many points) that is automatically identified with the con-
crete magnetic field of that magnet. The abstract mathematical property of this union of vectors
�B – that it does not change if the whole union is rotated about the axis of the magnet itself – is
automatically ascribed to the concrete magnetic field of the concrete magnet.

By the same token, we have more generally:

Conclusion 2.6 Symmetries and other significant properties of the abstract mathematical
model are automatically ascribed to the concrete physical system, object or quantity that
the model faithfully represents.

We then say that the (concrete, physical) magnetic field of the magnet has axial symmetry, even
though this symmetry – strictly speaking – is a property of the mathematical model of this magnetic
field. It is therefore of the essence that models do not introduce unnecessary (fictitious) degrees of
freedom, concepts and properties.

Conclusion 2.7 Ideally, the mathematical models of physical systems, objects and quantities
must be optimal: minimal in the number and complexity of structure of intermediary and
auxiliary means, (self-)consistent and faithful in representing the physical system, object
and quantity for the description of which it is used.

On one hand, this requirement of optimality reminds us that physics does not describe Nature
directly, but through mathematical models that are continually improved. On the other hand, this
requirement is a variation of Ockham’s principle, which crucially limits the possibilities at our
disposal when improving the existing models or creating new ones.

This practice largely determines the development of physics.

2.4.4 Exercises for Section 2.4

✎ 2.4.1 A particle for which the relation (2.1) determines the speed and the ratio of electric
charge by mass enters under the same conditions into a region where, however, now the
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magnetic field is turned off. Compute the distance and direction of deflection in the (y, z)-
plane from the x-axis, when the particle has traversed the length � along the positive x-axis,
and show that this deflection again depends on the ratio of charge by mass.

That is, show that successive measurements on the same cathode ray, with either one,
or the other, or both fields �E = E0 êy and �B = B0 êz cannot determine independently both
the electric charge and the mass of the particles that make up the cathode ray.

✎ 2.4.2 A photon of energy Eγ = hν and linear momentum �pγ = 1
c Eγ êx collides with an elec-

tron at rest. Upon the collision, the photon continues in the direction cos(φ) êx + sin(φ) êy
with the energy E′

γ and linear momentum �p′γ, while the electron recoils in the direction
cos(θ) êx − sin(θ) êy with the linear momentum �pe. Show that the linear momentum and
energy conservation laws (a) produce the result (2.5), and (b) forbid that a free electron
simply absorbs a photon.

✎ 2.4.3 Show that the energy and linear momentum conservation forbids all processes that
may be obtained from (2.15)–(2.16) when either of the two photons is deleted and the
remaining particles are rearranged using the crossing symmetry and the principle of detailed
balance.
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3
Physics in spacetime
High-energy collisions, scatterings and most decays are, for the most part, relativistic quantum
processes. It is therefore imperative to recall relativistic kinematics and the basic rules of ten-
sor calculus; see Appendix B.2 for a more complete introduction. However, this chapter neither
replaces nor competes with complete treatments of the special theory of relativity such as the illus-
trative but perfectly detailed text [512] or the first and original text [566]. Instead, the purpose
of this chapter is to provide an introduction and the results that will be useful in following the
subsequent material.

3.1 The Lorentz transformations and tensors
When describing physical processes, one necessarily uses a mathematical apparatus such as a (ref-
erence1) coordinate system – equipped with a specific and appropriate collection of coordinates.
The choice of any one such coordinate system is arbitrary and should not affect the characteristics
of the natural laws.

The basic idea (oft cited as one of the two postulates) of Einstein’s theory of relativity is that
the change in the choice of the coordinate system and corresponding coordinates used to describe
spacetime must not change the meaning of natural laws – and so must not have any measurable,
i.e., observable consequences.

Digression 3.1 Chapter 5 will show that the so-called gauge principle is simply the gen-
eralization of this relativity to the spaces of so-called internal degrees of freedom (also
a type of coordinates), such as the phase of the complex wave-function of any charged
particle.

In the special theory of relativity, this idea of relativity is limited to so-called inertial (co-
ordinate) systems, which are usually defined as coordinate systems that differ from each other

1 The term “coordinate system” is used instead of “reference system” to remind the Reader that its choice necessarily
includes a choice of a particular system of four variables, and the specification of the metric tensor in the space of those
variables; [☞ Chapter 9 for the general case, and here the relations (3.15)–(3.19)].
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only in moving one with respect to the other with a constant relative velocity.2 However, against
all intentions, this “definition” does not exclude, for example, a pair of coordinate systems that
co-rotate about the same axis with the same angular velocity, but move with a constant relative
velocity along the co-rotating axis. Intuitively, the actual intention was to define a class of coor-
dinate systems that move with a constant velocity with respect to a system. . . at rest! This shows
that our intuition was infiltrated by the Newtonian idea of absolute space and time; it would be
inconsistent to define the relativistic inertial frames using Newtonian ideas.

A definition that relies on a relative property between two members of the class being defined
must imply that at least one member of this class can be unambiguously identified, so that other
members of the class would be defined by comparison with this chosen reference. However, the
very essence of the theory of relativity is that no such singled-out reference system can exist, which
makes such a relative definition essentially insufficient.

The practical property of all inertial coordinate systems in non-relativistic physics is that
Newton’s first law holds in them. As it was our intention anyway for this law to hold, following
Griffiths [243], we adopt it as a definition:

Definition 3.1 A coordinate system is inertial if Newton’s first law, i.e., the law of inertia,
holds in it: every body moves at a constant velocity in a straight line if and only if the sum
total of all forces that act upon it vanishes.

Comment 3.1 It is not hard to show that Definition 3.1 implies that the relative velocity be-
tween any two inertial systems is constant. Thus, Definition 3.1 implies the usually assumed
property of inertial coordinate systems, which were meant to be selected. It also excludes the
non-inertial systems such as the above-mentioned co-axially translating co-rotating systems,
which are known to be accelerated.

Comment 3.2 Evidently, for a specified coordinate system, we must know what is a “straight
line” and what qualifies as a “constant velocity.” As the first notion is purely geometrical, and
the second requires differential calculus in the specified coordinate system, Definition 3.1
presupposes this level of mathematical knowledge of the specified coordinate system. How-
ever, this requirement is logically acceptable and even to be expected. Also, this definition of
an inertial system depends on a presupposed familiarity with the concept of force; Chapter 9
will show that amongst all coordinate systems the concept of force may be exchanged for
the concept of curvature of the coordinate system. In contradistinction then, all inertial co-
ordinate systems are also flat , i.e., have no curvature. To be pedantic, one must also require
a “trivial topology,” i.e., no globally nontrivial features such as multiple connectedness.

Comment 3.3 Finally, note that Definition 3.1 implies the testing of certain numerical val-
ues: deviation from a straight line, the magnitude and direction of the vector of acceleration.
Since every measurement is subject to error, both criteria are subject to the limitations of
real, physical measurements. Definition 3.1 is therefore a truly physical one. For exam-
ple: in nearly all experiments, the “laboratory system” is considered to be inertial, although
it is not really so. The laboratory is on the surface of the planet Earth, the gravitational
field of which bends the trajectories of objects and accelerates them. Also, the Earth rotates
about its axis, so that there are also Coriolis-type forces. Furthermore, the Earth is in the

2 It should be kept in mind that the special theory of relativity [179, 55, 69, to name but a few textbooks] is only the
linear (flat spacetime) approximation to the general theory of relativity [508, 62, 367, 548, 66, 96]. It is possible to
extend the use of special relativity so as to include relatively accelerated systems where the incurred nonlinear effects
may be consistently neglected. The Reader is expected to have used the formalism of the special theory of relativity at
the level of standard texts in electrodynamics [296].
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gravitational field of the Moon and the Sun; the Earth rotates about the Sun; together with
the solar system, they also rotate about the galactic center, etc. For all practical purposes –
and to the precision needed in most experiments – these effects are either negligible or can
be accounted for by computation. Only if all these (both conceptual and computational)
corrections are negligible may the “laboratory system” be regarded as inertial – to within
the stated tolerance. The same applies to all other practical applications of Definition 3.1.

Typically cited as the second postulate is the statement that the speed of propagation of light
in vacuum, c, is constant. In the “particle system of units” that we adopt herein, c and h̄ are used
as basic units, and both quantities are automatically regarded as universal constants of Nature.

3.1.1 Space and time mixing

The next step is the realization that space and time in relativistic physics are not independently
specifiable quantities. The transition from one inertial coordinate system S into another inertial
coordinate system S′, one that moves with the constant velocity �v with respect to S, is achieved by
means of the so-called Lorentz boosts3 [☞ Exercise 3.1.1]:

�r ′ =�r + (γ−1)(v̂ ·�r) v̂ − γ�vt, �r = �r ′ + (γ−1)(v̂ ·�r ′) v̂ + γ�vt′, (3.1a)

t′ = γ
(

t − �v ·�r
c2

)
, t = γ

(
t′ + �v ·�r ′

c2

)
, (3.1b)

γ :=
(

1 − �v 2

c2

)− 1
2
, v̂ :=

�v√
�v 2

. (3.1c)

The inverse transformation (in the right-hand column) is formally identical to the original (in
the left-hand column), only with a flipped sign of the relative velocity between the two inertial
systems S and S′. Also, note that the formulae for the corresponding Galilean transformation in
non-relativistic physics emerge in the formal limit c → +∞, where γ→ 1.

It is essential to understand that all relativistic effects stem from boosts (3.1) – which after
all are the novelty of Lorentz transformations. For a swift motivation for Lorentz symmetries with
the benefit of hindsight of a transpired century, see Digression 8.1 on p. 295. Suffice it to say,
Lorentz transformations are the correct symmetry of the Maxwell equations, and therefore also of
any matter system that interacts with the electromagnetic field.

Relativity of simultaneity If two events A and B are simultaneous in system S so tA = tB, they need
not be simultaneous in system S′:

t′i = γ
(

ti − �v ·�ri

c2

)
, i = A, B, ⇒ t′A − t′B = γ

�v · (�rB −�rA)
c2 , (3.2)

which vanishes only if �v is orthogonal to the difference vector (the extent) �rB −�rA, but not
otherwise.

3 Herein, “boost” denotes the mathematical change of coordinates from one inertial system into another, and which moves
with a constant velocity �v with respect to the former. The physical process implementing this change would of course
require acceleration, to which the special theory of relativity is explicitly not applicable. By “Lorentz transformation,”
some earlier texts [326] mean only boosts, which leads to contradictory-sounding statements such as “Lorentz trans-
formations do not form a group”: indeed, boosts alone do not form a group, as their combination may also be a simple
rotation. To avoid this nonsense, by “Lorentz transformation” I mean an arbitrary element of the so-called Lorentz group,
which contains both rotations and boosts; see Appendix A.5.
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Relativity of distance/extent Although a tad trivial, notice that by the length of an object (as
measured in an inertial coordinate system S) we mean the extent between the positions of the
end-points (A and B) of that object, L = |��r| = |�rB−�rA|, as measured simultaneously. Since
simultaneity is not absolute – see equation (3.2) – neither can we expect length to be.

Consider the two positions �rA and �rB in the system S, spanning the extent ��r := (�rB−�rA).
Using equation (3.1a) in the inertial system S′, this extent measures

��r ′ = ��r + (γ−1)(v̂ · ��r )v̂ − γ�v(tB − tA). (3.3)

If the two positions �rA and �rB have been established simultaneously in the system S (such as the
case of measuring the extent between end-points, i.e., the length of an object), then tB−tA = 0,
and we have that

��r ′ = ��r + (γ−1)(v̂ · ��r)v̂ = ��r⊥ + γ��r‖, (3.4)

where the special cases are

��r ′
‖ = γ��r‖, ��r‖ := (v̂ · ��r) v̂, (3.5a)

��r ′
⊥ = ��r⊥, ��r⊥ :=�r − (v̂ · ��r) v̂. (3.5b)

Formula (3.5a) is the well-known FitzGerald–Lorentz contraction: For an object (and its system
S′) that moves lengthwise with velocity �v with respect to the system S, the measurement of the
length of the object in the latter system is L = ��r ‖ = L′/γ = γ−1��r ′

‖. Since γ � 1, it follows that
L � L′. In turn, formula (3.5b) shows that there is no FitzGerald–Lorentz contraction in directions
perpendicular to the relative velocity of the two coordinate systems.

Relativity of the duration of time Consider two moments of time t′A and t′B in the inertial system S′,
which moves with velocity �v with respect to the inertial system S. Using equation (3.1a) then gives

tB−tA = γ(t′B−t′A) + γ
�v · (�r ′

B−�r ′
A)

c2 . (3.6)

If the two moments of time t′A and t′B have been measured in the same place in system S′ (such as
the case when the duration of a localized process is observed within the system S′), then �r ′

A=�r ′
B,

and �t′ := t′B−t′A is the duration of time in this “moving” system S′. Then

�t = γ�t′, (3.7)

is the well-known time dilation formula: �t � �t′. The S-measurement of the duration of time
between the events A and B is longer than measured in system S′, where A and B are in the same
place.

For elementary particle physics, this effect is priceless: in any system with respect to which
they move, particles “live” longer than as measured in the system where they are at rest. Thus,
a muon created in the higher layers of the Earth’s atmosphere nevertheless arrives at the Earth’s
surface, although its lifetime is only 2.197 µs in its rest-frame. Equivalently, from the muon’s point
of view, the trip through the Earth’s atmosphere is, owing to the FitzGerald–Lorentz contraction,
shorter and allows the muon to arrive at the Earth’s surface within its lifetime of only 2.197 µs.
This also explains how particles with lifetimes of only ∼10−23 s are nevertheless observable.

Addition of velocities For an object that moves with respect to an inertial system S so that it
traverses the extent ��r during the duration of time �t, the (average) velocity is �u = ��r/�t. In
the inertial system S′, which moves with the constant velocity �v with respect to S, for that same
object one measures the velocity �u ′ = ��r ′/�t′, so that
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�u :=
��r
�t

=
��r ′ + (γ− 1)(v̂·��r ′)v̂ + γ�v�t′

γ
(�t′ + (�v·��r ′)

c2

) =
γ−1�u ′ + (1 − γ−1)(v̂·�u ′)v̂ +�v(

1 + (�v·�u ′)
c2

)
=

�u ′
‖ +�v(

1 + (�v·�u ′)
c2

) +
�u ′
⊥

γ
(
1 + (�v·�u ′)

c2

) , where �u ′
‖ = (�u′·v̂)v̂, �u ′

⊥·v̂ = 0. (3.8)

The first term is the familiar formula for relativistic addition of collinear velocities, and the second
term provides the lesser-known v̂-orthogonal contribution to the velocity �u ′. Notice that the bigger
the velocity �v, the bigger the factor γ, and the lesser the contribution from the second (orthogonal)
term. It induces an element of rotation – which is a consequence of the algebraic fact that two
Lorentz boosts generate a rotation (A.103); see Appendix A.5 for more details.

— ❦ —

As they will be useful, consider the following approximations:

γ =
1√

1 − β2
≈ 1 +

1
2
β2 +

3
8
β4 +

5
16
β6 + O

(
β8), β :=

v
c
� 1; (3.9a)

or ≈ 1√
2ε

[
1 +

1
4
ε+

3
32
ε2 +

5
128

ε3 + O
(
ε4)], ε :=

(
1−|�v|

c

)
� 1; (3.9b)

γ−1 =
√

1 − β2 ≈ 1 − 1
2
β2 − 1

8
β4 − 1

16
β6 + O

(
β8); (3.9c)

or ≈
√

2ε
[
1 − 1

4
ε− 1

32
ε2 − 1

128
ε3 + O

(
ε4)]. (3.9d)

The expansions (3.9a) and (3.9c) are appropriate approximations for small (non-relativistic, v �
c) velocities, while the expansions (3.9b) and (3.9d) are convenient for large (ultra-relativistic,
v ≈ c) velocities.

3.1.2 Spacetime and the index notation
Since the 3-vector�r (spatial position) and the moment of time t were in the previous section shown
to not be independently specifiable quantities, introduce the 4-vector spacetime4

x :=
3

∑
μ=0

xμ êμ, where x0 = ct, �r =
3

∑
i=1

xiêi, (3.10)

and where ê1, ê2, ê3 are usual unit vectors in some (e.g., Cartesian) inertial coordinate system,
and ê0 is the additional, fourth unit vector in the direction of time. From now on, we will adopt
the strict Einstein convention, whereby summation is implied over any pair of indices precisely if
one is a superscript and the other a subscript; thus, ∑-symbols are no longer written except for
emphasis. Also, Greek indices range over values 0, 1, 2, 3, while Latin indices are restricted to range
over 1, 2, 3.

4 It is customary in the literature to denote 4-vectors by a Latin letter without any index or arrow – just like scalars.
Usually, the context clarifies which of the two is meant; however, without an explicit note, this convention leaves it
unclear if a particular “a” denotes a scalar or a 4-vector. Since the purpose of this book is to introduce the Reader to the
material, “upright” Latin letters will be used for 4-vectors: herein, “a, b, c, . . . ” denote 4-vectors, while “a, b, c, . . . ” are
scalars.
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Digression 3.2 Note the difference in transformations:

dxμ =
(∂xμ

∂yν

)
dyν, (3.11a)

∂

∂xμ
=

( ∂yν

∂xμ
) ∂

∂yν
,

⎫⎪⎬⎪⎭ mutually reciprocal
transformations

(3.11b)

when changing coordinates xμ → yμ. Taking a cue from the transformations (3.11a)–
(3.11b), any 4-vectors the components of which transform:

Aμ(x) =
(∂xμ

∂yν

)
Aν(y) are called contravariant; (3.11c)

Bμ(x) =
( ∂yν

∂xμ
)

Bν(y) are called covariant. (3.11d)

Digression 3.3 Note that the respectively reciprocal transformations automatically imply
that combinations such as

Aμ(x) Bμ(x), Aμ(x)
∂

∂xμ
, Bμ(x) dxμ, etc. (3.12a)

are invariant with respect to coordinate transformations. Therefore, sums such as

A(x) := Aμ(x) êμ and B(x) := Bμ(x) êμ (3.12b)

specify the vectors A(x) and B(x) invariantly. That is, no matter which coordinate system
we select, the components Aμ(x) and Bμ(x) will transform oppositely from the basis vec-
tors êμ and êμ, respectively, leaving the expressions (3.12b) invariant; see Comment B.1
on p. 512.

Mathematical literature favors this invariant notation, but we will follow the physics
notation, using components specified with respect to an implicitly chosen coordinate
system, as done in Digression 3.2. Furthermore, a quick comparison of equations (3.12a)
and (3.12b) shows that ∂

∂xμ and dxμ, being natural vector quantities in any coordinate
system, may well serve as explicit choices of basis vectors êμ and êμ, respectively.

In this 4-vector notation, the general Lorentz transformations may be compactly written as

yμ = Lμν xν ⇔ y = LLLL x ⇔
⎡⎣ y0

y1

y2

y3

⎤⎦ =

⎡⎣ L0
0 L0

1 L0
2 L0

3
L1

0 L1
1 L1

2 L1
3

L2
0 L2

1 L2
2 L2

3
L3

0 L3
1 L3

2 L3
3

⎤⎦⎡⎣ x0

x1

x2

x3

⎤⎦ . (3.13a)

Comparing equation (3.13) with (3.1), rewriting as the analogous system of equations, all 4× 4 =
16 matrix elements Lμν for concrete boosts may be identified:

LLLL =

⎡⎢⎢⎢⎢⎣
γ −γ vx

c −γ vy
c −γ vz

c

−γ vx
c 1 + (γ− 1) v 2

x
�v 2 (γ− 1) vxvy

�v 2 (γ− 1) vxvz
�v 2

−γ vy
c (γ− 1) vyvx

�v 2 1 + (γ− 1)
v 2

y

�v 2 (γ− 1) vyvz

�v 2

−γ vz
c (γ− 1) vzvx

�v 2 (γ− 1) vzvz
�v 2 1 + (γ− 1) v 2

z
�v 2

⎤⎥⎥⎥⎥⎦ . (3.13b)
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In the general case, Lorentz transformations also include the familiar rotations in addition to
the boosts (3.13) and are represented by constant (independent of spacetime coordinates) 4× 4
matrices of unit determinant:

∂Lμν
∂xρ

= 0, (μ, ν, ρ = 0, 1, 2, 3), det(LLLL) = 1. (3.14)

Digression 3.4 By comparison, the transformation (3.13) is seen to be the special case
of the general case (3.11a), when the matrix ∂xμ

∂yν = Lμν satisfies the additional condi-
tions (3.14), turning the coordinate change xμ → yν linear (yν = Lμν xν + Cμ) and
homogeneous (Cμ = 0).

Now, just as the rotation group SO(3) leaves the Euclidean length invariant, general Lorentz
transformations leave the quantity

(c τ)2 := c2 t2 −�r 2 = c2 t2 − [
(x1)2 + (x2)2 + (x3)2] (3.15)

invariant [☞ Appendix A.1.4]. Since c is constant, the quantity τ is also Lorentz-invariant and is
called the “proper time.” The name stems from the fact that, in any particular inertial system, for
any two separate moments in time in the same place we have �t = tB−tA �= 0 and ��r =�rB−�rA =
0, so that

�τ2 := (tB−tA)2 − c−2[ (x1
B−x1

A)2 − (x2
B−x2

A)2 − (x3
B−x3

A)2︸ ︷︷ ︸
=0

]
= (tB−tA)2. (3.16)

Note that time dilation (3.7) implies that the proper time for any process is always the shortest;
in any other inertial system, the duration of that process can only be longer than the proper times
or equal to it. Indeed, since �τ is invariant, in any inertial system where ��r �= 0, and the events
A and B do not happen in the same point in space, �t must be bigger so that (�t)2 − c−2(��r)2

remains constant, i.e., invariant with respect to the transformation from that inertial system into
the inertial (rest-)system where ��r = 0.

The invariant quantity (3.15) may be more compactly written as5

c2 τ2 = x2 = x·x := xμ ημν xν. (3.17)

An operation “x·y” denotes the (Lorentzian) scalar product of 4-vectors:

Definition 3.2 For 4-vectors x and y, the invariant (scalar) product is

x·y = xμ ημν yν. (3.18)

The quantity x2 := x·x is, simply, the “4-vector x square.” The matrix

ηηηη = [ημν] =

[
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

]
(3.19)

is the metric tensor – the metric – of the empty (flat) spacetime. The number of positive
and negative eigenvalues in the matrix [ημν] is called the signature , and spacetime and its
metric are said to have signature (1, 3).

5 The scalar product of two n-vectors a and b is denoted “a·b”; the Reader must understand from the context if this
denotes the Euclidean, Lorentzian or some other scalar product. Following this tradition, note that the notation herein is
unambiguous, as Euclidean 3-vectors are indicated by an over-arrow and Lorentzian 4-vectors are denoted by “upright”
Latin letters. Therefore,�a·�b is the Euclidean scalar product, while a·b is Lorentzian.
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With this definition, it is possible to verify that the 4× 4 matrices representing the general Lorentz
transformations satisfy the ηηηη-orthogonality condition

LLLLTηηηη = ηηηηLLLL−1, i.e., LLLLTηηηηLLLL = ηηηη, or LρμηρσLσν = ημν. (3.20)

This generalizes the orthogonality relation RT1R = 1, satisfied by the usual rotation matri-
ces, where the identity matrix serves as the metric for the Euclidean invariant scalar product,
�r·�r = xiδijxj. Just as the rotation group is denoted SO(3), the Lorentz group is then denoted
SO(1, 3) – reminding us that the signature of the metric ηηηη used to define the Lorentz-invariant
scalar product (3.18) is (1, 3) [☞ Appendix A.5].

Also,

Definition 3.3 A 4-vector v in spacetime with the metric tensor ημν is called

time-like (temporal), if v2 > 0, (3.21a)

space-like (spatial), if v2 < 0, (3.21b)

light-like (null), if v2 = 0. (3.21c)

It should be fairly straightforward that the replacement t → (it) changes the sign of η00, the
signature into (0, 4), and the boosts (3.13). The qualitative nature of this change is easiest to spot
in the special case when the coordinate system is chosen so that �v → v ê1 in the relation (3.13):

[Lμν] =

⎡⎢⎢⎣
γ −γ v

c 0 0
−γ v

c γ 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦ =

⎡⎢⎢⎣
cosh(φ) − sinh(φ) 0 0

− sinh(φ) cosh(φ) 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦
︸ ︷︷ ︸

hyperbolic “rotation”

, (3.22)

where we defined the formal variable φ := cosh−1(γ), so that v = c tanh(φ) and v
c γ = sinh(φ).

[ ✎Verify.] Upon the replacement t → it:

[Lμν]
t→it−−−−→
ϕ=−iφ

⎡⎢⎢⎣
cos(ϕ) − sin(ϕ) 0 0
sin(ϕ) cos(ϕ) 0 0

0 0 1 0
0 0 0 1

⎤⎥⎥⎦ , (3.23)

so that Lorentz boosts in the x1-direction become⎡⎢⎢⎣
(ict′)

x′1
x′2
x′3

⎤⎥⎥⎦ =

⎡⎢⎢⎣
cos(ϕ) − sin(ϕ) 0 0
sin(ϕ) cos(ϕ) 0 0

0 0 1 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣
(ict)

x1

x2

x3

⎤⎥⎥⎦ (3.24)

rotations in the ((ict), x1)-plane in the so-called Wick-rotated spacetime ((ict), x1, x2, x3). Although
Henry Poincaré was the first to notice that the complex transformation

(ct, x1, x2, x3) → ((ict), x1, x2, x3) (3.25)

turns the group SO(1, 3) of Lorentz transformations6 into the group of rotations SO(4), this
was first used by Hermann Minkowski to restate the Maxwell equations and the special theory

6 We will see later that the Lorentz group is actually Spin(1, 3), the double covering of the SO(1, 3) group, for spinors to
be describable by single-valued spacetime functions [☞ discussion around the relations (5.45)–(5.48)].
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of relativity into the 4-dimensional notation. This result solidified the physical irreducibility of
4-dimensional spacetime, which is why it is often referred to as “Minkowski space.” To emphasize
the mixed signature of space+time, the term “spacetime” will be used throughout.

Digression 3.5 Following the example of Digression 3.2 on p. 88, the 4-vector with com-
ponents xμ is Lorentz-contravariant, whereby the vector with components xν := (xμημν)
is Lorentz-covariant, as the quantity xμ ημν xν is defined to be Lorentz-invariant:

xμ → x̃μ = Lμν xν, contravariant 4-vector; (3.26a)

⇒ xμ := (xνηνμ) → (x̃νη̃νμ) = x̃μ = L−1
ρ
νxν, covariant 4-vector. (3.26b)

Here, L−1
μ
ν = [LLLL−1]μν = ∂xν

∂x̃μ are the components of the matrix-inverse of the matrix of
Lorentz transformations Lμν = [LLLL]μν = ∂x̃μ

∂xν . We then compute, respectively, in the new
and in the old coordinates:

x̃μ = η̃μν x̃ν = η̃μνLνσxσ, = L−1
μ
ρxρ = L−1

μ
ρηρσxσ. (3.26c)

This implies that

η̃μνLνσ = L−1
μ
ρηρσ, i.e., η̃μν = L−1

μ
ρηρσL−1

ν
σ, i.e., η̃ηηη = [LLLL−1]T ηηηη LLLL−1. (3.26d)

The metric components ημν = [ηηηη]μν thus form a twice covariant tensor. However, as ηηηη and
η̃ηηη are numerically the same matrix (in the x- and the x̃-coordinate system, respectively),
they are Lorentz-invariants, i.e., remain unchanged under Lorentz transformations. Then

x·x → x̃·x̃ = x̃μη̃μν x̃ν = (Lμρxρ)η̃μν(Lνσxσ) (3.26d)= xρ Lμρ L−1
μ
ν ηνσxσ (3.26e)

= xρδνρηνσxσ = xρηρσxσ = x·x. (3.26f)

Note that the result (3.26d) implies

η̃ηηη = [LLLL−1]T ηηηη LLLL−1 ⇔ ηηηη = [LLLL ]T η̃ηηη LLLL, (3.26g)

so that the Lorentz transformation matrices are η-orthogonal; see equation (3.20).
This provides the desired spacetime (Lorentzian) generalization of the more familiar
(Euclidean) definition of orthogonal matrices OT 1 O = 1 by replacing 1 → ηηηη; see
Appendix A.5.

Further details on tensor calculus and with arbitrary coordinate systems may be
found in Chapter 9 and many books; see Refs. [508, 62, 367, 548, 66, 96], to begin
with.

The symbol ημν denotes (the components of) the matrix-inverse to ημν, so that

ημν ηνρ = ηρν η
νμ = δ

μ
ρ , so xμ := ημν xν, xμ = ημν xν. (3.27)

Note that (xμ) = (ct, x1, x2, x3) and (xμ) = (ct, x1, x2, x3) = (ημνxν) = (ct,−x1,−x2,−x3): the
value of the covariant spatial components of a 4-vector have the opposite sign from the values of
the contravariant spatial components of the 4-vector.

3.1.3 Mass, energy and linear momentum
The Hamilton action of a free particle is chosen to be proportional to the length of the “worldline,”
so Hamilton’s least action principle would minimize this length. In turn, the worldline can be
parametrized by the proper time τ of the same particle:
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S = −
∫ τB

τA

d(cτ) α (3.7)= −
∫ tB

tA

dt
αc
γ

, (3.28)

where α is some positive constant specific for the considered particle, and the sign is negative
so that the resting particle would constitute the minimum7 of the function S, in agreement with
Hamilton’s least action principle. The expression (3.28) implies that the Lagrangian8 of a free
particle

L = −αc

√
1 − v2

c2 ≈ −αc +
1
2
αc

v2

c2 + αc O
(v4

c4

)
, (3.29)

where we used the non-relativistic expansion (3.9c). Since the initial constant, −αc, is irrelevant
for dynamics, comparing the v2-term with the one in the non-relativistic expression LNR = 1

2 mv2

fixes α = mc, and the relativistic Lagrangian of a free particle is determined to be

L = −mc2γ−1 = −mc2

√
1 − �v 2

c2 = −mc2

√
1 − 1

c2 |
.
�r |2. (3.30)

Relativistic momentum and energy From equation (3.30) and using the canonical definition, we
have

�p :=
∂L

∂
.
�r

=
∂L
∂�v

= mγ�v
(3.9a)≈ m�v + · · · , (3.31)

where we dropped the terms that are at least O( v2

c2 ) smaller than m�v, and this canonical definition
indeed agrees with the usual non-relativistic definitions, for velocities sufficiently smaller than
c. Also, the Hamiltonian, i.e., the energy of a free particle, is, by the canonical definition (H =
pi

.
qi − L),

E := �p·.�r − L = mγ�v·�v + mc2γ−1 = mγc2, (3.32a)
(3.9a)≈ mc2︸︷︷︸

rest energy

+ 1
2 m�v 2︸ ︷︷ ︸

non-relativ.
kin. energy

+ 1
2 m�v 2

[
3
4

�v 2

c2 + 5
8

�v 4

c4 + · · ·
]

︸ ︷︷ ︸
relativistic corrections

. (3.32b)

Recall that the energy, by its definition, is a measure of the ability to do work. From the re-
sult (3.32a), it follows that a free particle has the ability to do work not only by virtue of its
motion (the kinetic energy), but also owing to simply having a nonzero mass! Indeed, the expres-
sion (3.32a) clearly expresses energy as a function of velocity, one that does not vanish in the
rest-frame of a particle, in which it is of course at rest:

E0 := E
∣∣
�v=0 = mc2, rest energy. (3.33)

The discovery contained in the relation (3.33) is Einstein’s best known formula. This is the ideal
place to cite Professor Okun’s warning [393], that the relation (3.33) – and not “E = mc2” – is the
real Einstein formula [☞ Exercise 3.1.2].

Of course, the kinetic energy of a particle is then[ ✎why?]

T := E − E0 = m(γ−1)c2 ≈ 1
2 m�v 2︸ ︷︷ ︸

non-relativ.
kin. energy

+ 1
2 m�v 2

[
3
4

�v 2

c2 + 5
8

�v 4

c4 + · · ·
]

︸ ︷︷ ︸
relativistic corrections

. (3.34)

7 The time between the events A and B is maximal in the system where A and B are in the same place, hence the
worldline from A to B is entirely along the time coordinate. In all other systems, the worldline from A to B also extends
partially in the spatial directions, and the time tB−tA is shorter [☞ time dilation (3.7)].

8 The term “Lagrangian” and its derivatives honor the French mathematician Joseph Louis Lagrange.
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The energy–momentum 4-vector On par with the spacetime 4-vector x = ((ct), x1, x2, x3), we
define also the 4-momentum [☞ Digressions 3.6 and 3.7]:

p = (pμ) := (−E/c,�p ) = (−mγc, mγ�v ). (3.35)

From this, we have that

p2 := pμ ημνpν = E2/c2 − �p 2 = m2γ2c2 − �p 2 = m2γ2c2
(

1 − v2

c2

)
= m2c2. (3.36)

As the left-hand side quantity is evidently Lorentz invariant [☞ Exercise 3.1.3], so then is the mass
m. Just as proper time is the Lorentz-invariant magnitude of the position 4-vector x = (ct,�r ), (the
c-multiple of) mass is the Lorentz-invariant magnitude of the 4-momentum p = (−E/c,�p ). A very
useful formula follows from equation (3.36):

E2 = �p 2c2 + m2c4. (3.37)

Rewriting this as (mc2)2 = E2 − (c�p )2 exhibits the direct parallel with equation (3.15). In turn, the
4-momentum is indeed a covariant 4-vector, as defined in equation (3.26b), and its components
transform under Lorentz transformations as p′μ = L−1

ρ
ν pν.

Digression 3.6 To justify the definition (3.35) – the covariance and signs of the com-
ponents (3.35) – it is simplest to rely on quantum mechanics, where in coordinate
representation the components of the operator of 4-momentum p become pμ = h̄

i
∂
∂xμ :

p0 =
h̄
i
∂

∂x0 =
h̄
i

∂

∂(ct)
= −1

c
ih̄
∂

∂t
= −1

c
H, but �p = +

h̄
i
�∇. (3.38)

The peculiar negative sign in the identification of p0 = − 1
c H owes to the standard iden-

tifications in non-relativistic quantum mechanics, H = ih̄ ∂
∂t vs. �p = h̄

i
�∇, and to insisting

that the non-relativistic energy operator of a system should be the limit of the relativistic
one, with the same sign.

Digression 3.7 The same conclusion may also be derived classically, i.e., non-quantum
mechanically. Note first that the components of the canonical linear momentum 3-vector
are naturally covariant. This is seen from the explicitly written definition (3.31):

pi :=
∂L
∂vi , where vi :=

∂xi

∂t
, i = 1, 2, 3. (3.39a)

To extend this canonical definition to the relativistic 4-vector, use the earlier de-
fined (3.10) 4-vector (xμ) = ((x0 := ct), x1, x2, x3), so that

(vμ) :=
∂xμ

∂t
= (c,

.
x1,

.
x2,

.
x3). (3.39b)

In turn, the Hamilton action (3.28)–(3.30) may be rewritten as

S = −
∫ tB

tA

dt mc2

√
1 − �v 2

c2 =
∫ x0

B

x0
A

dx0 L0, L0 := (L/c) = −m
√

c2 −�v 2 , (3.39c)
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where we note that [L0] = ML
T has the physical dimensions of linear momentum and not

those of energy as does mc2/γ. From this we have (3.39b):

v0 :=
∂x0

∂t
=
∂(ct)
∂t

= c, (3.39d)

as well as that (x1, x2, x3) depend on t and so also on x0 = ct:

pμ :=
∂L0

∂ ∂xμ
∂x0

=
∂L0

1
c ∂

.
xμ

= c
∂L0

∂vμ
⇒

{ p0 := c
∂
(
−m

√
c2−�v 2

)
∂c = −mγc = −E/c,

pi := c
∂
(
−m

√
c2−�v 2

)
∂vi = mγ δij vj,

(3.39e)

which reproduces equation (3.35).

By the way, the expression S =
∫

dx0 L0 of course does not seem to be Lorentz-invariant,
since the coordinate x0 is singled out. However, the spacetime Lagrangian L0 may be expressed as
a spatial integral of the Lagrangian density:

L0 =
∫

V
d3�r L , such that S = −

∫ (tB ,V)

(tA ,V)
d4x L , (3.40)

where L is a scalar density: with respect to coordinate change xμ → yμ, we have that
d4x → ∣∣ ∂x

∂y

∣∣d4y, where
∣∣ ∂x
∂y

∣∣ is the determinant of the matrix of partial derivatives ∂xμ
∂yν . For the

Hamilton action to be independent of any (invertible) choice and/or change of coordinates, it
must be that L (x) → ∣∣ ∂x

∂y

∣∣−1
L (y), which is the defining property of scalar densities of weight

−1 [☞ Section B.2].
Massless particle In non-relativistic physics, a particle with no mass is nonsense: for such a particle
both the linear momentum and the kinetic energy would also have to vanish. Then, its response to
the action of a force could not be computed by Newton’s laws, since the formula a = 1

m F would
imply that any finite force would cause its infinitely large acceleration. On the other hand, the
relativistic formulae are self-consistent. Indeed, from the relation (3.36), it follows that

m = 0 ⇔ E2 = �p 2c2 ⇔ E = c|�p|, (3.41)

which, when combined with results (3.31) and (3.32a), gives

γmc2 = γmc|�v| ⇒ |�v| = c. (3.42)

That is, a massless particle must move at the speed of light. So far, only the photons provide a
manifest and directly observable example.

3.1.4 Exercises for Section 3.1

✎ 3.1.1 Simplify the relations (3.1) for the oft-cited case �v = v êz.

✎ 3.1.2 Without consulting Ref. [393], prove that the equality “E = mc2” is nonsense,
contradicting the provided definitions and the physical meaning of energy E and mass m.

✎ 3.1.3 Prove that the quantities p2 := pμ ημνpν and x·p = xμpμ are Lorentz-invariant.

✎ 3.1.4 Verify the transformations (3.22)–(3.23)–(3.24).
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3.2 Relativistic kinematics: limitations and consequences
The essential reason for defining the 4-momentum (3.31) with (3.32a) is the fact that this 4-vector
physical quantity is conserved [☞ Footnote 15 on p. 54] and transforms akin to (3.13). Because of
the typical application, we will consider collisions and decays.

Using the definitions (3.32a), (3.34) and (3.35), for collisions we have:

1. The sum of relativistic 4-momenta is strictly conserved.
2. The sum of relativistic kinetic energies:

(a) is conserved in elastic collisions;
(b) grows in “exo-energetic” (fissile or explosive) processes;
(c) is diminished in “endo-energetic” (fusing, implosive or sticking) processes.

Since the mass equals (E − T)/c2, it is conserved only in elastic collisions. In explosive/fissile
collisions, the total mass is diminished, which supports the impression that part of the mass was
“converted” into kinetic energy; in implosive/fusing/sticking processes, the total mass grows, as if
part of the kinetic energy was “converted” into mass. One must keep in mind that the total mass
of a composite system equals (up to the coefficient of proportionality, c2) the rest energy, which
includes various “internal forms of energy,” as these are usually called in non-relativistic physics.
Thus, e.g., the total mass of a hydrogen atom equals (mp + me)c2 + Eb, where Eb is the binding
energy of the hydrogen atom in the particular state, in the first approximation given by Bohr’s
formula (1.31).

Example 3.1 Two equal snowballs of mass m fly with the same speed |�vi| = βc, 0 <
β � 1, towards each other, then collide and fuse into one large snowball. For what speed
of the colliding snowballs will the resulting snowball have a mass of M = 3m (so that
“m + m → 3m”)?

Solution Given that �p1 = −�p2, conservation of the linear momentum 3-vector gives that
�p1+2 = �p1 + �p2 = 0. That is, the resulting snowball is at rest (which should be obvious).
Conservation of p0 now gives EA + EB = EA+B, i.e.,

2mγc2 = Mc2 ⇒ M =
2m√
1 − β2

> 2m, since β > 0. (3.43)

Inserting M = 3m, solve the equation (3.43) for β = vi
c to obtain |vi| =

√
5

3 c ≈ 74.54% c.

— ❦ —

Part of the analysis of this process, the one that relies exclusively on applications of the
4-momentum conservation law is usually referred to as “kinematics.” Sometimes, that term also
implies the application of the conservation law of angular momentum. For the remainder of this
chapter, angular momentum considerations are omitted, and a few simple processes are studied
“kinematically” as a user’s guide for application in general.

3.2.1 Decays
Two-particle decays
The simplest decay is of the form A → B + C. Label the 4-momenta:

A → B + C, pA = (−mAc,�0), pB = (−EB/c,�pB), pC = (−EC/c,�pC), (3.44)
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where we used the fact that, before the decay, particle A (with mA �= 0) defines an inertial system
where it is at rest, so that its total relativistic energy reduces to rest energy, EA = mAc2. The
4-momentum conservation law provides

pA = pB + pC, or pB = pA − pC, (3.45)

which includes the usual, 3-momentum conservation:

�pB = 0 − �pC. (3.46)

Squaring relation (3.45) for the 4-momenta produces9

p 2
B = (pA − pC)2 = p 2

A + p 2
C − 2 pA · pC,

‖ ‖ (3.47)

m 2
B c2 m 2

A c2 + m 2
C c2 − 2

EA

c
EC

c
= m 2

A c2 + m 2
C c2 − 2 mA EC.

From this, it follows that

EC =
(m 2

A + m 2
C − m 2

B

2mA

)
c2. (3.48)

The magnitude of the linear momentum 3-vector is now determined from the relation (3.37),
EC = c

√
m 2

C c2 + �p 2
C :

|�pC| =

√
E 2

C

c2 − m2
C c2 = c

√(m 2
A + m 2

C − m 2
B

2mA

)2 − m2
C

= c

√
(mA + mB + mC)(mA − mB + mC)(mA + mB − mC)(mA − mB − mC)

2mA

= c

√
m 4

A + m 4
B + m 4

C − 2m 2
A m 2

B − 2m 2
A m 2

C − 2m 2
B m 2

C

2mA
. (3.49)

From the relation (3.46) it follows that |�pB| = |�pC|, which also follows from the B ↔ C sym-

metry of the formula (3.49). The analogous derivation gives EB =
(m 2

A +m 2
B −m 2

C
2mA

)
c2. Note that both

EB and EC are fully determined by decay kinematics. This was crucial in the discussion on p. 54,
and induced Bohr to question the validity of the energy conservation law, and Pauli to predict
the neutrino in order to save the energy conservation law. On the other hand, besides the rela-
tion (3.46) amongst the magnitudes, there is nothing to determine the direction of p̂B = − p̂C,
which thus remains arbitrary. This implies that, in a large ensemble of A → B + C decays, the
angular distribution of the direction of p̂B = − p̂C is expected to be uniform.

Digression 3.8 The same result is obtained starting with equation (3.45), written in
Cartesian components, say,

EA = EB + EC, (3.50a)
�0 = �pA = �pB + �pC. (3.50b)

9 The final result, of course, may just as well be obtained by combining the separately stated conservation laws of the
linear momentum 3-vector and the relativistic energy. However, by squaring directly the 4-vector equality (3.45), the
result (3.48) is obtained faster, because of the simplifying circumstance that three of the components of pA vanish.
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From the equation (3.50b), it follows that �pC = −�pB =: �p, and in equation (3.50a),
express all three energies in terms of the linear momenta and masses using the general
relation (3.37):

mAc2 = c
√

m 2
B c2 + �p 2 + c

√
m 2

C c2 + �p 2. (3.50c)

From here, by squaring, rearranging terms to isolate the square-root, then by squaring
again, we obtain [ ✎verify][

m 4
A + (m 2

B − m 2
C )2]c2 = 2m 2

A

[
(m 2

B + m 2
C )c2 + 2�p 2]. (3.50d)

Solving this for |�p | one re-derives the result (3.49). [ ✎Verify.]

Digression 3.9 On the other hand, if we express (in the equation (3.50a)) EA and one
of EB, EC in terms of linear momenta and masses using the general relation (3.37), we
obtain, e.g.,

mAc2 = c
√

m 2
B c2 + �p 2 + EC, i.e., mAc2 − EC = c

√
m 2

B c2 + �p 2, (3.51a)

the square of which gives, after a little simplifying [ ✎verify] ,

E 2
C − 2mAc2 EC +

[
(m 2

A − m 2
B )c4 − �p 2c2] = 0. (3.51b)

After inserting the previous result (3.49) and simplifying, the solutions of this quadratic
equations are [ ✎verify]

E(±)
C =

[
mA ± m 2

A + m 2
B − m 2

C

2mA

]
c2, (3.51c)

where E(−)
C equals the result (3.48).

That the solution E(+)
C is not physical is quickest to see from the special case when

mB = mC = 0, as is the case in the decay π0 → 2γ. For this case,

E(+)
B = E(+)

C =
3
2

mAc2, and so mAc2 = EA
(3.50a)= E(+)

B + E(+)
C = 3mAc2, (3.51d)

which is clearly a contradiction. This leaves E(−)
C in the result (3.51c) as the only con-

sistent solution for the energy of the product in a two-particle decay, confirming the
result (3.48).

The technical advantage in using the square of a suitably chosen form of the
4-momentum conservation equation (3.47) is fully understood only through filling in
the derivation steps that had been omitted here (mostly, in rearranging and simplify-
ing). The diligent Student is therefore highly recommended to complete these alternate
computations.

Many-particle decays
The analysis of a decay of a particle into more than two “fragments” is of course more complicated.
However, the starting point is again the 4-momentum conservation, which may be written in any
of the following forms:

p = ∑
i

pi, pi = p − ∑
j �=i

pj, p − pi = ∑
j �=i

pj, ∀i, (3.52a)
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pi + pj = p − ∑
k �=i,j

pk, p − pi − pj = ∑
k �=i,j

pk, ∀i, j, etc. (3.52b)

Squaring the 4-vector equations (3.52) in the rest-frame of the decaying particle, where

p = (−E/c,�0), so that p2 = m2c2 = E2/c2, (3.53)

we respectively obtain the equations:

1
2

(
m2 − ∑

i
m 2

i
)

c4 = ∑
j>i

(
EiEj − |�pi||�pj|c2 cos(φij)

)
, (3.54a)

1
2

(
m2 − m2

i + ∑
j �=i

m 2
j
)

c4 = mc2 ∑
j �=i

Ej − ∑
j<k

j,k �=i

(
EjEk − |�pj||�pk|c2 cos(φjk)

)
, ∀i, (3.54b)

1
2

(
m2 + m2

i − ∑
j �=i

m 2
j
)

c4 = mc2Ei + ∑
j<k

j,k �=i

(
EjEk − |�pj||�pk|c2 cos(φjk)

)
, ∀i, (3.54c)

1
2

(
m2 − m2

i − m2
j + ∑

k �=i,j
m 2

k
)

c4 = mc2 ∑
k �=i,j

Ek +
(
EiEj − |�pi||�pj|c2 cos(φij)

)
− ∑

k<�
k,� �=i,j

(
EkE� − |�pk||�p�|c2 cos(φk�)

)
, ∀i, j, (3.54d)

1
2

(
m2 + m2

i + m2
j − ∑

k �=i,j
m 2

k
)

c4 = mc2(Ei + Ej)

+ ∑
k<�

k,� �=i,j

(
EkE� − |�pk||�p�|c2 cos(φk�)

)
, ∀i, j, (3.54e)

etc.

where E2
i = m2

i c4 + |�pi|2c2, but E = E0 = mc2, (3.54f)

using the particular consequences of the general relation (3.37) and also that

pi·pj = piμη
μνpjν =

(
−Ei

c

)(
−Ej

c

)
−�pi·�pj =

EiEj

c2 − |�pi||�pj| cos(φij). (3.55)

The combinatorially growing system (3.52)–(3.54) contains more equations than unknowns,
which is convenient, as we can select a subset of the equations (3.52)–(3.54) that provides the
simplest way to solve for the desired quantities. (Since the relations (3.52) are all just variants of
the same equation, it is clear that the system (3.54) cannot be over-determined.)

3.2.2 Scattering
Besides decays, in elementary particle physics one most often considers the scattering of two
particles. The 4-momentum conservation here has the general form

p1 + p2 = ∑
i>2

pi, (3.56)

which may, of course, be rewritten in several different ways, just like equations (3.52) are different
forms of p = ∑i pi for a decay. Also, collisions may be analyzed either10

10 The term “CM system” stands for “center-of-momentum system” and is defined by the property that the total linear
momentum 3-vector vanishes in it, clearly adapting equations (3.53).
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CM system, before: p1 + p2 =
(
−E1

c
− E2

c
, �0

)
, as �p1 +�p2 = 0, (3.57)

‖
CM system, after: ∑

i>2
pi =

(
− ∑

i>2

Ei

c
, �0

)
, as ∑

i>2
�pi = 0, (3.58)

or in the target system (choosing, say, target = “2,” so that p2 = (−m2c,�0)):

target system, before: p′1 + p′2 =
(
−E′

1
c

− m2c , �p′1
)

, as �p′2 =�0, (3.59)
‖

target system, after: ∑
i>2

p′i = ∑
i>2

(
−E′

i
c

, �pi

)
, where ∑

i>2
�p′i = �p ′

1. (3.60)

Here, the vertical equality between (3.57)–(3.58) and (3.59)–(3.60) respectively is, of course, the
statement of the 4-momentum conservation law.

What’s more, by using only Lorentz-invariant expressions (such as squares of 4-vectors), we
may combine both systems! That is, the 4-vectors in the “vertical” equation (3.57)–(3.58) and
the 4-vector on the left-hand side of (3.59)–(3.60) are, of course, not equal, p1 + p2 �= p′1 + p′2.
However, the squares of these 4-vectors are equal – as is the square of any 4-vector – and this
provides the continued equality:

(
p1 + p2

)2 =
(

∑
i>2

pi

)2
=

(
p′1 + p′2

)2 =
(

∑
i>2

p′i
)2

= . . . , (3.61)

where “ . . . ” denotes similar equalities for the square of the same 4-momentum specified in any
other coordinate system that we may choose for its need or convenience.

For two-particle collisions, A + B → C + D, one defines:

Definition 3.4 Mandelstam’s Lorentz-invariant variables:

s := −(pA + pB)
2c2, t := −(pA − pC)2c2, u := −(pA − pD)2c2. (3.62)

These variables are often used in computations as they are Lorentz-invariant; keep in mind, how-
ever, that the 4-momentum conservation law and the relation (3.36) produce the linear relation

−(s + t + u) =
[
3p 2

A + p 2
B + p 2

C + p 2
D + 2pA·(pB − pC − pD︸ ︷︷ ︸

−pA

)
]

c2 =
D

∑
i=A

p 2
i c2 =

D

∑
i=A

m 2
i c4. (3.63)

In turn, albeit not Lorentz-invariant, (lab-frame) energies and angles φij := arccos( p̂i· p̂j) are more
convenient variables for comparison with experiments.

Fusing collisions
Generalizing Example 3.1 on p. 95, consider the collision of two particles that fuse into a single
one, with a specified mass mC. This process is evidently a time-reversed version of the two-particle
decay, so that the computation (3.44)–(3.8) may be used by adapting the notation. However, in
this case, instead of the inertial system (3.44), where the end-product is at rest, select the inertial
system where the particle B (“target”) is at rest:

A + B → C, pA = (−EA/c,�pA), pB = (−mBc,�0), pC = (−EC/c,�pC). (3.64)
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Conservation of 4-momentum gives

pC = pA + pB, i.e.,
(
−EC

c
, �pC

)
=

(
−EA

c
− mBc , �pA

)
, (3.65)

from which it follows that �pC = �pA =: �p, as well as that EC = EA + mBc2. Squaring the
4-momentum version of equation (3.65) produces, straightforwardly,

pC
2 = pA

2 + pB
2 + 2pA·pB, (3.66)

m2
C c2 = m2

Ac2 + m2
Bc2 + 2EAmB ⇒ EA =

m2
C − (m2

A + m2
B)

2mB
c2. (3.67)

The same relation can, of course, also be obtained using the conservation of energy and
3-momentum, and the diligent Reader is invited to do so, then compare the relative ease of this
computation. [ ✎Do it.] Since E = mc2 + T, we have the condition

TA =
m2

C − (mA + mB)2

2mB
c2. [ ✎Verify.] (3.68)

That is, the “probe” A must have the precisely specified kinetic energy (3.68) for it to fuse with
the target; for any other value of TA, the 4-momentum conservation law strictly forbids the fusing.
The process A + B → C is said to be kinematically forbidden except when the relation (3.68) is
satisfied.

Process threshold
Following a worked-out example from Ref. [243], we can determine the “threshold” of the reac-
tion (3.56), i.e., the minimal kinetic energy with which the probe “1” must collide with the target
“2” for the particles in the product of the process (3.56) to be created. For this minimal energy, the
particles in the product of the process (3.56) will have no kinetic energy, and we have that

pi
∣∣
threshold =

(−mic , �0
)
, i > 2, CM system. (3.69)

On the other hand, before the collision, we have equation (3.59). Using the equality of the second
and the third term in equation (3.61), we have for the special “threshold” (minimal energy) case

min
[(

p′1 + p′2
)2
]

=
(

∑
i>2

pi
∣∣
threshold

)2
,

min
[
p1

2 + p2
2 + 2p′1·p′2

]
=

(
∑
i>2

(
mic , �0

))2
, (3.70)

min
[
m1

2c2 + m2
2c2 + 2E′

1 m2

]
=

(
∑
i>2

mic
)2

,

(m1
2 + m2

2)c2 + 2 min(E′
1) m2 = ∑

i,j>2
mi mj c2.

It follows that the occurrence of the process (3.56) requires

E′
1 � 1

2m2

[
∑

i,j>2
mimj −

(
m 2

1 + m 2
2
)]

c2, (3.71)

and thus

T′
1 � 1

2m2
∑

i,j>2
mimj c2 − (m1 + m2)2

2m2
c2. [ ✎Verify.] (3.72)
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Thus, e.g., for the process X + X → 3X + X, for any particle X, the first X-particle must collide
with the second, stationary X-particle with at least 6 mX c2 of kinetic energy.

This threshold is larger than the naive expectation, whereby the kinetic energy would need
to be “only” sufficient to produce the (3X+X)− (X+X) = X+X particles, i.e., 2mX c2. The reason
for this is the inefficiency of a moving probe collision with a stationary target: Before the collision,
the total linear momentum of the incoming probe-X and stationary target-X system is not zero,
and must equal the total linear momentum of the 3X+X system of particles after the collision.
Since the linear momentum of the out-coming 3X+X particles differs from zero, so does the total
kinetic energy, which increases the process threshold.

Head-on collisions
In the CM system, where �p1 = −�p2 = �p, so that E1 = E2 =: E if m1 = m2, we have

min
[
(p1 + p2)

2] =
(

∑
i>2

pi
∣∣
threshold

)2
,

(
−2 min(E)

c
, �0

)2
=

(
∑
i>2

mic , �0
)2 ⇒ min(E) = 1

2 ∑
i>2

mic
2. (3.73)

Since both particles have the same minimal energy (as they are identical) before the collision, and
T = E − mc2, we have that

min
(
∑ TX

)
=

(
∑
i>2

mi − 2mX

)
c2 2X→3X+X= (4 − 2)mX c2 = 2mX c2, (3.74)

exactly as expected naively. Thus, for the X + X → 3X + X process, head-on collisions of two
particles that move with the same speed towards each other (as observed in the CM system) are
three times as efficient as colliding a probe-X with a stationary target-X. For the head-on collision,
the apparatus must provide only 2mX c2 of energy (mX c2 per X-particle before the collision) to
create the 3X + X system, while colliding a moving X-particle with a stationary X-particle requires
providing the moving X-particle 6mX c2 of energy.

The difference of 4mX c2 in energy threshold for a probe colliding with a stationary target en-
sures that the resulting 3X + X particle system has the kinetic energy required by the conservation
of linear momentum, and which is the extra “price” in the kinetic energy of the probe before the
collision. No such extra energy is needed in head-on collisions, where all of the kinetic energy is
thus available to produce new particles – providing the basic rationale for building colliders.

The relative kinetic energy
The other aspect of the efficacy of head-on collisions is the relative kinetic energy: The previous
section showed that if two X-particles move in the lab coordinate system one against another with
the kinetic energy mX c2 each, in the inertial system of one of the two X-particles (wherein it itself
is at rest), the other particle moves with a kinetic energy of 6mX c2. More generally, use the equality
of the first and third term in equation (3.61):(

p1 + p2
)2 =

(
p′1 + p′2

)2,(
−E1 + E2

c
, �0

)2
=

(
−E′

1
c

− m2c , �p1

)2
.

If m1 = m2 = m, then from �p1 = −�p2 it follows that E1 = E2 =: E; also, write E′
1 = E′. Using the

results of the previous computations, we arrive at

4E2 = 2mc2(E′ + mc2), (3.75)
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or

T′ = 4T
(

1 +
T

2mc2

)
, [ ✎verify] (3.76)

where the second term is the fast-growing relativistic correction:

T/mc2 : 1 2 5 10 20 50 100 · · ·
T′/mc2 : 6 16 70 240 880 5,200 20,400 · · · (3.77)

When two particles of the same mass collide head-on with a kinetic energy of 100 mc2 each, i.e.,
total 200 mc2, the collision has the same effect as if a particle at rest was hit by another with a
kinetic energy of 20,400 mc2 – which is 102 times more!

3.2.3 Lessons
This is an excellent place to highlight the differences between conserved and invariant quantities:

1. Energy is conserved but not Lorentz-invariant:
(a) The total energy of each particle at any point in time (before, during, after) in a process

equals this same quantity at all other points in time.
(b) Energy (its − 1

c -multiple) is the 0th component of a 4-vector, and cannot be Lorentz-
invariant: It changes – it mixes with the components of �p – when the observer changes
from one inertial coordinate system to another.

2. Mass is Lorentz-invariant but not conserved:
(a) Its value does not change when the observer changes from one inertial coordinate

system to another.
(b) Mass is not conserved, as should be obvious from Example 3.1 on p. 95.

Note that Lorentz-invariant means “unchanged under transforming amongst inertial coordinate sys-
tems,” i.e., with respect to Lorentz transformations, while conserved means “unchanged during any
isolated process, as time passes.” That is, the very definition of “conservation” implies a preferred
choice of time, which cannot possibly be a notion invariant with respect to Lorentz transformations
of coordinates.

The relativistic 4-momentum of a particle is conserved but not Lorentz-invariant – just like its
0th component, the relativistic energy, as well as its remaining 3 components known also as the
“relativistic 3-momentum.”

3.2.4 Exercises for Section 3.2

✎ 3.2.1 Using Bohr’s formula (1.31), compute the relative difference m(3p)−m(1s)
m(1s) between the

hydrogen atom mass when it is in a 3p state (where n = 3, � = 1, while |m�| � � and
ms = ± 1

2 are arbitrary) and when it is in a ground, 1s state (where n = 1, � = 0 = m�,
while ms = ± 1

2 is arbitrary).

✎ 3.2.2 Compute the relative contribution of the correction (1.33) to the relative difference
between the masses computed in Exercise 3.2.1.

✎ 3.2.3 If a particle of mass M at rest decays into two particles of equal masses, m1 = m2 = m,
compute the speed with which the particles leave the decay locus. Compute the relative
speed with which the resulting particles move away from each other.
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✎ 3.2.4 If a particle of mass M at rest decays into two particles of different masses, m1 > m2,
compute the difference between their kinetic energies as a function of only the masses
M, m1, m2, including the special case when m2 = 0.

✎ 3.2.5 Show that the system of equations (3.54) reproduces all derived and stated results for
the special case of a two-particle decay.

✎ 3.2.6 Show that for the case of a two-particle decay, the results (3.48)–(3.49) and analo-
gously for EB, |�pB| together with equation (3.54a) produce φBC = 180◦, in agreement with
the result obtained using the linear momentum conservation.

✎ 3.2.7 Show that a free electron can neither absorb nor emit a single photon, i.e., that the
simple processes γ+ e− → e− as well as e− → e− +γ are kinematically forbidden [☞ Chap-
ter 3.3 for explanation].

✎ 3.2.8 Reconsider the fusing collision computations (3.64)–(3.68) and assume that the probe
A flies into the target B with total energy EA and fuses with it. Compute the 4-momentum
and mass of the resulting fused object C.

3.3 Feynman’s diagrams and calculus
In the analysis of Section 3.2, as well as in the corresponding exercises and especially in Exer-
cise 3.2.7, it is tacitly assumed that all particles in the analyzed processes can be observed directly,
i.e., that all kinematic parameters (mass, energy, linear momentum, angular momentum, etc.) can
be measured.

However, that is not always the case.
Recall Conclusion 2.3 on p. 56. Of course, this has to do with the consequence of Heisenberg’s

indeterminacy principle [☞ Digression 2.7 on p. 73]. That is, for kinematics, this involves the
specific relations (1.42) and (1.47):

�p0 �x0 = �E �τ � 1
2 h̄, �pi �xi � 1

2 h̄, i = 1, 2, 3. (3.78)

The indeterminacy principle permits the two-step process(
e− + γ

1+2−−−→ e− + γ
)

=
(

e− + γ
1−→ (

e∗−
) 2−→ e− + γ

)
, (3.79)

even if the process “1” and the process “2” were kinematically forbidden – by themselves. Indeed,
if the intermediate, “excited” electron, e∗−, exists only during a time shorter than

�τ ∼ h̄
2(Eγ + mec2)

, (3.80)

that is, if the time that elapses between process “1” and process “2” is shorter than the one given
by the indeterminacy relation (3.80), then the particle e∗− cannot possibly be observed directly:
It is then possible neither to measure its kinematic parameters, nor to check the 4-momentum
conservation.

Thus, the 4-momentum conservation law is neither violated nor broken11; Heisenberg’s inde-
terminacy relations (3.78) have to do with a fundamental natural limitation of measuring. That is:

11 It is important to differentiate between these terms. “Violation” typically refers to a particular case, event or process in
which a rule, law or symmetry is not satisfied, while “breaking” applies to all cases, events and processes in a particular
phase of the system. Also, in the present context, “breaking” usually refers to symmetry breaking, and in cases of gauge
symmetry it also refers to the breaking of the corresponding continuity equation and charge conservation, by extension.
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Conclusion 3.1 The 4-momentum conservation law is strict, applies to all processes, and
down to the measurement resolution (precision, tolerance) dictated by Heisenberg’s
indeterminacy principle.

To effectively differentiate the precision of the application of the 4-momentum conservation law,
we define:

Definition 3.5 States of a (system, object, particle, etc.) that cannot be directly observed
owing to Heisenberg’s indeterminacy principle are called virtual. Processes that relate real
incoming and real outgoing states are real; all others are virtual.

Comment 3.4 The processes (3.79) labeled “1” and “2” are virtual, but the process “1+2” is
real. [ ✎Why?] A virtual particle is also said to be “off-shell,” i.e., off the mass shell, which
is the hyperboloid p2 = pμpμ = m2c2 in the 4-momentum space. That is, the 4-momentum
of a particle “on-shell” satisfies the relations (3.36)–(3.37), whereas that of a particle “off
shell,” is not so restricted; to this end, I write p2 \= m2c2 – in distinction from “p2 �= m2c2,”
which means that p2 must not equal m2c2. [☞ Tables C.7 on p. 529 and C.8 on p. 529.]

3.3.1 Diagrams
Processes between particles are naturally represented graphically, by so-called Feynman dia-
grams.12 It is important to understand that these diagrams must not be taken as a literal rendition
of a process in the “real” space, but as a schematic tool, the primary task of which is to help in
the estimation and computation regarding physical processes that they represent. For example, the
Feynman diagrams

(3.81)

look identical although the left-hand diagram depicts the repulsive effect of (the Coulomb force
due to) the exchange of one photon between two electrons, and the right-hand one depicts the
attractive effect of (the Coulomb force due to) the exchange of one photon between an electron
and a proton.

Except when noted differently, all Feynman diagrams herein are, by convention, drawn with
time passing predominantly upward and the lines of simultaneity being oriented predominantly
left–right. The tilt (angle with respect to the chosen time axis) of these lines depends on the choice
of the observer,13 which changes the interpretation of the diagram:

12 The graphical representation of interactions is very intuitive and clear. Feynman certainly did not come up with this idea
first, but he did contribute to their popularity as he worked out the technical details that make those diagrams into a
useful computational tool. Ernst Stückelberg was the first to use the idea for the individual processes, before Feynman,
but had no actual drawings; Freeman Dyson was the first to rigorously establish the link between these diagrams and the
well-known perturbative computations. Feynman linked these diagrams to the so-called path integrals, which became a
standard only years later.

13 To be precise, the tilt of all lines changes depending on the observer. However, the tilt of virtual lines – which represent
particles that are unobservable in principle and so do not satisfy any classical equation of motion – may change radically,
and represent the motion of a massive, light-like, or even tachyonic particle. In distinction, the wave-functions of real
particles satisfy their classical equations of motion, and so have the same character for all observers: either massive or
light-like. (Or tachyonic – should they ever be experimentally detected [☞ Digression 7.1 on p. 261].)
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(3.82)

According to the interpretation on the left-hand side, the left-hand particle first emits a photon,
which the right-hand particle then absorbs; according to the interpretation on the right-hand side,
the right-hand particle emits a photon first, which the left-hand particle then absorbs. Thus we
simply speak of an “exchanged” photon, and a diagram such as (3.82) is identified as a schematic
representation of this process, and not as a literal, real depiction of the process in spacetime.

The exchanged photon must be virtual (after all, it is by definition never directly observed!),
since the individual processes (the left-hand half and the right-hand one)

(3.83)

would be kinematically forbidden [☞ Exercise 3.2.7] – while the whole process (3.83) and those
in (3.81) are real. However, this implies that processes such as either one of (3.81) must be
understood as one of the contributions to the process that may be depicted as

(3.84)

where the schematic region in the shaded ellipse is the Heisenberg zone; particles and processes
that are entirely within this region can be neither observed nor measured directly as a matter of
(Heisenberg’s indeterminacy) principle. On the other hand, that also means that within the shaded
region of indeterminacy, all possible sub-processes may well occur, and in fact do occur [☞ Con-
clusion 2.3 on p. 56]. It remains to determine the hierarchy of their contributions to the physical
quantity being computed for the considered physical process (specified by the particles outside the
Heisenberg zone of indeterminacy!):

(3.85)

In classical physics, it makes perfect sense to ask: “In a concrete e− + e− → e− + e− scattering,
which one of the processes happened, either (a) or (b) or (c) or (d) or (e) or. . . ?” In quantum
physics, this question makes no sense: As a matter of principle, not one of the processes shown
in the expansion on the right-hand side of the equality (3.85) can possibly be singled out as the
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“actual” process. All the possibilities that satisfy the “boundary conditions” contribute, as (virtual)
sub-processes of the e− + e− → e− + e− scattering. In this context, “boundary conditions” are
the data reliably established outside the Heisenberg zone, the region obscured by Heisenberg’s
indeterminacy relations.

Besides intuitively depicting by graphs the interactive processes between particles, the Feyn-
man diagrams are also a precise instrument for computing probabilities as well as other measurable
parameters of the considered process. The goal of every application of Feynman diagrams is the
establishment of precise 1–1 correspondences between:

1. the fundamental theory that designs the considered process, usually in terms of a specified
Lagrangian density,

2. individual Feynman diagram elements as the graphical representation of individual terms
from the specified Lagrangian density,

3. the rules of linking these graphical elements into a complete diagram, as a graphical depiction
of the computation with the individual terms from the specified Lagrangian density,

4. the rules of listing all possible Feynman diagrams that need to be included in a computation,
5. the final mathematical expression (usually, in terms of an algebraic sum of various mul-

tiple integrals over various 4-momenta), the final result of which is the desired physical
quantity,

and finally,

6. the computation (or, more often, an estimate) of the value of the mathematical expression
depicted by the Feynman diagram.

Here, we skip the derivations of the second and third steps in this listing; that would be the task
of a field theory course. Instead, we consider some examples [☞ Chapters 5–7] from the Standard
Model, to illustrate the application of the last three steps and will only heuristically motivate their
relationship to the first step – the construction of appropriate Lagrangians, which however we will
discuss at length.

A complete discussion of all aspects of this task is beyond the scope of an introductory text
such as this. Reference [305] describes the early history of Feynman diagrams and the reasons
for the variety of “styles” and conventions in their application; see, e.g., Refs. [61, 474, 537],
the field-theory texts [64, 63, 48, 257, 307, 221, 159, 422, 423, 538, 250, 389, 243, 45, 580,
238, 241, 239, 240], as well as those specializing in path-integral methods [459, 165, 123, 277].
However, since the Feynman diagram technique is quite widespread – even in topics well out-
side elementary particle physics [☞ e.g., Refs. [357, 316]] – we first turn to non-relativistic
quantum mechanics, where the well-known perturbative computations are also representable
graphically.

3.3.2 Quantum-mechanical digression

As a “warm-up,” recall the perturbative computations in non-relativistic quantum mechanics: the
relations (1.17)–(1.19) are very often listed and derived in almost all textbooks. Most textbooks
also give the basic idea behind the derivation of such oft-used results, but the derivation itself and
the results are hardly ever given for corrections of higher order. However, adopting the standard
derivation, we write

H |n〉 = En |n〉, where H := H0 + λH′ (3.86)
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is the “true” Hamiltonian, given as a sum of a “known” Hamiltonian H0 and a “perturbation” H′,
and where λ serves to consistently count the order of perturbation. Suppose that for the “known”
system (designated by the Hamiltonian H0) the complete system of orthonormalized solutions is
known:

H0|n; 0〉 = E(0)
n |n; 0〉,

{ 〈n; 0|n′; 0〉 = δn,n′ ,
∑n |n; 0〉〈n; 0| = 1, (3.87)

and the solutions of equation (3.86) may be found in the analytic form

En =
∞

∑
k=0

λk E(k)
n , |n〉 =

∞

∑
k=0

λk |n; k〉, (3.88)

with the normalizations

〈m; k|n; k〉 = δmn, ∀m, n, and 〈n; k|n; �〉 = δk�, ∀k, �. (3.89)

The energy E(k)
n is the kth order perturbative correction to the original, unperturbed energy E(0)

n ,
and |n; k〉 is the kth order perturbative correction to the original, unperturbed state |n; 0〉. The
treatment of the general situation with (partial) continuous and/or degenerate spectrum is only
technically more complicated,14 and so will not be discussed here.

Introducing the definition

Π̂α
n := ∑

m �=n

|m; 0〉〈m; 0|
(E(0)

n −E(0)
m )α

, so Π̂α
n Π̂β

n = Π̂α+β
n , (3.90)

where the superscript in Π̂α
n really behaves like an exponent, the standard recursive formulae15 for

the kth correction to the state and energy are

|n; k〉 = Π̂1
n H′|n; k−1〉 −

k−1

∑
i=1

E(i)
n Π̂1

n |n; k−i〉, k > 0, (3.91a)

E(k)
n = 〈n; 0

∣∣H′∣∣n; k−1〉. (3.91b)

The first several iterations of these recursive formulae are:

E(1)
n = 〈n; 0|H′|n; 0〉, (3.92a)

|n; 1〉 = Π̂1
n H′|n; 0〉, (3.92b)

E(2)
n = 〈n; 0

∣∣H′ Π̂1
n H′∣∣n; 0〉, (3.92c)

|n; 2〉 = Π̂1
n(H′ − E(1)

n )|n; 1〉
= Π̂1

n H′ Π̂1
n H′|n; 0〉 − Π̂1

n Π̂1
n H′|n; 0〉〈n; 0

∣∣H′∣∣n; 0〉
=

[
Π̂1

n H′ Π̂1
n − Π̂2

n H′|n; 0〉〈n; 0|]H′|n; 0〉, (3.92d)

14 The basis of states |n; k〉 must be redefined so as to eliminate the meaningless terms such as 〈m;k|H′ |n;k〉
E(0)

m −E(0)
n

∼ 1
0 for m �= n –

which is always possible, by (at least a partial) diagonalization of the perturbation matrix 〈m; k|H ′ |n; k〉.
15 Most quantum mechanics texts list only the results for E(1)

n , |n; 1〉 and E(2)
n ; for a more complete treatment, see e.g.,

Ref. [362, pp. 685–695].
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E(3)
n = 〈n; 0

∣∣H′∣∣n; 2〉
= 〈n; 0|H′[ Π̂1

n H′ Π̂1
n − Π̂2

n H′|n; 0〉〈n; 0|]H′|n; 0〉
= 〈n; 0|H′ Π̂1

n H′ Π̂1
n H′|n; 0〉 − 〈n; 0|H′ Π̂2

n H′|n; 0〉〈n; 0|H′|n; 0〉 (3.92e)

|n; 3〉 = Π̂1
n
(
(H′ − E(1)

n )|n; 2〉 − E(2)
n |n; 1〉)

= Π̂1
n H′|n; 2〉 − Π̂1

n |n; 2〉〈n; 0
∣∣H′∣∣n; 0〉 − Π̂1

n |n; 1〉〈n; 0
∣∣H′ Π̂1

n H′∣∣n; 0〉
= Π̂1

n H′ Π̂1
n H′ Π̂1

n H′|n; 0〉 − Π̂1
n H′ Π̂2

n H′|n; 0〉〈n; 0|H′|n; 0〉
− Π̂2

n H′ Π̂1
n H′|n; 0〉〈n; 0|H′|n; 0〉 − Π̂2

n H′|n; 0〉〈n; 0
∣∣H′ Π̂1

n H′∣∣n; 0〉
+ Π̂3

n H′|n; 0〉〈n; 0|H′|n; 0〉2, (3.92f)

and so on. The expressions after (3.92c) indeed become increasingly more and more tedious, and
very quickly. However, the particular ordering in these expressions uncovers a simple algorithm for
finding all subtractions, in the form of “excisions” from the original expression:

|n; 3〉 = Π̂1
n H′ Π̂1

n H′ Π̂1
n H′|n; 0〉 ← original expression

− Π̂1
n [H′] Π̂1

n H′ Π̂1
n H′|n; 0〉 ← 1st excision

− Π̂1
n H′ Π̂1

n [H′] Π̂1
n H′|n; 0〉 ← 2nd excision

− Π̂1
n H′ Π̂1

n H′ Π̂1
n [H′]|n; 0〉 ...

− Π̂1
n [H′] Π̂1

n [H′] Π̂1
n H′|n; 0〉

− Π̂1
n [H′ Π̂1

n H′] Π̂1
n H′|n; 0〉

− Π̂1
n H′ Π̂1

n [H′ Π̂1
n H′]|n; 0〉 (3.93)

where the [· · ·]-bracketed factors in the original expression are successively “excised.” For example,

(3.94a)

(3.94b)

The right-most “excisions” in (3.93) vanish:

Π̂1
n H′ Π̂1

n H′ Π̂1
n [H′]|n; 0〉 = Π̂1

n H′ Π̂1
n H′ Π̂1

n |n; 0〉︸ ︷︷ ︸
=0

〈n; 0|H′|n; 0〉, (3.95a)

Π̂1
n H′ Π̂1

n [H′ Π̂1
n H′]|n; 0〉 = Π̂1

n H′ Π̂1
n |n; 0〉︸ ︷︷ ︸
=0

〈n; 0|H′ Π̂1
n H′|n; 0〉, (3.95b)

owing to the fact that the normalization (3.89) guarantees

Π̂α
n |n; 0〉 = ∑

m �=n

|m; 0〉〈m; 0|
(E(0)

n − E(0)
m )α

|n; 0〉 = ∑
m �=n

1

(E(0)
n − E(0)

m )α
|m; 0〉 〈m; 0|n; 0〉︸ ︷︷ ︸

=0 (∵ m �=n)

. (3.96)

Since only factors of the form (H′ Π̂α
n · · · Π̂β

n H′) have a non-vanishing expectation value in
the original, “known” state |n; 0〉, only such factors may be “excised.” The relations (3.91) may
then be written as

|n; k〉 = (Π̂1
n H′)k|n; 0〉 − all “excisions”, k � 0, (3.97a)
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E(k)
n = 〈n; 0

∣∣H′(Π̂1
n H′)k−1∣∣n; 0〉 − all “excisions”. k � 1. (3.97b)

Using this “excising” notation, e.g., the expression (3.92e) becomes

E(3)
n = 〈n; 0|H′ Π̂1

n H′ Π̂1
n H′|n; 0〉 − 〈n; 0|H′ Π̂1

n [H′] Π̂1
n H′|n; 0〉

= 〈n; 0|H′ Π̂1
n H′ Π̂1

n H′|n; 0〉 − 〈n; 0|H′ Π̂2
n H′|n; 0〉〈n; 0|H′|n; 0〉. (3.98)

The diligent Student is expected to verify [ ✎do it] that the formulae (3.97a)–(3.97b) reproduce
at least the above results (3.92d)–(3.92f).

Digression 3.10 It is not hard to see that the expression (3.98) has no other non-
vanishing “excisions.” Take, for instance, the candidate

(3.99)

The results (3.91) may be depicted graphically, drawing

2nd order propagator (3.100)

Then we have
2

(3.101a)

2
(3.101b)

2
(3.101c)

2 (3.101d)

2 (3.101e)

and so on, where the subtractions are shown as stacks of diagrams, and represent a product of the
corresponding factors. The “excising” algorithm (3.92d) may be graphically depicted also as

.. (3.102)
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Thus, the whole stationary perturbation theory in non-relativistic quantum mechanics exemplified
by (3.101a)–(3.101e) may be written unambiguously and precisely using the graphical sym-
bols (3.100). Similarly, the whole perturbation theory in field theory may be faithfully written
in terms of Feynman diagrams.

The detached portions in these “excision” diagrams, such as in (3.101d)–(3.102),
may well be thought of as the quantum-mechanical analogue of “vacuum diagrams” in field theory:
These diagrams begin and end at the same state in the Hilbert space, |n; 0〉; these being stationary
states, they do not change in time; finally, fixing |n; 0〉 to be the ground state would indeed refer
to the “vacuum.”

3.3.3 Decays, scattering and calculations
In elementary particle physics, one studies decays, collisions/scatterings, and bound states of these
elementary particles. The analysis of bound states uses very successfully the non-relativistic quan-
tum mechanics in Schrödinger’s picture, with perturbatively added relativistic corrections [☞ Sec-
tion 4.1]. On the other hand, decays and collisions/scatterings typically require relativistic analysis.
Our goal here will be to estimate the lifetime for the particle A decaying as A → B + C, and the
differential as well as the total cross-section (probability) of the A + B → C → A + B scattering.
The relativistic computations using Feynman diagrams are convenient for this, and we follow the
standard approach, adopting Griffiths’s conventions [243].

Decays and the half-life
Particles (and even composite systems such as atoms and atomic nuclei) decay probabilistically: It
is not possible to specify precisely when a specific particle will decay, but it is possible to determine
the average lifetime τ, i.e., half-life, t1/2 = ln(2)τ, where

N(t) = N(0) e−t/τ = N(0)
( 1

2

)t/t1/2 (3.103)

is the number of certain particles at time t > 0 within a sample where there existed N(0) particles
at time t = 0. The decay rate (a.k.a. the decay constant) is defined as

Γ :=
1
τ

=
ln(2)
t1/2

. (3.104)

Most particles decay in several ways; in 99.80% cases, π0 decays into two photons, but
in 1.20% cases into an e− + e+-pair. Other particles have many more “modes” of decay: Each
particular decay mode then has a corresponding decay rate Γi, and of course

Γtot = ∑
i

Γi, τ =
1

Γtot
. (3.105)

The ratios Γi/Γtot are called branching ratios; for the five most significant decay modes of the K+

particle, Γi/Γtot are listed, as percentages, in Table 3.1.

Table 3.1 The significant decay modes of the K+ meson

μ− + νμ 63.44± 0.14 % π+ + π0 20.92± 0.12 %

π+ + π+ + π− 5.590± 0.031 % π0 + e+ + νe 4.98± 0.07 %

π0 + μ+ + νμ 3.32± 0.06 % plus a dozen or so rare modes
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Scattering and the effective cross-section
The “effective cross-section” is used to design scattering of one particle on another. Conceptually,
this is the literal geometrical description of the target, as seen by the incoming probe. For an archer,
the probability of a hit is proportional to the cross-section of the target: that’s why swordsmen turn
sideways, for the opponent to “see” a smaller cross-section, so as to diminish the probability of a
stab.

This literal geometric figure is really faithful [☞ Example 3.2] in the case of “hard” targets,
as in the case of a collision of a pool ball, a marble, a cannonball, etc. Such objects have a “binary”
interaction: they either collide or they miss. That is, there exists a very well determined critical
distance, dc, between the centers of such objects. Should the objects pass by each other so that
the distance between them is always bigger than dc, they do not interact at all. For two regular
spheres, dc equals the sum of their radii.

Point-like
“probe”

Effective “target”
of double

radius

“Target”-marble“Probe”-marble

Figure 3.1 The collision of two marbles.

Example 3.2 The classical collision of “hard” marbles of radius R may be analyzed geo-
metrically, as shown in Figure 3.1, where the left-hand marble is replaced by a material
point, and the radius of the right-hand marble is doubled. The left-hand marble plays
the role of a “probe,” and the right-hand one that of the “target.” If the orthogonal dis-
tance b from the target center is changed a little, b → b + db, the scattering angle θ
also changes, θ → θ + dθ. As the collision geometry has axial symmetry, the same result
holds if the “probe” approaches the target from any other angle φ, so that the “probe”
passes through the “surface” element dσ = |db b dφ|. The out-coming space-angle is then
dΩ = | sin θ dθ dφ|, so that the ratio

dσ
dΩ

=
∣∣∣∣ b
sin θ

(db
dθ

)∣∣∣∣ =

∣∣∣∣∣2Rcos
(
θ
2

)
sin θ

(
(2R)

[− 1
2 sin

(
θ
2

)])∣∣∣∣∣ = R2. (3.106)

That produces the total effective cross-section

σ =
∫

dσ =
∫

dΩ
dσ
dΩ

= 4π R2 = π(2R)2, (3.107)

which is the cross-section of a circle of radius 2R: Every “probe” the center of which
passes through this effective circle of double radius will collide with the “target,” all
other probes miss.
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The “hard” target models evidently cannot hold for scattering of two charged particles, since
the electromagnetic interaction extends infinitely far, and the two charged particles always interact,
regardless of the smallest distance between them. Of course, the intensity, i.e., the force of in-
teraction, diminishes with the square of the distance. However, there is no regime in which the
interaction completely vanishes. In distinction from the previous, “hard” targets, such targets are
then called “soft.”

Molecular forces, which decay as ∼ 1/rn where n > 2, as well as forces of Yukawa type
(which decay as ∼ e−r/r0 /r2) evidently behave between the two limiting cases. The effective cross-
section is then a measure of the mutual “hardness” of the target and the probe.

Besides, the collision probability may also depend on the nature of the probe as well as the
target, of the interaction, and even the number and type of out-coming particles. Indeed, the elastic
collision e− + p+ → e− + p+ is relatively simple at sufficiently small energies. However, at growing
energy collisions, we may have

e− + p+ → e− + p+ + γ, e− + p+ → e− + p+ + π0, e− + p+ → e− + n0 + π+,

and then also e− + p+ → νe + Λ0 + K0, etc. (3.108)

For each of these processes, the exclusive (partial) scattering effective cross-section may be
computed, and their sum is then the inclusive (total) scattering effective cross-section.

Finally, the effective cross-section is a measure of the interaction of the “probe” and the target,
and must depend on the speed of the “probe”: The faster it moves, the less time is available for
the interaction, and the effects of the interaction should diminish. Thus, the effective cross-section
should depend inversely on the speed of the “probe.” In realistic scattering, this dependence of
the effective cross-section as a function of speed – or, more frequently, energy – is not so simple:
near certain values of speed (i.e., energy) the effective cross-section is significantly amplified.
Because of the similarity with the amplification of alternating current when its frequency is near a
natural frequency of the circuit, this effect is also called “resonance.” In such resonant collisions,
the collision energy is just right for the “probe” and the “target” to produce a virtual intermediate
state that decays before it could be detected directly [☞ equations (3.67) and (3.48)], and this is
the most frequent way of (indirect) observation of new particles.

Example 3.2 on p. 111 shows that the physical meaning of the effective cross-section coincides
with the naive measure of interaction – the cross-section of the effective target of doubled radius.
In the general case, instead of a point-like “probe” one uses a beam of “probes,” of luminosity L,
defined as the number of point-like “probes” in unit time and unit area. Thus, we have that

dN = L dσ ⇒ dN
dΩ

= L
dσ
dΩ

, i.e.,
dσ
dΩ

=
1
L

dN
dΩ

. (3.109)

This shows that the differential cross-section may be understood as the number of point-like
“probes” that reach the detector in the interval of space angles [Ω, Ω + dΩ], per unit luminos-
ity. The first of these relations (3.109) gives the number of scattered probe-particles expected to
be observed in the detectors placed in the interval [Ω, Ω + dΩ], if the total luminosity of the beam
of probes is L; that is the theoretical (computed) result that may be compared with experimental
results directly.

For dimensional analysis, and to check the results, note the following relation between Γ and
σ: For a decay of a two-particle bound state, Γ must be proportional to the effective cross-section, σ,
of the collision of the two particles within the bound state, to the relative speed of these particles,
as well as the value of the probability distribution in the place where the particles meet:

1. If the collision effective cross-section vanishes, there is no direct interaction between them,
and there can be no decay of their bound state.
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2. If the relative speed of the two particles vanishes, they will never meet, nor interact.
3. If the probability of the two particles to be in the same place vanishes, the direct interaction

cannot happen, nor can the decay.

Dimensional analysis in fact even fixes the linear dependence on v, σ and |Ψ(�0, t)|2:

Conclusion 3.2 The physical units for the decay rate are evidently T−1, and for the effective
cross-section (both total and differential) they are L2. It follows that (see Exercise 3.3.2):

Γ ∝ σ v |Ψ(�0, t)|2. (3.110)

Fermi’s golden rule
The basic idea of the so-called Fermi’s golden rule is that the computation of a physical quantity
such as a decay rate or a scattering effective cross-section, both total (inclusive) and exclusive
(partial) may be written (up to conventional numerical factors) as a product of two factors:

1. the modulus-squared of the so-called “matrix element,” i.e., “amplitude” of the process,
2. the sum/integral over the “phase space” – i.e., over aspects of the process that are not being

measured/observed, and so do not specify the process.

This approach gives the formulae, cited here from Ref. [243] without derivation:

A → C1 + C2 + · · · decay : (3.111)

dΓ = |M|2 S
2h̄mA

(2π)4δ4(pA − ∑ipi
)

∏
j

c d3�pj

2(2π)3Ej
, (3.112)

where S is the product of “statistical factors,” one (k!)−1 factor for every group of k identical
particles amongst the decay products.

A + B → C1 + C2 + · · · collision/scattering : (3.113)

dσ = |M|2 h̄2 S

4
√

(pA·pB)2 − (mAmBc2)2
(2π)4δ4(pA + pB − ∑ipi

)
∏

j

c d3�pj

2(2π)3Ej
, (3.114)

where, in both results, the energy of the jth particle amongst the process products is a function of
the linear momentum:

Ej ≡ Ej(�pj) = c
√

m2
j c2 +�p2

j , (3.115)

since all particles in these processes are real, i.e., they can be observed directly in detectors, and
so are “on-shell,” i.e., on the E2 = m2c4 + �p2c2 hyperboloid. In all these formulae, the indices i, j
count the process products (C1, C2, . . . ), not the components of the linear momenta.

Example 3.3 Consider the two-particle decay A → C1 + C2, where the products have
masses m1 and m2, respectively, and where the linear momenta of the products are not
measured, and so must be integrated over. Adapting equation (3.112), we have

Γ =
S

2h̄mA

∫
|M|2 (2π)4δ4(pA − p1 − p2

) c d3�p1

2(2π)3E1(�p1)
c d3�p2

2(2π)3E2(�p2)
. (3.116)
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Translating first into the rest-frame of particle A, we have pA = (mAc,�0). The
4-dimensional δ-function factorizes: δ4(pA − p1 − p2) = δ(mAc − E1/c − E2/c)δ3(−�p1 −
�p2). Using the 3-dimensional factor that imposes �p2 = −�p1 and cancels the d3�p2-
integration, we have

Γ =
S

2(4π)2 h̄mA

∫
d3�p1 |M|2

δ
(

mAc −
√

m2
1c2 +�p2

1 −
√

m2
2c2 + (−�p1)2

)
√

m2
1c2 + �p2

1

√
m2

2c2 + (−�p1)2
. (3.117)

On one hand, we know that |M| is a Lorentz-invariant (scalar) function of the vectors �p1
and �p2 = −�p1. So M = M(�p1, �p2) = M(�p1,−�p1) = M(�p1) may depend on the direction
of �p1 only if it also depends on some other (reference) vector quantity in the resulting
particles, such as their spin: Then M may depend also on the scalars �pi·�S j and �Si·�S j,
where �Si is the (operator of) spin of the ith particle, and i, j = 1, 2. In turn, if we may
assume that the decay process does not depend on any such additional vector quantities,
every scalar function of the vector �p1 must in fact depend only on the modulus ρ := |�p1|.
It is therefore convenient to use spherical coordinates for the d3�p1-integration. Angular
integration gives a factor 4π, and we remain with

Γ =
S

8π h̄mA

∫ ∞

0

ρ2dρ |M|2√
m2

1c2 + ρ2
√

m2
2c2 + ρ2

δ
(

mAc −
√

m2
1c2 + ρ2 −

√
m2

2c2 + ρ2
)

.

(3.118)

To simplify the integral, introduce

E = c
(√

m2
1c2 + ρ2 +

√
m2

2c2 + ρ2
)

, (3.119)

from which it follows that

dE
E =

ρ(E) dρ√
m2

1c2 + ρ2
√

m2
2c2 + ρ2

so
ρ2dρ√

m2
1c2 + ρ2

√
m2

2c2 + ρ2
= ρ(E)

dE
E , (3.120)

where we intentionally leave ρ = ρ(E) as is, and have

Γ =
S

8π h̄mA

∫ ∞

(m1+m2)c2

dE
E |M|2 ρ(E) δ(mAc − E/c). (3.121)

Since δ(mAc − E/c) = cδ(E − mAc2), we finally use the δ-function to cancel the dE -
integral:

Γ =

{ S ρ0

8π h̄m2
Ac

|M(ρ0)|2, if mA > m1 + m2;

0, if mA � m1 + m2,
(3.122)

where ρ0 = |�p1|0 solves the relation (3.119) with E = mAc2:

ρ0 = |�p1|0 =
c

2mA

√
m4

A
+ m4

1 + m4
2 − 2m2

A
m2

1 − 2m2
A

m2
2 − 2m2

1 m2
2, [ ✎verify]

(3.123)
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and satisfies the linear momentum conservation law. It is useful to list a few simplifica-
tions: When the two products have the same mass but are not the same particle, S = 1
and

Γ =

√
1 − (2m/mA)2

16π h̄mA

∣∣∣M( c
2

√
m2

A − (2m)2)∣∣∣2. (3.124)

If, furthermore, m1 = 0 = m2 but the resulting particles are still distinct (e.g., a neutrino
and a photon, or two different neutrinos and where m ≈ 0 is a pretty good approximation
for neutrinos), we have

Γ =
1

16π h̄mA

∣∣M( 1
2 mAc)

∣∣2. (3.125)

Finally, if the products really are identical particles, S = 1
2 , and the decay rate is one half

of the previously listed results (3.122), and (3.124)–(3.125).

Example 3.4 Consider the inelastic scattering A + B → C1 + C2, where the particles have
masses mA, mB, m1 and m2, respectively, and where the products’ linear momenta are not
measured, and so must be integrated over. The expression (3.114) must be integrated
over d3�p1d3�p2, and the procedure is similar to that in Example 3.3. However, this time
note that M in principle depends on all four linear momenta, �pA,�pB,�p1 and �p2. Since M
is a scalar function, it may depend only on the scalar quantities constructed from these
four 3-vectors.

However, if these 3-vectors are expressed in the coordinate system where �pA +�pB =
�0, it follows that �pA = −�pB = �pi (initial) and �p1 = −�p2 = �p f (final). Scalar functions of
these two 3-vectors can only depend on |�pi|, |�p f | and �pi·�p f = |�pi||�p f | cos ϑ, where ϑ is
the angle between the initial and the final linear momentum, �pA and �p1.

Since the initial linear momentum �pA is known, amongst the integration variables
in the integral of the expression (3.114), M may depend only on |�p1| and ϑ. Choosing
the spherical coordinate system where êz‖�pA, we have

d3�p1 = ρ2dρ sin(ϑ)dϑ dϕ = ρ2dρ dΩ. (3.126)

Repeating the simplification of the integral just as done in Example 3.3 and using the
result (3.163), we obtain

dσ
dΩ

=
( h̄ c

8π

)2 S |M|2
(EA + EB)2

|�p f |
|�pi| . (3.127)

To compute the final expression for the total effective cross-section, σ, by angular in-
tegration over dΩ = sin(ϑ)dϑ dϕ, the angular dependence of M on ϑ, ϕ must be
known.

3.3.4 A simple toy-model example
In this section we consider the Feynman calculus in a very simple toy-model. In Chapters 5 and 6,
this procedure will be applied to concrete and realistic processes in the Standard Model. This
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toy-model is “borrowed” from Ref. [243], where it is attributed to Max Dresden; ultimately of
course, the number of very simple but nontrivial models is very limited.

— ❦ —

There are only three types of particles in this model, A, B, C, with mA > mB + mC, and such that
there exists only one elementary process:

A

B

C
g (3.128)

We assume that the constant (charge/strength) of interaction g is sufficiently small to serve as a
perturbation parameter, at least formally. The computation of any physical quantity is thus orga-
nized as a power series in g, and we compute all contributions of order gn, ranging from the lowest
possible value of n � 0, towards increasingly higher values of n.

Procedure 3.1 The contribution to the matrix element (amplitude) M corresponding to a
Feynman diagram in the ABC-model is computed following the algorithm:

1. Notation: Denote the incoming and outgoing 4-momenta by p1, p2, . . . and the “internal”
4-momenta (assigned to lines that connect two vertices within the graph) q1, q2, . . . Orient
each line, selecting the positive sense of the corresponding 4-momentum.

2. Vertices: Assign to each vertex the factor −ig.
3. Lines: Assign to the jth internal line the factor i

q2
j −m2

j c2 , the so-called propagator. As this

depicts a virtual particle,16 q2
j \= m2

j c2.
4. 4-momentum conservation: Assign to each vertex the factor (2π)4δ4(∑j kj), where kj (−kj)

are the 4-momenta entering (leaving) the vertex.

5. 4-momentum integration: Assign to the jth internal line the
∫ d4qj

(2π)4 -integral.
6. Reading off the amplitude: The above procedure produces(−i M

)
(2π)4δ4(∑

j
pj), (3.129)

where the (2π)4δ4(∑j pj) represents the 4-momentum conservation law, and from where the
amplitude (matrix element) M is read off.

The A → B + C decay
The lowest order contribution is of the order g1:

A

B C

g
(3.130)

16 For virtual particles, it is not that q2 is required to not equal m2c2 (i.e., q2 �= m2c2), but rather that q2 is not required
to equal m2c2. In distinction from “does not equal,” the relation “not required to equal” will herein be denoted by the
non-standard symbol “ \=” [☞ Tables C.7 on p. 529 and C.8 on p. 529].



3.3 Feynman’s diagrams and calculus 117

The time axis is directed vertically, upward. The next contributions are of the order g3:

A

A CB

C B

A

B C

A

C B

A

B C
A

B
C

A

B C
A

B
C (3.131)

and so on. The lowest order contribution (3.130) is depicted by a tree-graph (with no closed loop).
The subsequent contributions (3.131) all have precisely one closed loop and are of the order g3;
there are no contributions of even order g2k. However, starting with the next (g5) order, a novelty
appears, which can be seen by comparing the following two graphs:

(3.132)

The left-hand graph is planar, but the right-hand graph is not. This property of planarity may
be used for a finer classification of graphs, and proves to be very useful in computations for the
strong nuclear interaction [511]; for a recent review, see Ref. [349]. Also, only connected diagrams
contribute: diagrams such as any one of the above but with a disconnected component (e.g., •©)
added do not contribute; this recalls the “excisions” in Section 3.3.2, the contribution of which had
to be subtracted in non-relativistic stationary state perturbation theory.

Return to the contribution of the lowest order (3.130), where there are no internal lines.
Procedure 3.1 reduces to:

1. Let the “external” 4-momenta be pA, pB and pC.
2. Assign −ig to the vertex.
3. There are no internal lines, and so no propagators either.
4. Assign (2π)4δ4(pA − pB − pC) to the vertex.
5. There are no internal lines, and so no integration either.
6. We’ve obtained

−ig (2π)4δ4(pA − pB − pC) = (−i M) (2π)4δ4(pA − pB − pC), (3.133)

from where M is read off – here, to order g1. Thus, M(1) = g.

Inserting this result into the expression (3.122) we obtain

Γ(1) =
g2|�pB|0

8π h̄m2
Ac

, so that τ(1) =
1

Γ(1)
=

8π h̄m2
Ac

g2|�pB|0 , (3.134)

where
|�pB|0 =

c
2mA

√
m4

A + m4
B + m4

C − 2m2
Am2

B − 2m2
Am2

C − 2m2
Bm2

C = |�pC|0. (3.135)

The result M(1) = g, and so also (3.134), is analogous to the result (3.92a): M(1) = g is
the first-order result in M expanded in a power series over g, as is E(1)

n the first-order result in
a power-series expansion of the energy over λ. In this sense, the constant of interaction g serves
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as the perturbation parameter, and its numerical value must be sufficiently “small” so that such a
power series would make sense,17 so that the interaction parameter g has the same formal role as
the perturbation parameter λ in non-relativistic quantum mechanics, in Section 3.3.2.

However, unlike this formal parameter, the interaction constant g has a physical meaning and
its physical value can be measured. In this toy-model, it would suffice to measure the lifetime of the
A-particle, then use the relation (3.134) to compute g – to the lowest perturbative approximation.
An experiment would, of course, follow an ensemble of a large number of A-particles, and the
diminishing of their number during time would determine the average value of the half-life t(1)

1/2 =
τ(1) ln(2).

Note, however, that there would occur an additional “correction”: Processes (3.130), (3.131),
(3.132), and others of the same order in g (and then also the higher-order ones) are contributions
only to the exclusive (partial) decay A → B + C. If the mass mA is sufficiently bigger than mB, mC,
the A-particle may also decay into more-particle modes:

A → 3B + C, A → B + 3C, . . . A → pB + qC, (3.136a)

which are limited by the relation
∑
p,q

p mB + q mC < mA, (3.136b)

as well as the nature of the decay graphs, from which it follows, e.g.,

(p, q) �= (1, 2), (2, 2), (2, 3), . . . (3.136c)

The A+A→ B+B scattering
The constant g may also be measured – in a thought experiment since this is a toy-model – more
directly, by measuring the intensity of the interaction during scattering. Griffiths [243] analyzes
the inelastic decay A + A → B + B, where “incoming” A-particles are assigned the 4-momenta p1
and p2, and the outgoing B-particles p3 and p4.

By definition and using the relation (3.37), we have that Ei
c =

√
m2

i c2 +�p 2
i for i = 1, 2, 3, 4.

In the CM system, where(
−E1

c
,�p1

)
+

(
−E2

c
,�p2

)
= (p0,�0) =

(
−E3

c
,�p3

)
+

(
−E4

c
,�p4

)
, (3.137)

the total linear momentum vanishes so �p1 = −�p2 and �p3 = −�p4. Denote θ := 	(�p1,�p3) =
	(�p2,�p4), so that 	(�p1,�p4) = 	(�p2,�p3) = (π−θ). We also have that

E1 = c
√

m2
Ac2 +�p 2

1 = c
√

m2
Ac2 + (−�p1)2 = E2, (3.138)

E3 = c
√

m2
Bc2 + �p 2

3 = c
√

m2
Bc2 + (−�p3)2 = E4. (3.139)

From conservation of energy, i.e., the energy component (3.137), it follows that

E := E1 = E2 = E3 = E4. (3.140)
17 It would be ideal if this power series would converge. Within field theory, in practice – if this can be determined at

all – one mostly obtains asymptotic or even formally divergent sums, for which one must independently establish if
the sum may be unambiguously assigned a particular value [☞ [259] for “summability”] for the given value of the
constant g as its argument. Not infrequently, one only knows that the first several orders of perturbative computations
are ever smaller “corrections,” but with no formal proof about the nature of the whole infinite series. On the other hand,
practical computations in quantum electrodynamics show unprecedented precision: both perturbative computations
and experimental measurements are found to agree with a relative error < O(10−10) [293], better than anywhere else
in natural sciences!
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Equating the squares of these energies, we obtain

m2
Ac2 −�p 2

1 = m2
Ac2 −�p 2

2 = m2
Bc2 −�p 2

3 = m2
Bc2 − �p 2

4 . (3.141)

In the limiting case of this toy-model, when mA = mB = m, but mC = 0, the relation (3.141)
gives

|�p| := |�p1| = |�p2| = |�p3| = |�p4|. (3.142)

Scattering In this case, following Procedure 3.1 we have:

1. Denote the “incoming” 4-momenta by p1, p2, and the “outgoing” ones by p3, p4:

A

p1

B

p3

−ig
C q

−ig

A

p2

B

p4

(3.143)

2. Assign to both vertices a factor of −ig.
3. Assign to the internal line the 4-momentum q, and the propagator i

q2−m2
c c2 .

4. Assign to the vertices the factors (2π)4δ4(p1 − q − p3) and (2π)4δ4(p2 + q − p4).
5. Integrate over d4q

(2π)4 .
6. We have thus obtained:

−i M (2π)4δ4(p1 + p2 − p3 − p4)

=
∫ d4q

(2π)4 (−ig)2 i
q2 − m2

C c2
(2π)4δ4(p1 − q − p3) (2π)4δ4(p2 + q − p4)

= −ig2(2π)4
∫ d4q

q2 − m2
C c2

δ4(p1 − q − p3) δ
4(p2 + q − p4)

= −i
g2

(p4 − p2)2 − m2
C c2

(2π)4δ4(p1 + p2 − p3 − p4). (3.144)

However, this is not the only Feynman diagram that produces a g2 contribution; holding the posi-
tions of the outgoing lines and their assigned 4-momenta, it is clear that a “topologically” distinct
diagram is obtained by swapping the vertices to which the outgoing lines connect:

A

p1

B
p3

−ig
C q

−ig

A

p2

B
p4

(3.145)

and which clearly produces a contribution of the same form (3.144), however, with the exchange
p3 ↔ p4. As there are no other Feynman diagrams, the amplitude M is read off from the sum of
these two contributions:

M =
g2

(p4 − p2)2 − m2
C c2

+
g2

(p3 − p2)2 − m2
C c2

. (3.146)
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This amplitude is to be substituted into the expression (3.127):

dσ
dΩ

=
( h̄ c

8π

)2 S |M|2
(E1 + E2)2

|�p3|
|�p1| , (3.147)

where S = 1
2 , we used the result (3.163), and chose to use a spherical coordinate system in which

the angle θ equals the angle 	(�p1,�p3).
The denominators in the ratios (3.146) are

(p4 − p2)
2 − m2

C c2 = (m2
A + m2

B − m2
C)c2 − 2

(E4

c
E2

c
− �p4·�p2

)
= (m2

A + m2
B − m2

C)c2 − 2
(√

(m2
Bc2 + �p 2

4 )(m2
Ac2 + �p 2

2 ) −�p4·�p2

)
,

(p3 − p2)
2 − m2

C c2 = (m2
A + m2

B − m2
C)c2 − 2

(√
(m2

Bc2 + �p 2
3 )(m2

Ac2 + �p 2
2 ) −�p3·�p2

)
,

which significantly simplifies in the limiting case when mA = mB = m and mC = 0:

(p4 − p2)
2 − m2

C c2 = 2m2c2 − 2
(
(m2c2 + �p 2) − �p 2 cos θ

)
= −2�p 2(1 − cos θ), (3.148)

(p3 − p2)
2 − m2

C c2 = 2m2c2 − 2
(
(m2c2 + �p 2) − �p 2 cos(π−θ)

)
= −2�p 2(1 + cos θ). (3.149)

Thus, in the limiting case mA = mB = m, and mC = 0:

M = − g2

�p 2 sin2 θ
, so

( dσ
dΩ

)
=

1
2

( h̄ c
16π

g2

E�p 2 sin2 θ

)2
, (3.150)

which may be used to measure – in a thought experiment for this toy-model – the interaction
constant g by measuring the differential effective cross-section as a function of the deflection angle
θ := 	(�p1,�p2), and the energy and linear momentum of the “incoming” particles, �p = �p1 and
E = E1, respectively.

Of course, the diagrams (3.143) and (3.145) and so also the result (3.150) are all only
the contributions of the lowest order. In the next, O(g4), order, we have the diagrams listed in
Figure 3.2.

The number of Feynman diagrams shown in Figure 3.218 indicates the volume of the task
in computing physical quantities, such as the differential effective cross-section, order by order in
perturbation theory. It is fairly obvious that the task of computing even just the first few order
contributions (in the expansion organized into growing powers of the interaction constant) to a
physical quantity is already a very demanding exercise, so that discussions and analyses of the
convergence of the whole perturbative sum must limit to general properties.

Besides, diagrams such as the 15th in Figure 3.2 uncover a new property: divergences and
renormalization. Consider this diagram, redrawn here as

AA

BB

C

A

B

C

p1 q2

q1

p3 q3

q4

p4

p2

(3.151)

18 The counting given in Ref. [243, 1st edn.] was imprecise: one-third of the diagrams counted there are either impossible
in the A-B-C toy-model (diagrams 4 and 7, in Figure 3.2), or are counted twice (diagrams 11, 12 and 14). However,
this is seen only when the lines are assigned particles and one verifies all vertices to be of the form (3.128).
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1 2 3 4 5

6 7 8 9

10 11 12

13 14

15

Not all diagrams are viable in the
A-B-C toy-model: the lines in
the diagrams 4 and 7 cannot be
assigned to particles A, B and C
while also having the vertices of

the form (3.128).

After assigning particles to the lines, we see
that several diagrams are identical with pre-
viously listed ones: 11 � 2, 12 � 5� 3 and
14 � 9 � 8.

This leaves only eight diagrams:1, 2, 3, 6, 8, 10, 13 and 15,
together with another eight, generated from (3.145).

Figure 3.2 Fifteen possible O(g4) diagrams, before assigning particles to lines. All diagrams are gen-
erated from the O(g2) diagram (3.143), by adding one internal line. When assigning particles to lines,
maintain the “external conditions”: two incoming A-type particles (initial, lower in the diagrams) and
two outgoing B-type particles (final, upper in the diagrams). These conditions reduce the total number
to eight.

Following the Procedure 3.1, we obtain

(−ig)4
∫ i d4q1

q2
1 − m2

C c2
i d4q2

q2
2 − m2

Ac2
i d4q3

q2
3 − m2

Bc2
i d4q4

q2
4 − m2

C c2

× δ4(p1 − p3 − q1) δ
4(q1 − q2 − q3) δ

4(q2 + q3 − q4) δ
4(p2 + q4 − p4), (3.152)

where the first δ-function cancels the d4q1-integral and replaces q1 → (p1 − p3), while the last
δ-function cancels the d4q4-integral and replaces q4 → (p4 − p2). Thereafter, the second δ-function
cancels the d4q2-integral and replaces q2 → (q1 − q3) = (p1 − p3 − q3) and turns the remaining,
third δ-function into the expected factor δ4(p1 + p2 − p3 − p4). This then leaves

M =
(g/2π)4[

(p1 − p3)2 − m2
C c2

]2

∫ d4q3

[(p1 − p3 − q3)2 − m2
Ac2](q2

3 − mBc2)
. (3.153a)

This d4q3-integral necessarily diverges: in 4-dimensional spherical coordinates, we have that
d4q3 = ρ3dρ dΩ(3), so the “radial” integral becomes, near the upper (infinite) limit:

∼
∫ ∞ ρ3dρ

ρ4 = lim
R→∞

∫ R dρ
ρ

= lim
R→∞

ln(R), (3.153b)

which diverges logarithmically.
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Comment 3.5 Note two of the properties of this divergent result:

1. The divergence may occur only in the integration over a 4-momentum associated
with a closed loop in the Feynman diagram, since only such a 4-momentum is not
determined from external data by the 4-momentum conservation law.

2. This divergence does not emerge in attempting to sum an infinite series as
is the case in a so-called asymptotic series,19 but occurs in a single, concrete
contribution to a summand in such a series.

Digression 3.11 Oppenheimer and Waller seem to have been the first to notice, indepen-
dently and in 1930, the appearance of divergences in perturbative calculations in field
theory; this discovery was such a shock that Pauli at first did not want to believe in its
correctness [552].

The appearance of divergences in contributions such as (3.153) reminds us a little of the sit-
uation in non-relativistic stationary state perturbation theory in systems with degeneration. There,
the formula (1.18), which provides the first-order correction to the state |n〉, becomes meaningless
if there exists

|m〉 �= |n〉 : E(0)
m = E(0)

n , 〈m|H′|n〉 �= 0. (3.154)

Such contributions in the sum (1.18) are of the form 1
0 and literally make no sense. In that

simpler case, the problem is solved by changing the basis of states so that the problematic
combinations (3.154) and terms of the type 1

0 in the sum (1.18) no longer occur.

Digression 3.12 To eliminate the offending situation (3.154), one defines

|m′〉 = cmm|m〉 + cmn|n〉, |n′〉 = cnm|m〉 + cnn|n〉, (3.155a)

and requires that 〈m′|H′|n′〉 = 0. This implies that H0 and H ′ have been simultaneously
diagonalized over the {|m〉, |n〉} ∈ H subspace of the Hilbert space. In turn, this implies
that

[H0, H ′] = 0 over {|m〉, |n〉} ∈ H . (3.155b)

In this sense the “ 1
0 -divergence” is “removed.” It is also clear from the structure of the sums

in the results (1.18), (1.19), and also the entire algorithm given in Section 3.3.2, that the re-
diagonalization of the basis |n〉 that removes the 1

0 -divergences from the sum (1.18) to the first
perturbative order also removes all divergences of this type in the whole perturbative procedure.

However, divergences of the form (3.153) are harder to “remove,” and their treatment has
halted the first physically significant field theory – quantum electrodynamics – for almost two
decades. The work of many physicists on this problem culminated in independent and equiv-
alent methods by Richard Feynman, Julian Schwinger and Shin-Ichiro Tomonaga, which were
systematized by Freeman Dyson.

19 H. Poincaré defined the series ∑k ckxk where limx→∞ xkRk(x) = 0 for any fixed k, but limk→∞ xkRk(x) = ∞ to be asymp-
totic (semi-convergent). Here Rk(x) := [ f (x)− ∑k

i=0 cix−i ], and f (x) asymptotically agrees with the sum for large
x ∼ ∞.
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Digression 3.13 The systematic procedure and idea of renormalization stems from an
older and unrelated idea: In 1902, Max Abraham proposed the model [4] in which
the electron was a sphere of finite radius on the surface of which the electron charge
is uniformly distributed. In 1904, Hendrik Lorentz [346] developed this idea, so that
the model is now called the Abraham–Lorentz model. In this model, the work required
to assemble the electron charge by bringing it from infinity into the Gaussian sphere of
radius re contributes to the mass of the electron. If this is the only contribution, that work
may be equated with the (electromagnetic) rest energy of the electron:

memc2 = 1
2

∫
d3�r �E2 = 2π

∫ ∞

re

r2dr
( e

4πε0 r2

)2
=

1
2

e2

4πε0

1
re

, (3.156a)

if the electron charge is distributed uniformly on the surface of the sphere of radius
re. If the charge is distributed uniformly throughout the entire sphere, the factor 1

2 is
replaced by 3

5 . Equating mem with the measured electron mass (as if the electron mass
stems entirely from the electric field that this electron produces, and the charged shell
has no mass of its own) and neglecting the numerical factor 1

2 – 3
5 , we obtain the classical

electron radius:

re =
e2

4πε0

1
me c2 = αe

h̄
mec

= 2.817 940 325 × 10−15 m. (3.156b)

Because of the dependence mem ∝ r−1
e , it follows that the electron cannot be ideally

point-like: if it were, its mass would be infinitely large. Since the total effective mass
must also include (realistically, a non-vanishing) mass of the spherical shell, the “true”
electron radius may differ from the result (3.156b). However, for the radius to be smaller
than re, it would be necessary for the mass of the spherical shell to be negative. In the
limiting case of the point-like electron, this infinitely small shell would have to have an
infinitely negative mass, which is an evidently meaningless value.

However, from these considerations about the Abraham–Lorentz model of the elec-
tron stems the idea that the measured values of a physical quantity may consist of several
contributions, which – in the limiting case – may each diverge, as long as their sum
(which is what is compared with the experimental data!) is a finite quantity.

The basic idea, schematically, is that for each parameter there exists

mphysical = mbare + δm, gphysical = gbare + δg, etc. (3.157)

where the “bare” version of the parameter is the one showing up in the classical Lagrangian theory,
and the “quantum correction” δm often diverges. However, mbare is defined so as to also diverge,20

and precisely so that the physical value of the parameter remains finite and comparable with
the experiments. Besides, the systematic procedure of renormalization guarantees that the so-
defined finite part and divergent part of the result may be consistently separated order by order
in perturbation theory for quantum electrodynamics, which then serves as a template for all other
existing field theory models.

20 One of the methods of “canceling” divergences requires that the integrals are computed in finite limits, ±Λ, so that
one can isolate the portion of the contributions that are independent of Λ in the sums of the form (3.157). In the
Λ → ∞ limit, that Λ-independent portion represents the desired physical quantity. There exist several other methods
for isolating the “finite part” from divergent integrals, but there is no general formal proof that the finite result does not
depend on the method of its isolation.
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Most nontrivial models in field theory are in practice defined by means of the perturbative
computations, including some variant of the renormalization procedure. Certain results in a grow-
ing class of models can be computed by non-perturbative means – or by using an essentially
different perturbative method where individual terms of “lower order” may represent a sum of
a large number of (contributions from) standard Feynman diagrams. A formal and rigorous proof
of finiteness of all possible observables is not known in general, and in this sense field theory is in
general not formally rigorously defined, nor does one know if field theory in general – or even a
certain concrete model, such as quantum electrodynamics – is formally self-consistent!21 Neverthe-
less, perturbative and other concrete results offer enough useful data to compare with experiments,
which suffices for a pragmatic acceptance of this theoretical system – all the more so, since (1) the
various renormalization prescriptions invariably produce final results agreeing for observables, and
(2) no contradiction has been detected in anomaly-free theoretical models [☞ Section 7.2.3].

The appearance and the conspicuous cancellation of divergent contributions in perturbative
computations of evidently measurable (and finite!) physical quantities is still cited as the cause for
a principled disagreement with the entire renormalization procedure [☞ e.g., Ref. [29]]. However,
the number of living physicists who openly oppose this procedure is decreasing.22 The Reader with
a piqued interest in the subject should turn to the texts on quantum field theory [63, 48, 441,
459, 154, 474, 249, 240, 425, 554, 555, 484, 588, 496, 446, 589, 316, 7, 586, 277, 590], texts on
renormalization itself [113, 212], and research articles, such as [44, 431, 343, 146, 253].

3.3.5 Exercises for Section 3.3

✎ 3.3.1 In the special case when �v = v êz, show that the transformations (3.1) acquire the
well-known form:

x′ = x, y′ = y, z′ = γ(z − v t), x = x′, y = y′ z = γ(z′ + vt′), (3.158a)

t′ = γ
(

t − v z
c2

)
, t = γ

(
t′ + v z′

c2

)
, (3.158b)

with the usual γ = (1 −�v2/c2)−1/2.

✎ 3.3.2 Using that [Γ] = T−1, [σ] = L2, [v] = LT−1 and
[|Ψ|2] = L−3, prove equation (3.110)

and Conclusion 3.2.

✎ 3.3.3 For the elastic collision A + B → A′ + B′, in a system where B is originally at rest (and
is the target), derive

dσ
dΩ

≈ S
( h̄

8π

)2 |M|2
mB

�p 2
A′

|�pA|
∣∣(|�pA′ |(EA + mBc2) − |�pA|EA′ cos θ

)∣∣ . (3.159)

Here A and A′ denote the incoming and outgoing, but otherwise identical particles, just as
do B and B′.

✎ 3.3.4 Show that the result of the previous problem simplifies when (mA/mB) � 1:

dσ
dΩ

≈ S
( h̄ EA′

8π EA

)2 |M|2
m 2

B

. (3.160)

21 In view of Gödel’s incompleteness theorem, a formally rigorous proof of self-consistency of field theory may turn out
to be a pipe dream, since theoretical axiomatic systems that are sufficiently strong (e.g., include standard arithmetics)
turn out to also be incapable of proving their own consistency [☞ Appendix B.3].

22 To paraphrase Max Planck [428, pp. 33–34], new scientific truths do not convince their opponents, they outlive them.
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✎ 3.3.5 For the elastic collision in Exercise 3.3.3 but in the case when the recoil of the target
after the collision may be neglected since mBc2 
 EA, derive

dσ
dΩ

≈
( h̄

8πmBc

)2|M|2. (3.161)

✎ 3.3.6 For the inelastic collision A + B → C1 + C2, in a system where B (the target) is
originally at rest, and (mCi

/mA) � 1 and (mCi
/mB) � 1, derive

dσ
dΩ

≈
( h̄

8π

)2 S |M|2
mB(EA + mBc2 − |�pA|c cos θ)

|�pC1 |
|�pA| , (3.162)

where θ is the angle between �p1 and �p3.

✎ 3.3.7 Why is the cascade decay A → B + C → 2B + A in the toy-model of Section 3.3.4
forbidden, but A → B + C → 2B + A → 3B + C may be allowed? What is the condition for
the latter process to be viable?

✎ 3.3.8 Using only Feynman diagrams to analyze the possible decay modes of particle A, show
that p and q in relation (3.136) must both be odd integers.

✎ 3.3.9 For a head-on collision of two particles of masses m1 and m2, we have p1 = (E1/c,�p)
and p2 = (E2/c,−�p) in the CM system. Show that

c
√

(p1·p2)2 − (m1m2c2)2 = (E1 + E2)|�p|. (3.163)

✎ 3.3.10 Prove that, in the A-B-C toy-model and with g < 1, the elastic collisions are O(g4)
times less probable than the inelastic collisions such as (3.143).

✎ 3.3.11 Prove that equation (3.155b) is satisfied for all of the finitely many degenerate
states (3.154), so that the standard procedure described in Digression 3.12 on p. 122 is
always possible.





4
The quark model: combinatorics
and groups

The quark model was initially introduced to explain the emerging plethora of hadrons as bound
states of quarks, and this is how we start with its study.

4.1 Bound states
Hadrons – mesons and baryons – are bound states of (anti-)quarks. Mesons are quark–antiquark
bound states, held together by the strong nuclear force for which the mediating quanta (par-
ticles) are the gluons. Baryons consist of three quarks, bound by gluons. It is then clear that
the three-particle bound states – baryons – are more complicated than mesons. Furthermore,
even the description of mesons as bound states is hard in the case of the “light” quarks. For
these one needs a relativistic description of bound states, which is considerably more compli-
cated than the non-relativistic one, and needs more development☞ . One can reliably discuss,
using the methods of non-relativistic quantum theory, only the mesons consisting of the “heav-
ier” quarks: the t-, b- and c-quarks and with less precision also the bound states with the
s-quark.

The bound states may be analyzed in this way, as a non-relativistic system, if the mass of
all constituents is sufficiently bigger than the binding energy. For example, the binding energy of
the hydrogen atom (13.6 eV) is 2.66×10−5 times that of the electron rest energy, and 1.45×10−8

times the proton rest energy, so that the non-relativistic analysis of the hydrogen atom is very
accurate. This analysis may then be adapted to many hadronic systems, and we first recall some of
the important results about the hydrogen atom.

Unlike the hydrogen atom and the similar positronium, the bound states of quarks and anti-
quarks will additionally require combinatorial and group-theoretical results since, in addition to
the electric charge and spin, quarks also have a “flavor” (u, d, c, s, b, t) and a “color” (red, yel-
low, blue). With this in mind, the Reader is referred to the group-theoretical results collected in
Appendix A to begin with, and the literature [565, 258, 581, 256, 80, 260, 333, 447] for more com-
plete explanations, proofs and detailed theory, which also offer a more complete and pedagogical
organization.
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4.1.1 The non-relativistic hydrogen atom without spin
Together with the linear harmonic oscillator, the hydrogen atom is the most frequently discussed
system in all books on quantum mechanics [362, 363, 471, 328, 480, 134, 391, 407, 360, 472,
29, 339, 242, 3, 110, 324, for example] [☞ also Section 1.2.5]. It is well known that in this two-
particle system one can separate the dynamics of the atom as a whole and the relative motion of
the electron in the CM-system. Since the proton (nucleus) mass is 1,836.15 times larger than the
electron mass, the so-called reduced mass, me mp

me+mp
≈ me differs from the electron mass only by a

1
1,837.15 fraction, which may usually be neglected. Besides, the coordinate origin of the CM-system
is very close to the proton location,1 and one approximates the electron as moving within the
electrostatic field of the stationary proton.

The Schrödinger equation is

ih̄
∂

∂t
Ψ(�r, t) = H Ψ(�r, t), H =

[
− h̄2

2me
�∇2 + V(r)

]
, (4.1)

where H is the non-relativistic Hamiltonian and V(r) is a central potential, which for the hydrogen
atom is the Coulomb potential. This may be solved in spherical coordinates, looking for solutions
in the form of so-called stationary states:

Ψn,�,m(�r, t) = e−iωn,�,mt Rn,�(r) Ym
� (θ, φ), ωn,�,m :=

En,�,m

h̄
, (4.2)

since we know that

�∇2(· · ·) =
1
r2

( ∂
∂r

r2 ∂

∂r
· · ·

)
− 1

r2 L2(· · · ) =
1
r

( ∂2

∂r2 (r · · · )
)
− 1

r2 L2(· · · ), (4.3)

L2Ym
� (θ, φ) = �(�+1) Ym

� (θ, φ). (4.4)

The Ym
� (θ, φ) are the spherical harmonics, the eigenfunctions of the angular part of the Laplacian:

L2(· · ·) := − 1
sin θ

∂

∂θ

(
sin θ

∂

∂θ
· · ·

)
− 1

sin2 θ

( ∂2

∂φ2 · · ·
)

, (4.5)

which is the square of the operator of so-called “dimensionless angular momentum,” i.e., of the
angular momentum divided by h̄2. The radial part of �∇2 and the identity

1
r2

( ∂
∂r

r2 ∂

∂r
· · ·

)
≡ 1

r

( ∂2

∂r2 r · · ·
)

(4.6)

suggest the substitution Rn,�(r) = un,�(r)
r , whereby the radial differential equation becomes

− h̄2

2me

d2un,�

dr2 +
[
V(r) +

h̄2

2me

�(�+1)
r2

]
un,� = En,� un,�, (4.7)

which is effectively a one-dimensional problem, with r ∈ [0, ∞) and where the effective potential
is the sum of the “actual” potential and the “centrifugal barrier,” h̄2

2me

�(�+1)
r2 . For the hydrogen atom,

we have the Coulomb potential,

V(r) = − 1
4πε0

e2

r
= −αe h̄ c

r
, αe :=

e2

4πε0 h̄ c
, (4.8a)

1 To be precise, the coordinate origin of the CM-system is at 1/1,837.15 = 5.443 21×10−4 of the distance between the
proton center and the electron center, i.e., of the Bohr radius, i.e., 2.880 42×10−14 m from the proton center. Rutherford’s
experiment [☞ p. 45] showed that the atom nucleus must be smaller than about 2.7×10−14 m – which we certainly
expect for the simplest, hydrogen nucleus, with a single proton. Thus, the coordinate origin of the CM-system is just
outside the proton that forms the atom nucleus, and more precise analyses must take into account the complementary
motion of the proton in the CM-system.
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for which the solutions are well known:

En = −1
2
α2

e mec2 1
n2 , n = 1, 2, 3, . . . (4.8b)

Ψn,�,m(�r, t) =

√( 2
n a0

)3 (n − � − 1)!
2n[(n+1)!]3

e−r/(na0)
( 2r

na0

)�
L2�+1

n−�−1

( 2r
na0

)
Ym

� (θ, φ), (4.8c)

where

Lq
k−q(x) := (−1)q dq

dxq

[
ex dk

dxk (e−xxk)
]

are the Laguerre polynomials, (4.8d)

a0 :=
4πε0 h̄2

me e2 = 0.529×10−10 m is the Bohr radius. (4.8e)

Recall that the complex phase – and so also the sign – of the wave-functions Ψn,�,m(�r, t) is not
measurable [☞ Chapter 5], so different Authors may use different sign conventions in these
definitions (4.8c)–(4.8d) for convenience in some particular computations.

A discussion of this solution for the hydrogen atom may be found in every quantum me-
chanics textbook, and it is well known that Bohr’s spectrum of the hydrogen atom (4.8b) is
degenerate: Since the energy depends only on the principal quantum number n, states with differ-
ent (permitted) values of the quantum numbers �, m (and spin, s and ms) have the same energy.
Since [☞ Appendix A.3]

n = 1, 2, 3, . . . , � = 0, 1, 2, . . . (n−1), |m| � �, m ∈ Z, s = ± 1
2 , (4.9)

it follows that the number of states with the same energy equals

n−1

∑
�=0

�

∑
m=−�

2 = 2
n−1

∑
�=0

(2�+1) = 2 n2, (4.10)

where the factor 2 stems from two possible values of spin. Since the potential is central, i.e.,
it depends only on the distance between the center of the Coulomb field and the electron that
moves in that field, the system manifestly has rotational symmetry. In 3-dimensional space, rotation
transformations form the Spin(3) group. This symmetry would explain the independence of the
energy from the quantum number m (quantifying the direction of the angular momentum) and
spin, but not the independence from �, which quantifies the intensity of the angular momentum.2

Indeed, the hydrogen atom – and more generally, the Coulomb, i.e., the Kepler problem – has
another symmetry, generated by the components of the so-called Laplace–Runge–Lenz vector:

for V(r) = −κ
r

, �A := �p ×�L − me
κ
r
�r. (4.11)

It may be shown that the Cartesian components of the Laplace–Runge–Lentz vector commute with
the Hamiltonian H in equation (4.1). In turn, the dimensionless operators

Li :=
1
h̄

(�r×�p )i = −i εij
k xj ∂

∂xk (4.12)

2 The continuous group of rotations is generated by operators of the dimensionless angular momentum (4.12): Each
rotation may be represented as the result of the action of the operators R(�ϕ) := exp{ϕiLi}, which change the direction
of the atom. Since rotations are symmetries, it follows that the result of a rotation is not measurable, and the energy of
the atom cannot depend on its direction. However, neither of these operators changes �: R(�ϕ)Ym

� = ∑μ cm
μ Yμ� . Therefore,

the rotation symmetry does not explain the fact that states of the hydrogen atom with different � nevertheless have the
same energy (4.8b).
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satisfy the relations

[L j, Lk] = iε jk
lL l , [L j, Ak] = −iε jk

lA l , [A j, Ak] = ±iε jk
lL l , for

{E<0,
E>0; (4.13)

where the operators

A j =
1√

2meH

[
h̄
2i
ε j

kl
(
∂

∂xk L l + L l
∂

∂xk

)
− me κ

h̄
êj

]
(4.14)

are the components of the quantum dimensionless Laplace–Runge–Lenz vector, normalized by the
energy of the stationary state upon which the operators A j act. The structure of the symmetry
group generated by the operators L j and A j depends on the choice of the sign in the third of
the commutator relations (4.13). When acting on bound states (for which E < 0), the commutator
relations (4.13) specify the continuous group Spin(4); [☞ Section A.5]. When acting on e− + p+ →
e− + p+ scattering states (for which E > 0), L j and A j generate the group Spin(1, 3). The operators
Ai change � through its full range � ∈ [0, n−1] while the operators L j change m through its full
range m ∈ [−�, �], both in unit increments. This extended Spin(4), i.e., Spin(1, 3), symmetry of the
hydrogen atom implies that the energy, as obtained by Bohr’s formula (4.8b), does not depend on
�, m and ms.

Thus, the Spin(4) symmetry fully explains the number and classification of hydrogen atom
bound states. The lesson from this simple and very well known system is that symmetries may
well be of great use in listing and classifying the possible states – very similar to the situation in
Section 2.3.12.

Of course, as we know from the discussion in standard quantum mechanics textbooks, Bohr’s
formula (4.8b) is not the end of the story, and the value for energy acquires “corrections” owing
to several different physical phenomena which we briefly review in the subsequent sections. It is
well known that these corrections split the degeneracy, and so “break” the approximate Spin(4)
symmetry of the hydrogen atom to Spin(3) ⊂ Spin(4). The quark model uses this correlation in
reverse, and deduces some of the details of the quark dynamics from the hierarchy of approximate
symmetries.

4.1.2 Relativistic corrections
The approach in Section 4.1.1 may easily be amended using stationary-state perturbation theory,
and this “corrects” the energy values (4.8b). One of these corrections stems from the fact that the
non-relativistic physics is of course only an approximation, and that the relativistic kinetic energy
is

Trel = mec2[√1 + (�p/mec)2 − 1
]

= mec2
∞

∑
k=1

( 1
2
k

)( �p2

m2
e c2

)k
,

≈ �p2

2me
− (�p2)2

8m3
e c2

+
(�p2)3

16m5
e c4

− · · · .

(4.15)

The first and second relativistic corrections to the Hamiltonian are then represented by the
operators

H ′
rel := − h̄4

8m3
e c2

(�∇2)2, H ′′
rel := +

h̄6

16m5
e c4

(�∇2)3, (4.16)

and the first-order perturbative correction of the energy is

E(1,r1)
n = 〈n|H ′

rel|n〉 =
∫

d3�r Ψ∗
n,�,m(�r) H′

rel Ψn,�,m(�r). (4.17)
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This is calculable by simple substitution of the wave-functions, the application of H′
rel on Ψn,�,m(�r),

and computation of the ensuing integral. However, it is faster to use that

h̄2

2me
�∇2 = V(r) − H, (4.18)

so that

H ′
rel = − 1

2mec2

[
V(r) − H

]2 = − 1
2mec2

[
V2 − H V − V H + H2], (4.19)

H ′′
rel = +

1
2m2

e c4

[
V(r)− H

]3

= − 1
2m2

e c4

[
V3 − V H V − V2 H + V H2 − H V2 + H2 V + H V H − H3], (4.20)

the matrix elements of which are easier to compute, since H† = H acts equally on |n, �, m, ms〉 as
well as on 〈n, �, m, ms|, producing its eigenvalue, En, given by the relation (4.8b).

For second-order corrections, one ought to compute both the second-order perturbation cor-
rection stemming from H′

rel as well as the first-order perturbation correction stemming from H′′
rel.

For the first of these two contributions, we must re-diagonalize the basis |n, �, m, ms〉 to avoid the
1
0 -divergences in the formula (1.19), whereas the second contribution requires a little more at-
tention for the term 〈VH V〉 owing to the fact that (�∇2 1

r ) = −4π δ(r). However, this pointillist
contribution is limited to the cases � = 0 = m, [ ✎why?] which are not hard to compute sepa-
rately. In the general case, we’ll need the results [407, 471, 242, 472, 29, 328, 362, 363, 360, 3,
for example]:

〈r2〉 = n4a 2
0

[
1 + 3

2

(
1 − �(�+1)− 1

3
n2

)]
, (4.21a)

〈r〉 = n2a0

[
1 + 1

2

(
1 − �(�+1)

n2

)]
, (4.21b)

〈r−1〉 =
1

n2 a0
, (4.21c)

〈r−2〉 =
1

(�+ 1
2 )n3 a 2

0
, (4.21d)

〈r−3〉 =
1

�(�+ 1
2 )(�+1)n3 a 3

0
. (4.21e)

The first-order perturbative energy correction stemming from H ′
rel is

E(1,r1)
n = 〈n, �, m, ms|H′

rel|n, �, m, ms〉 = − 1
2mec2

[
〈V2〉 − 2E(0)

n 〈V〉 + (E(0)
n )2

]
= −1

2
α4

e mec2 1
4n4

[ 4n
(� + 1

2 )
− 3

]
. (4.22)

4.1.3 Magnetic corrections
Besides their electric charges, the electron and the proton both also have an intrinsic (dipole)
magnetic field: �μe and �μp, respectively. Since the electron and the proton move one with respect
to the other, the motion of the electron produces a current that, by the Biot–Savart law, creates a
magnetic field proportional to the angular momentum of the electron about the proton, �B ∝ �L, and
this magnetic field interacts with the intrinsic magnetic dipole of the proton. Of course, it would be
nonsense saying that this same magnetic field, caused by the motion of the electron, also interacts
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with the intrinsic magnetic dipole field of the electron: In its own coordinate system, the electron
of course does not move, and so produces neither an electric current nor a magnetic field.

However, in the electron’s rest-frame it is the proton that moves. This then produces a current
and a corresponding magnetic field �B′, which interacts with the intrinsic magnetic dipole of the
electron. To relate �B′ and �B, one must transform the vector of this “rotating” magnetic field from
the electron’s coordinate system into the proton’s. Since the electron’s coordinate system rotates
about the proton, one must iterate this transformation from moment to infinitesimally adjacent
moment, approximated by successive infinitesimal Lorentz boosts. The resulting effect is called
Thomas precession and provides the relation �B′ = 1

2
�B [296].

With two intrinsic magnetic dipoles �μe,�μp, and the “orbital” magnetic field �B, there then exist
three additions to the hydrogen atom Hamiltonian:

HSeO = −�μe · ( 1
2
�B), HSpO = −�μp · �B,

HSeSp = − μ0

4π

[(
3(�μe·r̂)(�μp·r̂) −�μe·�μp

) 1
r3 +

8π
3

�μe·�μp δ
3(�r )

]
,

(4.23)

taking the dipole–dipole interaction term from standard texts such as Ref. [296].

Digression 4.1 One of the original motivations for the Abraham–Lorentz model of the
electron was also the attempt to explain – with classical physics – the origin of the elec-
tron’s intrinsic dipole moment. In this model, the electron was supposed to be a teeny
electrically charged sphere. If that sphere rotated, the charge distribution on the sphere
would also rotate and so produce a circular current, which would in turn produce a mag-
netic field by the Biot–Savart law. This is the source of the idea that the electron rotates
about its own axis, has spin (= intrinsic angular momentum), and that its intrinsic mag-
netic dipole moment is a consequence of this rotation and proportional to this spin. For
a classical rotating electric charge q for which the charge and mass (m) distribution
coincide, the magnetic dipole is proportional to the angular momentum:

�μ =
q

2m
�L, (4.24a)

and μe := e/2me is called the Bohr magneton (for the electron).
In fact, this identification is completely backwards: It is the electron’s magnetic

moment that may be measured and so has a real physical meaning; the rotation of
the electron about its own axis – spin – is a fictitious quantity, defined through the
relation (4.24a) in terms of the intrinsic magnetic moment. This backwards-engineered
explanation stems from G. E. Uhlenbeck and S. A. Goudsmit, who measured the magnetic
dipole moment of the electron in 1925, then concluded that this magnetic moment stems
from a rotation of the electron about its own axis [528]; all along, they assumed the elec-
tron to be represented as an electrically charged sphere, following the Abraham–Lorentz
model [☞ Digression 3.13 on p. 123].

Besides, the operators L j that generate rotations close the Spin(3) ∼= SU(2) alge-
bra, which has two classes of representations: tensors and spinors [☞ Digression A.2 on
p. 465]. It is easy to show that 360◦-rotations around any axis map tensor functions into
themselves, but spinors into their negative multiple. Because of this property, physically
observable quantities cannot be spinors. Since all real functions over the phase space are
observables in classical physics, it follows that there is no room for spinors in classical
physics. In quantum physics, however, wave-functions (and abstract state vectors in the
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Hilbert space) are not directly observable, and so can be spinorial representations. In this
sense, half-integral spin is an exclusively quantum-mechanical phenomenon.

It then also follows that the classical relation (4.24a), based on the fictive rotation
of a fictive sphere in the Abraham–Lorentz model of the electron need not hold for the
electron, which is a spin- 1

2 particle.3 Indeed, Dirac’s relativistic theory of the electron
provides for the electron’s magnetic moment a result that is twice as large as the classical
value, which is further corrected by quantum field theory effects:

�μe = 2
[
1 +

αe

2π
+ · · ·︸ ︷︷ ︸

quantum field theory

] (−e)
2me

�S. (4.24b)

Of course, if ever the electron turns out to show a structure, this relation will have to be
revisited, just as the proton’s magnetic moment is today determined using the fact that
it is composed of three quarks, as well as a variable number of gluons (which hold those
three quarks in the bound state) and virtual quark–antiquark pairs.

For our purposes, write [☞ relation (4.24b)]

�μe = −geμB
�Se, μB :=

e
2me

, ge = 2.002 319 304 361 1(46) ≈ 2, (4.25)

�μp = +gpμN
�Sp, μN :=

e
2mp

, gp = 2.7928, (4.26)

where μB and μN are, respectively, Bohr’s (electron) and nucleon magnetic moments. Note that the
electron “g-factor,” ge, is measured to a precision of 12 significant figures, and is in full agreement
with the result of quantum electrodynamics [293]. The value 1

2 (ge−2) is also referred to as the
“anomalous magnetic moment,” in the sense that ge deviates from the “bare” value of 2 in the
Dirac theory of the electron; this should not be confused with the (quantum) anomalies mentioned
elsewhere in this book [☞ Section 7.2.3].

Inserting the expressions for the magnetic dipole moments, the three additions (4.23) to the
hydrogen atom energy become, after a little algebra (see Refs. [362, 363, 407, 471, 328, 242, 472,
29, 360, 3] for example),

HSeO = −
( ge(−e)

2me
h̄�Se

)
·
(

1
2

e
4πε0mer3 h̄�L

)
≈ e2

4πε0

h̄2

2m2
e c2

1
r3

�L · �Se, (4.27a)

HSpO =
gp e2

4πε0

h̄2

mempc2
1
r3

�L · �Sp, (4.27b)

HSeSp ≈ gp e2

4πε0

h̄2

mempc2

[(
3(�Se · r̂)(�Sp · r̂) − �Se · �Sp

) 1
r3 +

8π
3

�Se·�Sp δ
3(�r )

]
, (4.27c)

where “≈” indicates the use of the approximation (4.25). Comparing the constant pre-factors
(which all have the same units), one expects the latter two contributions to be of the same order
of magnitude, and about mp/2gpme ≈ 329 times smaller than the first, so the first perturbation
dominates.

3 The adjective “spin-j” simply specifies that the particle (or wave, or field) has a characteristic orientation of sorts, so
that its representative, its wave-function, transforms as one of the representations of the angular momentum algebra,
|j, m〉 with |m| � j; the special case j = 0 denotes rotation invariance [☞ Appendix A.3]. Conceptually, a “spin-j field” is
simply a generalization of the electric and magnetic spin-1 (vector) fields, and “spin-j particles” are the quanta of spin-j
fields.
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Furthermore, one expects that 〈 1
r3 〉 ∼ (a0)−3 and 〈L · �Se〉 = O(1), so that the first of these

three contributions is of the order

〈HSeO〉 =
e2

4πε0

h̄2

2m2
e c2

〈
1
r3

�L · �Se

〉
∼ αe h̄3

2m2
e c

· 1
a 3

0
=
α4

e mec2

2
. (4.28)

This result is of the same order as the relativistic correction (4.22), although its origins are
completely different; cf. equation (4.16). Using the result (4.21e), we have

E(1,SO)
n = α4

e mec2 j(j+1) − �(�+1) − 3
4

4n3�(�+ 1
2 )(�+1)

= α4
e mec2 1

4n3

{ 1
(�+ 1

2 )(�+1)
,

− 1
�(�+ 1

2 )
,

(4.29)

where we used the relation

�J := �L + �S ⇒ �L · �S = 1
2

[
J 2 − L2 − S2]. (4.30)

The corrections (4.29) and (4.22) are indeed very similar, and add up:

Efs
n = E(1,r1)

n + E(1,SO)
n = −α4

e mec2 1
4n4

[
2n

(j + 1
2 )

− 3
2

]
,

{
j = � + 1

2 ,

j = � − 1
2 ;

(4.31)

providing for the so-called fine structure of the hydrogen atom spectrum.

— ❦ —

It remains to compare the contributions:4

E(1,r2)
n = 〈H ′′

rel〉 ∼
1

m2
e c4

〈( e2

4πε0 r

)3
〉

∼ 1
m2

e c4
(αe h̄ c)3

n3 a 3
0

∼ α6
e mec2

n3 ; (4.32)

E(2,r1)
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n′ ···�=n···
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rel|n, · · ·〉|2

E(0)
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n |2
|E(0)

n | ∼
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α4

e mec2/n3)2
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e mec2/n2 ∼ α6

e mec2

n4 ; (4.33)
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n3 ; (4.34)

E
(1,SeSp)
n = 〈HSeSp〉 ∼

gp e2

4πε0

h̄2

mempc2

〈
�Se · �Sp

1
r3

〉
∼ gp

( me

mp

)α4
e mec2

n3 . (4.35)

It is not hard to see that

E(1,r2)
n : E(2,r1)

n : E
(1,SpO)
n : E

(1,SeSp)
n ≈ nα2

e : α2
e : gp

( me

mp

)
: gp

( me

mp

)
. (4.36)

Since α2
e ≈ 5.33 × 10−5 and gp

( me
mp

) ≈ 1.52 × 10−3, the last two contributions are about 28 times
larger than the first two. Therefore, we neglect the first two of these contributions in comparison
with the latter two, the sum of which gives

Ehfs
n = E

(1,SeSp)
n + E

(1,SpO)
n =

( me

mp

)
α4

e mec2 gp

2n3
±1

( f + 1
2 )(� + 1

2 )
,

{
f = j + 1

2 ,

f = j − 1
2 ;

(4.37)

and similarly provide for the so-called hyperfine structure of the hydrogen atom spectrum. This last
result introduces the so-called f -spin: �F := �J + �Sp = �L + �Se + �Sp, as a vector sum of all three
angular momenta.

4 From Equation (4.27c), it is actually the last, δ-function part that contributes to the result (4.35) and produces the
“21 cm hydrogen line,” well-known in microwave radio astronomy [407].
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When � = 0, the electron and proton spins are either parallel or antiparallel, giving the so-
called triplet and singlet states: Denote �Z := �Se + �Sp, so that the eigenvalue of Z 2 equals z(z+1).
When the electron and proton spins are parallel, z = 1 and mz = ±1, 0; for antiparallel spins z = 0
and mz = 0. In the result (4.37), � = 0, j = se and f = z, so the numerical factor becomes

±1
( f + 1

2 )(� + 1
2 )

=
{

+ 4
3 ,

−4;

{
z = 1 (triplet),
z = 0 (singlet).

(4.38)

Owing to this split in the energies, a transition is possible (for the same n) between these states,
emitting a photon of energy equal to this difference in energies, and a wavelength of 21.080 7 cm
(for n = 1). This result (to first perturbative order) differs less than 1% from the precisely measured
wavelength of 21.106 114 054 13 cm, very well known in microwave astronomy.

4.1.4 The Lamb shift
The corrections in the previous Sections 4.1.2–4.1.3 were computed with standard methods of
non-relativistic quantum mechanics, in the approach that might be called semi-quantum, since the
particles (electron and proton) receive a quantum treatment, while the binding (electromagnetic)
field is treated classically.

There exist, however, measurable consequences of electromagnetic field quantization, for the
computation of which field theory is needed. Consider here only qualitatively the following three
Feynman diagrams:

e−

e−

γ
γ

p+

p+

e−

e−

γ

e−

e−

γ

p+

p+

e−

e−

γ γ

p+

p+

(4.39)

The first of these Feynman diagrams describes the fact that, during “free” motion through “empty
vacuum,” the electron interacts with a virtual photon, which changes its mass. The second diagram
shows the reciprocal effect, whereby the photon mediating the interaction between the electron
and the proton en route interacts with a virtual e−–e+ pair (is absorbed and then re-emitted by
the pair), which effectively screens the electric charge of the nucleus and the electron in the orbit.
The third diagram describes a correction to the nature of interaction of the orbiting electron and
the mediating photon; this effectively changes the magnetic dipole moment of the electron and
contributes to the gyromagnetic ratio (4.24b) by an amount proportional to αe.

Suffice it here just to cite the resulting correction [407, 243, 150]:

E(QED)
n =

{ α5mec2 1
4n3 k(n, 0) � = 0;

α5mec2 1
4n3

[
k(n, �) ± 1

π(j+ 1
2 )(�+ 1

2 )

]
, j = � ± 1

2 , � �= 0,
(4.40)

where k(n, 0) varies mildly from about 12.7 for n = 1 to about 13.2 for n → ∞, while k(n, �) � 0.05
and also varies very mildly with n, �. Note that, unlike the corrections considered in Sections 4.1.2–
4.1.3 that are all proportional to an even power of the fine structure constant αe, this quantum-
electrodynamical contribution is proportional to α5

e .
This contribution to the energies is called the Lamb shift. Comparing

E(1,r2)
n : E(2,r1)

n : E
(1,SpO)
n : E

(1,SeSp)
n : E(QED)

n ≈ nα2
e : α2

e : gp

( me

mp

)
: gp

( me

mp

)
: αe, (4.41)

≈ (5.33×10−5·n) : (5.33×10−5) : (1.52×10−3) : (1.52×10−3) : (7.30×10−3). (4.42)
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This simple dimensional analysis suggests the Lamb shift to be almost five times larger than the
hyperfine splitting; the precise numerical results are however comparable. For example, the dipole–
dipole interaction (4.35) produces the “21 cm hydrogen line” at about 1.42 GHz, while the Lamb
shift permits the 22 p1/2

→ 22s1/2
transition at about 1.06 GHz.

4.1.5 Positronium

The analysis of the hydrogen atom in Sections 4.1.1–4.1.4 is easy to adapt to many two-particle
bound states, where the proton or the electron (or both) are replaced by other particles. Such
systems are collectively called exotic atoms. Such systems include: muonic hydrogen (p+μ−),
pionic hydrogen (p+π−), muonium (μ+e−), etc. Amongst these, consider positronium, (e+e−).
Together with the hydrogen atom, this gives a good foundation for understanding “quarkonium,”
i.e., mesons: positronium is an adequate template for mesons composed of a quark and an anti-
quark of roughly the same mass, while the hydrogen atom is an adequate template for mesons
where the masses of the quark and the antiquark significantly differ.

Since me+ = me− , the reduced mass is me+ me−
me++me−

= 1
2 me. By the simple me �→ 1

2 me substitution,
we obtain the Bohr-like formula:

En(e+e−) = 1
2 En(H) = −α2

e mec2 1
4n2 . (4.43)

The wave-functions look identical to those for the hydrogen atom (4.8c), except that the Bohr
radius is doubled:

a(pos)
0 =

memp
me+mp
meme

me+me

a(H)
0 =

2 mp

me+mp
a(H)

0 ≈ 2a(H)
0 . (4.44)

The first relativistic correction to the Hamiltonian is larger by a factor of 2, since both the
electron and the positron contribute equally. However, 〈(�p2)2〉 ∝ (mec)4, which is then diminished
by a factor of ( 1

2 )4 because of the smaller reduced mass. In total, the relativistic correction for
positronium is an eighth of the corresponding correction for the hydrogen atom.

Significant differences from the contributions that provide the hyperfine structure to the spec-
trum of the hydrogen atom are: the ratio me−

me+
= 1, the values ge+ = ge− , and that the Thomas

precession is now symmetric. The contributions analogous to (4.37) are now of the same order
of magnitude as the fine structure contributions (4.31). The Lamb shift remains suppressed by a
factor of αe as compared with the contributions analogous to (4.31) and (4.37).

There exist, however, also two entirely novel effects, with no analogues in the analysis of the
hydrogen atom:

Field latency In positronium, the center of the Coulomb field that acts on the electron moves with
the positron, and vice versa. Since the changes in the Coulomb field propagate with the finite speed
of light, this “tarrying” effect of field latency must be taken into account. This field latency may be
computed in classical electrodynamics, and its contribution to the Hamiltonian is [59]

Hlat = − e2

4πε0

1
2m2

e c2
1
r

(
p 2 + (p · r̂)2 ), (4.45)

which gives the first-order perturbative contribution:

E(lat)
n = 〈Hlat〉 = α4

e mec2 1
2n3

[ 11
32n

− 2 + ε

� + 1
2

]
, (4.46a)
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where ε is a function of the electron and the positron spins:

ε =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 for j = �, s = 0,

− 3�+4
(�+1)(2�+3) for j = � + 1,
1

�(�+1) for j = �,

⎫⎪⎬⎪⎭ s = 1.
3�−1

�(2�−1) for j = � − 1,

(4.46b)

All spins contribute equally in positronium, so it seems reasonable to define �S := �Se− + �Se+ ,
where �S 2 has eigenvalues s(s+1) with s = 0, 1. Then we define �J := �L + �S, where �L 2 and �J 2 have
eigenvalues �(�+1) and j(j+1).
Virtual annihilation In positronium, the electron and the positron may temporarily annihilate into
a virtual photon which then, before the time alotted by Heisenberg indeterminacy relations, decays
into an electron and a positron. Since the electron and the positron must be at the same location
for this process, the contribution of the virtual annihilation must be proportional to |Ψ(0)|2, and
so can happen only when � = 0. [ ✎Why?] Then, since the photon has spin 1, positronium also
must have spin 1, i.e., it must be in the triplet state with s = 1 and parallel spins. The contribution
to the energy of positronium is [243]

E(ann)
n = α4

e mec2 1
4n3 , � = 0, s = 1. (4.47)

Note that both new contributions (4.46) and (4.47) are of the same order of magnitude as
the analogues of the fine and hyperfine structure contributions. The Lamb shift, as well as the
analogues of the corrections (4.32)–(4.33) are then consistently negligible in comparison with the
analogues of (4.31), (4.37), (4.40) and (4.46). The Lamb shift was shown to be O(α5

e ), and so
contributes less than 1 % of the listed contributions, which are all O(α4

e ).
Real annihilation Positronium is an unstable bound state, as the comprising parts may also really
annihilate and produce two or more photons. Just as in the previous discussion, since the elec-
tron and the positron must be at the same place to annihilate each other, the decay rate must be
proportional to |Ψ(�0, t)|2. For a two-photon decay we have the Feynman diagram

time

e+

e−

e−positronium

γ

γ

Strictly speaking, only one of the
right-hand vertices is an annihi-
lation; here we pick the lower
one. The computation shows the
result to be independent of this
choice.

(4.48)

and it follows that M must be proportional to e2

4πε0
and then also h̄−1c−1, since M is dimensionless.

We will compute (5.179) in Section 5.3.2: M = − 4 e2

ε0 h̄ c . Two-photon annihilation of positronium
may also be interpreted as an e− + e+ → 2γ scattering, for which the effective cross-section,
following the general result (3.127),
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, (4.49)

where v is the relative speed of the electron and the positron. By Conclusion 3.2 on p. 113, we
have

Γ = σ v |Ψ(�0, t)|2 =
(
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e h̄2
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2 h̄ n3 , (4.50)
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where the familiar expression for the � = 0 wave-function of the hydrogen atom is adapted for
positronium by replacing the reduced mass, me → 1

2 me. The positronium lifetime is then

τ =
1
Γ

=
2 h̄ n3

α5
e mec2

= (1.24494×10−10 s) × n3, (4.51)

which is in excellent agreement with experiments [309].

4.1.6 Exercises for Section 4.1

✎ 4.1.1 Compute the second-order perturbative energy correction En due to H ′
rel.

✎ 4.1.2 Compute the second-order perturbative energy correction En due to H ′
SeO.

✎ 4.1.3 Compute the first-order perturbative energy correction En due to H′′
rel.

✎ 4.1.4 Why can the electron and the positron making up positronium not annihilate into a
single photon, i.e., why does the annihilation result in at least two photons?

4.2 Finite symmetries
Symmetries with the structure of finite groups are widely used in solid state physics and
crystallography. There are many such groups, and their structures may be very involved, and the
applications very detailed and technically demanding.

In relativistic field theory, however, we are in general interested only in three rather simple
finite symmetries:5

Parity P, which may be thought of simply as the mirror reflection of one of the Cartesian coor-
dinates. In 3-dimensional space, this operation may always be followed by a 180◦ rotation
in the mirror plane, which collectively flips the sign of all three coordinates. We then typ-
ically use this “more democratic” version of the parity operation: P : �r → −�r as well as
P : �p → −�p.

Time reversal T, which may be conceived classically as the simple operation T : t → −t, and the
physical meaning of which is simply that the process, under the action of T, runs backward
in time.

Charge conjugation C, which may be thought of as the Hermitian conjugation of operators and
(wave-)functions, and which physically swaps a particle for its antiparticle and vice versa.
“Charge” here, foremost, means the electromagnetic charge (see Comment 5.2 on p. 169),
but also the color in quantum chromodynamics, the weak isospin in weak nuclear inter-
actions, and any and all charges related to symmetries other than spacetime coordinate
transformations; see Chapters 5–7.

All three symmetries are of order 2, i.e., their successive applications (as defined here) result in
the identity

P 2 = 1, T 2 = 1, C 2 = 1. (4.52)

However, the application in quantum theory requires a little more care, as indicated in the
subsequent three sections.

5 As in Conclusion 2.6 on p. 78, the characteristics of the abstract mathematical model are also assigned to the concrete
physical system that the model faithfully represents. This makes the symmetries of a state in the Hilbert space of the
system also symmetries of the represented concrete physical system when in that state.
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4.2.1 Parity
In 1956, Tsung-Dao Lee and Chen-Ning Yang studied the so-called “τ–θ” problem: two strange
mesons that by this time had become known as τ and θ,6 had all the same characteristics, except
the difference in their decays:

(4.53)

The parity of a system of particles is the product of intrinsic parities of the individual particles
times a factor (−1)�, where � is the total angular momentum of the system. It follows that the
parity of the “θ”-particle is +1, and the parity of the “τ”-particle is −1, since the pion’s parity is −1,
and 2- and 3-pion states in the processes (4.53) have total angular momentum equal to the spin
of the “θ+”- and the “τ+”-particles, i.e., � = 0. The existence of two particles that were identical
in all except their parity characteristics was very unusual. Lee and Yang proposed that they are in
fact one and the same particle, but that the P-symmetry is violated in these weak interactions. On
a second glance, they realized that parity conservation has not been experimentally confirmed in
weak processes, so they recommended several experimental tests.

The same year, Chien-Shiung Wu (known as “Madam Wu”) successfully completed the first
of such experiments, working with E. Ambler, R. W. Hayward, D. D. Hoppes and R. P. Hudson. This
experiment proved that there really do exist processes in Nature that are not invariant under the
action of the parity operation. In the β-decay,

60
27Co → 60

28Ni + e− + ν̄e, (4.54)

Madam Wu’s group showed that most electrons are emitted in high correlation with the spin of the
cobalt-60 nucleus. If �pe and �S, respectively, are the operators of the electron’s linear momentum
and the spin of the cobalt-60 nucleus, and |Ψ〉 the state of this nucleus before the decay, it follows
that 〈Ψ|�pe·�S|Ψ〉 �= 0. Now, since parity P flips the sign of the linear momentum but not of spin, it
follows that

〈Ψ|�pe·�S|Ψ〉 = 〈Ψ|1�pe·1 �S 1|Ψ〉 = 〈Ψ|P−1P�pe·P−1P �S P−1P|Ψ〉
=

(〈Ψ|P−1
)(

P�peP
−1
)·(P�SP−1

)(
P|Ψ〉) = 〈Ψ′|�p ′

e ·�S ′|Ψ′〉
= 〈Ψ′|(−�pe)·(+�S)|Ψ′〉 = −〈Ψ′|�pe·�S|Ψ′〉, (4.55)

where |Ψ′〉 = P|Ψ〉 – whatever that action on the state |Ψ〉 may be7 – and, of course

�p ′
e := P�peP

−1 = −�pe, and �S ′
e := P�SP−1 = +�S. (4.56)

If we assume that [H, P] = 0 (that parity is a symmetry of the system), it follows that:

1. either |Ψ′〉 = c|Ψ〉 and so 〈Ψ′| = c∗〈Ψ|, whereby the relation (4.55) would have to imply
that 〈Ψ|�pe·�S|Ψ〉 = 0, which was proven wrong by Madam Wu’s experiment;

2. or |Ψ〉 �∝ |Ψ′〉 are degenerate states – which does not follow from otherwise successful
nuclear models applicable to the cobalt-60 nucleus.

In fact, were we even to allow the possibility that the nuclear models err and |Ψ′〉 �= c|Ψ〉, so that
|Ψ′〉 and |Ψ〉 are two distinct but degenerate states of the cobalt-60 nucleus, it may be shown [29]

6 The early notation for the “τ”-particle must not be confused with the τ-lepton, which was experimentally detected only
in 1975, almost two decades later.

7 In any concrete representation, P acts on the wave-function by changing the argument of that wave-function, and also
by changing both the integration measure and limits in expressions such as 〈Ψ|· · ·|Ψ〉. However, the result (4.55) is
independent of its representation, and holds abstractly, as written here.
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that the oscillation |Ψ〉 ↔ |Ψ′〉 would be sufficiently fast to make the expectation value 〈Ψ|�pe·�S|Ψ〉
much smaller than was experimentally measured. Thus, [H, P] �= 0 remains as the only possibility,
i.e., that P is not a symmetry of Nature.

Once uncovered, P-violation was experimentally confirmed in more and more processes – and
exclusively in processes mediated by the weak nuclear interaction. Moreover, it was discovered that
all weak processes exhibit P-violation!

The most stunning consequence of P-violation is the fact that the “right-handed neutrinos” –
if they even exist – behave significantly differently than the “left-handed” ones. That is, for every
particle one may define its “helicity” [☞ Section 5.2.1 on p. 172] as the projection of the spin of the
particle along the direction of its motion. For particles with non-vanishing mass, helicity cannot be
Lorentz-invariant. A Lorentz boost can always transform into the particle’s own coordinate system,
wherein it does not move at all so the projection is undefined. It is, of course, also possible to “pass”
the particle into a coordinate system in which the particle now moves in the opposite direction. All
the while the spin remains unchanged, which then flips the sign of the helicity. However, a massless
particle cannot be “passed,” nor does there exist a coordinate system in which it is at rest, so that
the helicity of a massless particle is Lorentz-invariant.

Particles with positive helicity are called “right-handed” (their spin – fictively – rotates in
the direction of the fingers of the right hand when the thumb indicates the direction of mo-
tion), and the “left” particles have negative helicity. Experimental evidence to date shows that no
more than about 1/1010 of all detected neutrinos are right-handed, and the mass of the observed
(so almost entirely “left-handed”) neutrinos is close to zero [☞ Ref. [293] and Section 7.3.2].
This extremely convincing asymmetry in Nature is of crucial importance to the structure of weak
interactions [☞ Section 7.2].

For example, in the decay
π− → μ− + ν̄μ (4.57)

analyzed in the pion’s rest-frame, the muon and the antineutrino move in opposite directions.
[ ✎Why?] The relative angular momentum of the muon and the antineutrino must be orthogonal
to the motion of the muon and the antineutrino, and so does not affect the definition of their
helicities. The pion spin is zero, so the spin of the muon and the antineutrino must be antiparallel,
which means that the antineutrino helicity is the same as that of the muon. Experiments confirm
that all muons – and so also the antineutrinos – emerge with a right-handed helicity; the nearly
complete absence (less than 1-in-1010) of left-handed antineutrinos then provides for maximal
parity violation.

By the way, in 1929, soon after the publication of Dirac’s equation and the theory of the elec-
tron, Hermann Weyl gave a simpler equation suitable for spin- 1

2 particles with no mass, and which
uses the property that the helicity of such particles is Lorentz-invariant. Weyl’s theory was neglected
since the photon was the only known particle with no mass, and photons have spin 1. When Pauli,
a year later, proposed the neutrino to preserve the energy conservation law, he ironically did not
use Weyl’s equation: Although he knew that the mass of the neutrino is small or even zero, this
equation permits parity violation, which Pauli believed also to be a symmetry of Nature! Twenty-six
years later, experiments proved him right about energy conservation but wrong about parity. The
reason for such a convincing difference between left-handed and right-handed neutrinos remains
one of the significant unexplained characteristics in elementary particle physics☞ .

4.2.2 Charge conjugation and time reversal
Although the actions of the operations T and C clearly satisfy the relation (4.52), unlike P, these
two operations are anti-linear, for example,

C
(
c Ψ(�r, t)

)
= c∗ C

(
Ψ(�r, t)

)
, (4.58)
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so that the proof of Conclusion A.1 on p. 461, does not apply. This makes the precise analysis of
the C- and T-action nontrivial in quantum mechanics [29]; fortunately, we need not be concerned
with these details. Note instead that in many cases the invariance of the dynamics with respect to
the T- and/or C-operation simply implies a degeneracy, so pairs of states |Ψ〉 and T|Ψ〉, as well
as |Ψ〉 and C|Ψ〉 have the same energy and the same lifetime. For example, if |Ψ〉 is used for the
description of the electron, C|Ψ〉 must be assigned to the positron. The degeneracy of |Ψ〉 and
C|Ψ〉 then means that the electron mass equals the positron mass, which is indeed true.

Of course, only chargeless particles may be eigenstates of the C-operation: it follows from the
defining property (4.52) that, if |Ψ〉 is an eigenstate of the C-operation, then |Ψ〉 = C|Ψ〉 = ±|Ψ〉,
so |Ψ〉 and |Ψ〉 differ, at most, in the sign; one says that |Ψ〉 is its own anti-state, i.e., that the
particle is its own antiparticle.

It may be shown [422] that the bound state of the spin- 1
2 particle and its antiparticle is

an eigenstate of the operator C with the eigenvalue (−1)�+s, where � is the angular momentum
of the particle–antiparticle system, and s is their composite spin. For positronium, which at least
virtually may annihilate into a single photon, it follows that � + s = 1 since the photon spin is
1. Since C is conserved in strong and electromagnetic processes and the electron–positron pair
annihilation is evidently an electromagnetic process, it follows that the photon is a C-eigenstate,
with the eigenvalue −1. Similarly, in the electromagnetic decay of the pion,

π0 → γ+ γ, (4.59)

there can be only an even number of photons, and the C-eigenvalue of the π0-particle is +1.
According to the quark model,

|π0〉 = 1√
2

(|u, u〉 + |d, d 〉) (4.60)

is a linear combination of two particle–antiparticle bound states, so the formula (−1)�+s for the
C-eigenvalue holds. Also, an n-photon system has the C-eigenvalue equal to (−1)n.

On the other hand, the C conservation law is violated in weak interactions: The muons always
emerge from the process (4.57) with right-handed helicity. Then

C
(
π− → μ−R + ν̄μ

)
= π+ → μ+

R + νμ, (4.61)

and the anti-muons would have to emerge also with 100% right-handed helicity from the π+-
meson decay, since the C-operation has no effect on the coordinate system, direction of particle
motion and their spins. However, the same analysis as for the process (4.57) shows that the neu-
trino would have to have right-handed helicity – but such neutrinos may exist no more than
1-in-1010! The neutrinos as well as the muons in the process (4.61) emerge with left-handed
helicity. Thus, weak processes such as the π±-meson decays (4.57) and (4.61) indicate that weak
interactions maximally violate both P- and C-symmetry.

— ❦ —

Direct experimental verification of T-conservation or T-violation is much harder: No physical state
can be a T-eigenstate, [ ✎why?] so we cannot simply check the products of the eigenvalues on one
side and the other of a process. The most direct verification would involve detailed measurement of
parameters for a process A + B + · · · → C + D + · · · , as well as the reverse process, C + D + · · · →
A + B + · · · , and then – taking into account the kinematic differences – comparing the effective
cross-sections. That has indeed been done in a large number of electromagnetic and strong nuclear
processes, and no trace of T-violation was found. The resulting equality, up to kinematic factors,
between the “reversed” pairs of processes such as A + B + · · · → C + D + · · · and C + D + · · · →
A + B + · · · is called the “principle of detailed balance.”

On the other hand, the verification of the principle of detailed balance in weak nuclear pro-
cesses is very hard to carry through: For example, the reversal of the weak decay Λ0 → p+ + π−
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would require the fusion p+ +π− → Λ0. However, the collision p+ +π− and its outcomes are (by
far) so dominated by the strong nuclear interaction that the p+ +π− fusion into Λ0 simply cannot
be experimentally detected, among the sea of all the different results obtained via the strong nu-
clear interaction. The only type of weak processes where neither the original nor the reversed
process is swamped by strong and electromagnetic side-processes are the processes involving
neutrinos. However, experiments with neutrinos are already very hard. Unlike other particles, neu-
trinos are very difficult to control in the lab, in part owing to their electromagnetic neutrality, and
in part owing to the extremely small effective cross-section of their interaction with other matter.

4.2.3 The CPT-theorem and CP-violation
Note first that the operation P in 3-dimensional space is a mirror reflection of one of the Cartesian
coordinates, e.g., z → −z, so that the (x, y)-plane serves as the mirror. The Lorentz boost in the
z-direction then mixes the z-coordinates and time, t. There exists an analytical continuation of
this transformation that flips the sign of the z-coordinate and time t, and so turns the operation
P into a T-operation. Finally, following the Feynman–Stückelberg interpretation of antiparticles
as particles that travel backwards in time, T is equivalent to the C-operation (charge conjuga-
tion). The detailed treatment then shows that this connects the C-, P- and T-operations in any
local field theory that (1) is Lorentz-invariant, (2) has a Lorentz-invariant ground state (vacuum),
and (3) has a lower bound on the energy. Conversely, it follows that every non-invariance with
respect to the combined CPT-transformation implies a violation of Lorentz-symmetry and/or of
locality [350, 413, 300, 230, 102].

An alternative argument starts by noticing that

CPT(e±i(�k·�r−ωt)) = CP(e±i(�k·�r−ω(−t))) = C(e±i(�k·(−�r)+ωt)) = (e∓i(−�k·�r+ωt))

= e±i(�k·�r−ωt), (4.62)

and then using the fact that plane waves form a complete set and are Lorentz-invariant, to argue
that all spacetime-dependent Lorentz-invariant expressions (observables) are also CPT-invariant.
The difficulty in this latter, seemingly much simpler argument lies in proving that there is no loss
of generality and that the whole required linear combination of plane waves is also both CPT- and
Lorentz-invariant.

Standard (Lagrangian) quantum field theory texts [425, 554] prove that the handful of
typically used Lorentz-invariant Lagrangians are also CPT-invariant. Recently, however, a fully
rigorous proof has been presented within the familiar framework of Lagrangian quantum field
theories [220], applicable to all Lagrangians that depend polynomially on the fields and their
derivatives.

— ❦ —

On the other hand, once it was proven in 1956 that P is not a symmetry of Nature, in 1957, Lev
D. Landau suggested that the combined CP-transformation should be a symmetry of Nature. As we
have seen, weak processes such as the π±-meson decays (4.57) and (4.61) maximally violate both
the P- and the C-symmetry, so it was reasonable to suppose that perhaps the combined CP-operation
is a true symmetry of Nature. Thus, every naturally occurring process involving a collection of
particles would have to have a “mirror image” involving antiparticles instead of particles.

However, James Cronin and Val Fitch surprised the physics community in 1964 by publishing
their results showing unambiguously that, in neutral kaon decays, not even the combined CP-
transformation is a symmetry of Nature.

Ironically, the possibility of CP-violation follows from a work by Murray Gell-Mann and Abra-
ham Pais back in 1954, when they noticed that the K0-meson cannot be its own antiparticle as its
strangeness charge must equal +1; there then must exist a K 0-meson with a strangeness charge
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of −1, which is evident from the following scattering events (the parenthetical indices denote
strangeness):

π−
(0) + p+

(0) → Λ0
(−1) + K0

(+1) and π+
(0) + p+

(0) → p+
(0) + K 0

(−1) + K+
(+1). (4.63)

These processes occur mediated by the strong interaction (so identified owing to the speed of the
process), which one knows do preserve both the C- and the P-symmetry. Gell-Mann and Pais then
noticed the possibility of the K0–K 0 transmutation with an explanation that is, today, easier to
replace with the display of relevant Feynman diagrams shown in Figure 4.1.

We also know that the neutral kaons are pseudo-scalars, so:

CP|K0〉 = −C|K0〉 = −|K 0〉 CP|K 0〉 = −C|K 0〉 = −|K0〉, (4.64)

whereby the eigenstates of the CP-symmetry are

|K0
+〉 := 1√

2

(|K0〉 − |K 0〉) and |K0−〉 := 1√
2

(|K0〉 + |K 0〉), (4.65)

where
CP|K0±〉 = (±1)|K0±〉. (4.66)

K0

d s̄

W−

u u

W−

s d

K0

K0

d s̄

u

W− W+

u

s d

K0

Figure 4.1 The K0 → K 0 transmutation.

Now, neutral kaons decay (among other ways) into two or three pions, and we will neglect
all other decay modes. Pions are pseudo-scalars so their intrinsic parity is −1; the parity of a two-
pion system is then +1, and of a three-pion system, −1. Because of charge conservation, the total
charge of both the two- and the three-pion systems in the neutral kaon decays must be zero, so
their C-eigenvalue must be +1. It follows that CP(2π) = +1 but CP(3π) = −1, and it must be that

K0
+ → 2π, and K0− → 3π, (4.67)

if these (weak interaction) decays preserve the CP-symmetry. Since the two-pion decay has more
energy,8 one expects the K0

+-state lifetime to be shorter than the K0−-state lifetime. Indeed, the
result (3.124) states that ΓK0

+
∝

√
1 − (2mπ0 /mK0)2 in a decay into two particles of equal masses.

8 From the data (2.31) it follows that about (497.6 − 2×135.0) = 227.6 MeV remains in the two-pion decay, and only
about (497.6 − 3×135.0) = 92.6 MeV in the three-pion decay for the kinetic energy of the pions.
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Analogously, ΓK0−
∝

√
1 − (3mπ0 /mK0)2 in a decay into three particles of equal masses. Thus, one

expects ΓK0
+

> ΓK0−
, and then also τK0

+
< τK0−

. Although the ratio of these two lifetimes is not as
simple, the experiments nevertheless indicate a significant difference and in the same direction as
in this simplified estimate:

τ+ := τK0
+

= 0.895 8×10−10 s and τ− := τK0−
= 5.114×10−8 s. (4.68)

Because of this difference, K0
+ is called the “short” kaon (K0

S := K0
+), and K0− the “long” kaon

(K0
L := K0−).

Since K0− “lives” about 570 times longer than K0
+, within a beam of neutral kaons (created by

strong interactions, and so with a 50–50% K0
+–K0− distribution) the “short” kaons quickly decay,

leaving the beam as a “pure” K0−-beam. Recall that the number of undecayed kaons diminishes
exponentially, so that

N(K0
+)

N(K0−)
=

e−t/τ+

e−t/τ− = exp
{
− t
τ+ +

t
τ−

}
≈ exp

{
− 569.9

t
τ−

}
, (4.69)

which drops to 1.447×10−5 after just 1 ns.
Ten years after Gell-Mann and Pais’s paper, Cronin and Fitch made use of this extraordinary

property, and simply looked for two-pion decays in this decay-purified K0−-beam. Although they
only found about 1 two-pion decay to about 500 three-pion decays, this was a sufficient (≈ 138-
fold) discrepancy to prove that K0− nevertheless can also have a two-pion decay and so indicate
the violation of CP-symmetry.

In addition, the K0−-meson may also decay as

(4.70)

where the a-type decay is the CP-image of the b-type decay. If the CP-transformation were a true
symmetry of Nature, the probability of these decays would have to be precisely equal. Experiments,
however, show a relative difference of about 3.3×10−3, which also indicates a small but significant
CP-violation.

Unlike the P- and the C-violation, the CP-violation is small: in the so-called Cabibbo–Koba-
yashi–Maskawa matrix (2.53)–(2.55) there exists precisely one parameter, δ13, which parametrizes
the CP-violation. The values of the parameter δ13 = (1.20 ± 0.08)◦ (as compared to max(δ13) =
180◦) and its indirect appearance in computations result in the smallness of CP-violation, such as
the ∼ 1

500 two-pion decays of what should be a � 1
69 000 -pure K0− = K0

L beam. This smallness is hard
to explain theoretically and remains one of the unsolved problems of elementary particle theory☞ .

— ❦ —

There also exists the so-called “strong CP-problem”: to wit, it is theoretically possible also for
the strong nuclear interaction to violate CP-symmetry, but this is not the case. The theory of
quantum chromodynamics has a parameter, ϑ,9 which parametrizes possible strong CP-violation,
whereupon it is a puzzle that ϑ ≈ 0, in all known experiments and to a high degree of
precision [☞ Section 6.3.1].

Finally, the violation of CP-symmetry in the first seconds of the Big Bang is one of the three
necessary requirements (as shown by Andrei Saharov) for an explanation of the fact that the

9 This parameter indeed is an angle, but has no relation with the spherical coordinate of the same name.
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universe that we observe today consists of matter, and not also of antimatter. This gives an unam-
biguous definition of the positive electric charge as that of the lepton emerging in the (somewhat
but notably) more frequent “semi-leptonic” decay of the long-living neutral kaon (4.70). Thus, the
existence of CP-violation is in fact a boon for us: If the CP-transformation were an exact symmetry
of Nature, there could be no difference in the universe between matter and antimatter, the two
would have annihilated in the first few seconds of the universe’s existence, and we would not be
here to notice this.

— ❦ —

It is worth noting that the C-, P-, T-, CP-, PT- and CT-symmetries are violated only in experiments
that involve the weak interaction, and that these indeed are exact symmetries in all electromagnetic
and strong nuclear processes.

4.2.4 Exercises for Section 4.2

✎ 4.2.1 Suppose that the parity operation acts as P : |a〉 → |b〉 and P : |b〉 → |a〉 upon some
two orthonormalized states, |a〉, |b〉. From these, try to construct the eigenfunctions of the
P-operator and normalize them. Discuss the physical meaning of these eigenfunctions if
they exist, or explain why an eigenstate of the P-operator cannot make sense physically.

✎ 4.2.2 Suppose that the time reversal operation acts as T : |α〉 → |β〉 and T : |β〉 → |α〉 upon
some two orthonormalized states, |α〉, |β〉. From these, try to construct the eigenfunctions
of the T-operator and normalize them. Discuss the physical meaning of these eigenfunctions
if they exist, or explain why an eigenstate of the T-operator cannot make sense physically.

✎ 4.2.3 Assuming that the CPT-transformation is an exact order-2 symmetry, prove that the
eigenfunctions of the CP-operation are also T-eigenfunctions.

4.3 Isospin
In 1932, Werner Heisenberg noticed that, for the purposes of describing atomic nuclei, it is possible
to neglect the minute difference between the neutron mass and the proton mass:

mn − mp

mp
=

939.566 − 938.272
938.272

= 0.001 379 13. (4.71)

It is even possible to ignore the fact that the proton is charged and the neutron is not: the strong
nuclear interaction, which keeps the nucleus as a bound state, must be many times stronger than
the electromagnetic repulsion of the protons in the nucleus. Thus, the proton and the neutron are
regarded as two states of one particle, a nucleon (denoted N), just as the spin-(± 1

2 ) electrons are
both regarded as two polarizations of the same particle. In analogy with spin, Heisenberg then
introduced a conserved quantity that Eugene Wigner named isospin in 1937 and for which he
employed the corresponding mathematical formalism:

�I :
[

I j , Ik
]

= iε jk
m Im, (4.72)

just like the �J in Appendix A.3. Following the digressions A.2 on p. 465 and A.3 on p. 467, we know
that there exist eigenstates

|I, I3〉 : I 2|I, I3〉 = I(I+1)|I, I3〉, I3|I, I3〉 = I3|I, I3〉, |I3| � I, (4.73a)

I±|I, I3〉 =
√

I(I+1) − I3(I3±1)|I, I3±1〉, 2I, �I ∈ Z. (4.73b)
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4.3.1 Isospin, nucleons and pions
Heisenberg and Wigner introduced the isospin formalism for the purposes of nuclear physics, and
here we identify

|p+〉 = | 1
2 , + 1

2 〉, |n0〉 = | 1
2 ,− 1

2 〉. (4.74)

Moreover, if the isospin “rotations” are a symmetry of strong interactions, then it follows that
isospin is a conserved quantity in all strong nuclear processes, following Conclusion A.1 on p. 461.
In 1932, the proposition of introducing such an ad-hoc and abstract symmetry as a further ex-
act symmetry of strong interactions was an unusually bold move. However, such reliance on
symmetries and the quantum version of Noether’s theorem [☞ Conclusion A.1 on p. 461] has
become one of the basic principles of fundamental physics in the twentieth century, and even
grew into the gauge principle, which is the basis of contemporary understanding of interactions in
general [☞ Chapters 5 and 6].

A few other (then known) hadrons are identified as

|π+〉 = |1, +1〉, |π0〉 = |1, 0〉, |π−〉 = |1,−1〉, (4.75)

|Δ++〉 = | 3
2 , + 3

2 〉, |Δ+〉 = | 3
2 , + 1

2 〉, |Δ0〉 = | 3
2 ,− 1

2 〉, |Δ−〉 = | 3
2 ,− 3

2 〉, etc. (4.76)

The relationship between the electric charge Q, the isospin “charge” I3, the baryon number B
and strangeness S for all hadrons was found before 1974 to be in agreement with the GNN for-
mula (2.30). Thus, isospin symmetry, soon extended into the SU(3) f approximate symmetry, offers
an excellent classification tool.

— ❦ —

However, isospin is also useful in dynamics: We know from quantum mechanics that addition of
spins 1

2 and 1
2 produces the following possibilities, here applied to isospin:

|1, +1〉S = | 1
2 , + 1

2 〉| 1
2 , + 1

2 〉 = |p+, p+〉, (4.77a)
⎧⎪⎪⎨⎪⎪⎩ |1, 0〉S = 1√

2

(
| 1

2 , + 1
2 〉| 1

2 ,− 1
2 〉 + | 1

2 ,− 1
2 〉| 1

2 , + 1
2 〉
)

= 1√
2

(|p+, n0〉 + |n0, p+〉), (4.77b)

|1,−1〉S = | 1
2 ,− 1

2 〉| 1
2 ,− 1

2 〉 = |n0, n0〉; (4.77c)

|0, 0〉A = 1√
2

(
| 1

2 , + 1
2 〉| 1

2 ,− 1
2 〉 − | 1

2 ,− 1
2 〉| 1

2 , + 1
2 〉
)

= 1√
2

(|p+, n0〉 − |n0, p+〉), (4.77d)

where the subscript “S” denotes that the state is symmetric with respect to swapping the two
nucleons, and “A” that it is antisymmetric. However, there exists only one two-nucleon bound
state: the deuteron, the deuterium nucleus, which consists of a proton and a neutron. This implies
that the isospin factor in the wave-function of the deuteron must be antisymmetric with respect to
swapping the two nucleons. Were this factor symmetric, isospin “rotations” would guarantee the
existence of all three symmetric states (4.77a)–(4.77c) – and it is well known that the bound state
of neither two protons nor two neutrons exists in Nature.

This identifies the deuteron as the isospin |0, 0〉 state. Also, since |0, 0〉 is antisymmetric with
respect to swapping the two nucleons and since the whole wave-function must be antisymmetric
with respect to the swapping of any two (otherwise identical) fermions, it follows that the product
of the remaining “spatial” and “spin” factors in the wave-function of the deuteron bound state must
be symmetric. So, if the proton and neutron spins are parallel (evidently symmetric) or antiparallel
and symmetrized, then the spatial factor in the wave-function also must be symmetric with respect
to the exchange of two nucleons. If the spins are antiparallel and antisymmetrized, the spatial
factor in the wave-function must also be antisymmetric.
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Without the isospin formalism, which permits treating the proton and the neutron as two
polarizations of the same particle, this indirect correlation of spins and spatial factors in the wave-
function could not have been derived.

— ❦ —

Finally, isospin also easily produces relative effective cross-sections of various processes mostly by
way of the Wigner–Eckart theorem A.3 on p. 475. Consider, e.g., the three two-nucleon collisions:

N1 N2 d π

a : p+ + p+ → d + π+ ↔ | 1
2 , + 1

2 〉| 1
2 , + 1

2 〉 → |0, 0〉|1, +1〉 = |1, +1〉, (4.78a)

b : p+ + n0 → d + π0 ↔ | 1
2 , + 1

2 〉| 1
2 ,− 1

2 〉 → |0, 0〉|1, 0〉 = |1, 0〉, (4.78b)

c : n0 + n0 → d + π0 ↔ | 1
2 ,− 1

2 〉| 1
2 ,− 1

2 〉 → |0, 0〉|1,−1〉 = |1,−1〉, (4.78c)

where d denotes the deuteron, the deuterium nucleus. On the other hand, combining (4.77a)–
(4.77d), we have

|p+, p+〉 = | 1
2 , + 1

2 〉| 1
2 , + 1

2 〉 = |1, +1〉, (4.79a)

|p+, n0〉 = | 1
2 , + 1

2 〉| 1
2 ,− 1

2 〉 = 1√
2

(|1, 0〉 + |0, 0〉), (4.79b)

|n0, n0〉 = | 1
2 ,− 1

2 〉| 1
2 ,− 1

2 〉 = |1,−1〉. (4.79c)

Then it follows that, up to factors independent of isospin and which are equal [ ✎why?] ,

Ma ∝ 〈d,π+|p+, p+〉 = 〈1, +1|| 1
2 , + 1

2 〉| 1
2 , + 1

2 〉 = 1, (4.80a)

Mb ∝ 〈d,π0|p+, n0〉 = 〈1, 0|| 1
2 , + 1

2 〉| 1
2 ,− 1

2 〉 = 〈1, 0|
(

1√
2

(|1, 0〉 + |0, 0〉)) = 1√
2

, (4.80b)

Mc ∝ 〈d,π−|n0, n0〉 = 〈1,−1|| 1
2 ,− 1

2 〉| 1
2 ,− 1

2 〉 = 1. (4.80c)

Since σ ∝ |M|2, it follows that
σa : σb : σc = 2 : 1 : 2. (4.81)

That is, it is twice as probable for a deuteron (and a pion) to emerge from the collision of two
protons than from the collision of a proton and a neutron! (The collision of two neutrons is hard
to arrange experimentally.)

Even more dramatic is the situation with pion–nucleon scattering. Listing all the possibilities
consistent with charge conservation, we find six elastic pion–nucleon collisions:

(a) π++p+ → π++p+, (b) π0+p+ → π0+p+, (c) π−+p+ → π−+p+, (4.82a)

(d) π++n0 → π++n0, (e) π0+n0 → π0+n0, ( f ) π−+n0 → π−+n0, (4.82b)

and four inelastic collisions resulting in a pion and a nucleon:

(g) π+ + n0 → π0 + p+, (h) π0 + p+ → π+ + n0, (4.82c)

(i) π0 + n0 → π− + p+, (j) π− + p+ → π0 + n0. (4.82d)

Since I(π) = 1 and I(N) = 1
2 , the isospin of the incoming (initial) and of the outgoing (final)

system may be either 3
2 or 1

2 , and let M3/2 and M1/2 denote the corresponding so-called “reduced”
amplitudes.10 Using tables of Clebsch–Gordan coefficients we compute:

π+ + p+ : |1, 1〉| 1
2 , + 1

2 〉 = | 3
2 , + 3

2 〉, (4.83a)

10 By the Wigner–Eckart theorem, every amplitude may be factorized as a product of a reduced amplitude and a Clebsch–
Gordan coefficient [☞ Section A.3.4 and Theorem A.3 on p. 475, as well as the textbooks [362, 363, 328, 471, 480,
134, 391, 407, 472, 360, 29, 242, 3, 110, for example] and the handbook [294]].
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π0 + p+ : |1, 0〉| 1
2 , + 1

2 〉 =
√

2
3 | 3

2 , + 1
2 〉 − 1√

3
| 1

2 , + 1
2 〉, (4.83b)

π− + p+ : |1,−1〉| 1
2 , + 1

2 〉 = 1√
3
| 3

2 ,− 1
2 〉 −

√
2
3 | 1

2 ,− 1
2 〉, (4.83c)

π+ + n0 : |1, 1〉| 1
2 ,− 1

2 〉 = 1√
3
| 3

2 , + 1
2 〉 +

√
2
3 | 1

2 , + 1
2 〉, (4.83d)

π0 + n0 : |1, 0〉| 1
2 ,− 1

2 〉 =
√

2
3 | 3

2 ,− 1
2 〉 + 1√

3
| 1

2 ,− 1
2 〉, (4.83e)

π− + n0 : |1,−1〉| 1
2 ,− 1

2 〉 = | 3
2 ,− 3

2 〉. (4.83f)

For example, the processes (a) and ( f ) both have I = 3
2 and the Clebsch–Gordan coefficients

are 1:

(a) π+ + p+ → π+ + p+ ↔ Ma = 〈 3
2 , + 3

2 || 3
2 , + 3

2 〉×M3/2 = M3/2, (4.84)

( f ) π− + n0 → π− + n0 ↔ M f = 〈 3
2 ,− 3

2 || 3
2 ,− 3

2 〉×M3/2 = M3/2, (4.85)

and so we have that Ma = M f = M3/2. The remaining processes are a mixture of M3/2 and M1/2,
such as

(c) π− + p+ → π− + p+ (4.86)

�→ Mc =
(

1√
3
〈 3

2 ,− 1
2 ; a3| −

√
2
3 〈 1

2 ,− 1
2 ; a1|

)(
1√
3
| 3

2 ,− 1
2 ; a3〉 −

√
2
3 | 1

2 ,− 1
2 ; a1〉

)
= 1

3 〈 3
2 ,− 1

2 ; a3|| 3
2 ,− 1

2 ; a3〉 + 2
3 〈 1

2 ,− 1
2 ; a1|| 1

2 ,− 1
2 ; a1〉 = 1

3M3/2 + 2
3M1/2 (4.87)

(j) π− + p+ → π0 + n0 (4.88)

�→ Mj =
(

1√
3
〈 3

2 ,− 1
2 ; a3| −

√
2
3 〈 1

2 ,− 1
2 ; a1|

)(√
2
3 | 3

2 ,− 1
2 ; a3〉 + 1√

3
| 1

2 ,− 1
2 ; a1〉

)
=

√
2

3 〈 3
2 ,− 1

2 ; a3|| 3
2 ,− 1

2 ; a3〉 −
√

2
3 〈 1

2 ,− 1
2 ; a1|| 1

2 ,− 1
2 ; a1〉

=
√

2
3 M3/2 −

√
2

3 M1/2. (4.89)

The labels “a3” and “a1” are arrays of all other quantifiers of the isospin- 3
2 and isospin- 1

2 states,
respectively. The effective cross-sections of these processes are then related as

σa : σc : σf : σj = 9|M3/2|2 : |M3/2 + 2M1/2|2 : 9|M3/2|2 : 2|M3/2 −M1/2|2. (4.90)

In a collision regime where either M3/2 
 M1/2 or M3/2 � M1/2, this relationship simplifies:

M3/2 
 M1/2 ⇒ σa : σc : σf : σj ≈ 9 : 1 : 9 : 2, (4.91)

M3/2 � M1/2 ⇒ σa : σc : σf : σj ≈ 0 : 4 : 0 : 2. (4.92)

4.3.2 Isospin in the quark model
In processes where it suffices to track only the u and d quarks, the application of the isospin
formalism is very similar within the quark model. Writing only isospin factors,

|u〉 = | 1
2 , + 1

2 〉, |d〉 = | 1
2 ,− 1

2 〉 (4.93)

and so we have the three-quark bound states:

|Δ++〉 = |u〉⊗|u〉⊗|u〉 = | 1
2 , + 1

2 〉| 1
2 , + 1

2 〉| 1
2 , + 1

2 〉 = | 3
2 , + 3

2 〉, (4.94a)

|Δ+〉 = |u〉⊗|u〉⊗|d〉 = | 1
2 , + 1

2 〉| 1
2 , + 1

2 〉| 1
2 ,− 1

2 〉 = | 3
2 , + 1

2 〉, |p+〉 = | 1
2 , + 1

2 〉, (4.94b)
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|Δ0〉 = |u〉⊗|d〉⊗|d〉 = | 1
2 , + 1

2 〉| 1
2 ,− 1

2 〉| 1
2 ,− 1

2 〉 = | 3
2 ,− 1

2 〉, |n0〉 = | 1
2 ,− 1

2 〉, (4.94c)

|Δ−〉 = |d〉⊗|d〉⊗|d〉 = | 1
2 ,− 1

2 〉| 1
2 ,− 1

2 〉| 1
2 ,− 1

2 〉 = | 3
2 ,− 3

2 〉. (4.94d)

The Δ+ particle is not identical with the proton: The isospin factors differ in the value of I, but
the full wave-functions also differ in the spin factors: Δ+ has spin 3

2 h̄ and the proton spin is 1
2 h̄.

Similarly, Δ0 and n0 have similar isospin factors – which is identified as the “bookkeeping” notation
of the u-d content. So, for example, there exists the decay11

u d

d

u

p+

W −

u
d

π π−

Δ0Δ0

u d

d

u
p+

g

u

d

−
Δ0 → p+ + π −

Although Δ0 and n0

contain the same
quarks, n0 does not
have a sufficient mass
for such a decay.

(4.95)

From these Feynman diagrams we estimate that the right-hand contribution to the process ampli-
tude is proportional to the square of the strong charge (because of the two gluon vertices) and
the left-hand contribution is proportional to the square of the weak charge (because of the two
W−-vertices). Owing to the immense difference in the strength of these interactions, the weak
contribution is negligible and is not calculated. The right-hand diagram may be cut by any curve
into the “initial” and “final” states, and the total isospin factor for the so-defined “initial” and “final”
state vector computed. Across each such cut of the diagram, isospin is conserved.

The ease of application of this combination of Feynman diagrams, isospin factors in state
vectors and of quick estimates of relative strengths of the contributions to the amplitude of the
process is the basic reason for the Feynman diagrams’ popularity. Owing to the relative simplicity
of the SU(2) group, isospin factors here do not give much more information than the u-d content of
the diagrams, but it is clear that they are nevertheless useful in estimates using the Wigner–Eckart
theorem, just as in the results (4.78)–(4.90).

4.3.3 Exercises for Section 4.3

✎ 4.3.1 Using equation (4.83) and following the derivation of equation (4.90), find the ratios
between the probabilities for all ten pion–nucleon scattering processes (4.82).

✎ 4.3.2 Evaluate the result (4.90) in the limit when M3/2 = M1/2.

✎ 4.3.3 Evaluate your solution to the problem 4.3.1 in the limit when M3/2 
 M1/2.

✎ 4.3.4 Evaluate your solution to the problem 4.3.1 in the limit when M3/2 = M1/2.

✎ 4.3.5 Evaluate your solution to the problem 4.3.1 in the limit when M3/2 � M1/2.

11 Section 4.4.2 will discuss the isospin details of π− as a bound state of a d- and an anti-u-quark.
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4.4 The eightfold way, the SU(3) f group and the u, d, s quarks
Some two decades after Heisenberg and Wigner introduced the isospin formalism and the SU(2)
group of symmetries, several elementary particle physics researchers realized that similar benefits
might be derived from grouping the eight baryons in the plot (2.32). They all have spin 1

2 , and
their masses are “layered” in isospin multiplets [293]:

S I3 Particles δm

0 − 1
2 , + 1

2 n0, p+ mn−mp
mp

= 1.38 × 10−3

−1 0 Λ0 —

−1, 0, +1 Σ−, Σ0, Σ+ �mΣ
mΣ+

= 4.49 × 10−3

−2 − 1
2 , + 1

2 Ξ−, Ξ0 mΞ−−mΞ0
mΞ0

= 5.32 × 10−3

(4.96)

where �mΣ denotes the average difference between the masses of the Σ+-, Σ0- and Σ−-baryons.
The “layering” is similar for the spin- 3

2 decuplet of baryons (2.35):

S I3 Particles δm

0 − 3
2 ,− 1

2 , + 1
2 , + 3

2 Δ−, Δ0, Δ+, Δ++ max(�mΔ)
mΔ

= 8.117 × 10−4

−1 −1, 0, +1 Σ∗−, Σ∗0, Σ∗+ max(�mΣ∗ )
mΣ∗

= 3.117 × 10−3

−2 − 1
2 , + 1

2 Ξ∗−, Ξ∗0 mΞ∗−−mΞ∗0
mΞ∗

= 2.087 × 10−3

−3 0 Ω− —

(4.97)

The relative difference between the average masses in any one layer is some 2 orders of magnitude
bigger than the in-layer relative mass differences. For the octet (4.96):

mΛ,Σ − mN

mN
= 0.2223,

mΞ − mΛ,Σ

mΛ,Σ
= 0.1162; (4.98)

and for the decuplet (4.97):

mΣ∗ − mΔ

mΔ
= 0.1238,

mΞ∗ − mΣ∗

mΣ∗
= 0.1075,

mΩ − mΞ∗

mΞ∗
= 0.0907. (4.99)

Thus, the approximate isospin SU(2) symmetry (which in the tabulations (4.96) and (4.97) mixes
the baryons horizontally) is about a hundred times better than the SU(3) f symmetry that also
includes strangeness (varying vertically in these tables). This agrees with the fact that the mass of
the s-quark (as measured by deep inelastic scattering) is 2 orders of magnitude bigger than that of
the u- and d-quarks; see Table 4.1 on p. 152, below.

However, not only was group theory practically unknown amongst physicists in the 1950s
and 1960s, but there also existed an open animosity towards group theory as representative of
“abstract mathematics.” Wolfgang Pauli supposedly [577] even called group theory Gruppenpest
(group pestilence, in German). Many results of angular momentum and isospin symmetry were
obtained not using the abstract methods of group theory, but by direct computations.12 Following

12 Even today, the Clebsch–Gordan coefficients and the Wigner–Eckart theorem with concrete applications – the main tool
in using SU(2) symmetry in the past three-quarters of a century – are very rarely even mentioned in mathematical
group theory textbooks. The computational methods developed mainly by physicists [565, 258, 581, 105] still have
not penetrated the “mathematicians’ circles.” On the other hand, the “abstract mathematics” does slowly seep into
fundamental physics, especially in superstring theory, and here often finds unexpected uses.
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the same practice, Gell-Mann derived most results in the same, “pedestrian” way, and only later
discovered the elegant arguments and derivations in the then known group theory. The “eight
baryon problem,” i.e., the problem of finding the right generalization of the isospin SU(2) sym-
metry that would encompass these eight baryons, thus had a thorny path. Murray Gell-Mann’s
“eightfold way” is in fact a collection of results that were obtained by such pedestrian meth-
ods, mostly using isospin SU(2)-results, as well as several phenomenological relations between
strangeness, the baryon number, charge, and other properties of particles that were observed in
experiments.13

Today, of course, we know that the relevant group is SU(3) f , which indeed has the isospin
SU(2) as a subgroup. In hindsight, the identification of the group was obstructed by the fact
that there are no three baryons that would span the fundamental 3-dimensional representation
of the SU(3) f group. The early proposal by Shoichi Sakata, whereby the Λ0-baryon extends the
isospin doublet p+, n0 into the SU(3) triplet, could not replicate the success of the isospin SU(2)
classification, and was soon abandoned.

Digression 4.2 In some version of Sakata’s proposal, the three baryons (p+, n0, Λ0) – so-
called “sakatons” – were supposed to “form” all other baryons and mesons: The mesons
would be obtained resulting from sakaton–antisakaton combinations, and baryons re-
sulting from a combination of three sakatons, in all possible combinations. Formally,
that indeed does produce a reasonable list of hadronic states identified by their charges,
isospin, strangeness, etc. However, it was not at all clear in what sense such “products” of
baryons and antibaryons could represent much lighter mesons, or – even more puzzling –
how the baryon states with the quantum numbers of the sakaton triplet, (p+, n0, Λ0),
could also be found within the list obtained by combining three sakatons. That would
imply that any one of these three baryons could be represented as a system of three
copies of these very same baryons – which clearly leads to an infinite regression and ob-
structs the identification of this scheme as a model in which hadrons are “really” bound
states of “real” particles. Many of the supporters of the so-called “S-matrix approach”
to strong interactions even openly accepted this infinitely regressive interpretation of
Sakata’s classification scheme.

Recall that in the 1960s – especially in the southwestern parts of the USA – vari-
ants of eastern philosophies became very popular and mixed with science [☞ e.g.,
Refs. [91, 487, 591]]. This additionally contributed to the prejudices against group
theory and to the mystique of hadron classification. As one of the most prominent
advocates of SU(3) f classification, Gell-Mann contributed to this confusion both by
nomenclature (“eightfold way”) and by avoiding to categorically decide for or against
the infinitely regressive interpretation. In sharp contrast, Richard Feynman openly ad-
vocated the “real” particle-physicist approach, whereby hadrons are really bound states
of more elementary particles, which he called partons, avoiding Gell-Mann’s “quarks.”
During the 1960s, Gell-Mann gradually accepted Feynman’s intuitive image – they were
both at CalTech (California Institute of Technology, Pasadena) – which ultimately led to
the final formulation and application of the quark model.

13 Gell-Mann spent the 1959/60 academic year in Collège de France, looking for the right generalization of SU(2), and
never thought of asking the resident mathematicians – amongst whom was the world-famous Jean-Pierre Serre – for
help. Only late in 1960, back at CalTech, did Gell-Mann get the help of a mathematician (Richard Block) in realizing
that this generalization, the SU(3) group, was already very well known amongst mathematicians [119, 577].
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Gell-Mann’s successful prediction of the Ω−-baryon’s existence [☞ Section 4.4.3], complete
with its quantum numbers and its mass approximately given by the relation (2.37), was essential
for accepting his “eightfold way,” i.e., the classifying application of the SU(3) f group of “flavors.”
The original idea for the eightfold way stemmed from “finding a home” for the isospin dou-
blet p+–n0 not in the direct generalization – such as Sakata’s triplet – but in the octet of spin- 1

2
baryons (2.32). In comparison, it was clear that the nine spin- 3

2 baryons (4Δ, 3Σ∗ and 2Ξ∗) had to
form a bigger multiplet (2.35), so that the classification scheme also had to contain in a natural
way multiplets bigger than the octet, but to not contain multiplets such as 4-plets, 5-plets, etc.

Besides, the classification of hadrons turned out much simpler upon accepting the quark
model, where the u-, d- and s-quarks span the fundamental 3-dimensional representation [☞ Sec-
tion A.1.4], and mesons and baryons are bound states of quarks. Using the SU(3) f group, it is fairly
easy to show that the meson and baryon multiplets must have 8, 10, 27, 28, 35, . . . particles, and
not some other numbers – although the SU(3) group also has representations of dimensions 3, 6,
15, 21, 24, . . .

To wit, representations of the SU(3) group also have the so-called “triality,” which is additive
modulo 3 [☞ Section A.4]. The elements of the fundamental, 3-dimensional representation – i.e.,
the u-, d- and s-quarks – have triality 1, antiquarks triality −1 ∼= 2, and states with n quarks and n
antiquarks then have triality (n−n) (mod 3). So, if both mesons and baryons must have triality of
0, this immediately rules out the SU(3) representations of dimensions 3, 6, 15, 21, 24, . . . , which
were indeed never observed. The “triality-0” condition selects the representations of dimensions 1,
8, 10, 27, 28, 35, etc., of which, however, only the first three groupings have ever been observed.

In turn, using that mesons are quark–antiquark (3-3∗) bound states and since 3 ⊗ 3∗ = 1 ⊕ 8,
mesons may only form singlets and octets of the SU(3) f classification group. Similarly, using that
baryons are three-quark (3-3-3) bound states and since 3 ⊗ 3 ⊗ 3 = 1 ⊕ 8 ⊕ 8 ⊕ 10, baryons
may only form singlets, octets and decuplets; see example A.6. Consequently, the triality-0 rep-
resentations 27, 28, 35, etc., may only appear as metastable multi-baryon and multi-meson
states [☞ Appendix A.4.2].

Of course, just like the isospin SU(2) symmetry, the SU(3) f -transformations are only approx-
imate symmetries, and with a bigger tolerance.14 With the discovery of the J/ψ-particle and the
c-quark, the SU(3) f -symmetry was extended into the SU(4) f -symmetry, which implies even bigger
tolerance, etc. This progressively growing tolerance – i.e., measure of imprecision – of the clas-
sifying SU(n) f -symmetry is reflected in the effective masses of quarks:15 see Table 4.1 The basic

Table 4.1 Quark masses in MeV/c2 [☞ Figure 2.1 on p. 76]

Effective masses in
Quark Mass Mesons Baryons

Light
u 4.2 310 363
d 7.5
s 150 483 538

Heavy
c 1,100 1,500
b 4,200 4,700
t 174,200 � 174,200

14 In this context, the tolerance of an approximate symmetry is the margin of permitted difference between the masses of
the particles linked by the purported symmetry.

15 By its definition, mass is the measure of the object’s inertia. Since quarks cannot be isolated, neither can their inertia
be measured as for free particles. Their effective mass is the measure of their inertia within the bound state (meson or
baryon), and so is always affected by the interactions with the “rest” of that bound state, i.e., with the other quarks and
gluons and depends on the specific bound state. For the “effective mass,” one then always cites average values.
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idea in applications of such a phenomenologically defined SU(n) f -symmetry is simple: Let G be the
group of approximate symmetries with a given tolerance, and H ⊂ G a subgroup of approximate
symmetries with a finer tolerance. The contributions to the Hamiltonian that are H-invariant but
not G-invariant are treated as “corrections” to the initial Hamiltonian that is G-invariant. A larger
tolerance level implies a larger group of approximate symmetries, and a smaller (finer) tolerance
level reduces the group of operations that are accepted as approximate symmetries.

The best known example for this idea is the so-called Zeeman effect: non-relativistic treat-
ment of the hydrogen atom with neglected spins (4.1)–(4.8e) is subjected to an external magnetic
field �B, which adds to the Hamiltonian the “correction”

HZ = −�μ · �B = μB
�B · (g�L + gsS

)
, g� = 1, gs = 2

(
1 + α

2π + · · · ). (4.100)

The basic Hamiltonian, without this correction, has Spin(4) symmetry [☞ Section 4.1.1], whereas
the Hamiltonian with the Zeeman addition only has Spin(2) ⊂ Spin(4) symmetry. In particle-
physicist parlance, one says that the Zeeman interaction with the external magnetic field – and so
that external magnetic field itself – explicitly breaks the Spin(4) symmetry of the hydrogen atom.
By analogy, and because of the quark mass-hierarchy given in Table 4.1 on p. 152, the Hamiltonian
terms, i.e., the mass contributions for mesons and baryons may be organized as:

1. the SU(6) f -symmetric, original Hamiltonian;
2. the SU(5) f -symmetric “corrections,” where the t-quark is separated by contributions of

order mt ≈ 174.2 GeV/c2;
3. the SU(4) f -symmetric “corrections,” where also the b-quark is separated by contributions

of order mb ≈ 4.7 GeV/c2;
4. the SU(3) f -symmetric “corrections,” where also the c-quark is separated by contributions of

order mc ≈ 1.5 GeV/c2;
5. the SU(2)I-symmetric “corrections,” where also the s-quark is separated by contributions of

order ms ≈ 0.5 GeV/c2;
6. the final “corrections” also break the isospin SU(2)I-symmetry, and finally separate the

u- and d-quarks.

In practice, this approach is used in combination with other, more directly physics-inspired ideas.
The next few sections will peek into some of those estimates.

4.4.1 Quarkonium
Mesons are bound states of a quark and an antiquark, so their analysis should follow the analysis
of two-body bound states, akin to the hydrogen atom and positronium [☞ Section 4.1]. There
is, however, a huge difference! In the hydrogen atom, the ratio of the binding energy and the rest
energy of (either of) the bound particles is 13.6 eV/510.999 keV ≈ 2.66× 10−5. In contradistinction,
the binding energy of the quarks in mesons and baryons is in fact infinitely large, since the quarks
cannot be extracted from these bound states. This involves the fact that in attempting to extract a
quark one must invest amounts of energy that are at least comparable with the rest energy of the
quarks themselves, whereby it is energetically more favorable to convert the invested energy into
new–quark antiquark pairs

Meson

q

q′

E
q

q′

E q

q′
q′′ q′′′

E q

q′
q′′ q′′′

Two mesons

(4.101)
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rather than further deforming the original bound state. Because of this possibility of creating
quark–antiquark pairs, the process is essentially relativistic and definitely within the domain
of field theory, where the number of particles is not conserved, as it is in standard quantum
mechanics.

Besides, in the case of the hydrogen atom and exotic “atoms” such as muonium and positro-
nium, the basic – Coulomb – potential is well known. In the case of strong interactions, however,
there is no well-defined potential in the same sense: Recall that the Coulomb potential is a field
that extends around the given electrically charged particle. In all points of space, it gives the infor-
mation as to how the electrostatic force at that point would act upon a probing electric charge –
if and when such a probing electric charge is placed at that point. In the case of electrodynamics,
this mental construction has an excellent physical meaning, since it is physically possible to test
the Coulomb field of a given particle with probing electric charges, which we really can move and
place at will. Upon quarks, which are forever confined within mesons and baryons, we exert far
less control.

In the case of mesons built of “heavy” quarks: c, b and t, it is possible to apply the analysis fol-
lowing the positronium template. Just before the discovery of the J/ψ-particle, Hugh David Politzer
and Thomas Appelquist concluded that the c-quark – were it to exist following the logic of the
so-called Glashow–Iliopoulos–Maiani (GIM) mechanism – would have to have non-relativistic (c c̄)
bound states akin to positronium, and which they called “charmonium.” When the J/ψ-particle was
experimentally discovered, it was immediately identified as the 1 3S2-state of charmonium,16 and
soon the other n = 1, 2 states (except 2 1P1, the detection of which poses exceptional experimental
difficulties) were found.

The charmonium states are very well approximated following the positronium template, if
the potential is modeled as

Vc = −4
3
αs h̄c

r
+ F0 r, (4.102)

where F0 is a coefficient of about 16 tons, and αs is the strong interaction analogue of the fine
structure constant; the coefficient 4

3 will be computed in equation (6.68). This potential, of course,
grows infinitely and so gives infinitely many bound states, the energy En of which asymptotically
grows as n3/2. [ ✎Why?] However, the masses of the bound states with n � 3 are bigger than the
“DD -threshold” (the masses of the lightest D–D meson pair), so that such (c c̄)-states very quickly
decay and are regarded as quasi-bound states. Table 4.2 lists a few lightest mesons that contain
the c-quark.

— ❦ —

The story was repeated a few years later: in 1976, E. Eichten and K. Gottfried predicted that
“bottomonium” would have to have even more true bound states than charmonium. When the
first Υ-particle was detected in 1977, it was identified as the 1 3S1 state of the (b b̄) system and
during the next few years the existence of the (b b̄)-bound states with n � 4 was experimentally
confirmed.

Finally, the (t t̄) system was only recently detected owing to the much larger t-quark mass,
and the “toponium” states are still relatively unexplored. Also, the “mixed” (cb̄)-, (ct̄)-, (bt̄)-states
and their conjugates may be analyzed akin to the muonium (μ+ e−). The first of these particles,
B+

c = (c b̄) and B−
c = (b c̄) are experimentally confirmed, with a mass of 6.276 GeV/c2.

16 The spectroscopic notation “n 2S+1LJ” gives the quantum numbers n, �, s, j, where the letter gives the orbital angular
momentum via the identification of S, P, D, F, G, H, I, J, . . . as � = 0, 1, 2, 3, 4, 5, 6, 7, . . .
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Table 4.2 Lightest mesons containing the c-quark; masses in MeV/c2

Name n 2S+1LJ JPC Mass

ηc 1 1S0 0−+ 2, 980.3
J/ψ 1 3S1 1−− 3, 096.9

χc0 1 3P0 0++ 3, 414.8
χc1 1 3P1 0++ 3, 510.7
χc2 1 3P2 0++ 3, 556.2

ηc 2 1S0 0−+ 3, 637
J/ψ 2 3S1 1−− 3, 686.1

Charmonium: (c c̄) states

Name (q q) JP Mass

D+ (c d) 0− 1,869.6
D− (d c̄)

D0 (c u) 0− 1,864.8
D 0 (u c̄)

D∗0 (c u) 1− 2,007.0
D ∗0 (u c̄)

D∗+ (c d) 1− 2,010.3
D∗− (d c̄)

4.4.2 Light mesons
Mesons that contain a light quark or antiquark automatically must be analyzed as relativistic bound
states – for which there is no complete theoretical description☞ .17 Therefore, we remain content
herein with classification.

The first fact worth noting is that although there are three quarks at our disposal, and so
nine possible (q q) bound states (fully neglecting spins, orbital angular momentum and dynamical
details), mesons appear in groups of eight [☞ plot (2.31) as well as the result (A.76c)].

The reason for this is similar to the fact that with only two quarks, u and d, there exist not
four but only three pions, π±,π0. The SU(2)I symmetry solves this puzzle by the method of isospin
“addition.” But, before that, the isospin of u and d must be established. In tensor notation, we
have

{t1, t2} = {u, d} ⇒ {t1, t2} = {u, d}. (4.103)

However, since εαβ is SU(2)-invariant [ ✎why?] , we may identify (tα)† = tα = εαβtβ, so that
(regarding isospin properties only!)

t1 = ε12t2 = t2 ⇒ |u〉 = |d〉 = | 1
2 ,− 1

2 〉, (4.104a)

and t2 = ε21t1= −t1 ⇒ |d〉 = −|u〉= −| 1
2 , + 1

2 〉. (4.104b)

Thus, {|u〉, |d〉}⊗ {|u〉, |d〉} =
{| 1

2 ,− 1
2 〉,−| 1

2 , + 1
2 〉
}⊗ {| 1

2 , + 1
2 〉, | 1

2 ,− 1
2 〉
}

(4.105)

=
{|1,±1〉, |1, 0〉}⊕ {|0, 0〉} =

{|π±〉, |π0〉}⊕ {|η〉}, (4.106)

where

|1, +1〉 = | 1
2 , + 1

2 〉| 1
2 , + 1

2 〉 = −|d〉|u〉,
|1, 0〉 = 1√

2

(| 1
2 , + 1

2 〉| 1
2 ,− 1

2 〉 + | 1
2 ,− 1

2 〉| 1
2 , + 1

2 〉
)

= 1√
2

(−|d〉|d〉 + |u〉|u〉),
|1,−1〉 = | 1

2 ,− 1
2 〉| 1

2 ,− 1
2 〉 = |u〉|d〉,

|0, 0〉 = 1√
2

(| 1
2 , + 1

2 〉| 1
2 ,− 1

2 〉 − | 1
2 ,− 1

2 〉| 1
2 , + 1

2 〉
)

= 1√
2

(−|d〉|d〉 − |u〉|u〉).

(4.107)

17 N.B. One of the approaches is the so-called (MIT) “bag model”: One approximates that quarks are free particles while
within the meson, where they are confined by outside “pressure,” which produces an impenetrable “bag.” This “bag”
is a 3-dimensional infinitely deep potential, the walls of which have a time-variable shape. Although the model is
phenomenologically successful, it is clear that this is an ad hoc fiction where one needs to explain the dynamical origin
of that “pressure.” Another approach uses the so-called Gribov version of gauge theory of strong interactions and quark
confinement [388].
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Then18 ⎧⎪⎨⎪⎩
|π+〉 = −|d u〉,
|π0〉 = 1√

2

(|u u〉 − |d d〉),
|π−〉 = |u d〉,

and |η〉 = − 1√
2

(|u u〉 + |d d〉). (4.108)

Note the signs that stem from the SU(2)I-identification |d〉 = −| 1
2 , + 1

2 〉, whereby |π0〉 looks like an
antisymmetric combination, but is not: a quark and an antiquark cannot be thought of as particles
that are “identical up to some ‘polarization’ (or other selectable property),” so as to define the
exchange (anti)symmetry. Instead, if we use u, d as the basis and u, d as its conjugate basis, the
three pion states (4.108) form a Hermitian matrix with no trace, whereas the η-state represents
the trace of a Hermitian matrix.

So, define qα so that q1 = u and q2 = d, and

π+ = (qβ (σσσσ+)αβ qα) = (du), (4.109a)

π0 = 1√
2
(qβ (σσσσ3)αβ qα) = 1√

2
(uu − dd), (4.109b)

π− = (qβ (σσσσ−)αβ qα) = (ud), (4.109c)

where σσσσ± := 1
2 [σσσσ1 ± iσσσσ2] and σσσσ1,σσσσ2,σσσσ3 are Pauli matrices:

σ1 =
[

0 1
1 0

]
, σ2 =

[ 0 −i
i 0

]
, σ3 =

[ 1 0
0 −1

]
, (4.109d)

the halves of which satisfy the defining relations (A.38a) of the SU(2) algebra.
However, comparison with experiments does not single out an unambiguous candidate for

|η〉: in fact, there exist two spin-0 (pseudo-scalar, JPC = 0−+) particles with isospin |0, 0〉:

η : 547.853 MeV/c2, η′ : 957.66 MeV/c2, (4.110)

as well as two spin-1 (vectorial, JPC = 1−−) excitations:

ω : 782.65 MeV/c2, φ : 1019.455 MeV/c2. (4.111)

Since the masses of the η- and ω-mesons are larger than the kaon masses (2.31), it is clear
that the classification must also include the mesons that contain the s-quark, and also that η and
η′ (and similarly ω and φ) are linear combinations that also contain (s-s̄)-contributions.

Generalizing the identification (4.109), by means of including the third quark, q3 = s, and
using Gell-Mann’s matrices (A.71), we have

π+ = (du), π− = (ud), π0 = 1√
2
(uu − dd), η = 1√

6
(uu + dd − 2s̄s), (4.112a)

K+ = (s̄u), K0 = (s̄d), K 0− = (ds), K− = (us), (4.112b)

and
η′ = 1√

3
(uu + dd + s̄s). (4.112c)

These 8 + 1 states with antiparallel (S = 0) quark spins and orbital angular momentum � = 0 then
have their total angular momentum j = 0.

18 In fact, the real η0 particle is a linear combination of not only |u〉⊗|u〉 and |d〉⊗|d〉, but also of |s〉⊗|s̄〉; see
equations (4.112).
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Combining the antiquark triplet {qα, α = 1, 2, 3} and quark triplet {qα, α = 1, 2, 3} into 8+1
mesons (4.112) then precisely follows the SU(3) decomposition (A.76c):

3∗ ⊗ 3 = 8 ⊕ 1. (4.113)

Of course, this SU(3) f -symmetry is approximate: in reality, kaons are heavier than the pions, as
they contain the heavier s-quark instead of the lighter d-quark. Besides, the η-meson is an inte-
gral part of the SU(3) f octet and its mass is just barely larger than the kaon mass, reflecting the
approximate nature of the SU(3) f -symmetry. On the other hand, the η′-meson does not belong in
the SU(3) f octet, but is a “singlet” – i.e., an SU(3) f -invariant.

Excitation of these states where the sum of quark spins and orbital angular momentum equals
1 then produces the “vector” (spin-1) ρ±-, ρ0-, K∗±-, K∗0-, K ∗0- and φ-mesons. The total angular
momentum of the bound state – with all contributions, orbital and spin – is the spin of the bound
state as a particle. While the masses of the charged vector-mesons follow those of the charged
pseudo-scalar mesons, φ- and ω-mesons mix “maximally.” Experiments indicate that

ω �= 1√
6
(uu + dd − 2s̄s), but ω ≈ 1√

2
(uu + dd); (4.114a)

φ �= 1√
3
(uu + dd + s̄s), but φ ≈ (s̄s). (4.114b)

The vector and pseudo-scalar mesons turn out to differ predominantly in the relative orientation
of quark spins and both are well described as S-states, with no relative angular momentum. The
difference in their masses should then stem from the spin–spin interaction, akin to the Se–Sp
contribution (4.27c) to hyperfine structure in the spectrum of the hydrogen atom. Thus, the meson
mass is parametrized as

M(meson) ≈ mq + mq +
A

mqmq

〈
Sq·Sq

〉
, (4.115)

where the coefficient A is some multiple of |Ψ(�0, t)|2 that cannot be computed reliably for a rela-
tivistic system, and so is determined by comparing with experimental data. Using the well-known
“trick”:

�S := �Sq + �Sq ⇒ �Sq·�Sq = 1
2

(
S2 − S2

q − S2
q
)
, (4.116)

the difference between the observed average masses of pseudo-scalar and vector mesons is rather
well explained:

�Sq·�Sq =
{ 1

4 h̄2, for S = 1 (vector mesons),

− 3
4 h̄2, for S = 0 (pseudo-scalar mesons).

(4.117)

Using the effective (so-called “constituent”) masses of quarks inside mesons from Table 4.1 on
p. 152, and the best value of the parameter A ≈ 4m2

u
h̄2 160 MeV/c2, the masses of pseudo-scalar and

vector mesons are obtained to within 1% from the experimental value [☞ Table 4.3] – except for
the η′-meson, the mass of which poses an exceptional problem for the quark model [☞ commentary
in Ref. [445]].

In this way the quark model with the SU(3) f -symmetry predicts an infinitely growing
ladder of meson (8 + 1) nonets, in good agreement with experiments up to the indicated
discrepancies (4.114); Table 4.4 lists the first few nonets.

4.4.3 Baryons
The number of experimentally detected baryons composed of the u-, d- and s-quarks grows
faster with mass than is the case with mesons. Foremost, this happens because of the fact that
baryons are three-particle bound states, so that there exist combinatorially more different in-
teractive contributions to the mass – such as (4.16) and (4.27a)–(4.27c), as well as (4.46a)
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Table 4.3 Average masses of pseudo-scalar and vector mesons, in MeV/c2. The η′-meson mass poses an
exceptional problem for the quark model; see commentary in Ref. [445].

Meson Computed Measured

π 140 138
K 485 496
η 559 549
η′ 303 958

Meson Computed Measured

ρ 780 776
ω 780 783
K∗ 896 892
φ 1, 032 1, 020

Table 4.4 Lightest meson nonets in the SU(3) f quark model

Nonet content Mass∗
� S JPC I = 1 I = 1

2 I = 0 (MeV/c2)

0 0 0−+ π K η, η′ 500
1 1−− ρ K∗ ω, φ 800

1 0 1+− B Q2 H, ? 1,250

1 0++ δ κ ε, S∗ 1,150
1++ A1 Q1 D, E 1,300
2++ A2 K∗ f , f ′ 1,400

∗ Rough averages; see plot (2.31) and Ref. [293]

and (4.47) [☞ plots (2.32) and (2.35)]. These significantly complicate the computations and
even just the estimates, hindering the experimental identification as to which baryon belongs to
which multiplet.

Classification
As three-particle systems, baryons have two orbital angular momenta: the orbital angular mo-
mentum of any two of the three quarks about their center of mass, and then the orbital angular
momentum of that two-quark system and the third quark about their joint center of mass. We will
consider only states with n = 1 and � = 0 = �′, the masses of which are easily shown to be the
lowest.19 In this case, the baryon spin stems exclusively from the sum of the quark spins, for which
the addition of three spins of magnitude 1

2 we have{| 3
2 ,± 3

2 〉, | 3
2 ,± 1

2 〉
}

S
,

{| 1
2 ,± 1

2 〉[12]

}
,

{| 1
2 ,± 1

2 〉[23]

}
. (4.118)

The subscript S denotes total symmetry and, following Ref. [243], we use the basis

| 1
2 , + 1

2 〉[12] = 1√
2

(|↑↓↑〉 − |↓↑↑〉), | 1
2 ,− 1

2 〉[12] = 1√
2

(|↑↓↓〉 − |↓↑↓〉); (4.119)

| 1
2 , + 1

2 〉[23] = 1√
2

(| ↑↑↓〉 − |↑↓↑〉), | 1
2 ,− 1

2 〉[23] = 1√
2

(| ↓↑↓〉 − |↓↓↑〉), (4.120)

which are antisymmetric with respect to the exchange of the particles indicated in the subscript. It
is not hard to show that

| 1
2 , + 1

2 〉[13] = 1√
2

(|↑↑↓〉 − |↓↑↑〉) = | 1
2 , + 1

2 〉[12] + | 1
2 , + 1

2 〉[23], (4.121)

19 The mass of a baryon as a bound state of three quarks equals the sum of the masses of the constituent quarks, minus
the mass equivalent of the binding energy. Then, the strongest-bound baryons are also the lightest amongst the possible
bound states of the given quarks.
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and similarly for | 1
2 ,− 1

2 〉[13]. We introduced the abbreviations:

| ↑〉 := | 1
2 , + 1

2 〉, | ↓〉 := | 1
2 ,− 1

2 〉, | ↑↓↑〉 := | 1
2 , + 1

2 〉| 1
2 ,− 1

2 〉| 1
2 , + 1

2 〉, etc. (4.122)

Using the approximate SU(3) f -symmetry, u-, d- and s-quarks are treated as if they were
different polarizations of the same fermion, so that Pauli’s exclusion principle must be applied.
That is, the entire wave-function of the bound state of three quarks must be antisymmetric with
respect to the exchange of any two of the three quarks. The wave-function for the baryon then
factorizes:

Ψ(baryon) = Ψ(�r, t) χ(spin) χ(flavor) χ(color). (4.123)

For states with � = 0 = �′, Ψ(�r, t) must be a totally symmetric function since it cannot depend
on angles, and so neither on the quarks’ relative positions. On the other hand, the color factor
depends on the additional degree of freedom: each quark has a linear combination of the three
primary colors [☞ Section 2.3.13]. That is, every quark is in fact a triple of quarks that span the
3-dimensional representation of the SU(3)c-symmetry,20 and a bound state of three quarks must
be SU(3)c-invariant. Group theory applies to the SU(3)c-symmetry as well as for SU(3) f , and the
decomposition (A.76f) provides for the fact that the SU(3)c-invariant factor χ(color) is totally
antisymmetric.

Since the entire product (4.123) must be totally antisymmetric by Pauli’s exclusion principle,
and Ψ(�r, t) is totally symmetric while χ(color) is totally antisymmetric, it follows that the product
χ(spin)χ(flavor) must be totally symmetric.

Since the χ(flavor) factor for the decuplet of the SU(3) f -symmetry is totally symmetric [☞ de-
composition (A.76f)], it follows that the χ(spin) factor must also be totally symmetric. Writing out
the first two of the kets (4.118):

| 3
2 , + 3

2 〉 = | ↑↑↑〉, | 3
2 , + 1

2 〉 = 1√
3

(| ↑↑↓〉+ | ↑↓↑〉+ | ↓↑↑〉), (4.124a)

| 3
2 ,− 3

2 〉 = | ↓↓↓〉, | 3
2 ,− 1

2 〉 = 1√
3

(| ↑↓↓〉+ | ↓↑↓〉+ | ↓↓↑〉), (4.124b)

we know that these four spin states | 3
2 , ms〉 are totally symmetric, so that these ten baryons

must have spin- 3
2 . That is Gell-Mann’s decuplet (4Δ, 3Σ∗, 2Ξ∗, Ω−), where the fast experimental

confirmation of the predicted Ω− baryon induced most researchers to finally accept the quark
model.

The construction of the octet is a little more complicated, as we must find a totally symmetric
(linear combination) of products of χ(spin) and χ(flavor) that, separately, have a mixed symmetry.
Notice first that the product χ[12](spin)χ[12](flavor) is symmetric with respect to the exchange of the
first two particles, since each of the two factors is antisymmetric. Then, it follows that the linear
combination

χ[12](spin) χ[12](flavor) + χ[13](spin) χ[13](flavor) + χ[23](spin) χ[23](flavor) (4.125)

is totally symmetric and provides the spin-flavor factor in the wave-function (4.123) for the octet
of spin- 1

2 baryons. In spite of the relationship (4.121) – whereby | 1
2 , ms〉[13] is linearly dependent on

| 1
2 , ms〉[12] and | 1

2 , ms〉[23], the bilinear terms in the expression (4.125) are linearly independent, and
the full expression does not simplify.

— ❦ —

Without the additional color degree of freedom for quarks, i.e., without the totally antisymmet-
ric χ(spin) factor in the product (4.123), the product Ψ(�r, t) χ(spin) χ(flavor) would have to be

20 Unlike the approximate SU(3) f -symmetry, the SU(3)c-symmetry is exact.
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totally antisymmetric. For the state with smallest mass where n = 1 and � = 0 = �′, the product
χ(spin) χ(flavor) would have to be totally antisymmetric. For spin- 1

2 octets, one could construct
such a state, but the spin- 3

2 baryons would have to have a totally antisymmetric χ(flavor) factor,
which would have to be the SU(3) f -invariant – and so a single spin- 3

2 baryon, instead of the ten
experimentally detected ones (2.35).

This is the core of the problem noticed by Oscar W. Greenberg in 1964. As a resolution, he
proposed [229] that the quark annihilation and creation operators should satisfy para-fermionic
rules (2.41c)–(2.41d). This turns out to effectively introduce an additional degree of freedom –
the same as the one called “color” in the 1965 independent proposal by Han and Nambu, where
quarks had integral electric charges, with values that depend on the color [☞ Digression 5.14
on p. 214]. Their model also predicted particles (that would soon be called gluons) that mediate
transformations of the color charge in quarks, where these transformations have the structure of
the exact SU(3)c symmetry group and are the source of the strong interaction [☞ Section 6.1].
The current version of this model with fractionally (and color-independently) charged quarks was
proposed by Harald Fritzsch and Murray Gell-Mann in 1971, and was finalized in collaboration
with William A. Bardeen in 1973 [32].

Masses
By the reasoning used so far that led to the approximation (4.115), for baryons we have

M(baryon) ≈ m1 + m2 + m3 + A′ ∑
i �=j

1
mimj

〈
Si·S j

〉
, (4.126)

where the spin–spin contributions (leading to the hyperfine structure in the hydrogen atom spec-
trum) must be computed separately for baryons in isospin groups. Indeed, in the general case, the
three masses are different and every spin–spin pair – which stems from the dipole–dipole magnetic
interaction – must be considered separately.

In the decuplet case, the situation is simpler, as the χ(flavor) factor and therefore also the
χ(spin) factor are both totally symmetric. Thus, the spins of any two quarks are parallel, and the
well-known “trick”

�S1 · �S2 = 1
2

(
(�S1 + �S2)2 − S2

1 − S2
2

)
(4.127)

provides for each pair of quarks in the baryon decuplet:〈
�Si·�S j

〉
= 1

2

(
2 − 1

2 ( 1
2 +1) − 1

2 ( 1
2 +1)

)
h̄2 = 1

4 h̄2, for the decuplet. (4.128)

The cases

M(Δ) ≈ 3mu +
3A′ h̄2

4m2
u

and M(Ω−) ≈ 3ms +
3A′ h̄2

4m2
s

(4.129)

are particularly simple, where the first estimate applies to Δ++, Δ+, Δ0 and Δ− since mu ≈
md [☞ Table 4.1 on p. 152]. The results

M(Σ∗) ≈ 2mu + ms +
A′ h̄2

4

( 1
m2

u
+

2
mums

)
, (4.130a)

M(Ξ∗) ≈ mu + 2ms +
A′ h̄2

4

( 2
mums

+
1

m2
s

)
(4.130b)

are just a little more involved.
For the baryon octet, we first must look at the isospin sub-multiplets. For example, we know

the Λ0-baryon, a (u, d, s) bound state, has the isospin |0, 0〉-factor antisymmetric with respect to
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the u ↔ d exchange. For the χ(spin) χ(flavor) product to be symmetric, it must be that the spin
factor is also antisymmetric, and it then follows that the u- and d-quark spins in the Λ0-baryon are
antiparallel. Similarly, we know that the Σ±- and Σ0-baryons, also (u, d, s) bound states, form an
isospin triplet, {|1,±1〉, |1, 0〉}, so that the u- and d-quark spins in the Σ-baryons must be parallel.
Thus, 〈

�Su·�Sd

〉
=

{ 1
4 h̄2 in the Λ0-baryon,

− 3
4 h̄2 in the Σ-baryons.

(4.131)

Also the generalization of the relation (4.127) gives

�S1 · �S2 + �S1 · �S3 + �S2 · �S3 = 1
2

(
(�S1 + �S2 + �S3)2 − S2

1 − S2
2 − S2

3

)
, (4.132)

and 〈
�S1 · �S2 + �S1 · �S3 + �S2 · �S3

〉
=

{
3
4 h̄2 for the spin- 3

2 decuplet,
− 3

4 h̄2 for the spin- 1
2 octet.

(4.133)

Adding the corresponding terms and using that md ≈ mu, we have

M(p+, n0) ≈ 3mu − 3A′ h̄2

4m2
u

, (4.134)

M(Λ) ≈ 2mu + ms − 3A′ h̄2

4m2
u

, (4.135)

M(Σ) ≈ 2mu + ms +
A′ h̄2

4

( 1
m2

u
− 4

mums

)
, (4.136)

M(Ξ) ≈ 2mu + ms +
A′ h̄2

4

( 1
m2

s
− 4

mums

)
. (4.137)

With the effective quark masses taken from Table 4.1 on p. 152, and choosing the constant
A′ = (2mu/h̄)2 · 50 MeV/c2, one obtains excellent approximations for the measured masses [☞ Ta-
ble 4.5].

Table 4.5 The lightest baryon masses in MeV/c2

Baryon Computed Measured

p+, n0 939 939
Λ 1,116 1,114
Σ 1,179 1,193
Ξ 1,327 1,318

Baryon Computed Measured

Δ 1,239 1,232
Σ∗ 1,381 1,384
Ξ∗ 1,529 1,533
Ω 1,682 1,672

Magnetic moments
In the absence of orbital angular momenta, � = 0 = �′, the baryon magnetic moment is – up to
corrections of the type (4.24b) – simply the sum of the constituent quarks’ magnetic moments:

�μ(baryon) = �μ(1) +�μ(2) +�μ(3). (4.138)

For a spin- 1
2 particle, with charge q and mass m, we have

〈Iu3〉 =
〈

q
mec

S3

〉
= ± qh̄

2mec
, (4.139)
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and so

μu := 〈Iu(u)
3 〉 = ± eh̄

3muc
, μd := 〈Iu(d)

3 〉 = ∓ eh̄
6mdc

, μs := 〈Iu(s)
3 〉 = ∓ eh̄

6msc
, (4.140)

and

〈Iu3(baryon)〉 =
2
h̄

3

∑
i=1

〈
baryon|μi S(i)

3 |baryon
〉

. (4.141)

So, to compute the baryon magnetic moment, one must compute the right-hand side contribution
to the relation (4.141) for each baryon separately, by

1. writing out the baryon state explicitly as a linear combination (4.125),
using the results (4.124) and (4.118),

2. substituting this in the right-hand side sum (4.141),
term by term and for both the ket and the bra,

3. evaluating each term in the so-expanded sum,
4. and finally adding the partial results.

There are clearly many contributions, but the so-obtained values are in very good agreement with
the experimental measurements, as shown in Table 4.6 [243].

Table 4.6 The baryon magnetic dipole magnitudes in the first octet, expressed in units of nuclear
magneton, eh̄

2mp c = 3.152 × 10−13 MeV/c2/T

Baryon 〈Iu3〉 Computed Measured

p+ 1
3

(
4μu − μd

)
2.79 2.793

n0 1
3

(
4μd − μu

) −1.86 −1.913

Ξ0 1
3

(
4μs − μu

) −1.40 −1.253

Ξ− 1
3

(
4μu − μs

) −0.47 −0.69

Λ0 μs −0.58 −0.61

Σ+ 1
3

(
4μu − μs

)
2.68 2.33

Σ0 1
3

(
2μu + μd − μs

)
0.82 —

Σ− 1
3

(
4μd − μs

) −1.05 −1.41

As a final note on hadron spectroscopy, the Reader should recall that most hadrons decay
within ∼10−23 s of their creation within clusters of hundreds and thousands of simultaneous colli-
sion processes. The fact that such measurements on individual particles are in fact being performed
is an impressive feat of resourcefulness, ingenuity and hard work.

4.4.4 Exercises for Section 4.4

✎ 4.4.1 Estimate the relative magnitudes of the contributions analogous to (4.8b), (4.22),
(4.28), (4.32), (4.33), (4.34), (4.35), (4.40), (4.46a) and (4.47), as functions of αs, the
strong interaction constant, for (cc̄), (bb̄) and (tt̄) systems.
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✎ 4.4.2 Estimate the relative magnitudes of the contributions analogous to (4.8b), (4.22),
(4.28), (4.32), (4.33), (4.34), (4.35), (4.40), (4.46a) and (4.47), as functions of αs, the
strong interaction constant, for (cb̄), (ct̄) and (bt̄) systems.21

✎ 4.4.3 From the fact that the lifetime of charmonium states above the D–D threshold is
∼10−23 s and by comparing with the positronium lifetime (4.51), estimate αs and show that
αs ∼ O( 1

10 ) − O(1).

✎ 4.4.4 Write out all collisions of the π + π → π + π type.

✎ 4.4.5 Find the relation between the probabilities of the four collisions:

π+ + π+ → π+ + π+, π+ + π0 → π+ + π0, (4.142a)

π+ + π− → π+ + π− and π+ + π− → π0 + π0. (4.142b)

✎ 4.4.6 Use the Wenzel–Brillouin–Kramers (WKB) approximation to prove that, for the
potential (4.102), the bound-state energies En ≈ E1n3/2 for large enough n.

✎ 4.4.7 Determine the degeneracy of the states predicted by the non-relativistic treatment of
the potential (4.102). (Hint: try verifying the maximal symmetry of this non-relativistic Hamiltonian using
the relations (4.13) and explicit computation.)

✎ 4.4.8 Upon fully expanding the expression (4.125) and by explicitly tracing the action
of swapping quarks, show that the complete expression is symmetric with respect to the
exchange of any two of the three quarks.

✎ 4.4.9 Derive the relations (4.130).

21 N.B. The details of these systems are subject to contemporary research.





5
Gauge symmetries and interactions
It is well known that the overall phase of a wave-function in quantum mechanics is not measurable.
On the other hand, the so-called Aharonov–Bohm effect [☞ e.g., the texts [407, 471, 480, 472, 29,
324]] is based on the interference of two wave-functions and measures the relative phase, which
proves that it is not possible to circumnavigate the complex nature of wave-functions. This then
shows: (1) phases of wave-functions are physically relevant variables, and (2) any change in the
overall (common) phase in a wave-function of the whole system must be a symmetry. This and the
next chapters focus on this symmetry, and the corresponding conserved charge guaranteed to exist
by Noether’s theorem.

Moreover, this phase should be variable locally: in one way in one spacetime point, in another
way in another spacetime point. It turns out that this seemingly simple (gauge) principle is actually
the foundation of the contemporary understanding of all fundamental interactions [☞ [31] for the
most complete review to date]. These five chapters (5–9) are dedicated to the application of this
gauge idea, from technically simple examples towards more complex and realistic applications,
and not following the history of its development but using the benefit of hindsight and the lessons
of that history. For a flippant introduction of this idea, see also Refs. [33, 275, 269].

5.1 The non-relativistic U(1) example

Start with the well-known non-relativistic quantum-mechanical description of a particle under
the influence of a potential V(�r ), the wave-function of which is determined by the Schrödinger
equation:

ih̄
∂

∂t
Ψ(�r, t) =

[
− h̄2

2m
�∇2 + V(�r, t)

]
Ψ(�r, t), (5.1)

and by the boundary conditions. In part, the boundary conditions follow from the shape of the
potential and the chosen energy E of the system, and are in part specified by choice. For example,
in directions/regions where V(�r, t) > E as r → ∞, we require limr→∞ Ψ(�r, t) = 0; we also require
that both

∫
V d3�r |Ψ(�r, t)|2 and

∫
V d3�r Ψ∗(�r, t)H Ψ(�r, t) integrals are finite for every choice of the

volume V. In the direction êk where r → ∞ is not obstructed by a boundary condition, we may
require that

Ψ(�r, t) ∼ exp
{

+ i
∫

d(êk·�r)
√

2m[E−V(�r, t)]/h̄
}

, r → ∞. (5.2)
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Such a particle may freely “escape to infinity” in the direction êk, along which the kinetic energy
remains positive, limr→∞

(
E − V(�r )

)
> 0.

It is very well known that in this formalism the complex wave-function Ψ(�r, t) in its entirety
does not correspond to any measurable quantity, but that |Ψ(�r, t)|2 is a physically measurable
probability density of finding the particle in an infinitesimal volume d3�r at the point�r in space and
t in time. It follows that the phase of the complex function Ψ(�r, t) is not measurable,1 so that no
transformation

Ψ(�r, t) → eiϕ Ψ(�r, t) (5.3)

can have any physical (measurable) consequence. The transformation (5.3) is a symmetry of the
Schrödinger equation (5.1) if and only if the phase ϕ is a constant. In other words, the transfor-
mation (5.3) is a symmetry of the Schrödinger equation of the physical system described by the
equation if and only if the identical transformation is applied to all points in space and each mo-
ment of time. Such a symmetry transformation is called global. Its existence is the necessary and
sufficient condition for the application of Noether’s theorem, and – therefore – for the existence of
a corresponding conserved charge.

However, there should exist no physical obstacle for a transformation such as (5.3) to be
performed with the phase ϕ in one point of space and at one moment in time, and a completely
different phase in another point of space and at another moment in time. Indeed, the choice of
the wave-function phase should be a completely arbitrary choice of an unmeasurable degree of
freedom, with no measurable consequence. In other words, the transformation (5.3) would have
to be an exact symmetry of the physical system even if the phase ϕ is an arbitrary function of
x = (ct,�r ). Such transformations and symmetries are called local.

Digression 5.1 A rather formal justification for the transformation (5.3) to be a sym-
metry of the system is provided by noting that the formulation (5.3) in fact unnecessarily
relies on the coordinate representation of the abstract state |Ψ(t)〉. Furthermore, it is
known that only pure quantum states may be represented by a state vector |Ψ(t)〉, while
a general state must be represented by a real, convex, normalized linear combination

ρρρρ = ∑
n

rn |n〉〈n|, such that rn ∈ R, 0 � rn � 1, ∑
n

rn = 1. (5.4a)

This is called the state operator [29], a.k.a. the density matrix/operator [471, 472, 360,
for example]. Equivalently, ρρρρ† = ρρρρ, Tr[ρρρρ] = 1 and 〈u|ρρρρ|u〉 � 0 for every |u〉. A state
operator (5.4a) represents a pure state if there exists a |Ψ〉 = ∑n cn|n〉 such that ρρρρ =
|Ψ〉〈Ψ|; otherwise, ρρρρ represents a mixed state.

The phase transformation (5.3) of the state vectors |n〉, written as |n〉 → eiϕϕϕϕ|n〉,
leaves the state operator ρρρρ invariant:

ρρρρ→ ∑
n

rn

(
eiϕϕϕϕ|n〉

)(
〈n|e−iϕϕϕϕ†

)
= ∑

n
rn|n〉〈n| = ρρρρ,

if and only if
[

eiϕϕϕϕ , |n〉〈n| ] = 0 and ϕϕϕϕ† = ϕϕϕϕ.
(5.4b)

1 Here, we have in mind only the overall phase. In the transformation of the linear combination Ψ = Ψ1 + Ψ2 →
eiϕ1 Ψ1 + eiϕ2 Ψ2, the phase (ϕ1+ϕ2) is the unmeasurable overall phase, while the relative phase (ϕ1−ϕ2) is measurable
by means of interference. This overwhelmingly reminds us of the fact that the absolute values of coordinates (and the
phase is indeed a kind of coordinate) are not measurable quantities, while coordinate differences – i.e., distances – are.
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In turn, the information about the change of this (or any other) choice cannot be transported
instantly, and there will have to exist some physical mechanism for transporting this information
from point to point in space and time.

It is not hard to verify that the transformation (5.3) with ϕ = ϕ(�r, t) is not a symmetry of the
Schrödinger equation (5.1):

ih̄
∂

∂t
Ψ =

[
− h̄2

2m
�∇2 + V(�r, t)

]
Ψ, (5.5)

�
���

�
��

transformation (5.3), with ϕ = ϕ(�r, t)

ih̄
∂

∂t

(
eiϕΨ

)
=

[
− h̄2

2m
�∇2 + V(�r, t)

](
eiϕΨ

)
,

ih̄ eiϕ
(

i
∂ϕ

∂t

)
Ψ + ih̄ eiϕ ∂Ψ

∂t
= − h̄2

2m
�∇·

(
eiϕ(i�∇ϕ)Ψ + eiϕ�∇Ψ

)
+ V(�r, t)eiϕΨ,

ih̄ eiϕ
(

i
∂ϕ

∂t

)
Ψ + ih̄ eiϕ ∂Ψ

∂t

= − h̄2

2m

(
eiϕ(i�∇ϕ)2Ψ + eiϕ(i�∇2ϕ)Ψ + 2eiϕ(i�∇ϕ)·(�∇Ψ) + eiϕ�∇2Ψ

)
+ V(�r, t)eiϕΨ,

so, using the original equation (5.1) and upon dividing by Ψ(�r, t), we obtain

∂ϕ

∂t
=

h̄
2m

(
i(�∇2ϕ) + 2i(�∇ϕ)·(�∇ ln (Ψ)) − (�∇ϕ)2

)
. (5.6)

This result is absolutely unacceptable! Not only did the (unmeasurable!) phase ϕ(�r, t) turn out not
to be an arbitrarily selectable function of space and time, but it would have to satisfy a differential
equation (5.6) that depends on the particular state of the system represented by the wave-function
Ψ(�r, t)!

The resolution of this seeming paradox can only lie in changing the Schrödinger equation,
but in a way that does not ruin any of the many confirmed results obtained from this equation.
Evidently, this is a very demanding request.

Following the computation (5.5)–(5.6) closely, one notices that the ultimate – and absolutely
unacceptable – result stems from the fact that derivatives of the “new” wave-function eiϕΨ(�r, t)
differ from the eiϕ-multiples of the derivative of the “old” wave-function Ψ(�r, t). With this hint,
introduce a new kind of derivative:

∂

∂t
→ Dt :=

∂

∂t
+ X, �∇ → �D := �∇ + �Y, (5.7a)

where the quantities X and �Y will be determined so that these newfangled D-derivatives satisfy
the relations

D ′
tΨ

′ = D ′
t(eiϕΨ) = eiϕ(DtΨ), �D ′Ψ′ = �D ′(eiϕΨ) = eiϕ(�DΨ). (5.7b)

By writing Ψ = e−iϕΨ′, these requirements show that

(D ′
t · · · ) = eiϕ(Dte−iϕ · · · ), (�D ′ · · · ) = eiϕ(�De−iϕ · · · ), (5.7c)

where D ′
t, �D

′ denotes these new derivatives after the Ψ → eiϕΨ transformation. In turn, with these
newfangled derivatives, the Schrödinger equation becomes

ih̄DtΨ =
[
− h̄2

2m
�D2 + V(�r )

]
Ψ, or

[
ih̄Dt +

h̄2

2m
�D2 − V(�r )

]
Ψ = 0, (5.8)
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and changes under the transformation (5.3) as

0 =
[
ih̄D ′

t +
h̄2

2m
�D′·�D ′−V(�r )

]
(eiϕΨ) =

[
ih̄eiϕDt +

h̄2

2m
�D ′·eiϕ�D−eiϕV(�r )

]
Ψ

= eiϕ
[
ih̄Dt +

h̄2

2m
�D · �D − V(�r )

]
Ψ, (5.9)

which is satisfied precisely when equation (5.8) is. Thus, with these newfangled derivatives Dt
and �D, which themselves change via the transformation (5.3), the new Schrödinger equation (5.8)
remains invariant.

Comment 5.1 It is not at all unreasonable that the procedure for computing a rate of change
(the derivative operator) needed adjustment. Recall that the total derivative d

dt f
(
t, g(t)

)
=[

∂
∂t + ∂g

∂t
∂
∂g

]
f may be viewed as the partial derivative ∂

∂t corrected for the fact that the func-
tion f also depends on t implicitly, via its dependence on g(t). By the same token, complex
wave-functions also depend on the spacetime coordinates implicitly, via their dependence
on the choice of a spacetime variable phase.

It remains to examine the nature of these newfangled derivatives (5.7), as well as the dif-
ferences between the new Schrödinger equation (5.8) and the old one (5.1). The newfangled
derivatives satisfy (5.7c) [( ∂

∂t
+ X′

)
· · ·

]
= eiϕ

[( ∂
∂t

+ X
)

e−iϕ · · ·
]
,[(

�∇ + �Y′) · · · ] = eiϕ[(�∇ + �Y
)
e−iϕ · · · ]; (5.10)

which yields

X′ = X − i
∂ϕ

∂t
and �Y′ = �Y − i(�∇ϕ). (5.11)

The relations (5.11) ought to be familiar to all Students who have successfully completed a
standard electrodynamics course! With the definitions

Φ :=
h̄
iq

X, �A :=
ih̄
q

�Y, λ :=
h̄
q
ϕ, (5.12)

the definitions (5.7a) become

Dt :=
∂

∂t
+ i

q

h̄
Φ, �D := �∇− i

q

h̄
�A, (5.13)

and are called the covariant derivatives. Combining, we have

Φ → Φ′ = Φ − ∂λ

∂t
, �A → �A′ = �A + (�∇λ), (5.14a)

Ψ(�r, t) → Ψ′(�r, t) = eiqλ(�r,t)/h̄ Ψ(�r, t). (5.14b)

The first two relations are the standard gauge transformations of the vector and the scalar
electromagnetic potentials. The third relation is the corresponding gauge transformation of the
wave-function Ψ(�r, t) of a particle with the electric charge q, which is evidently a translation of the
phase of this function.
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Comment 5.2 The action of the gauge transformation (5.14b) implies that the complex con-
jugate wave-function Ψ∗(�r, t) represents a particle with the charge that is opposite to the
particle represented by Ψ(�r, t): q(Ψ∗) = −q(Ψ).

The first two transformation equations (5.14a) clearly imply that the effect of λ(�r, t) is in-
distinguishable from that of λ(�r, t) + λ0, where λ0 = const., and the single-valuedness of Ψ(�r, t)
then implies that λ0 must be an integral multiple of 2π· h̄

q0
, where q0 then must be a minimal, unit

electric charge. That is, the transformation function λ(�r, t) takes 2π· h̄
q0

-periodic distinct values, i.e.,
along a circle of radius h̄

q0
. In turn, the exponential Uλ := eiqλ(�r,t)/h̄ is unitary: (Uλ)† = (Uλ)−1,

and such λ-parametrized exponentials form the gauge group, called U(1) [☞ Appendix A, and
especially A.2].

More precisely, note that the transformation function, λ = λ(�r, t), remains an unrestricted,
arbitrary function of space and time2 – true to the original insight and definition as discussed
above. The combined transformation (5.14) is then the true and complete local symmetry: a con-
tinuous family of U(1) gauge groups of symmetries, one independent U(1) symmetry in every point
of space and time!

Owing to the identity �∇×(�∇ f ) ≡ 0 valid for any scalar function f , it follows that (�∇×�A)
is invariant with respect to the transformations (5.14). Similarly, since the transformation of �∇Φ
is precisely opposite of the transformation of ∂

∂t
�A, the sum (�∇Φ + ∂

∂t
�A) is also invariant. These

expressions are, of course, familiar:

�B := �∇×�A and �E := −
(
�∇Φ +

∂�A
∂t

)
(5.15)

are the magnetic and the electric fields, expressed in terms of the electromagnetic potentials. The
ability to define gauge-invariant fields �B and �E will be shown to be an exceptional consequence of
the abelian (commutative) nature of the U(1) gauge transformation (5.14).

Digression 5.2 The term “gauge transformation” for the relations (5.14) is a historical
atavism: It is a derivative of the literally translated German original coinage by Hermann
Weyl, Eichinvarianz, by which he denoted the invariance with respect to transforma-
tions (5.14) [564]. Weyl noticed that Einstein’s general theory of relativity is invariant
with respect to complex rescalings. His original idea that the imaginary part of the
rescaling function ϕ(�r, t) in the transformation (5.14b) may unite gravity with elec-
tromagnetism turned out unphysical. Such a rescaling symmetry would permit fixing
a length unit in Nature, for which Weyl used the German verb eichen, meaning to gauge,
to calibrate. The word gauge and its derivatives that are used in the English literature,
jauge in French, βαθμίδας in Greek, mérték in Hungarian, (simply imported) gauge in Ital-
ian, kalibróvoqna� in Russian, de gauge in Spanish, etc. are all literal translations of the
German verb eichen.

Soon, Vladimir A. Fok (first, according to Professor Okun [394], in 1926), Her-
mann Weyl, Erwin Schrödinger and Fritz London noticed that quantum mechanics,
as governed by the Schrödinger equation, has a symmetry with respect to the com-
bined transformations (5.14) using a real function ϕ(�r, t).3 This was derived here as a

2 Well, yes: λ(�r, t) clearly must be differentiable, at least once with respect to both t and�r for the equations (5.14a) to be
well defined; see however also Section 5.2.3.

3 Woit recounts [577, pp. 61–62] that Schrödinger hinted at this in a 1922 paper, but was chidingly reminded of this
neglected “tidbit” in December of 1926 by the young London; see also the account in Ref. [119].
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transformation stemming from the innate property of wave-functions that their phases
are not measurable.

Fundamental physics is indubitably quantum. Equations (5.1)–(5.14) and their logic
then indicate the fundamental nature of this principle to be that of a local symmetry ,
emphasizing that a spacetime variable parameter λ(�r, t) in the transformations (5.14)
parametrizes a spacetime continuum of U(1) symmetries. Local symmetry is then used
as a conceptually correct alternative for the historically well-entrenched term gauge
symmetry or the descriptive but rarely used modifier phase symmetry.

Comment 5.3 Note that the transformation (5.14) may be understood as a spacetime-depen-
dent translation of sorts in the (abstract, target) space of values of the functions defined
over the spacetime; a translation of the electromagnetic potentials and a phase-shift of the
wave-function:

Eq. (5.14) ⇒ Arg
[
Ψ(�r, t)

] → Arg
[
Ψ(�r, t)

]
+ ϕ(�r, t), Arg[z] := 1

2i ln
( z

z∗
)
. (5.16)

The electromagnetic potentials and the phase of the wave-function are all physically un-
measurable variables, the existence of which is however necessary for the consistency of
the model. Lorentz symmetry requires the gauge potentials to be 4-vectors, although only
two polarizations (components) have a physical meaning; the complex-analytic structure of
the Schrödinger and Dirac equations requires the use of complex wave-functions, although
the (overall) phase is not physically measurable.

With the definitions (5.12), the Schrödinger equation (5.8) becomes

ih̄
[ ∂
∂t

+
iQ
h̄

Φ
]
Ψ =

[
− h̄2

2m

(
�∇ +

Q

ih̄
�A
)2

+ V(�r, t)
]
Ψ. (5.17)

That is,

ih̄
∂

∂t
Ψ(�r, t) = HEM Ψ(�r, t), (5.18)

where

HEM =
1

2m

( h̄
i
�∇− Q �A(�r, t)

)2
+

[
V(�r, t) + Q Φ(�r, t)

]
(5.19)

is the Hamiltonian for a particle of mass m and electric charge q := Q(Ψ). The dynamics of this
particle is affected by the interaction with the potential V(�r, t), as well as the electromagnetic
potentials �A(�r, t) and Φ(�r, t).

Conclusion 5.1 The transformation (5.14) with (5.16) is the fundamental assertion that we
are at liberty to arbitrarily change the quantities that were introduced in the (mathemat-
ical) model of the physical system for its consistency, but which on principle represent no
physically measurable quantity.

It is worth noticing that the quantum description of the interaction of a charged particle with
the electromagnetic field is inherently described in terms of the electromagnetic potentials �A, Φ
and not in terms of the electric and magnetic field, �E, �B. Moreover, the Hamiltonian (5.19) can-
not, in the general case, be expressed locally (without integration) as an interaction of a charged
particle with the �E- and �B-fields.
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The following facts will be shown to be consequences of the abelian (commutative) nature
of the U(1) symmetry group: (1) the Maxwell equations4 (5.72) as well as the corresponding
Lagrangian and Hamiltonian for the electromagnetic field can be expressed exclusively in terms
of the electric and the magnetic field, and (2) electromagnetic potentials can be fully eliminated
from the equations of motion, the Lagrangian and the Hamiltonian except if there is matter that
interacts with the electromagnetic field.

Indeed, the transformations (5.14) are parametrized by one function, λ(�r, t), which defines
the local unitary operator

ϕ(�r, t) �→ Uϕ := exp
{

iϕ(�r, t) Q
}

(5.20)

as in equation (A.37), where the operator Q may be regarded:

1. from the mathematical vantage point, as the generator of the U(1) symmetry,
2. from the physical vantage point, the electric charge operator. The electric charge of a par-

ticle is then the eigenvalue and the wave-function of the particle the eigenfunction of the
operator Q.

At every point of spacetime x = (ct,�r ) separately, the (continuously many) operators Uϕ defined
by equation (5.20) form an abelian (commutative) group, denoted U(1). Since the function in the
exponent manifestly satisfies ϕ " ϕ+ 2π, this group is sometimes identified with the circle, S1. To
repeat: Since ϕ = ϕ(�r, t) gives an independent “angle”-transformation at every point in space and
time, we have a 4-dimensional continuum of U(1) symmetry groups.

Comment 5.4 The full space of “coordinates” in electrodynamics is therefore of the form
(spacetime× S1) – a 5-dimensional topological space, equipped with a particular geometry;
this was clear as early as in 1914 to Gunnar Nordstrøm [☞ Digression 11.5 on p. 414].

5.1.1 Exercises for Section 5.1

✎ 5.1.1 Fill in the details of the computation (5.7)–(5.14).

✎ 5.1.2 From the definitions (5.15), derive Gauss’s law for the magnetic field and Faraday’s
law of induction. (This proves that the equations (5.72b) are consequences of Maxwell’s
definitions (5.15).)

✎ 5.1.3 Show that the gauge-invariant scalar functions of ε0, μ0, �E and �B with the dimen-
sions of (volume) energy density and which are analytic functions of the components of the
vectors �E and �B must be of the form

c1
(
ε0 �E2) + c2

( 1
μ0

�B2) + c3
(√ ε0

μ0
�E·�B). (5.21)

The results in Table C.4 on p. 527, should be useful.

✎ 5.1.4 Determine the constants c1, c2, c3, c4, c5 so that∫
dt d3�r

{
c1
(
ε0 �E2) + c2

( 1
μ0

�B2) + c3
(√ ε0

μ0
�E·�B) + c4 ρΦ + c5�j·�A

}
(5.22)

4 James Clerk Maxwell described electrodynamics, originally in 1873, as a system of equations which would today be

written as �E := −�∇Φ − ∂�A
∂t and �B := �∇×�A, and then �∇·(ε0�E) = ρ and �∇×(�B/μ0) − ∂(ε0�E)

∂t = �j. By the Maxwell
equations (5.72) today, one understands the consequences of the first two of these equations together with the latter
two, expressed exclusively in terms of the electric and the magnetic field, where the electromagnetic potentials, �A and
Φ, are eliminated, and where there are neither (monopole) magnetic charges nor magnetic currents: ρm = 0 =�jm.
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is the Hamilton action the variation of which by Φ and �A, using the relations (5.15),
produces Gauss and Ampère’s law (5.72a).

5.2 Electrodynamics with leptons
By quantum electrodynamics one understands the relativistic theory that describes the interaction
of photons and electrically charged particles. Unlike leptons, quarks and hadrons also interact via
the much stronger strong nuclear interaction, so the analysis of their interactions is considerably
more complicated. This section is limited to the electromagnetic interactions of leptons, and the
next one turns to the electromagnetic interactions of the hadrons.

It follows from the relations (A.43d)–(A.43f) that the components of the radius-vector, and
then also any other vector quantity, span a spin-1 representation of the rotation group. One thus
says that the photon (represented by the vector potential,5 �A) has spin 1. On the other hand, it is
well known that electrically charged particles such as the electron and the quarks, which make up
all tangible matter, have spin 1

2 .
Thus, we must first establish the relativistic generalization of the Schrödinger equation for

particles of spin 1
2 and 1, as well as the argument from the previous section, which specifies the

interaction between them.

5.2.1 Relativistic spinors and the Dirac equation
The Schrödinger equation

ih̄
∂

∂t
Ψ(�r, t) = H Ψ(�r, t) ⇔ Ψ(�r, t) = e

−ih̄−1 ∫ t
t0

dt′ H(t′) Ψ(�r, t′), t > t0 (5.23)

is simply the statement that the Hamiltonian generates the time evolution of the wave-function
Ψ(�r, t). In non-relativistic physics (here, without electromagnetic potentials),

ih̄
∂

∂t
= H =

1
2m

( h̄
i
�∇
)2

+ V(�r, t) ⇔ E =
�p 2

2m
+ V(�r, t), (5.24)

the combination of which with equation (5.23) is the diffusion equation: of second order in
spatial derivatives, but first order in the time derivative. This also implies the “quantization
correspondence” (in the coordinate representation)

�p ↔ �p =
h̄
i
�∇, and E ↔ H = ih̄

∂

∂t
. (5.25)

Instead of the non-relativistic relation (5.24), the relativistic version of the Schrödinger
equation would have to correspond to the relativistic relation (3.37), and using the correspon-
dences (5.25) we obtain

�p2c2 + m2c4 = E2 ↔
[

c2
( h̄

i
�∇
)2

+ m2c4
]
Ψ(�r, t) =

(
ih̄
∂

∂t

)2
Ψ(�r, t),

⇒
[

 +

(mc
h̄

)2]
Ψ(�r, t) = 0. (5.26)

This is the so-called Klein–Gordon equation, where


 :=
[ 1

c2
∂2

∂t2 − �∇2
]

(5.27)

is called the d’Alembertian or the wave operator.
5 It will soon be shown that, as a consequence of the U(1) gauge symmetry, the four functions Φ, �A represent only two

physical degrees of freedom, which may be identified with two components of the vector �A that are perpendicular to
the direction of the photon motion.
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Digression 5.3 Ironically, Schrödinger seems to have known [243] about the equa-
tion (5.26) before publishing the equation that soon acquired his name, but discarded
it in the belief that the double-valuedness of the solution (3.37), E = ±c

√
�p2 + m2c2,

precludes a probabilistic interpretation |Ψ(�r, t)|2. Wolfgang Pauli and Victor Weisskopf
proved in 1934 that the essential obstacle to this interpretation of the quantity |Ψ(�r, t)|2
in relativistic physics is the fact that relativistic physics must contain the possibility of
creating and annihilating particles, as permitted by conservation of energy, linear and
angular momentum, charge, etc. This implies that the number of particles in relativistic
physics is not a conserved quantity, and contradicts the elementary consequence of the
Schrödinger equation:

(5.1) ⇒ ∂�

∂t
= −�∇· �J +

2
h̄
#m

(
V(�r )

)
�, (5.28a)

�(�r, t) := |Ψ(�r, t)|2, �J (�r, t) :=
h̄
m

#m
[
Ψ∗(�r, t)�∇Ψ(�r, t)

]
. (5.28b)

This shows that
d
dt

∫
V

d3�r �(�r, t) = −
∮
∂V

d2�σ · �J +
2
h̄

∫
V

d3�r #m
(
V(�r )

)
�(�r, t). (5.28c)

The probability of finding the particle (represented by Ψ) within the volume V changes
only by the probability flowing through ∂V (the boundary of the volume V ) – if and only
if the potential V(�r, t) is a real function where �(�r, t) is nonzero. The number of particles
is then also conserved, and this is indeed the case in standard quantum mechanics.

Motivated by the fact that the non-relativistic Schrödinger equation is of first order in time
derivatives, while the Klein–Gordon equation is of the second order, Paul Dirac found a way to
factorize the Klein–Gordon equation and so obtain a differential equation that is of first order both
in spatial and in time derivatives. Indeed, in the rest-frame of the particle, �p = 0, so that the
relativistic relation (3.37) reduces to

E2 − m2c4 = 0 ⇒ (E + mc2)(E − mc2) = 0, (5.29)

which is the desired factorization. With �p �= 0, the desired factorization of the equivalent
equation (3.36) is of the form

p2 − m2c2 = 0 ⇒ 0 = (βμpμ + mc)(γγγγνpν − mc),

= βμγγγγν pμpν + mc(γγγγμ − βμ)pμ − m2c2. (5.30)

As the original equation p2 − m2c2 = 0 has no linear terms in the 4-momentum p, it must be that
βμ = γγγγμ. Equating the quadratic terms one then obtains that

γγγγμγγγγν pμpν = p2 ≡ ημν pμpν. (5.31)

Since pμpν = pνpμ, we in fact have the conditions{
γγγγμ , γγγγν

}
= 2ημν, (5.32)

where [ημν] = diag(1,−1,−1,−1) is the matrix-inverse of the metric tensor (3.19) of empty
spacetime. This yields

p2 − m2c2 = 0 = (γγγγμpμ − mc)(γγγγμpμ + mc). (5.33)
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Using the relativistic combination of the correspondences (5.25), this produces the Dirac equation:

pμ → h̄
i
∂μ ⇒ [

ih̄γγγγμ∂μ − mc
]
Ψ(x) = 0, (5.34)

where the standard abbreviation [☞ Digression 3.6 on p. 93]

∂μ :=
∂

∂xμ
, −→ (− 1

c ∂t, �∇), (5.35)

was introduced. The choice of the second of the two factors in equation (5.33) for defining the
Dirac equation is an arbitrary, but standard choice.

The question remains, what sort of objects the γγγγμ are so as to satisfy the relations (5.32).

The Dirac spinor
Relations of the type (5.32) define so-called Clifford algebras. Their abstract structure, properties
and representation theory had been established by mathematicians William Kingdon Clifford and
Hermann Grassmann back in the second half of the nineteenth century. However, in the first half
of the twentieth century, this was unknown among physicists, and Dirac independently found the
smallest matrix realization of the γγγγμ objects, which today we call Dirac matrices; relation (5.32)
then implicitly contains the unit 4×4 matrix in the right-hand side. There exist several “standard”
choices of Dirac matrices; here we follow the traditional sources [64, 63] and use the so-called
Dirac basis:

γγγγ0 =
[

1 O
O −1

]
, γγγγi =

[
O σσσσi

−σσσσi O

]
, i = 1, 2, 3. (5.36)

To satisfy the relations (5.32), γγγγμ cannot be “ordinary” numbers but can be matrices. This implies
that the operator that acts upon Ψ(x) in the Dirac equation (5.34) also has to be a 4×4 matrix,6

so Ψ(x) must be a column-matrix with four components!
Recall that the solutions of the Schrödinger equation, e.g., for the hydrogen atom (4.8), yield

Ψ(�r, t) as an expansion over spherical harmonics, Ym
� (θ, φ), which correspond to components of

the “spin-�” representation7 of the SO(3)
1−2≈ SU(2) rotation group [☞ Table A.2 on p. 469]. For

example, the hydrogen atom states with � = 1 and m = ±1, 0 span the 3-vector representation of
the rotation group, where it is also easy to define the Cartesian basis:

(Ψn)x := 1
2

(
Ψn,1,+1 + Ψn,1,−1

)
,

(Ψn)y := 1
2i

(
Ψn,1,+1 − Ψn,1,−1

)
,

(Ψn)z := Ψn,1,0. (5.37)

The elements of the (2�+1)-dimensional vector space {Ψn,�,m, for |m| � �, �m ∈ Z} may just as
easily be represented as (2�+1)-component column-matrices.

However, the 4-component nature of the solutions to the Dirac equation represents an
additional degree of freedom, a relativistic generalization of the “spin” factor that we used in
Section 4.4.2, such as in the factorization (4.123), for example. Even for � = 0, the Dirac equation
has four linearly independent solutions. In the simple case when �p = 0, the Dirac equation reduces
to [ ih̄

c
γγγγ0 ∂

∂t
− mc1

]
Ψ = 0. (5.38)

6 Since the γγγγμ ’s are 4×4 matrices, the Dirac equation should, pedantically, be written as [ih̄γγγγμpμ − mc1]Ψ = 0.
7 When it denotes a rotation group representation, the term “spin-j” is simply short for “the total angular momentum

where the eigenvalue of the quadratic operator J 2 equals j(j + 1),” regardless of the physical original and composition
of this total angular momentum.



5.2 Electrodynamics with leptons 175

The solutions in Dirac’s basis of γγγγ-matrices are

ΨA(t) = e−i(mc2/h̄)t
[

Ψ1(0)
Ψ2(0)

]
, and ΨB(t) = e+i(mc2/h̄)t

[
Ψ3(0)
Ψ4(0)

]
, (5.39)

where ΨB(t) represents the solutions with negative energy; i.e., anti-solutions with positive energy
that move backwards in time, according to the Stückelberg–Feynman interpretation that is by now
the standard understanding: ΨB(t) → ΨB(−t) [☞ definition (5.49)].

Using the redefinition of solutions (wave-functions for particles) with negative energy as anti-
solutions (wave-functions for antiparticles) with positive energy, the standard solutions (following
the conventions of Ref. [243]) are

u↑ ∝

⎡⎢⎢⎢⎢⎣
1
0

pz c
E+mc2

(px+ipy)c
E+mc2

⎤⎥⎥⎥⎥⎦ , u↓ ∝

⎡⎢⎢⎢⎢⎣
0
1

(px−ipy)c
E+mc2

pz c
E+mc2

⎤⎥⎥⎥⎥⎦ , (5.40)

v↓ ∝
[

O 1

1 O

]
u↑ ∝

⎡⎢⎢⎢⎢⎣
pz c

E+mc2

(px+ipy)c
E+mc2

1
0

⎤⎥⎥⎥⎥⎦ , v↑ ∝
[

O 1

1 O

]
u↓ ∝

⎡⎢⎢⎢⎢⎣
(px−ipy)c

E+mc2

pz c
E+mc2

0
1

⎤⎥⎥⎥⎥⎦ , (5.41)

(5.42)

where E = +
√

�p2c2 + m2c4 always, and the solutions with negative energy are

u↑
−(E,�p) = −v↓(−E,−�p) and u↓

−(E,�p) = v↑(−E,−�p). (5.43)

Note that u↑, u↓, u↑
−, u↓

− are four linearly independent solutions to the Dirac equation (5.34),
whereas v↑, v↓ satisfy the Dirac equation with pμ → −pμ – which precisely holds for the com-
plementary factor in equation (5.33). The solutions to the Dirac equation may then be written as

Ψ(x) = ∑
s=↑,↓

[
Nu e−(i/h̄)x·p us(p) + Nv e−(i/h̄)x·p vs(p)

]
, (5.44)

which represents the “plane wave” of a spin- 1
2 particle, free of the influence of any potential. This

Ψ(x), however, is not a 4-vector in the 4-dimensional spacetime, but the so-called Dirac spinor,
which we will see transforms with respect to Lorentz transformations, in an intrinsic fashion,
distinct from 4-vectors.

Lorentz transformations of the Dirac spinor
From relation (A.121c), we see that the antisymmetrized products of two Dirac gamma matrices,
γγγγμν := i

4 [γγγγμ,γγγγν], close a Lie algebra:[
γγγγμν , γγγγρσ

]
= ημργγγγνσ − ημσγγγγνρ + ηνσγγγγμρ − ηνργγγγμσ. (5.45)

It is not hard to verify that the definitions J j := 1
2i ε jklγγγγ

kl and K j := iγγγγ0j result in the commutation
relations (5.45) written as[

J j , J k
]

= iε jk
mJ m,

[
J j , Kk

]
= iε jk

mKm,
[

K j , Kk
]

= −iε jk
mJ m. (5.46)
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While the J j elements generate SO(3) rotations, the K j elements generate Lorentz boosts. The
elements of the Lorentz group – in the representation that acts upon 4-component Dirac spinors –
are obtained as exponential functions of the linear combinations of these six generators:

g(�ϕ,�β) := exp
{− i(ϕjJ j + βjK j)

}
= exp

{
β jγγγγ

0j − ε jkmϕ
jγγγγkm}

= exp
{
λμνγγγγ

μν
}

. (5.47)

These may be shown to actually form a double covering of the SO(1, 3) group, denoted Spin(1, 3):
to each non-identity element of the SO(1, 3) group there correspond precisely two elements of the
Spin(1, 3) group. For example, the 360◦-rotations of SO(1, 3) correspond to the ±1 elements of
Spin(1, 3), and only the SO(1, 3) 720◦-rotation corresponds to the unique element 1 ∈ Spin(1, 3).

Let us just cite here [64] that the Lorentz boost in the x1-direction causes the transformation

Ψ(x) →
[√

1
2 (γ+ 1)1 −

√
1
2 (γ− 1)γγγγ01

]
Ψ(x), (5.48)

where γ with no index denotes the familiar relativistic factor γ := 1√
1−v2/c2 . It is then easy to

verify that Ψ†Ψ is not Lorentz-invariant, but that Ψ†γγγγ0Ψ is. One thus defines

Ψ := Ψ†γγγγ0 (5.49)

as the Dirac-conjugate of the Dirac spinor Ψ, and note that Ψ Ψ is Lorentz-invariant.
Using the results from Appendix A.6.1, the following bilinear8 functions may be constructed

from a Dirac spinor and its Dirac-conjugate spinor:

Expression Lorentz representation Number of independent
components

Ψ Ψ = scalar, 1
Ψγγγγμ Ψ = 4-vector, 4

Ψγγγγμν Ψ = antisymmetric rank-2 tensor, 6
Ψγγγγμγ̂γγγΨ = axial (i.e., pseudo-) 4-vector, 4

Ψ γ̂γγγΨ = pseudo-scalar, 1

(5.50)

Since every complex 4×4 matrix may be written as a complex linear combination of 16 matri-
ces (A.124) [580], the 16 functions (5.50) also form a complete system of bilinear functions of
the Dirac spinor, Ψ. It is important to note that in the functions (5.50), the γγγγ-matrices do not
transform with respect to the Lorentz transformations, but Ψ and Ψ do, and in fact just so that
each bilinear product as a whole transforms in the indicated fashion. For example, ΨγγγγμΨ really
transforms, as a whole, as the components of any other contravariant 4-vector.

Comment 5.5 The careful Reader may have questioned the identification of the matrices J j
and K j as the rotation and Lorentz boosts. The list (5.50) gives unambiguous confirmation,
in the form of the correct Lorentz transformations of the listed bilinear expressions.

The notation (5.50) is standard, and supposes that one consistently uses that the γγγγμ,γγγγμν and
γ̂γγγ are all 4×4 matrices, Ψ is a 4-component row-matrix, and Ψ a 4-component column-matrix.
Instead, one may also use the index notation, so the Ath element of the column-matrix Ψ is writ-
ten ΨA, the Ath element of the row-matrix Ψ is ΨA, and similarly for the γγγγ-matrices, so that the
expressions (5.50) become

ΨAΨA, ΨA (γμ)A
B ΨB, ΨA (γμν)A

B ΨB, ΨA (γμ)A
B (γ̂)B

C ΨC, ΨA (γ̂)A
B ΨB. (5.51)

8 It is understood that “bilinear” here means “anti -linear + linear in Ψ and Ψ, respectively.”
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Similarly, instead of column-matrices (5.40)–(5.41), we may write9 u↑A, etc., where, for example,

u↑1 = N, u↑2 = 0, u↑3 = N
pzc

E + mc2 , u↑4 = N
(px + ipy)c

E + mc2 , etc. (5.52)

The normalizing factors in equation (5.44) are chosen so that

u↑ u↑ = 2mc = u↓ u↓ and v↑ v↑ = −2mc = v↓ v↓. (5.53)

The solutions of equations (5.40)–(5.41) are also complete, in the sense that10

∑
s=↑,↓

us us = /p + mc1 and ∑
s=↑,↓

vs vs = /p − mc1, (5.54)

that is,

∑
s=↑,↓

us,A us
B = (γμ)A

B pμ + mcδA
B and ∑

s=↑,↓
vs,A vs

B = (γμ)A
B pμ − mcδA

B . (5.55)

The matrix (5.54) and the (explicit) index notation (5.55) may be used interchangeably, as needed
and for the sake of compactness and clarity. Also, by the general Dirac spinor Ψ one understands a
general linear combination

Ψ := êA ΨA, (5.56)

just as we write x = êμ xμ for a 4-vector. However, one must keep in mind that the êμ are (Carte-
sian) unit vectors in the 4-dimensional spacetime in which we too move, whereas the êA are unit
vectors in an abstract vector space of solutions to the Dirac equation.

Helicity, chirality and the Weyl equation
It is useful to note a very important difference between two seemingly similar properties of spin-
1
2 particles: helicity and chirality. Much of the analysis here may be found in standard texts on
particle physics and field theory as cited in the preface, but there is also a book dedicated to all
matters of spin in particle physics [334]. The generalization of this analysis of course also exists
for particles with arbitrary spin, subject however to the Weinberg–Witten theorem 6.1 on p. 249,
as well as to higher-dimensional spacetime as needed in string theory.

Using the projectors (A.121b)
γγγγ± := 1

2 [1 ± γ̂γγγ], (5.57)

one defines in a fully Lorentz-invariant way:

Ψ± := γγγγ±Ψ, so Ψ+ + Ψ− = Ψ, γγγγ±Ψ± = Ψ±, γγγγ±Ψ∓ = 0. (5.58)

For Ψ+ (also written as ΨR) one says that it has right-handed chirality, and Ψ− (also ΨL) has left-
handed chirality. To this end, Weyl’s basis (A.132) of Dirac matrices is particularly convenient. The
complex 2-component projections Ψ± are Weyl spinors.

Independently of chirality, for particles with linear momentum �p and spin �S, one defines the
helicity operator, h := p̂·�S/h̄, the eigenvalue of which is the helicity of the particle. With the mental
(mnemonic and entirely fictitious!) image of the intrinsic angular momentum (spin) of the particle
represented as the rotation of the particle itself, helicity may be represented as the “projection of
the spin in the direction of motion.” For example, a spin- 1

2 particle may have helicity + 1
2 or − 1

2 ,

9 Caution: the Dirac 4-spinors u↑, u↓, v↑ and v↓ are linearly independent and each has four components. Only a total of
four of these components are linearly independent.

10 Caution: the normalizations (5.53) and (5.54) differ from the standard quantum mechanical ones.
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depending on whether, respectively, it “spins” about the direction of motion in the right-hand sense
or the left-hand sense.

Helicity is not defined in a Lorentz-invariant manner. Indeed, a particle with a nonzero mass
always has a rest-frame wherein it does not move, and where �p = 0, so the eigenvalues of h
vanish. Also, it is always possible to pass such a particle, i.e., Lorentz-boost, into a coordinate
system wherein the particle moves in the direction opposite to the original �p. Since this changes
the sign of �p but not of �S, the eigenvalues of h also change their sign. It follows that helicity cannot
be Lorentz-invariant for particles with nonzero mass.

For particles with no mass, helicity is Lorentz-invariant, and coincides with chirality.

— ❦ —

The solutions (5.40)–(5.43) of the Dirac equation (5.34) indicate that the upper and lower com-
ponents of the Dirac spinor are not independent and it is not possible to separate them in a
Lorentz-invariant way. The relations (A.121b) define the projectors γγγγ± that are Lorentz-invariant
since the γγγγ-matrices do not change with respect to Lorentz transformations, which gives rise to
the hope that the Dirac 4-component spinor may be separated into two 2-component spinors in a
Lorentz-invariant way.

Digression 5.4 One often finds a “quick” argument in the literature that γγγγ-matrices are
Lorentz-invariant: supposedly, in the product γγγγμpμ, the Lorentz transformations act upon
the physical quantity, the 4-momentum, and not on the γγγγ-matrices. This recalls the view
that rotations of a vector �v = êivi act upon the basis elements êi, not on the components,
which are “only numerical values” in a given coordinate system. However, it is equally
reasonable to adopt the vantage point where the inverse rotations act upon the compo-
nents vi, and not upon the basis elements êi. Both applications of the transformations
produce a net change in the physical quantity êivi, which is regarded as the “active”
transformation. By contrast, the “passive” transformation simultaneously rotates both the
basis vectors êi as well as the components vi (in the inverse sense), so that the physical
quantity �v remains invariant.

However, this is not a case of active/passive action of the Lorentz transformations:
The Dirac γγγγ-matrices indeed are components of a 4-vector, but those components are
matrices, the rows of which are in the basis of the Dirac 4-component spinor Ψ, and
the columns of which are in the basis of the Dirac-conjugated spinor Ψ. The Lorentz
transformations act upon all three bases, and those actions mutually cancel so that the
γγγγ-matrices remain invariant. In other words, the product ΨγγγγμΨ pμ is evidently Lorentz-
invariant: ΨγγγγμΨ is a contravariant 4-vector and pμ a covariant one, so ΨγγγγμΨ pμ is the
scalar product of a contravariant 4-vector and a covariant 4-vector. By adapting the index
notation so as to also count the components of the Dirac spinor (5.51), we have

(ΨγγγγμΨ) pμ =
(
ΨA (γγγγμ)A

B ΨB
)

pμ, (5.59a)

so that the numerical values (γγγγμ)A
B for each fixed μ, A, B are simply the Clebsch–Gordan

coefficients in the expansion of the product Ψ × Ψ in a spacetime 4-vector basis. In turn,
the coefficients (γγγγμ)A

B also appear in the tri-linear Lorentz-invariant contraction of the
basis vectors êA(γγγγμ)A

B êμ êB [☞ Section A.6]. Lastly, rewriting the above equation as

(ΨγγγγμΨ) pμ = (γγγγμ)A
B

(
ΨA ΨB pμ

)
(5.59b)
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re-interprets the matrices γγγγμ as the (in general) C-valued projection of the direct product
of Dirac-conjugate Dirac-spinors, Dirac-spinors and 4-momenta to Lorentz-invariant (in
general) complex numbers: γγγγ : {Ψ}× {Ψ}× {p} → C.

However, it is not hard to show that helicity projections do not commute with the Dirac
matrices:

[γγγγ±,γγγγμ] �= 0 : [1,γγγγμ] = 0 = {γ̂γγγ,γγγγμ} ⇒ γγγγ±γγγγμ = γγγγμγγγγ∓. (5.60)

Owing to this, an attempt to use the projections (5.58) on the Dirac equation yields

γγγγ±[ih̄γγγγμ∂μ − mc1]Ψ = [ih̄γγγγ±γγγγ
μ∂μ − mcγγγγ±1]Ψ = [ih̄γγγγμγγγγ∓∂μ − mc1γγγγ±]Ψ

= ih̄γγγγμ(∂μΨ∓) − mcΨ±, (5.61)

which is a system of differential equations that couples Ψ+ and Ψ− precisely when m �= 0.
Conversely,

γγγγμ∂μΨ± = 0 ⇔ mΨ± = 0. (5.62)

Conclusion 5.2 (Weyl) The Dirac spinor Ψ separates in a Lorentz-invariant way into the
right-handed Ψ+ ≡ ΨR := γγγγ+Ψ and left-handed Ψ− ≡ ΨL := γγγγ−Ψ 2-component Weyl
spinor (the eigen-spinors of the γ̂γγγ matrix) precisely when the mass of the particle vanishes.

These (Weyl) spinors satisfy the simpler differential equations, γγγγμ∂μΨ± = 0. Indeed, the Dirac
differential equation (5.34) is a system of four coupled differential equations for four components
of the Dirac spinor Ψ. By contrast, γγγγμ∂μΨ± = 0 is a system of two coupled differential equations
for two components of the Weyl spinor Ψ+ and separately for Ψ−.

Hermann Weyl noticed and published the characteristics of this special case of the Dirac
equation in 1929. Yet, when Pauli invented the neutrino so as to preserve the energy conserva-
tion law, he did not want to use Weyl’s equations on the grounds that they permit violating the
symmetry of parity.11 To wit, the Lorentz-invariant separation of Ψ+ and Ψ− ∝ P(Ψ+) permits
an independent – and different – treatment of these two halves of the Dirac spinor of opposite
chirality. This is quite ironic, since Pauli did correctly predict the mass of the neutrino to be either
very teeny or vanishing, and even during his own life it became clear that Nature really treats the
left-handed neutrino very differently from the right-handed one. Until the discovery of the see-saw
mechanism [☞ Section 7.3.2], the Weyl equations provided a much better model for neutrinos,
and describe the maximal parity violation as observed in Nature.

— ❦ —

The frequent confusion of helicity and chirality has been fostered by the fact that massless parti-
cles are a specially simple case both for chirality and for helicity, where these two different physical
quantities coincide. On the other hand, the Lorentz invariance of chirality is of fundamental im-
portance in the contemporary formulation of weak and electroweak interactions, while helicity is
easier to measure. The Reader should strive to conceptually differentiate and carefully distinguish
between these two inherently different quantities.

11 Up to the experimental confirmations of parity violation in weak interactions [☞ Sections 2.4.2 and 4.2.1], Pauli had,
just as many other renowned physicists of the time, ardently advocated against ideas that include parity violation; see,
e.g., A. Salam’s Nobel lecture [473].
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The Dirac Lagrangian density
The construction of the Dirac Lagrangian density is straightforward, if we only require the variation
of the Hamilton action with that Lagrangian density to produce the Dirac equation. First, note that
Ψ and Ψ may formally be treated as independent quantities. The Dirac equation (5.34) is then
simply multiplied from the left by Ψ (and by c for units) and we identify

LD = βΨ(x)
[
c /p + mc21

]
Ψ(x) = −βΨ(x) [ih̄ cγγγγμ∂μ − mc21] Ψ(x), (5.63)

where β is an arbitrary overall sign, since the variation by Ψ yields a β-multiple of equation (5.34).
Variation by Ψ yields the Hermitian conjugate of equation (5.34), i.e., nothing new (and nothing
unneeded).

Digression 5.5 The Dirac spinor Ψ is a 4-tuple of formally anticommutative variables. In
the general case, if ψ and χ are anticommutative and f and g are commutative variables,
we have that

[ f , g] = 0, [ f ,ψ] = [ f ,χ] = 0 = [g,ψ] = [g,χ], but {ψ,χ} = 0;

(5.64a)[ ∂
∂ f

,
∂

∂g

]
= 0,

[ ∂
∂ f

,
∂

∂ψ

]
=

[ ∂
∂ f

,
∂

∂χ

]
= 0 =

[ ∂
∂g

,
∂

∂ψ

]
=

[ ∂
∂g

,
∂

∂χ

]
, but

{ ∂

∂ψ
,
∂

∂χ

}
= 0.

(5.64b)

Also,
∂

∂ψ
χ = −χ ∂

∂ψ
and

∂

∂χ
ψ = −ψ ∂

∂χ
, (5.64c)

which the Student must keep in mind when deriving the equations of motion from
Lagrangian densities that also contain fermionic (anticommutative) variables. It is
convenient to define the right-derivative:

ψ

←−
∂

∂ψ
= 1, (ψχ)

←−
∂

∂ψ
= −

(
ψ

←−
∂

∂ψ

)
χ = −χ, (ψχ)

←−
∂

∂χ
= ψ

(
χ

←−
∂

∂χ

)
= ψ, etc., (5.64d)

and diligently apply derivatives either from right or from left.

The definition of the Lagrangian allows us to identify the components of Ψ as the canonical
coordinates, so we may also define the canonically conjugate momentum densities:

πΨ := LD

←−
∂

∂
.
Ψ

=
(− βΨ[ih̄ cγγγγμ∂μ − mc21]Ψ

)←−−−−
∂

∂(c∂0Ψ) = −iβh̄Ψγγγγ0 = −iβh̄Ψ†, (5.65)

where we applied the right-derivative [☞ Digression 5.5 on p. 180]. The Hamiltonian then becomes

HD = πΨ

.
Ψ −LD = (−iβh̄Ψ†)(

.
Ψ) + βΨ[ih̄ cγγγγμ∂μ − mc21]Ψ

= −βΨ†H Ψ + βΨ[ih̄ cγγγγμ∂μ − mc21]Ψ, H ≡ ih̄ ∂
∂t . (5.66)

The sign β in the computation (5.65) may now be determined as follows: For an on-shell
Dirac fermion, i.e., one that satisfies the equations of motion (5.34), the second term in the
expression (5.66) vanishes, and we obtain

HD

∣∣
(5.34) = −βΨ†H Ψ, where [Ψ] = 1

L3/2 . (5.67)
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We thus choose β = −1 for the total energy (the Hamiltonian) of the Hamilton–Jacobi canonical
formalism on-shell and the expectation value of the quantum-mechanical operator H to have the
same sign. To sum up:

LD = −Ψ(x)
[
c /p + mc21

]
Ψ(x) = Ψ(x) [ih̄ cγγγγμ∂μ − mc21] Ψ(x), (5.68a)

πΨ = ih̄Ψ†, (5.68b)

HD = πΨ

.
Ψ −LD = Ψ†H Ψ − Ψ[ih̄ cγγγγμ∂μ − mc21]Ψ. (5.68c)

Also, since the Dirac equation (5.34) may be written as

ih̄
.
Ψ = HDΨ :=

[
(ih̄ c�γγγγ·�∇ + mc2)γγγγ0]Ψ, (5.69)

and HD is the on-shell Dirac Hamiltonian operator: HD
(5.34)= ΨHDΨ, as arranged in equa-

tion (5.67).

Digression 5.6 The Dirac Lagrangian densities are often “antisymmetrized” using the
identity∫

d4x Ψγγγγμ∂μΨ = 1
2

∫
d4x Ψγγγγμ∂μΨ + 1

2

∫
d4x

[
∂μ

(
ΨγγγγμΨ

)− (∂μΨ)γγγγμΨ
]

(5.70a)

= 1
2

∫
d4x

[
Ψγγγγμ∂μΨ − (∂μΨ)γγγγμΨ

]
+ 1

2

∮
V

d3(x)μ
(
ΨγγγγμΨ

)
︸ ︷︷ ︸

=0

, (5.70b)

where the third, 3-dimensional integral is computed over the 3-dimensional boundary
of spacetime, which is “at infinity.” Physical fields are required to vanish there. We thus
write

Ψγγγγμ∂μΨ " 1
2

[
Ψγγγγμ∂μΨ − (∂μΨ)γγγγμΨ

]
=: 1

2

(
Ψγγγγμ

↔
∂ μΨ

)
, (5.70c)

where the middle expression defines the symbol
↔
∂ μ. So antisymmetrized, we have that

LD " −Ψ(x)
[ 1

2 c
↔
/p + mc21

]
Ψ(x) = Ψ(x) [ i

2 h̄ c
↔
/∂ − mc21] Ψ(x). (5.70d)

Finally, the components of the canonically conjugate momentum density (5.68b) are con-
stantly proportional to the Hermitian conjugates of the components of the Dirac spinor itself.
Roughly speaking, one half of the Dirac (4-component) spinor are canonical coordinates of the
system, the other half are conjugate momenta. The choice of which particular components are
regarded as coordinates and which are momenta is, of course, arbitrary – up to the condition that
the relations {

Ψ , (ih̄Ψ†)
}

= ih̄1 ⇒ {
Ψ , Ψ† } = 1 (5.71)

produce the canonical anticommutation relations between the canonical momenta and the
canonical coordinates. This arbitrariness is identical to that in classical physics.
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5.2.2 The U(1) gauge symmetry and photons
Classical electrodynamics builds on the Maxwell equations,

�∇·�E =
1

4πε0
4π ρe, �∇×(c�B) − 1

c
∂�E
∂t

=
1

4πε0

4π
c

�je, (Ampère) (5.72a)
(G

au
ss

)
⎧⎪⎪⎨⎪⎪⎩ �∇·(c�B) =

μ0

4π
4π ρm, −�∇×�E − 1

c
∂(c�B)
∂t

=
μ0

4π
4π
c

�jm, (Faraday) (5.72b)

that encompass the indicated laws, and where c = 1√
ε0 μ0

is the speed of propagation of light in
vacuum. The densities of the magnetic (monopole!) charges, ρm, and currents, �jm, are included
for later discussion of electro-magnetic duality [☞ Section 11.4]. No experiment indicates their
existence, so that the equations (5.72b) are cited in the literature almost exclusively with ρm → 0
and�jm → 0. However, note that the units satisfy [ρe/ε0] = [μ0 ρm], as well as [�je/ε0] = [μ0�jm].

The relativistic description
For the purposes of a relativistic description of electrodynamics [☞ also Comment 8.1 on p. 294],
we introduce12

Aμ := (Φ,−c �A), (gauge potential) Aμ := ημνAν = (Φ, c �A); (5.73a)

Fμν := ∂μAν − ∂νAμ,
(

antisymmetric
rank-2 tensor

)
Fμν := ημρFρσησν; (5.73b)

and identify

F00 = 0, F00 = 0, (5.73c)

F0i = ∂0 Ai − ∂i A0 =
1
c
∂(−cAi)

∂t
− ∂Φ
∂xi = Ei, F0i = η00F0jη

ji = −Ei, (5.73d)

Fij = ∂i Aj − ∂j Ai =
∂(−cAj)
∂xi − ∂(−cAi)

∂xj

= c
(∂Ai

∂xj − ∂Aj

∂xi

)
= cε ji

k Bk = −cεij
kBk, Fij = ηikFklη

jl = −cεijkBk (5.73e)

and, of course, Fμν = −Fνμ. In matrix form, we have

[
Fμν

]
=

⎡⎢⎢⎣
0 E1 E2 E3

−E1 0 −cB3 cB2
−E2 cB3 0 −cB1
−E3 −cB2 cB1 0

⎤⎥⎥⎦ ,
[

Fμν
]
=

⎡⎢⎢⎣
0 −E1 −E2 −E3
E1 0 −cB3 cB2
E2 cB3 0 −cB1
E3 −cB2 cB1 0

⎤⎥⎥⎦ . (5.74)

Since Fμν are components of a rank-2 tensor, it follows that the Lorentz transformations act
by [☞ Digression 3.5 on p. 91]

yμ = Lμνxν ⇒ Fμν(y) = Lρμ Fρσ(x) Lσν, i.e. F(y) = LLLLT F(x) LLLL. (5.75)

The familiar Lagrangian [☞ also Exercises 5.1.3 and 5.1.4] for the electromagnetic field may thus
be written as

LEM = − 4πε0
4 Fμν Fμν. (5.76)

12 The negative relative sign in the definition of Aμ cancels the difference in signs in the definition (5.13), an additional
factor of c equates the units of Φ and �A, which stem from the difference between Dt and �D.
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Example 5.1 Let �E = ê2E2 and �B = 0 be given in an inertial Cartesian coordinate system
S, and let the inertial system S̃ move with respect to S with the constant speed ê1v1. The
relations (5.75) then yield

Ẽ2 = γE2, and also B̃3 = γ
v1

c2 E2. (5.77)

A field that in one inertial coordinate system looks like a “purely” electric field, can in
another inertial system easily be represented by a combination of electric and magnetic
fields. Notice, however, that the equation �E·�B = 0 remains valid. Indeed, this is a Lorentz-
invariant characteristic of the specified field [☞ relations (5.80a)].

The Maxwell equations (5.72a) may then also be written as

∂μ Fμν =
1

4πε0

4π
c

jνe , (5.78)

where je = (cρe,�je) is the 4-vector of electric charge and current densities. Analogously, the
Maxwell equations (5.72b) may be written also as

1
2 ε
μνρσ∂μ Fνρ =

μ0

4π
4π
c

jσm, (5.79)

where jm = (cρm,�jm) is the 4-vector of (monopole) magnetic charge and current densities.

Digression 5.7 Direct substitution yields
1
2 FμνFμν = �E2 − c2�B2 and 1

4 ε
μνρσFμνFρσ = −c�E·�B, (5.80a)

which, using the transformations (5.75), shows that these two bilinear expressions in �E
and �B are Lorentz-invariant. Evidently, these are the only linearly independent Lorentz-
invariant bilinear expressions in Fμν and Fμν, and so then also in �E and �B. Since
the Lagrangian density for electrodynamics must be a scalar (invariant) density and
quadratic in electric and magnetic fields, we find that the Lagrangian density must be
of the form

LEM = C1 FμνFμν + C2 ε
μνρσ FμνFρσ. (5.80b)

The coefficients C1, C2 are chosen so that the variation of the Hamilton action,
δ
∫

d4x LEM = 0, reproduces the Maxwell equations. The fact that this renders C2 = 0
then poses the (unanswered☞ ) question: Why is, in the possible “addition”

Lϑ,EM = ϑ 4πε0
4 εμνρσ FμνFρσ, (5.80c)

to the standard Lagrangian density (5.76) of the parameter ϑ = 0, either identically or
up to experimental error (i.e., ϑ ≪ 1)?

Direct substitution of Fμν = ∂μAν − ∂νAμ on the left-hand side of equation (5.79) yields

1
2 ε
μνρσ∂μ

(
∂νAρ − ∂ρAν

)
= 1

2 ε
μνρσ∂μ∂νAρ − 1

2 ε
μνρσ∂μ∂ρAν, (5.81)
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where both terms vanish separately, since

εμνρσ∂μ∂ν = εμνρσ∂ν∂μ︸ ︷︷ ︸
μ↔ν

= ενμρσ∂μ∂ν = −εμνρσ∂μ∂ν. (5.82)

That is,
Fμν = ∂μAν − ∂νAμ

(5.79)⇐⇒ 0 =
μ0

4π
4π
c

jσm. (5.83)

The existence of magnetic charges and currents would then be an obstruction for equating Fμν
with ∂μAν − ∂νAμ, i.e., the electric and the magnetic fields could not be expressed in terms of
an unambiguously specified 4-vector potential (5.15) [☞ Section 5.2.3], and conversely: if Fμν =
∂μAν− ∂νAμ for an unambiguously specified 4-vector potential Aμ(x), then no monopole magnetic
charge or current can exist. We thus have:

Conclusion 5.3 Electric and magnetic charges and currents exist simultaneously if and
only if there can be no unambiguously specified 4-vector potential Aμ(x) for which the
electromagnetic field would be Fμν = ∂μAν − ∂νAμ [☞ Section 5.2.3].

Digression 5.8 Define a “differential 2-form” F := Fμν dxμ∧dxν, where “∧” denotes the
antisymmetric product of the differentials, as well as the operator d := dxμ∂μ. Then

d∧d ≡ 1
2 (∂μ∂ν − ∂ν∂μ) dxμ∧dxν ≡ 0. (5.84a)

The Maxwell equations (5.72b), i.e., (5.79), are then equivalent to

d∧F = jm, jm :=
μ0

4π
4π
c

jσm εμνρσ dxμ∧dxν∧dxρ, (5.84b)

and the differential 3-form jm is the obstruction for equating the differential 2-form F
with d∧A, for any differential 1-form A = Aμdxμ. F is said to be a nontrivial (non-exact)
2-form.13

On the other hand, equations (5.72a), i.e., (5.78), may also be written in the
form (5.84b). To this end, however, we need one more item of notation: in tensorial
notation, any antisymmetric rank-r tensor may be turned into an antisymmetric rank-
(4−r) tensor by contracting with εμνρσ or εμνρσ. Thus, a 4-vector jμm is “translated” into
a rank-3 tensor jμm → (jμmεμνρσ) and a 3-form jm. A double use of this operation yields
1
2ε
μνρσ∂ν( 1

2 ερσαβFαβ) = ∂νFμν. The corresponding operation with differential forms is the
so-called “Hodge star,” which turns an r-form into a (4−r)-form: ∗A is a 3-form, ∗jm a
1-form, etc. The Maxwell equations (5.72a) and (5.78) are thus equivalent to

d∧ ∗ F = je, je :=
1

4πε0

4π
c

jμe εμνρσdxν∧dxρ∧dxσ. (5.84c)

Equations (5.84b) and (5.84c) respectively provide a compact form of the Maxwell
equations:

d ∧ F = jm and d ∧ ∗F = je. (5.84d)
Since d∧d ≡ 0, d∧d∧(∗F) = d∧je produces d∧je = 0, which is the well-known con-
tinuity equation (2.66), the integral of which yields the electric charge conservation
law [☞ also Section 6.1.2]. Similarly, d∧d∧F = d∧jm implies d∧jm = 0, the continuity
equation, and thus the (monopole) magnetic charge conservation law.

13 By the same token is “dQ,” in thermodynamics in general, a nontrivial 1-form and not an exact differential.
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Comment 5.6 The fact that the existence of (monopole) magnetic charges and currents ob-
structs the expression of the electromagnetic field Fμν as an antisymmetric derivative of
an unambiguously specified 4-vector potential Aμ points to a significant difference be-
tween electric and magnetic charges and currents – in spite of the fact that the Maxwell
equations (5.72) look “symmetric.” This “symmetry” – a duality, more precisely – is the
mapping

EM : Fμν ←→ (∗F)μν = [ 1
2 ε
μνρσFρσ] =

⎡⎢⎢⎣
0 −cB1 −cB2 −cB3

cB1 0 E3 −E2
cB2 −E3 0 E1
cB3 E2 −E1 0

⎤⎥⎥⎦ , (5.85)

which swaps the roles of �E and c�B. This implies that the vanishing of ρe and�je is a necessary
and sufficient condition for the existence of some unambiguously specified 1-form Ã such
that ∗F = d∧Ã; here, Ã = dxμ Ãμ is the 1-form of the dual 4-vector of gauge potentials.

Conclusion 5.4 The difference between F and ∗F, i.e., Fμν and 1
2 εμνρσFρσ, i.e., �E and c�B,

i.e., (cρe,�je) and (ρm/c,�jm/c2) – and so also the whole formalism – is however fully
conventional .

The discrete transformation (5.85) is equivalent to EM : (�E, c�B) → (c�B,−�E). Since 2
EM =

−1 and 4
EM = 1, EM is equivalent to a 90◦-rotation. In fact, one may define even a

continuous duality rotation

EM(ϑ) :
[

�E
c�B

]
→

[
�E′
c�B′

]
=

[
cos ϑ sin ϑ

− sin ϑ cos ϑ

] [
�E
c�B

]
(5.86)

and correspondingly for electric and magnetic charges and currents. The statement that
there are no magnetic monopoles is then equivalent to stating that, using this “rotation,”
the variables �E and c�B (i.e., Fμν) may always be chosen so that ρm = 0 = �jm, so that
F = d∧A, i.e., Fμν = ∂μAν − ∂νAμ – simultaneously in the whole universe and for all
particles in Nature.

The standard electrodynamics
In agreement with experiments, we set ρm = 0 =�jm, so that the relations (5.15) and (5.73b) hold,
as does the so-called Bianchi identity, as a consequence of the now applicable definition (5.73b),

εμνρσ∂νFρσ = 0, (5.87)

and instead of equation (5.79); equations (5.74)–(5.78) remain unchanged.
In classical electrodynamics, one primarily uses the electromagnetic field Fμν, i.e., �E and

�B, and the potentials are secondary. However, in the non-relativistic formulation of the interac-
tion (5.19) of the electromagnetic field with substance in quantum theory, the potentials had
already been proved to be the fundamental quantities. Besides, the assumption that the elec-
tromagnetic field is defined in relations (5.73b) makes the relation (5.87) – and then also the
laws (5.72b) – a trivial consequence. Thus, in electrodynamics expressed in terms of the 4-vector
potential Aμ, the dynamics reduces to the equation (5.78):

∂μ(∂μAν − ∂νAμ) = ∂μ∂
μ Aν − ∂ν(∂μAμ) =

1
4πε0

4π
c

jνe . (5.88)

The number of independent degrees of freedom in the electromagnetic field is thereby reduced
from six in the rank-2 tensor Fμν (the components of electric and magnetic field) to four in the
4-vector Aμ.
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However, the 4-vector potential, Aμ, is well known not to be unambiguously determined, as
we are free to change

Aμ → A′
μ = Aμ − c∂μλ. (5.89)

This is precisely the gauge transformation of the scalar and vector potential (5.14a), as it was
derived in Section 5.1. The physical meaning of the transformation (5.89) may be seen from the
Fourier transform:

Aμ → A′
μ = Aμ − c∂μλ

F−→ Ã′
μ = Ãμ + ickμλ̃, (5.90)

where kμ := pμ/h̄ is the wave 4-vector of electromagnetic radiation. The component of the 4-
vector potential in the direction of motion (in the 4-dimensional spacetime!) of the electromagnetic
beam is arbitrary, and may be cancelled by a judicious choice of the gauge function λ. In that sense
one frequently imposes the Lorenz gauge14:

∂μAμ = 0 ↔ kμ Ãμ = 0. (5.91)

Notice that this gauge is Lorentz-invariant. Using it, the dynamical part of the Maxwell equa-
tions (5.88), simplifies to


Aμ =
1

4πε0

4π
c

jμe , (5.92)

which is the wave-equation for the gauge potentials Aμ(x), with the sources jμe .
The gauge (5.91) reduces the number of degrees of freedom in the electromagnetic field

(which is determined by the relation (5.73b) in terms of the 4-vector potential) from four to three.
But, that’s not all: the FitzGerald–Lorentz length contraction applies to all physical quantities,
and so also to the components of the 4-vector potential. Since, in vacuum, the changes in the
electromagnetic field propagate at the speed of light, it follows that the longitudinal component
of the 4-vector potential Aμ(x) equals zero, that is, its Fourier transform satisfies �k· �̃A = 0. The
inverse transformation then gives �∇·�A = 0, the so-called Coulomb gauge. The combination of the
Lorenz and the Coulomb gauge produces

.
A0 = 0, so that the temporal component of the 4-vector

gauge potential is an arbitrary constant.
This reduction of the number of degrees of freedom from three to two cannot be described

in a Lorentz-invariant way, so there are essentially two different approaches:

1. in addition to the Lorentz-invariant gauge, impose another gauge – such as the Coulomb
gauge �∇·�A = 0, which explicitly violates Lorentz symmetry, or

2. leave Aμ “ungauged” and having more than two degrees of freedom. Subsequently, system-
atically track and subtract the contributions of the nonphysical degrees of freedom in the
4-vector Aμ.

In the absence of free carriers of electric charge, jμe = 0. The equation (5.92) then becomes


Aμ = 0, (5.93)

which is the d’Alembert equation, i.e., the Klein–Gordon equation with mγ = 0. The solutions are
found in the form

Aμ(x) = a e−(i/h̄)p· x εμ(p),
{

pμpμ = 0 ⇒ E = |�p|c,

pμεμ = 0 → ε0 = 0 = �p·�ε, (5.94)

14 This gauge (as in “condition,” of “specification”) bears the name of Ludvig Valentin Lorenz (1829–91), not of Hendrik
Antoon Lorentz (1853–1928) after whom the Lorentz transformations, (FitzGerald–)Lorentz length contraction, and
Lorentz group were named.
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where in the second row we see the joint effect of the (Lorentz-invariant) Lorenz and (Lorentz-
violating) Coulomb gauge, and where a is the photon amplitude.

In quantum theory, Aμ(x) could serve as the wave-function of the photon: the 4-vector poten-
tial that has two physical degrees of freedom, which are transversal to the direction of the photon’s
propagation. In a Cartesian coordinate system where the photon moves along the (x3 = z)-axis,
the two transversal polarizations are

�ε1 = (1, 0, 0) and �ε2 = (0, 1, 0), (5.95)
and

�ε+ = 1√
2
(�ε1 + i�ε2) and �ε− = 1√

2
(�ε1 − i�ε2) (5.96)

are the so-called right- and left-circular polarizations, the eigenvectors of the rotation generator,
J 3, with the eigenvalues ±1, respectively.

5.2.3 The magnetic monopole sneaks in
The immediate interpretation of Conclusion 5.3 on p. 184, notwithstanding, Paul Dirac found in
1931:

1. There does exist a way to include magnetic monopole charges and currents into the standard
electrodynamics, i.e., the physical system described by the equations

∂μ Fμν =
1

4πε0

4π
c

jνe , 1
2 ε
μνρσ∂μ Fνρ = 0, Fμν = ∂μAν − ∂νAμ. (5.97)

2. The quantum nature of Nature forces the magnetic and the electric charges to satisfy a
mutual, so-called Dirac (dual charge), quantization law:

qe qm = 2π h̄ n, n ∈ Z. (5.98)

From here,

αe :=
1

4πε0

e2

h̄ c
≈ 1

137
⇒ αm :=

1
4πμ0

g2

h̄ c
=

n2

4
4πε0 h̄ c

e2 ≈ 137
4

n2, (5.99)

so that the interaction intensity with magnetic monopole charges and their currents must be very
large ( αm

αe
≈ 4, 690 n2), reciprocally to the relatively weak interaction with (electric) monopole

charges and their currents, αe ≈ 1/137.

The magnetic monopole gauge potential
Dirac’s quasi-realistic model of a magnetic monopole stems from the very well known fact about
magnets, that the magnetic field is strongest near the ends of a magnetic (physical) dipole and
weakest near its middle. Take one such magnet – a cylindrical solenoid, for example – and affix
the coordinate origin to the “north” pole of the magnet, squeeze the cross-section of the solenoid
and stretch it so that the “south” pole is pulled out towards z → −∞. In the limit when the cross-
section of the solenoid is negligible and the “south” pole is infinitely far, the magnetic field of such
a magnet is spherically symmetric and has a source (the “north” pole) at the coordinate origin,
with the “south” pole nowhere in sight.

This thought-construction evidently shows that part of the space (the negative z-semi-axis) is
physically inaccessible: Every test-magnet detects a spherically symmetric (Coulomb-esque) mag-
netic field �B ∝ qm�r/r3 in all of space around the coordinate origin – except along the negative
z-semi-axis, where the test magnet cannot be placed as that is where the infinitely long and
infinitely thin solenoid is. This “forbidden zone” is called the Dirac string.
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Dirac showed that the vector potential [296]

�A(�r ) : so that �∇× �A = �B =
qm

4π
�r
r3 (5.100)

must be singular, as a function of the position�r, along some line (the Dirac string) that begins at
the coordinate origin and extends out to infinity – which is the location of the infinitely thin Dirac
solenoid. However, in 1975, T. T. Wu and C. N. Yang showed that there is no need to exclude this
line from the physically accessible space – paying the price in accepting that the vector potential �A
then cannot be an unambiguously specified (vector) function. However, since the vector potential
is not directly measurable, this ambiguity (non-single valuedness) has no physically measurable
repercussion.

Indeed, define [536, 210]

�AN =
qm

4π
x êy − y êx

r(z + r)
, �AS =

qm

4π
x êy − y êx

r(z − r)
, (5.101a)

= − qm

4π
cos(θ)−1
r sin(θ)

êφ, = − qm

4π
cos(θ)+1
r sin(θ)

êφ, (5.101b)

and notice that the function �AN is well defined everywhere except along the (“southern”) z-semi-
axis, while the function �AS is well defined everywhere except along the (“northern”) z-semi-axis.
Also, define

�BN := �∇× �AN =
qm

4π
�r
r3 , and �BS := �∇× �AS =

qm

4π
�r
r3 .

(except where x = 0 = y and z � 0) (except where x = 0 = y and z � 0)
(5.102)

Since �BN and �BS perfectly coincide as functions everywhere where both are defined, the “true”
magnetic field �B is defined to be equal to �BN or �BS, using that “auxiliary” magnetic field function
that is well-defined in the region of interest.15

Since
�AS − �AN = 2

qm

4π

(yêx − xêy

x2 + y2

)
= −2

qm

4π
�∇[

ATan(x, y)
]
, (5.103)

where

ATan(x, y) :=
{

arctan(y/x) for x � 0,
π + arctan(y/x) for x � 0, (5.104a)

arctan x

–2

0

2

1

0

–1

–2

0

2

)y
ATan(x,y)

–2
0

2

0

2

4

–2

2

0

(5.104b)

15 This is the same “trick” that cartographers use when they carve up the map of the Earth’s globe (which cannot be
depicted accurately on a single flat sheet of paper) into a sufficiently large number of sufficiently small maps, each
of which depicts adequately a sufficiently small region of the Earth surface. These maps are then bound into an atlas
where “adjacent” maps overlap sufficiently to provide the traveller with connecting information along any – of course
continuous – voyage.
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it follows that �AN and �AS differ by a gauge transformation (5.89) with the gauge parameter λ(x) =
2qm ATan(x, y). Since the potentials �AN and �AS are not themselves measurable, but provide the
same (measurable) magnetic field, the gauge transformation

�AN → �AS = �AN + �∇λNS, λNS(x) = −2
qm

4π
ATan(x, y) (5.105)

is then really a symmetry of the physical system.

Dirac’s dual quantization of charges
As relations (5.14a)–(5.14b) show, the gauge transformation (5.105) induces the change in the
phase of the electron wave-function:

Ψ(x) → Ψ′(x) = eiqeλNS(x)/h̄ Ψ(x). (5.106)

As the value of the function ATan(x, y) is the azimuthal angle φ " φ+2π, the relation (5.105)
yields

exp
{

iqeλNS(x)/h̄
}

= exp
{
− i

qmqe

2π h̄
φ
}

. (5.107)

No gauge transformation – and so not this one – can change the single-valuedness of the wave-
function, which of course is chosen single-valued to begin with. Thus the phase (5.107) also must
be a single-valued function of φ, and qmqe

2π h̄ must be an integer:

qeqm

2π h̄
!= n ∈ Z, i.e., qm

!= n
(2π h̄

qe

)
, (5.108)

which is called the Dirac (dual charge) quantization of the magnetic charge, and where (2π h̄/qe)
is the elementary (unit) amount of magnetic charge.

It will prove useful to rewrite this argument by direct integration of the relation (5.105):∫ 2

1
d�r·�AN =

∫ 2

1
d�r·�AS +

[ ∫ 2

1
d�r·�∇λNS = λNS(�r2) − λNS(�r1)

]
, (5.109)

that is, ∫ 2

1
d�r·�AN −

∫ 2

1
d�r·�AS = λNS(�r2) − λNS(�r1). (5.110)

Dirac’s quantization of the magnetic charge thus stems from the requirement that iqe
∫

C d�r·�A may
depend on the choice of the concrete line integration contour only up to an integral multiple of
2π:

e
iqe

∫
C1

d�r·�A−qe
∫

C2
d�r·�A = e

iqe
∮

C1−C2
d�r·�A != e2πi n = 1, (5.111)

where (C1−C2) is a closed contour since C1 and C2 have the same end-points: ∂C1 = ∂C2.16 Using
Stokes’ theorem,

∮
C d�r·�A =

∫
S d2�σ·(�∇×�A) where S is some surface bounded by the contour C,

i.e., C = ∂S, and the definition of the magnetic field, �B := (�∇×�A), we have that

2π n != qe

∫
C1

d�r·�A − qe

∫
C2

d�r·�A = qe

∮
(C1−C2)=∂S

d�r·�A = qe

∫
S

d2�σ·�B. (5.112)

Applied to the magnetic field of a (hypothetical) magnetic monopole charge, this condition pro-
duces the quantization (5.108). However, the same condition also represents a reason for the
existence of the so-called Aharonov–Bohm effect [☞ textbooks [407, 471, 480, 472, 29, 324],

16 For any space X , the symbol ∂X denotes the “boundary of X .”
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for example], which is experimentally verified, and which should therefore be called the
“Dirac–Aharonov–Bohm effect.”

Today, several additional, alternative arguments are known to infer the same mutual quanti-
zation. One of them was published by Alfred S. Goldhaber in 1965. The magnetic field (5.100) of
a magnetic monopole exerts a force upon a particle of electric charge qe that passes through the
magnetic field at the velocity �v. This so-called Lorentz force,

�FL = qe �v× �B, (5.113)

is perpendicular to the plane containing �v and �B. Select a coordinate system so that �v = v êz,
where θ := 	(�r,�v) = 	(�B,�v) since for the magnetic monopole �B ∝ �r [☞ relation (5.100)]. The
distance b := |r sin(θ)| is called the “impact parameter,” just as in the set-up for the collision of
two marbles, in Example 3.2 on p. 111. Select the x-axis to be in the direction of this parameter
and �B is in the (x, z)-plane. For sufficiently large values of b, the deflection (in the direction of the
y-axis) from the trajectory (along the z-axis) will be small enough to be accurately estimated by
the integral

(��p)y ≈
∫ +∞

−∞
dt (�FL)y =

qevqmb
4π

∫ +∞

−∞

dt
(b2 + v2t2)3/2 =

qe qm

2πb
, (5.114)

so that
(��L)z = b(��p)y =

qeqm

2π
. (5.115)

It remains to conclude – because of the quantum nature of Nature – that the change in the angular
momentum must be an integral multiple of h̄. This immediately reproduces equation (5.108).

Finally, let us also mention the fact that the electromagnetic field has a linear momentum
density ε0�E× �B. For the field near point-like electric and magnetic charges that are separated
by the vector �R, it may be shown that the total (integrated) linear momentum of the total field
vanishes, whereby the total (integrated) angular momentum is independent of the choice of the
coordinate origin and has the value [☞ [296]; this result was published by J. J. Thomson, in 1904]

�LEM =
qeqm

4π

�R
R

. (5.116)

The quantization of this angular momentum in (integral) units of h̄ also indicates a quantization
of the magnetic charge in units that are inversely proportional to the elementary electric charge,
but gives a value that is twice as large as the result (5.108). That is, the previous two arguments
produce a stricter result. One could have obtained this as early as 1904 from equation (5.116),
but only by adopting the quantization of angular momentum in half-integral units of h̄ – thus
foreshadowing spin- 1

2 particles and systems. At the time, no one thought of it.

5.2.4 Exercises for Section 5.2

✎ 5.2.1 Using the stated definitions of J i, K j and the ensuing relations (5.45), prove equa-
tion (5.46).

✎ 5.2.2 Using the relation (5.45) with the choice ϕi = 0, β2 = 0 = β3 and β1 = β, prove
relation (5.48) by expanding the exponential function, then re-summing the result after
using the relation (5.32).

✎ 5.2.3 Prove the equivalence of results (5.34) and (5.69), as well as that HD = ΨHDΨ.

✎ 5.2.4 Using the relation (5.74)–(5.75) and (3.13b), derive equations (5.77).
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5.3 Quantum electrodynamics with leptons
The description of electrodynamics in the previous section is classical. Quantum computations are
consistently derived from quantum field theory – of photons and leptons – and this derivation
is outside the scope of this book. Instead, following Ref. [243] and the introductory material in
Section 3.3, we will consider several examples of computations with Feynman diagrams that depict
interactions of charged leptons and photons.

5.3.1 Quantum electrodynamics calculation
We have already seen Feynman diagrams that depict electromagnetic processes: O(e4) contri-
butions to the e−p+ scattering are depicted by the diagrams (4.39), and the two-photon e−e+

annihilation is depicted by diagram (4.48). Modeled on Section 3.3.4, we first assign a mathe-
matical expression to every graphical element, and by adapting Procedure 3.1 on p. 116, we will
compute the amplitude M, which we will then insert into the formulae (3.112) and (3.114) for
decays and scattering, respectively.

Although we will not derive the Feynman rules for electrodynamics from the Lagrangian, we
present this Lagrangian density. By combining the results (5.76) and (5.68a), changing

∂μ → Dμ := ∂μ + i
h̄ c Aμ Q so that D′

μ

(
eiϕ(x)Ψ(x)

)
= eiϕ(x)(DμΨ(x)

)
, (5.117)

in accord with the definitions (5.13) and (5.73a), and where Q Ψ = qΨΨ produces the electric
charge of the particle represented by Ψ, we have

LQED = Ψ(x) [ih̄ c /D − mc2] Ψ(x) − 4πε0
4 FμνFμν

= Ψ(x)
[
γγγγμ

(
h̄ c i∂μ − qΨ Aμ

)−mc2
]

Ψ(x)

− 4πε0
4 (∂μAν−∂νAμ)ημρηνσ(∂ρAσ−∂σAρ). (5.118)

By construction, this Lagrangian is invariant under the gauge transformation

A′
μ(x) = Aμ(x) − c∂μϕ(x) and Ψ′(x) = eiϕQ/h̄ Ψ(x). (5.119)

Digression 5.9 The equation of motion for Aμ(x) is obtained by varying either the La-
grangian density (5.118) or the Hamilton action

∫
d4x LQED with respect to Aμ(x). Using

so-called functional derivative generalization of partial derivatives:
δ

δAρ(y)
F (Aμ(x), (∂μAν(x)), . . . ) := δ4(x−y)

∂

∂Aρ(x)
F (Aμ(x), (∂μAν(x)), . . . ), (5.120a)

δ

δ(∂ρAσ(y))
F (Aμ(x), (∂μAν(x)), . . . ) = δ4(x−y)

∂

∂(∂ρAσ(y))
F (Aμ(x), (∂μAν(x)), . . . ),

(5.120b)

we obtain the general result
δ

δAρ(x)

∫
d4y F

(
Aμ(y), (∂μAν(y))

)
=

∫
d4y

δAσ(y)

δAρ(x)

∂

∂Aσ(y)
F

(
Aμ(y), (∂μAν(y))

)
=

∫
d4y δ4(x−y)δσρ

∂

∂Aσ(y)
F

(
Aμ(y), (∂μAν(y))

)
=

∂

∂Aρ(x)
F

(
Aμ(x), (∂μAν(x))

)
.

(5.120c)
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Using
∂

∂Aρ(x)
Aμ(x) = δ

ρ
μ,

∂

∂Aρ(x)

(
∂μAν(x)

)
= 0, (5.120d)

∂

∂(∂ρAσ(x))
Aμ(x) = 0,

∂

∂(∂ρAσ(x))
(
∂μAν(x)

)
= δ

ρ
μδ
σ
ν , (5.120e)

where we need not write the arguments “(x),” we obtain

∂μ
∂LQED

∂(∂μAν)
=
∂LQED

∂Aν
⇒ ∂μ Fμν =

qΨ

4πε0
ΨγγγγνΨ. (5.120f)

Comparing result (5.120f) with equation (5.78) identifies

jμe :=
qΨc
4π

ΨγγγγμΨ (5.120g)

as the 4-vector of the electric current density. The combined Lagrangian density (5.118)
shows that, while the dynamics of photons alone may be described in terms of the Fμν
field, i.e., �E and �B, the Lagrangian description of the interaction with charged particles
requires the use of the gauge 4-vector potential Aμ – although the derived equations of
motion (5.120f) and the obvious (Bianchi) consequence (5.87) may be expressed fully in
terms of the �E and �B fields.

Digression 5.10 Varying the Lagrangian density LQED, as in equation (5.118), with re-
spect to Aμ and Ψ (from the left), we obtain the complementary and coupled system of
Euler–Lagrange equations of motion:

∂μ Fμν =
qΨ

4πε0
ΨγγγγνΨ,

[
i h̄ c γγγγμ∂μ − mc21

]
Ψ = qΨ Aμγγγγ

μΨ. (5.121)

The procedure given in Digression 5.9 is equally applicable to interactions of arbitrary
charged particles with photons: for a particle of a spin other than 1

2 , the Dirac Lagrangian den-
sity must be replaced by a corresponding Lagrangian density but where the “gauge covariant
derivatives” ∂μ → Dμ (5.117) are used. As an introduction and because of immediate application,
the formulae will be written for a lepton/antilepton, i.e., electron/positron. The computations,
however, are easy to adapt for other charged spin- 1

2 particles – one should only substitute the
appropriate charges and masses. Also, it should not be too hard to also adapt the computations
to include charged particles without spin. This is usually called “scalar electrodynamics” in the
literature, but we leave this aside.

Because of the difference in units and numerical simplification, the notation

ge :=
√

4π αe =
|e|√
ε0h̄c

(= |e|√4π/h̄ c, in Gauss’s units) (5.122)

is useful. On one hand, ge gives a dimensionless measure of the interaction strength; on the other,
many electrodynamics computations may then be relatively easily adapted for weak nuclear and
chromodynamics computations by changing ge → gw and ge → gc, respectively, and inserting a
few additional factors [☞ Chapter 6].
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The practical use of most concrete models in quantum field theory reduces to the prescription
(see also Procedure 11.1 on p. 416 and discussion in Section 11.2.4):

Procedure 5.1 Start with a concrete model defined within classical field theory.

1. For any considered process, list the possible sub-processes, as discussed in
Section 3.3.1 and in the form of a sequence of Feynman diagrams partially
ordered:
(a) by the number of closed loops [☞ Comment 3.5 on p. 122],
(b) by the powers of a characteristic interaction parameter,
(c) by the powers of h̄.

2. Compute the amplitude Mi for each (sub)process, as described by the specific
Feynman calculus rules of the model; see for example Procedures 5.2 on p. 193
and 6.1 on p. 232, below.

3. Add the amplitudes, with a negative relative sign between sub-processes that
differ only by the exchange of two identical fermions.

4. Compute the corresponding scattering cross-section or decay constant as dis-
cussed in Section 3.3.3, and illustrated there for a simple toy-model.

The specific Feynman calculus rules mentioned in step 2 above are derived from the same classical
action and rely on the correspondences discussed in Section 3.3.1 and in particular the listing on
page 106. As stated there, that task is deferred to proper field-theory texts [64, 63, 48, 257, 307,
221, 159, 422, 423, 538, 250, 389, 243, 45, 580, 238, 241, 239, 240].

For the particular case at hand, the model describing the interaction of electrically charged
spin- 1

2 fermions (such as electrons) and the electromagnetic field, the classical model is described
by the Lagrangian (5.118), and the specific Feynman calculus rules are as follows:

Procedure 5.2 The contribution to the amplitude M corresponding to a given Feynman di-
agram for an electrodynamics process with electrons and positrons is computed following
the algorithm [☞ textbooks [445, 425, 586] for a derivation]:

1. Notation
(a) Energy–momentum: Denote incoming and outgoing 4-momenta by p1, p2, . . . , and the

spins by s1, s2, . . . Denote the “internal” 4-momenta (assigned to lines that connect two
vertices inside the diagram) by q1, q2,. . .

(b) Orientation: For a spin- 1
2 particle, orient the line in the 4-momentum direction, oppo-

sitely for antiparticles. Orient external photon lines in the direction of time (herein,
upward). Orient the internal photon lines arbitrarily, but use the so-chosen orientation
consistently.

(c) Polarization: Assign every external line the polarization factor:

Spin- 1
2 particle

incoming us s = spin projection = ↑, ↓
outgoing us

Spin- 1
2 antiparticle

incoming vs (" spin- 1
2 particle, travels

backwards in time)outgoing vs

Photon incoming εμ εμpμ = 0 and ε0 = 0

outgoing εμ∗
(5.123)
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2. Vertices To each vertex assign the factor

−→ −igeγγγγ
μ. (5.124)

Even without derivation, this factor clearly corresponds to the term −qΨΨ /AΨ in equa-
tion (5.118), and so represents the elementary interaction of the photon with the current
of the charged particle that Ψ represents.

3. Propagators To each internal line with the jth 4-momentum assign the factor:

spin- 1
2 particle: −→ i

/qj − mjc
= i

/qj + mjc1

q2
j − m2

j c2
, (5.125)

photon: −→ − i
ημν

q2
γ

. (5.126)

As internal lines depict virtual particles, /qj \= mjc and q2
γ \= 0, respectively [☞ Tables C.7

on p. 529 and C.8 on p. 529]. Up to multiplicative coefficients, these factors also stem
from (5.118); these are Fourier transforms of the Green functions for the differential opera-
tors /D and Dμν, in Ψ /DΨ := −Ψ[ih̄ c /∂− mc2]Ψ and AμDμνAν :" − 4πε0

4 FμνFμν, respectively,
where “"” denotes effective equality (equivalence) under the integral, after integration by
parts and “ :"” defines the left-hand side by means of such an effective equality.

Digression 5.11 Integration by parts is used rather often, so that, e.g.,∫
d4x (∂μAν)(∂μAν) =

∫
d4x ∂μ(Aν∂

μAν) −
∫

d4x Aν(∂μ∂μAν)

=
∮
V(μ)

(d3x)μ (Aν∂
μAν) −

∫
d4x Aν(∂μ∂μAν), (5.127a)

where V(μ) is a closed 3-dimensional hypersurface that bounds the 4-dimensional space-
time and (d3x)μ is the volume element of V(μ). As the domain of 4-dimensional
integrals is typically all of spacetime, V(μ) is a hypersurface “at infinity” where all fields
are required to vanish, so the integrated term also vanishes. With this in mind, the
relation (5.127a) is written as∫

d4x (∂μAν)(∂μAν) " −
∫

d4x Aν(∂μ∂μAν), (5.127b)

which defines the relation “",” in this context, as “equality under spacetime integral up
to integrated terms that are assumed to vanish,” or “equivalence up to integrals of total
derivatives.”

4. Energy–momentum conservation To each vertex assign a factor (2π)4δ4(∑j kj), where kj
are 4-momenta that enter the vertex. 4-momenta that leave the vertex have a negative
sign – except for external spin- 1

2 antiparticles, since they are equivalent to particles that
move backwards in time.

5. Integration over 4-momenta Internal lines correspond to virtual particles and their 4-

momenta are unknown; these variables must be integrated:
∫ d4qj

(2π)4 .
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6. Reading off the amplitude The foregoing procedure yields the result

−i M (2π)4δ4(∑
j

pj), (5.128)

where the factor (2π)4δ4(∑j pj) represents the 4-momentum conservation for the entire
process, and where the amplitude (matrix element) M is read off.

7. Fermion loops To each fermion loop (closed line) assign a factor −1. A mathematically
rigorous derivation of this rule follows from Feynman’s approach using path integrals, which
is far beyond the scope of this book. See however Digression 2.4 on p. 52 and especially
statement 4a therein; see also the booklet [166] for an intuitive albeit not entirely rigorous
explanation, Ref. [434, Vol. 1, Appendix A] for a serious introduction, and Ref. [165] for
the original reference.

8. Antisymmetrization Since the amplitude of the process must be antisymmetric in pairs of
identical (external) fermions, the partial amplitudes that differ only in the exchange of two
identical external fermions must have the relative sign −1.

As in Section 3.3.4, one draws all Feynman diagrams that contribute at the desired
order in ge, and then computes the (partial) amplitudes for each of the diagrams. The
algebraic sum of these contributions yields the total amplitude, which is then inserted in
formulae (3.112) and (3.114) for decays and scatterings, respectively.

In the remaining part of Section 5.3, the contributions of the following 12 Feynman diagrams
will be examined, where we follow the treatment in Refs. [243] [☞ also Refs. [64, 580, 241]]:
Each of these diagrams depicts a separate contribution to some O(g2

e ) process and, exceptionally,
O(g4

e ) for the last diagram. Processes are identified by the “external” particles, whereby diagram (a)
in Figure 5.1, all by itself represents one process, while diagrams (b) and (c) in Figure 5.1 represent
two contributions to the same process.

Denote the external lines so that incoming are bottom-left=1 and bottom-right=2, and
outgoing are top-left=3 and top-right=4. So, e.g.,

(5.129)

depicts the elastic scattering of an electron and a muon via the exchange of a photon. In fact,
the incoming (and so also the outgoing) pair of fermions in the diagrams in Figure 5.1 (a)–(d),
p. 196, could be identified as any other pair of different spin- 1

2 particles, including the electron–
proton pair in the hydrogen atom. It is, however, important to keep in mind that the relativistic
description in terms of the perturbative expansion in the degree of the interaction constant ge is
appropriate for scatterings and for decays but not for bound states, the description of which is
inherently non-perturbative in this sense.

To see this, note that the bound states of the hydrogen atom are determined by the Coulomb
field, which results from summing over all possible exchange processes including one to infinitely
many photons. The static electromagnetic field, known as the Coulomb field, may be identified with
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Figure 5.1 The first 12 Feynman diagrams that depict the quantum-electrodynamical processes be-
tween spin- 1

2 particles and the photon. The last diagram depicts one of the corrections for the
process (a).

the (Bose) condensation of infinitely many photons,17 and is a phenomenon that is inherently non-
perturbative in the number of exchanged particles, and so inherently unreachable in the analysis
using elementary processes depicted by Feynman diagrams.

In turn, in scatterings and decays, the exchange of a single photon produces the domi-
nant contribution, while multi-particle exchanges produce ever smaller corrections: scatterings
and decays are inherently perturbative in the number of exchanged particles.

Electron–muon scattering
Scatterings of the type e− + μ− → e− + μ−, where the muon is a “target” that is significantly
heavier than the “probe” (here, e−), are called Mott scattering, after Sir Nevill Francis Mott. In the
non-relativistic regime one obtains Rutherford scattering, named after Ernest Rutherford’s experi-
ment of bombarding a foil of gold with α-particles. Reading off of the diagram in Figure 5.1, and
following the Procedure 5.2 on p. 193, we get∫ d4q

(2π)4 (2π)4δ4(p1 − p3 − q) (2π)4δ4(p2 − p4 + q)

× [
us3 A(p3)(ige γ

μA
B)us1,B(p1)

](−iημν
q2

)[
Us4 C(p4)(ige γ

νC
D)Us2,D(p2)

]
=

ig2
e (2π)4

(p1 − p3)2 δ
4(p2 − p4 + p1 − p3)

[
us3 A(p3) γ

μA
B us1,B(p1)

][
Us4 C(p4) γμ

C
D Us2,D(p2)

]
, (5.130)

and comparison with the diagram (5.129) shows that us1,b(p1) represents the incoming electron,
and Us4 C(p4) the outgoing muon, etc.
17 And the other way round, photons are the quanta of the electromagnetic field in the sense that they are the smallest

“packet” of a change in the electromagnetic field. These quanta – oscillations in the electromagnetic field – move at the
speed of light; once established, the electrostatic or magnetostatic field does not move at all and extends through the
whole available space.
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From there, using the expression (5.128), we get

M(a) = − g2
e

(p1 − p3)2

[
us3 A(p3) γ

μA
B us1,B(p1)

][
Us4 C(p4) γμ

C
D Us2,D(p2)

]
. (5.131)

If the spins of the incoming and outgoing particles are known, the polarization spinors us1,B, Us2,D,
us3 A and Us4 C are selected as given in equations (5.40), one computes the components of the
4-vectors [us3 γγγγμ us1 ] and [Us4 γγγγμ Us2 ], and then the sum of the products.

When in turn the spins of the interacting particles are not measured, and we are interested in
the inclusive effective cross-section of the scattering, i.e., the inclusive decay constant, summing over
all spins produces an important simplification. Indeed, the formulae (3.112) and (3.114) need
|M|2 = MM. On the other hand, M(a) contains a factor[

uA(p3) γ
μA

B uB(p1)
]† =

[
u†(p3)γγγγ

0 γγγγμ u(p1)
]† =

[
u†(p1) (γγγγμ)† (γγγγ0)† u(p3)

]
=

[
u†(p1)1 (γγγγμ)† γγγγ0 u(p3)

]
=

[
u†(p1)γγγγ

0 γγγγ0 (γγγγμ)† γγγγ0 u(p3)
]

=
[
u(p1)γγγγ

μ u(p3)
]
, γγγγμ := γγγγ0(γγγγμ)†γγγγ0, (5.132)

so that |M(a)|2 contains the factor[
uA(p3) γ

μA
B ub(p1)

][
uC(p1) γ

νC
D uD(p3)

]
. (5.133)

Digression 5.12 The physical requirement (A.127) implies that

γγγγμ := γγγγ0(γγγγμ)†γγγγ0 (A.127)= γγγγμ. (5.134)

Finally, summing over spins permits using the relations (5.54):

∑
s1,s3

[
us3 A(p3) γ

μA
B us1B(p1)

][
us1 C(p1) γ

νC
D us3D(p3)

]
= ∑

s3

γμA
B

[
∑
s1

us1B(p1) us1 C(p1)
]
γνC

D

[
us3D(p3) us3 A(p3)

]
(5.54)= γμA

B (/p1 + mec1)B
C γ

νC
D (/p3 + mec1)D

A

= Tr
[
γγγγμ (/p1 + mec1)γγγγν (/p3 + mec1)

]
, (5.135)

which is independent of the spins s1, s3 that are not being measured.
It then follows that

〈|M(a)|2〉 =
g4

e

(p1 − p3)4 ∑
s1,s3

Tr
[
us3(p3)γγγγ

μ us1(p1)
]

Tr
[
us1(p1)γγγγ

ν us3(p3)
]

× ∑
s2,s4

Tr
[
Us4(p4)γγγγμ Us2(p2)

]
Tr

[
Us2(p2)γγγγν Us4(p4)

]
=

g4
e

(p1 − p3)4 Tr
[
γγγγμ (/p1 + mec1)γγγγν (/p3 + mec1)

]
× Tr

[
γγγγμ (/p2 + mμc1)γγγγν (/p4 + mμc1)

]
(5.136)

=
g4

e

(p1 − p3)4 Xμν(1, 3; e−) Xμν(2, 4; μ−). (5.137)
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Digression 5.13 This result – in fact, the entire procedure (5.131)–(5.137) – may also be
depicted graphically:

(5.138a)

where the diagram labels were simplified, so “1” stands for us1,a(p1) and “1” for us1
a (p1),

etc. The product M†
(a)M(a) is then simply depicted by putting two diagrams next to each

other. However, the summation of the product M†
(a)M(a) over spin (and, in general,

all other unmeasured degrees of freedom) of, say, particle 1 is graphically depicted by
connecting (concatenating) the two lines labeled “1” into a single line. Thus,

.

(5.138b)

By cutting the photon lines, we arrive at the graphical depiction (5.137):

. (5.138c)

This graphical rendition of the computation of
〈|M|2〉 is further detailed in Ref. [64].

The computation of the tensors

Xμν(1, 3; e−) := Tr
[
γγγγμ (/p1 + mec1)γγγγν (/p3 + mec1)

]
, (5.139a)

Xμν(2, 4; μ−) := Tr
[
γγγγμ (/p2 + mμc1)γγγγν (/p4 + mμc1)

]
(5.139b)

reduces to writing out the γγγγ-polynomials in the square brackets (5.136), and simplifying using the
identities (A.125). The final result is [☞ Ref. [241] for the “factorization” (5.137) and derivation]

〈|M(a)|2〉 =
8g4

e

(p1 − p3)4

[
(p1·p2)(p3·p4) + (p1·p4)(p3·p2) + 2(memμc2)2

− (mμc)2(p1·p3) − (mec)2(p2·p4)
]
. (5.140)

Electron–electron scattering
The computation (5.140) used that e− �= μ−. However, the result may be adapted also to the
elastic e− + e− → e− + e− scattering, named after Christian Møller. This, however, does not reduce
to a simple replacement mμ → me in the final expression (5.140), since when the two outgoing
particles are identical, we must take into account another, equally possible process, depicted by the
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Feynman diagram (c) in Figure 5.1 on p. 196. The total amplitude is then the difference between
the amplitudes for (b) and for (c) in Figure 5.1 on p. 196. Indeed, since the electrons are fermions,
the total amplitude must be antisymmetric with respect to the exchange of any two, and so also
the two outgoing electrons. Thus,

M2e−→2e− = M(b) −M(c)

= − g2
e

(p1 − p3)2

[
u3 γγγγ

μ u1
][

u4 γγγγμ u2
]
+

g2
e

(p1 − p4)2

[
u4 γγγγ

μ u1
][

u3 γγγγμ u2
]

(5.141a)

(5.141b)

where the expression is simplified by not writing the indices indicating the spin or those for the
Dirac spinor components, and all these arguments are denoted by a single subscript: usi ,A(pi) →
ui. Computing 〈|M|2〉 in this case complicates as compared to (5.131)–(5.140): squaring the
expression (5.141) by absolute value, we obtain

|M2e−→2e− |2 = |M(b)|2 + |M(c)|2 − 2&e
(
M†

(b) M(c)

)
. (5.142)

The first two summands may be copied from equation (5.140), upon changing mμ → me
and swapping 3 ↔ 4 for |M(c)|2. The remaining, “interference” summand18 is “a little” more
complicated:

M†
(b)M(c) ∝ [u2γγγγ

μu4][u1γγγγμu3][u4γγγγ
νu1][u3γγγγνu2] = [u2γγγγ

μu4][u4γγγγ
νu1][u1γγγγμu3][u3γγγγνu2]

=
[
u2γγγγ

μu4u4γγγγ
νu1u1γγγγμu3u3γγγγνu2

]
, (5.143)

summing over spins produces

〈M†
(b)M(c)〉 ∝

〈[
u2γγγγ

μu4u4γγγγ
νu1u1γγγγμu3u3γγγγνu2

]〉
=

〈
Tr

[
γγγγμu4u4γγγγ

νu1u1γγγγμu3u3γγγγνu2u2
]〉

= Tr
[
γγγγμ(/p4 + mec1)γγγγν(/p1 + mec1)γγγγμ(/p3 + mec1)γγγγν(/p2 + mec1)

]
, (5.144)

for the computation of which one needs identities like (A.125), but up to and including the eighth
degree in the γγγγ-matrices. However, using the matrix identities (A.121)–(A.122) these may always
be reduced to the listed identities (A.125) [☞ Theorem A.5 on p. 487].

Electron–positron scattering
The elastic scattering e− + e+ → e− + e+ is known as Bhabha scattering, after Homi Jehangir
Bhabha. Again there are contributions from two sub-processes:

(5.145)

18 The existence of such interference summands is the hallmark of quantum mechanics: the basic principle is that in
classical physics one adds probabilities of the partial contributions to a process, whereas in quantum physics one adds
the amplitudes of those probabilities and then squares this sum to obtain the probability.
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It is not hard to show that M(d)(1, 2, 3, 4) = M(c)(1, 3, 2, 4); i.e., by exchanging the incoming
positron with the outgoing electron: the incoming positron, labeled “2,” is equivalent to the
outgoing electron, labeled “3,” together with the p2 ↔ −p3 swap:

(5.146)

Antisymmetrizing with respect to this exchange of two fermions, we then have

Me−e+→e−e+ = M(d) −M(e) (5.147a)

= − g2
e

(p1 − p3)2 [u3γγγγ
μu1][v2γγγγμv4] +

g2
e

(p1 + p2)2 [v2γγγγ
μu1][u3γγγγμv4]. (5.147b)

The expression for M(d) was obtained from equation (5.131), swapping U2 → v4: incoming muon
into the incoming (backwards in time!) positron, as well as U4 → v2: outgoing muon into the
outgoing (backwards in time!) positron.

Compton scattering
For electron–photon scattering, there are again two diagrams:

(5.148)

This time, the diagrams do not differ in an exchange of two fermions – we evidently do differen-
tiate between the incoming and the outgoing electron, so there is no antisymmetrization; these
amplitudes are therefore being added,

Me−γ→e−γ = M( f ) + M(g), (5.149a)

where, following Procedure 5.2 on p. 193, we obtain

−iM( f )(2π)4δ4(p1 + p2 − p3 − p4)

=
∫ d4q

(2π)4 (2π)4δ4(p1 − p3 − q)(2π)4δ4(p2 − p4 + q)

× u4 ε
μ
2 (−igeγγγγμ)

i(/q + mec1)
q2 − m2

e c2 (−igeγγγγν)ε
ν∗
3 u1, (5.149b)

M( f ) =
g2

e
(p1 − p3)2 − m2

e c2

(
ε
μ
2 [u4 γγγγμ(/p1 − /p3 + mec1)γγγγν u1]εν∗3

)
, (5.149c)
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M(g) =
g2

e
(p1 + p2)2 − m2

e c2

(
ε
μ∗
3 [u4 γγγγμ(/p1 − /p3 + mec1)γγγγν u1]εν2

)
. (5.149d)

We obtained the amplitude M(g) from M( f ) by swapping

p2 ↔ −p3 and (εμ2 , εν∗3 ) ↔ (εμ∗3 , εν2). (5.150)

This is easy to depict diagrammatically:

1

3↖

ν

2 ↖

4

μ

1 3↘

ν

2 ↘

μ

4

1 3∗ → 2↖

μ

2∗ →3↖

ν

4

(5.151)

Electron–positron pair annihilation and creation
For inelastic scattering e− + e+ → 2γ, there are again two diagrams:

Me−+e++→2γ = M(h) + M(i) =
q

+ q

1 2

3 4

1 2

3 4
(5.152)

which are being added: They differ in the exchange of two photons 3 ↔ 4, which are bosons, so
the total amplitude is being symmetrized. As in the previous examples, we obtain

=
g2

e
(p1 − p3)2 − m2

e c2

(
εν∗4 [v2γγγγν(/p1 − /p3 + mec1)γγγγμu1]ε

μ∗
3

)
+

g2
e

(p1 − p4)2 − m2
e c2

(
εν∗3 [v2γγγγν(/p1 − /p4 + mec1)γγγγμu1]ε

μ∗
4

)
. (5.153)

For the process of pair-creation 2γ→ e− + e+, there are again two diagrams:

M2γ→e−+e+ =

1 2

q
3 4

+
1 2

q
3 4

(5.154)

These contributions to the amplitude are being added as they again differ in the exchange of the
two incoming photons. Owing to the evident (time-reversal) symmetry between the results (5.154)
and (5.152), we have that M2γ→e−+e+ = M†

e−+e+→2γ.

5.3.2 Effective cross-sections and lifetimes
The results for M and

〈|M|2〉 from the previous section may now be used in the above
formulae (3.112) and (3.114), (3.122) and (3.127), as well as (3.159), (3.161) and (3.162).
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Mott and Rutherford scattering
For the scattering of a light “probe” on a heavy “target” where the spins are not measured, we
may use the results (5.136). In addition, in the approximation where the target mass (mB = M) is
sufficiently larger than the probe mass (mA = m) so that the target recoil is negligible – which is
easily realistic if the target is affixed in the lab – we use the result (3.161):

dσ
dΩ

≈
( h̄

8πMc

)2 〈|M|2
〉

. (5.155)

Since the target is immovable, we have

p1 = (−E/c,�p1), p2 = (−Mc,�0), p3 ≈ (−E/c,�p3), p4 ≈ (−Mc,�0), (5.156)

where we used the conservation law of energy, i.e., the 0th component of 4-momentum, and have
approximated E4 ≈ Mc2 and �p4 ≈�0, so that E3 ≈ E1 = E. It follows that the angle in the relation
�p1·�p3 = �p2 cos θ is small, θ ≈ 0, so that |�p1| ≈ |�p3| =: |�p|. In this approximation,

(p1 − p3)
2 ≈ −(�p1 −�p3)2 = −�p 2

1 −�p 2
3 + 2�p1·�p3 = −4�p2 sin2

(
θ

2

)
, (5.157a)

(p1·p3) ≈
E2

c2 −�p1·�p3 = �p2 + m2c2 − �p2 cos θ = m2c2 + 2�p2 sin2
(
θ

2

)
, (5.157b)

(p1·p2) = ME ≈ (p2·p3) ≈ (p1·p4) ≈ (p3·p4), (p2·p4) ≈ M2c2. (5.157c)

Thus, 〈
|M|2

〉
≈

(
g2

e Mc

�p 2 sin2( θ2 )

)2 (
m2c2 +�p 2 cos2

(
θ

2

))
, (5.158)

dσ
dΩ

≈
(

αh̄

2�p 2 sin2( θ2 )

)2 (
m2c2 + �p 2 cos2

(
θ

2

))
. (5.159)

This is Mott’s formula, which is a very good approximation of the differential cross-section for
e−–p+ scattering, and even better for electron scattering on heavy ions. In the approximation
where �p2 � m2c2, we obtain

dσ
dΩ

≈
(

αh̄

2�p 2 sin2( θ2 )

)2

m2c2 =
(

αh̄ c

2 m�v 2 sin2( θ2 )

)2

, (5.160)

which is the classical Rutherford formula (2.3).
The system of equations (4-momentum conservation)

(−E1/c,�p1) + (−Mc,�0) = (−E3/c,�p3) + (−E4/c,�p4) (5.161a)

produces, denoting pi := |�pi|,√
m2c2 + p2

1 + Mc =
√

m2c2 + p2
3 +

√
M2c2 + p2

4, (5.161b)

p1 = p3 cos θ + p4 cos φ, (5.161c)

0 = p3 sin θ − p4 sin φ. (5.161d)

Eliminating the angle φ from the last two equations produces

p4 =
∣∣�p1 −�p3

∣∣ =
√

p 2
1 − 2p1 p3 cos(θ) + p 2

3 (5.161e)
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which, together with relation (5.161b) gives
(

with E1 = c
√

m2c2 + �p 2
1

)

p3± =
p1(E1M+m2c2) cos(θ) ± p1(E1+Mc2)

√
M2−m2 sin2(θ)

(M2+m2)c2+2E1M+p 2
1 sin2(θ)

(5.162)

This is why simplifying approximations such as Mott’s are convenient.

Electron–positron pair annihilation
In a model that has only electrons (and positrons) and photons, the decay – strictly speaking – is
not possible: neither can a fermion (an electron or a positron) decay into any number of photons,
nor can a photon decay into a real electron–positron pair [☞ Exercise 5.3.6]. However, the well-
studied decay π0 → 2γ is actually the process π0 = (q + q) → γ+ γ, which is in fact an inelastic
scattering of a quark–antiquark pair that were, originally, bound into the state π0. This process
has contributions not only from the electromagnetic interaction, but also from weak and strong
nuclear interactions, which complicates the estimate.

Instead, consider the decay of positronium, which is most conveniently computed in the
positronium rest-frame, i.e., in the electron–positron CM system. It is known that in this system
the electron and the positron move rather slowly, so we compute in the approximation where the
electron and the positron are static immediately before their annihilation. The two photons created
in the annihilation carry the same energy and so have linear momenta of the same magnitude and
opposite direction. Thus we choose

pe− = p1 = mec(−1, 0, 0, 0), pe+ = p2 = mec(−1, 0, 0, 0), (5.163a)

pγ1
= p3 = mec(−1, 0, 0, 1), pγ2

= p4 = mec(−1, 0, 0,−1), (5.163b)

whereby it follows that

(p1 − p3)
2 − m2

e c2 = −2m2
e c2 = (p2 − p4)

2 − m2
e c2. (5.164)

Besides, for the photons we use both the Lorenz gauge (5.91), whereby

ε3·p3 = 0 = ε4·p4, (5.165)

as well as the Coulomb gauge, whereby the polarization 4-vectors ε3 and ε4 have no temporal
component. Since p1 and p2 only have temporal components, it follows that

ε3·p1 = 0 = ε4·p1 and ε3·p2 = 0 = ε4·p2. (5.166)

The expressions (5.153) may, after a little simplifying, be written as

M(h) =
g2

e
(p1 − p3)2 − m2

e c2

(
[v2 /ε∗4(/p1 − /p3 + mec1)/ε∗3u1]

)
, (5.167)

M(i) =
g2

e
(p1 − p4)2 − m2

e c2

(
[v2 /ε∗3(/p1 − /p4 + mec1)/ε∗4u1]

)
, (5.168)

where /ε∗i := ε∗i
μγγγγμ – the gamma-matrix is not conjugated. Consider first M(h), where

/p1 /ε∗3
(A.126a)= −/ε∗3 /p1 + 2ε∗3 ·p1

(5.166)= −/ε∗3 /p1, (5.169a)

/p3 /ε∗3
(A.126a)= −/ε∗3 /p3 + 2ε∗3 ·p3

(5.165)= −/ε∗3 /p3, (5.169b)
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(/p1 − /p3 + mec1)/ε∗3u1 = /ε∗3(−/p1 + /p3 + mec1)u1 = /ε∗3 /p3u1, (5.169c)

where the last equality holds as the incoming electron, u1, is on-shell, i.e., it satisfies the Dirac
equation, (/p1 − mec1)u1 = 0. M(i) is similarly simplified so that, using the choices (5.163b), we
obtain

Me−+e+→2γ = − g2
e

2m2
e c2 v2[/ε∗4 /ε∗3 /p3 + /ε∗3 /ε∗4 /p4]u1 (5.170)

= − g2
e

2mec
v2[/ε∗4 /ε∗3(γγγγ0 + γγγγ3) + /ε∗3 /ε∗4(γγγγ0 − γγγγ3)]u1

= − g2
e

2mec
v2[(/ε∗4 /ε∗3 + /ε∗3 /ε∗4)γγγγ0 + (/ε∗4 /ε∗3 − /ε∗3 /ε∗4)γγγγ3]u1

= − g2
e

2mec
v2[2ε∗4μη

μνε∗3νγγγγ0 + 4iε∗4μγγγγ
μνε∗3νγγγγ3]u1

= − g2
e

2mec
v2[−2�ε∗4 ·�ε∗3γγγγ0 + i(�ε∗4×�ε∗3)·�Σγγγγ3]u1, (5.171)

where we used again that ε0
i = 0 and where we defined

Σi := 2εijk γγγγ
jk = i

2 εijk [γγγγj,γγγγk]. (5.172)

Finally, we use that the spins of the electron and the positron are antiparallel, and use

u↑
1 =

√
2mc

[ 1
0
0
0

]
, u↓

1 =
√

2mc
[ 0

1
0
0

]
, v↓

2 =
√

2mc[0 0 1 0], v↑
2 =

√
2mc[0 0 0 1]. (5.173)

Thus, using the concrete matrices in Appendix A.6.1,

M↑↓ = −2ig2
e (�ε

∗
3 ×�ε∗4)z = −M↓↑, (5.174)

from which it follows that the symmetric state of the electron–positron system, (|↑↓〉 + |↓↑〉)/
√

2,
cannot decay into two photons. However, since the process e+ + e− → γ is kinematically forbidden,
it follows that the symmetric state of positronium may only decay into three or more photons.

On the other hand, the antisymmetric state, (|↑↓〉 − |↓↑〉)/
√

2, can decay into two photons.
Thus we have

M|0,0〉 = 1√
2

(
M↑↓ −M↓↑

)
, (5.175)

where |0, 0〉 = (|↑↓〉 − |↓↑〉)/
√

2 is the so-called singlet state of positronium before decay.
Next, re-insert the polarization vectors19

�ε|1,+1〉 = − 1√
2
(1, i, 0) and �ε|1,−1〉 = 1√

2
(1,−i, 0), (5.176)

so that

(�ε∗3 ×�ε∗4)↑↓ =
(
�ε∗3,|1,+1〉 ×�ε∗4,|1,−1〉

)
= −1

2

∣∣∣∣∣∣
ê1 ê2 ê3
1 −i 0
1 i 0

∣∣∣∣∣∣ = −i ê3 = −(�ε∗3 ×�ε∗4)↓↑, (5.177)

whereby the photon polarization too must be in the antisymmetric superposition

1√
2

(|1, +1〉3|1,−1〉4 − |1,−1〉3|1, +1〉4
)
. (5.178)

19 The signs are chosen so that {�ε|1,+1〉,�ε|1,−1〉, ê3} would form a right-handed coordinate system.
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Finally, adding the contributions to the amplitude as in the superposition (5.178),

Me−+e+→2γ = −4g2
e . (5.179)

Although the final numeric value of this result seems disproportionately simple in comparison with
the length and details of the derivation, note that we have also derived that the antiparallel spins
in the electron–positron system imply that:

1. the positronium spin before the two-photon decay equals zero, i.e.,
the positronium is in the so-called singlet state |0, 0〉 = (|↑↓〉 − |↓↑〉)/

√
2;

2. the spin of the two-photon state produced in the positronium decay equals zero,
and the state itself is the antisymmetric superposition (5.178);

3. the triplet state of positronium, |1, 0〉 = (|↑↓〉 + |↓↑〉)/
√

2, may only decay into three or
more photons.

Given the amplitude (5.179), we may compute: First of all, using the result (3.127), we have
the effective cross-section of the electron–positron annihilation in the CM system:

dσ
dΩ

=
( h̄ c

8π(E1 + E2)

)2 |�p f |
|�pi| |M|2 =

( h̄ c
16π(mec)

)2 |Eγ/c|
|me v|

∣∣− 4g2
e
∣∣2, (5.180)

where we used that, because of (5.163a)–(5.163b), E1 = mc2 = E2 and Eγ = mec2. Simplifying,
we obtain

dσ
dΩ

=
1
cv

( h̄α
me

)2
, and σ =

4π
cv

( h̄α
me

)2
, (5.181)

since dσ/dΩ does not depend on angles.
For the decay constant and the lifetime of positronium, use relation (3.109), where the total

number of scatterings equals N = Lσ, and luminosity is L = vρ, with ρ the probability density of
finding the electron and the positron at the decay location. For an individual positronium “atom,”
ρ = |Ψ(�0, t)|2 and N represents the decay probability in unit time, i.e., the decay constant. Thus,

Γ = v σ |Ψ(�0, t)|2 =
4π
c

( h̄α
me

)2|Ψ(�0, t)|2, (5.182)

in agreement with Conclusion 3.2 on p. 113, and the relation (3.110). Recall: [|Ψ(�0, t)|2] = L−3;
at the end of Section 4.1.5, the result from analyzing the hydrogen atom was adapted, |Ψ(�0, t)|2 =( αme c

h̄ n

)3. With this result, we finally get

Γ =
4π
c

( h̄α
me

)2[ 1
π

(α( 1
2 me)c
h̄ n

)3]
=
α5 mec2

2 h̄ n3 , (5.183)

and the positronium lifetime becomes

τ =
1
Γ

=
2 h̄ n3

α5 mec2 ≈ (1.24494×10−10 s) × n3. (4.51)

5.3.3 Renormalization
When discussing electron–muon scattering (5.129)–(5.140), we took into account only the Feyn-
man diagram of lowest order in the ge-, i.e., α-power expansion. The results (5.131)–(5.140)
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produce M(a) =
√
〈|M(a)|2〉 = O(g2

e ) = O(α). Next order corrections stem from the following
diagrams:

(5.184)

of which we will consider the last two. Denote

p1

p3

p 2

p 4

q q ′

k

k ′

(5.185)

Calculation
The amplitude for this process is obtained following Procedure 5.2 on p. 193:∫ d4q

(2π)4
d4q′

(2π)4
d4k

(2π)4
d4k′

(2π)4 (2π)4δ4(p1 − p3 − q) (2π)4δ4(q − k + k′) (2π)4δ4(k − k′ − q′)

× (2π)4δ4(p2 − p4 + q′)
[
u3(ige γγγγ

μ)u1
](−iημν

q2

)
× (−1) Tr

[
(igeγγγγ

ν)
i

/k − mec
(igeγγγγ

ρ)
i

/k′ − mec

](−iηρσ
(q′)2

)[
U4(ige γγγγ

σ)U2
]

(5.186a)

= −g4
e

∫ d4q
(2π)4

d4k
(2π)4 (2π)4δ4(p1 − p3 − q) (2π)4δ4(p2 − p4 + q)

× [
u3 γγγγ

μ u1
](ημν

q2

)
Tr

[
γγγγν

1
/k − mec

γγγγρ
1

/k − /q − mec

](ηρσ
q2

)[
U4 γγγγ

σ U2
]

= −i(2π)4 δ4(p1 + p2 − p3 − p4)

×
[−ig4

e

q4

∫ d4k
(2π)4

[
u3 γγγγ

μ u1
]Tr[γγγγμ(/k + mec)γγγγρ(/k − /q + mec)]

(k2 − m2
e c2)[(k − q)2 − m2

e c2]

[
U4 γγγγ

ρ U2
]]

q=p1−p3

, (5.186b)

where the factor (−1) in the expression (5.186a) reflects rule 7 in Procedure 5.2 on p. 193. With
the abbreviation q := p1 − p3, we have

M(a′) =
−ig4

e

q4

[
u3 γγγγ

μ u1
]{ ∫ d4k

(2π)4

Tr[γγγγμ(/k + mec)γγγγρ(/k − /q + mec)]

(k2 − m2
e c2)[(k − q)2 − m2

e c2]

}[
U4 γγγγ

ρ U2
]
. (5.187)

Comparing with equation (5.131), we see that the inclusion of this O(g4
e ) contribution20

(5.188)

20 For the complete result computed to O(g4
e ), we of course must include all contributions (5.184) [☞ Refs. [243, 45,

580, 241]]; for brevity and pedagogical focus, only the last two are considered here.
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is equivalent to replacing the photon propagator in Procedure 5.2:

−iημρ
q2 → −iημρ

q2 +
−i Hμρ

q4 + · · · =
−i
q2

[
ημρ +

Hμρ

q2 + · · ·
]
, (5.189)

where

Hμρ := ig2
e

∫ d4k
(2π)4

Tr[γγγγμ(/k + mec)γγγγρ(/k − /q + mec)]

(k2 − m2
e c2)[(k − q)2 − m2

e c2]
. (5.190)

Since Hμρ may only depend on the (rank-2) metric tensor ημν and the 4-momentum qμ, it
must be that (as a rank-2 tensor and with [Hμν] = 2[q])

Hμρ = −ημρ q2 I(q2) + qμ qρ J(q2). (5.191)

Here, I(q2) and J(q2) are two Lorentz-invariant functions of the 4-momentum q, so they must be
functions of the Lorentz-invariant square q2. Since q is the 4-momentum of the virtual photon, q2

need not be restricted to the mass shell (q2 = 0, for the massless photon) and may attain arbitrary
values.

The function J(q2) contributes nothing to the final result, as it occurs, within the ampli-
tude (5.187), only contracted with the 4-momentum:

[u3γγγγ
μ u1]qμ = [u3 /q u1] = [u3 (/p1 − /p3) u1] = 0. (5.192)

This last equality holds since both the incoming and the outgoing electrons are on the mass shell:

/p1 u1 = mec u1 and u3 /p3 = u3 mec. (5.193)

(Recall: /pi = γγγγμpi μ are 4×4 matrices, ui 4-component column-matrices and ui 4-component row-
matrices.) It remains to compute the function I(q2), which may be brought into the shape [243]:

I(q2) =
g2

e
12π2

{ ∫ ∞

m2
e

dξ
ξ

− 6
∫ 1

0
dζ ζ(1−ζ)ln

(
1− q2

m2
e c2 ζ(1−ζ)

)}
. (5.194)

While the first integral diverges logarithmically,

∫ ∞

m2
e

dξ
ξ

= lim
μ→∞

∫ μ2

m2
e

dξ
ξ

= 2 lim
μ→∞

ln
( μ

me

)
= ∞, (5.195a)

the second term, in curly brackets in relation (5.194), equals

f (x) :=
(12−5x)

√
x(x+4) − 6(x−2)(x+4) tan−1

(√
x

x+4

)
3
√

x3(x+4)

=
4
x
− 5

3
− 2(x−2)

x

√
x+4

x
tan−1

(√ x
x + 4

)
, (5.195b)

x := − q2

m2
e c2 = − (p1 − p3)2

m2
e c2 ≈ 4

�p 2
e, in

m2
e c2 sin2( θ

2

)
= 4

�v 2
e, in

c2 γ2
e sin2( θ

2

)
, (5.195c)
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where �pe, in and �ve, in are, respectively, the 3-vectors of linear momentum and the velocity of the
incoming electron, γe the corresponding relativistic factor, and θ their deflection angle. Note that
f (x) varies relatively slowly:

–20 10 10 20

–3

–2

–1

1

2
�e f(x)

)

�m f(x)
)

π

(5.196)

The total amplitude is

M(a) = lim
μ→∞

M(a)(q2, μ) + · · · , (5.197a)

where

M(a)(q2, μ) = −g2
R(μ)

[
u3 γγγγ

μ u1
](ημν

q2

){
1 +

g2
R(μ)

12π2 f
( −q2

m2
e c2

)}[
U4 γγγγ

ν U2
]
+ · · · , (5.197b)

ge,R(μ) := ge

√
1 − g2

e
6π2 ln

( μ

me

)
, (5.197c)

and where “· · · ” denotes omitted contributions from the other diagrams (5.184), as well as O(g6
e )

contributions, and the equality (5.197b) with definition (5.197c) holds up to O(g6
e ) corrections.

Physical meaning
The definition (5.197a) actually uncovers a conceptual error in the original set-up of the com-
putation: The identification of the e− + μ− → e− + μ− elastic scattering amplitude of course
depends on the strength of the interaction of the electron and the muon with the photons that
mediate the electromagnetic interaction. The measure of the strength of that interaction was ini-
tially identified [☞ definition (5.122)] with the dimensionless parameter ge = e√

ε0 h̄ c
used in

the assignment (5.124), which in turn is derived (within a field theory course) from the clas-
sical Lagrangian (5.118), with qΨ → −e (for the electron). However, the electric charge is of
course a measured parameter, and elastic scatterings such as e− + μ− → e− + μ− in fact define
the quantity that we call the (physical) electric charge. In other words, the original parameter
qΨ → −e = −ge

√
ε0 h̄ c used in (5.118) is neither independently nor directly measurable, and

should never have been identified identically with the physical electric charge of the electron.

Conclusion 5.5 The quantity that is measurable and which is being compared with ex-
perimental data may in turn be identified with the symbol ge,R, as defined by the
relation (5.197c) as a function of the auxiliary (intermediate and, essentially, arbi-
trary) parameters ge, μ – and up to O(g4

e ) contributions, which were omitted in the
expansion (5.197a).
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From the form of equation (5.197c), taking the μ → ∞ limit and the physical fact that the
measurable charge ge,R is of course a finite quantity, it follows that the original and unmeasurable
variable ge must be a function of the variable μ, so that

ge,R := lim
μ→∞

ge(μ)

√
1 − g2

e (μ)
6π2 ln

( μ

me

)
+ · · · < ∞ (5.198)

This perhaps fussy “detailing” is in fact logical, given that both ge and μ are auxiliary (intermediate)
variables that serve only to connect the mathematical model (developed in a perturbative way from
the classical physics model) to the physical quantities that this model describes.

In field theory (a course that should follow this introduction), the rules in Procedure 5.2
on p. 193 are derived from the Lagrangian for electrodynamics of charged spin- 1

2 particles. The
parameter ge should show up in this Lagrangian. However, just like that Lagrangian, the parameter
by itself is not measurable, but defines the measurable charge by means of the iterative relation
the beginning of which is given by equation (5.198). Thus, relation (5.197b) may be written as

Me−+μ−→e−+μ−(q2) = −g2
e,R(q2)

[
u3 γγγγ

μ u1
](ημν

q2

)[
U4 γγγγ

ν U2
]
+ · · · , (5.199a)

ge,R(q2) = ge,R(0)

√
1 +

g2
e,R(0)
12π2 f

( −q2

m2
e c2

)
, (5.199b)

that is,

αe,R(q2) = αe,R(0)
{

1 +
αe,R(0)

3π
f
( −q2

m2
e c2

)}
,

≈ αe,R(0)
{

1 +
αe,R(0)

3π
ln

( q2

m2
e c2

)}
, q2 
 m2

e c2, (5.199c)

where the electric charge is defined as the renormalized parameter of the electromagnetic inter-
action, ge,R(q2), as is then defined the parameter of the electromagnetic fine structure, αe,R(q2), as
a function of the Lorentz-invariant intensity of the 4-momentum transfer, from the “probe” (here
e−) to the “target” (here μ−).

The quantities ge,R(0) and αe,R(0) are the limiting values of the functions ge,R(q2) and αe,R(q2),
when the 4-momentum transfer between the “probe” and “target” is negligible, and in that limit
we have αe,R(0) ≈ 1

137 . The numerical values of the corrections (5.199c) are relatively small, e.g.,
O(6×10−6) for a direct collision at c/10 speed, so that the value 1

137 is used as a first approximation
for αe,R(q2) as if it were a constant. However, precise measurements of electromagnetic processes,
such as in the Lamb shift (1.38a), indeed verify the corrections (5.199c).

The fact (5.199c) that the numerical value of the electric charge depends on the 4-momentum
of the interaction with which that electric charge is being measured indicates the conceptual error
in classical physics, where the parameters in the model of the physical system or process have
a priori identified physical meaning and concrete value. The quantum nature of Nature teaches
us that only those particular combinations and functions of the model parameters for which the
values really can be measured must in fact have concrete (real and finite) values.

The contribution of the last diagram (5.184) equals the second term in equation (5.199c),
only with a virtual muon in the central closed loop. That induces the replacement me → mμ in the
result (5.199c), which reduces the contribution since

ln
( q2

m2
μc2

)
= ln

( q2

m2
e c2

)
− [

2 ln(206) ≈ 10.6558
]
. (5.200)
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In fact, since the fermionic closed loop in the center of the diagram (5.185) depicts a virtual spin-
1
2 fermion – which by definition is not observed – the contribution of the same diagram should
be summed over all electrically charged spin- 1

2 fermions. The electron’s contribution is however
dominant, since the electron is the lightest of all electrically charged spin- 1

2 fermions, and the
corrections (5.199c) [☞ relations (5.195b)–(5.196)] are scaled by the logarithm of the inverse
mass of the particle in this central loop.

Finally, the relation (5.199c) is a result of the O(g4
e ) contributions, which is depicted by the

diagrams (5.188). It is not hard to show that the infinite series of diagrams of growing order:

+ + + + · · · · · ·
(5.201)

summing the geometric series result in

αe,R(|q2|) ≈ αe,R(0)

1 − αe,R(0)
3π ln

( |q2|
m2

e c2

) , |q2| 
 m2
e c2. (5.202)

In the domain m2
e c2 � q2 � m2

e c2 exp
{ 3π

2α(0)

}
, αe,R(q2) is a very slowly growing function, and the

approximation αe,R(q2) ≈ αe,R(0) ≈ 1
137 is very good.

The various diagrams that are not shown in the series (5.201) [☞ collection (5.184)] ei-
ther provide significantly smaller contributions than those shown (comparing diagrams of the
same order in g2

e ) or their contribution may be absorbed by renormalizing parameters such as
the mass of the electron, me. The contributions (5.201) are usually called the “leading logarithm”
contributions.

The renormalization group
Note that the result (5.197c) was obtained by including the quantum correction of only the lowest
order, and the result (5.202) includes the dominant corrections. Evidently, these corrections –
computed iteratively and sequentially – may be organized in a quantitative sequence, so that from
one iteration to the next one there is a “flow”:(

α(0)
e,R(|q2|) := αe,R(0)

)
�→ · · · �→ α(k)

e,R(|q2|) �→ α(k+1)
e,R (|q2|) �→ · · · �→ α(∞)

e,R (|q2|), (5.203)

where only the limiting result, α(∞)
e,R (|q2|), may be identified with the real physical quantity. The

precise specification of the ordering of this renormalization “flow” depends on the concrete ap-
plication – and this is one of those conceptual ideas that are applied in almost all branches of
physics! The formal transformations that lead from one step in this renormalization flow into the
next form a structure called the “renormalization group” – although it in fact does not satisfy the
group axioms: The transformation R(k+1)

(k) that takes the kth into the (k+1)th “step” has no binary
operation defined with most other such transformations; only the consecutive “products” of the
form R(k+1)

(k) ◦ R(k)
(k−1) are defined [☞ Comment 9.2 on p. 323].

In field theory, the application of this procedure and its structure was discovered by Ernst
Stückelberg and Andre Petermann back in 1953 [502, 146]. The contemporary practice in field
theory varies, but by now mostly relies on Kenneth Wilson’s approach (1982 Nobel Prize), further
developed by Joseph Polchinski [431]; see also Ref. [425] by Michael Peskin, who was Wilson’s
student, and who in turn was Gell-Mann’s student. In this approach, the renormalization flow
is organized by means of a varying upper limit in otherwise divergent integrals, i.e., by the en-
ergy/mass values up to which particles and excitations are included. The earlier approach, after
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Murray Gell-Mann and Frank James Low, varies the value of the renormalization 4-momentum μ
in the computations that lead to the results such as (5.198) and is still being used.

Essentially two types of behavior can result from this renormalization flow, which motivates:

Definition 5.1 A quantum system is renormalizable if merely the parameters used in the
classical Lagrangian of a system change owing to quantum corrections, but the functional
form of this Lagrangian remains the same. Otherwise, a system is non-renormalizable.

See also Definition 11.1 on p. 419 for a more precise statement. Suffice it here to say that all
possible Yang–Mills type gauge theory models interacting with any spin-0 and spin- 1

2 matter fields –
including the Standard Model – are renormalizable.

5.3.4 Exercises for Section 5.3

✎ 5.3.1 For Γ ∈ {1,γγγγμ,γγγγμν, (γγγγμγ̂γγγ), γ̂γγγ}, compute for which Γ is Γ := (γγγγ0Γ†γγγγ0) = Γ, and for
which Γ is Γ = −Γ.

✎ 5.3.2 Derive the equations of motion (5.120f).

✎ 5.3.3 Derive equation (5.140).

✎ 5.3.4 Derive equation (5.144), and then equation (5.142).

✎ 5.3.5 Find the diagram that, as (5.138c), depicts the result (5.144) and represents it by a
graphical depiction as in Digression 5.13 on p. 198.

✎ 5.3.6 From the 4-vector equation pγ = pe− + pe+ and the symmetry �pγ·�pe− = �pγ·�pe+ , as
well as |�pe− | = |�pe+ |, show that the decay of a real photon into a real electron–positron pair
is kinematically forbidden.

✎ 5.3.7 Prove relation (5.195c), i.e., that q2 = −4�p 2
i sin2( θ

2

)
.

✎ 5.3.8 Compute the collision energy for which the expression (5.202) diverges.

5.4 Quantum electrodynamics of hadrons
The interaction between photons and quarks is described by the same theory as the interaction be-
tween photons and leptons, discussed in Sections 5.2.1 and 5.3.1. However, individual quarks are
not available for experimenting. They are always within bound states, so-called hadrons: mesons,
which are (qq)-systems, and baryons, which are (qqq)-systems. The interaction between a lep-
ton (as a “probe”) and a hadron (as the “target”), as well as between two hadrons, reduces to
the interaction with individual (anti)quarks within the hadron, and so necessarily depends on the
distribution of these individual (anti)quarks within the hadron. This distribution is described by
so-called form-factors, which effectively21 describe the strong nuclear interactions that bind the
(anti)quarks into hadron bound states.

The second difficulty stems from the fact that the number of new hadrons is limited only by
the available energy: as the collision energy grows, more and more new hadrons may be produced

21 Here, “effective” means “successfully and with no a-priori detailed fundamental basis/derivation”; the adjective
“phenomenological” is used in the literature, in the same sense.
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in inelastic collisions, and the analysis very quickly becomes a combinatorially growing nightmare.
Catalogues of hadrons such as Ref. [293] provide data about hundreds and hundreds of hadrons.

In principle, in the interaction between leptons and hadrons as well as between two hadrons,
there are also contributions from weak nuclear interactions. However, that (third) source of com-
plications is in most cases negligible, as the weak nuclear interaction is much weaker [☞ discussion
on p. 67].

The two types of processes that are significant in hadronic experiments are production from
electron–positron annihilation,

(5.204)

and so-called deep inelastic lepton–hadron collisions,

(5.205)

In both cases, increasing collision energy (indicated by the dotted arrow) gives rise to the pro-
duction of a large number of outgoing hadrons. The strong nuclear interaction dominates this
“hadronization,” which in these diagrams is represented by the dark oval where the quark–
antiquark pair (i.e., the three quarks) bind into a palette of bound states (hadrons). However,
the electromagnetic part of the interaction may be separated as the interaction between the lepton
and the individual (anti)quarks. Thus, computations of the amplitudes from the previous sections
may be adapted also to these collisions, but the kinematic part of the analysis is significantly more
complicated. Herein, we consider only the part of this analysis that is determined by the symmetries
and general requirements.

5.4.1 Hadron production in electron–positron annihilation
Even with enough energy for the final collision results to include many hadrons, the electromag-
netic part of the process (5.204) primarily reduces to transforming a ��-pair, by way of a virtual
photon, into a qq-pair. That quark and antiquark then decay into lighter quarks, emit gluons
and so produce a palette of various hadrons. This second stage of the process contains all the
complications from strong interactions.

To describe the first stage, let m be the lepton and antilepton mass, M the mass of the pro-
duced quark and antiquark, and Q the electric charge of the quark (so −Q is the electric charge
of the antiquark) in units of elementary electric charge, e, so that Q(u) = + 2

3 , Q(d) = − 1
3 , etc.

Adapting the second term in the result (5.147b) we have

M��→qq =
Q g2

e
(p1 + p2)2 [v2γγγγ

μu1][U3γγγγμV4], (5.206)
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where u1, v2, U3 and V4 are Dirac spinors for the incoming lepton and antilepton, and outgoing
quark and antiquark, respectively. Averaging as in (5.132)–(5.137) we obtain〈

|M��→qq|2
〉

=
1
4

( Q g2
e

(p1 + p2)2

)2
Tr

[
γγγγμ(/p1 + mc)γγγγν(/p2 − mc)

]
× Tr

[
γγγγμ(/p4 − Mc)γγγγν(/p3 + Mc)

]
= 8

( Q g2
e

(p1 + p2)2

)2[
(p1·p3)(p2·p4) + (p1·p4)(p2·p3) + 2(mc)2(Mc)2

+ (mc)2(p3·p4) + (Mc)2(p1·p2)
]

= Q2g4
e

{
1 +

(mc2

E

)2
+

( Mc2

E

)2
+

[
1−

(mc2

E

)2][
1−

( Mc2

E

)2]
cos2 θ

}
, (5.207)

where E is the energy of the incoming lepton in the CM system and θ the angle between the
incoming lepton and the outgoing quark. Treating the outgoing quark–antiquark as if they were
free particles, the differential effective cross-section is given by the relation (3.127), whereupon
angular integration yields

σ =
π

3

(Qh̄cα
E

)2
√

1−(Mc2/E)2

1−(mc2/E)2

[
1+

1
2

(mc2

E

)2][
1+

1
2

( Mc2

E

)2]
. (5.208)

For energies below Mc2, the effective cross-section becomes imaginary, i.e., the process is kine-
matically forbidden: E < Mc2 is not enough energy to produce a quark–antiquark pair of mass M
each. In turn, if E > Mc2 
 mc2, expanding the square-roots and multiplying the factors yields

σ =
π

3

(Qh̄cα
E

)2
F(m, M, E), (5.209a)

F(m, M, E) = &e

√
1−(Mc2/E)2

1−(mc2/E)2

[
1+

1
2

(mc2

E

)2][
1+

1
2

( Mc2

E

)2]
≈ &e

[
1+

(mc2

E

)2
+

5
8

(mc2

E

)4
+ · · ·

][
1−3

8

( Mc2

E

)4
+ · · ·

]
. (5.209b)

In typical experiments mc2 ≪ E, so that the first factor in F(m, M, E) is negligibly different from 1.
The second factor, however, gives a significant contribution when the energy suffices to produce a
quark of mass M but is not much larger than Mc2. The behavior of the step-like function F(m, M, E)
near a threshold E ∼ Mc2, where the approximating condition E > Mc2 of the expansion (5.209b)
is not satisfied, is shown in Figure 5.2.
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Figure 5.2 A sketch of the function &e
[
F(m, M, E)

]
near the value E ∼ Mc2.
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As the collision energy is increased, heavier and heavier quarks may be produced in the
process. These quarks are in fact virtual particles, in the sense that they cannot be observed di-
rectly in the detectors, since they decay, emit gluons and finally bind into hadrons – dominated by
strong interactions, and so very fast, ∼10−23 s. To avoid the need for estimating the details of this
“hadronization,” consider the ratio

R(E) :=
σ(e− + e+ → hadrons)
σ(e− + e+ → μ− + μ+)

≈
[
3 ∑

i
Q 2

i

]
Mi<E/c2

. (5.210)

Here the universal factors such as π
3 ( h̄ cα

E )2 cancel, and the contributions to the function
F(m, Mi, E) from individually created quarks give only small corrections to the result given. As a
function of the collision energy, R(E) is step-like,22 increasing suddenly when the energy E reaches
a threshold to produce a new quark, and is approximately constant between these thresholds. For
example,

R(E) ≈ 3[( 2
3 )2 + (− 1

3 )2] = 5
3 , E � Mu,dc2, (5.211a)

R(E) ≈ 3[( 2
3 )2 + (− 1

3 )2 + (− 1
3 )2] = 2, E � Msc2, (5.211b)

R(E) ≈ 3[( 2
3 )2 + (− 1

3 )2 + (− 1
3 )2 + ( 2

3 )2] = 10
3 , E � Mcc2, (5.211c)

and so forth. At energies between Mcc2 ≈ 1,270 MeV and about 2,000 MeV, a significant discrepancy
from this simple form of R(E) showed. However, it was soon discovered that this was due to res-
onance effects related to the production of the third (and mostly unexpected) electrically charged
lepton (mτ = 1,784 MeV/c2), which decays mostly into hadrons. Considering the simplicity of the
approximation and when the τ-lepton contributions are correctly accounted for, the agreement of
the simple relation (5.210) with experiments is very good.

Besides, the overall factor of 3 in the relation (5.210) stems from the fact that every quark
has three colors, i.e., that for every mass and electric charge there actually exist three quarks – one
of each color.

Conclusion 5.6 The very good agreement of the simple approximation (5.210) with exper-
iments is then the direct experimental proof of the existence of color – or at least the fact
that every quark exists in (otherwise unexplained) triplicate.

Digression 5.14 At least one curious Student asked why do quarks have to have
fractional electric charges, as they have been standardly assigned since 1974–5.

The original model by Han and Nambu indeed proposed quarks that were to
have integral charges, dependent on color. For example, we may choose, following
result (5.206),

Q(ur) = +1, Q(uy) = +1, Q(ub) = 0,

Q(dr) = 0, Q(dy) = 0, Q(db) = −1, (5.212a)

and similarly for the s-, c-, b- and t-quarks. Since the average electric charge for each
quark “flavor” equals the standard (fractional) charge, no process where the amplitude
is linearly proportional to the charges – such as hadron production from lepton col-
lisions (5.206) – can possibly distinguish between the integrally charged Han–Nambu
model and the fractionally charged Gell-Mann–Zweig model.

22 The shape of these “steps” is described by the function F(m, M, E), but it also exhibits resonant effects in the form of
very narrow peaks of large intensity 
 1, immediately above the E = Mc2 threshold, which is not shown in the sketch
in Figure 5.2 on p. 213 and the analysis of which is omitted herein.
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However, a process that depends on the square of the electric charge – such
as (5.185), which contributes to the renormalization and so ultimately to the dependence
of the interaction intensity on the interaction energy (5.197c) – can distinguish the in-
tegrally charged quarks from the fractionally charged quarks. Indeed, the “corrections”
under the square-root symbol are in the result (5.197c) given for a single electrically
charged particle – the electron – since we assumed that the virtual particle in the closed
loop in the diagram (5.185) is in fact the electron. However, with energies μc2, one must
add the contributions from all the quarks and charged leptons with masses not larger
than μ, and which are proportional to the cumulative factor[

∑
i

Q2
i ln

( μ
mi

)]
mi�μ

, (5.212b)

which grows differently for integrally charged quarks than for fractionally charged
ones, and which give (one possible) experimentally measurable difference. Similarly, the
results (5.211) would differ quantitatively for integrally charged quarks:

R̃(E)
∣∣
E�Mu,d c2 ≈ 3, R̃(E)

∣∣
E�Ms c2 ≈ 4, R̃(E)

∣∣
E�Mc c2 ≈ 6, etc. (5.212c)

In the early 1970s, such comparisons with experiments confirmed the fractional electric
charges of the quarks in the model of Gell-Mann and Zweig; see also Footnote 25 on
p. 220.

5.4.2 The electrodynamics contribution in lepton–hadron scattering
A lepton–hadron collision occurs, to a first approximation, between the lepton and one of the
(anti)quarks in the hadron, and by way of exchanging a single photon. Of course, when the hadron
is a baryon, one must sum over all three quarks in the baryon, and if the hadron is a meson, one
must sum the contributions from the interaction with the quark and with the antiquark. In this
process, the strong nuclear force field, which keeps the (anti)quark state bound, receives part of
the 4-momentum transfer, but this usually produces minor corrections to this initial approximation.

Elastic lepton–hadron scattering
If the proton were a point-like spin- 1

2 Dirac spinor with no additional structure, relations (5.131)
and (5.137) would be valid for elastic collisions

�

�
p3

p1 p2

p4

q

p+

p+

γ
(5.213)

with only the small change, mμ → M := mp in the function Xμν(2, 4; μ−) → Kμν(2, 4; p+):

〈
|M�p→�p|2

〉
=

g4
e

(p1 − p3)4 Xμν(1, 3; �) Kμν(2, 4; p+), (5.214)

Xμν(1, 3; �) = Tr
[
γγγγμ (/p1 + m�c1)γγγγν (/p3 + m�c1)

]
= 2

[
pμ1 pν3 + pν1 pμ3 + ημν[m2

� c2 − (p1·p3)]
]
. (5.215)
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The tensors Xμν and Xμν were computed for point-like (elementary) spin- 1
2 Dirac spinors,

but protons are not point-like (elementary) and their structure causes deviations from the re-
sults (5.136)–(5.140), which produce the function Kμν(2, 4; p+). These deviations reflect the
effects of strong interaction that bind the quarks into the proton. A description of that structure
in quantum chromodynamics [☞ Section 6.1] is too complex for a serious analysis here. However,
we do know that Kμν(2, 4; p+) is a rank-2 tensor, and may depend only on the 4-vectors p2, p4
and q := (p1 − p3) = (p4−p2) and, of course, the metric ημν. Following tradition, we’ll use the
following 4-vectors: incoming probe 4-momentum, p ≡ p2, and the transfer 4-momentum, q, and
write p4 = (p2+q). It is therefore possible to parametrize this corrected tensor as

Kμν(2, 4; p+) = −K1 ημν +
K2

M2c2 pμpν +
K4

M2c2 qμqν +
K5

M2c2 (pμqν+qμpν), (5.216)

where Ki are functions of the only scalar variable,23 q2 = (p4−p2)2. Since Xμν(1, 3; �) is a symmet-
ric tensor (5.139a), the antisymmetric part in Kμν(2, 4; p+) – if it even exists – does not contribute
to the expression (5.214). This restricts the expansion (5.216) to be symmetric with respect to the
μ↔ ν exchange.

Next, it may be shown [243, p. 277] and [257, Sections 8.2–8.3] that qμ Kμν = 0, so
that [☞ Exercise 5.4.1]

K4 =
M2c2

q2 K1 + 1
4 K2 and K5 = 1

2 K2. (5.217)

Thus, Kμν may be parametrized by only two form-factors:

Kμν(2, 4; p+) = −K1(q2)
(
ημν − qμqν

q2

)
+

K2(q2)
M2c2

(
pμ + 1

2 qμ
)(

pν + 1
2 qν

)
. (5.218)

Combining the results (5.214), (5.215) and (5.218), we arrive at〈
|M�p→�p|2

〉
=

(2g 2
e

q2

)2[
K1[(p1·p3) − 2m2

� c2] + K2

( (p1·p)(p3·p)
M2c2 +

q2

4

)]
(5.219)

≈ g 4
e c2

4EE′ sin4(θ/2)

(
2K1 sin2

(
θ

2

)
+ K2 cos2

(
θ

2

))
(5.220)

where we switched to the lab frame, where the proton is initially at rest, p = (Mc, 0, 0, 0), the
lepton has initial energy E and is deflected, with energy E′, at an angle θ from its initial direction
of motion. We have also assumed that E, E′ 
 m�c2, and have approximated m� ≈ 0. Then p1 =
E(1, p̂i)/c, p3 = E(1, p̂ f )/c, and p̂i· p̂ f = cos θ.

The outgoing lepton energy E′ is kinematically determined:

E′ =
E

1 + (2E/Mc2) sin2( θ2 )
. (5.221)

Besides, in the approximation m� ≈ 0 we have the result (3.160), and so

dσ
dΩ

=
( αh̄

4ME sin2( θ2 )

)2 E′

E

(
2K1 sin2

(
θ

2

)
+ K2 cos2

(
θ

2

))
=

( αh̄

4ME sin2
(
θ
2

))2 2K1 sin2( θ2 ) + K2 cos2( θ2 )
1 + (2E/Mc2) sin2( θ2 )

, (5.222)

23 Indeed, p2
2 = p2

4 = M2c2 is a constant, and q·p2 = − 1
2 q2. Also, K3 is the standard notation for the term that appears in

the analysis of neutrino–proton collisions, but not for electrically charged leptons.
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which is the so-called (Marshall Nicholas) Rosenbluth formula from 1950. By measuring the an-
gular dependence of the electrons scattered elastically on initially stationary protons (or heavy
positive ions), one determines experimentally the form-factors K1(q2) and K2(q2), also known as
“structure functions.”

Deep inelastic (light) lepton–hadron scattering
In the case of the inelastic collisions

q q

p2

pn

p1

p3p4
p3

p1
p2

(5.223)

especially where more than one hadron emerges from the collision, the analysis must be adapted
more thoroughly. Fermi’s golden rule [☞ p. 113] yields

dσ =
h̄2

〈
|M|2�p→�X

〉
4
√

(p1·p2) − (m1m2c2)2

n

∏
i=3

( cd3�pi

(2π)32Ei

)
(2π)4δ4

(
p1 + p2 −

n

∑
j=3

pj

)
, (5.224a)

〈
|M|2�p→�X

〉
=

g 4
e

q4 Xμν(1, 3; � (lepton))Kμν(2, 4; X (hadrons)). (5.224b)

If collisions of this type are taken inclusively and we only measure the deflection angle of the
scattered lepton and its energy (and so effectively know p3), the result (5.224) must be summed
over all possible hadron results and their momenta, so we have

dσ =
4πMh̄2g 4

e Xμν(1, 3; �)
4q4

√
(p1·p2)2 − (m1m2c2)2

( cd3�p3

(2π)32E3

)
Wμν, (5.225)

Wμν :=
1

4πM ∑
X

∫
· · ·

∫ n

∏
i=4

( cd3�pi

(2π)32Ei

)
(2π)4δ4

(
p1 + p2 −

n

∑
j=3

pj

)
Kμν(2, 4; X). (5.226)

For an initially stationary proton, p2 ≡ p = (−Mc,�0) and the incoming lepton energy E, we have
p1 = (−E/c,�pi). Therefore,

(p1·p2) = ME, ⇒
√

(p1·p2)2 − (m1m2c2)2 =
√

M2(E2 − m 2
� c4) ≈ ME (5.227)

since, in typical experiments of this type and with � = e±, we have m� � E/c2. We therefore
approximate m� ≈ 0, so that p1 = E(−1, p̂i)/c and p3 = E′(−1, p̂ f )/c. Then,

d3�p f = |�p f |2d|�p f |dΩ ≈ c−3(E′)2 dE′dΩ, (5.228)

and

dσ
dE′ dΩ

=
( αh̄

cq2

)2 E′

E
Xμν(1, 3; �) Wμν. (5.229)

Unlike in elastic collisions, ptot = ∑n
i=4 pi with n > 4 in inelastic collisions where multiple hadrons

emerge, so p 2
tot \= M2c2 [☞ Tables C.7 on p. 529 and C.8 on p. 529]. There then exists no rela-

tion like (5.221) between E′ and E, θ for inelastic collisions; E′ is independent of E and θ. The
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result (5.229) then provides the differential effective cross-section in the span of outgoing lepton
energies [E′, E′+dE′], as is reasonable for a free and continuous variable E′.

The second consequence of p 2
tot \= M2c2 is that also q·p \=−q2/2, and one defines the variable

x := − q2

2q·p , x ∈ [0, 1]. (5.230)

The general dependence of the form-factor Wμν on the transfer 4-momentum q is parametri-
zed the same way as for Kμν(2, 4; p+), but we now have

Wμν = W1(q2, x)
(
− ημν +

qμqν

q2

)
+

W2(q2, x)
M2c2

(
pμ + 1

2x qμ
)(

pν + 1
2x qν

)
, (5.231)

dσ
dE′dΩ

=
( αh̄

2ME sin2( θ2 )

)2 E′

E

(
2W1 sin2

(
θ

2

)
+ W2 cos2

(
θ

2

))
. (5.232)

The Rosenbluth formula (5.222) is the special case obtained by substituting

Wi(q2, x) = −Ki(q2)
2Mq2 δ(x − 1), i = 1, 2. (5.233)

Note that the δ(x−1) factor not only formally fixes x = −q2/2q·p != 1, but also implies the
relation (5.221).

Finally, the Rosenbluth formula (5.222) may further be specialized to an ideally point-like
(elementary) proton by substituting

K1 → −q2 and K2 → 4M2c2. (5.234)

This idealization is not a bad approximation when the electron energy is sufficiently small and the
electron does not come too close to the proton (∼10−15 m), so that the proton internal structure
has negligible influence on the scattering.

Experimental verification of the parton model
For the elastic collision A + B → A′ + B′, we have in the lab frame

p1 = (−E/c,�pi), p2 = (−Mc,�0), p3 = (−E′/c,�p f ), p4 = (−E′′/c, �Pf ). (5.235)

Then, with mA = mA′ = m and mB = mB′ = M,

q = (p1 − p3) =
(
(E′−E)/c, (�pi−�p f )

)
= (p4 − p2) =

(
Mc−E′′/c, �Pf

)
, (5.236)

q·p2 = M(E−E′), (5.237)

q2 ≈ −4
EE′

c2 sin2
(
θ

2

)
when mc2 � E, E′. (5.238)

Note that q2/c2 is proportional to the Mandelstam variable t [☞ definitions (3.62)].
In the late 1960s, James Bjorken computed within the quark model that the expressions

F1(x) := M W1(q2, x) and F2(x) :=
−q2

2Mc2x
W2(q2, x) (5.239)

become asymptotically independent of q2 at very high energies (5.238). Here the values of both
|q2| and |q·p| are large (as compared to mc2), but their ratio (5.230) remains small; x ∈ [0, 1].
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This asymptotic independence from the magnitude of the 4-momentum transfer,
√

q2, is called
“Bjorken scaling,” and was soon confirmed in deep inelastic collisions, mostly of electrons and
protons. May it suffice here to mention that this phenomenon confirms that in the deep inelastic
collisions the 4-momentum transfer is mostly to one of the three quarks, that these quarks are
much smaller than the proton and that they may be treated as point-like particles.

In 1969, Curtis Callan and David Gross proved an additional relationship between Bjorken’s
functions:

2x F1(x) = F2(x). (5.240)

This relation was also quickly confirmed experimentally. Suffice it to say, this relation between
F1(x) and F2(x) depends on the quark spins, and the Callan–Gross relation (5.240) indicates that
quarks have spin 1

2 .

Digression 5.15 Both relations (5.239) and (5.240) may be derived [☞ Ref. [243],
str. 271–277] by treating the quarks as point-like particles, and writing fi(x) for the prob-
ability that the ith quark receives the xth fraction of the 4-momentum transfer. Using the
assumptions (5.233) and (5.234), write

Wi
1 :=

Q2
i

2mi
δ(xi−1), Wi

2 := −2mic2Q2
i

q2 δ(xi−1), xi := − q2

2q·pi
, (5.241a)

where mi is the mass of the ith quark, and pi its 4-momentum. Since the quarks mostly
move together as the proton, suppose that

pi =: zi p (5.241b)

is the 4-momentum of the ith quark, and equals the zith fraction of the 4-momentum of
the whole proton. It follows that

p 2
i = m 2

i c2 and p2 = M2c2 ⇒ mi = zi M. (5.241c)

So, if zi varies depending on the dynamics within the proton as a bound state of three
quarks, then so do the effective quark masses.24 Relation (5.241b) implies that xi = x/zi,
so that

Wi
1 =

Q2
i

2M
δ(x−zi) and Wi

2 = −2Mc2x2Q2
i

q2 δ
(

x−zi

)
. (5.241d)

From this, we have

W1 = ∑
i

∫ 1

0
dzi Wi

1 =
1

2M ∑
i

Q 2
i fi(x) ⇒ F1(x) =

1
2 ∑

i
Q 2

i fi(x), (5.241e)

W2 = ∑
i

∫ 1

0
dzi Wi

2 = −2Mc2

q2 x2 ∑
i

Q 2
i fi(x) ⇒ F2(x) = x ∑

i
Q 2

i fi(x), (5.241f)

which agrees with Bjorken’s assertion that F1(x) and F2(x) are independent of q2. Be-
sides, the results (5.241e)–(5.241f) clearly also imply the Callan–Gross relation (5.240).

24 This definition of the masses intuitively takes into account that quarks are bound within the proton, whereby their
inertia, i.e., their response to interaction, differs from what it would be were they free particles.
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Besides the facts that:

1. Bjorken (asymptotic) independence of the functions (5.239) from the magnitude of the 4-
momentum transfer,

√
q2, provides experimental confirmation that the proton consists of

three electrically charged point-like (elementary) “ingredients,”
2. the Callan–Gross relation (5.240) – also experimentally confirmed – indicates that these

“ingredients” have spin 1
2 ,

the analysis in Digression 5.15 also leads to the experimental confirmation of the existence of so-
called gluons, the particles that mediate the strong nuclear interaction and bind the quarks into
bound states, the hadrons.

Indeed, the relation (5.241c) is too naive: quarks are bound within the hadron and their
parameters are not directly measurable, whereby the quarks within the hadrons (and free ones do
not exist!) are virtual particles. As such, they need not satisfy the equations of motion, i.e., they are
not on the mass shell. However, the average fraction of 4-momentum carried by the u-quarks would
have to be about twice larger than the average fraction of 4-momentum carried by the d-quarks
simply because there are twice as many u-quarks as d-quarks in the proton, and their masses are
approximately the same. Therefore,∫ 1

0
dx x fu(x) = 2

∫ 1

0
dx x fd(x). (5.242)

Using the result (5.241f) as a first approximation, we obtain

F2(x) ≈ x
[
( 2

3 )2 fu(x) + (− 1
3 )2 fd(x)

] (5.242)=⇒
∫ 1

0
dx F2(x) ≈

∫ 1

0
dx x fd(x). (5.243)

However, the measured average values of the form-factor F2(x) give∫ 1

0
dx x fd(x) ≈ 0.18 and

∫ 1

0
dx x fu(x) ≈ 0.36. (5.244)

The sum of these average values – the fraction of the 4-momentum carried, on average, by either
one of the two u-quarks or the d-quark – adds up to 0.54. In other words, this analysis indicates
that the proton must also contain some electrically neutral “ingredients,” which carry 46% of the
transfer 4-momentum.

Quantum chromodynamics gives a much better estimate for the form-factors W1 and W2,
and then also of Bjorken’s functions F1(x) and F2(x), and thereby also the probabilities fu(x) and
fd(x). However, the essence of the conclusion remains unchanged: A non-negligible fraction of the
transfer 4-momentum is not carried by the quarks, but by electrically neutral “ingredients” of the
proton. These “ingredients” of the proton must interact with the quarks by means of the strong
nuclear interaction simply because that is the strongest type of interaction and, being electrically
neutral, they cannot interact electromagnetically. The transfer 4-momentum is thus equally fast
and uniformly shared among the three quarks, as well as these electrically neutral “ingredients.”

On the other hand, the strong nuclear interaction may be described analogously to electro-
magnetic interactions – by means of a mediating particle. Analogously to the exchange of photons
in electromagnetic interactions, strong nuclear interactions are mediated by gluons. As the strong
nuclear interaction is independent of the electromagnetic interaction and the electric charge of the
particles that interact with strong nuclear interactions, it follows that gluons must be electromag-
netically neutral. This then permits the electrically neutral “ingredients” of the proton that carry
about 46% of the transfer 4-momentum to be identified with gluons25 [☞ Section 6.1].
25 This additionally [☞ Digression 5.14 on p. 214] rules out the Han–Nambu model with integrally charged quarks: As

those charge assignments are color-dependent, the gluons of the Han–Nambu model must be electrically charged and
would also have to interact electromagnetically.
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Detailed estimates based on quantum chromodynamics indeed provide a very good agree-
ment with experimental data, and this then is the third significant result of deep inelastic
scattering: Besides the experimental confirmation that the proton consists of three point-like spin-
1
2 electrically charged quarks with charges Qu = 2

3 and Qd = − 1
3 , deep inelastic scattering also

confirms experimentally the existence of electromagnetically neutral gluons, which interact with
quarks by means of the strong nuclear interaction.

5.4.3 Exercises for Section 5.4

✎ 5.4.1 Derive the relation (5.217), using that q := (p1−p3) = (p4−p2) and p 2
2 = p 2

4 =
−M2c2, as well as that p := p2 and q are two linearly independent 4-vectors. (Hint: it should
prove useful to first prove that q2 = −2 q·p.)

✎ 5.4.2 Compare the result (5.229) with the Rutherford (5.160), Mott (5.159) and Rosen-
bluth (5.222) formulae, as well as the limiting (5.234) case of the latter, and its reduction
under the additional condition |q2| � M2c2. Exhibit the hierarchy of approximations (and
their physical meaning) that relate these results.

✎ 5.4.3 Derive equation (5.221).

✎ 5.4.4 Derive equation (5.241d).





6
Non-abelian gauge symmetries and
interactions
The previous chapter showed how the fact that the phase of the electron wave-function is not
an observable quantity leads to the concept of gauge symmetry, which in turn introduces the
gauge potentials, and which then provides the basic framework for describing gauge interac-
tions. The chapter before that showed that the classification of mesons and hadrons in the quark
model uncovers that quarks have an additional degree of freedom – dubbed color, and the cor-
responding symmetry with the structure of the SU(3)c group. Since the physical states that may
be detected must be “colorless,” i.e., SU(3)c-invariant, it follows that the color of any individ-
ual quark cannot be detected either, and so can be changed arbitrarily. This arbitrariness – as
a function of space and time! – of the color change in quarks while maintaining the hadron
composed of those quarks “colorless” is the essence of the so-called gauge principle. When
applied to the local changes in the (matrix-valued) phases of wave-functions, the resulting the-
ories are called “Yang–Mills theories”; Chapter 9 will show that the application of the same
idea to local changes of parametrization of the spacetime itself leads to Einstein’s theory of
gravity.

6.1 The gauge symmetry of color

The first non-abelian (non-commutative) gauge theory was proposed by Oskar Klein in 1938, but
that proposal was too early and remained undeveloped, unapplied, and forgotten. Non-abelian
gauge theories were taken seriously only after 1954–5, after the publication of the works of
C.-N. Yang and R. L. Mills, and independently, R. Shaw’s dissertation mentored by A. Salam.
However, both of the (currently) well-known applications, the SU(2)w theory of weak nuclear
interactions and the SU(3)c theory of strong nuclear interactions, required several decades of
development and novel ideas for a general acceptance and contemporary formulation of these
theories, as well as their embedding in the “Standard Model.”

The next few sections consider the SU(3)c gauge theory as a theoretical system for describing
strong nuclear interactions. Chapter 7 will focus on the SU(2)w gauge theory of weak nuclear inter-
actions, the SU(2)w × U(1)Q theory of electroweak interactions and finally the “Standard Model,”
based on the SU(3)c × SU(2)w × U(1)Q gauge theory. Generally, all gauge theories based on a
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group of symmetries that act by local changes of some generalized phases [☞ e.g., relation (6.2)]
are called “Yang–Mills” gauge theories.

6.1.1 The SU(3)c gauge symmetry and gluons
Section 2.3.13 [☞ discussion on p. 61] showed that quarks have an additional 3-dimensional
degree of freedom called “color.” That is, the wave-function of any quark is a superposition

Ψn(x) = êαΨα
n(x) = êrΨr

n(x) + êyΨy
n(x) + êbΨb

n(x) =

[
Ψr

n(x)
Ψy

n(x)
Ψb

n(x)

]
, n = u, d, s, c, b, t. (6.1)

This matrix representation of the quark wave-functions makes it evident that a local change of the
phase (5.14b) of quark wave-functions, in general, becomes

Ψn(x) → eigcϕϕϕϕ(x)/h̄ Ψn(x), ϕϕϕϕ(x) := ϕa(x) Qa, (6.2)

where Qa, j = 1, . . ., 8 are eight 3× 3 matrices that generate the SU(3)c gauge group [☞ Ap-
pendix A.4], and equation (6.2) is the gauge transformation. This SU(3)c symmetry is exact, and
must not be confused with the approximate SU(3) f symmetry discussed in Section 4.4; the group
structure of SU(3)c is identical with that of SU(3) f but the application is quite different. One usu-
ally uses the Gell-Mann matrices (A.71) although, of course, any other basis of Hermitian 3× 3
traceless matrices serves just as well.

Digression 6.1 The non-abelian analogue of the simple formal argument in Digres-
sion 5.1 on p. 166 shows that the relation (6.2) changes the state operator for a quark
by a similarity transformation, rather than leaving it invariant as in the abelian case of
Digression 5.1 on p. 166. It is thus not as obvious that all generalized, non-abelian phase
transformations (6.2) should be symmetries. Nevertheless, the physical motivation for
requiring the transformation (6.2) to be a symmetry remains – and not just because
quarks and their particular color states are not directly observable; see Conclusion 11.8
on p. 444.

By the way, the ninth linearly independent matrix generator is proportional to the unit 3× 3
matrix and simply produces an overall, diagonal, phase-change

Ψn(x) → eigcϕ
0(x)1Q/h̄ Ψi(x) = eiqn(gc/ge)ϕ0(x)/h̄ Ψn(x), (6.3)

which looks like the transformation (5.14b). Here, Ψn(x) is the eigenfunction of the operator Q,
of which the eigenvalue equals the electric charge of the quark qn represented by Ψn(x).1 This
provides essentially the same representation of the gauge transformation of the electrodynamics
and chromodynamics interaction. It is clear that 1 commutes with all Qa, whereby the matrices
{1; Q1, . . ., Q8} generate the U(1)× SU(3)c group – except that the first factor cannot be identified
with the gauge symmetry of electrodynamics straightforwardly because of the difference in the
magnitudes of the respective charges and the corresponding factor (gc/ge) in the exponent (6.3).
In addition, one implicitly considers the phase-change (6.2) to be limited to quarks, whereby the

1 Unfortunately, the letter q is standardly used for charge, for the transfer 4-momentum, and for the general symbol-
synonym for “quark.” Herein, the 4-vector is denoted by q, and the electric charge of the quark qn is denoted by qn –
the eigenvalue of the operator Q of the eigenfunctions that are identified with the quark qn.
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transformation (6.3) would correspond to an interaction that is limited to the hadrons and excludes
leptons. Although that is a perfectly consistent possibility, such an interaction does not exist in
Nature.

Akin to the analysis (5.5)–(5.7), replace ∂μ → Dμ in the Dirac equation (5.34), and re-
quire that with respect to the gauge transformation (6.2) this new Dirac equation should remain
unchanged:

[ih̄ /D − mc]Ψn(x) = 0 → [ih̄ /D ′ − mc]Ψ′
n(x) = 0, (6.4a)

Dμ → D ′
μ := Uϕϕϕϕ Dμ U−1

ϕϕϕϕ , (6.4b)

Uϕϕϕϕ := eigcϕϕϕϕ/h̄ , (6.4c)

where the matrix representation (6.1) is understood, so that /D = γγγγμDμ acts as a double matrix
derivative operator: both as a 4× 4-matrix upon the spinor components (because of the γγγγ-matrices)
and as a 3× 3-matrix upon colors:

/DΨn ≡ γγγγμDμΨn, i.e., ( /DΨn)α ≡ γγγγμDμ
α
β Ψβ

n, i.e., ( /DΨn)αA ≡ (γμ)A
BDμ

α
β ΨβB

n , (6.5)

where repeated α, β indices are summed over colors, red–yellow–blue. The indices A, B, which
indicate the Dirac spinor components (5.51), have been written out explicitly only in the third
version (6.5).

As in the procedure (5.5)–(5.14a), one finds that

Dμ := 1 ∂μ + igc
h̄ c Aa

μ Qa so that /D ′(eigcϕϕϕϕ(x)/h̄ Ψn) = eigcϕϕϕϕ(x)/h̄ ( /DμΨn), (6.6a)

A′a
μQa = Aa

μ Uϕϕϕϕ QaU−1
ϕϕϕϕ + h̄ c

igc
Uϕϕϕϕ(∂μU−1

ϕϕϕϕ ) = Aa
μ Uϕϕϕϕ QaU−1

ϕϕϕϕ − c(∂μϕa)Qa, (6.6b)

i.e., A′
μ = Uϕϕϕϕ AμU−1

ϕϕϕϕ − c(∂μϕϕϕϕ), Aμ := Aa
μQa and ϕϕϕϕ := ϕaQa, (6.6c)

where Qa are 3× 3 Hermitian matrices that close the SU(3)c algebra:

[Qa, Qb] = i fab
c Qc. (6.6d)

Since the single electric charge operator Q in electrodynamics is here replaced by eight oper-
ators Qa, it follows that the photon 4-vector gauge potential Aμ(x) must be replaced by eight
gluon 4-vector gauge potentials, Aa

μ(x), a = 1, . . ., 8. Of course, the parameter of electromagnetic
interaction, ge, is also replaced by the parameter of chromodynamic interactions, gc.

Linearization of equation (6.6b) – the first-order expansion in ϕa(x) – produces the gauge
transformation of the gluon 4-vector gauge potentials:

δ Aa
μ = −(Dμ ϕϕϕϕ)a := −c(∂μϕa) + igc

h̄ c Ab
μ (Q̃b)c

a ϕc = −(∂μϕa) − gc
h̄ c Ab

μ fbc
a ϕc, (6.6e)

(Q̃b)c
a = i fbc

a, where [Q̃b, Q̃c] = i fbc
a Q̃a. (6.6f)

Here, Q̃a are Hermitian 8× 8 traceless matrices that close the same SU(3)c algebra as the 3× 3
matrices Qa, i.e., the 1

2λλλλj’s in relations (A.71). Thus, the operators Qa – and, in particular, the
matrices 1

2λλλλa – provide a 3-dimensional representation of the SU(3)c group, i.e., a matrix action of
the SU(3)c group upon the 3-dimensional vector space (6.1). In turn, Q̃a provide an 8-dimensional
representation of the SU(3)c group – a matrix action of the SU(3)c group upon the 8-dimensional
vector space {ϕϕϕϕ(x) := ϕa(x) Qa}.2

2 To be precise, this matrix-valued function ϕϕϕϕ(x) represents a vector space in every spacetime point x; their union forms
a so-called vector bundle over spacetime. Gauge theories are therefore properly described by the geometry of vector
bundles and their connections, here represented by the matrix 4-vector gauge potentials Aμ.
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Comment 6.1 In the general case, when the G-covariant derivative Dμ acts upon functions
fA(x) that span the d-dimensional representation of the group G, so A = 1, . . ., d, we have
that

(Dμ f (x)
)
A :=

(
∂μ fA(x)

)
+ igG

h̄ c Aa
μ(x) [Qa]AB fB(x), (6.7)

where the d× d matrices Qa generate the group G, the 4-vectors Aa
μ(x) are the gauge

potentials, and gG is the magnitude of the charge of the corresponding gauge interaction.

Comparing with electrodynamics, recall that the transformation operators Uϕ commute and
imply the result (5.89)

D ′
μ = Uϕ Dμ U−1

ϕ ⇒ A′
μ = Aμ − c(∂μ λ). (6.8)

For the non-abelian group of chromodynamics, SU(3)c, we have (expanding equation (6.6c) only
to first order in ϕa)

D ′
μ = Uϕϕϕϕ Dμ U−1

ϕϕϕϕ ⇒ (A′)a
μ = Aa

μ − c(Dμϕ
a) = Aa

μ − c(∂μϕa) + gc
h̄ Ab

μ fbc
a ϕc. (6.9)

Also, in electrodynamics we have
Fμν(A′) = Fμν(A), (6.10)

because the fields �E, �B are invariant with respect to the action of the electromagnetic U(1) gauge
transformation (5.14a) [☞ discussion of the definitions (5.15)]. In the non-abelian case, however,
direct computation shows that(

∂μ(A′)a
ν − ∂ν(A′)a

μ

) �= (∂μAa
ν − ∂νAa

μ), (6.11)

and even (
∂μ(A′)a

ν − ∂ν(A′)a
μ

) �= Uϕϕϕϕ(∂μAa
ν − ∂νAa

μ)U−1
ϕϕϕϕ . (6.12)

Note, however, that both in electrodynamics and in chromodynamics the derivatives Dμ are by
definition covariant:

U(1) : D ′
μ = Uϕ Dμ U−1

ϕ , SU(3) : D ′
μ = Uϕϕϕϕ Dμ U−1

ϕϕϕϕ , (6.13)

that is, the change by means of a similarity transformation. It then follows that arbitrary (opera-
torial) polynomials in the Dμ’s are also covariant. Finally, in electrodynamics we have that[

Dμ , Dν
]

=
[
∂μ + iq

h̄ c Aμ , ∂ν + iq
h̄ c Aν

]
= + iq

h̄ c (∂μAν − ∂νAμ) = iq
h̄ c Fμν. (6.14)

This result provides an interpretation of the fields �E, �B (components of the Fμν tensor) as curva-
tures in the geometry followed by electrically charged particles.3 Indeed, in the presence of an
electromagnetic field, electrically charged particles move in trajectories of which the curvature
is determined by the fields �E, �B, i.e., the components of the Fμν tensor. Nudged by this result,
and the fact that all formal operatorial functions of SU(3)c-covariant derivatives Dμ will also be
SU(3)c-covariant, we define

Fμν := h̄ c
igc

[
Dμ , Dν

]
= h̄ c

igc

[
∂μ + igc

h̄ c Ab
μ Qb , ∂ν + igc

h̄ c Ac
ν Qc

]
= (∂μAa

ν − ∂νAa
μ)Qa + h̄ c

igc
( igc

h̄ c )2 Ab
μ Ac

ν [Qb, Qc] = Fa
μνQa, (6.15a)

Fa
μν := (∂μAa

ν − ∂νAa
μ) − gc

h̄ c f a
bc Ab

μ Ac
ν, (6.15b)

where we used the defining relation (A.70) of the SU(3) group generators.

3 Many a Student may find this interpretation unusual. However, Chapter 9 about gravity will, hopefully, clarify: The
commutator of G-covariant derivatives provides the curvature stemming from G-gauge symmetry.
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Comment 6.2 The interaction parameter, gc, is, in the literature, often absorbed by redefin-
ing the gluon 4-vector gauge potential, gc Aa

μ �→ Aa
μ, for visibility and ease of computing. In

final expressions, however, factors of gc must be returned for comparison with experiments.

It follows that this matrix Fμν transforms covariantly, as expected:

Fμν → F′
μν := ih̄ c

gc

[
D ′
μ , D ′

ν

]
= ih̄ c

gc

[
UϕϕϕϕDμU−1

ϕϕϕϕ , UϕϕϕϕDνU
−1
ϕϕϕϕ

]
= ih̄ c

gc
Uϕϕϕϕ

[
Dμ , Dν

]
U−1
ϕϕϕϕ

= Uϕϕϕϕ FμνU
−1
ϕϕϕϕ . (6.16)

Thus, the Fμν tensor is in general covariant – but not invariant – with respect to the action of
non-abelian (non-commutative) symmetries such as SU(3)c. Only the field tensor of an abelian
symmetry is invariant with respect to the action of this symmetry, as is the case with the
electromagnetic field tensor Fμν, which is invariant with respect to the U(1)Q symmetry.

The relation (6.15) also implies that these matrix-represented covariant operators Dμ act
upon other matrix-represented quantities by means of commutation. This implies that the covariant
derivative of the gauge field, Fμν, itself equals

Dμ(Fνρ) = [Dμ, Fμν] = h̄ c
igc

[
Dμ , [ Dν , Dρ ]

]
. (6.17)

Using the so-called Jacobi identity,[
A , [ B , C ]

]
+

[
B , [ C , A ]

]
+

[
C , [ A , B ]

] ≡ 0, (6.18)

the relation (6.17) implies that

εμνρσDμ(Fνρ) = h̄ c
igc
εμνρσ

[
Dμ , [ Dν , Dρ ]

]
= 0, (6.19)

which generalizes the Bianchi identity (5.87) for electrodynamics.

6.1.2 The Lagrangian density for chromodynamics
Since the SU(3) generators are Hermitian traceless matrices, Tr[Qa] = 0, it is also true that

Tr[Fμν] = Fa
μν Tr[Qa] = 0. (6.20)

However, as the trace of a product of two (Hermitian or not) traceless matrices need not be
zero, there is no group-theoretical reason for Tr[FμνFμν] to vanish. In turn, the “trace” function
is invariant with respect to similarity transformations of its argument:

Tr[X] → Tr[S X S−1] = Tr[X S−1 S] = Tr[X]. (6.21)

It follows that

Tr[FμνFμν] → Tr[F′
μνF

′ μν] = Tr[UϕϕϕϕFμνU
−1
ϕϕϕϕ UϕϕϕϕFμνU−1

ϕϕϕϕ ] = Tr[FμνFμνU−1
ϕϕϕϕ Uϕϕϕϕ]

= Tr[FμνFμν] (6.22)

is invariant with respect to SU(3)c transformations. Up to a suitably chosen sign and coeffi-
cient [☞ Exercises 5.1.3 and 5.1.4 on p. 171], this then provides a Lagrangian density for SU(3)c
gluons, analogous to the Lagrangian density for photons (5.76). Lorentz-invariance is evident since
Fμν is a rank-2 tensor, and FμνF

μν is a scalar contraction, just as in electrodynamics [☞ Digres-
sion 5.7 on p. 183].

A Lagrangian density that, via Hamilton’s principle of minimal action, produces the Dirac
equation for quarks that interact with gluons is obtained by direct generalization of the Lagrangian
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density (5.118). That is, the Ψ(x) representing an electron is replaced by Ψα
n(x), which represents

the nth species (flavor) of quark and of the color α. Using the notation (6.5), we then have

LQCD = ∑
n

Tr
[
Ψn(x) [ih̄ c /D − mnc2] Ψn(x)

]− 1
4 Tr

[
FμνF

μν
]

= ∑
n

Ψα n(x)
[
iγγγγμ

(
h̄ cδαβ∂μ + igc Aa

μ( 1
2λa)αβ

)−mnc2δαβ

]
Ψβ

n(x) − 1
4 Fa
μνFμνa . (6.23)

As in QED, variation by Aa
μ yields the equations of motion akin to Gauss’s law:

DμFa μν = gc ∑
n

ΨnαA(γν)A
B( 1

2λ
a)αβΨβB

n , (6.24)

where the right-hand side expression may be identified as the quark contribution to the color
current:

ja μ
(q) := gc ∑

n
ΨnαA(γμ)A

B( 1
2λ

a)αβΨβB
n . (6.25)

However, the left-hand side of equation (6.24) contains terms nonlinear in Aa
μ, by which this differs

fundamentally from equation (5.78). For example, in electrodynamics it is true that

∂ν jνe =
4πε0c

4π
∂ν∂μ Fμν ≡ 0, since Fμν = −Fνμ, (6.26)

which then immediately produces the continuity equation, i.e., charge conservation. For the
equations of motion (6.24) this argument is not true:

∂ν ja ν
(q) = ∂νDμ Fa μν �= 0. (6.27)

Digression 6.2 The quark current ja ν
(q) does satisfy a gauge-covariant version of the

continuity equation:

Dν ja ν
(q)

(6.24)= Dν Dμ Fa μν = − 1
2 [Dμ, Dν]Fa μν (6.15)= − 1

2 f a
bcFb

μνFc μν = 0, (6.28a)

where we used the definition of the quark current (6.25), that DνDμFa μν = −DμDνFa μν

because of the antisymmetry Fα μν = −Fa νμ, as well as that f a
bc = − f a

cb is antisym-
metric with respect to the exchange b ↔ c, whereas Fa

μνFb μν = Fa μνFb
μν = Fb

μνFa μν

is symmetric. However, the equation (6.28a) does not imply (purely quark) color
conservation; following the computation (2.67) now produces

0 = Dμ ja μ
(q) = ∂μ ja μ

(q) − gc
h̄ c f a

bc Ab
μ jc μ

(q)

⇒ d
dt

( ∫
V

d3�r ja 0
(q)

)
= −

∮
∂V

d2�r ·�ja
(q) + gc

h̄ c f a
bc

( ∫
V

d3�r Ab
μ jc μ

(q)

)
, (6.28b)

where the additional right-hand side term does not simplify and certainly does not vanish
in general.

However, by the example of (6.6e)–(6.6f),

DμFa μν = ∂μFa μν − gc
h̄ c fbc

a Ab
μFc μν, (6.29)
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and moving the second term, − gc
h̄ c fbc

a Ab
μFc μν, from the so-written left-hand side of the rela-

tion (6.24) to its right-hand side, we obtain

DμFa μν = ja ν
(q) ⇒ ∂μFa μν = Ja ν

(c) ⇒ ∂ν Ja ν
(c) = 0, (6.30)

since Fa μν = −Fa νμ but ∂ν∂μ = +∂μ∂ν. Here,

Ja ν
(c) := ja μ

(q) + gc
h̄ c fbc

a Ab
μFc μν, (6.31)

Qa
(c) :=

∫
d3�r Ja 0

(c) = gc

∫
d3�r

(
∑
n

[Ψn γγγγ
μ 1

2λλλλ
a Ψn] + 1

h̄ c fbc
a Ab

μFc μν) (6.32)

are, respectively, the chromodynamical (gauge) current density for which the continuity equation,
i.e., color charge conservation, holds, and the corresponding chromodynamics (gauge) charge Qa

(c)
that is conserved in time according to Noether’s theorem.

Conclusion 6.1 The continuity equation for the (chromodynamics) current (6.31), i.e., the
conservation law for the (chromodynamical “color”) charge (6.32) is guaranteed by the
antisymmetry of the tensor (of chromodynamics) fields (6.15). This conclusion holds for all
gauge theories.

In contrast to this qualitative and conceptual similarity in all gauge theories, the specific
results (6.15)–(6.32) also indicate two fundamental differences in comparison with electromag-
netism:

Conclusion 6.2 The chromodynamics (non-abelian gauge) field tensor Fa
μν is nonlinear in

the gluon 4-vector potentials Aa
μ. By contrast, the electromagnetic field tensor Fμν is a linear

function of the photon 4-vector potential.

Conclusion 6.3 The chromodynamics (non-abelian gauge) current (6.31) and correspond-
ing charge (6.32) have contributions both from quarks and from gluons! By contrast,
photons have no electromagnetic charge and do not contribute to the electric current.

Example 6.1 For illustration, consider the SU(3)c-covariant equations of motion (6.24)
where we fix ν = 0, and where we use equation (6.29):

∂μFa μ0 − gc
h̄ c f a

bc Ab
μFc μ0 = ja 0

(q) , a, b, c = 1, . . . , 8. (6.33)

Just as in electrodynamics [☞ Section 5.2.2], we define

�Ea := êiF
a i0, ρa

(q) := ja 0
(q) , �Aa := −êi Aa

i , (6.34)

where we are free to absorb all numerical factors in these definitions, and where we may
fix Aa

0 = 0, a = 1, . . . , 8. The equations (6.33) then reduce to

�∇·�Ea = ρa
(q) − gc

h̄ c f a
bc �Ab·�Ec, (6.35)

where ρa
(q) is evidently a source of the chromo-electric field �Ea, but where the chromo-

dynamics vector potentials and fields – of other colors – themselves contribute to the
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source! Equation (6.35) is the generalization of Gauss’s law for non-commutative (non-
abelian) charges – here, of the chromodynamics “color.” For example, using the concrete
values (A.71) of f a

bc, we see that

�∇·�E1 = ρ1
(q) − gc

h̄ c

(
2�A[2·�E3] + �A[4·�E7] + �A[5·�E6]), (6.36)

where X[aYb] := 1
2 (XaYb − XbYa). That is, the indicated (nonlinear!) coupling of the

chromodynamics potentials and fields serves as an additional source (or sink, depending
on the overall sign) for chromodynamics fields, besides the quark source ρa

(q).

It follows that the equations of motion for non-abelian gauge theory – obtained by varying
the Lagrangian density LQCD (6.23) with respect to Aa

μ and Ψα
n:

1. cannot be expressed without explicit use of the 4-vector gauge potentials, Ak
μ,

2. form a nonlinearly coupled system of differential equations.

Because of Conclusion 6.2 above, the chromodynamics generalizations of the electric and the mag-
netic fields are rarely used in quantum chromodynamics. Chromodynamics is expressed using the
4-vector potentials Aa

μ, the quanta of which are interpreted as gluons. Conclusion 6.3 indicates a
fundamentally larger complexity and technical demand in chromodynamics – and then also the
relative simplicity of electrodynamics in comparison with chromodynamics.4

With this in mind, the fact that the exploration of chromodynamics is still a very active
research field☞ should not come as a surprise. In about four decades, many different approaches in
this exploration have been developed from the need to “extract” from this conceptually successful
theoretical model concrete quantitative predictions for precise comparison with experiments, but
also for better theoretical understanding of the model itself. Among these approaches, may it suffice
here to mention three:

Lattice QCD In this approach, the otherwise continuous spacetime is replaced by a lattice of a small
spacing. The equations of motion are then solved numerically, and one estimates the forms
of those solutions in the limit when the spacetime lattice spacing tends to zero.

Large-N QCD Since no experiment can identify any one of the colors in any one real physical
process, the contributions to the physical processes must be summed and averaged over all
colors. If N is to denote the number of “colors,” summing over colors tends to produce factors
of N while averaging tends to incur factors of 1

N . The contributions to the various processes
may thus be classified according to the exponent in the overall factor Nν. Such re-organizing
of the computations sometimes permits summing contributions that are all O(Nν), albeit
from different orders of perturbation as counted by powers of gs or h̄, and this produces
results not derivable otherwise.

QCD strings The original motivation for introducing strings into the physics of elementary particles
was the fact that hadrons (mesons and baryons) in collisions at sufficiently high energies
show a structure that appears filamentary in a first approximation. The results from the
quark model and quantum chromodynamics soon surpassed the precision of this filamentary
approximation. However, recent results in the mathematical analysis of superstrings – and

4 This insight will hopefully not discourage the Students who are already acquainted with this “relative simplicity” of
electrodynamics, and so also the “relative simplicity” of the exam problems in that course.
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especially the so-called AdS/CFT, i.e., gravitation/gauge duality – led to new methods, the
application of which to the original problem of hadronic physics produces new results and
new avenues for exploration.

To sum up: chromodynamics exhibits the generalization of the Maxwell equations:

DμFμν = Jν(q) and εμνρσDμ(Fνρ) = 0, (6.37)

where
Jν(q) := gc

(
∑
n

ΨnαA(γμ)A
B( 1

2λ
a)αβΨαA

n

)
Qa (6.38)

is the quark contribution to the chromodynamics current. This current density, however, does not
satisfy the continuity equation and

∫
d3�r J0

(q) is not a conserved color charge. Instead, there exists
a redefinition of the (Gaussian) first half of equations (6.37):

∂μFμν = Jν(c), where Jν(c) := Jν(q) + igc
h̄ c [Aμ, Fμν], (6.39)

so that

∂νJ
ν
(c) = 0, and so also

d
dt

∫
V

d3�r J0
(c) = −c

∮
∂V

d2�σ ·� (c). (6.40)

It should be clear that in the application to an abelian (commutative) group where fab
c = 0, the re-

lations (6.37)–(6.30) reduce to the Maxwell equations, the definition of the electric current density,
the continuity equation and the electric charge conservation in electrodynamics, respectively.

6.1.3 Exercises for Section 6.1

✎ 6.1.1 Expanding the σ = 0 component of the system of equations (6.19), obtain the chro-
modynamic equivalent of Gauss’s law for the chromomagnetic field, and show that the
nonlinear coupling of gluons also provides an effective chromomagnetic source term in this
equation.

✎ 6.1.2 Determine the gauge covariance of equation (6.24); prove that the left-hand side and
the right-hand side of the equality both transform the same.

✎ 6.1.3 As in the previous exercise, determine separately the gauge covariance of the left-hand
side and the right-hand side of the equality ∂μFa μν = Ja ν

(c) in the result (6.30), where Ja ν
(c) is

defined by the equation (6.31).

✎ 6.1.4 As in the previous exercise and using the definition (6.31), determine the gauge
covariance of the chromodynamics continuity equation ∂ν Ja ν

(c) = 0 in the result (6.30).

6.2 Concrete calculations

Conceptually, quantum-chromodynamics processes are analyzed in the same way as the quantum-
electrodynamics ones, via computations that begin with the rules for Feynman diagrams. Adapting
Procedure 5.2 on p. 193, we then have the analogous algorithm. However, QCD computations for
diagrams with closed loops require exceptional care, additional rules and even additional, so-called
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ghost fields with so-called BRST symmetry5 – which is beyond our present scope. The presently
given algorithm therefore suffices only for chromodynamics diagrams with no gluon loops.

Procedure 6.1 The contribution to the amplitude M corresponding to a given Feynman dia-
gram (with no gluon loops) for the chromodynamics processes with quarks, antiquarks and
gluons is computed following the algorithm [☞ textbooks [445, 425, 586] for a derivation]:

1. Notation
(a) Energy–momentum: Denote incoming and outgoing 4-momenta by p1, p2, . . . , and the

spins s1, s2, . . . Denote the “internal” 4-momenta (assigned to lines that connect two
vertices inside the diagram) by q1, q2,. . .

(b) Orientation: For a spin- 1
2 particle, orient the line in the 4-momentum direction, op-

positely for antiparticles. Orient external gluon lines in the direction of time (herein,
upward). Orient the internal gluon lines arbitrarily, but use the so-chosen orientation
consistently.

(c) Polarization: Assign every external line the polarization factor:

Spin- 1
2 quark

incoming us
fχ
α s = spin projection = ↑, ↓

α = quark color = r, y, b
f = quark flavor: u, d, s, . . .outgoing u f ,s χ

†
α

Spin- 1
2 antiquark

incoming v f ,s χ
†
α (" spin- 1

2 quark, travels
backwards in time)outgoing vs

fχ
α

Gluon incoming εμχa εμpμ = 0 and ε0 = 0

outgoing εμ∗χa∗

(6.41)

2. Vertices To each vertex assign the factor according to type:
(a) Quark–gluon vertex:6

μ
i, α, f2

j, β, f1 a −→ −igcγ μ δ f1
f2

( 1
2λ a)β

α. (6.42)

This factor clearly corresponds to the term −gcΨαγγγγ
μAa

μ(λa)αβΨβ in the Lagran-
gian (6.23), and represents the elementary gluon–quark interaction.

(b) 3-gluon vertex:

(6.43)

5 The name of this symmetry is an acronym from the names of the discoverers: C. M. Becchi, A. Rouet and R. Stora [44],
and I. V. Tyutin [526]. The method of using ghost fields itself is usually called after L. Faddeev and V. Popov, the physi-
cists who were among the first to use the method; B. DeWitt, who published very similar ideas at the same time but in a
technically much more demanding fashion, is unfortunately almost never cited in the invention of this method. Unlike
electrodynamics, the non-abelian nature of the gluon interactions in quantum chromodynamics unavoidably couples
all degrees of freedom in the gluon 4-vectors Aa

μ, so that the unphysical degrees of freedom (the longitudinal polariza-
tion and the temporal component) cannot be consistently eliminated. However, the contributions of these unphysical
degrees of freedom may be consistently eliminated by introducing ghost fields and reducing correspondingly the gauge
symmetry to the BRST nilpotent symmetry. This level of technical details is beyond the scope of this book; see, e.g.,
Refs. [425, 123, 586, 316, 277] and especially the texts [268, 555, 484, 496, 589, 590].

6 In traditional normalization, just as halves of Pauli matrices generate the SU(2) group, so do halves of Gell-Mann
matrices (A.71) generate the SU(3) group.
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This factor corresponds to the terms in the Lagrangian (6.23) that are 3-linear in Aa
μ,

and represents the elementary interaction of three gluons.
(c) 4-gluon vertex:

(6.44)

This factor corresponds to the terms in the Lagrangian (6.23) that are 4-linear in Aa
μ,

and represents the elementary interaction of four gluons.
3. Propagators To each internal line with the jth 4-momentum assign the factor

(6.45)

(6.46)

As internal lines depict virtual particles, /qj \= mjc and q2
g \= 0, respectively [☞ Tables C.7 on

p. 529 and C.8 on p. 529]. Up to multiplicative coefficients, these factors also stem from the
Lagrangian (6.23); these are Fourier transforms of the Green functions for the differential
operators /D and D

μν
ab in Ψ /DΨ := −∑n Ψn,α[ih̄ c /∂− mc2]Ψα

n and Aa
μD

μν
ab Ab

ν :" − 1
4 F̊a
μν F̊μνa ,

respectively, where F̊a
μν := (∂μAa

ν − ∂n Aa
ν) is the so-called linearization of the field Fa

μν.
4. Energy–momentum conservation To each vertex assign a factor (2π)4δ4(∑j kj), where kj

are 4-momenta that enter the vertex. 4-momenta that leave the vertex have a negative
sign except for external spin- 1

2 antiparticles, since they are equivalent to particles that move
backwards in time.

5. Integration over 4-momenta Internal lines correspond to virtual particles and their

4-momenta are unknown; these variables must be integrated:
∫ d4qj

(2π)4 .
6. Reading off the amplitude The foregoing procedure yields the result

−i M (2π)4δ4(∑
j

pj), (6.47)

where the factor (2π)4δ4(∑j pj) represents the 4-momentum conservation for the entire
process, and where the amplitude (matrix element) M is read off.

7. Fermion loops To each fermion loop (closed line) assign a factor −1. A mathematically
rigorous derivation of this rule follows from Feynman’s approach using path integrals, which
is far beyond the scope of this book [☞ booklet [166] for an intuitive albeit not entirely
rigorous explanation, [434, Vol. 1, Appendix A] for a serious introduction, and [165] for
the original reference].

8. Antisymmetrization Since the amplitude of the process must be antisymmetric in pairs of
identical (external) fermions, the partial amplitudes that differ only in the exchange of two
identical external fermions must have the relative sign −1.

As in Section 3.3.4, one draws all Feynman diagrams that contribute at the desired
order in gc, and then computes the (partial) amplitudes for each of the diagrams. The
algebraic sum of these contributions yields the total amplitude, which is then inserted in
formulae (3.112) and (3.114) for decays and scatterings, respectively.

Fermion loops (closed lines) will be discussed at the end of this section.
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Digression 6.3 Fermion wave-functions, as a whole, must mutually anticommute. When
“factorizing” (4.123), Ψ = ∑i Ψi(�r, t) χi(spin) χi(flavor) χi(color), an odd number of
factors is anticommuting, and the choice is in principle arbitrary. However, because of
the spin-statistics theorem, herein we consistently choose χi(spin) to be anticommut-
ing for half-integral spin, and the other factors to be commutative functions [☞ also
Digression 10.2 on p. 360].

Unlike the computations in Sections 3.3.4 and 5.3.1–5.3.3 where the ultimate goal was
to compute the lifetime for decays or the differential and total effective cross-section for col-
lisions, for chromodynamics interactions we cannot finalize the computation. Since quarks
cannot be extracted from hadrons, detectors cannot register individual quarks, so that, e.g.,
an elastic collision u + d → u + d cannot be detected independently of the hadronic bound
states of which these quarks are the building blocks. Thus, the (differential) effective cross-
section for this collision does not have a physical meaning, as it cannot be compared with
experiments.

However, the amplitude for chromodynamics processes does have a physical meaning and
may easily be used to compare with concrete experiments, somewhat akin to familiar application
of the Wigner–Eckart theorem A.3 on p. 475. That is, in a hadronic process such as the elastic
collision [

p+ = (u, u, d)
]
+

[
n0 = (u, d, d)

] → [
p+ = (u, u, d)

]
+

[
n0 = (u, d, d)

]
, (6.48)

the dominant, O(g2
s ) contribution is chromodynamical and stems from the quark–quark interac-

tion: the dominant contributions to the amplitude of hadronic processes stem from the interaction
of one quark from each of the two hadrons; these contributions then add algebraically, depending
on the symmetries of the bound states (6.48). Since the u- and d-quark have approximately the
same mass, and may have any of the same spin states (| 1

2 , + 1
2 〉 and | 1

2 ,− 1
2 〉) and any of the same

colors (red, yellow, blue), the chromodynamics interaction does not distinguish between u–u, u–d
and d–d interactions. For the purely QCD contributions, we have

M
(QCD)
u+u→u+u ≈ M

(QCD)
u+d→u+d ≈ M

(QCD)
d+d→d+d (6.49a)

up to O( mu−md
mu+md

) and O(g4
c ) corrections and up to non-QCD contributions such as were discussed

in the computations (4.82)–(4.92). Also,

M
(QCD)
p++p+→p++p+ ≈ M

(QCD)
p++n0→p++n0 ≈ M

(QCD)
n0+n0→n0+n0 , (6.49b)

in the same approximation. The chromodynamic interaction (up to corrections of the next order
in magnitude) thus does not differentiate between protons and neutrons, and the result (6.49)
is in excellent agreement with concrete experimental data in nuclear physics. Thus, the differences
in the binding energy of protons and neutrons within a nucleus may be reduced to differences in
spin values,7 in the spatial factors that also include the orbital angular moments, as well as in the
isospin factors [☞ Section 4.3.1].

7 The (anti)symmetrization is fairly complex in baryons: recall the argument for relations (4.123) and (4.125).
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6.2.1 Quark–quark interaction
To describe the interaction between two quarks, assume that they are different, so that only one
O(g2

s ) diagram exists:

u-quark
color: α

p1

u-quark
color: γ

p3

q
(λ a)α

γ (λ b)β
δ

δab

d-quark
color: β

p2

d-quark
color: δ

p4

(6.50)

for which the amplitude is obtained following Procedure 6.1 on p. 232,

Mu+d→u+d = − g2
s

2
1
q2

[
u3 γγγγ

μ u1
][

u4 γγγγμ u1
](
χ†

3 λλλλ
a χ1

)(
χ†

4 λλλλa χ2
)
, (6.51)

which is analogous to amplitude (5.131), except that:

1. ge is replaced with gc,
2. the color factor, fc(3, 4|1, 2) = 1

4 (χ
†
3λλλλ

aχ1)(χ†
4λλλλaχ2), is inserted.

The fact that Feynman calculus from quantum electrodynamics is fairly easy to adapt to quantum
chromodynamics as well as other kinds of non-abelian gauge interactions has contributed to the
popularity of the technique.8

Since the electromagnetic interaction of two charged particles of the type (5.129) is known to
lead to the Coulomb potential αe h̄ c

r = 1
4πε0

e2

r and since the result (6.51) differs from (5.131) only
in ge → gc and the inserted factor fc, we conclude that the quantum-chromodynamics interaction
of the type (6.50) also leads to a Coulomb-like potential:

Vqq(r) = fc
αs h̄c

r
, (6.52)

and it only remains to determine the color factor:

fc(3, 4|1, 2) = 1
4 (χ†

3λλλλ
aχ1)(χ†

4λλλλaχ2) = 1
4 χ

†
3γ χ

†
4δ (λa)αγ (λa)βδ χα1 χ

β
2 . (6.53)

Use the correspondence between the index- and matrix-notation:

χr ↔ δα1 ↔
[ 1

0
0

]
, χy ↔ δα2 ↔

[ 0
1
0

]
, χb ↔ δα3 ↔

[ 0
0
1

]
. (6.54)

From the SU(3) group representation theory result (A.76a) [☞ Appendix A.4.2], we know that the
color factors for two (incoming) quarks, χα1χ

β
2 , must belong to one of two vector spaces:

1. The antisymmetric triplet (3∗) of states, i.e., the 3-dimensional vector space spanned by
two-quark color factors:{

χ12
[αβ] := 1√

2
(χα

1
χβ

2
− χβ

1
χα

2
), α, β = red, yellow, blue = 1, 2, 3

}
=

{
1√
2

(
δα1 δ

β
2 − δ

β
1 δ
α
2
)
, 1√

2

(
δα1 δ

β
3 − δ

β
1 δ
α
3
)
, 1√

2

(
δα2 δ

β
3 − δ

β
2 δ
α
3
)}

, (6.55)

8 The insolubility of quantum chromodynamics stems from the fact that αs varies with energy much faster than the
electrodynamics fine structure parameter, αe, and oppositely, αs diminishes with energy [☞ Section 6.2.4]. Moreover,
perturbative computations indicate that below about 200 MeV, αs becomes larger than 1, so the perturbative approach
to quantum chromodynamics where αs is the perturbative parameter makes neither practical nor conceptual sense when
the interaction energy is less than about 200 MeV [☞ Section 6.3]. Here we then focus on sufficiently high energies.
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where the black subscripts 1 and 2 in the first row indicate the first and second quark, respec-
tively. In the second row, we dispensed with these subscripts,9 so as not to confuse them with
the color labels 1 = r, 2 = y and 3 = b, which were needed in the second row.

2. The symmetric 6-tuplet (6) of states, i.e., the 6-dimensional vector space spanned by two-
quark color factors:{

χ12
(αβ) := 1√

(1+δαβ)
(χα

1
χβ

2
+ χβ

1
χα

2
), α, β = r, y, b = 1, 2, 3

}
=

{(
δα1 δ

β
1

)
,
(
δα2 δ

β
2
)
,
(
δα3 δ

β
3
)
, 1√

2

(
δα1 δ

β
2 + δ

β
1 δ
α
2
)
, 1√

2

(
δα1 δ

β
3 + δ

β
1 δ
α
3
)
, 1√

2

(
δα2 δ

β
3 + δ

β
2 δ
α
3
)}

.

(6.56)

The quantum-mechanical normalization10 of the color factors was used (so that ‖χ12
[αβ]‖2 = 1 as

well as ‖χ12
(αβ)‖2 = 1 for every choice of α, β) and the numerical identification α, β = r, y, b =

1, 2, 3 for the basis in which the Gell-Mann matrices (A.71) are given. For outgoing quarks the
Hermitian conjugate factors (6.55)–(6.56) must be used, but note that Hermitian conjugation
preserves the (anti)symmetry of the two-particle color factors.

That is, in the process (6.50), the color factor for the incoming quarks (with colors α and
β) may be in any linear combination of either the antisymmetrized elements (6.55), or the sym-
metrized elements (6.56). The color factor for the outgoing quarks (with colors γ and δ) may be –
independently of the incoming quarks – in any one of the Hermitian conjugates of those states. In
principle then, one must compute the color factors (6.53) for each of the combinations

fc(3, 4|1, 2) = fc(3∗
A|3∗

A), fc(3∗
A
′|3∗

A), fc(6S|3∗
A), fc(3∗

A|6S), fc(6S|6S), fc(6′S|6S), (6.57)

where 3∗
A denotes some concrete antisymmetrized state, 6S denotes some concrete symmetrized

state, and prime simply indicates some other such concrete state.

Example 6.2 A concrete computation of the first type (6.57), i.e., fc(3∗
A|3∗

A) is done
taking, e.g., the red–blue 1√

2
(δ1
γδ

3
δ − δ1

δδ
3
γ) ∈ 3∗ element:

{ 1
4 (χ†

3γ χ
†
4δ)3 (λa)αγ (λa)βδ (χα1 χ

β
2 )3∗

} ⊃ 1
4

1√
2

(
δ1
γδ

3
δ − δ1

δδ
3
γ

)
(λa)αγ (λa)βδ 1√

2

(
δα1 δ

β
3 − δ

β
1 δ
α
3
)

= 1
8

[
λa

1
1 λa3

3 − λa
3

1 λa1
3 − λa

1
3 λa3

1 + λa
3

3 λa1
1] = 1

4

[
λa

1
1 λa3

3 − λa
3

1 λa1
3]. (6.58a)

The sums over Gell-Mann matrices, a = 1, . . . , 8 simplify, as there is only one matrix for
which (λa1

1 �= 0 �= λa3
3), and only two matrices for which (λa3

1 �= 0 �= λa1
3):

= 1
4

[
λ8

1
1 λ83

3 − λ4
3

1 λ41
3 − λ5

3
1 λ51

3] = 1
4

[ 1√
3
· −2√

3
− 1·1 − i·(−i)

]
= − 2

3 . (6.58b)

9 We imply that the first factor in every monomial – whether formally χα or the Kronecker symbol – refers to the first
quark, and the second factor to the second quark.

10 In mathematical sources, if such explicit constructions are given at all, one mostly finds combinatorial functions, the
normalization of which refers to their use in probability theory. However, wave-functions are not probabilities but
probability amplitudes, so the desired normalization mostly requires factors of the type 1√

2
(for a probability amplitude)

instead of 1
2 (for a probability), etc.



6.2 Concrete calculations 237

Similarly, the type fc(3∗
A
′|3∗

A) computation yields{ 1
4 (χ†

3γ χ
†
4δ)3′ (λ

a)αγ (λa)βδ (χα1 χ
β
2 )3∗

} ⊃ 1
4

1√
2

(
δ1
γδ

2
δ − δ1

δδ
2
γ

)
(λa)αγ (λa)βδ 1√

2

(
δα1 δ

β
3 − δ

β
1 δ
α
3
)

= 1
8

[
λa

1
1 λa3

2 − λa
3

1 λa1
2 − λa

1
2 λa3

1 + λa
3

2 λa1
1]

= 1
4

[
λa

1
1 λa3

2 − λa
3

1 λa1
2] = 0, (6.58c)

since there is no Gell-Mann matrix for which (λa1
1 �= 0 �= λa3

2) or (λa3
1 �= 0 �= λa1

2).
Also, for the fc(6S|3∗

A) type, one checks

{ 1
4 (χ†

3γ χ
†
4δ)6 (λa)αγ (λa)βδ (χα1 χ

β
2 )3∗

} ⊃ four characteristic cases:{
1
4

(
δ1
γδ

1
δ

)
(λa)αγ (λa)βδ 1√

2

(
δα1 δ

β
2 − δ

β
1 δ
α
2
)

= 1
4
√

2

[
λa

1
1 λa2

1 − λa
2

1 λa1
1] = 0, (6.58d)

1
4

(
δ3
γδ

3
δ

)
(λa)αγ (λa)βδ 1√

2

(
δα1 δ

β
2 − δ

β
1 δ
α
2
)

= 1
4
√

2

[
λa

1
3 λa2

3 − λa
2

3 λa1
3] = 0, (6.58e)

1
4

1√
2

(
δ1
γδ

3
δ + δ1

δδ
3
γ

)
(λa)αγ (λa)βδ 1√

2

(
δα1 δ

β
3 − δ

β
1 δ
α
3
)

= 1
8

[
λa

1
1 λa3

3 − λa
3

1 λa1
3 + λa

1
3 λa3

1 − λa
3

3 λa1
1] = 0, (6.58f)

1
4

1√
2

(
δ1
γδ

2
δ + δ1

δδ
2
γ

)
(λa)αγ (λa)βδ 1√

2

(
δα1 δ

β
3 − δ

β
1 δ
α
3
)

= 1
8

[
λa

1
1 λa3

2 − λa
3

1 λa1
2 + λa

1
2 λa3

1 − λa
3

2 λa1
1] = 0

}
. (6.58g)

The complete collection of values of the function fc(6S|3∗
A) of course consists of 6× 3 =

18 cases, but these may all be obtained from the above four concrete cases by permuting
the values α, β,γ, δ = 1, 2, 3. It follows that the outgoing pair of quarks is always in the
same concrete antisymmetric state as was the incoming pair. (That also follows from the
SU(3)c color conservation, but it is reassuring to confirm this by direct computation.)

Direct computation [☞ Example 6.2 on p. 236, and Exercise 6.2.1] confirms that

fc(3∗
A|3∗

A) = − 2
3 and fc(6S|6S) = + 1

3 , (6.59)

while fc(3∗
A
′|3∗

A), fc(6S|3∗
A), fc(3∗

A|6S) and fc(6′S|6S) vanish for all cases.

Conclusion 6.4 These results indicate that a gluon exchange between two quarks does not
change the color combination for two-quark states.11 Besides, the sign in the result (6.59)
indicates the one-gluon exchange chromodynamics force, computed in the standard fashion
as �Fqq = −�∇(Vqq) from the relation (6.52), to be:

1. attractive if the quark colors are antisymmetrized,
2. repulsive if the quark colors are symmetrized.

Comment 6.3 The emphasis that this amounts to only a single-gluon exchange contribution
to the chromodynamics force is very important: It does not follow that the exchange of

11 The computation is of course shown only for the exchange of a single gluon, but its direct iteration is applicable to the
exchange of an arbitrary finite number of gluons. Extending this to a formally infinite number of exchanged gluons,
including gluon condensation, remains an open issue☞ .



238 Non-abelian gauge symmetries and interactions

more gluons follows the same regularity, and so it does not follow that the total chromody-
namics force follows the same regularity. Several further contributions, however, have been
computed and they preserve the qualitative character of the result (6.59).

A baryon, of course, has three quarks, and the options for the color factor are (A.78):

1. totally symmetric, so-called “10” (10-dimensional) representation,
2. mixed symmetric, so-called “8” (8-dimensional) representation (in two distinct ways),
3. totally antisymmetric, so-called “1” (1-dimensional) representation

of the SU(3)c group, where only the last one is SU(3)c-invariant. Also, only in the last case is
the system antisymmetric (i.e., the wave-function of the baryon as a three-particle bound state
is antisymmetric) with respect to the exchange of any two quarks. Conclusion 6.4 then indicates
that this is the only case in which the chromodynamics force between all quarks in the baryon is
attractive.

Also, since O(g2
c ) computations indicate that the chromodynamic interaction is binding (at-

tractive) only when the factor χ(color) in the factorization (4.123) is totally antisymmetric, it
follows that the bound state (i.e., its wave-function) for every baryon must be totally symmetric in
the remaining three factors:

Ψ(baryon) =
[
Ψ(�r, t) χ(spin) χ(flavor)

]
S χA(color).

Since the factor χ(flavor) is determined by the choice of the hadron [☞ Section 4.4] as totally
symmetric for the 10-plet of flavors and mixed symmetric [☞ relation (4.125)] for the 8-plet, for
each of these baryons the symmetries determine the correlation between spin and orbital angular
momentum. In ground states, the angular momenta in the three-quark system all vanish, so the
spin factor is unambiguously determined to be:

1. spin- 3
2 and totally symmetric for the decuplet {Δ, Σ∗, Ξ∗, Ω},

2. spin- 1
2 , with a rather more complicated symmetry (4.125) with (4.119)–(4.120) for the octet

{p+, n0, Λ, Σ, Ξ} of baryons.

Conclusion 6.5 Furthermore, the chromodynamics interaction between two SU(3)c-
invariant bound states cannot happen via the exchange of a single gluon [☞ Example 6.3
on p. 240], but must involve a simultaneous exchange of at least two gluons, and so is of
the order of at least O(g4

s ), or a gluon and a quark pair; see process (6.77). Indeed, if the
baryon that emits any particle is to remain SU(3)c-invariant both before and after emitting,
it follows that the emitted intermediary itself must be SU(3)c-invariant. As none of the eight
gluons are SU(3)c-invariant, the intermediary must be an SU(3)c-invariant state composed
of at least two gluons or a quark–antiquark pair.

It then follows that the simplest chromodynamics interaction between two nucleons within
an atomic nucleus is about O(g2

c ) times weaker than the strong interaction between two quarks.12

(This reminds us a little of the fact that the dipole–dipole interaction between two neutral hydrogen
atoms is weaker than the Coulomb interaction between the electron and the proton within one
atom.)

12 At this introductory level, we have no means of assessing the contribution to the effective strength of interaction
provided by the exchange of quarks between two hadrons. However, the SU(3)c-invariance requirement on the par-
ticle mediating the strong interaction between two hadrons clearly forces it to be of higher order than the direct,
SU(3)c-variant one-gluon-mediated interaction between quarks.
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Digression 6.4 SU(3)c-invariant states composed entirely of gluons are called “glueballs”
and in principle may be observed, but no such state has so far been reliably detected.
However, all quantum numbers of such purely gluon SU(3)c-invariant bound states are
identical to quantum numbers of electrically neutral mesons such as π0, ρ0, etc., with
which they mix. This mixing makes experimental differentiation of “glueballs” from
ordinary mesons extremely difficult, and no “glueball” state has yet been conclusively
detected.

6.2.2 Quark–antiquark interaction
Mesons are much easier to study than baryons, as they are bound states of a quark and an anti-
quark. However, with this simplification also comes a complication – at least when the meson is
neutral with respect to all interactions, so the bound state is of the type

u u + d d + s s + · · · . (6.60)

Indeed, now the quark and the antiquark may mutually annihilate. We first consider differently
flavored quark–antiquark mesons, where not even virtual annihilation can happen; the next section
will consider the possible annihilation in a type (6.60) system.

The amplitude of a single-gluon exchange has a contribution only from one Feynman
diagram:

u-quark
color: α

p1

u-quark
color: γ

p3

q
(λ a)α

γ (λ b)δ
β

δab

d antiquark
color: anti-β

p2

d antiquark
color: anti-δ

p4

(6.61)

Following Procedure 6.1 on p. 232, and analogously to the result for the first part of (5.147b), we
have

Mu+d→u+d = − g2
c

4q2 [u3γγγγ
μu1][v2γγγγμv4]

(
χ†

3 λλλλ
a χ1

)(
χ†

2 λλλλa χ4
)
, (6.62)

where q = (p1−p3) is the 4-momentum exchange, and the result differs from the electrodynamics
one only in that:

1. ge is replaced by gc,
2. the color factor, fc(3, 4|1, 2) = 1

4 (χ
†
3λλλλ

aχ1)(χ†
2λλλλaχ4), is inserted.

The color factor for the incoming quark–antiquark pair again must belong to one of the two vector
spaces:

1. The Hermitian octet (8) of states, i.e., the 8-dimensional vector space spanned by the color
factors,{

χ12
α
β =

√
1+ 1

2δ
α
β(χ

α
1χ

†
2β − 1√

3
δαβ χ̊χχχ), α, β = red, yellow, blue = 1, 2, 3

}
=

{√
3
2 (δ

α
1 δ

1
β−χ̊χχχ),

√
3
2 (δ

α
2 δ

2
β−χ̊χχχ),

√
3
2 (δ

α
3 δ

3
β−χ̊χχχ),

(δα1 δ
2
β), (δα1 δ

3
β), (δα2 δ

1
β), (δα2 δ

3
β), (δα3 δ

1
β), (δα3 δ

2
β)
}

, (6.63)

which form a traceless Hermitian matrix, where χ̊χχχ := 1√
3

Tr(χ1χ
†
2
) = 1√

3
(χα

1
χ†

2α
).
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2. The SU(3)c-invariant (1), where χ12
α
β = δαβ χ̊χχχ is a multiple of the unit matrix.

Normalization is again quantum mechanical, so ‖χ12
α
β‖2 = 1 for every choice α, β.

Similarly to the result (6.57), for u + d → u + d we have

fc(3, 4|1, 2) = fc(8|8), fc(8′|8), fc(8|1), fc(1|8), fc(1|1). (6.64)

Also, just as in electrodynamics, the gluon exchange gives rise to a potential of the form

Vqq(r) = − fc
αc h̄c

r
, (6.65)

where the sign is now negative, since the color charges of a quark and an antiquark are “opposite”:
one is the (chromodynamics) “color” the other the “anticolor.”13

Example 6.3 To compute the functions fc(8|8), fc(8′|8) and fc(1|1), we pick the sim-
plest particular cases for each; the diligent Student will convince themselves by direct
computation that all cases give the same quantitative results.

For fc(8|8), the incoming and the outgoing quark–antiquark pair have the same
combination of color–anticolor; take, e.g., the red–antiblue (δ1

γδ
δ
3) ∈ 8 element:{ 1

4 (χ†
3γ χ

δ
4)8 (λa)αγ (λa)δβ (χα1 χ

†
2β)8

} ⊃ 1
4 (δ1

γδ
δ
3) (λa)αγ (λa)δβ (δα1 δ

3
β)

= 1
4 λ

a
1

1 λa3
3 = 1

4 λ
8

1
1 λ83

3 = 1
4

1√
3

−2√
3

= − 1
6 , (6.66)

since only the eighth Gell-Mann matrix has (λa
1

1 �= 0 �= λa3
3). For fc(8′|8) we take, e.g.,

(δ1
γδ
δ
3) ∈ 8 and (δ3

γδ
δ
1) ∈ 8′:

{ 1
4 (χ†

3γ χ
δ
4)8′ (λ

a)αγ (λa)δβ (χα1 χ
†
2β)8

} ⊃ 1
4 (δ3

γδ
δ
1) (λa)αγ (λa)δβ (δα1 δ

3
β)

= 1
4 λ

a
1

3 λa1
3 = 1

4 (λ4
1

3 λ41
3 + λ5

1
3 λ51

3) = 1
4 (1·1 + (−i)·(−i)) = 0. (6.67)

Since the representation 1 has only one dimension, for fc(1|1) there is a single
contribution:

1
4 (χ†

3γ χ
δ
4)1 (λa)αγ (λa)δβ (χα1 χ

†
2β)1

= 1
4

1√
3
(δ1
γδ
δ
1 + δ2

γδ
δ
2 + δ3

γδ
δ
3) (λa)αγ (λa)δβ 1√

3
(δα1 δ

1
β + δα2 δ

2
β + δα3 δ

3
β)

= 1
12 λ

a
α
γ λaγ

α = 1
12 δab Tr(λλλλa λλλλb) = 1

12 δab 2δab = 1
6 8 = 4

3 , (6.68)

where we used the relation (A.72). This coefficient, fc(1|1) = 4
3 , has shown up in the

relation (4.102).

13 In electrodynamics, of course, there is only one kind of charge – electric – and the opposite charge is simply the
negative charge. For chromodynamics colors, “anticolor” is not simply negative “color,” but the opposite “color”; i.e., the
color that together with the original one produces a colorless, i.e., an SU(3)c-invariant whole. This we may write, e.g.,
(χα (red))† = (χ†)α (green). We will not use this notational possibility, as it additionally complicates the tensor algebra rules
and necessitates printing in color; with the current convention, computations may be followed even in monochromatic
printout.
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Direct computation shows also that fc(8|1), fc(1|8) = 0, and we have:

Conclusion 6.6 These results show that the single-gluon exchange14 between a quark and
an antiquark preserves the color state: incoming and outgoing quark–antiquark pairs have
the same color combination. Besides, the chromodynamics force (6.65) between a quark
and an antiquark is

1. attractive when both the incoming and the outgoing pair are in the SU(3)c-
invariant state, and

2. repulsive otherwise.

6.2.3 Quark–antiquark annihilation
The single-gluon exchange amplitude now has two contributions, corresponding to the two
Feynman diagrams:

u+u→u+u =

1

3

2

4

−

1

3

2

4

(6.69)

where the relative minus sign follows from the fact that the amplitude for the second sub-process
(the virtual annihilation and re-creation of the u u pair) equals the first, upon exchanging the
incoming antiquark, 2, and the outgoing quark 3 [☞ discussion of the Bhabha scattering and
procedure (5.145)]. Adapting the result (5.147b), we have that the amplitude of this process equals

Mu+u→u+u = − g2
c

4(p1 − p3)2 [u3γγγγ
μu1][v2γγγγμv4](χ†

3λλλλ
aχ1)(χ†

2λλλλaχ4)

+
g2

c
4(p1 + p2)2 [v2γγγγ

μu1][u3γγγγμv4](χ†
2λλλλ

aχ1)(χ†
3λλλλaχ4), (6.70)

where we used that the color factor, fc, for the first diagram is identical to the factor in the
result (6.62), and the factor for the second diagram, f̃c, is obtained by swapping 2 ↔ 3.

Example 6.4 We will compute one sample value of each of f̃c(8|8), f̃c(8′|8) and f̃c(1|1),
and we choose the simplest cases to this end; the diligent Student should verify by direct
computation that all cases produce quantitatively the same results. Alternatively, this may
also be proven by SU(3)c group action from the results presented here [☞ Exercise 6.2.2].

For f̃c(8|8), the incoming and outgoing quark–antiquark pair have the same color–
anticolor combination; fix this to be the red–antiblue combination:{ 1

4 (χ†
3γ χ

δ
4)8 (λa)αβ (λa)δγ (χα1 χ

†
2β)8

} ⊃ 1
4 (δ1

γδ
δ
3) (λa)αβ (λa)δγ (δα1 δ

3
β)

= 1
4 λ

a
1

3 λa3
1 = 1

4 (λ4
1

3 λ43
1 + λ5

1
3 λ53

1) = 1
4 (1·1 + (−i)·(i)) = 1

2 , (6.71)

14 See Footnote 11 on p. 237.
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since only λλλλ4 and λλλλ5 have (λa
1

3 �= 0 �= λa3
1). For f̃c(8′|8) we have, e.g.,{ 1

4 (χ†
3γ χ

δ
4)8′ (λ

a)αβ (λa)δγ (χα1 χ
†
2β)8

} ⊃ 1
4 (δ3

γδ
δ
1) (λa)αβ (λa)δγ (δα1 δ

3
β)

= 1
4 λ

a
1

3 λa1
3 = 1

4 (λ4
1

3 λ41
3 + λ5

1
3 λ51

3) = 1
4 (1·1 + (−i)·(−i)) = 0, (6.72)

or, e.g.,{ 1
4 (χ†

3γ χ
δ
4)8′ (λ

a)αβ (λa)δγ (χα1 χ
†
2β)8

} ⊃ 1
4 (δ2

γδ
δ
1) (λa)αβ (λa)δγ (δα1 δ

3
β)

= 1
4 λ

a
1

3 λa1
2 = 0, (6.73)

as no Gell-Mann matrix has a nonzero 1st entry in both the 2nd and 3rd row (or column).
In turn, since the representation 1 has only one dimension, for f̃c(1|1) there is a single
case,

1
4 (χ†

3γ χ
δ
4)1 (λa)αβ (λa)δγ (χα1 χ

†
2β)1

= 1
4

1√
3
(δ1
γδ
δ
1 + δ2

γδ
δ
2 + δ3

γδ
δ
3) (λa)αβ (λa)δγ 1√

3
(δα1 δ

1
β + δα2 δ

2
β + δα3 δ

3
β)

= 1
12 λ

a
α
α λaγ

γ = 1
12 Tr(λλλλa) Tr(λλλλa) = 0, (6.74)

which is very similar to the reasoning in Conclusion 6.5, at the end of Section 6.2.1: an
SU(3)c-invariant state cannot turn into a single gluon, as SU(3)c-invariant gluons do not
exist.

Using the direct computations from Example 6.3, we have that

Mu+u→u+u = − g2
c

(p1 − p3)2

{ − 1
6

+ 4
3

}
[u3γγγγ

μu1][v2γγγγμv4]

+
g2

c
(p1 + p2)2

{ 1
2

0

}
[v2γγγγ

μu1][u3γγγγμv4], if
{
χχχχ

12
⊂ 8,

χχχχ
12

= 1. (6.75)

If a concrete incoming quark–antiquark pair in fact form a meson, the color factors χχχχ
12

= χχχχ
34

must be SU(3)c-invariant, so that the second diagram (6.69) in fact contributes nothing because
of color conservation. However, in hadronic elastic collisions of the type n0 +π− → n0 +π−, both
diagrams contribute:

)b()a(

(d,d,u)

(d,d,u)

u
d

u
d

3× 2 = 6
combinations

d

d u

d

d u

u
d

u
d

(6.76)

The diagram (a) contributes in six ways (either of the three quarks in the neutron may exchange a
gluon with either the u antiquark, or the d quark within the pion); the diagram (b) contributes in
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only one way. Except, the processes depicted in diagram (a) are prohibited by Conclusion 6.5, i.e.,
either at least one more gluon and/or a d quark (being common to both incoming hadrons) must
be exchanged, as for example in

(d,d,u)

(d,d,u)

u
d

u
d

2× 3× 2 = 12
combinations

(6.77)

This then is still O(g 2
c ), up to the undetermined d-quark exchange factor; additional gluon ex-

change would increase the order. Note that the exchanged state (propagating in the horizontal
direction in this Feynman diagram) may well be interpreted as the exchange of a virtual pion, π0 –
vindicating in part Yukawa’s original proposal for strong interactions.

6.2.4 Renormalization and asymptotic freedom
In Section 5.3.3, we obtained the relation (5.202),

αe,R(|q2|) ≈ αe,R(0)

1 − αe,R(0)
3π ln

( |q2|
m2

e c2

) , |q2| 
 m2
e c2, (5.202)

which indicates the electromagnetic fine structure constant to in fact be a variable, and to depend
on the transfer 4-momentum q at which the measurement takes place.

In the analogous analysis of O(g4
s ) corrections to the amplitude of the collision (6.50) new

diagrams appear, precisely because of the non-abelian (non-commutative) nature of the chromo-
dynamics interaction. Ignoring diagrams that only correspond to renormalizing the parameters of
the incoming and outgoing particles, for O(g4

s ) contributions we have

(6.78)

The computation of the contributions depicted by the last three diagrams requires additional rules
that involve the introduction of ghost fields and the so-called BRST nilpotent symmetry [☞ Foot-
note 5 on p. 232]. That level of technical details is beyond the scope of this book, and we simply
cite [445] the final result:

αs,R(|q2|) ≈ αs,R(μ2c2)

1 + αs,R(μ2c2)
3π

11n−2n f
4 ln

( |q2|
μ2c2

) , |q2| 
 μ2c2. (6.79)

This holds for all SU(n)-gauge interactions, where n f is the total number of Dirac spin- 1
2 fermions

that possess such an n-dimensional SU(n) charge. The fermion loop (6.78) contributions are the
opposite of the gauge boson loop contributions.15 The precise computation produces the coefficient

15 Recall that fermion loops require an additional −1 factor in the amplitude, as well as that both quarks and gluons
contribute to the chromodynamics color charge (6.32) [☞ Conclusion 6.3 on p. 229].
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11n−2n f
4 , which in our case is +5 1

4 : we have n = 3 colors and n f = 6 quark flavors. Since the relative
sign in the denominator (6.79) is opposite from the relative sign in the denominator (5.202), it
follows that αs(|q2|) diminishes as |q2| grows.

Example 6.5 Effectively, the opposite contributions from the quarks and the gluons in
the relation (6.79) imply that virtual quark–antiquark pairs screen, and virtual gluons
enhance the chromodynamics color charge. The example of quantum electrodynam-
ics [☞ Section 5.3.3] has already explained the first part of this phenomenon. For the
second part – except, of course, detailed computation – there also exists a qualitative ar-
gument [425], depicted in Figure 6.1. Suppose we have a chromodynamic charge source

1

ρ1>0

�E1

�A 2

θ12
1 3

�E3

1 3
1

1 �E3

1
1

1
�E1

�E1
dip

(a) (b) (c) (d)

Figure 6.1 A qualitative depiction of the mechanism by which virtual gluons enhance the
chromodynamic charge

of the color ρ1, depicted by the “central” circle labeled “1” in Figures 6.1(a)–(d).
By Gauss’s law (6.35), this creates a chromo-electric field �E1; see Figure 6.1(a). Let
somewhere nearby a virtual quantum of the chromodynamics field appear; in Fig-
ures 6.1(a)–(c), this is depicted by the vector �A2, at an angle of θ12 = 60◦ from the
positive direction of �E1. This virtual quantum �A2 couples to the pre-existing field �E1 and
produces via the non-abelian (non-commutative) part of equation (6.35) a virtual source
for the field �E3:

�∇·�E3 = − gc
h̄ c f 3

21 �A2·�E1 = − gc
h̄ c (−1)|�A2||�E1|(cos θ12 = + 1

2 ) = + gc
2h̄ c |�A2||�E1|. (6.80)

This virtual source ρ3 is localized at the position of the virtual potential �A2, i.e., somewhat
removed from the real source ρ1. It is depicted by a circle labeled “3” in Figures 6.1(b)–
(c). By Gauss’s law (6.35) again, the virtual source ρ3 creates a virtual chromo-electric
field �E3, depicted in Figures 6.1(b)–(c). Iterating, the coupling of this virtual field �E3 and
the virtual potential �A2 serves as an additional source (or sink) for the field �E1. Indeed,
just outside the location of the “bare” source ρ1 and near the virtual source ρ3, we have

�∇·�E1 = − gc
h̄ c f 1

23 �A2·�E3 = − gc
h̄ c (+1)|�A2||�E3| cos θ32, (6.81)

where θ32 is the angle between the virtual potential �A2 and the virtual field �E3. In
Figure 6.1(c), p. 244, we see that:

1. cos θ32 > 0 north-east from the virtual source ρ3, and
2. cos θ32 < 0 south-west from the virtual source ρ3.

Thus, the coupling of the virtual field �E3 and the virtual potential �A2 serves as an
additional sink for �E1 near the virtual source ρ3 and a little further away from the “bare”
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source ρ1, and as an additional source for �E1 near the virtual source ρ3 and a little closer to
the “bare” source ρ1. This additional source-and-sink form a small dipole of the �E1

dip field,
at the location of the virtual potential �A2. Such additional dipoles result in a vacuum
polarization owing to the nonlinear coupling of chromodynamics fields and potentials.

For clarity, Figure 6.1(d), p. 244, depicts the contributions of only the chromo-
electric field �E1, where we see that the coupling of the virtual potentials �A2 with the
induced virtual field �E3 has produced the additional field �E1

dip, and just so that the “bare”
source “1” is effectively enhanced (anti-screened) rather than screened, i.e., diminished:
In the induced virtual dipole, the source is closer to the “bare” source, and the sink is
further away.

Repeating the analysis with any other combination of distribution and value of
the initial “bare” source and the virtual potential, as well as the further iterations of
this nonlinear coupling, confirms this qualitative conclusion. The virtual quanta of the
chromodynamics field of course appear with a random distribution around the “bare”
source, but the so-induced vacuum polarization uniformly enhances the “bare” source.

The transfer 4-momentum q := (p1−p2) between the left- and the right-hand particles in
each diagram (6.78) is

q2 = p 2
1 +p 2

2 − 2p1·p2 = (m2
1+m2

2)c2 + 2�p1·�p2 − 2
E1E2

c2 =
(E1−E2)2

c2 − (�p1−�p2)2. (6.82)

The distance covered by the virtual particles, which occurs predominantly in the horizontal, me-
diating portion of the diagram (6.78), is inversely proportional to this transfer momentum. Thus,
αs,R(| q2|) grows with the distance at which the interaction occurs, which confirms earlier given
qualitative arguments and is in full accord with experimental observations; see Section 2.3.14.

Digression 6.5 The careful Reader will have noticed that the relation (6.79) gives the
chromodynamics fine structure parameter at the energy c

√|q2| as a function of two
quantities: the mass μ and the value of the chromodynamics fine structure parameter at
the transfer momentum μc. These two quantities may be “collected,” by defining

ΛQCD : ln(Λ2
QCD) := ln(μ2c2) − 12π

(11n−2n f )αs,R(μ2c2)
, (6.83)

the substitution of which into the result (6.79) yields

αs,R(|q2|) ≈ 12π

(11n−2n f ) ln
( |q2|

Λ2
QCD

) , (6.84)

where ΛQCD is the magnitude of the transfer 4-momentum at which αs,R(|q2|) diverges;
this divergence is called the Landau pole, after L. D. Landau. The importance of this
divergence is only formal, since perturbative computations fail to make sense before
that, when αs,R(|q2|) � 1. Experimental estimates give only an approximate region
100 MeV/c < ΛQCD < 500 MeV/c, and one typically uses ΛQCD ≈ 220 MeV/c as the
approximate value of the geometric mean of the experimental bounds.
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Finally, it is worth noting that for quantum electrodynamics, in relation (5.202), the reference
value of αe,R(0) ≈ 1

137 is an excellent choice. That is the value of the fine structure parameter –
and so also the intensity of the electromagnetic interaction (5.122), ge =

√
4παe = |e|/√ε0 h̄ c –

that is measurable in experiments where the interacting electric charges are at a distance much
larger than the typical (sub-)atomic distances. Those are, of course, all “classical” experiments with
electric charges.

By contrast, in quantum chromodynamics, αs,R(0) makes no sense. Perturbative computations
wherein the parameter αs,R(|q2|) and the relation (6.79) are defined fails to be valid at 4-momenta
below ∼200 MeV/c, i.e., at distances bigger than ∼10−15 m. Perturbative computations in quan-
tum chromodynamics make sense only at distances smaller than ∼10−15 m, i.e., at energies larger
than ∼200 MeV. That makes the introduction of an arbitrary reference value, such as αs,R(μ2c2),
necessary. For sufficiently large μ, αs,R(μ2c2) can even be measured, whereupon the relation (6.79)
is of better practical use than the simpler relation (6.84).

A moment’s thought reveals that this striking difference between αs,R(|q2|) and αe,R(|q2|) in
their dependence on the transfer 4-momentum fully supports two of the experimentally noted
properties of quarks:

Asymptotic freedom the limit lim|q2|→∞ αs,R(|q2|) = 0 agrees with the experimentally observed
fact that the strong interaction between quarks is vanishingly small at vanishingly small
distances.

Confinement the limit lim|q2|→ΛQCD
αs,R(|q2|) = ∞ agrees with the experimentally observed fact

that the strong interaction between quarks grows as the distance between two quarks is being
increased, e.g., so as to separate them.

Note that this is not a proof of confinement, since perturbation theory, used to compute αs,R(|q2|),
breaks down as |q2| → ΛQCD; nevertheless, this perturbative result is encouraging and gives good
hope that other methods will eventually provide a rigorous proof☞ .

6.2.5 Exercises for Section 6.2

✎ 6.2.1 Following Example 6.2 on p. 236, compute all possible cases of the color factors
fc(3∗

A|6S), fc(6S|6S) and fc(6′S|6S).

✎ 6.2.2 Using all elements (6.63) and by explicit computation – or using the SU(3)c action –
show that the results of Example 6.3 on p. 240 are independent of the choice of the concrete
case(s).

✎ 6.2.3 Following Example 6.3 on p. 240, compute all possible cases of fc(8|1).

✎ 6.2.4 For all six elastic collisions of a nucleon (p+, n0) and a pion (π±, n0), determine the
relative contribution of the diagrams of type (a) and type (b) in the display (6.76).

✎ 6.2.5 Redoing the analysis of Example 6.5 on p. 244, verify that a virtual gauge vector �A2

oriented, however, at an angle 120◦ will produce the same effect of anti-screening of the
initial source ρ1.

6.3 Non-perturbative comments
Field theory is – in practice – a perturbative discipline, and most of the detailed work in quantum
chromodynamics indeed relies on perturbative computations. Because the fine structure parameter
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and the interaction intensity depend on the distance at which the interaction takes place (mediated
by exchange of gluons) [☞ result (6.79)–(6.84)], perturbative computations do not suffice. A
complete solution of quantum chromodynamics must include essentially non-perturbative effects.
Here, we mention a few themes that appear in attempts at non-perturbative analysis.

6.3.1 Strong CP-violation, “topological” solutions and the ϑ-vacuum
The chromodynamics analogue of the question at the end of Digression 5.7 on p. 183, about the ex-
pression (5.80c), is as follows: In the most general (both gauge- and Lorentz-invariant) Lagrangian
density for quantum chromodynamics,

LQCD+ = −∑
n

Tr
[
Ψn(x) [ih̄ c /D − mneiϑ′γ̂c2] Ψn(x)

]
− 1

4 Tr
[
FμνF

μν
]− n f g2

s ϑ

32π2 ε
μνρσ Tr

[
FμνFρσ

]
, (6.85)

why are the parameters ϑ′ ∼ ϑ < 3× 10−10? ☞ The most reliable bound follows from the fact that
the presence of the ϑ, ϑ′-dependent terms would provide the neutron with an electric dipole mo-
mentum. Experimentally, the electric dipole momentum of the neutron vanishes, and the bounds
then follow from the limits on the experimental error in that measurement. Unlike the CP-violation
as discussed in Section 4.2.3, CP-violation that follows from this so-called “ϑQCD-problem” is
also-called the “strong CP-violation.”

The additional term, εμνρσ Tr
[
FμνFρσ

]
is the 4-divergence of the so-called Loos–Chern–

Simons “current” [555],

Kμ =
n f g2

s

32π2 ε
μνρσ(δab Aa

ν Fb
ρσ − 1

3 gs fabc Aa
ν Ab

ρ Ac
σ). (6.86)

Then, a formal ϑ-transformation exp{iϑQ} exists with Q :=
∫

d3�r K0 that transforms the vacuum
|0〉 with ϑ = 0 into the vacuum |ϑ〉 = eiϑQ|0〉 with the ϑ �= 0 value. Since all operators transform
as H(ϑ) = eiϑQH(0)e−iϑQ, it follows that all physics with ϑ �= 0 is identical to the physics with
ϑ = 0. The vacua with distinct values of ϑ define “sectors” in the Hilbert space of quantum chromo-
dynamics, and “our World” could easily be one such sector, which is physically indistinguishable
from the sector with ϑ = 0.

On the other hand, the equations of motion for quantum chromodynamics, derived from the
Lagrangian density (6.23), are nonlinear equations, and have solutions that cannot be obtained
by perturbative methods. To a large degree, such solutions are similar to magnetic monopoles
that were discussed in Section 5.2.3; because of the nonlinear nature of the coupled system of
equations of motion (6.37)–(6.40), one expects the set of solutions to be more complex and varied
than in the case of electrodynamics. Suffice it to mention here the fact that such solutions are often
determined by “global geometry,” i.e., by boundary conditions at infinity, which often includes (but
is not limited to) topology.

In the physics jargon, such solutions are often called “topological.” This typically implies that
the solutions are parametrized (also) by some characteristic integers. As such integer characteriza-
tion cannot continuously vary, this provides a degree of stability to such solutions. With the benefit
of hindsight, we see that the stationary states of the hydrogen atom – counted by the “quantum
numbers” n, �, m ∈ Z and ms = ± 1

2 – are also stable precisely because of the (half-)integrality of
these numbers. In spite of this qualitative similarity, it is important to note that such “topological”
solutions – which also include the Dirac monopole from Section 5.2.3 – also exist for the gauge
field alone, i.e., for the electromagnetic field without charged particles, the chromodynamics field
without quarks, and so on.

Using geometrical and topological methods that are beyond our present scope, it may be
shown that non-perturbative solutions of the system (6.37)–(6.40) may be counted by an integer
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index. These solutions are similar to the vacua of the various ϑ-sectors as discussed in the previous
paragraph. However, Alexander Belavin, Alexander Polyakov, Albert S. Schwartz and Yuri Tyup-
kin [484, 555] showed in 1975 that there is “tunneling” (via so-called BPST instantons16) from
one sector into another, and that the true vacuum is a linear combination |ϑ〉 := ∑N eiϑN |N〉, for
N ∈ Z. This effectively cancels the conclusion of the discussion about the result (6.86), as it proves
that different ϑ-sectors are not independent.

In gauge theories with the Higgs field [☞ Chapter 7] the same role is played by the so-
called ’t Hooft–Polyakov monopole, and Polyakov also showed that instanton effects in quantum
electrodynamics where photons interact with a scalar field (e.g., with the Higgs field) provide the
photon with a mass – which is simply unacceptable.

The question why ϑ, ϑ′ = 0, therefore remains unanswered☞ .

— ❦ —

On the other hand, the discussion of the Dirac monopole and its Wu–Yang construction (5.101)–
(5.105) as well as ’t Hooft and Polyakov’s constructions for non-abelian Yang–Mills theories with a
Higgs field extends the gauge principle, which originated from the observation that the phases
of complex wave-functions are fundamentally unmeasurable quantities, just as are the gener-
alized, matrix-valued phases of wave-function n-tuples such as the chromodynamics triples of
quarks (6.1).

Conclusion 6.7 Since the gauge 4-vectors Aμ in all Yang–Mills gauge theories are them-
selves fundamentally unobservable quantities, they may well be multi-valued or otherwise
ambiguously defined as functions over spacetime. It is necessary and sufficient only that the
gauge fields, the tensor components Fμν := [Dμ, Dν] (up to a conventional multiplicative
constant), are well-defined functions over spacetime.

As an immediate corollary of this conclusion and the Wu–Yang and then the t’Hoof–Polyakov con-
struction where gauge transformations connect differently specified gauge 4-vector potentials into
a class, it follows that Yang–Mills theories, even without appropriately charged matter, may have
a class of nontrivial “topological” solutions to their equations of motion. Here “topological” refers
to the fact that the existence and the counting of such solutions may be determined by topolog-
ical methods, depending on the gauge symmetry groups and boundary conditions [☞ also the
nontrivial geometries of “empty spacetime” in Section 9.3].

In quantum theories, all (and so also the topologically nontrivial) solutions of the equations
of motion may be used as “vacua.” Particles – the quanta of all fields, including the gauge fields
the nontrivial classical solution of which defines the vacuum – then move through this vacuum, to
a first approximation without disturbing it. We thus have:

Conclusion 6.8 (background fields) Each (and so also the topologically nontrivial) solution
of a system of classical equations of motion for all fields defines a “vacuum” in which the
quanta of those fields move, to a first approximation, without changing these classical,
background fields .

6.3.2 The Weinberg–Witten theorem
On the heels of the quark model success, theories of preons and of technicolor became popular
in the 1980s. At least some particles among the quarks, leptons, gauge and Higgs bosons were

16 Instantons in general denote special particle-like objects in field theory, which are well localized not only in (position)
space but also in time. That is, instantons are particles that exist but for an instant in time. They were first discovered
in non-abelian Yang–Mills theory, but can appear generally in all nonlinearly coupled field theories.
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represented as composite states in these models. In an attempt to disqualify such models with a
general argument, Stephen Weinberg and Edward Witten [564] proved a theorem now bearing
their names:

Theorem 6.1 (Weinberg–Witten) No quantum field theory in (3 + 1)-dimensional spacetime
with a Poincaré-covariant and gauge-invariant 4-vector current Jμ that satisfies a continuity
equation may have a massless particle with a helicity bigger than 1

2 and a non-vanishing
charge of

∫
d3�r J0.

No quantum field theory in (3 + 1)-dimensional spacetime with a Poincaré-covariant
and gauge-invariant rank-2 tensor that satisfies a continuity equation may have a massless
particle with a helicity bigger than 1.

Comment 6.4 The expression “Poincaré-covariant” means that it transforms properly with
respect to the Lorentz transformations and translations in spacetime, regardless of whether
co- or contra-variant and how many times; the continuity equation for a 4-vector is the
usual ∂μ Jμ = 0, and for a rank-2 tensor, Tμν, it is ∂μTμν = 0.

The proof of the theorem is non-perturbative and very general, but the assumptions of the
theorem are very stringent. Indeed, it turns out that the theorem in fact does not apply precisely
in the models that were meant to be disqualified. For example, in at least several preonic models
and in the technicolor theory, there exists an additional non-abelian gauge interaction, the purpose
of which is to bind the states that in such models replace some of the particles that are regarded
as elementary in the Standard Model. As shown in relations (6.24)–(6.32), the non-abelian (non-
commutative) current that is conserved, i.e., satisfies a continuity equation (6.30), is not gauge-
invariant, whereby the (prerequisite) assumption of the Weinberg–Witten theorem is not satisfied
and the theorem does not apply.

This is related to another unresolved question. Indeed, in a regime where the quark masses
are negligible, the chromodynamics Lagrangian density has a doubly larger symmetry: the Dirac
spinors representing quarks may be projected into the left- and the right-handed Ψ± (5.58). This
Lagrangian density is invariant with respect to an independent and global (constant in spacetime)
SU(n f ) flavor transformation of the left- and right-handed quarks, so that the full symmetry of this
Lagrangian density is SU(n f )L × SU(n f )R × U(1)L × U(1)R. Quantum effects in quantum chromo-
dynamics break this symmetry into the “diagonal”17 SU(n f )× U(1)B, where the U(1)B charge is
the baryon number, and which has two significant consequences for the complete understanding
of which one also needs material from Section 7.1:

1. The quantum (not spontaneous) breaking of the classical U(1)A symmetry (the complement
of U(1)B in the product U(1)L × U(1)R) is an anomaly; instanton solutions from the previous
section contribute to this effect as well as to the “strong” CP-violation and connect these two
unexplained characteristics of quantum chromodynamics☞ . Generally, anomalies are an indi-
cator of an inconsistency in the model, but as U(1)A is an approximate symmetry, anomalies
indicate an inconsistency in the model only in the unphysical limiting case when the quark
masses vanish.

2. The eight spin-0 mesons (π±,π0, K±, K0, K̄0, η) could be identified as the Goldstone bosons
[☞ Section 7.1.2] of the symmetry breaking SU(3)L × SU(3)R → SU(3) f . Of course, quark

17 For groups of the form GL ×GR, where the two factors have the same structure but act upon different objects or different
aspects of a given object, the “diagonal” subgroup G ⊂ GL × GR again has the same structure but acts simultaneously
both as GL and as GR. Only when GL and GR are abelian (commutative) does there also exist an “anti-diagonal” com-
plement. Thus U(1)L × U(1)R = U(1)D × U(1)A, where the first factor is the diagonal subgroup, so the U(1)D charge is
the sum of U(1)L and U(1)R charges; the U(1)A charge is their difference.
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masses are not zero, the broken symmetry was never exact, and neither are the masses of
these spin-0 mesons zero, but they are significantly lower than the SU(3) f singlet meson η′.

3. The eight spin-1 mesons (ρ±, ρ0, K∗±, K∗0, K̄∗0, φ) could be identified as the gauge bosons
of the remaining symmetry SU(3) f . Of course, quark masses are not zero, this symmetry is
not exact, and neither are the masses of these spin-1 mesons zero. It is not clear, however,
if the masses of these mesons (and especially their lightness) may be explained completely
as an explicit SU(n f ) symmetry-breaking effect, or if there exists a generalization of the
Weinberg–Witten theorem that would apply.



7
The Standard Model
The data and facts about elementary particles introduced so far almost completely define the so-
called Standard Model of elementary particles; the few missing pieces are:

1. a detailed description of the weak interactions as a gauge theory with the SU(2)L symmetry
group, the gauge bosons of which interact only with fermions of left chirality,

2. a mechanism of providing mass to gauge bosons as well as other particles, and
3. a unification of the weak and the electromagnetic interaction.

Straightforwardly adding an m2‖Aμ‖2 := m2 Tr[Aμη
μνAν] term to the Lagrangian density

would certainly provide the 4-vector potential Aμ with the mass m. However, that term is not
invariant under the gauge transformation, and explicitly breaks precisely that symmetry because
of which Aμ was introduced. On the other hand, particles that mediate the weak interaction must
have a mass [☞ discussion in the passage on the weak processes (2.56)]. Thus, finding a hopefully
more skillful, and certainly gauge-invariant mechanism for providing gauge bosons with a mass is
absolutely indispensable for consistency, and we first attend to that matter.

7.1 Boundary conditions and solutions of symmetric equations
Simply inserting an explicit mass term, m2‖Aμ‖2, into the Lagrangian density would destroy pre-
cisely that symmetry which is gauged by the 4-vector gauge potential Aμ and would thus be
self-contradicting. The equations of motion, and so also the Lagrangian density and the Hamil-
ton action, therefore, must remain gauge invariant. Recall, however, that concrete solutions of a
given system of equations need not have all the symmetries of the system that they solve [☞ Ap-
pendix A.1.3 and Comment A.2 on p. 458]. However, if a symmetry X of a system of equations is
not a symmetry of a concrete solution f so X( f ) �= f , then X( f ) is nevertheless a (different) solu-
tion of the system, and X is the transformation that maps one solution into the other. Finally, recall
that the solutions of a model are not determined only by the system of equations, but also by the
boundary (initial, analyticity, etc.) conditions, so it must be that at least some of those conditions
distinguish f from X( f ).

It is then – in principle – possible to find a solution of gauge-invariant equations of motion that
represent massive gauge bosons, i.e., concrete solutions that break precisely the gauge symmetry
of the system. This desired solution wherein gauge bosons have a mass breaks the gauge symmetry,
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and this “boundary” condition must be in the abstract space of gauge phases [☞ Comment 5.3 on
p. 170], and this cannot be imposed “by hand” without destroying precisely the symmetry that we
are trying to describe.

The mechanism in which a choice of such a condition in the space of gauge phases can be
imposed does exist, and it is based on a concatenation of ideas:

1. In 1950, L. D. Landau and V. L. Ginzburg analyzed phenomenologically ferromagnet
magnetization, following Landau’s early work in 1937 [330, 207].1

2. P. Anderson’s comment and Y. Nambu’s research (1960), where the BCS (J. Bardeen,
L. N. Cooper and J. R. Shiffer, 1957) model of superconductance is adapted to the
description of vacuum in quantum field theory.

3. J. Goldstone’s theorem (1961–2) about the Nambu–Goldstone modes (1961), the final
proof of which within special relativistic theoretical systems was provided by J. Goldstone,
A. Salam and S. Weinberg [214].

4. P. Anderson’s work (1963 [15]) about non-relativistic plasmons, gauge symmetry and the
emergence of effective mass.

5. Independent proposals (1964) by:
(a) R. Brout and F. Englert,
(b) P. Higgs,
(c) G. Guralnik, C. R. Hagen and T. Kibble.

6. In 1971, G. ’t Hooft (PhD work advised by M. J. G. Veltman) showed the renormalizability
of models where a non-abelian gauge symmetry is broken via the Higgs mechanism.

7. 1973: S. Coleman and E. Weinberg analyzed the effect of quantum corrections.

Owing to this complex genesis of this group of ideas, I will not delve into the historical details,
but will focus on the description of the effect and its technical details, leaving out the discussion of
the individual contributions. Also, I will use the simple expressions such as the “Goldstone mode,”
the “Higgs mechanism” and the “Higgs particle,” with no intention to downplay the relevance of
others’ contributions. Ever since the LHC at CERN started the experiment of which one of the
aims is the detection of the Higgs particle, historical reminders have been (re-)emerging; see, for
example, Ref. [252]. For more information, beyond the scope of this book, see Refs. [311, 499,
359, 368].

7.1.1 The Landau–Ginzburg phenomenological description of magnetization
To describe the magnetization of a magnet, introduce the vector function �M(�r, t), the direction
and magnitude of which describe the state of magnetization in the object in an infinitesimally
small volume (and which we regard as a tiny domain) at the point�r at the time t. As the direction
and magnitude of magnetization in nearby domains affects the magnetization in a given domain,
one expects that the change in the magnetization spreads, at least in the first approximation, as a
wave. One therefore expects that the magnetization satisfies an equation of the form[

�∇2 − 1
v2
∂2

∂t2

]
�M = · · · (7.1)

where v is the propagation speed of the magnetization wave and where one must supply the
missing terms on the right-hand side. If we temporarily define x := (vt,�r), akin to the rela-
tivistic practice, this equation would follow from a Lagrangian density with the “kinetic” term

1 With the benefit of hindsight, this analysis may today be viewed disparagingly as “fitting” the potential to describe the
observed effect. However, this analysis is valuable as it indicates the essential result – precisely the effective potential –
that every fundamental, so-called microscopic model must reproduce. This then presents an extraordinarily effective
criterion to filter the possible, more fundamental models.
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A
2 η

μν(∂μ �M)·(∂ν �M), where A is a constant with appropriate physical units. Adding a potential
V( �M), one obtains the classical equations of motion

δij

[
�∇2 − 1

v2
∂2

∂t2

]
Mj = − 1

A
∂V
∂Mi , (7.2)

where Mi are the components of the magnetization vector in some arbitrary Cartesian coordinate
system. In quantum theory, one must of course switch to operators and define an adequate Hamil-
tonian by integrating (in space) the Hamiltonian density obtained from the Lagrangian density.
However, the essence of this procedure is that the ground state of the quantum model is defined by
the global minimum of the potential V( �M). This phenomenological approach (based on Landau’s
theory of phase transitions [☞ for example, Ref. [340]]) then reduces to choosing an appropriate
potential function V( �M).

In the familiar example of the harmonic oscillator, the potential V(x) = 1
2 mω2x2 has a unique

minimum, x = 0. Correspondingly, the model has a unique ground state for all physically accept-
able values of the parameters ω, m > 0. Landau’s essential insight, which provides the basis for
the Landau–Ginzburg description of magnetization, is that a more complicated potential may well
have several distinct minima, depending on the choice of its parameters. Thus, e.g., the anharmonic
generalization of the linear harmonic potential, V(x) = 1

2μx2 + 1
4λx4, has two phases:

1. when μ > 0: the minimum of the potential V(x) is at x̆0 = 0;
2. when μ < 0: the minima of the potential V(x) are at x̆± = ±√−μ/λ,

where x̆ := min
(
V(x)

)
. The quantum-mechanical expectation value of the observable x (the posi-

tion of the oscillator) is the average value, 〈x〉 = 0, but in the second case may be “localized” at x̆±.
For the Hilbert space to consist of normalizable bound states and so that the above local minima
would in fact be global minima, one requires λ > 0. [ ✎Why?] (The λ < 0 choice implies that
limx→∞ V(x) → −∞, which is unphysical as it prevents the existence of a stable ground state.)

The application of this idea in the Landau–Ginzburg phenomenological model also uses the
fact that the potential is a scalar function of the vector �M(�r, t), and so can depend only on the mag-
nitude | �M| =

√
δij Mi(�r, t)Mj(�r, t). If one also requires that the potential is an analytic function, it

must be that
V( �M) = 1

2μ| �M|2 + 1
4λ

(| �M|2)2 + · · · (7.3)

It then follows that the ground state of the quantum-mechanical description of magnetization is
determined by minimizing the potential:

1. if μ > 0: the minimum of the potential V( �M) is at 〈 �M〉0 = 0;
2. if μ < 0: the minima of the potential V( �M) are at 〈 �M〉> =

√−μ/λ M̂,

where M̂ is one of a continuum of arbitrary unit vectors in the 3-dimensional space in which the
magnetization �M(�r, t) is a 3-vector – and which coincides with the “actual,” real space.

Before we return to the question: “Which arbitrary direction M̂ ?,” let us finish the parametri-
zation of the Landau–Ginzburg model by noting that one of course knows that the magnet loses
its magnetization when heated to a sufficiently high temperature. It then follows that μ must be a
function of temperature, and so that μ < 0 for T < Tc, whereas μ > 0 for T > Tc. The concrete
choice of the μ = μ(T) dependence, as well as the presence of an additional (| �M|2)3 term in the
expansion of the potential (7.3) in the original Landau–Ginzburg potential stems from additional
requirements to also describe successfully physical characteristics such as the susceptibility – which
may be ignored for the present purposes. We then simply adopt

V( �M) = 1
2μ0(T2−T2

c )| �M|2 + 1
4λ

(| �M|2)2 + · · · , μ0,λ > 0. (7.4)
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It then follows that the ground state of the quantum-mechanical description of the magnetization
is determined by the minimum of the potential:

min
[
V( �M)

]
=

⎧⎨⎩〈 �M〉> =
√
μ0(T2

c −T2)/λ M̂ when T < Tc;

〈 �M〉0 = 0 when T � Tc.
(7.5)

Notice that min[V( �M)] is a continuous (but not smooth) function of the temperature.
Thus, at a sufficiently high temperature, the object has no magnetization, 〈 �M〉0 = 0, whereas

lowering of the temperature below Tc causes the object to spontaneously magnetize. That is, we
have that 〈 �M〉> =

√
μ0(T2

c −T2)/λ M̂, in the direction M̂ – which remains undetermined by the
dynamics of the model.

In an actual, real situation, there always exists some small external magnetic field, which
“chooses” a preferred direction: The interactions of the tiny domains with this external magnetic
field then direct them opposite to this external magnetic field, which removes the arbitrariness of
the choice of M̂.

Comment 7.1 In the Landau–Ginzburg description of magnetization, the 3-dimensional
space in which the magnetization vector �M(�r, t) has magnitude and direction is in fact
the “actual,” real space in which we ourselves live and move. In the other applications of
this idea, this need not be so.

Classical analysis straightforwardly shows the following properties:

1. As temperature decreases through the critical value Tc, the character of the potential V( �M)
changes suddenly. However, the gradient of the potential (the generalized “force” that moves
the magnetization of the object) in fact always vanishes at the point �M = 0; that is a con-
sequence of the fact that an analytic potential function must depend on | �M|2 and not on
| �M|. This necessitates an influence to “move” the system from �M = 0, and this external in-
fluence then also fixes the ultimate direction of the magnetization M̂. This may literally be
an external influence (a small external magnetic field), or also a simply random (quantum)
fluctuation within the object/system itself.

2. Immediately after the transition, when T � Tc, the potential has a very mild “slope”
near �M = 0, the “inclination” of which grows with the distance from the �M = 0
point. The global minimum of the potential function moves from �M = 0 to a circle of
“radius” | �M(T)| =

√
μ0(T2

c −T2)/λ, which grows as the temperature decreases: T < Tc
and T → 0.

3. Even if moved by an external influence, the actual value 〈 �M〉 will lag behind the growing
value of the “radius” M(T). The change in the magnetization from 〈 �M〉0 towards 〈 �M〉> will
be accelerated, just as with rolling down a steepening slope.

4. When the system reaches 〈 �M〉>, the motion regime turns oscillatory around 〈 �M〉>, where
the loss of energy through interaction with the environment leads to a stabilization of the
value 〈 �M〉 → 〈 �M〉>.

5. In this entire process, the system has (through interaction with the environment) lost the
energy

�V := V
(
| �M|=0

)
− V

(
| �M|=

√
μ0(T2

c −T2)/λ
)

, (7.6)

which somewhat akin to the latent heat of a first-order (discontinuous) phase transition such
as freezing of water. To be precise, magnetization is however a second-order (continuous)
transition, where 〈 �M〉 continuously changes between its values.
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7.1.2 The Goldstone theorem

Boundary condition

Straight rod

Two modes of motion,
both require energy

Changed boundary condition

Bent rod

Two modes of motion,
only one requires energy

Axial symmetry
is broken

Axial symmetry

Figure 7.1 The example of a straight and a bent rod. Notice that the mode of motion of the bent rod
that (ignoring friction) requires no energy is identical with the symmetry that is broken by bending.
The difference is induced by changing the boundary conditions.

Before we apply the ideas from the previous section to a scalar field in a relativistic theory, con-
sider a simple model, shown in Figure 7.1. This model illustrates several of the characteristics
of symmetry breaking, with a faithful analogy in the case of spontaneous magnetization as the
temperature drops.

The straight rod has a manifest axial symmetry. Analogously, at temperatures above Tc, a
magnetic material has 〈 �M〉 = 0, i.e., the magnetic domain orientation distribution is spherically
symmetric. The bent rod does not have the axial symmetry, but its horizontal rotation requires no
energy if we neglect friction. Analogously, at temperatures below Tc, the magnetic material has
〈 �M〉 �= 0, i.e., the magnetic domain orientation distribution is no longer spherically symmetric.
However, fluctuations in the magnetization orientation form a wave (dubbed a magnon), the prop-
agation of which in the magnet requires very little energy, which fails to vanish only because of
imperfections and finiteness of a real, physical magnet.

Similarly, the molecular velocity distribution in any fluid is spherically symmetric. When the
temperature of the fluid drops below the freezing point, the material can form a crystal, in which
molecules move only in modes permitted by the crystalline geometry; this breaks the continuous
spherical symmetry into the discrete crystalline symmetry. Correspondingly, there appear phonons
in the crystal, the propagation of which in the crystal requires very little energy, which fails to
vanish because of the imperfection and finiteness of the real, physical crystal.

These examples exhibit the essence of the Goldstone theorem, a technically simplified form
of which is:

Theorem 7.1 For every continuous (and local) symmetry of a system (and for which there
then exists a current that satisfies the continuity equation and a conserved charge) that is not
a symmetry of the vacuum (ground state), there exists an excitation (a motion/fluctuation
mode) of the system that requires no energy.

The idea of the proof is very simple: the ground state that breaks the continuous symmetry is
only one of continuously many possible such states. In the example of a bent rod, the direction of
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bending is one of continuously many arbitrary directions; similarly, the ultimate direction of mag-
netization 〈 �M〉 and of the crystalline lattice represent arbitrary choices from among continuously
many possibilities. Thus, a system with a broken symmetry has a continuum of possible ground
states – which are of course degenerate and which the broken symmetry transforms one into an-
other. The motion/change of the system from one of these continuously many possible choices into
another then requires no energy.

As the analysis in Appendix A.1.3 shows, the symmetry of a system of equations is always a
symmetry of the complete space of solutions. If some particular – e.g., ground – state of the system
is not itself symmetric, then this symmetry transforms this particular (ground) state into another
(also ground) state. As the symmetry of a system is by definition a transformation that commutes
with the Hamiltonian, then the mode of motion/change of the system from one state into another
cannot require any energy. Symbolically (see Section A.1.3):

X (= (X†)−1) is a symmetry of M. ↔ [H, X] = 0. (7.7a)
X is a symmetry of the

complete solution space, X (M ). ↔ X|Ψ〉 ∈ X (M ) ⇔ |Ψ〉 ∈ X (M ). (7.7b)

|Ψ〉 ∈ X (M ) breaks X. ↔ (
X|Ψ〉 = |Ψ′〉) �= |Ψ〉. (7.7c)

⇒ The “motion” |Ψ〉 → |Ψ′〉
in X (M ) requires no energy. ↔ 〈Ψ|H|Ψ〉 − 〈Ψ′|H|Ψ′〉 = 0. (7.7d)

The final result follows since

〈Ψ′|H|Ψ′〉 = 〈Ψ|X†HX|Ψ〉 (7.7a)=
〈
Ψ
∣∣X−1XH

∣∣Ψ〉
= 〈Ψ|H|Ψ〉. (7.8)

Since 〈Ψ′|H|Ψ′〉 = 〈Ψ|H|Ψ〉, the transformation/motion |Ψ〉 → |Ψ′〉 cannot possibly require any
energy. 
�

The careful Reader must have noticed the minor differences in the implied definitions and
concepts in the above several paragraphs, and a technically complete treatment of the Goldstone
theorem requires a consistent and technically precise connection between these ideas. Besides, one
must keep in mind the finiteness of the resolution of any concrete measurement, which then implies
limitations in the definition of physical quantities. For example, the “bare” electric charge is not
distinguishable from a system consisting of that same electric charge but together with the electro-
magnetic field created by that charge, the intensity of which is below the threshold of observability.
That is, the “bare” electric charge is indistinguishable from the electric charge surrounded by a sea
of photons that are either sufficiently “soft” (of small frequency) or are reabsorbed too fast to
permit detection.

7.1.3 The Higgs effect for gauge symmetry
As we begin analyzing the gradual development of a model based on the ideas from the previous
Sections 7.1.1–7.1.2, note that in field theory the quadratic term provides a field with a mass, as
was mentioned in the beginning of this section.

Field shift
A simple relativistic Lagrangian density (constructed in the spirit of the discussion in Section 7.1.1)
for one, real, scalar field, φ(x) is

L0 = 1
2η

μν(∂μφ)(∂νφ) − κ
2

(mc
h̄

)2
φ2 − 1

4λφ
4, (7.9)

so that the classical, Euler–Lagrange equation of motion is

0 = ∂μ
∂L0

∂(∂μφ)
− ∂L0

∂φ
= ∂μ

(
ημν∂νφ

)
+κ

(mc
h̄

)2
φ+ λφ3, (7.10)
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that is,2[ 1
c2 ∂

2
t − �∇2 +κ

(mc
h̄

)2]
φ = −λφ3 ⇔ [− E2 + �p2c2 +κm2c4]φ = (h̄2c2λ)φ3, (7.11)

identifying
√
κm as the mass of the φ field, so we fix κ → 1 for now.

Comment 7.2 Since [
∫

d4x L0] = [h̄] = ML2/T, then [L0] = M/L2T. As the metric tensor
ημν and its inverse ημν are dimensionless and [∂μ] = L−1, it follows that the units of the so-
defined scalar field [φ] =

√
M/T and the units of λ are [λ] = T/ML2. In turn, comparing

the φ2-terms in the Lagrangian density (7.9), [∂μ] = [ mc
h̄ ] and m is really a mass, [m] = M.

The potential energy density in the Lagrangian density (7.9) is V0 = κ
2

(mc
h̄

)2
φ2 + 1

4λφ
4, and

the Hamiltonian density is

H0 := (
.
φ)
∂L0

∂(
.
φ)

−L0 = 1
2

[ 1
c2

.
φ

2 + (�∇φ)·(�∇φ)
]
+ κ

2

(mc
h̄

)2
φ2 + 1

4λφ
4. (7.12)

The expressions (7.11) and (7.12) indicate that changing κ= 1 → −1, aiming to describe a sym-
metry breaking as in Section 7.1.1, implies that the mass of the φ field has become imaginary
(
√
κm = m → im) – which is nonsensical in classical physics.

However, recall that the parameters in the classical Lagrangian are only auxiliary, helping
parameters, and that the true, physically measurable values are obtained only after an adequate
redefinition of those parameters, i.e., after renormalization [☞ Sections 5.3.3 and 6.2.4]. With
that idea, in 1973 Sydney Coleman and Erick Weinberg analyzed the effect of the electromagnetic
field on the mass of an electrically charged scalar particle [112] and found that there exists a
regime (phase) of the parameter m,λ choices where the effective mass of the field (owing to
renormalization effects) really does become imaginary and so induces the breaking of a symmetry,
i.e., indicates an instability of the state with the unbroken symmetry. With this in mind, we now
simply change m2 → −m2 without delving into the detailed reasons and dynamics of this change.

With the potential energy density Ṽ0 = − 1
2

(mc
h̄

)2
φ2 + 1

4λφ
4, the system is unstable at φ0 = 0,

and the global minima appear at the values φ→ ± mc
h̄
√
λ

. One thus expects that, after enough time,
the system settles at either 〈φ〉 = + mc

h̄
√
λ

or 〈φ〉 = − mc
h̄
√
λ

. Feynman’s perturbative computation

would then have to be adapted so that all fields vanish at the chosen classical minimum, i.e., that
the fields represent fluctuations around that minimum. It is thus convenient to introduce one of
the two substitutions:

either ϕ+ := φ− mc

h̄
√
λ

, when 〈φ〉= +
mc

h̄
√
λ

, so 〈ϕ+〉 = 0, (7.13a)

or ϕ− := φ+
mc

h̄
√
λ

, when 〈φ〉= − mc

h̄
√
λ

, so 〈ϕ−〉 = 0, (7.13b)

whereby the Lagrangian density (7.9), with the sign in the mass-term changed by hand,

L̃0 = 1
2η

μν(∂μφ)(∂νφ) + 1
2

(mc
h̄

)2
φ2 − 1

4λφ
4, (7.14)

becomes – corresponding to the choice (7.13) – one of the two Lagrangian densities:

either L+ = 1
2η

μν(∂μϕ+)(∂νϕ+) − (mc
h̄

)2
ϕ2

+ − mc
√
λ

h̄ ϕ3
+ − 1

4λϕ
4
+ + m4c4

4λh̄4 , (7.15a)

2 Identification of the operator ∂μ with the components of the 4-momentum is obtained fastest by using the quantum-
mechanical relations in the coordinate representation, H = ih̄∂t = i h̄

c ∂0 and �p = −ih̄�∇, so that substituting the
eigenvalues, h̄2∂2

t �→ −E2 and h̄2�∇2 �→ −�p2 [☞ Digression 3.6 on p. 93, and the relation (3.37) that holds when
λ→ 0].
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or L− = 1
2η

μν(∂μϕ−)(∂νϕ−) − (mc
h̄

)2
ϕ2− + mc

√
λ

h̄ ϕ3− − 1
4λϕ

4− + m4c4

4λh̄4 . (7.15b)

For these “shifted” fields (7.13), the mass is real, m± =
√

2m, as the sign of the quadratic term
turned negative, and other than the anharmonic term ϕ4±, now there is also a cubic term, ϕ3±.
Finally, the total value of the Lagrangian density shifted by the constant + m4c4

4λh̄4 , which means that

the value of the total energy density (Hamiltonian density) of the system decreased by −m4c4

4λh̄4 ;
recall, H = pi

.
qi − L . This contribution to the energy of the system is the excess energy density

of the phase transition from the phase where the effective mass is real and 〈φ〉 = 0 into the phase
where the effective mass is imaginary and 〈φ〉 = ± mc

h̄
√
λ

.3

As the minimum of the total energy in the phase with 〈φ〉 = ± mc
h̄
√
λ

is lower than that in the
phase with 〈φ〉 = 0, it follows that the ground state of the system after the sign change of the
quadratic term must have one of the two possible values: 〈φ〉 = ± mc

h̄
√
λ

, and the choice between
these two values is arbitrary.

Conclusion 7.1 The Lagrangian density (7.9) describes two phases of the system:

1. the symmetric phase, where κ > 0 and 〈φ〉 = 0,
2. the broken symmetry phase, where κ < 0 and 〈φ〉 = ± mc

h̄
√
λ
�= 0.

Typically, the parameter κ is a function of temperature and turns negative when the
temperature drops below some critical value. The change κ > 0 ↔ κ < 0 is, of
course, a phase transition, for which the excess energy density equals m4c4

4λh̄4 , as seen in
the expressions (7.15).

The Lagrangian density (7.9), and then also the equations of motion (7.11), have the sym-
metry : φ → −φ. However, when the parameter m2 turns into −m2 and the mass becomes
unphysically imaginary, as in the Lagrangian density (7.14), the state where 〈φ〉 = 0 becomes
unstable. Instead, one chooses one of the two states where 〈φ〉 = ± mc

h̄
√
λ

and, corresponding
to the change in the notation (7.13), one uses one of the two Lagrangian densities (7.15). The
transformation is still a symmetry of the system:

: φ→ −φ ⇒ ϕ± → −ϕ± ∓ 2 mc
h̄
√
λ

⇒ L± → L±. (7.16)

As this is a discrete transformation, the Goldstone theorem does not apply. However, there evidently
exists a mapping ϕ± → −ϕ∓ that turns L±(ϕ±) → L∓(ϕ∓); i.e., that connects the two existing
and degenerate vacua.4 By breaking discrete symmetries, the existence of such a discrete mapping
is a property that is closest to the existence of a Goldstone mode. Although this “goldstonesque”
transformation ϕ± → −ϕ∓ is not identically equal to the initial symmetry (7.16), the two
transformations are isomorphic: both are reflections, albeit across different points in the field space.

Basic building blocks of Feynman diagrams correspond to the terms in the Lagrangian den-
sity (7.15). Terms that are quadratic in ϕ define the “propagator,” i.e., the Green function. Its
physical meaning is that the change in the ϕ field in one spacetime point correlates with a change
in a neighboring point. For a scalar field, this function is represented in Feynman diagrams by a

3 The contribution to the total energy is, of course, − ∫
d3�r m4 c4

4λh̄4 , which diverges because of the integral over the infinitely
large space. However, this is but one example of the need to renormalize the reference energy level of the “empty
spacetime.”

4 When the number of degenerate states is finite, as here, it makes sense to construct (anti)symmetrized linear combina-
tions L+ and L−. However, we will be interested in the breaking of continuous symmetries, where this is not possible –
or at least does not have the same physical meaning.
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dashed line. Cubic and quartic terms, respectively, represent correlated changes in three and four
spacetime points, and are represented by vertices where, respectively, three and four dashed lines
meet:

−i

q2 − 2m2c2

h̄2 c3
mc

√
λ

h̄

c4λ (7.17)

where the concrete choice of (combinatorial and normalizing) constants c3, c4 is not relevant here.
Note, however, that the triple vertex may be obtained from the quadruple one by formally “ending”
one of its four edges – as if the field φ here sinks into the vacuum:

c4λ c4λ

〈φ 〉 = mc
h̄
√

λ

c4λ · mc

h̄
√

λ
= c3

mc
√

λ
h̄

c4 = c3 (7.18)

or wells up from it [☞ discussion about the diagram (3.82)]. The nonzero value 〈φ〉 indicates
that the number of φ-quanta is not conserved in the vacuum with the broken symmetry. In contrast,
the number of ϕ±-quanta is conserved as 〈ϕ±〉 = 0, and this is the normal mode for describing
the system in vacuum with the broken symmetry. After the substitution φ → ϕ±, the system has
only elementary diagrams of the type (7.17), from which one can, of course, construct much more
complex Feynman diagrams, and so also much more complex processes. However, in the ϕ+- or
ϕ−-description (depending on the choice of the vacuum), there are no diagrams with “sinks” or
“sources” such as in the φ-description (7.18).

Finally, the Feynman diagrams represent corresponding perturbative contributions, under-
standing that the fields fluctuate about their classical solutions. Thereby, the choice of the
Lagrangian density L± implies that the φ field fluctuates about the expectation value 〈φ〉 = ± mc

h̄
√
λ

,
so 〈ϕ∓〉 = 0. Similarly, just as the ground state of the linear harmonic oscillator is centered at
x = 0, so is the ground state of the model with the Lagrangian density L+ centered at ϕ+ = 0,
and for L− at ϕ− = 0. These then are two distinct models of the system, which the “goldstonesque”
transformation ϕ± → −ϕ∓ maps one into the other, and proves them to be physically equivalent
descriptions of the same system.

Conclusion 7.2 In the symmetric phase, one uses the Lagrangian density (7.9) with κ > 0
and the φ field, so that the Feynman diagrams (7.17) – without the triple vertex – correspond
to the so-described processes. When κ < 0, for the description of this non-symmetric phase
one picks either the Lagrangian density (7.15a) or (7.15b) and, correspondingly, either ϕ+
or ϕ−; correspondingly, the Feynman diagrams (7.17) change their meaning although the
mechanics of the computations remains the same.

Breaking of continuous symmetry
One of the simplest generalizations of the above results to the case where a continuous symmetry
is broken by the choice of the ground state uses two real scalar fields in place of one: φ(x) →
(φ1(x), φ2(x)). The Lagrangian density is chosen akin to (7.9)
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L2d = 1
2η

μνδij(∂μφi)(∂νφj) − 1
2

(mc
h̄

)2(δijφiφj) − 1
4λ(δijφiφj)2. (7.19)

Owing to the specific choice of the potential function, the Lagrangian density (7.19) is invariant
under the action of an arbitrary rotation

ϑ :
[
φ1
φ2

]
→

[
φ′1
φ′2

]
:=

[
cos ϑ − sin ϑ
sin ϑ cos ϑ

] [
φ1
φ2

]
(7.20)

in the abstract (φ1, φ2)-plane. Flipping the sign of the quadratic term, we obtain

L̃2d = 1
2η

μνδij(∂μφi)(∂νφj) + 1
2

(mc
h̄

)2(δijφiφj) − 1
4λ(δijφiφj)2, (7.21)

where the potential energy density is easily found to have continuously many minima, forming the
circle

(φ 2
1 + φ 2

2 )
∣∣
min = m2c2

h̄2λ
, i.e., (φ1, φ2)min =

(
mc

h̄
√
λ

cos θ, mc
h̄
√
λ

sin θ
)

, (7.22)

where the angle θ is arbitrary. Clearly, the transformation (7.20) maps the arbitrary choice of
minima at the angle θ into the choice with the angle θ + ϑ.

Consider, e.g., the minimum (φ1, φ2) → ( mc
h̄
√
λ

, 0) and the correspondingly shifted fields:

ϕ1 = φ1 − mc
h̄
√
λ

, ϕ2 = φ2. (7.23)

With these, the Lagrangian density (7.19) becomes

L̃2d = 1
2η

μνδij(∂μϕi)(∂νϕj) −
(mc

h̄

)2
ϕ 2

1

− mc
√
λ

h̄ ϕ1(ϕ 2
1 + ϕ 2

2 ) − 1
4λ(ϕ 2

1 + ϕ 2
2 )2 + m4c4

4λh̄4 (7.24a)

= 1
2η

μν(∂μϕ1)(∂νϕ1) −
(mc

h̄

)2
ϕ 2

1 − mc
√
λ

h̄ ϕ 3
1 − 1

4λϕ
4
1

+ 1
2η

μν(∂μϕ2)(∂νϕ2) − 1
4λϕ

4
2

− mc
√
λ

h̄ ϕ1ϕ
2

2 − 1
2λϕ

2
1 ϕ

2
2 + m4c4

4λh̄4 , (7.24b)

where we separated the terms that produce the dynamics of the ϕ1 and the ϕ2 fields into two
separate rows, and left the coupling terms and the excess energy density for the last row.

Just as in the one-dimensional example (7.9)–(7.16), the ϕ1 field has acquired a real mass
m1 =

√
2|m|, as well as an additional cubic term, besides the ϕ4

1 term. However, the ϕ2 = φ2
field has lost its mass, and only has a ϕ 4

2 term in the potential! Finally, the ϕ1 and the ϕ2 fields
are coupled via the ϕ1ϕ

2
2 and the ϕ 2

1 ϕ
2

2 terms, in the sense that the Euler–Lagrange equations of
motion form a coupled system. The transformation

ϑ :
[
ϕ1

ϕ2

]
→

[
ϕ′1
φ′2

]
:=

[
cos ϑ − sin ϑ

sin ϑ cos ϑ

] [
ϕ1

ϕ2

]
+

[ mc
h̄
√
λ
(cos ϑ−1)

mc
h̄
√
λ

sin ϑ

]
(7.25)

is still a symmetry of the system – and is merely rewritten into the new coordinates, making it
evident that this is not a rotation about the coordinate origin in the (ϕ1, ϕ2)-plane. Since the
rotations in the (ϕ1, ϕ2)-plane about the point (0, 0) are not symmetries, the fact that the ϕ2 field
has lost its mass indicates that (in this choice of the parametrization of the system) ϕ2 represents
the Goldstone boson.
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Conclusion 7.3 Following Conclusion 7.2 on p. 259, one may use the Lagrangian den-
sities (7.19) and (7.24), respectively, to describe the symmetric (κ> 0) and the non-
symmetric (κ< 0) phases of the system. Unlike in the situation in Conclusion 7.2, the
non-symmetric phase now contains a continuous degeneracy: any one of continuously
many scalar fields that satisfy the relations (7.22) represents a minimum of the potential
in the non-symmetric phase. Any one concrete choice, such as (7.23), then represents one
concrete spontaneous breaking of the original symmetry, from among continuously many
such choices.

Digression 7.1 Note that after ad hoc changing the sign from the Lagrangian den-
sity (7.19) into the Lagrangian density (7.21), varying the φ field produces the change in
the equation of motion:[


 +
(mc

h̄

)2]
φj = −λφj‖φ‖2 → [


− (mc
h̄

)2]
φj = −λφj‖φ‖2, (7.26a)

where 
 = 1
c2
∂2

∂t2 − �∇2 is the wave operator, a.k.a., the d’Alembertian. In the absence
of interactions (λ → 0), the Klein–Gordon operator [
 + ( mc

h̄ )2] thus changes into [
−
( mc

h̄ )2]. Since the standard Klein–Gordon operator corresponds to the relation (3.36), we
have[


+
(mc

h̄

)2]
φj = 0 ⇔ E2 = �p2c2+m2c4 ⇔ �p2

E2/c4 = v2 = c2
(

1−m2c4

E2

)
< c2.

(7.26b)
However, flipping the sign of the m2φ2 term, by hand, would produce[


−(mc
h̄

)2]
φj = 0 ⇔ E2 = �p2c2−m2c4 ⇔ �p2

E2/c4 = v2 = c2
(

1+
m2c4

E2

)
> c2.

(7.26c)
Thus, simply flipping the sign of the m2φ2 term in the Lagrangian density would have
two correlated consequences:

1. The vacuum where 〈φ〉 = 0 would become unstable, as a local maximum of
the potential energy density, which indicates the tendency of the system to
transition into a state where 〈φ〉 = mc

h̄
√
λ
�= 0.

2. The φ field would become tachyonic (superluminal): it would propagate faster
than the speed of light in the “false” vacuum where 〈φ〉 = 0; by transitioning
into the “true” vacuum where 〈φ〉 = mc

h̄
√
λ
�= 0, φ (i.e., now ϕ) becomes again

a physical, tardionic (subluminal) field.

However, the sign of the (quadratic) mass term is in reality a continuously variable
parameter, and the evolution of the system is considerably more involved than could
be shown here; see for example [81, 20]. Nevertheless, the appearance of a tachyonic
particle/state in a simple analysis as shown here does signal vacuum instability.

The correspondence between the broken symmetry and the Goldstone boson is not per-
fectly evident in this parametrization, since ϕ2 does not represent rotations. This correspondence
becomes clearer by using, instead of (7.23), the nonlinear transformation

φ1 = ρ cos θ, φ2 = ρ sin θ, (7.27)
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with which the Lagrangian density with the flipped sign of the quadratic term becomes

L̃2d = 1
2η

μν
[
(∂μρ)(∂νρ) + ρ2(∂μθ)(∂νθ)

]
+ 1

2

(mc
h̄

)2
ρ2 − 1

4λρ
4. (7.28a)

Finding the minimum on the circle of radius ρ = mc
h̄
√
λ

and after the substitution

� := ρ− mc
h̄
√
λ

, (7.28b)

we obtain

L̃2d = 1
2η

μν(∂μ�)(∂ν�) −
(mc

h̄

)2
�2 − mc

√
λ

h̄ �3 − 1
4λ�

4 + m4c4

4λh̄4

+ 1
2

(
�+ mc

h̄
√
λ

)2
ημν(∂μθ)(∂νθ), ϑ : θ (7.20)−−−→ θ + ϑ. (7.28c)

This makes it evident that the rotations (7.20) map the system from a parametrization where the
Feynman calculus is defined about the ground state with (�, θ) = (0, 0) into a parametrization
centered at (�, θ) = (0, θ∗), and where the θ field has no mass – nor in fact any potential – and so
represents the Goldstone mode.

In turn, by shifting the fields in a ϑ-dependent fashion:

ϕ1 = φ1 − mc
h̄
√
λ

cos(ϑ), ϕ2 = φ2 − mc
h̄
√
λ

sin(ϑ), (7.29)

we obtain

˜̃L 2d = 1
2η

μνδij(∂μφi)(∂νφj) −
(mc

h̄

)2
(

cos(ϑ) φ1 + sin(ϑ) φ2

)2
+ m4c4

4λh̄4

+
√
λ
(mc

h̄

)(
cos(ϑ) φ1 + sin(ϑ) φ2

)
(φ2

1 + φ2
2) − 1

4λ(φ2
1 + φ2

2)
2, (7.30)

which evidently interpolates between (7.23)–(7.24) and a continuum of equivalently shifted
Lagrangian densities.

Notice the extraordinary similarity between the descriptions (7.27)–(7.30) and the illustra-
tion in Figure 7.1 on p. 255, whereby it is possible to identify the pair of fields (φ1, φ2) with the
motion denoted by the dark/light arrows on the left-hand side, and � with the radial motion (dark
arrows) on the left-hand side, and where the ϑ rotation evidently perfectly corresponds to the
rotational motion denoted by the light and outlined arrow. Unfortunately, the nonlinear coupling
in the kinetic term, between (∂μθ) and �, is the “price” of making this relationship between the
Goldstone mode and the broken symmetry evident. This “polar” parametrization of the model is
therefore rather cumbersome for defining Feynman diagrams and the perturbative computations,
and is not used except to identify symmetries.

The Higgs effect for gauge U(1) symmetry
The 2-dimensional model from the previous section may be combined with gauge symmetry.
One only needs to reinterpret the pair of real scalar fields, φ1, φ2, as one complex scalar field,
φ = φ1 + iφ2. This complex field then has a phase, and the description from Sections 5.1 and 5.3
may be adapted. Start therefore with the Lagrangian density

LCW = 1
2η

μν(Dμφ)∗(Dνφ) − 1
2

(mc
h̄

)2|φ|2 − 1
4λ

(|φ|2)2 − 4πε0
4 FμνFμν, (7.31)

where
Dμφ = ∂μφ +

iqφ
h̄ c Aμ φ, (7.32)
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is the (electromagnetically) U(1)-covariant derivative, and qφ is the electric charge of the complex
field φ. Varying by φ and φ∗, we obtain the Euler–Lagrange equations of motion, varying by

.
φ

and
.

φ∗ produces the canonical momenta, etc. However, we are here concerned with the breaking
of the gauge symmetry

φ(x) → exp
{ i

h̄ qφ χ(x)
}

φ(x), Aμ(x) → Aμ(x) − c ∂μ χ(x), (7.33)

and will, as before, consider the Lagrangian density (7.31), the one with the “wrong” sign of the
quadratic term:

L̃CW = 1
2η

μν(Dμφ)∗(Dνφ) + 1
2

(mc
h̄

)2|φ|2 − 1
4λ

(|φ|2)2 − 4πε0
4 FμνFμν. (7.34)

It is not hard to show, e.g., by parametrizing φ = R eiΘ, [ ✎do it] that the potential energy density

ṼCW = − 1
2

(mc
h̄

)2|φ|2 + 1
4λ

(|φ|2)2 = − 1
2

(mc
h̄

)2R2 + 1
4λR4 (7.35)

has a minimum when R := |φ| = mc
h̄
√
λ

and the “angle” Θ ∈ [0, 2π] is arbitrary, which parametrizes
a circle of radius mc

h̄
√
λ

– in the complex field plane of φ = φ1 + iφ2. The classical solutions, i.e., the
quantum-expectation values |〈φ〉| = mc

h̄
√
λ

, are equally probable for every choice of the “angle” Θ,
and the ultimate value 〈Θ〉 is determined by the initial conditions and external influences. (As per
Conclusion 1.1, perfect initial conditions do not exist.)

Choosing, e.g., Θ = 0 for the ground state and in the Feynman diagrammatic calculus,5 we
must redefine the fields so that they describe fluctuations about the chosen classical solution. We
thus define ϕ = φ − mc

h̄
√
λ

, but are free to return to the Cartesian basis, with ϕ1 := &e(φ) − mc
h̄
√
λ

and ϕ2 := #m(φ). This substitution yields

L̃CW = 1
2η

μν
[
Dμ

(
(ϕ1 + mc

h̄
√
λ
) + iϕ2

)]∗[
Dν

(
(ϕ1 + mc

h̄
√
λ
) + iϕ2

)]− 4πε0
4 FμνFμν

+ 1
2

(mc
h̄

)2∣∣(ϕ1 + mc
h̄
√
λ
) + iϕ2

∣∣2 − 1
4λ

(∣∣(ϕ1 + mc
h̄
√
λ
) + iϕ2

∣∣2)2

=
[

1
2 (∂μϕ1)(∂μϕ1) − m2c2

h̄2 ϕ 2
1

]
+

[
1
2 (∂μϕ2)(∂μϕ2)

]
−

[
4πε0

4 FμνFμν − 1
2

q2
ϕm2

h̄4λ
AμAμ

]
+

qϕ m

h̄2√λAμ(∂μϕ2) +
qϕ
c h̄ Aμ[ϕ1(∂μϕ2) − (∂μϕ1)ϕ2]

+
q2
ϕm

ch̄3√λ ϕ1 AμAμ − mc
√
λ

h̄ ϕ1(ϕ 2
1 + ϕ 2

2 )

+ 1
2

q2
ϕ

c2 h̄2 AμAμ(ϕ 2
1 + ϕ 2

2 ) − 1
4λ(ϕ 2

1 + ϕ 2
2 )2 + m4c4

4λh̄4 . (7.36)

The appearance of the underlined “mixed” quadratic term
qϕ m

h̄2√λAμ(∂μϕ2) indicates that the
functions ϕ1, ϕ2, A0, A1, A2 and A3 are not the normal modes of this system. [ ✎Why?] However,
instead of pursuing the diagonalization procedure, we may use the gauge transformation

φ →eiϑφ = (cos ϑ+ i sin ϑ)(φ1 + iφ2)
= (φ1 cos ϑ− φ2 sin ϑ) + i(φ1 sin ϑ+ φ2 cos ϑ) (7.37)

where we select [☞ definition (5.104a)]

ϑ = −ATan(φ1, φ2) = −ATan
(
ϕ1+

mc

h̄
√
λ

, ϕ2

)
, (7.38)

5 In classical physics, where φ1 = &e(φ) and φ2 = #m(φ) would be functions of (only) time, a similar choice would
be convenient for describing small oscillations. Feynman’s diagrammatic calculus is indeed a generalization of small
oscillations in field theory, in a quite general sense.
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so that ϕ′2 := #m(eiϑφ) = 0. Also, ϕ′1 := &e
(
eiϑ(φ − mc

h̄
√
λ
)
)

and, of course, A′
μ := Aμ + (h̄ c∂μϑ).

The Lagrangian density (7.36) being invariant with respect to gauge transformations, it follows
that the same Lagrangian density may also be expressed in terms of these new, gauge-transformed
fields:

L̃CW =
[

1
2 (∂μϕ′1)(∂

μϕ′1) − m2c2

h̄2 ϕ′ 2
1

]
−

[
4πε0

4 F′
μνF′ μν − 1

2
q2
ϕm2

h̄4λ
A′
μA′ μ

]
+

q2
ϕm

ch̄3√λ ϕ
′
1 A′

μA′ μ − mc
√
λ

h̄ ϕ′ 3
1 + 1

2
q2
ϕ

c2 h̄2 A′
μA′ μϕ′ 2

1 − 1
4λϕ

′ 4
1 + m4c4

4λh̄4 , (7.39)

where we note that ϕ′2 no longer appears. The same result could, of course, have been obtained by
the standard diagonalization procedure.

It must be kept in mind that the three Lagrangian densities (7.34), (7.36) and (7.39) all
describe the same system, only in slightly different parametrization, and where the ultimate ver-
sion (7.39) achieves the most concise description. Varying the Lagrangian density (7.39) by Aμ

produces the Euler–Lagrange equations of motion:


A′ ν − ∂ν(∂μA′ μ) +
q 2
ϕm2

4πε0 h̄4λ
A′ ν = − q 2

ϕ

4πε0c2 h̄2

(
ϕ′1 + mc

2h̄
√
λ

)
ϕ′1 A′ ν. (7.40)

This proves that the gauge field A′
μ acquired the mass

mA =
qϕ m√

4πε0 h̄ c
√
λ

=
qϕ√
4πε0

1
c2 〈φ1〉, 〈φ1〉 = mc

h̄
√
λ

, (7.41)

since by using the Lorenz gauge, ∂μA′ μ = 0, the equation of motion (7.40) becomes[

 +

( qϕ m√
4πε0 h̄2√λ

)2
]

A′ ν = − q2
ϕ

4πε0c2 h̄2

(
ϕ′1 + mc

2h̄
√
λ

)
ϕ′1 A′ ν, (7.42)

where the operator in the square brackets is the same as in the Klein–Gordon equation (5.26).
The algebraic substitutions and operations that turn the Lagrangian densities (7.34)–(7.36)

into (7.39) may also be represented graphically, since the various homogeneous terms6 unam-
biguously correspond to the Feynman diagrams. So, e.g., the gauge boson mass stems from the
interaction of these bosons with the Higgs field, where both “scalar” legs of this 2+2-leg vertex
sink into the vacuum, or well from it:

A ′
μ

φ1 φ1

A ′
μ

A ′
μ

〈φ1〉

A ′
μ

〈φ1〉
A ′

μ

〈φ1〉2

A ′
μ

(7.43)

The incessant sinking into the vacuum and welling from it of the φ1-field acts as an effective “vis-
cosity” for all the fields interacting with φ1. This is what impedes the propagation of gauge fields
A′
μ, so the quanta of this field acquire an (increased) inertia, i.e., mass. It is not hard to show

that, in the (φ1, φ2)-picture, the Feynman diagrams of all “additional” terms in the Lagrangian den-
sity (7.39) have dashed lines that sink into the vacuum or well from it, as shown in diagrams (7.18)
and (7.43). After the substitution φ1 → ϕ1 + mc

h̄
√
λ

, all diagrams that contain sinks/sources 〈φ1〉 are
simply drawn as new, independent diagrams.

6 By “homogeneous terms” one understands all the terms that have the same power of the various fields of the model. For
example, (∂μφ1)(∂μφ1) and m2 c2

h̄2 φ2
1 are homogeneous and together contribute to the propagator, i.e., the first Feynman

diagram (7.17). Similarly, the Lagrangian density (7.39) has only one cubic term, −mc
√
λ

h̄ ϕ′1
3, and this is the only term

that contributes to the triple vertex Feynman diagram, shown as the middle diagram (7.17).
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Conclusion 7.4 In a diagram such as (7.18) or (7.43), the crucial role is played by the
property of Higgs bosons that they have a non-vanishing vacuum expectation value. The
direct interpretation of these diagrams is that the Higgs bosons mediate the interaction of
other particles with the true vacuum, so that the Higgs bosons in fact also mediate a type
of interaction.

Supporting the claim that these are but different descriptions of the same system, let us count
the degrees of freedom in the Lagrangian density:

Equation (7.34) The complex scalar field φ has two real functions, φ1(x) and φ2(x). The U(1)-
gauge potential Aμ(x) has four real components, but only two are physical, as the gauge
symmetry permits the imposition of the Lorenz and the Coulomb gauge, which leave only
the two components (those orthogonal to the photon’s direction of motion) having a physical
meaning. Jointly, these count as four real functions.

Equation (7.39) The real scalar (Higgs) field ϕ′1(x) is of course just one real function. The vector
potential Aμ(x) here has a mass, and so also has, besides the two components that are or-
thogonal to the direction of motion, the longitudinal component.7 Jointly, these again count
as four real functions.

By rewriting the Lagrangian density from its form (7.34) into the form (7.39), the imaginary part of
the scalar field φ became the physical, longitudinal component of the 4-vector gauge potential Aμ,
whereby that gauge boson acquired the mass (7.41), proportional to the charge and the vacuum
expectation value of the Higgs field φ. One says that the gauge boson “ate” the imaginary part of
the Higgs field, ϕ2, which had no mass in the Lagrangian density (7.36) and so represented the
Goldstone boson. Suffice it here then to state, without a detailed proof [257, 307, 159, 422, 423,
538, 250, 389, 243]:

Conclusion 7.5 In the general case of non-abelian (non-commutative) gauge symmetry
breaking via the Higgs effect, there exists a symmetric (κ> 0) phase, where the complete
gauge symmetry is exact, and all Higgs fields are “accounted for” and have the same, real
mass.

There also exists a non-symmetric (κ< 0), i.e., Higgs phase, where the gauge sym-
metry is broken so that from the original group of symmetries G only a subgroup H of
symmetries is exact. For each generator of the so-called coset G/H [☞ the lexicon entry, in
Appendix B.1] and corresponding to each broken symmetry:

1. one Higgs scalar field turns into
2. the longitudinal component of one gauge 4-vector potential,
3. and the particle represented by that 4-vector potential becomes massive.

The choice between the symmetric or non-symmetric phase is made by the sign κ, which is
a function of the order parameter (typically, the temperature T), so that

κ(T) =
{ κ > 0 for T > Tc symmetric phase,

κ < 0 for T < Tc non-symmetric phase.
(7.44)

Comment 7.3 All the Lagrangian densities involving a Higgs field such as (7.39) exhibit an
excess energy density, m4c4

4λh̄4 . This quantity must contribute to the vacuum energy density of
our universe (there is no external reservoir to siphon it away), the 8πGN/c4-multiple of

7 See the discussion on p. 186, as well as the explanation in Footnote 29 on p. 67.
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which is the cosmological constant, and which is known to be some 55 orders of magnitude
smaller than m4c4

4λh̄4 ; whence the term “excess energy density.” This discrepancy only becomes
worse with the grand-unifying attempts that we will explore in the next chapter. Ultimately,
a theory also including gravity would – based on dimensional arguments alone – predict a
vacuum energy density that is some 122 orders of magnitude larger than what is observed.
This is often cited as the “vacuum catastrophe” and the “worst theoretical prediction in the
history of physics” [272]. However, this is not the first time dimensional analysis alone
presented a manifestly wrong answer; see Section 1.2.5.

Comment 7.4 In processes where the energies of the involved particles are bigger (smaller)
than kBTc, one expects the system to be in the symmetric (non-symmetric) phase. In practice
therefore, the energy available to the particles in observed processes is identified with the
order parameter, i.e., temperature. Finally, the critical energy then must be proportional to
the value 〈φφφφ〉, and dimensional analysis dictates that

Ec = h̄ c
√
λ〈φφφφ〉 = kBTc. (7.45)

7.1.4 Exercises for Section 7.1

✎ 7.1.1 Confirm the results (7.15) by explicit computation.

✎ 7.1.2 Confirm the results (7.22) by explicit computation.

✎ 7.1.3 Expanding the Lagrangian density (7.21) about (ϕ1, ϕ2) = (φ1, φ2 − mc
h̄
√
λ
), verify that

now ϕ1 plays the role of the Goldstone boson.

✎ 7.1.4 Confirm the results (7.24) by explicit computation.

✎ 7.1.5 Confirm the results (7.36) by explicit computation.

7.2 The weak nuclear interaction and its consequences
Interactions of gauge 4-vector potentials and spin- 1

2 fermions studied in Chapter 5 faithfully de-
scribe the interactions of electromagnetic and strong interactions, the gauge bosons of which are
massless. The Higgs effect, described in the previous section, provides a correct description of
massive W±- and Z0-bosons. However, for the description of the interaction of these bosons with
spin- 1

2 fermions, we need one additional detail, to which we now turn.

7.2.1 The asymmetry in weak interactions
Chapter 5 describes interactions of gauge bosons with 4-component Dirac fermions, which were
shown in Section 5.2.1 on p. 172 to decompose in a Lorentz-invariant way into the eigenstates of
γγγγ± [☞ Conclusion 5.2 on p. 179], the so-called Weyl spinors:

Ψ = Ψ+ + Ψ−, Ψ± :=
(
γγγγ±Ψ

)
, γγγγ± = 1

2 [1 ± γ̂γγγ]. (7.46)

Using the relations (A.121a)–(A.121b) and (A.130), we obtain that

Ψ
[
ih̄ cγγγγμDμ − mc

h̄ 1
]
Ψ

= Ψ+
[
ih̄ cγγγγμDμ

]
Ψ+ + Ψ−

[
ih̄ cγγγγμDμ

]
Ψ− − mc

h̄

[
Ψ−Ψ+ + Ψ+Ψ−

]
.

(7.47)
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That is, the interaction of a spin- 1
2 fermion with the gauge field as described in Chapter 5 includes

both “left-handed” (Ψ− ≡ ΨL) and “right-handed” (Ψ+ ≡ ΨR) fermions.8

Note that the Lagrangian term that defines the mass, −mc
h̄ Ψ−Ψ+, couples Ψ+ and Ψ−. This

is the so-called Dirac mass. By contrast, the previous two terms in the expression (7.47) “link”
fermions of the same chirality. This property permits massless spin- 1

2 particles to satisfy the simpler,
Weyl equation (5.62) instead of the more complicated Dirac equation (5.34).

As was discussed in Section 4.2.1, the weak interactions maximally break the parity symmetry
as the interaction of the W± boson with a charged lepton and a neutrino exclusively couples the
“left-handed” fermions. Thus, e.g., the interaction e− → W− + νe in the Lagrangian density must
correspond to the term

Ψ(ν,e)
−

[
ih̄ cγγγγμ

(
1∂μ + i gw

h̄ c Wμ

)]
Ψ(ν,e)
− , Wμ := 1

2σσσσaWa
μ,

= Ψ(ν,e)γγγγ−
[
ih̄ cγγγγμ

(
1∂μ + i gw

h̄ c Wμ

)]
(γγγγ−Ψ(ν,e))

(A.130)= Ψ(ν,e)γγγγ+
[
ih̄ cγγγγμ

(
1∂μ+

i gw
h̄ c Wμ

)]
γγγγ−Ψ(ν,e)

= Ψ(ν,e)
[
ih̄ cγγγγ+γγγγ

μγγγγ−
(
1∂μ+

i gw
h̄ c Wμ

)]
Ψ(ν,e)

= Ψ(ν,e)
[
ih̄ cγγγγμγγγγ 2

−
(
1∂μ + i gw

h̄ c Wμ

)]
Ψ(ν,e)

(A.121b)= Ψ(ν,e)
[
ih̄ cγγγγμγγγγ−

(
1∂μ + i gw

h̄ c Wμ

)]
Ψ(ν,e). (7.48)

That is, the first term in the left–right symmetric expression (7.47) must not appear in the La-
grangian density for weak interactions. As the key terms in the Lagrangian density must include
factors of the type

Ψ(ν,e)
− γγγγμWμΨ(ν,e)

− = Ψ(ν,e)γγγγμγγγγ−WμΨ(ν,e) = 1
2 Ψ(ν,e)γγγγμ[1 − γ̂γγγ]WμΨ(ν,e)

= 1
2

[
Ψ(ν,e)γγγγμ 1

2σσσσaΨ(ν,e)︸ ︷︷ ︸
vector

−Ψ(ν,e)γγγγμγ̂γγγ 1
2σσσσaΨ(ν,e)︸ ︷︷ ︸

axial vector

]
Wa
μ, (7.49)

one says that weak interactions are of the “V−A” type – contrary to the electrodynamics and
chromodynamics interactions that are of purely “V” (vector) type.

Thus, the Lagrangian density describing the interactions of gauge bosons W± may be written
with the projectors γγγγ− consistently inserted for all fermions; interactions with the Z0-boson are
still more complicated [☞ Sections 7.2.4 and 7.2.5].

7.2.2 The GIM mechanism
Section 2.3.14 showed that the quark states that interact by weak interaction are not the eigen-
states of the “free” Hamiltonian that defines the mass: The quark states that are detected as d-, s-
and b-quarks primarily differ in mass [☞ Figure 2.1 on p. 76, and Table 4.1 on p. 152]. However,
the eigenstates of the Hamiltonian term describing the interaction with the W±- and Z0-bosons
are nontrivial linear combinations (2.53) of these mass-identified states.

The first-order effect
When Nicola Cabibbo suggested the first variation of this phenomenon in 1963, only the u-, d- and
s-quarks were known. Proposing that the states that interact with the W±- and Z0-bosons are in fact

|u〉, |dw〉 := cos θc|d〉 + sin θc|s〉, |sw〉 := cos θc|s〉 − sin θc|d〉, (7.50)

so |d〉 = cos θc|dw〉 − sin θc|sw〉, |s〉 = cos θc|sw〉 + sin θc|dw〉, (7.51)

8 It is standard to use the adjectives “left/right-handed” regarding both the chirality eigenstates and the helicity eigen-
states of spin- 1

2 fermions – although these coincide only for massless particles. The context usually makes it clear which
of these two characteristics is meant; herein, we have in mind only chirality.
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Cabibbo explained the existence of processes of the type

d → W− + u and s → W− + u. (7.52)

Since the s-quark carries strangeness, and u- and d-quarks do not, the first process is assigned
�S = 0 and the second one �S = 1. In these processes the W−-boson is said to interact
with the quark “current” d → u (which preserves strangeness), and respectively s → u (where
strangeness is broken). Using the principle of detailed balance [☞ Section 2.14], we also have the
processes W− ↔ dw + u, and akin to the expression (7.49), we define the quark 4-current density
that interacts with the weak gauge bosons:

Wμ
+ : J

μ
+ = dw Lγγγγ

μuL → cos θc du + sin θc su, (7.53a)

Wμ
− : J

μ
− = uLγγγγ

μdw L → cos θc ud + sin θc us, (7.53b)

whereby it follows that

Z0 : J
μ
0 = uLγγγγ

μuL − dw Lγγγγ
μdw L → uu − cos2θc dd − 1

2 sin 2θc(ds + sd) − sin2θc ss. (7.53c)

This implies the existence and relative strength of the following processes:

(a)

W −

u

d

cos θc

(b)

W +

d

u

cos θc

(c)

W −

u

s

sin θc

(d)

W +

s

u

sin θc (7.54)

(a)

Z 0

d

d

cos2θc

(b)

Z 0

s

s

sin 2θc

(c)

Z 0

s

d

1
2 sin (2θc)

(d)

Z 0

d

s

1
2 sin (2θc) (7.55)

as well as their variations obtained through the principle of detailed balance, and where the relative
θc-dependent factors for the amplitudes of these processes are written next to the vertices. The
processes (7.54a,b) and (7.55a,b) have �S = 0, and the processes (7.54c,d) and (7.55c,d) have
�S = ±1.

Combining the processes (7.54d) and (7.55d) with similar processes where the W±- and
Z0-bosons create a lepton–antilepton pair, we obtain the Feynman diagrams

u s

sin θc

W +

μ + νμ

︷︷
K+

(a)

d s

1
2 sin (2θc)

Z 0

μ − μ +

︸ ︷︷
K 0

(b)

(7.56)

Except for the θc-dependent factor and the dependence on the particle masses, the amplitude of
these processes would have to be approximately the same since
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2 sin(2θc)
sin(θc)

∣∣∣2 = cos2(θc) ∼ O( 1
2 )–O(1). (7.57)

However, experiments confirm that the first of these two processes really happens and with the
expected probability, but the second of these two processes practically does not occur [293]:9

Γ(K+ → μ+ + νμ)
Γ(K+ → all)

≈ 64%,
Γ(K0 → μ−+μ+)

Γ(K0 → all)
< 9×10−9. (7.58)

In the general case, it is experimentally verified that the processes with �S = ±1 mediated
by the Z0-boson occur many orders of magnitude less frequently than other weak processes
that can be described using the diagrams (7.54)–(7.55) and their equivalents with leptons
instead of quarks. Cabibbo’s original parametrization (7.50) thus implies the result (7.53c),
which – besides the experimentally confirmed processes of the type (7.56a) – also predicts
the flavor-changing neutral current processes, such as (7.56b), which do not occur. Accord-
ing to the discussion that led to Conclusion 1.1 on p. 6, Cabibbo’s then model must be
corrected.

To explain the tremendous difference (7.58), Glashow, Iliopoulos and Maiani (GIM) proposed
in 1970 that there exists a fourth quark, c, so that the quark current densities that interact with the
W±- and Z0 bosons are

W+
μ : J

μ
+ = dw Lγγγγ

μuL + sw Lγγγγ
μcL → cos θc du + sin θc su − sin θc dc + cos θc sc, (7.59a)

W−
μ : J

μ
− = uLγγγγ

μdw L + cLγγγγ
μsw L → cos θc ud + sin θc us − sin θc cd + cos θc cs, (7.59b)

Z0 : J
μ
0 = uLγγγγ

μuL − dw Lγγγγ
μdw L + cLγγγγ

μcL − sw Lγγγγ
μds L

→ uu + cc − dd − ss. (7.59c)

This proposal corrects Cabibbo’s model in that it does not alter the results for the processes of
the type (7.56a), but – in agreement with the experimental non-observation – prohibits processes
of the type (7.56b). That is, in contrast to the quark current density (7.53c) that contains mix-
ing terms ds and sd, the quark current density (7.59c) contains no mixing term. The “price”
for so diagonalizing the Z0-boson interaction in the flavor space was the postulate of the exis-
tence of the fourth quark, and that proposal and its consequences are usually called the GIM
mechanism.

Comment 7.5 The Reader should notice the conceptual parallel between Glashow, Iliopoulos
and Maiani’s postulation of a new quark so as to preserve the logical consistency of the
model and Pauli’s postulation of the neutrino so as to preserve the energy conservation
law [☞ Section 2.3.9].

The second-order effect
Now, even if the decay K0 → μ+ + μ− by way of a simple O(g 2

w ) process (7.56b) is forbidden, it
does not follow that this physical process cannot happen by way of a more complex interaction,
i.e., by way of a more complex Feynman diagram. Indeed, one straightforwardly constructs the
O(g 4

w ) diagrams:

9 Processes mediated by Z0-bosons are usually labeled by the FCNC acronym, standing for flavor-changing neutral current.
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(a)
d su

W − q W +

νμ
μ− μ +

K 0

(b)
d sc

W − q W +

νμ
μ − μ +

K0

(7.60)

The sub-processes described by these two diagrams are identical, except that the u-quark in
the left-hand diagram is replaced by a c-quark in the right-hand one. As these quarks are vir-
tual in these diagrams, according to Conclusion 2.3 on p. 56, both sub-processes contribute to
the decay K0 → μ+μ−. However, the diagram (7.54) implies that the amplitude of the dia-
gram (7.60a) is proportional to (cos θc)(− sin θc), while the amplitude for the diagram (7.60b)
is proportional to (sin θc)(cos θc). Since the amplitudes of these sub-processes are being added,
these two contributions would exactly cancel if the u- and c-quark masses were equal.

That is, the application of the 4-momentum conservation in all vertices straightforwardly
implies that one of the (internal) 4-momenta remains undetermined, and its integration remains
unrestricted. We may always choose this to be the 4-momentum shown as circulating in the central
loop/box and which was denoted “q.” The

∫
d4q-integral is dominated by contributions that stem

from the |q| � (mW c) = 80.403 GeV/c regime, which is far in excess of mu, mc. The u- and c-quark
mass dependence of the amplitudes must therefore be fairly soft, causes a very small ultimate dif-
ference between the two amplitudes, and guarantees their approximate cancellation. One expects
the amplitude M to be a function of mc−mu, and M ∝ (mW)−2, owing to the two W-propagators.
Thus, this estimate |M|2 ∝ | (mc−mu)2

m2
w

|2 ∼ 10−8 is already amazingly close to the experimental
result (7.58) [293].

It may further be shown that the GIM mechanism actually guarantees the approximate can-
cellation of all possible contributions to the Z0-mediated weak processes where �S = ±1, and so
guarantees good agreement between the Cabibbo–GIM model with four quarks and the experimen-
tal data. Nevertheless, the postulation of a new particle so as to preserve the logical consistency of
the model was still regarded an extravagant “solution” of a problem of the otherwise (in the early
1970s) experimentally insufficiently justified quark model [243].

7.2.3 U(1)A anomaly

The existence of the fourth, c-quark was experimentally confirmed in 1974, but even before that,
an extraordinarily strong but “purely theoretical” argument for its existence was known – separate
from the GIM mechanism, but just as often ignored as “idle theory.”

In the classical (non-quantum) version of the quark model, the functions used to represent
the various particles satisfy their equations of motion:

ih̄∂μ[Ψ1γγγγ
μΨ2] = (ih̄∂μΨ1γγγγ

μ)Ψ2 + Ψ1γγγγ
μ(ih̄∂μΨ2) = −(ih̄ /∂Ψ1)Ψ2 + Ψ1(ih̄ /∂Ψ2)

= −(m1cΨ1)Ψ2 + Ψ1(m2cΨ2) = (m2−m1)cΨ1Ψ2, (7.61)

since the quark functions Ψ satisfy the Dirac equation (5.34). Analogously,

ih̄∂μ[Ψ1γ̂γγγγγγγ
μΨ2] =

(
ih̄∂μΨ1(−γγγγμγ̂γγγ)

)
Ψ2 + Ψ1γ̂γγγγγγγ

μ(ih̄∂μΨ2) = (ih̄ /∂Ψ1)γ̂γγγΨ2 + Ψ1γ̂γγγ(ih̄ /∂Ψ2)

= (m1cΨ1)γ̂γγγΨ2 + Ψ1γ̂γγγ(m2cΨ2) = (m1+m2)cΨ1γ̂γγγΨ2. (7.62)
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We then have:

Theorem 7.2 For spinors Ψi that satisfy the Dirac equation [ih̄ /∂− mic]Ψi = 0:

1. the 4-vector current J
μ
ij := [Ψiγγγγ

μΨj] satisfies the continuity equation

∂μ J
μ
ij = 0 precisely when mi = mj. (7.63)

2. The pseudo (axial) 4-vector current Ĵ
μ
ij := [Ψiγ̂γγγγγγγ

μΨj] satisfies the continuity equation

∂μ Ĵ
μ
ij = 0 precisely when mi = mj = 0. (7.64)

The continuity equations (7.63) and (7.64) guarantee that the “charges”

Qij :=
∫

d3�r J0
ij and Q̂ij :=

∫
d3�r Ĵ0

ij (7.65)

are conserved in all classical processes. For example, if we select i, j to count all quarks, then
let j = i and sum, ∑i Qii represents the quark number, and the expression (3 ∑i Qii) equals the
baryon number [☞ Section 2.4.2, especially p. 76]. Conversely to Noether’s theorem A.1 on p. 461,
each current density that satisfies the equation of continuity defines a symmetry, and the “charges”
Qij and Q̂ij are the formal generators of these corresponding symmetries. These are the classical
symmetries of the system.

However, quantum effects in principle need not preserve classical symmetries, which then
causes the appearance of quantum contributions that “spoil” the continuity equations

∂μ J
μ
ij = Aij and ∂μ Ĵ

μ
ij = Âij, (7.66)

where Aij and Âij are (quantum) anomalies of the current 4-vector densities J
μ
ij and Ĵ

μ
ij, respectively,

i.e., of the symmetries corresponding to these currents, whereby the anomalies Aij and Âij measure
the quantum breaking of these symmetries.

It is paramount to realize the general nature of this phenomenon! We distinguish the
following cases:

Approximate symmetries, as is the case with the “axial” currents (7.64), which are approximately
conserved only in the specific regime of energies, 3-momenta and precision where we may
neglect the differences between the masses of the particles amongst which the considered
approximate symmetries operate. Even classically, such a current satisfies the continuity
equation only approximately; its breaking produces a so-called pseudo-Goldstone mode, the
mass of which is of the order of the resolution of the assumed approximation.

Global symmetries, such as the baryon number, for which the formal charge (7.65) is given
by (3 ∑i Qii) and where the sum extends over all quark flavors. For that case, quantum
chromodynamics yields A ∝ ϑεμνρσ Tr[FμνFρσ], where ϑ is a free parameter for which
experiments indicate ϑ < 3×10−10, the tininess of which has no complete theoretical
explanation [☞ Section 6.3.1]☞ .

Gauge symmetries, for which the appearance of anomaly indicates an essential contradiction. That
is, models with anomalous gauge symmetry simply make no sense – unless they can be
extended so as to cancel all gauge anomalies.

The analysis of precisely this last type of anomaly (S. Adler, and independently J. S. Bell and
R. Jackiw) in 1969 pointed to the appearance of an anomalous quantum contribution in the con-
tinuity equation to the familiar electromagnetic current, owing to the coupling with the axial cur-
rent [425, 586]. All amplitude contributions for any concrete process that leads to the appearance
of an anomaly are products of a single, characteristic and incurably divergent type of integral and
an indicative numerical factor. The algebraic sum of these contributions, the amplitude is thus a
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product of this characteristic and divergent integral and the sum of these indicative numeric fac-
tors. Such a result makes sense only if the sum of the indicative numeric factors identically cancels,
as is the case, e.g., with the sum of electric charges within the family {u, d; νe, e−} of fermions10

∑
i

Qi = 3
[(

+ 2
3

)
+

(− 1
3

)]
+ (0) + (−1) = 0, (7.67)

where the explicit pre-factor “3” stems from summing over the three colors of the u- and d-quarks.
The identical cancellation of this sum – and the corresponding absence of the quantum anomaly
in electric charge conservation – has the following implications:

1. Every lepton pair {ν�, �−} requires a corresponding quark pair with (color-averaged) charges
+ 2

3 and − 1
3 .

2. Quarks with electric charges + 2
3 and − 1

3 must occur in triples. Alternatively, the integrally
charged quarks of the Han–Nambu model (5.212a) also occur in triples.

The latter of these two consequences confirms the necessity of the existence of quark colors.
However, more importantly, the first of these two consequences implies that the existence of

the muon necessarily predicts the existence not only of the s-quark (with − 1
3 charge) but also of

the c-quark (with + 2
3 charge). Since the neutrino has no electric charge, the unavoidable need

for a consistent and complete cancellation of the quantum anomaly of the electric current had by
1969 predicted the existence of the fourth quark. However, it was not clear at the time that this
conclusion was absolutely inevitable, and even the theoretical motivations for predicting the fourth
quark, such as the GIM mechanism, originally did not include the anomaly analysis.

Digression 7.2 The lesson from Pauli’s prediction of the neutrino [☞ Section 2.3.9] so as
to save the 4-momentum conservation law seems not to have been learned well enough.
Between 1969 and 1974, several separate theoretical considerations indicated that incon-
sistency and contradiction within the theoretical models of particle physics could only be
avoided by introducing a new particle, the c-quark. Nevertheless, few particle physicists
took these arguments seriously, since the discovery of the J/ψ particle, the lowest-energy
cc-bound state, came as a surprise to most.

It behooves us to finally learn that logical consistency and absence of self-
contradiction is a terrific tool of theoretical physics.

The benefit of hindsight today of course permits complete certainty in limiting to quark
models that include only complete quark–lepton fours (so-called “families”):[

u
d

]
,
[
νe
e−

]
︸ ︷︷ ︸;

[
c
s

]
,
[
νμ
μ−

]
︸ ︷︷ ︸;

[
t
b

]
,
[
ντ
τ−

]
︸ ︷︷ ︸

. (7.68)

Including the s-quark without the c-quark or the b-quark without the t-quark is simply inconsistent,
as it causes the quantum effects to ruin the U(1) symmetry of quantum electrodynamics and the
corresponding electric charge conservation – contradicting experiments, as well as contradicting
the gauge symmetry of electromagnetism and the corresponding interactions with gauge bosons.
10 The fundamental Standard Model fermions are typically divided into three copies of the first four: {u, d; νe, e−},

{c, s; νμ, μ−} and {t, b; ντ , τ−}. These copies are called – figuratively – either generations or families. Without any impli-
cation or judgement about the former of these – or indeed any filial/paternal, sororal or fraternal relations, I will herein
use the latter name.
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Example 7.1 The anomaly analysis from Section 7.2.3 may be applied to the pair of
Feynman diagrams where fL ∈ {uL, dL; νeL, e−L ; uL = uR, dL=dR; e+

L = e−R ; · · · }:

time

W 3

γ

γ

fL

time

W 3

γ

γ

fL (7.69)

the amplitudes of which contain terms proportional to the sum ∑ fL
Iw( fL)

(
Q( fL)

)2.
Summing over the fermions of only the first family [☞ Table 7.1 on p. 275, as well as
Refs. [425, 586, Chapter 19] for details],

∑
fL

Iw( fL)
(
Q( fL)

)2 = 3
[(

+ 1
2

)(
+ 2

3

)2 +
(− 1

2

)(− 1
3

)2
]

+
(
+ 1

2

)
(0)2 +

(− 1
2

)(−1
)2

= 3
[
+ 2

9 − 1
18

]
− 1

2 = 3
(
+ 3

18

)
− 1

2 = 0. (7.70)

The complete computation shows that the contributions of the Feynman diagrams (7.69)
in fact diverge. Thus, the contributions of the Feynman diagrams (7.69) to the amplitudes
that contain the W3 → 2γ factor are finite (and in fact vanish) if and only if the virtual
fermions forming the triangle loops include complete families {u, d; νe, e−}, {c, s; νμ, μ−},
etc. Without the cancellation (7.70), models that include these Feynman diagrams simply
make no sense. Notice that the same computation for the Han–Nambu model (5.212a)
of integrally charged quarks,

∑
fL

Iw( fL)
(
Q( fL)

)2

=
[(

+ 1
2

)(
(+1)2+(+1)2+(0)2) +

(− 1
2

)(
(−1)2+(0)2+(0)2)]

+
(
+ 1

2

)
(0)2 +

(− 1
2

)(−1
)2

=
[(

+ 1
2

)
2 +

(− 1
2

)
1
]

+
(− 1

2

)(−1
)2 =

[
+1 − 1

2

]− 1
2 = 0, (7.71)

implies that it too is free of this gauge anomaly.

Example 7.2 Akin to Example 7.1, we may analyze the pair of Feynman diagrams where
the unobserved fermion in the loop is again fL ∈ {uL, dL; νeL, e−L ; uR=uL, dL; e+

L ; . . .}:

time

B

γ

γ

fL

time

B

γ

γ

fL (7.72)

the amplitudes of which contain terms proportional to the sum ∑ fL
Yw( fL)

(
Q( fL)

)2.
Summing over the fermions of only the first family [☞ Table 7.1 on p. 275, as well as
Refs. [425, 586, Chapter 19] for details],



274 The Standard Model

∑
fL

Yw( fL)
(
Q( fL)

)2 = 3
[(

+ 1
3

)((
+ 2

3

)2 +
(− 1

3

)2
)]

+
(−1

)
(0)2 +

(−1
)(−1

)2

+ 3
[(− 4

3

)(− 2
3

)2 +
(
+ 2

3

)(
+ 1

3

)2
]
+

(
+2

)(
+1

)2 + (0)(0)2

= 3
(

1
3 · 4+1

9 − 4
3 · 4

9 + 2
3 · 1

9

)
− 1 + 2 = 5−16+2

9 + 1 = 0. (7.73)

As in the previous example, the complete computation shows that the contributions of
the Feynman diagrams (7.72) to the amplitude of the B → 2γ process in fact diverge.
Again, this result makes sense only if the virtual fermions depicted by the triangular loops
include complete families {u, d; νe, e−}, {c, s; νμ, μ−}, etc. Without a cancellation such as
in (7.73), models that include these Feynman diagrams simply make no sense. Notice
that the same computation for the Han–Nambu model (5.212a) of integrally charged
quarks,

∑
fL

Yw( fL)
(
Q( fL)

)2

=
[(

+ 1
3

)(
(+1)2+(+1)2+(0)2 + (−1)2+(0)2+(0)2)] + (+1)(0)2 + (−1)(−1)2

+
[(− 4

3

)(
(+1)2+(+1)2+(0)2) +

(
+ 2

3

)(
(−1)2+(0)2+(0)2)]

+ (+2)(+1)2 + (0)(0)2

=
[ 1

3 ·3 − 4
3 ·2 + 2

3 ·1
]− 1 + 2 = 3−8+2

3 + 1 = 0, (7.74)

implies that it is also free of this gauge anomaly.

Conclusion 7.6 Since the joint contributions of the Feynman diagram pairs (7.69) vanish,
as they also do for the diagram pair (7.72), the joint contributions then also vanish for the
linear combination Z0 = cos(θw)W3 − sin(θw)B.11 The same holds if in these diagrams
the W3- and B-particle, respectively (which are the normal modes in the SU(2)w × U(1)y
symmetric phase) are replaced with the Z0-particle, one of the two normal modes after the
SU(2)w × U(1)y → U(1)Q symmetry breaking.

In the general case, the anomaly of any symmetry must remain conserved through any
phase transition, and so also through the SU(2)w × U(1)y → U(1)Q electroweak symmetry
breaking. Anomalies of gauge symmetries of course must vanish (cancel), but the conser-
vation of anomalies of other (including approximate, and exact but global) symmetries is a
useful “sum rule” in the study of all phase transitions.

Further details on this technique, both conceptual and practical and technical, may be found in
standard field theory textbooks, and the interested Reader is directed to Refs. [12, 224, 75, 261,
425, 554, 555, 206, 484, 496, 589, 586, 590].

7.2.4 The weak (Weinberg) angle
Although both the W±- and Z0-particles are gauge bosons of weak interactions, their masses
are not equal [☞ Table C.2 on p. 526]. This is a consequence of the fact that the Z0-boson

11 The angle θw is usually called “weak” or the Weinberg angle (although it was Glashow who introduced it);
experimentally, θw ≈ 28.75◦.
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and the photon are linear combinations of the SU(2)w-partner of the W±-boson and the U(1)y-
gauge boson. This effect is well described in the Glashow–Weinberg–Salam model of electroweak
interactions.

The conclusions of Sections 7.2.1–7.2.3 indicate a finer structure among the particles in
Table 2.3 on p. 67, of which all matter consists. That is, weak interactions may be described by
a non-abelian (non-commutative) gauge model in which, owing to the relation (7.49), the left-
and the right-handed fermions are treated differently. Akin to the GNN formula (2.44b), the weak
isospin Iw and the weak hypercharge Yw are defined so as to satisfy the relation

Q = Iw + 1
2 Yw. (7.75)

Table 7.1 The weak isospin, the weak hypercharge and the electric charge of the elementary fermions
are related by equation (7.75). The values are, however, different for fermions of left-handed and
right-handed chirality.

Fermion family Charges
1 2 3 Q Iw Yw

Ψ− = γγγγ−Ψ︸ ︷︷ ︸
left-handed

⎧⎪⎨⎪⎩
[

u

d

]
L

[
c

s

]
L

[
t

b

]
L

+ 2
3

− 1
3

+ 1
2

− 1
2

+ 1
3

+ 1
3[ νe

e−

]
L

[
νμ

μ−

]
L

[ ντ
τ−

]
L

0

−1

+ 1
2

− 1
2

−1

−1

Ψ+ = γγγγ+Ψ︸ ︷︷ ︸
right-handed

⎧⎪⎪⎨⎪⎪⎩
uR cR tR + 2

3 0 + 4
3

dR sR bR − 1
3 0 − 2

3
e−R μ−R τ−R −1 0 −2

νeR νμR ντR 0 0 0

It must be emphasized that the weak isospin and the weak hypercharge are defined akin
to the previously defined and similarly named quantities, and so that they satisfy the familiar
formula (2.44b). However, Table 7.1 shows that these quantities coincide with the “old” val-
ues (2.44a) only for the left-handed eigenfunctions of chirality and not for the right-handed ones –
which have no weak isospin and so are invariant with respect to SU(2)w. In this way, the weak
isospin and SU(2)w play the role, respectively, of the charge and the symmetry for the gauge
model of weak interactions.

In the gauge SU(2)w × U(1)y model (Glashow, Weinberg and Salam) one introduces the
gauge bosons W±

μ and W3
μ for the SU(2)w factor, and Bμ for the U(1)y factor. The weak isospin

and the weak hypercharge [☞ Table 7.1] determine the interaction intensity between these gauge
bosons and the fermions {u, d; νe, e−; c, s; νμ, μ−; . . .}, so we know that the interaction terms in the
Lagrangian density are, in order:

LGWS ( gw
(
W+
μ Jμ+ + W−

μ Jμ− + W3
μ Jμ3

)
+ gyBμ Jμy , (7.76a)

Jμ+ :=
{
[uL γγγγ

μ dwL] + [cL γγγγ
μ swL] + [tL γγγγ

μ bwL]
}

, (7.76b)

Jμ− :=
{
[dwL γγγγ

μ uL] + [swL γγγγ
μ cL] + [bwL γγγγ

μ tL]
}

, (7.76c)

Jμ3 :=
{

1
2

(
[uL γγγγ

μ uL] + [cL γγγγ
μ cL] + [tL γγγγ

μ tL] + [νeL γγγγ
μ νeL] + [νμL γγγγ

μ νμL] + [ντL γγγγ
μ ντL]

)
− 1

2

(
[dL γγγγ

μ dL] + [sL γγγγ
μ sL] + [bL γγγγ

μ bL] + [e−L γγγγμ e−L ] + [μ−L γγγγμ μ−L ] + [τ−L γγγγμ τ−L ]
)}

, (7.76d)
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Jμy :=
{

1
6

(
[uL γγγγ

μ uL] + [cL γγγγ
μ cL] + [tL γγγγ

μ tL] + [dL γγγγ
μ dL] + [sL γγγγ

μ sL] + [bL γγγγ
μ bL]

)
− 1

2

(
[νeL γγγγ

μ νeL] + [νμL γγγγ
μ νμL] + [ντL γγγγ

μ ντL] + [e−L γγγγμ e−L ] + [μ−L γγγγμ μ−L ] + [τ−L γγγγμ τ−L ]
)

+ 2
3

(
[uR γγγγ

μ uR] + [cR γγγγ
μ cR] + [tR γγγγ

μ tR]
)
− 1

3

(
[dR γγγγ

μ dR] + [sR γγγγ
μ sR] + [bR γγγγ

μ bR]
)

−
(
[e−R γγγγμ e−R ] + [μ−R γγγγμ μ−R ] + [τ−R γγγγμ τ−R ]

)}
, (7.76e)

where dw, sw and bw are the quark states defined by the Cabibbo–Kobayashi–Maskawa (CKM)
mixing (2.53)–(2.55), the subscript “L” denotes the projection to the left-handed chirality, and
where the expression for Jμy includes the factor 1

2 from the formula Q = Iw + 1
2 Yw, modeled on the

original GNN formula (2.44b).
For the purposes of SU(2)w × U(1)y → U(1)Q symmetry breaking, Weinberg and Salam12

introduced a doublet of complex Higgs fields:

H =
[

H1

H2

]
, with

{
Iw(H1) = + 1

2 Yw(H1) = +1 Q(H1) = +1,

Iw(H2) = − 1
2 Yw(H2) = +1 Q(H2) = 0.

(7.77)

We thus identify H1 = H+, (H1)† = H−, H2 = H0 and (H2)† = H 0.
Besides, W±

μ , W3
μ and Bμ also interact with the complex Higgs field doublet, H,

L̃H =
∥∥(∂μ − igwWα

μ
1
2σσσσα − igyBμ 1

2 1)H
∥∥2
η
+ 1

2

( μc
h̄

)2(
H†H

)− 1
4λ

(
H†H

)2, (7.78)

where the index α is summed over the values 1, 2, 3, and where

σσσσ1 =
[

0 1
1 0

]
, σσσσ2 =

[
0 −i
i 0

]
, σσσσ3 = 1

2

[
1 0
0 −1

]
. (7.79)

With the sign of the quadratic term as in equation (7.78), the minimum of the potential lies in the
values of the field H that satisfy∣∣H1

∣∣2 +
∣∣H2

∣∣2 = H 2
1r + H 2

1i + H 2
2r + H 2

2i =
( μc
λh̄

)2 (7.80)

and which form a 3-sphere S3 ⊂ R4 ≈ C2. One such value is H =
( μc
λh̄

)[ 0
1

]
.

Digression 7.3 That is, with the standard choice of the Higgs field (7.77), 〈H1〉 =
〈H+〉 �= 0 would imply that the vacuum has the electric charge +1 and that the U(1)
gauge symmetry of the electromagnetic interaction is broken – which is not the case! Of

12 S. L. Glashow had already in 1958, in his PhD dissertation mentored by J. Schwinger, proposed an electro-weak unifica-
tion based only on the SU(2)w group, where the photon corresponds to the diagonal generator J 3, and the W±-bosons
correspond to the generators J± [☞ relations (A.38)]. The model was worked out in collaboration with H. Georgi and it
turned out that this cannot be made to agree with experiments [209]. It became clear in the early 1960s that the gauge
group SU(2)w × U(1)y is a better choice, so that the photon (7.85) would interact with fermions with an intensity equal
to the electric charge obtained from the GNN formula (7.75). The mass of the W±- and the Z0-bosons had, however, re-
mained a mystery: Simply added “by hand” (as Glashow advocated), the mass of the gauge bosons explicitly breaks the
gauge invariance but also the renormalizability (and then also the self-consistency) of the model. In 1967–8, Weinberg
and, independently, Salam showed that the Higgs mechanism may be applied and produces the desired mass. G. ’t Hooft
(1971), B. W. Lee and J. Zinn–Justin, and finally G. ’t Hooft and M. Veltman (1972) proved the renormalizability of
the Glashow–Weinberg–Salam model of electroweak interactions, and D. J. Gross and R. Jackiw, and then C. Bouchiat,
J. Iliopoulos and P. Meyer showed the same year (1972) that all anomalies cancel in this model [209, 552, 473].
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course, the choice 〈H1〉 �= 0 and 〈H2〉 = 0 would only imply that the remaining massless
field is not Aμ but Zμ amongst the linear combinations (7.85)–(7.86), and that the cor-
responding U(1) ⊂ SU(2)w × U(1)y remains the exact gauge symmetry. This group U(1)
and this field would then have to be identified, respectively, with the gauge symmetry of
electromagnetism and the photon.

After redefining the Higgs field,

H̃ := H − 〈H〉, 〈H〉 =
( μc
λh̄

)[ 0
1

]
, (7.81)

it follows that H̃1r, H̃1i, H̃2r, H̃2i, W1
μ, W2

μ, W3 and Bμ are not the normal modes – just as in the
Lagrangian density (7.36)–(7.39) – and one must again diagonalize the fields. The identification
of normal modes is fairly simple. From equation (7.78), we have[

(∂μ − igwWα
μ

1
2σσσσα − igyBμ 1

2 1)H
]†
ημν

[
(∂ν − igwWβ

ν
1
2σσσσβ − igyBν 1

2 1)H
]

= · · · + ( μc
λh̄

)2
[
(−igwWα

μ
1
2σσσσα − igyBμ 1

2 1)
[

0
1

]]†
ημν

[
(−igwWβ

ν
1
2σσσσβ − igyBν 1

2 1)
[

0
1

]]
+ · · ·

= · · · + 1
4

( μc
λh̄

)2(gwW3
μ − gyBμ)†ημν(gwW3

ν − gyBν) + · · · . (7.82)

Using the “weak angle”

θw = arccos
(

gw√
g 2

w +g 2
y

)
, so cos θw = gw√

g 2
w +g 2

y
and sin θw = gy√

g 2
w +g 2

y
, (7.83)

the expression (7.82) becomes

· · · + 1
2

( μc√
2λh̄

)2(g2
w+g2

y)
∥∥∥( cos(θw)W3

μ − sin(θw)Bμ
)∥∥∥2

η
+ · · · . (7.84)

The normal modes then are the linear combinations

Aμ := cos(θw)Bμ + sin(θw)W3
μ, with the mass = 0, (7.85)

Zμ := − sin(θw)Bμ + cos(θw)W3
μ, with the mass = μc√

2λh̄

√
g2

w + g2
y. (7.86)

The gauge boson represented by the 4-vector Aμ is identified as the photon, and the gauge boson
represented by the 4-vector Z0

μ acquired a mass and is identified with the massive Z0-particle.
Similarly,[

(∂μ − igwWα
μ

1
2σσσσα − igyBμ 1

2 1)H
]†
ημν

[
(∂ν − igwWβ

ν
1
2σσσσβ − igyBν 1

2 1)H
]

= · · · + ( μc
λh̄

)2
[
−igw(W1

μ
1
2σσσσ1+W2

μ
1
2σσσσ2)

[
0
1

]]†
ημν

[
−igw(W1

ν
1
2σσσσ1+W2

ν
1
2σσσσ2)

[
0
1

]]
+ · · ·

= · · · + 1
2 g2

w
( μc
λh̄

)2
[
(W+

μ σσσσ−+W−
μ σσσσ+)

[
0
1

]]†
ημν

[
(W+

ν σσσσ−+W−
ν σσσσ+)

[
0
1

]]
+ · · ·

= · · · + g2
w
( μc√

2λh̄

)2W+
μ η

μνW−
ν + · · · , (7.87)

where
W±
μ := 1√

2

(
W1
μ ± iW2

μ

)
and σσσσ+ =

[
0 1
0 0

]
, σσσσ− =

[
0 0
1 0

]
. (7.88)



278 The Standard Model

This shows that the mass of the W±-bosons equals gw
( μc√

2λh̄

)
, and using the definition (7.83) and

the results (7.84) and (7.87) we have

MW = cos(θw) MZ, (7.89a)

since
[

gw
( μc√

2λh̄

)]
= gw√

g2
w+g2

y

[√
g2

w+g2
y
( μc√

2λh̄

)]
. (7.89b)

Conclusion 7.7 Note that the gauge fields Bμ and W3
μ couple, respectively, to the corre-

sponding “charges” Yw and Iw, and that the gauge field Aμ – the photon – couples to the
electric charge Q. The linear relation (7.85) then corresponds to the “weak” version of the
GNN formula, Q = Iw + 1

2 Yw, which holds for the values of these charges as they are given
in Table 7.1 on p. 275.

The fermion currents that interact with the gauge fields W± remain the same as in (7.76b)–
(7.76c), and the Aμ and the Z0

μ fields respectively interact with the fermion currents:

Jμem :=
[

Jμ3 + Jμy
]

= [Jμem L + Jμem R

]
, (7.90)

JμZ := 1
cos(θw)

[
Jμ3 − sin2(θw)Jμem L

]
= 1

cos(θw)

[
cos2(θw)Jμ3 − sin2(θw)Jμy

]
, (7.91)

where

Jμem i := ∑
i=L,R

{
+ 2

3

(
[ui γγγγ

μ ui] + [ci γγγγ
μ ci] + [ti γγγγ

μ ti]
)
− 1

3

(
[di γγγγ

μ di] + [si γγγγ
μ si] + [bi γγγγ

μ bi]
)

−1
(
[e−i γγγγ

μ e−i ] + [μ−i γγγγ
μ μ−i ] + [τ−i γγγγμ τ−i ]

)}
. (7.92)

Digression 7.4 That is, we have that

gw W3
μ Jμ3 + gy Bμ Jμy = gw

[
sin(θw)Aμ + cos(θw)Zμ

]
Jμ3 + gy

[
cos(θw)Aμ − sin(θw)Zμ

]
Jμy

=
[

gw sin(θw) Jμ3 + gy cos(θw) Jμy
]

Aμ +
[

gw cos(θw) Jμ3 − gy sin(θw) Jμy
]

Zμ, (7.93a)

where, of course, we know that[
gw sin(θw) Jμ3 + gy cos(θw) Jμy

]
=

[
gw gy√
g2

w+g2
y

Jμ3 + gy gw√
g2

w+g2
y

Jμy
]

= ge Jμem. (7.93b)

This recovers the original GNN formula (2.30), i.e., (2.44b):

Jμem = Jμ3 + Jμy , (7.93c)

since the 1
2 factor in the GNN formula (2.30) is built into the definition of Jμy (7.76e).

Also,
gw gy√
g2

w+g2
y

(7.83)= gw sin(θw) (7.83)= gy cos(θw) (7.90)= ge. (7.93d)

In turn,

gw cos(θw) Jμ3 − gy sin(θw) Jμy = gz

[
cos2(θw) Jμ3 − sin2(θw) Jμem

]
(7.93e)

recovers equation (7.91), where

gz = gw/ cos(θw) =
√

g2
w+g2

y. (7.93f)

Note that gz = gw/ cos(θw) > gw sin(θw) = ge, and ge
gz

= 1
2 sin(2θw).
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Already from the expansions (7.76) and (7.90)–(7.91), we see that the complete Lagrangian
density contains very many terms. There exist several different “economical” ways of writing that
“pack” of the myriads of summands in different ways. For example, we may write

Jμem = ∑
n

{
2
3 [Unγγγγ

μUn] − 1
3 [Dnγγγγ

μDn] − [�nγγγγ
μ�n]

}
, n = 1, 2, 3, (7.94)

where U1 = u, U2 = c, U3 = t, D1 = d, D2 = s, D3 = b, �1 = e−, �2 = μ− and �3 = τ−, and
omitting the projections to left-handed chirality of a particle indicates the inclusion of both left-
and right-handed particles in the sum.

For concrete computations, it is however more convenient to simply list the amplitude
contributions of each possible vertex and line, as done in the next section.

7.2.5 Feynman’s rules for weak interactions
Interactions of the W±-bosons with elementary Standard Model fermions are simple as compared
to the interactions of the Z0-boson. It is important, however, to keep in mind that the dw-, sw-
and bw-quark states, which interact by weak interactions, are defined as the CKM combinations
(2.53)–(2.55):⎡⎣|dw〉

|sw〉
|bw〉

⎤⎦ :=

⎡⎣Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb

⎤⎦⎡⎣|d〉|s〉
|b〉

⎤⎦ , (7.95a)

=

⎡⎣ c12c13 s12c13 s13 e−iδ13

−s12c23 − c12s23s13 eiδ13 c12c23 − s12s23s13 eiδ13 s23c13
s12s23 − c12c23s13 eiδ13 −c12s23 − s12c23s13 eiδ13 c23c13

⎤⎦⎡⎣|d〉|s〉
|b〉

⎤⎦ , (7.95b)

where cij := cos(θij), sij := sin(θij), i, j = 1, 2, 3 = d, s, b,

and where |d〉, |s〉 and |b〉 are the eigenstates of the “free” Hamiltonian, i.e., the states with the
well-defined mass.13 This permits writing

(7.96)

and

(7.97)

which of course implies all processes that may be obtained from Dw n → W− + Un and �n →
W− + νn using the crossing symmetry and the principle of detailed balance [☞ Section 2.3.8].

13 These are the stationary states, well known to the Student who successfully covered quantum mechanics, the eigenstates
of the “free” Hamiltonian, i.e., the one where the mixing and interaction terms are omitted.
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That is, using the CKM definitions (7.95), the interactions with the W±-bosons do not mix the
CKM-redefined “families” of quarks.

Although Aμ is a linear combination of the W3
μ-field with the “V−A” type of interaction

with elementary Standard Model fermions and of the Bμ-field that interacts with the fermions of
both left- and right-handed chirality, the values of Iw and Yw in Table 7.1 on p. 275 ensure that
the resulting interaction with the Aμ-field is purely of the “V” type. That is, the Aμ-field interacts
equally with fermions of both left- and right-handed chirality, and of course, precisely as the photon
in electrodynamics [☞ Procedure 5.2 on p. 193].

The neutral Zμ-field is the complementary linear combination of the neutral W3
μ- and Bμ-

fields, and the interactions of this Zμ-field with the elementary Standard Model fermions are not
as simple as those of the Aμ-field. Following the textbook [243], we may write

Ψ cV cA

νn 1
2

1
2

�n − 1
2 +2 sin2(θw) − 1

2

Un 1
2− 4

3 sin2(θw) 1
2

Dn − 1
2 + 2

3 sin2(θw) − 1
2

(7.98)

As regards the internal lines that correspond to W±- and Z0-boson exchanges, analogously
to step 3 in the procedures 5.2 on p. 193, and 6.1 on p. 232, we assign

(7.99)

where M = MW or M = MZ, depending on whether the propagator corresponds to the W±- or
the Z0-boson exchange. When the exchange energies are sufficiently smaller than Mc2, we have

lim
(|q2|/M2

W c2)→0
− i(ημν − qμqν/M2c2)

q2 − M2c2 ≈ iημν
M2c2 , (7.100)

which is usually a good first approximation.
In addition to these definitions, the procedure for computing amplitudes of Feynman dia-

grams is identical to Procedures 5.2 for quantum electrodynamics on p. 193, and 6.1 for quantum
chromodynamics on p. 232.

Example 7.3 The elastic collision νμ + e− → νμ + e− may occur, to O(g 2
w ) order, only

mediated by a Z0-boson exchange:

νμ

νμ

Z 0

e−

e−

M =
g 2

z

8M2
Z c2

[
ν3γγγγ

μ(1−γ̂γγγ)ν1
][

e4γγγγ
μ(cV1−cAγ̂γγγ)e1

]
, (7.101)

where νi := Ψνμ(pi) and ei := Ψe−(pi). Computing as in the case (5.131)–(5.140) we
obtain
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〈|M|2〉 = 1
2

( gz

4MZ c

)4{
(cV+cA)2(p1·p2)(p3·p4) + (cV−cA)2(p1·p4)(p3·p2)

− m2
e c2(c 2

V −c 2
A )(p1·p3)

}
. (7.102)

In the CM-system and neglecting the electron mass, me → 0, we obtain the simpler
relation

〈|M|2〉 = 1
2

( gz E
MZ c2

)4{
(cV+cA)2 + (cV−cA)2 cos4( 1

2θ)
}

, (7.103)

where E is the energy of the electron (as well as the neutrino) in the CM-system, and θ
is the electron deflection angle. Then

dσ
dΩ

= 2
( h̄ c
π

)2( gz

4MZ c2

)4
E2

{
(cV+cA)2 + (cV−cA)2 cos4( 1

2θ)
}

, (7.104)

σ =
2

3π
(h̄ c)2

( gz

2MZ c2

)4
E2 (c 2

V +c2
A + cV cA)

=
2
π

(h̄ c)2
( gz

2MZ c2

)4
E2

(
1
4 − sin2(θw) + 4

3 sin4(θw)
)

. (7.105)

Comparing with the similar process νμ + e− → νe + μ− that involves the exchange of a
W-boson:

νμ

νe

W +

e−

μ −

σ =
1

8π

[(
gw MW c2

)2
h̄ cE

]2[
1 −

(mμc2

2E

)2
]2

(7.106)

and at energies E 
 mμc2, we have (using θw = 28.75◦, from the ratio of the measured
masses MW/MZ)

σ(νμ + e− → νμ + e−)
σ(νμ + e− → νe + μ−)

≈ 1
4 − sin2(θw) + 4

3 sin4(θw) = 0.0900. (7.107)

This agrees with the experimental value 0.11 ± 10% fairly well.

7.2.6 Exercises for Section 7.2

✎ 7.2.1 Following Example 7.1, show that the sum of all amplitudes for both diagrams of the
type (7.69) but with two (three) W3-particle and one (no) photon also vanishes.

✎ 7.2.2 For the potential process γ → 2γ described by an appropriate algebraic sum of dia-
grams of the type (7.69) but with a photon in place of W3, show that the symmetrization
of the outgoing photons (as bosons) guarantees that the sum of the contributions of these
Feynman diagrams vanishes.
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✎ 7.2.3 Following Example 7.2, show that the sum of all amplitudes for both diagrams of the
type (7.72) but with n B-particles and (3−n) photons also vanishes, for every n = 0, 1, 2, 3.

✎ 7.2.4 Complete the computation in Example 7.3.

7.3 The Standard Model
The elaborate structure called the Standard Model of elementary particle physics has the following
components:

1. the elementary spin- 1
2 fermions in Table 7.1 on p. 275, and the data (2.44);

2. electromagnetic interactions with the U(1)Q gauge symmetry [☞ Section 5.3];
3. chromodynamic interactions with the SU(3)c gauge symmetry [☞ Section 6.1];
4. the asymmetric treatment of particles with left- and right-handed chirality [☞ discussion

around the expressions (5.57)–(5.62), then Sections 7.2.1 and 7.2.4];
5. the GIM mechanism, anomaly cancellation and generalization of the GIM mechanism with

the Cabibbo–Kobayashi–Maskawa quark mixing [☞ Section 7.2.2];
6. the SU(2)w × U(1)y gauge symmetry of the electroweak interactions, in the symmetric phase;
7. the spontaneous SU(2)w × U(1)y → U(1)Q gauge symmetry breaking of electroweak

interactions in the Higgs phase [☞ Sections 7.1 and 7.2.4];
8. the very intricate and detailed structure of fermion masses [☞ Tables 4.1 on p. 152, and C.2

on p. 526].

This structure is presented in an extremely short and ultra-compact way in Table 2.3 on p. 67.
However, the incremental development of the material presented in sections from Chapter 2 up to
now clearly indicates that this short compactness is merely a convenient business-card to an oth-
erwise technically very demanding and intricate Standard Model. This demanding nature should
not be surprising, since this model successfully describes practically all known phenomena not
only at the fundamental level of quarks and leptons, but also at the level of hadronic bound
states [☞ Section 2.4.1 and Conclusion 2.4 on p. 71].

Undoubtedly, the most complex parts of the Standard Model pertain to the aspects of weak
interactions, which are roughly presented in the foregoing part of this chapter. It remains to discuss
(1) the general mechanism in the Standard Model by which fermions in Table 7.1 on p. 275 acquire
a mass, and (2) neutrino mixing.

7.3.1 Fermion masses
The argument at the very beginning of Chapter 7 shows that the gauge bosons are massless by
construction – except, as we have seen here, those corresponding to symmetries spontaneously
broken via the Higgs mechanism [☞ Section 7.1.3]. The mass of these gauge bosons stems from
the interaction with the Higgs field [☞ expressions (7.84) and (7.87)] and owing to the shift
H → H̃ + 〈H〉, which is dictated by the fact that the “flipped” sign of the quadratic term in the
Lagrangian density (7.78) puts the minimum of the potential energy at one of the points with
H†H =

( μc
λh̄

)2
> 0, so that the vacuum expectation value of the two-component Higgs field is not

zero, 〈H〉 �= 0.
Similarly, one expects that the fermion masses also stem from the Higgs field shift H →

H̃ + 〈H〉. The expression (7.47) shows that a typical term in the Lagrangian density that provides
the fermion fields with a mass must be of the form (with the customary notation Ψ+ = ΨL and
Ψ− = ΨR)

ΨL H ΨR and ΨR H ΨL. (7.108)
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Such terms are possible precisely because H is an SU(2)w-doublet, just as are the wave-functions
for all fermions of left-handed chirality, whereas all right-handed fermions are invariant under
SU(2)w transformations. Therefore, terms such as14

he e−R H†[ νe
e−

]
L
+ h.c. = he e−R [H∗

1 H∗
2 ] [ νe

e−
]

L
+ h.c. = he e−R

(
H∗

1 νeL + H∗
2 e−L

)
+ h.c.

= &e
(
he〈H2〉∗

) (
e−R e−L + e−L e−R

)
+ · · · (7.109)

are SU(2)w × U(1)y-invariant and produce the electron mass, me = &e
(
he〈H2〉

)
/c2. Similarly, for

d-quarks one has

hd dR H†[ u
d
]

L
+ h.c. = hd dR

[H∗
1 H∗

2 ] [ u
d
]

L
+ h.c. = hd dR

(
H∗

1 uL + H∗
2 dL

)
+ h.c.

= &e
(
hd〈H2〉∗

) (
dR dL + dL dR

)
+ · · · , (7.110)

which are also SU(2)w × U(1)y-invariant and produce md = &e
(
hd〈H2〉

)
/c2, the d-quark mass.

For u-quarks, an additional definition [☞ discussion of the relation (A.49)] is needed:

C : H =
[

H1
H2

]
�−→ Hc := −εεεε H∗ =

[
0 −1
1 0

][
H∗

1
H∗

2

]
=

[ −H∗
2

H∗
1

]
, (7.111)

which transforms, under SU(2)w, the same as H. We can therefore add to the Lagrangian density
also the terms

−hu uR (Hc)†[ u
d
]

L
+ h.c. = −hu uR

[−H2 H1]
[ u

d
]

L
+ h.c. = −hu uR

(− H2uL + H1dL

)
+ h.c.

= &e
(
hu〈H2〉

) (
uR uL + uL uR

)
+ · · · , (7.112)

which are also SU(2)w × U(1)y-invariant and produce mu = &e
(
hu〈H2〉

)
/c2, the u-quark mass.

The structure of the Standard Model neither requires nor prohibits adding the neutrino of
right-handed chirality, which is noted in Table 7.1 on p. 275: νiR (with i = e, μ, τ) are included in
the table but are separated from the other fermions. If one includes these right-handed neutrinos,
one can include in the Lagrange density also the terms

−hν νeR (Hc)†[ νe
e−

]
L
+ h.c. = −hν νeR

[−H2 H1]
[ νe

e−
]

L
+ = −hν νeR

(− H2νeL + H1e−L
)
+ h.c.

= &e
(
hν〈H2〉

) (
νeR νeL + νeL νeR

)
+ · · · , (7.113)

which are also SU(2)w × U(1)y-invariant and produce mν = h̄ &e
(
hν〈H2〉

)
/c, the neutrino mass.

The quantities defined by the relations (7.109), (7.110), (7.112) and (7.113) are the so-
called Dirac masses, since the variation of the Lagrangian density by fermion fields produces the
Dirac equation (5.34), with the indicated masses. In addition, terms that were omitted in the
expressions (7.109), (7.110), (7.112) and (7.113) are of the general form

hi &e
(

H2
) (

ΨiR ΨiL + ΨiL ΨiR

)
, (7.114)

which define interactions of the Higgs particle, &e(H2), with the Standard Model fermions. The
remaining components of the complex Higgs doublet, H1 = H+, H∗

1 = H− and #m(H2) have be-
come the longitudinal components of the W±- and the Z0-bosons; see Section 7.1.3, Conclusion 7.5
on p. 265, and equation (7.49).

The so-obtained fermion masses (7.109), (7.110), (7.112) and (7.113) as well as the masses
of the Z0- and the W±-bosons (7.82)–(7.87) are all proportional to the mass &e

(〈H2〉
)
/c2. The

14 The abbreviation “+h.c.” is standard for adding the Hermitian conjugate terms.
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Yukawa parameters he, hd, hu, hν (and similarly for the remaining two families) are, however, com-
pletely arbitrary parameters of the Standard Model and, besides in the fermion masses, appear
only in the terms of the type (7.114) that describe the Yukawa interactions of the fermions with
the Higgs particle. This then links the intensity of this interaction with the fermion masses. Of
course, until the details of the interactions of the Higgs particle with the Standard Model fermions
are measured sufficiently precisely, the choice of the parameters he, hd, hu, hν, etc., is determined
only in terms of the measured fermion masses – except for the neutrinos; see the next section.

Since the Standard Model fermion masses [☞ Tables 4.1 on p. 152, and C.2 on p. 526] dif-
fer significantly from the masses of the W±- and the Z0-bosons, it follows that the parameters
he, hd, hu, hν, etc., are quite far from numbers of order 1, and the structure represented by this
list of parameters ought to be explained somehow. However, that is a task beyond the Standard
Model☞ .

Digression 7.5 Let us mention a non-standard version of the Standard Model [169],
where one introduces a Higgs field that is SU(2)w × U(1)y-invariant, but has Yukawa
interactions (Ψ H̃ Ψ) with the Standard Model fermions. Shifting H̃ → H̃′ + 〈H̃〉, the
fermions acquire a mass just as by the previously described standard method (7.114).
As SU(2)w × U(1)y gauge bosons do not interact directly with this Higgs boson, their
masses stem from perturbative corrections of the type

→ (7.115)

where the shaded oval in the right-hand diagram represents the resulting effective (in-
direct) interaction between SU(2)w × U(1)y gauge bosons and the Higgs field H̃ that
sinks into the vacuum, i.e., 〈H̃〉 �= 0; compare with the illustration (7.43). Effectively, the
so-obtained mass for the gauge bosons produces a model that differs from the Stan-
dard Model results only at energies significantly larger than mW , mZ ∼ 100 GeV/c2.
Since these masses are radiatively induced, the mass of the Higgs particle itself is ex-
pected to be larger than 100 GeV/c2 – in agreement with the recent LHC results at
CERN [25, 109, 293]. Only detailed measurements of the interactions of the Higgs par-
ticle with the other Standard Model particles can distinguish this possibility from the
original version, or other generalizations and extensions☞ .

7.3.2 Neutrino mixing
It was noted in the early 1990s that amongst the neutrinos that arrive at the Earth’s surface there
are fewer muon neutrinos, νμ, than expected. That is, neutrinos are produced in the atmosphere
mainly through the decay of pions and muons:

π+ → μ+ + νμ, → (e+ + νe + νμ) + νμ, (7.116)

π− → μ− + νμ, → (e− + νe + νμ) + νμ. (7.117)

Evidently, one expects about twice as many muon (anti)neutrinos than electron (anti)neutrinos to
reach the Earth’s surface. However, experimental results of the KamiokaNDE installation showed
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that the atmospheric muon-to-electron (anti)neutrino number ratio depends on the direction of
their arrival: Among the (anti)neutrinos arriving at the Earth’s surface well-nigh vertically, the ratio
was really close to 2:1. However, amongst the neutrinos arriving at a large angle from the vertical,
this ratio is closer to 1:1. This indicates that the muon (anti)neutrinos somehow vanish whilst
passing through the atmosphere, much faster than the electron (anti)neutrinos, and certainly much
faster than would be expected from the known fact that the effective cross-section of the interaction
between neutrinos and other matter is extremely small. These experimental results were later
confirmed in the Super-KamiokaNDE installation.

In turn, the mechanisms that produce the enormous energy of a star such as our Sun had
been subject to research from the beginning of the nineteenth century, when Lord Rayleigh showed
that – with the then generally accepted assumption that the Sun’s energy stems from gravitational
contraction – the Sun could not be as old as the geological finds (of Earth) indicate and as needed
for the process of evolution. However, Becquerel discovered radioactivity in 1896, and by about
1920 the atomic weights were measured sufficiently precisely to make it possible for Arthur Ed-
dington to notice that four hydrogen atoms are a little heavier than the helium atom. According to
Einstein’s relation E0 = mc2, the difference (4mH−mHe) indicates that fusing four hydrogen atoms
into an atom of helium should release energy.

In the early 1930s Chadwick discovered the neutron, Pauli postulated the existence of the
neutrino and Fermi described the basic process of weak nuclear interaction, n0 → p+ + e− + νe.
This opened the possibility for a realistic description of the nuclear processes that produce most of
the radiation energy of the Sun. By 1938, Hans Bethe had worked out the details of the so-called
carbon cycle, where the process of fusion is catalyzed by carbon, nitrogen and oxygen, and which
is the dominant process in very large stars. In the Sun, which is a relatively smaller and lighter star,
the basic mechanism is the so-called pp-process:

1. p+ + p+ → d+ + e+ + νe, (continuous spectrum) (7.118a)

p+ + p+ + e− → d+ + νe, (discrete spectrum) (7.118b)

2. d+ + p+ → 3He++ + γ, (7.118c)

3. 3He++ + p+ → α++ + e+ + νe, (continuous spectrum) (7.118d)
3He++ + 3He++ → α++ + p+ + p+, (7.118e)

3He++ + α++ → 7Be4+ + γ, (7.118f)

4. 7Be4+ + e− → 7Li3+ + νe, (discrete spectrum) (7.118g)
7Li3+ + p+ → α++ + α++, (7.118h)
7Be4+ + p+ → 8B5+ + γ, (7.118i)

8B5+ → (8Be4+)∗ + e+ + νe, (continuous spectrum) (7.118j)
8B5+ + e− → (8Be4+)∗ + νe, (discrete spectrum) (7.118k)

(8Be4+)∗ → α++ + α++. (7.118l)

The processes (7.118a), (7.118d) and (7.118j) produce neutrinos with a continuous distribution
of energies, while the neutrinos produced in the processes (7.118b), (7.118g) and (7.118k) have
a fixed energy [☞ Section 3.2: when a collision or a decay produces only two particles, their
energies are completely determined]. Most of the neutrinos are created in the process (7.118a)
as the concentration of input “ingredients” (protons) is much larger than the concentration of
input “ingredients” in the other processes. However, the energy of the so-produced neutrinos is no
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larger than about 400 keV, which makes their detection harder. In turn, neutrinos produced in the
processes (7.118d) and (7.118j) have energies reaching over 1 MeV, where the detectors are far
more sensitive.

John Bahcall’s additional and detailed computations of the resulting distribution and total
neutrino flux were finally verified in 1968 [355, 369]: Ray Davis’s group monitored a giant tank
(4,850 feet underground, in the Homestake gold mine in South Dakota) containing a dry-cleaning
fluid with a large content of chlorine, seeking the results of the reaction

νe + n0 → p+ + e−, by way of νe + 37Cl → 37Ar + e−. (7.119)

The detection of argon-37 indicated that only about one-third of electron neutrinos that the Sun
emits actually arrive at the surface of the Earth. This discrepancy in the number of solar electron
neutrinos was dubbed the “neutrino problem.”

A little earlier, in 1967, Bruno Pontecorvo proposed (following up on a decade-earlier pro-
posal) a simple solution of the neutrino problem, by postulating that the electron neutrinos
produced in the Sun at least partially transform during their flight to the Earth into another type
(muon and tau) of neutrinos or even antineutrinos. As the Davis experiment could detect only
electron neutrinos, the transformed neutrinos would show up as “missed.” This mechanism is, in
general, called “neutrino oscillation,” as it is based on an essentially simple quantum-mechanical
effect.

To wit, with two eigenstates of the Hamiltonian

H|1〉 = E1|1〉 and H|2〉 = E2|2〉, (7.120)

the evolution of a linear combination of these two stationary states is described as

|“1+2”; t〉 = C1e−iE1t/h̄ |1〉 + C2e−iE2t/h̄ |2〉, (7.121)

where the constants C1, C2 are determined from the initial condition. The probability that this
linear combination is after the amount of time t in the state cos(α)|1〉 + sin(α)|2〉 equals

Pα :=
∣∣∣[ cos(α)〈1| + sin(α)〈2|]|“1+2”; t〉

∣∣∣2
= |C1|2 cos2(α) + |C2|2 sin2(α) + sin(2α)&e

[
C1C∗

2 e−i(E1−E2)t/h̄]. (7.122)

If the system was originally in the “opposite” linear combination, cos(α)|2〉 − sin(α)|1〉 so C1 =
− sin(α) and C2 = cos(α), we have that

P|α+ π
2 〉→|α〉 = sin2(2α) sin2( 1

2ω12t), ω12 := E1−E2
h̄ . (7.123)

Therefore, the system oscillates:(|α+π
2 〉 = − sin(α)|1〉 + cos(α)|2〉) ←→ (|α〉 = cos(α)|1〉 + sin(α)|2〉) (7.124)

under the conditions that

1. the two stationary states are not degenerate: E1 �= E2, so that ω12 �= 0, and
2. the system is initially in a nontrivial (α �= 0) linear combination of the two stationary states.

It is evident that the conceptually same phenomenon occurs in a system with three non-degenerate
stationary states, but the oscillations are more complicated.
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For relativistic particles, we have that (using that �p1 = �p2 = �p )

E1−E2 =
√
|�p|2c2 + m 2

1 c4 −
√
|�p|2c2 + m 2

2 c4 ≈ |�p|c
[ 1

2
(m 2

1 − m 2
2 )c2

|�p|2 + · · ·
]

≈ (m 2
1 − m 2

2 )c3

2|�p| + · · · ≈ (m 2
1 − m 2

2 )c4

2E
, (7.125)

where E is the average value of energies E1 and E2.
Just as |d〉, |s〉 and |b〉 – eigenstates of the free, kinetic Hamiltonian and thus characterized by

their well-defined masses – are not the eigenstates of weak interactions, suppose that the electron-,
muon- and tau-neutrinos (identified as the eigenstates of weak interactions) are not the eigenstates
of the free Hamiltonian, |νi〉. Then,

|νe〉 = − sin(θν)|ν1〉 + cos(θν)|ν2〉, |νμ〉 = cos(θν)|ν1〉 + sin(θν)|ν2〉, (7.126)

neglecting the third family. From this,

Pνe→νμ ≈ sin2(2θν)sin2
(

(m 2
1 −m 2

2 )c4

4Eh̄
t
)

= sin2(2θν)sin2
(

(m 2
1 −m 2

2 )c3

4Eh̄
z
)

, (7.127)

where z = ct is approximately equal to the distance that neutrinos traverse (the masses m1, m2
are very small, so the neutrinos propagate with speeds that are close to c). This shows that after a
traversed distance of

(2n+1) z∗, where z∗ =
2πEh̄

(m 2
1 − m 2

2 )c3
, n = 0, 1, 2, . . . (7.128)

all electron neutrinos have converted into muon neutrinos, and at distances 2n z∗ all electron
neutrinos have turned back into their initial state. In other words, 2z∗ is the wavelength of the
simple oscillation between two types of neutrinos.

Of course, there do exist three types of neutrinos, and the oscillations are more compli-
cated. Besides, traversing matter additionally changes the parameters of neutrino mixing. This
was first described by Lincoln Wolfenstein, Stanislav Mikheyev and Alexei Smirnov, and this addi-
tional effect is named after then, the MSW effect. In 2001, the first results were published from
Super-KamiokaNDE, which uses water in the detector, and which can detect all three types of
neutrinos, albeit with different levels of efficiency. Independently, in the same year, the first results
were published also from SNO (Sudbury Neutrino Observatory), which uses heavy water in the de-
tector. Because of the presence of the neutron in the deuterium nuclei, SNO detects two additional
processes with neutrinos that are not detected in Super-KamiokaNDE.

By April 2002, the combination of these experimental results unambiguously showed that the
neutrino oscillations exist and solved the so-called “neutrino problem,” showing clearly that the
neutrino stationary states, ν1, ν2, ν3 have nonzero and different masses, and that the weak inter-
action eigenstates, the particles νe, νμ, ντ, are linear combinations of the stationary states ν1, ν2, ν3.
Experiments also give the difference of the squares of masses:

�12(m2
ν) ≈ 8×10−5 (eV/c2)2, �23(m2

ν) ≈ 3×10−3 (eV/c2)2, (7.129)

but cannot show if the pattern of masses is two similar masses significantly smaller than the third
one, or two similar masses significantly larger than the third one [☞ book [369], and [370] for a
more recent and thorough review].

Finally, Section 2.3.10 discussed the research of R. Davis and D. S. Harmer, who concluded
that νe and νe are distinct elementary particles. However, a detailed analysis of the non-occurring
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process (2.24), i.e., νe + n0 �→ p+ + e−, shows that it may well be possible for νe and νe to be the
same particle – that the neutrino is its own antiparticle – but that this process (2.24) is forbidden
by helicity/chirality: whereas νe + n0 → p+ + e− could happen with a left-handed neutrino, the
absence of a left-handed antineutrino would then prevent the process (2.24).

A more direct consequence of the logically possibility that νe = νe would be the neutrino-less
double β-decay:

2d → 2u + 2e− + (2νe → νe + νe → 0) → 2u + 2e−, (7.130)

which has never been observed☞ . Nevertheless, the logical possibility that νe = νe still attracts
considerable interest as it is necessary for the so-called see-saw mechanism. This mechanism uses
the fact that the (left-handed) neutrinos are the Iw = + 1

2 components of the lepton doublets that
interact by means of weak interactions, and so also with the doublets of Higgs fields. In turn, one
may always add to the Standard Model the right-handed neutrino, which has no weak charge
(isospin):

Iw(νe L) = + 1
2 , Iw(H2) = − 1

2 , Iw(νe R) = 0. (7.131)

The Standard Model Lagrangian density may then contain the terms15

mν

(
νe R νe L + νe L νe R

)
+ 1

2 Mν νe R ν
c
e R, (7.132a)

where m is the mass that stems from the (so-called Yukawa) interaction term (7.113), where
H2 → H̃2 + 〈H2〉 produces mν = hν〈H2〉. In the basis (νe L, νe R), the Lagrangian terms (7.132a)
produce the mass matrix[

0 mν

mν Mν

]
diag.�−→ m± =

1
2

∣∣∣∣Mν ±
√

4m2
ν + M2

ν

∣∣∣∣ ≈ {
Mν,

m2
ν/Mν.

(7.132b)

One expects that mν ∼ 102 GeV/c2, while experiments indicate that the neutrino masses are
mν,exp < 2 eV [293]. Therefore, Mν ∼ (m 2

ν /m±) � 1013 GeV/c2.
A mass parameter such as Mν � 1013 GeV/c2 must stem from effects that are beyond the

Glashow–Weinberg–Salam theory of the electroweak interactions,16 and also beyond the Standard
Model, but are probably related to the so-called Grand Unification or some other phenomena
expected to occur at such high characteristic energies.

It is worth mentioning that in 1962 Ziro Maki, Masami Nakagawa and Shoichi Sakata pro-
posed a general neutrino mixing, akin to the CKM mixing of the “lower” quarks and extending
a similar proposal by Bruno Pontecorvo [353]. The analogous general neutrino mixing matrix is
thus called the PMNS-matrix [369, 370].

7.3.3 The Standard Model, summarized
We are finally ready to summarize the Lagrangian density for the Standard Model, using the list
on p. 282:
15 For any fermion, ΨΨc has twice every charge of Ψ, i.e., Ψc, a Majorana mass term M ΨΨc requires a mass parameter

M that has twice every charge of Ψ. All gauge symmetries corresponding to these charges must therefore be broken;
either explicitly by introducing such a term by hand, or spontaneously if the mass parameter is the vacuum expectation
of a scalar field. The Majorana mass term 1

2 Mν νe R ν
c
e R is possible exclusively because all the charges of a right-handed

neutrino vanish, so that νc
e R := C(νe R) transforms identically to νe L with respect to all unbroken Standard Model

symmetries.
16 Since the mass scale of the GWS-model is of the order of magnitude of W±- and Z0-bosons, ∼ 102 GeV/c2, a mass

parameter of the order of magnitude ∼ 1013 GeV/c2 would require a numerical coefficient of the order ∼ 1011, the kind
of which never occurs in typical computations. That is, although the Standard Model contains dimensionless coefficients
such as he, hd, hu, hν in the expressions (7.109), (7.110), (7.112) and (7.113), all these dimensionless coefficients are
smaller than 1 and there is no systematic computation where a combination of them would emerge to be of the order
∼ 1011. This situation here is very similar to the discussion of the hydrogen atom in Sections 1.2.5 and 4.1, where
negative powers of the fine structure constant (and so also of dimensionless coefficients larger than 1) do not occur.
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LSM = LF + LG + LH + LY + LMν , (7.133a)

LF = ih̄ c ∑
n

[
ΨnL /DΨnL + ΨnR /DΨnR

]
, (7.133b)

Dμ := ∂μ + igc
h̄ c Ga

μQc a + igw
h̄ c Wα

μV†
wIw αVw + igy

h̄ c BμYw, (7.133c)

LG = − 1
4

8

∑
a=1

Ga
μνGa μν − 1

4

3

∑
a=1

Wa
μνW

a μν − 1
4 BμνBμν, (7.133d)

LH =
∥∥[∂μ − igw

h̄ c Wa
μσa − igy

h̄ c 1]H
∥∥2
η
− κ

2

( μc
h̄

)2(
H†H

)− 1
4λ

(
H†H

)2, (7.133e)

LY = ∑
n

(
hnΨnR(H†ΨnL) + h∗n(ΨnLH)ΨnR

)
, (7.133f)

LMν = 1
2 Mνc2 νe R ν

c
e R. (7.133g)

Here, the summands in the Lagrangian density (7.133d) were written akin to (5.118) and (6.23),
but the gauge field tensors were denoted

Ga
μν = ∂μGa

ν − ∂νGa
μ − gc

h̄ c f a
bcGb

μGc
ν, a, b, c = 1, 2, . . . , 8, (7.134)

for the SU(3)c gluon field,

Wα
μν = ∂μWα

ν − ∂νWα
μ − gw

h̄c ε
α
βγWβ

μWγ
ν , W± = W1 ± iW2, α, β,γ = 1, 2, 3, (7.135)

for the SU(2)w gauge field, and

Bμν = ∂μBν − ∂νBμ, (7.136)

for the U(1)y gauge field. As customary, convention-dependent coefficients such as 4πε0 for elec-
tromagnetism have been absorbed in the definition of the gauge field tensors and are not explicitly
shown. In the expressions (7.133b), the derivative Dμ (7.133c) is covariant with respect to the
complete SU(3)c × SU(2)w × U(1)y Standard Model gauge group action:

1. The operator Qa is the ath generator of the chromodynamics SU(3)c gauge symmetry (6.6d),
which annihilates SU(3)c-invariant fields and wave-functions.

2. The operator Iw α is the αth (isospin) generator of the weak SU(2)w gauge symmetry. The
fermions in Table 7.1 on p. 275 are the eigenstates of the generator Iw 3, with the eigenvalues
Iw; the operators Iw± raise and lower the values of Iw by 1 [☞ relations (A.38) for the general
SU(2) algebra].

3. The operator Yw produces the weak hypercharge of the field or wave-function on which it
acts.

The Vw matrix encodes the CKM mixing of the lower, d-, s- and b-quarks [☞ relations (2.53)]
and leaves the other fermions unchanged. The sum in the expression (7.133b) contains all the
elementary fermions from Table 7.1 on p. 275.

As in Section 7.1.3, the parameter κ in the expression (7.133e) separates the symmetric
(κ = +1) and the “non-symmetric” (κ = −1) phases. For κ = +1, 〈H〉 = 0 and the
SU(3)c × SU(2)w × U(1)y gauge symmetry is unbroken; for κ = −1, 〈H〉 �= 0 and the gauge
symmetry is broken to SU(3)c × U(1)Q, the normal modes of the gauge 4-vector potentials
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are (7.85)–(7.86) and the W±- and Z0-bosons acquired a mass [☞ expressions (7.84) and (7.87)].
In the non-symmetric phase, the linear combination of gauge bosons (7.85) is identified with the
photon. On one hand, this linear combination remains massless; on the other, this linear combi-
nation interacts with the Standard Model elementary fermions proportionally to the ge-multiple of
the combination of charges Q = Iw + 1

2 Yw, which is by construction equal to the electric charge.
Similarly, in the symmetric phase (κ = +1), the terms (7.133f) describe only the interaction

between elementary fermions and the Higgs doublet of scalar fields. In the non-symmetric phase,
owing to the shift H → H̃ + 〈H〉 where 〈H〉 �= 0, the terms (7.133f) also provide the Standard
Model elementary fermions with mass. Finally, the last term (7.133g) is needed for the “see-saw
mechanism” [☞ Section 7.3.2]. This models the left-handed neutrino masses – many orders of
magnitude below other Standard Model elementary fermion masses – by means of new physics
expected at energies that are many orders of magnitude above the Standard Model masses; for
example, the masses of the right-handed neutrinos, which thereby remain not observable directly
for now.

As has been widely reported, the search for the Higgs particle has been on for the past decade
or so, with most of the meticulous analyses centering on the LEP (Large Electron–Positron collider)
and more recently the LHC (Large Hadron Collider) experiments at CERN. These culminated re-
cently with the “5-σ ” (99.999,9%) confirmation by the ATLAS and CMS collaborations from the
LHC at CERN of a new, ≈ 125.9 GeV/c2 particle [293], consistent with the Standard Model Higgs
particle [25, 109]. However, it is important to realize that the Higgs particle is hard to iden-
tify unambiguously in experiments, since its mass, decay modes and their branching ratios all
strongly depend on the details of the Standard Model – and its variations. The data compiled
from the pertinent experiments are found to be compatible with the Standard Model as described
above, but do not exclude several generalizations. For a review of recent experimental results, in-
cluding also supersymmetric variants of the Standard Model and models wherein the Higgs field
is a composite bound state, see Refs. [25, 109], the references therein, and in particular also
Refs. [160, 493, 494, 475]☞ .

7.3.4 Exercises for Section 7.3

✎ 7.3.1 For the expressions (7.109), (7.110), (7.112) and (7.113) to be Lagrangian density
terms, compute the physical unit-dimensions of the Yukawa coupling coefficients hU, hD, hν
and h� in the MxLyTz format.

✎ 7.3.2 Confirm the result (7.122) by explicit computation, using equation (7.121).

✎ 7.3.3 Confirm the result (7.125) by explicit computation.

✎ 7.3.4 Confirm the result (7.132b) by explicit diagonalization.

✎ 7.3.5 Compute the simplified neutrino oscillation wavelength 2z∗ (7.128), using one and
then the other value in equations (7.129).

✎ 7.3.6 Compute the order of magnitude of Mν so that equation (7.132b) would produce
m− ∼ 1 eV/c2.
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8
Unification: the fabric of
understanding Nature
Just as done several times in the previous chapters, we reconsider the historical development
of the key aspects of modern physics, using the benefit of hindsight to perceive the character
of this development. Throughout the foregoing material, the Democritean atomism provided the
warp, complemented by the gauge principle as its weft. Along the way, however, this fabric re-
veals the ubiquity of the third conceptual strand (woof , as it were [☞ lexicon entry on p. 508, in
Appendix B.1]) – unification; we now turn to explore this more closely.

8.1 Indications

The Newtonian theory of gravity unites the mechanics of the so-called terrestrial and the celestial
objects and so eradicates this difference postulated within the Aristotelian philosophy of Nature,
which the Roman Catholic clergy (sanctioned by the AD 313 Edict of Milan) imposed as exclusive
of all other world views from the pre-hellenic and the hellenic cultures. According to Newton’s
law of gravity – as a descriptive model of this natural phenomenon – gravity is obeyed equally by
both the Sun and the Moon, and the planets and the stars, by the communication satellites and
the rockets as well as the Rockettes, by both the basketball and the baseball balls as well as the
players in those games, and of course also by the apple that supposedly fell from the tree under
which Newton sat. . .

Of course, Newton’s unified description of Nature is not a unification of pre-existing theo-
retical models – in the contemporary sense of the word “model.” It is, however, one of the first
rigorous applications of the principle that Nature is one and that it can be understood in a unified
fashion, and not as a (jury rigged) patchwork of different and diverse ideas – each with but a very
narrow aim and applicability.

It behooves us then to examine also the nature of our ideas about unification.

8.1.1 Unification of relativistic and quantum physics

Modern fundamental physics is based on the requirement that a description of Nature include both
its quantumness and its relativity, in the senses of the general theory of relativity.
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Special relativistic unification
The first example of unification of existing scientific models is provided by the Maxwell equa-
tions: Indeed, Ampère’s and Faraday’s laws and Gauss’s laws (5.72) were already known, as
well as experimentally verified in situations for which those laws of Nature had been identi-
fied.1 Their combination into one unified, electromagnetic system – and the extension of Ampère’s
law for the sake of agreement with the continuity equation and general consistency in the
non-static/stationary case – has far-reaching consequences:

1. The electric field and the magnetic field (viewed as two distinct physical phenomena) are
the limiting cases of a unified electromagnetic field, in the formal limit c → ∞; accordingly,
the Maxwell equations (5.72), without magnetic (monopole) charges and currents, become
(using the relation 1/ε0c2 = μ0)

�∇·�E =
4πρe

4πε0
, �∇×�B =

4π
4πε0c2�je +

1
c2
∂�E
∂t

→ μ0�je, (8.1a)

�∇·�B = 0, −�∇×�E =
∂�B
∂t

. (8.1b)

Thus, in the formal limit c →∞, only the last relation (Faraday’s law) still relates the elec-
tric and the magnetic fields, and only when the magnetic field varies in time and the
electric field varies in space, so as to have a nonzero curl: �∇×�E �= 0. In turn, the full elec-
trodynamics (5.72) is then the extension of this electro-and-magneto-static system, both
self-consistent and consistent with Nature.

2. Changes in the electromagnetic field propagate with the speed of light, in the form of waves.
Using the Lorenz gauge, the Maxwell equations (5.72) without magnetic (monopole)
charges and currents produce the wave equation for the 4-vector gauge potential (5.92),
so that their changes propagate at the speed of light in vacuum, c. The electromagnetic
field, as gauge-invariant derivatives of the gauge potentials (5.15), also satisfies the wave
equation


�B = �∇×(μ0�je), 
�E = −�∇
( ρe

ε0

)
− ∂(μ0�je)

∂t
. (8.2)

3. The system of Maxwell equations (5.72) has symmetries:
(a) Lorentz transformations of spacetime (3.1), i.e., (3.13) and corresponding transforma-

tions of the electromagnetic field (5.75),
(b) duality (5.86) between the electric and the magnetic field.

4. The existence of magnetic (monopole) charges and currents would obstruct the (unambigu-
ous) expression of the electromagnetic field in terms of a gauge 4-vector potential [☞ Com-
ment 5.6 on p. 185].

5. The regime where the unified electrodynamics may be regarded as a collection of separate
subjects of electro-statics, magneto-statics and wave optics is the “c → ∞” formal limit.

Comment 8.1 Since c is a natural constant, the formal limit “c → ∞” makes sense only
in the form of dimensionless ratios vij/c → 0, where vij ranges over all relative speeds
observable in the considered system. This has three significant consequences:

1. Non-relativistic physics is a special, limiting case of relativistic physics, which
is in turn an extension of non-relativistic physics. For any given system, in the

1 Maxwell noticed that without the displacement current, −μ0∂(ε0�E)/∂t, the divergence of Ampère’s original law, �∇×�B =
μ0�je, produces �∇·�je = 0, which holds only in the restricted cases when the free charge density in the entire observed
space is unchanging in time, i.e., only in the static/stationary situations for which Ampère originally identified the law.
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space of all possible relative speeds {v12, v13, . . . }, the non-relativistic regime
involves only the lowest-order nonzero results in the vij/c � 1 approximation,
i.e., near the point: vij = 0 for all i, j; everything else is relativistic physics.

2. By non-relativistic systems one may understand only the cases where the rel-
ativistic corrections are negligible – for which the limits of precision are
necessarily subject to convention.

3. Since the changes in the electromagnetic field propagate at the speed of light,
all systems with variable electromagnetic fields are unavoidably relativistic.

The property that changes in the electromagnetic field propagate as waves, at the speed of light,
unifies the (electro- and magneto-)static phenomena with the wave phenomena (ultraviolet ra-
diation, light, heat radiation and radio-waves, which were known by the end of the nineteenth
century to be but different types of electromagnetic radiation), and then also the high-frequency
limit of wave optics known as geometric optics.

Digression 8.1 From the contemporary, symmetry vantage point, the symmetries of the
Maxwell equations are the Lorentz transformations [☞ Section 3.1]. The symmetries
of Newtonian mechanics are the Galilean transformations, which differ from Lorentz
transformations in that the boost transformations do not change time:

Galileo �r ′ =�r −�vt, t′ = t, (8.3a)

Lorentz �r ′ =�r − γ�vt + (γ−1)(v̂ ·�r) v̂, t′ = γ
(

t − �v ·�r
c2

)
. (8.3b)

In Newtonian physics, time is absolute. Since charged particles interact with the electro-
magnetic fields and when they move, it is necessary that the theoretical model of those
interactions is a single, coherent and consistent theoretical system – which can happen
only if one can either:

1. adapt the Maxwell equations so as to exhibit Galilean symmetries of Newto-
nian physics,

2. or adapt Newtonian laws so as to exhibit Lorentz symmetries of relativistic
physics.

As is well known, Nature picks the second, and not the first of these logical possibilities.

General relativistic unification
Chapter 9 will provide a telegraphic review of the general theory of relativity, but let us note here
that the “general theory of relativity” (and then also its special case, the special theory of relativity)
is in fact a theoretical system [☞ Section 8.3.1]. The pivotal idea in the theory of relativity is also
the gauge principle, but applied to the “real,” i.e., concrete spacetime, rather than to an abstract
space of phases as was the case with electroweak and strong interactions [☞ Chapter 5]:

1. To describe physical systems, one uses coordinate systems the points of which are the points
of spacetime in which the parts of that system move. To this end, one uses the 4-vector of
spacetime coordinates, x.

2. The coordinates in such coordinate systems are not themselves physically observable, i.e.,
they cannot be measured. Indeed, absolute positions of various objects cannot be measured,
but distances between them can.
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3. To measure distances,

s(xi, x f ) :=
∫ x f

xi

ds, where ds2 := gμν(x) dxμdxν, (8.4)

one must know the metric tensor g(x) in the chosen coordinate system, represented by
x = (x0, x1, x2, x3). The components gμν(x) are – in principle, and definitely in the general
case corresponding to the general theory of relativity – arbitrary functions of the coordinates
x. For special relativity, gμν(x) = −ημν; see (3.17)–(3.19).

4. Since the coordinates x cannot be observed directly, it ought be possible to change the
coordinate system – through the substitution x → y, but so that

ds2
(x) = gμν(x) dxμdxν != gμν(y) dyμdyν = ds2

(y), (8.5)

from which it follows that [☞ Digression 3.2 on p. 88, and Chapter 9]

gμν(y) =
∂xρ

∂yμ
∂xσ

∂yν
gρσ(x), (8.6)

that is, that the metric tensor is indeed a tensor, of rank 2 and of type (0, 2).
5. Chapter 9 shows how invariance with respect to general coordinate transformations im-

plies the existence of gauge potentials and the gravitational interaction – exactly the way
invariance with respect to local phase transformations implies the Yang–Mills type gauge
interactions [☞ Chapters 5–6].

Comment 8.2 For the special theory of relativity, we have gμν(x) → −ημν,2 which is the
constant metric tensor (3.19) of the “flat” spacetime. In this sense, the special theory of
relativity is a “ limit-point” in the space of all possible general coordinate systems and cor-
responding metric tensors described in the general theory of relativity. In turn, the general
theory of relativity is then an extension of the special theory of relativity.

The practical demarcation between special and general theories of relativity may thus naively
be estimated by considering the departure of the actual metric tensor gμν(x) from the metric tensor
of flat spacetime, −ημν. This, however, is not well defined. Indeed, owing to the relation (8.6),
neither is specifying any particular component of the metric tensor nor is its comparison with the
same component from another metric tensor independent of the choice of coordinates. However,
there do exist so-called curvature invariants, the values of which are independent of coordinate
choices, and these then may serve for demarcation purposes. In (3 + 1)-dimensional spacetime,
there are 20 such invariants, of which the simplest one is the so-called scalar curvature, R :=
gμρRμνρν, where Rμνρσ is the so-called Riemann tensor [☞ Chapter 9]. Suffice it to say, if any one of
these 20 curvature invariants cannot be neglected (in the considered processes and in comparison
with some earlier specified precision limits), the system is generally relativistic.

The general theory of relativity contains (Einstein’s) model of gravity, while the special theory
of relativity pertains to flat spacetime, with no gravitational effects. Thereby, the special theory of
relativity may be regarded as the formal GN → 0 limit of the general theory.

Comment 8.3 As in the case of the formal limit “c → ∞” and since GN is a natural constant,
the formal limit “GN → 0” may be understood only as a statement that all characteristic
quantities of the system commensurate with GN (of the same physical units) are much larger

2 The expression (8.4) defines the metric tensor gμν by way of defining the distance, while the expression (3.17) defines
the proper time in spacetime. The signs in ημν are therefore opposite from the signs in gμν.
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than GN. Intuitively, these characteristic quantities ought to be some invariant measures of
the spacetime curvature, but all such invariants are computable from the Riemann tensor,
the dimensions of which are [Rμνρσ] = L−2. On the other hand, [GN ] = L3T−2M−1 and
curvature invariants (obtained as various contractions of various tensor products of the
Riemann tensor) cannot be compared with GN, but can be compared with the constant
�P :=

√
h̄GN/c3, the Planck length [☞ Table 1.1 on p. 24].

Thus, for the purposes of estimating the “non-gravitational” limiting case, it is more
convenient to use the natural constant �P instead of Newton’s gravitational constant. This
limiting case then may be written formally as “�P → 0,” understanding here relations of the
type |Ri|�P � 1, where:

1. |Ri| is the norm of the ith curvature invariant, defined so as to have dimensions
[Ri] = L−1;

2. the relation “�” here means “smaller than a previously set limit of precision.”

In this sense, the notation “GN → 0” is being used as a synonym for the formal limit “�P →
0”, while keeping h̄ and c constant [☞ Comments 8.1 on p. 294 and 8.4 on p. 298].

Quantum unification
As the Maxwell equations – the theoretical model of the electromagnetic field – indicate that the
electro-static and the magneto-static fields are only limiting cases of the electromagnetic field
whereby the descriptions of these natural phenomena are unified, so does quantum mechanics
unite the notion of a particle and that of a wave.

The very notion of a particle presupposes that the position of the observed object in “ordinary”
space may be localized arbitrarily well, i.e., that the object is ideally located in a perfectly well-
specified (mathematically dimensionless) point of “ordinary” space: the position of this object is
perfectly precisely specified. In a complementary fashion, the very notion of a (plane) wave presup-
poses that the position of the observed object in momentum space may be localized arbitrarily well,
i.e., that the object is ideally located in a perfectly well-specified (mathematically dimensionless)
point of momentum space: the wave vector of the object is perfectly precisely specified.

However, the Heisenberg indeterminacy relations, �x �px � 1
2 h̄, imply that a quantum ob-

ject cannot be localized more precisely than within a region in the phase space,3 the “surface area”
of which is never smaller than 1

2 h̄. This gives the phase space in quantum physics a “granular” struc-
ture. In turn, it is also known that functions (or, more generally, distributions) over the phase space
that may be used to represent classical observables cannot reproduce consistently and completely
all properties of the quantum state operator; see quantum mechanics textbooks such as Ref. [29].
Thus, quantum physics cannot be described simply as classical physics with the additional require-
ment of a “granular” phase space. Quantum mechanics teaches us that real “things” are neither
ideal particles nor ideal waves, but “something else”; something that in appropriate circumstances
may be approximated by the limiting case of a point-particle, while in other circumstances an
approximation by the limiting case of a wave is more precise.

The conceptual analogy with electro-static and magneto-static fields on one hand, and elec-
tromagnetic waves (always moving) on the other should be manifest. It should then come as no
surprise that field theory in this conceptual sense interpolates between particles and waves. How-
ever, field theory is not a theory of a collection of wave packets – that literally interpolate between
particles represented by the Dirac δ-function as one limiting case, and plane waves as the other

3 The geometric shape, and even connectedness of this region remains a-priori undetermined, regardless of the choice of
a system, and its evolution during the passage of time.
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limiting case. Field theory contains both wave packets as limiting cases – less special than particles
and plane waves, but limiting cases nevertheless.4

Finally, the transition from quantum to classical physics is often cited as the formal limiting
process h̄ → 0, which identifies classical physics as a limiting case of quantum physics.

Comment 8.4 Since h̄ is a natural constant, this limiting process makes sense only as the
limit (h̄/Si) → 0 for i = 1, 2 . . . , where Si are various physical observable quantities char-
acteristic for the given system and with units ML2

T , such as the angular momentum and
Hamilton’s action, S =

∫
dt L, where L is the Lagrangian of the system. In this precise

sense, classical (non-quantum) physics is a limiting case of quantum physics, which is in
turn an extension of classical physics.

The theoretical system of relativistic quantum physics
The combination of limiting processes described in Comments 8.1, 8.2 and 8.4 in this section
then provides the complete depiction (see Figure 8.1) of the theoretical system within which the
Standard Model of elementary particle physics is formulated [☞ Section 8.3].

For all Standard Model purposes, suppose that the spacetime curvature and corresponding
gravitational effects are negligible, i.e., that a full sequence of conditions of the form Ri�P → 0 is
satisfied, as discussed in Comment 8.3 [☞ also Chapter 9, as well as Refs. [508, 62, 367, 548, 66]],
and that reduces Einstein’s general theory of relativity to the special theory of relativity with no
gravitation; the Newtonian theory of gravity may be derived as a lowest-order nonzero effect near
this limit [95, 96, 271, 58]; see also Section 9.2.4. In individual interaction processes between
elementary particles, the gravitational interaction is many orders of magnitude weaker than the
strong or even the electroweak interactions, whereby special relativity suffices for all Standard
Model purposes.

With this assumption, the schematic diagram in Figure 8.1 reduces to the first quadrant in the
coordinate ( 1

c , h̄)-plane, which represents (specially) relativistic quantum physics, i.e., field theory.

GN

h̄

1/c

“GN
→ 0”

“h̄→
0”

“0 ← 1/c”

non-relativistic and
non-quantum physics
in flat space & time

Non-relativistic quantum
physics in flat space & time

Relativistic non-quantum
physics in flat spacetime

Relativistic quantum physics in
flat spacetime
(field theory)

Newtonian
gravity

General theory of relativity
(in curved spacetime)

Quantum
gravity

general-relativistic
quantum field theory

general-relativistic
quantum field theory

general-relativistic
quantum field theory

general-relativistic
quantum field theory

Figure 8.1 A sketch of the limiting cases of the general and special theory of relativity as well as
quantum physics. The boundaries of the formal transitions into the approximations “c → ∞,” “h̄ → 0”
and “GN → 0” (i.e., “�P → 0”; see text) are conventionally defined, as depicted by gradual shading.
General-relativistic quantum field theory is up front, well inside the first octant.

4 It may help to imagine the palette of possibilities covered by field theory as a multi-dimensional geometric object with an
“edge.” The points of this “edge” correspond to various wave-packets, and its two end-points correspond to the particle
and the plane wave, respectively.
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The demarcations that determine the negligibility of characteristic quantities (h̄/Si) and (vjk/c)
of the system are conventional, and this is represented in Figure 8.1 as a gradual change in the
shading. Here, the non-relativistic physics is “sufficiently near” the vertical axis, and non-quantum
physics is “sufficiently near” the horizontal axis. The practical criteria for this “nearness” – i.e., the
boundary where the non-relativistic or non-quantum approximation is no longer sufficiently good –
depends on the adopted conventions regarding the required precision of computational results.

Let us then emphasize the conceptual differences:

1. in phase transitions, the boundary between the symmetric and the non-symmetric phase is
precisely determined by the system: see Conclusion 7.5 and relation (7.45);

2. the transition from quantum (or relativistic) physics into the non-quantum (non-relativistic)
approximation is conditioned by the convention of computation precision. Strictly speaking
(with absolute precision), non-quantum and non-relativistic physics are merely idealized
limiting cases.

The transition from the regime where the electroweak interaction is united into the regime where
electrodynamics essentially differs from weak interactions (photons are massless, W±-, Z0-bosons
are massive) is manifestly a phase transition and not a conventional approximation. In turn,
the transition from the regime of electrodynamics into the regime where we – practically and
pragmatically – separate electro-statics from magneto-statics is conditioned by the convention of
computational precision, i.e., whether or not relativistic corrections may be neglected.

However, there do exist significant similarities. The conceptual similarity is reflected in the
facts that both electrodynamics and electroweak interactions have both a “unified” and a “sepa-
rated” regime, as well as that the symmetries of the system in the unified regime are larger than
the symmetries in the separated regime; see Table 8.1.

Table 8.1 Conceptual similarities and differences between the unification of the electric and the mag-
netic fields into the electromagnetic (EM) one, and the electromagnetic and weak fields into the
electroweak (EW) field. Po(1, 3) is the Poincaré group of linear transformations of spacetime: Lorentz
transformations and translations.

United regime Separated regime

El
ec

tr
om

ag
ne

ti
sm

The relative speed between at least two
subsystems is not negligibly small, vij/c �� 1.

The relative speed between at least two
subsystems is negligibly small, vij/c � 1.

The transition demarcation is specified by a convention in resolution.

Separation and differentiation between the �E-
and the �B-fields depends on the choice of the
coordinate system; see Example 5.1 on p. 183,
and relations (5.75) and (5.77).

In a system where the free charges are static
and the idealized currents stationary, the
electric and the magnetic fields are static and
perfectly separated.

The symmetries of the Maxwell equations
form the Lorentz group, together with
spacetime translations, i.e., the Poincaré
group, Po(1, 3).

The symmetries of electro- and magneto-static
systems are limited to rotations in space,
Galilean boosts and translations in space and
time, Ga(1, 3) � Po(1, 3).

El
ec

tr
ow

ea
k

in
t. Particles in a process have energies

Ei > h̄ c
√
λ〈H〉|κ<0 ∼ MW± c2.

Particles in a process have energies
Ei < h̄ c

√
λ〈H〉|κ<0 ∼ MW± c2.

The transition demarcation (the order parameter critical value) is determined by the system.

W±, W3
μ and Bμ are the normal modes,

and are all massless.
Bμ and W3

μ are not normal modes;
Aμ (massless) and Zμ (massive) are;
see relations (7.85)–(7.86).

Local (gauge) symmetries of electroweak
interactions form the SU(2)w × U(1)y group.

Local (gauge) symmetries of electroweak
interactions reduce U(1)Q ⊂ SU(2)w × U(1)y.
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Conclusion 8.1 (unification) Since Newton’s Principia (1687) and through the unification of
electroweak interactions (Glashow, Weinberg and Salam, 1979 Nobel Prize), three distinct
notions of unification have grown into fundamental physics:

(a) conceptual in the sense that Nature is one and that its scientific descriptions (mod-
els) should be conceptually uniform, and not a patchwork (hodgepodge) of
diverse and disparate ideas;

(b) limiting in the sense that one marked “regime” of behavior of a system is, strictly
speaking, merely a special limiting case (i.e., approximation) of another, more
general and/or more exact description;

(c) phase/regime where the description of a system contains a definition of an order
parameter and its critical value that divides two phases, i.e., regimes of a system.

Note the double duty pulled by the word “regime,” used in two different senses in the second and
third notions of unification as listed here. Similarly, the word “phase” is used here in the sense
exemplified by solids vs. liquids – very different from its use in Chapters 5–7.

8.1.2 Indications for exploring beyond the Standard Model
The Standard Model explains a lot, but also indicates the unknown source of some of the basic
characteristics of this model and the state of understanding Nature that this model represents:

Spacetime For Standard Model purposes, one assumes the spacetime to be a continuous
topological real 4-dimensional space with a flat metric tensor −ημν of signature (1, 3), i.e., that
one of the four dimensions is of a time-like and three are of a space-like character. We do not know
why this is so☞ .

The interaction hierarchy The fundamental interactions in the Standard Model emerge from the
gauge principle and the local (gauge) symmetry group SU(3)c × SU(2)w × U(1)y. The dependence
of the interaction strength on the 4-momentum transfer involved where this strength is measured
as well as the electroweak symmetry-breaking SU(2)w × U(1)y → U(1)Q are described within the
Standard Model. However, the relative intensities of the concrete values of the parameters αs, αw
and αy (i.e., αe) – obtained by measuring at any one concrete energy – are not determined within
the Standard Model and may only be regarded as given (and unexplained☞ ) “initial data.”

The scale and the mass hierarchy structure All Standard Model fermions acquire their mass via
interaction with the Higgs field, through the field shift H → H + 〈H〉 [☞ relations (7.109)–
(7.113)]. However, nothing in the Standard Model determines the concrete values☞ of the specific
constants hΨ that describe the intensity of the direct (Yukawa) interaction of the Standard Model
fermions with the Higgs boson – and thus also the masses of these fermions [☞ Tables 4.1
on p. 152 and C.2 on p. 526]. Since 〈H〉 is determined from the experimental data for mZ =
91.187 6 GeV/c2 [☞ relation (7.81) and (7.86)], it follows that

〈H〉 ∼ 102 GeV/c2, and hu, hd ∼ 10−5, hs ∼ 10−3, hc, hb ∼ 10−2, ht ∼ 1. (8.7)

Neither the general smallness hΨ (except ht) nor the hierarchy of these parameters is explained in
the Standard Model☞ . Until the Higgs particle is fully confirmed and its characteristics (including
all the coupling parameters hΨ) are measured, the fermion masses remain without explanation in
the Standard Model.

CKM quark mixing The very fact that the eigenstates of the free Hamiltonian are also the eigen-
states of the strong, electromagnetic and gravitational interactions, but not also of weak interaction
is not unusual: there is no a-priori theoretical reason for a coincidence of eigenstates of all various
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interaction terms in the Hamiltonian. However, the origin and the concrete values of the Cabibbo–
Kobayashi–Maskawa parameters (angles) that control the quark mixing in weak interactions (2.53)
are not determined at all by the Standard Model and remain unknown ☞ .

Neutrino mixing and oscillations Similarly to quarks, there is no a-priori theoretical reason for
a coincidence of the eigenstates of the free and the (only) weak interactive term in the Hamil-
tonian for neutrinos. However, the origin and the concrete value of the parameter Mν in
equation (7.132) and, more generally, the origin and the concrete values of the parameters (in
the PMNS-matrix [☞ Section 7.3.2]) that control the neutrino mixing in free propagation (as
compared the neutrinos defined by the weak interactions) are also not determined at all by the
Standard Model, and this remains an open problem☞ .

The number of fermion families The Standard Model simply includes the fact that there exist three
families of fundamental fermions [☞ Table 7.1 on p. 275], but this fact is neither mandated nor
explained and remains one of the puzzles of the Standard Model☞ .

CP-violation The combined discrete CPT -operation must be a symmetry in all Lorentz-invariant
models [☞ Section 4.2.3]. However, the combined CP-operation need not be (and is not) a
symmetry of Nature, and neither need then the time reversal operation be. On the other hand,
T-violation is necessary for the irreversible creation of a sufficient surplus of matter (as compared
to antimatter) in the first seconds of the Big Bang, and CP-violation via weak interactions is,
roughly and little as it is, of just the sufficient amount. However, nothing in the Standard Model
explains the concrete value of the angle δ13 in the CKM matrix (2.53), nor the complete absence
of the otherwise perfectly possible – and many orders of magnitude larger – CP-violation through
strong nuclear interactions [☞ Section 6.3.1], which remains a complete mystery☞ .

Cosmological constant Phase transitions always have excess energy density [☞ Conclusion 7.1 on
p. 258 and Comment 7.3 on p. 265]. For water to freeze, an external heat reservoir must remove
this excess energy. However, when the entire Universe undergoes a phase transition, there is no
“external heat reservoir,” and this energy remains as a homogeneous and isotropic background
energy. The recent discovery that the expansion of the Universe is in fact accelerating implies the
existence of some kind of background “dark energy” – however, the observed value of even the so-
called cosmological constant is many tens of orders of magnitude smaller than the excess energy
density of the electroweak phase transition; the origin and the concrete value of this astoundingly
extravagant discrepancy remains a puzzle; see Comment 7.3 on p. 265☞ .

Dark matter Observations of the distribution of rotation speeds of stars about their galactic centers
imply the existence of an invisible source of gravity (mass), the quantity and volume of which
surpasses the mass and volume of the visible matter in galaxies. The Standard Model contains
no adequate candidate for such matter, the origin and nature of which then remain a puzzle☞ .
The variants of the cosmological “inflationary model” require that the total amount of matter in
the Universe should even be ten times more than the best estimates for the amount of visible
matter. For these models – which successfully describe most cosmically large-scale properties of
our Universe – the existence of dark matter is crucial.

— ❦ —

The questions that the Standard Model uncovers may in many cases be formulated only based on
the description of Nature and insights into its properties given precisely by that same Standard
Model. It is then not inappropriate to regard the Standard Model as a tool for systematizing our
questions about Nature that are conceptually beyond reach of the Standard Model. We thus speak
of research “beyond the Standard Model.”
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Theoretical, experimental – and even aesthetic – successes of the electro-weak unification
inspired many a researcher in the last quarter of the twentieth century to formulate a model that
would unify the strong with the electroweak interaction, as well as explain at least some of the
Standard Model puzzles. This idea receives significant support from the fact that the coupling pa-
rameters αs, αw and αy change with the magnitude of the 4-momentum transfer at which these
parameters are measured – and in a, roughly, convergent fashion. That is, if we suppose that above
the energies ∼102 GeV there exist no new fundamental fermions as well as no new interactions –
which is referred to as the “grand desert hypothesis” – the functions αs(q), αw(q) and αy(q) con-
verge and meet approximately at the energy |q|c ∼ 1015−17 GeV. The details of this convergence
and of this “merging” depend on the concrete model and additional assumptions and so are nec-
essarily of a speculative nature; finally, one talks about an extrapolation over 15–16 orders of
magnitude, with no precedent in the history of physics!

Consider the relation (5.202), as well as (6.79), which holds for the general case of
SU(n)-gauge interactions of n f fermion flavors, and note that the reciprocals of the fine struc-
ture parameters are approximately linear functions of the logarithm of the magnitude of the
4-momentum transfer |q| at which the parameters are measured:

U(1) :
1

α1,R(|q2|) ≈ 1
α1,R(μ2c2)

− 4
12π

ln
( |q2|
μ2c2

)
SU(n) :

1
αn,R(|q2|) ≈ 1

αn,R(μ2c2)
+

11n−2n f

12π
ln
( |q2|
μ2c2

)
⎫⎪⎪⎪⎬⎪⎪⎪⎭ |q2| 
 μ2c2, (8.8)

where μ is the largest fermion mass that can occur in the loops such as (5.201), the total number
of which equals n f . At energies over μc2 = mτc2 = 174.2 GeV, we have

SU(3)c : n f = 3× 2(w), 11n − 2 n f = + 21, (8.9)

SU(2)w : n f = 3× (3(c)+1), 11n − 2 n f = − 2, (8.10)

for SU(2)w and the same μ, and where the number of SU(3)c-interacting quarks equals 6 (one dou-
blet of quark SU(3)c-triplets in each of the three families) and the number of SU(2)w-interacting
fermions equals 12: one (color) triplet of quark SU(2)w-doublets and one lepton SU(2)w-doublet
in each of the three families. One thus obtains

U(1)y :
1

αy,R(|q2|) ≈ 1
αy,R(μ2c2)

− 4
12π

ln
( |q2|
μ2c2

)
, (8.11a)

SU(2)w :
1

αw,R(|q2|) ≈ 1
αw,R(μ2c2)

− 2
12π

ln
( |q2|
μ2c2

)
, (8.11b)

SU(3)c :
1

αs,R(|q2|) ≈ 1
αs,R(μ2c2)

+
21

12π
ln

( |q2|
μ2c2

)
. (8.11c)

where the values of αy,R(μ2c2), αw,R(μ2c2) and αs,R(μ2c2) are experimentally determined.
The depiction of the system (8.11) in Figure 8.2 is very suggestive: the magnitudes of the
SU(3)c-, SU(2)w- and U(1)y-interactions converge and become approximately equal somewhere
around |q| ∼ 1015 GeV/c. The details that ensure that the three functions (8.11) really merge in
one point include an increasing precision of the measurements of the “initial” values, as well as
the assumption of possible new particles with masses between mt ∼ 174.2 GeV/c2 and the energy
where the functions (8.11) acquire the same value.



8.1 Indications 303

Figure 8.2 The convergence of the SU(3)c × SU(2)w × U(1)y gauge interaction strengths in the Stan-
dard Model. The slope changes indicate energy thresholds where new real quarks may be produced.
The shaded area indicates the SU(2)w × U(1)y → U(1)Q phase transition.

The simplest assumption – that in this enormous span of energies nothing new exists – in
fact does not lead to a precise merging of all three functions. In turn, in some of the possible and
explored extensions of the Standard Model, this agreement is much better. One such extension is
the so-called Minimally (extended) Supersymmetric Standard Model (MSSM), where this “grand
desert” is populated by new particles: one superpartner for each Standard Model particle.

Of course, only concrete experiments may decide and provide the ultimate conclusion about
the best model of unification of gauge interactions – as well as whether such a unification even
takes place at all. As is known from even the popular literature and daily newspapers, the in-
stallations that such experiments require have in the twentieth century grown ever larger and
more complex, and so are subject to both financial and political difficulties – already of in-
ternational proportions. A glance into the past and the much more modest requirements of
epoch-making experiments at the turn of the nineteenth into the twentieth century implies
the practical impossibility of continuing one of the two pillars of experimental physics (and
Rutherford’s legacy): colliders (where beams of particles are accelerated and then collided, and
where real collision processes are observed to happen) are becoming prohibitively expensive and
complex.

The other conceptual type of experiments is based on the quantum essence of natural pro-
cesses: Even if the energy in a system is insufficient for the interaction mediator in the process to
be produced as a real particle, the process may nevertheless occur by exchanging virtual mediating
particles. Although this significantly diminishes the probability for the observed process to happen,
one then observes an enormous amount of matter (an enormous ensemble of particles) where such
a process may happen, and then. . . waits for an unambiguous signal that the process really did
happen. Until a concrete event is registered, the experiment produces only an upper bound for the
probability for this process to happen, and cannot show if the process is in fact forbidden.

A new epoch-making advance in experimental physics will most probably require the inven-
tion of a radically new conceptual set-up of the experiment☞ that would, in lieu of an opportunity to
produce the concrete process or interaction as a real process, give a lower bound for the probability
of this process occurring – complementary to the “waiting” experiments.
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The combination of some such new experiments with a previous type of “waiting” experi-
ment could then narrow the limits on the probability of a process happening – which is anyway the
essential goal of natural sciences [☞ Conclusion 1.1 on p. 6]. Also, if a so-obtained lower bound
should surpass the independently obtained upper bound, the possibility of the process occurring
would certainly be ruled out. To some extent, the existing experimental results from diverse instal-
lations and experiments are already being combined in such a conceptual fashion; as time passes
and experimental precision grows, the available parameter space for the possible values of a con-
sidered physical quantity narrows and diminishes. However, this strategy cannot be applied to the
measurement of all (20 and more, depending on the precise definition and counting) Standard
Model parameters, and only a radically new type of experiments can change this.

8.2 Grand unified models
The next few sections will skim through some of the possible schemes of unification of electroweak
and strong interactions.

8.2.1 The Pati–Salam SU(4)c × SU(2)L × SU(2)R model
In a series of papers [411, 410, 412] in 1973–4, Jogesh C. Pati and Abdus Salam proposed a
unification scheme based on two simple ideas:

1. that “lepton-ness” is the fourth color (extending the three quark colors), and
2. that there exists a phase in which parity is an exact, i.e., restored symmetry.

These two ideas may be presented rather effectively in the form of a table:

C
h

ir
al

it
y SU(4)cElectroweak

interaction
SU(3)c

r y b �

SU(2)L
+ 1

2 L
ur uy ub ν�

e

− 1
2 dr dy db e−�

SU(2)R
+ 1

2 R
ur uy ub ν�

e

− 1
2 dr dy db e−�

plus two more “families”
of fundamental fermions,
each with an identical
structure.

(8.12)

In the fully symmetric phase, the “Pati–Salam” group SU(4)c × SU(2)L × SU(2)R specifies the
gauge symmetries of the model, and this certainly contains the Standard Model gauge symmetry
group SU(3)c × SU(2)L × U(1)y as a subgroup. Reference [412] describes several variants of
this unification, but over the subsequent years this concrete model was singled out as the most
successful. The 16 fermion states in the table (8.12) are denoted typically as the

(4, 2, 1)L ⊕ (4, 1, 2)R (8.13)

representation of the SU(4)c × SU(2)L × SU(2)R �Z2 group, where Z2 = {1, P} and P is the
operation of parity; the symbol “�” denotes the semidirect product [☞ the lexicon entry, in
Appendix B.1]. With respect to this complete symmetry of the Pati–Salam model, the represen-
tation (8.13) is irreducible, i.e., there is no proper subset of the fermions in the table (8.12),
which all elements of the complete symmetry

(
SU(4)c × SU(2)L × SU(2)R

)
�Z2 transform into

that same subset only. In turn, since parity is a symmetry of the model, the SU(2)L and SU(2)R

coupling parameters must be equal, but the SU(4)c coupling parameter is independent.
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With respect to the SU(3)c × SU(2)w × U(1)y ⊂ SU(4)c × SU(2)L × SU(2)R �Z2 subgroup,
the representation (8.13) decomposes into

[
(4, 2, 1) → (3, 2) 1

3
⊕ (1, 2)−1

]
L
⊕ [

(4, 1, 2) → (3, 1) 4
3
⊕ (3, 1)− 2

3
⊕ (1, 1)−2 ⊕ (1, 1)0

]
R
. (8.14)

This is the “physics-standard” notation, where the group representations are denoted by their
dimensions [☞ Appendix A].5 In particular, (m, n, p) denotes the SU(4)c × SU(2)L × SU(2)R-
representation, which is the tensor product of the m-dimensional representation of the SU(4)c
group, the n-dimensional representation of the SU(2)L group and the p-dimensional representa-
tion of the SU(2)R group. Thus, (4, 2, 1) is an SU(4)c-quartet of SU(2)L-pairs of quark-leptons,
which decompose (8.14) into

(4, 2, 1) =
{

ur, uy, ub, ν�
e

dr, dy, db, e�−
}

L

→
[
(3, 2) 1

3
=

{
ur, uy, ub

dr, dy, db

}]
L

⊕
[
(1, 2)−1 =

{
ν�

e
e�−

} ]
L

, (8.15a)

(4, 1, 2) =
{

ur, uy, ub, ν�
e

dr, dy, db, e�−
}

R

→
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(3, 1) 4
3

=
{

ur, uy, ub}]
R
⊕ [

(1, 1)−2 =
{

e�−}]
R[

(3, 1)− 2
3

=
{

dr, dy, db}
R

]
R
⊕ [

(1, 1)0 =
{
ν�

e
}]

R

. (8.15b)

In distinction from the left–right asymmetric interactions in the Standard Model [☞ Table 7.1
on p. 275], the extended electroweak interaction with the SU(2)L × SU(2)R gauge symmetry is
universal. That is, the table (8.12) makes it clear that this model unavoidably predicts the existence
of the right-handed neutrino. The right-handed neutrinos were indeed listed in Table 7.1 on p. 275,
but the Standard Model does not mandate their existence. The right-handed neutrinos are invariant
under the action of the Standard Model gauge symmetries and those symmetries do not link them
with any other particles. In fact, all right-handed fermions in Table 7.1 on p. 275 do not partake
in weak interactions and are invariant under its gauge symmetry SU(2)L. In stark contrast, the
left–right symmetric gauge group SU(4)c × SU(2)L × SU(2)R in the Pati–Salam model includes
right-handed neutrinos in the SU(2)R-doublets, extends weak interactions to left-handed particles,
and thus provides the system a phase with a weak interaction that is universal (and not restricted
to left-handed particles only) and where the symmetry of parity is restored.

In turn, this model then also makes it possible to describe the spontaneous breaking of the
parity symmetry.

In the early 1970s, one could only suppose that there should exist a method of endow-
ing the left- and the right-handed neutrino with masses non-symmetrically. The so-called see-saw
model [☞ discussion of the relation (7.132a)–(7.132b)] was discovered only much later, and this
model – the only one known – requires a mass parameter Mν � 1015 GeV/c2. This then cannot stem
from the Standard Model but may easily be the consequence of some symmetry breaking in the
diagram (8.16); the critical energy of such symmetry breaking must be many orders of magnitude
larger than mW± c2, mZ c2 ∼ 102 GeV. The technical method for parity breaking, so as to reproduce
the experimentally observed phenomena, still remains insufficiently understood in left–right sym-
metric constructions such as the Pati–Salam model☞ . In principle, one expects to be able to come
up with some variant of spontaneous symmetry breaking à la Sections 7.1.1–7.1.2, but none of the
explored models seems to be able to reproduce all experimental details.

5 In the general case, this is not sufficiently precise, as all Lie groups except SU(2) ∼= Spin(3) have distinct representations
of equal dimensions, but this ambiguity turns up very rarely within the examples of interest, and in those exceptional
cases those distinct representations of equal dimensions are distinguished by additional decorations such as 15 and 15′
in SU(3).
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The complete phase diagram – which in the 1970s was not discussed in detail – contains (at
least) the five regimes (“phases”)

SU(4)c × SU(2)L × SU(2)R �Z2 SU(3)c × U(1)y′ × SU(2)L × SU(2)R �Z2

SU(4)c × SU(2)L × U(1)R SU(3)c × U(1)y′ × SU(2)L × U(1)R

→ SU(3)c × SU(2)L × U(1)y

(8.16)

and the existence or absence of these (and possibly many other) regimes (and phase transitions
between them) depends on the choice of the Higgs field(s) that control the symmetry-breaking
process. In the display (8.16), the “vertical” phase transition (between the first two rows) is charac-
terized by the breaking of the right-handed copy of the weak isospin gauge group, SU(2)R → U(1)R,
as well as the parity Z2. The “horizontal” transition is characterized by the breaking of the ex-
tended color symmetry, SU(4)c → SU(3)c × U(1)y′ . Finally, the phase transition from the regime
in the right-hand side region in the second row into the regime in the last row is characterized
by the breaking of the abelian (commutative) symmetries U(1)y′ × U(1)R → U(1)y. The origi-
nal work on this model [412] indicated that there exists a choice of (by now reduced to eight)
Higgs fields that can describe the required symmetry breaking, SU(4)c × SU(2)L × SU(2)R →
SU(3)c × SU(2)L × U(1)y.

Besides, this model also predicts the possibility of proton decay! Namely, the symmetry SU(4)c
also contains transformations of any one quark into a corresponding lepton, such as ur,y,b → νe
and dr,y,b → e−. The gauge bosons that mediate such interactions, collectively named X, must
violate the baryon and the lepton number, but preserve the fermion (i.e., “quark+lepton”) number.
Nevertheless, the decay of the proton into lighter particles – electrons, positrons, (anti)neutrinos
and pions – is not possible in this model by way of exchanging only the gauge bosons, but requires
also the exchange of some Higgs field(s). Owing to the conservation of the fermion number, the
simplest such proton decay could be of the form p+ → 3νe + π+ or p+ → 4νe + e+.

The possibility that the proton is not stable was first seriously considered within this Pati–
Salam model, but proton decay has not been experimentally confirmed to date.

8.2.2 The Georgi–Glashow SU(5) model
Almost at the same time, Howard Georgi and Sheldon Lee Glashow suggested a competing unifi-
cation model, based on the gauge group SU(5) [202]. This model explicitly contains the left–right
asymmetry of the Standard Model. Also, the Standard Model fermions appear within two distinct
representations of the gauge group, SU(5). However, since the gauge group has a single factor,
unlike the Pati–Salam group, there is only one coupling parameter, and this model explains the
relative ratio of the coupling parameters αs, αw and αy (i.e., αe).

The Standard Model fermions of each family are herein grouped:

( f10)[AB] =

⎡⎢⎢⎢⎢⎢⎣
0 e+ ur uy ub

0 dr dy db

0 ub uy
anti-
symmetric
rank-2 tensor

0 ur
0

⎤⎥⎥⎥⎥⎥⎦
L

, ( f 5∗)A =

⎡⎢⎢⎢⎢⎢⎣
e−
νe

dr

dy

db

⎤⎥⎥⎥⎥⎥⎦
L

, f1 = (νe)L, (8.17a)

10 → (3, 2) 1
3
⊕ (3∗, 1)− 4

3
⊕ (1, 1)2, 5∗ → (3∗, 1) 2

3
⊕ (1, 2)−1, 1 → (1, 1)0, (8.17b)

where only the left-handed fermions are listed; clearly, (νe)L = νe,R, so the anti-fermions of left-
handed chirality represent fermions of right chirality. The indices A, B = 1, · · · , 5 here count the
components of the fundamental, 5-dimensional representation of the SU(5) group, and ( f10)[AB]
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denotes the components of the antisymmetric matrix that represents the 10-dimensional represen-
tation. f 5∗ represents the conjugate fundamental, 5-dimensional representation but is here shown
as a column-matrix rather than a row-matrix to save space.

The SU(3)c × SU(2)w × U(1)y gauge subgroup representations (8.17b) are identified akin to
the decomposition (8.15), and were already indicated in the decomposition (8.17):

(1, 1)2 ↔ {
e+}

L
, (3, 2) 1

3
↔

{
ur, uy, ub

dr, dy, db

}
L

, (3∗, 1)− 4
3
↔ {

ur, uy, ub
}

L
, (8.18a)

(1, 2)−1 ↔
{
νe
e−

}
L

, (3∗, 1) 2
3
↔ {

dr, dy, db
}

L
, (1, 1)0 ↔ {

νe
}

L
. (8.18b)

The SU(5) gauge bosons in this model contain the SU(3)c × SU(2)L × U(1)y Standard Model
gauge bosons, and also six additional gauge bosons, which form an SU(2)L-symmetry doublet, and
an SU(3)c-symmetry triplet:{

Xr

Yr

}
,

{
Xy

Yy

}
,

{
Xb

Yb

}
:

I3(X) = + 1
2 ,

I2(Y) = − 1
2 ,

Q(X) = 4
3 ,

Q(Y) = 1
3 .

(8.19)

It is easy to find X- and Y-mediated processes in this model whereby the proton decays; for
example,

p+ = (u + u + d) → (
u + u + (X + e+)

) → (
u + (u + X) + e+) → (

u + u + e+)
→ π0 + e+ → 2γ+ e+.

(8.20)

Estimates of the proton lifetime then give the basic bounds for the X and Y gauge boson masses,
and thus also the critical energy of the SU(5) → SU(3)c × SU(2)L × U(1)y phase transition. Con-
versely, using the results MX , MY ∼ 1015 GeV/c2 from estimates such as Figure 8.2 on p. 303, it
follows that the proton lifetime is τp ∼ 1028–1029 years, which is too short: Experiments have by
now raised the lower bounds to about 6.6× 1033 years [293].

In turn, although the right-handed neutrino may be added to the fermions f10 ⊕ f 5∗ , as in the
decomposition (8.17), it is an SU(5)-invariant, i.e., neutral (chargeless) with respect to all SU(5)-
gauge interactions. Thus, the right-handed neutrino may only have interactions of the Yukawa type
(a product of two fermions and a scalar in the Lagrangian density), the coefficients of which are
completely free parameters.

8.2.3 More complex models
Since the Pati–Salam SU(4)c × SU(2)L × SU(2)R model and the Georgi–Glashow SU(5) unification
model leave some of the Standard Model questions unanswered, it is reasonable to seek models
with a gauge group that contain both the Pati–Salam and the Georgi–Glashow gauge group. It is
interesting that the model built using the SO(10) gauge group6 contains both:

(8.21)

In this model, all Standard Model fermions of one family – together with the right-handed
neutrino – form the 16-dimensional irreducible spinor representation of the gauge group. The

6 To be precise, this is in fact the Spin(10) group, the double covering of the SO(10) group, so that the spinor rep-
resentations are faithful, i.e., single-valued. However, in the physics literature one usually writes SO(10), implicitly
understanding the single-valuedness requirement.
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model is explicitly left–right symmetric and the coupling parameters αs, αw and αy (i.e., αe)
all stem from a single coupling parameter of the SO(10)-gauge interaction. The SO(10) unifica-
tion thus contains the unification characteristics of both the Pati–Salam and the Georgi–Glashow
models.

The number of both principal and practical puzzles of the Standard Model is thus reduced,
but some of the questions still remain unanswered. Amongst them is the question: Why are there
three fundamental fermion families? It would then seem reasonable to extend the gauge symmetry
so as to also include a symmetry that mixes these fundamental fermion “families,” the breaking of
which should also explain the differences in the average masses of the fermions in the first, second
and third “families.” The simplest suggestion is the addition of another SU(3) factor,7 but this is
evidently ad hoc, and it would be more desirable if this “familial” symmetry were a subgroup of
some grand-unifying group.

The extension of the SO(10) symmetry that would suffice in unifying all three fundamen-
tal fermion families into one irreducible gauge group representation, and where there exists
a symmetry-breaking possibility such that precisely the three known families remain relatively
light while all others (if any) acquire masses of the order � 1015 GeV/c2 must be SO(18).
In models with such a large gauge group the number of additional particles (additional fun-
damental fermions, additional gauge bosons and Higgs fields) reaches many thousands, and
such models are not easy to take seriously [☞ Refs. [104, 285], and the references cited
therein].

Researchers of so-called GUT8 models have explored most of the Lie groups that are suffi-
ciently large to contain the Standard Model, but are in one way or the other minimal. In other
words, since this research is mostly speculative owing to the extrapolations over enormous ener-
gies, the researchers mostly adhere to the Ockham principle, whereby the symmetry structure and
the content (the fundamental particles list) of the Standard Model is extended only if this extension
offers an explanation for one of the Standard Model puzzles.

Superstring theory revived interest in some of the earlier explored exotic unifying models,
and foremost in a model based on the E6 gauge symmetry group. In this model, the fermions of
one family fit into the smallest (27-dimensional!) irreducible representation of the E6 group, so
each family of E6-fermions also contains 11 completely new fermions, the absence of which from
experiments must be explained separately. With the E6-model, one often mentions a model based
on the SU(3)c × SU(3)L × SU(3)R ⊂ E6 subgroup, dubbed “trinification.”9

8.3 On the formalism and characteristics of scientific systems

The unification of our knowledge about Nature into a single, coherent, comprehensive and log-
ically consistent system with as few as possible basic concepts and ideas is the leitmotiv of the
foregoing exposition. The same guiding idea also permeates the remainder of this book, where the
understanding of Nature so far acquired will be expanded with considerations about gravity and
the geometrization of physics, aspects of a possible unification of bosons and fermions, as well as
a final unification of matter, all its interactions and even spacetime.

It behooves us then to summarize the hierarchical structure that is usually referred to as a
“scientific system,” somewhat as a reprise of the introductory thoughts of Chapter 1, but now with
the background of Chapters 2–7.

7 This “familial” factor in the symmetry group must have a 3-dimensional representation to represent the three “families,”
and this 3-dimensional representation must be complex, as are the wave-functions of the fundamental fermions.

8 GUT stands for “Grand Unified Theory.”
9 This term is indeed the amalgamation of “trinity” and “unification”. Herein, trinity indicates the three SU(3) factors in

the gauge group; the double entendre allusion to the Holy Trinity may well be on purpose.
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8.3.1 The hierarchical structure of scientific systems
First of all, following the discussion in Section 1.1.2, by “scientific systems” one understands
systems of understanding Nature that are based on iterating the cycle of observing–predicting–
checking, which asymptotically improves this understanding. During this iterative process, the
mathematical models and the apparatus we use to describe natural phenomena are extended and
become technically more complex, and also describe Nature ever better and indicate an ever-
increasing wealth of detail. No Student could fail to notice that the mathematical language that
sufficed in the introductory hours of the first physics course quickly became inadequately scant, and
that mastering new material in physics made it necessary to develop this mathematical language.

In retrospect, both the material mastered in other courses and that presented in Chapters 2–7
indicate the following categories of descriptive structures:

A model provides a mathematical description (surrogate) for a concrete physical system, whether
this concerns a description of a concrete and simple physical system such as the pendulum
or the lever, or a similarly concrete but complex system such as the Standard Model of el-
ementary particle physics. In this description, every parameter quantifies a characteristic of
the given and concrete physical system. For a more precise definition, see Procedure 11.1 on
p. 416.

A theory is an axiomatic system in which a small number of physically motivated and logically
consistent axioms (postulates) determines an infinite sequence of consequences that ensue
with logical and mathematical rigor. Of course, we are interested in physics theories, of which
one also expects that neither its axioms nor any of their consequences contradict Nature;
the logically and mathematically incontrovertible consequences that (as yet) have not been
tested are thus the predictions of the theory.

A theoretical system is a coherent and logically consistent axiomatic system that contains several
distinct and otherwise independently defined and separately applicable theories.

Comment 8.5 Here, we are primarily interested in the theoretical approach, hence we
speak of theoretical systems . The analogous category of scientific systems of course
includes both theoretical and experimental aspects of the system.

During the second half of the twentieth century a subfield emerged within elementary
particle physics that is usually referred to as phenomenology, and which effectively connects
the ever more separated theoretical and experimental research. The scientific system then
of course includes this bridging subfield.

Strictly in form, a theoretical system is indistinguishable from a theory; the difference stems
from the physics application that dictates the source/motivation and justification of the axioms, as
well as whether a sub-system can be applied separately. The following concrete example of two
well-known theories as well as two theoretical systems containing those may serve to illustrate this.

Example 8.1 The special theory of relativity is based on two well-known postulates [☞ in-
troductory part of Section 3.1, and in particular Definition 3.1 on p. 84, and comments],
and of course the requisite mathematical apparatus that is well known from various
earlier courses and was used in Chapter 3.

Similarly, quantum physics may also be introduced axiomatically. Various Authors
cite different numbers of axioms: six [110], four [480], three [391] or two [29],
mostly because the longer lists also contain some purely mathematical results, whereas
the shorter lists presuppose the mathematical apparatus as independent (prerequisite)
material [29].
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In turn, there exist two relatively well distinguished theoretical systems, both of which
include both the special theory of relativity and quantum theory:

1. relativistic quantum mechanics, and
2. relativistic quantum field theory.10

Both theoretical systems satisfy the above-cited requirement to contain (at least) two dis-
tinct and otherwise independently defined and separately applicable theories. The latter
theoretical system is however more general: relativistic quantum field theory contains
relativistic mechanics. The precise distinction between these two systems is beyond the
scope of this book, but suffice it to state that an axiomatic approach to relativistic quan-
tum field theory also requires the system of so-called Wightman axioms [572] or the
Haag–Kastler alternative approach to local quantum physics, dubbed algebraic quantum
field theory [254], or some other effective substitute for these.

The difference is simplest to see by comparing two standard texts, by the same Au-
thors: Ref. [64] for relativistic quantum mechanics and Ref. [63] for relativistic quantum
field theory.

The objective of distinguishing these categories of descriptive structures is to identify the
important characteristics that distinguish models from theories and from theoretical systems. Con-
sider again a concrete example: the success of Bohr’s model of the hydrogen atom is oft cited as
the turning point in adopting quantum physics.

Simplified, one says that classical physics cannot describe the hydrogen atom. Notice that
classical physics is certainly a theoretical system, even if by classical physics one understands only
classical mechanics with the additional, and simplest description of the Coulomb interaction.

We are now in a position to note the finesse (and trap) of Popper’s falsifiability crite-
rion [☞ Digression 1.1 on p. 9] – and so also of Conclusion 1.2 on p. 9: The necessity of quantizing
the angular momentum indicates the falsifiability of one concrete model of classical physics – the
classical planetary model of the atom by Rutherford, implicitly including the assumption of contin-
uously variable angular momentum. This does not speak of the theoretical system (called classical
physics) as a whole. As the classical planetary model predicts that the electrons in the orbit must
lose energy via Bremsstrahlung – which of course is not the property of true atoms in Nature – one
faces the format of a proof by contradiction. The logic of that type of proof indicates that at least
one of the concrete assumptions (premisses) of the model must be at fault. As this includes all
implicit/tacit assumptions, it is not a-priori clear that the non-classical quantization of the angular
momentum is the only resolution of the disagreement between the model and Nature.

The fact that no one came up with a construction of a classical but stable planetary model of
the atom11 and many other results (Planck’s black body spectrum formula, Einstein’s explanation
of the photoelectric effect, Compton’s explanation of the effect that is now named after him) jointly
indicate that the quantumness is convincingly indispensable in the description of Nature. That is,

10 In practice, one always understands “quantum field theory” to be relativistic. As our present aim is to explicitly
emphasize both relativity and quantumness of this theoretical system, both adjectives are explicitly stated.

11 Note that Bohr’s postulate of orbital angular momentum quantization all by itself does not necessarily preclude a
purely classical explanation. For example, the complex system of Saturn’s rings exhibits resonance phenomena that do
provide excellent explanations for the stability of at least some of them. Similarly, the Titius–Bode rule, 1

10 (4+3·2n) for
n = −∞, 0, 1, 2, 3 . . . and in units of Earth’s semi-major axis, specifies the semi-major axis of each solar planet to within
a small percentage except for Neptune. Neither this rule nor its generalization, Stanley Dermott’s law (which then also
applies to major satellites of solar planets), have a known theoretical explanation, although simulations support the
belief that the regularity stems from many-body resonant phenomena [262]. It therefore simply does not follow that
some as yet unknown but purely classical resonance phenomena could not in principle provide for the stability of certain
select – quantized as it were – atomic orbits.
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the quantum description of Nature is the only known one, wherein models are as best as known
consistent with all these and a vast many other phenomena observed in Nature.

However, the quantum description of Nature cannot possibly refute (or falsify) classical theory,
since classical theory is a limiting case (i.e., an approximation [☞ Figure 8.1 on p. 298]) and so
also an integral part of the quantum theory. It makes no sense to state that the whole refutes one
of its integral parts or limiting cases. Quantum theory extends classical theory and is applicable
to concrete systems where classical theory is no longer sufficiently accurate: recall the gradual
transitions in the sketch in Figure 8.1 on p. 298 and the dependence of this feature on the adopted
conventions of accuracy.

The analogous situation holds for the theory of relativity which of course does not refute
its “non-relativistic” limiting case. The situation is analogous also with the (desired, but not yet
existing) generally relativistic quantum field theory – i.e., the theory that coherently and con-
sistently unifies both quantumness and general relativity in Nature. All so far known models
that faithfully describe the various natural phenomena and aspects of Nature must be integral
parts (as limiting or special cases, or as concrete applications) of this all-encompassing theoretical
system.

Some of these objections to the ideas regarding falsifiability also emerge upon exam-
ining more closely the helicoidal cycle that Popper uses to describe advances in scientific
knowledge [442]:

Problem
situation 1

→ Tentative
theory

1
→ Error

elimination 1
→ Problem

situation 2
→ · · · (8.22)

Here the appearance of a “problem situation” (such as an unexplained observation) triggers the
creation of several competing “tentative theories” that do explain the problem situation. These
are then subject to increasingly more rigorous testing (attempts at falsification), which eliminates
those that turn out to be erroneous in this third step. The remaining (unfalsified) theory is then
upheld until the next “problem situation” emerges and the cycle repeats.

This reminds us of the three-step iterative process “observe–model–predict” described in
Section 1.1.2, which may be recast into the above format for comparison:

Observation 1 → Model 1 → Predict 1 → Observe 2 → · · · (8.23)

The following observations are immediate on comparison:

1. The outcome of an observation need not pose a “problem situation,” i.e., a conflict with the
previously established/trusted theory. It could be anywhere between complete confirmation
and outright conflict, including indications for minor corrections. But most importantly, new
observations may well imply wholly new phenomena, the qualitative separateness of which
may not be fully understood until much later. For example, both electric and magnetic phe-
nomena had been noticed some 24 centuries before they were systematically represented in
mathematical models by Coulomb, Gauss, Ampère, Faraday, etc.

2. Models are neither theories, nor tentative theories nor conjectures, but concrete mathemati-
cal surrogates of a predefined accuracy and tolerance, and constructed within the framework
provided by one or more pertinent theories or theoretical systems.

3. Comparisons of model predictions against Nature rarely have a binary outcome of either-
true-or-false, and so can rarely lead to outright falsification of the model at hand. This is
even more true of theories and theoretical systems, as discussed above and in Digression 1.1
on p. 9, but cannot be overemphasized:
(a) relativistic physics does not falsify non-relativistic physics, but extends it;
(b) quantum physics does not falsify classical physics, but extends it.
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Conclusion 8.2 It is a historical fact that the contemporary description of Nature is a grow-
ing and integrated theoretical system, based on a number of postulates that is relatively
small as compared to the scope and span of this description, and where the whole system
as well as the candidates for additions are continually filtered by comparison with Nature
and also by the need to form a coherent and logically consistent integration.

In this sense is the contemporary description of Nature a growing organism.

We will return to this discussion in Section 11.5.

8.3.2 Inside indications of limitations
One of the systemically interesting characteristics of classical field theory, which includes the spe-
cial theory of relativity, is that the field theory (theoretical system) indicates the limits of its own
applicability.

The electrodynamics of charged particles
Start with the fact that both the formulation and the understanding of electrodynamics – as the
basic example of a concrete classical field theory and with concrete application in mind – has
essentially changed since the original, James Clerk Maxwell description in 1873.

In this original description, the electromagnetic field represented the deformation of aether,
just as sound is a wave-like deformation of the medium through which it passes. For the aether
itself, one supposed that it is at rest in Newton’s absolute space and time. In this description,
charged matter appears as a discontinuity in aether and in this sense is of secondary meaning.

In 1892, Hendrik A. Lorentz reformulated electrodynamics as a theory of the interactions
between atomistic material particles and the all-permeating electromagnetic field, which perme-
ates even the interior of the material particles. Lorentz initially had in mind the ions as these
basic charged particles, but upon Thomson’s discovery of electrons, in 1897, Lorentz’s reformu-
lation of electrodynamics focused on interactions of the electrons and the electromagnetic field.
Following Lorentz’s description, the charged particles are represented as little pellets of a finite
size [☞ Digressions 4.1 on p. 132, 3.13 on p. 123, and 8.2 on p. 313], the electric charge of which is
distributed over the surface and possibly also in the interior. Einstein’s special theory of relativity –
introduced as the basis for a description of electrodynamics of charged objects in motion – de-
mands that the energy and momentum of a particle under the action of the Lorentz transformations
change as components of a 4-vector, that the mass of the particle is Lorentz-invariant [☞ Chap-
ter 3], and that they are related by equation (3.36), i.e., that the mass is the Lorentz-invariant
magnitude of the 4-momentum, i.e., energy–momentum.

A way to satisfy this requirement in the Abraham–Lorentz model of an electron was never
found, and all indications are that the 4-momentum, and then also the mass obtained from the
relation (3.36), may be defined independently from the interactions of the electron with the elec-
tromagnetic field. From a contemporary, symmetry vantage point, the electric charge is a conserved
Noether charge that corresponds to the continuous gauge symmetry (5.14), while the 4-momentum
is the conserved Noether charge corresponding to spacetime translations [☞ Section 2.4.2, as well
as Conclusion 9.6 on p. 329]. Since the gauge transformations (5.14) and spacetime translations
are both logically and functionally independent, it follows that the mass of a particle must be
independent of its electric charge.

Thus, it follows that classical electrodynamics is not complete in the sense that it does not
seem capable of producing a consistent and complete model for charged material particles. As the
well-known Michelson–Morley, Fizeau and other experiments imply that the concept of aether does
not describe the experimental facts, it follows that one cannot go back to the original Maxwell view
either, wherein material particles are “merely” discontinuities in aether.
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As noted in Digression 3.13 on p. 123, the total energy (mass) of the electric field of a point-
like electron diverges. Paul A. M. Dirac, in 1938, suggested a covariant procedure for separating
the finite portion of this energy.12 This procedure, however, results in a reactive force that is pro-
portional to the derivative of acceleration, changes the familiar expression for the Lorentz force
in electrodynamics, and causes the pre-acceleration effect, where a particle starts accelerating be-
fore a force is applied [35]! It would seem to be possible to avoid the effects of pre-acceleration
only if the electron were large enough so that the (changes in the) field would need enough time
to permeate the particle. The current experimental bounds are orders of magnitude smaller than
the so-obtained estimates; see, however, Refs. [420, 421, 336, 17, 464, 78, 79] for a rather more
complex non-point-like model, which is argued to be consistent with contemporary experiments.

Digression 8.2 Digression 3.13 on p. 123 showed that the energy of the electric field of an
electron – which is in the Abraham–Lorentz model to be thought of as a rotating sphere
of radius re – equals αeb h̄ c

re
. The value b = 1

2 holds if the electric charge of the electron
is uniformly distributed over the surface of the sphere, and b = 3

5 if it is uniformly
distributed over the interior of the sphere. At any rate, b is a constant of the order ∼1,
which is true even for more complex electron charge distributions.

If this energy – by definition necessary to bring the electric charge of the electron
from infinite distances into any concrete configuration – is identified with the electron
rest energy, mec2, one obtains that the electron classical radius is

re = αeb
h̄

mec
= αe b λ̄e = 2.817 940 289 4× 10−15 b m, (8.24)

where λ̄e = λe
2π is the so-called (reduced) Compton wavelength [☞ Table C.3 on p. 527]

and which – up to the factor b – agrees with J. J. Thomson’s estimates from collision
processes. Namely, Thomson found the effective cross-section for electromagnetic radia-
tion scattering off of non-relativistically moving electrons to be proportional to the area
r 2

e , which agrees with the elementary analysis such as shown in Example 3.2 on p. 111.
It follows that b � 1, and that b cannot be much smaller than 1. Interestingly, it is
again Compton scattering – albeit at novel high-energy regimes – that may provide new
information in this continuing quest [78, 79]; see also Refs. [420, 421, 336, 17, 464, 57].

In modern experiments, electrons are collided with energies of the order of 102 GeV, indi-
cating that they come to a distance of about 10−18 m from each other – and do not show any
sign of spatial structure. Down to such distances, electrons behave as point-like material parti-
cles, in full agreement with the relativistic quantum field theory, and the Gaussian distribution
of the probability of finding the electron about this point, completely typical in quantum theory.
The Abraham–Lorentz (and any other, classical) model of charged material particles thus does not
agree with the experimental fact that (re)exp. < 10−18 m, nor with the general theoretical result
about the minimal size of the charge distribution [☞ Section 11.4]. Even the proton, which is not
an elementary particle, is 2–3 orders of magnitude smaller than the classical radius of a particle
with the elementary unit of electric charge.

From this one concludes that, for particles of mass m and electric charge q e, the classical
radius rcl ∼ αe

q h̄
m c and the corresponding time tcl ∼ αe

q h̄
m c2 are the (lower) bounds of applicability of

this scientific system called the classical electrodynamics of charged bodies. Notice that h̄ appears

12 This type of procedure is today referred to as “regularization” and is an integral part of renormalization computations.
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explicitly in these bounds only owing to the definition of αe; writing rcl ∼ q e2

4πε0m c2 and tcl ∼ q e2

4πε0m c3

instead gives these definitions a decidedly more classical appearance.

Pointillist quantum gravity
Section 1.3, and especially 1.3.3, has already discussed the joint characteristic of the combination
of quantum theory and the qualitative characteristic of the theory of relativity: the existence of
a minimal, Planck length. The analysis of Section 1.3.3 indicates that it suffices to endow the
quantum theory with Newtonian gravity and the relativistic requirement that no material object
can travel faster than the speed of light in vacuum. However, it also indicates that the Planck
length, as a (lower) bound of resolution and knowledge, is not a characteristic of the quantum
theory by itself, but of the theoretical system obtained by joining the quantum theory with (at least
Newtonian and also with Einsteinian) gravity, and the relativistic limit on speeds v < c.

One thus expects this amalgamated theoretical system not to be fundamental, but to be an
approximation to a more complete theoretical system. In fact, with the view that physics theories
and theoretical systems only asymptotically approach their aim, the Final Theory is of course just
a dream, and even an impossible dream – to paraphrase Refs. [553] and [549, 338], respectively.
Nevertheless, the contemporary physics en route to that dream is no less real, pragmatic and
successful in describing Nature as comprehensively, coherently and consistently as possible.

The (super)string theory (in fact a theoretical system) is currently the most complete candi-
date, and it necessarily contains quantum general-relativistic field theory, but we do not at present
know enough about this complex theoretical system for a final estimate as to the measure in
which this theoretical system can contain a faithful description of (our) Nature. For the most part,
this uncertainty derives from the fact that many of the questions raised within and about (su-
per)string theory have simply never before been posed. Other attempts, such as loop gravity and
spacetime foam [489], as well as some more recent attempts, are insufficiently developed even
just as (merely) theories of quantum gravity, and they certainly do not include matter and other
interactions as (super)string theory does; we will return to these issues in Chapter 11.



9
Gravity and the geometrization of
physics

There exist excellent textbooks on Einstein’s theory of gravity, ranging from non-technical intro-
ductions [329, 469, 187, 10, 231] to technically detailed ones [264, 367, 390, 55, 205, 414,
103, 548, 210, 131, 164, 66, 135, 96, 398, 506, 272, 315, 380, 342], as well as on tensor dif-
ferential calculus in curved spaces [☞ [508, 62, 563, 210] to begin with], which is typically
regarded as a prerequisite for a technical mastery of the material. The purpose of this chapter then
cannot compete with these rich and detailed sources nor with textbooks on black holes and worm-
holes [103, 543], gravity in general and cosmology [418, 481, 419, 28, 558], and the interested
Reader is wholeheartedly directed to this literature.

Complementing these resources, the general theory of relativity as a theory of (classical,
i.e., non-quantum) gravity is here presented in comparison with Yang–Mills gauge theories from
Chapters 5–8, thus continuing the unifying guiding idea that led us to this point; approaches to
quantum gravity will be addressed in Chapter 11.

9.1 Einstein’s equivalence principle and gauge symmetry

Most books that discuss general relativity and gravity – regardless of the technical level – start
off with A. Einstein’s principle of equivalence. Complementing this historically standard approach,
gravity and general relativity may also be described and even “discovered” by (1) carefully ex-
amining the possible spacetime geometries as frameworks for real physical observations as done
by R. Geroch [205]; (2) exploring the appearance and use of multi-valued fields [☞ magnetic
monopole, Section 5.2.3] in a variety of physical models as done by H. Kleinert [315]; or (3) mod-
eling the familiar gravitational and inertial phenomena from the point of view of a particle theory
virtuoso as done by R. P. Feynman [164].

Borrowing from these approaches, we do start with Einstein’s equivalence principle, but show
that it is conceptually identical to the idea of gauge symmetry employed in Chapters 5 and 6. Thus
it fits perfectly in the unifying “business card” of Nature, Table P.1 on xiii. Using the same concepts
developed in Chapters 5 and 6, this lets us identify the analogue of the gauge vector potentials,
construct a Lagrangian for them and derive Einstein’s equation (9.44), below.
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9.1.1 Inertial vs. gravitational mass
It was pointed out in Digression 8.1 that the full Lorentz transformations (including rotations and
boosts; see Section 3.1.1) are a symmetry of the well-established Maxwell equations (5.72), while
the Galilean group is a symmetry of Newtonian mechanics. While the Galilean group is the c → ∞
limit of the Lorentz group, it is not a subgroup, and the two frameworks cannot be coherently
combined, so as to describe the electrodynamics of moving electric charges. As is well known, the
c → ∞ limit of the Maxwell equations (so they would exhibit the Galilean group of symmetries)
is unphysical: light propagates at finite speed. We are thus left with Nature’s choice, relativistic
physics.

The framework of relativistic physics, however, leaves a curious dichotomy regarding the
concept of mass: On one hand, we have a simple mathematical result (3.36), which equates the
Lorentz-invariant magnitude of its 4-momentum with the mass of an object, which is in turn iden-
tified (3.28)–(3.30) with the “inertial mass” familiar from non-relativistic mechanics. This mass is
the ratio m = |�F|

|�a| , where �F is a force applied to an object, �a its resulting acceleration, where all
observations are made in a coordinate system where the object was initially at rest, and we may
even consider the limit where �F and so also�a are arbitrarily small.

On the other hand, in Newton’s universal law of gravity, the mass of an object determines
how strongly the gravitational attraction acts upon it – and there is no a-priori reason for this
“gravitational mass” to be the same as the “inertial mass.” That is to say, there remains the logical
possibility that inertial effects upon an object may not be proportional to the same “mass” as are
the gravitational effects, which is something Nature can – and does – decide for us: They are indeed
one and the same.
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Figure 9.1 The classic Eötvös experiment: balancing the dumbbell horizontally compares the grav-
itational forces, while balancing it in the obtuse upward direction (grey arrows) compares inertial
forces.

Experiments to this end have been carried out since around 1885, at first by Eötvös Loránd,
where two substantial masses connected by a rod are balancing, suspended by a thin thread. The
gravitational force acts towards the center of the Earth, while the inertial (“centrifugal”) force due
to Earth’s rotation acts away from the axis of rotation, at an obtuse angle from the gravitational
force. By aligning the horizontally balanced dumbbell initially in the east–west direction, all forces
acting on each massive object are perpendicular to the connecting rod, and any difference in the
sum of forces acting on one object vs. the other will produce a torque and twist the dumbbell from
the initial east–west alignment. No matter what variety of the “eastern” and the “western” object
in this torsion dumbbell were tried, the gravitational and the inertial forces were always found to
be in the same proportion, thus proving the equality of the “inertial” and the “gravitational” mass,
by now to the precision (relative error) of 10−11 [462].

Another logical possibility, that antiparticles [☞ Section 2.3.7] and particles repel each other
by gravity, is easily dispelled in similarly high-precision experiments with elementary particles
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such as the neutral kaons [☞ Section 4.2.3]: Since the decay eigenstates (4.65), |K0
S〉 :=

1√
2
(|K0〉−|K 0〉), and |K0

L〉 := 1√
2
(|K0〉+|K 0〉), are linear combinations of the particle and its an-

tiparticle and beams of K0
S and K0

L propagate in Earth’s gravitational field between creation and
detection, a difference in the sign of the masses of K0 and K0 would have to show. The experiments
indeed do have the requisite precision, and indicate that K0 and K0 have a positive (attracting)
“gravitational” mass [164].

Between his seminal papers on special and general relativity, 1905–16, Einstein of course did
not know about kaons, but must have been aware of the Eötvös-type experiment and its variations.
He must have also been aware of the physically unnatural restriction to inertial coordinate systems
within the special theory of relativity, as well as the fact that changes in the gravitational field
could not propagate faster than the speed of light. To all of these issues, he came up with a single
and elegant solution:

Conclusion 9.1 (Principle of Equivalence) Not only are the “inertial” and the “gravitating”
masses equal, but inertial and gravitational physical effects are in fact identical .

Tracing Einstein’s line of thought in the popular as well as most standard textbook presentations
repeatedly brings up the example of a person in an enclosure such as an elevator with no windows.
While at rest at the ground floor, the person in the elevator feels Earth-normal gravity. While the
elevator accelerates upward, the inertial effect is added to the gravitational effect, and the person
experiences an increase in their weight – which a scale will readily verify is quite real. During
the constant motion between the floors, the weight experienced returns to Earth-normal. Finally,
while the elevator decelerates when reaching the destination floor above, the person experiences a
decrease in their weight. In fact, this much can be easily reasoned simply from Newton’s third law:
the force measured by the scale on which the person in the elevator stands doesn’t care whether
the reaction (with which it holds the person from falling through) balances the gravitational or the
kinematic acceleration.

Extrapolating from these very familiar experiences, one can easily imagine a person within
an enclosure, who would not be able to tell whether the experienced weight (or lack thereof)
is a consequence of the gravitational force of some nearby planet, or the fact that the enclosure
(perhaps a rocket ship) is moving in an accelerated fashion. Indeed, this is clearly true as long
as the considered accelerated motion and related inertial forces and the gravitational forces are
confined to one direction.

Even certain simple arrangements with additional forces and accelerations in additional di-
rections easily permit such a dual interpretation. Consider for example a person at the North Pole,
observing the motion of a so-called “spherical” pendulum, such as a bundle of keys attached to
a keychain that the person holds firmly. With the Earth’s rotational axis passing through the per-
son’s hand holding the keychain, the keys would be moving under the influence of three types of
forces:

1. the gravitational force (�Fg), vertically downward to a very good approximation;
2. the horizontal “centrifugal” force (�Fcf), directed away from the axis of Earth’s rotation;
3. the horizontal Coriolis force (�FC), at every instant perpendicular to both the axis of Earth’s

rotation and to the direction of motion of the keys.

Exactly the same effects would be observed by a person in an accelerating rocket ship that addi-
tionally rotates about the direction of its linear motion – such “co-rotating” non-inertial coordinate
systems were considered on p. 84, so as to exclude them from the Definition 3.1 on p. 84 of inertial
coordinate systems; see the left-hand pair of illustrations in Figure 9.2.
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Figure 9.2 Two rotating pendula and the corresponding co-rotating accelerating coordinate systems.

Finding an appropriately accelerating coordinate system to be equivalent to an arrangement
with more and more complicated systems of forces and accelerations of course becomes more and
more complicated. For example, if the person with the swinging keychain were to move away from
the North Pole, the direction of the gravitational acceleration would no longer coincide with the
axis of Earth’s rotation – as is the case with Foucault’s pendulum in Paris, France. Effectively, the
direction of gravitational acceleration for that person co-rotates about the axis of Earth’s rotation,
with which it also forms a nonzero angle. The corresponding accelerating coordinate system would
then have to accelerate in a direction that forms the complementary angle with the Earth’s axis of
rotation, and precesses about it, thus accelerating along an expanding helicoidal path; see the
right-hand pair of illustrations in Figure 9.2.

Any mechanical system under the influence of a homogeneous gravitational field is already
perfectly equivalent in Newtonian mechanics to making the same mechanical system uniformly
accelerate. Einstein’s equivalence principle (Conclusion 9.1) is, however, fully general and applies
to all physical phenomena, not just mechanics. W. Pauli then showed in his inimitable swift (and
parsimonious) fashion, that this principle implies [414, Section 53]:

1. The influence of Newtonian (weak-field) gravity on a slowly moving object is determined by
a scalar potential.

2. The gravitational field of stars causes a red shift in their spectral lines.
3. Even in a static gravitational field, light rays do not follow a geodesic in the 3-dimensional

sense, but in the 4-dimensional spacetime sense: light rays are bent by gravity.

We will discuss the first of these results below, after introducing the requisite technical details.

9.1.2 Spacetime geometry and general coordinate transformations

As Geroch shows in detail [205, pp. 67–165], for every arrangement and scenario of particles mov-
ing in gravitational fields, there is a co-moving spacetime geometry. These are coordinate systems,
each with four coordinates xμ, μ = 0, 1, 2, 3, and a specified metric, gμν(x) of signature (1, 3);
see Definition 3.2 on p. 89, we will explore some of the more interesting ones in some detail in
Section 9.3. However, unlike in Chapter 3, these coordinates are inherently curvilinear in most
applications, as should be clear from the example in the right-hand illustrations of Figure 9.2.

Away from certain exceptional locations (singularities) to be discussed in Section 9.3 and
in sufficiently small regions (so-called patches) of spacetime, these inherently curvilinear coor-
dinates can always be related to the Cartesian coordinates, much as every smooth curve can be
approximated by its tangent. In Cartesian coordinates, the generalization of Pythagoras’ theorem
to spacetime [☞ relations (3.15)–(3.17)] defines the (spatial) so-called line element:
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ds2 := −c2dτ2 = dxμ(−ημν)dxν. (9.1)

The relation (3.11c) then provides the expression in arbitrary coordinates xμ �→ yμ = yμ(x):

ds2 := dxμ(−ημν)dxν = dyρ
(∂xμ

∂yρ
)
(−ημν)

( ∂xν

∂yσ

)
︸ ︷︷ ︸ dyσ = dyρ gρσ(y) dyσ, (9.2)

gρσ(y) :=
(∂xμ

∂yρ
)
(−ημν)

( ∂xν

∂yσ

)
, the metric tensor. (9.3)

Comment 9.1 Note that the overall sign of the metric tensor (9.2) is opposite from the
overall sign of the metric tensor (3.19). This unfortunate difference in conventions stems
from the fact that the metric tensor (9.2) in general relativity defines a distance , while the
expression (3.17) defines the proper time of a particle that moves in spacetime.

The analogous computation for an arbitrary invertible coordinate substitution yμ → zμ(y)
produces

gμν(y) =
∂zρ

∂yμ
∂zσ

∂yν
gρσ(z), (9.4)

proving that the metric tensor gμν is a rank-2, type-(0, 2) tensor.1 More precisely, we define:

Definition 9.1 Coordinate system transformations xμ → yμ(x) that are (1) unambiguously
invertible, and (2) preserve the space/time character (signature) of spacetime [☞ Defini-
tions 3.2 on p. 89 and 3.3 on p. 90] are general coordinate transformations .

Unless otherwise stated, we only consider coordinate transformations that belong to this class.
Using the matrix notation, relation (9.4) may be written as

[
g..(x)

]
=

[ ∂z
∂x

][
g..(z)

][ ∂z
∂x

]T, (9.5)

where the superscript T denotes matrix transposition.2 Computing the determinants produces

g(x) =
(

det
[ ∂z
∂x

])2
g(z), where g(x) := det

[
g..(x)

]
. (9.6)

Since the metric tensor in spacetime has an odd number of negative eigenvalues,3 it follows that
the determinant of the metric tensor is negative, and√

−g(x) = det
[ ∂z
∂x

]√
−g(z) (9.7)

1 According to definition (9.2) of the quantity ds as a distance – which for purely spatial 4-vectors must agree with the
familiar notion of the Euclidean distance – and owing to the “particle” convention (3.19) features the relative difference
in the overall sign between ημν and gμν: in flat spacetime, gμν → −ημν. Both quantities are, however, called metric
tensors, and the Reader is expected to read from the context which of the two conventions are used.

2 The careful Reader will note that in the matrix representation of the components gρσ(z) one of the two indices must
be counting rows while the other then must be counting columns. In the contraction with the matrices of partial
derivatives in relation (9.4), the upper index (on the z-coordinate) in one of these two matrices must count columns
(being contracted with the rows of [gρσ ]), but in the other it must count rows, whence the matrix representation of one
of these matrices of partial derivatives is necessarily transposed in comparison with the other one.

3 The general coordinate transformations, by Definition 9.1, preserve the signature, i.e., the numbers of positive and
negative eigenvalues of the metric matrix.
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is a real scalar density of weight −1. The weight of
√−g being −1 signifies that it transforms

oppositely from the 4-fold differential (which then is a scalar density of weight +1):

d4x = det
[∂x
∂y

]
d4y, (9.8)

which is computed straightforwardly (B.37) in Appendix B.2.1.

Conclusion 9.2 The result (9.7) and the computation (B.37) in Appendix B.2.1 then imply
that √

−g(x) d4x =
√
−g(z) d4z (9.9)

is an invariant with respect to the general coordinate transformations [☞ Definition 9.1 on
p. 319], and provides the invariant (differential) 4-volume element .

Given the metric tensor gμν(y), the inverse metric tensor is defined by matrix inversion:

gμν(y) : gμν(y) gνρ(y) != δ
μ
ρ

!= gρν(y) gρμ(y), (9.10)

point-by-point y = (y0, . . . , y3) in spacetime. Since

0 = ∂σ
(
δ
μ
ρ

)
= ∂σ

(
gρν gρμ

)
=

(
∂σgρν

)
gρμ + gρν

(
∂σgρμ

)
, (9.11)

it follows that
(∂σgλμ) = −gρμgλν(∂σgρν). (9.12)

In turn, derivatives of the determinant g = det[g..] are computed using the Jacobi relation:

∂ρg = g gμν ∂ρgμν, (9.13)

from which it follows that

∂ρ
√−g = − 1

2
∂ρg√−g

= − 1
2

√−g
(

gμν ∂ρgμν
)

= 1
2

√−g
(

gμν ∂ρgμν
)
. (9.14)

For more detail, see Appendix B.2.3.

9.1.3 Einstein’s equivalence principle as a gauge principle
Reconsider an object such as Ψ(x), the wave-function used to describe an electron in Chapter 5. As
discussed in detail in Section 5.1 and employed throughout Chapters 5–7, the (complex) function
Ψ(x) perforce contains unphysical information and is physically equivalent to eiϕ(x)Ψ(x), where
the phase ϕ(x) is an undetermined function over spacetime. Consequently, the rate of change of
Ψ(x) in spacetime is computed not using partial derivatives, but using gauge-covariant deriva-
tives (5.13), i.e., (5.117): Dμ := ∂μ + i

h̄ c AμQ. Since Ψ(x) depends on the spacetime point both
explicitly and also through the undetermined phase ϕ(x), the partial derivative in Dμ computes
the rate of change in spacetime owing to the explicit dependence on spacetime, while the i

h̄ c AμQ
terms provides the “correction” owing to the indirect dependence via the undetermined phase,
ϕ(x).

The discussion in Section 9.1.1 showed that Einstein’s principle of equivalence is itself equiv-
alent to the statement that the difference between gravitational and inertial effects is purely a
difference in the mathematical description, i.e., a difference in the choice of the coordinate system.
Section 9.1.2 then formalizes the notion of spacetime geometry, as a spacetime coordinate system



9.1 Einstein’s equivalence principle and gauge symmetry 321

together with the corresponding metric, and changing this choice is accomplished by means of a
general coordinate transformation.

As discussed by Pauli [414, p. 150], besides the technical aspects of the general coordinate
transformations as formalized by tensor calculus, the key physical import of Einstein’s principle of
equivalence as provided in Conclusion 9.1 on p. 317 is its universal nature. That is, the equality
of the various gravitational and inertial effects holds not only for certain (say, mechanical) phe-
nomena, but for all physical phenomena. Therefore, there can be no physical distinction between
them, and gravitational and inertial effects are not merely equal, but identical.

However, this insistence on universality is implied by the completely general (applicable to
all of fundamental physics!) first, “conceptual” notion of unification as specified in part (a) of
Conclusion 8.1 on p. 300. Under the umbrella of this overarching unifying principle, Einstein’s
equivalence principle is equivalent to

Conclusion 9.3 (Gauge principle of coordinate equivalence) General coordinate transforma-
tions [☞ Definition 9.1 on p. 319] can have no physically measurable consequences – and
so must be symmetries [☞ Appendix A.1.3].

In turn, this is conceptually identical to the gauge principle as employed in Chapters 5–7, except
that the principle is here applied to the parametrization of spacetime, rather than to the abstract
phases of wave-functions as in Chapters 5–7. Also, general coordinate transformations are typically
nonlinear; this renders any gauge theory relating to general coordinate transformations intrinsi-
cally more complicated than the gauge theories considered in Chapters 5–7. We will explore the
parallels and the differences between Yang–Mills gauge theory as discussed in Chapters 5–7 and
general relativity, and will develop a selection of topics within general relativity specifically to that
end. The Reader should, however, be aware of other possible approaches to gravity (some of them
not entirely unrelated to the approach adopted herein), such as “gauge gravity” [451, 276] or
“emergent gravity” [486, 315], to name a few.

Nevertheless, the conceptual similarity between the gauge principle as employed in Chap-
ters 5–7 and the gauge equivalence principle (Conclusion 9.3 on p. 321) is striking:

1. Positions (in space of phases vs. in spacetime):
(a) The choice of the overall phase of a wave-function is not observable; relative phases of

different summands in a linear combination of wave-functions are observable.
(b) The position of an object in spacetime is not observable; relative positions of different

objects – distances between them – are observable.
2. Local (gauge) symmetry (changing the “position”):

(a) Changing the choice of the overall phase of a wave-function locally in spacetime, i.e.,
by amounts that differ from point to point in spacetime.

(b) Changing the choice of the coordinate system locally in spacetime, i.e., by (nonlinear)
general coordinate transformations.

3. Gauge-covariant derivative operators (see below):
(a) Correct the computation of the rate of change in spacetime to compensate for the

spacetime variations in the choice of the undetermined phase.
(b) Correct the computation of the rate of change in spacetime to compensate for the

spacetime variations (nonlinearity) in the spacetime coordinate system itself.
4. Gauge interactions and curving trajectories (see below):

(a) Gauge potentials and fields interact with test particles and curve their trajectories.
(b) Spacetime is curved by the presence of matter, and curves the trajectories of test

particles (including light).
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9.1.4 Exercises for Section 9.1

✎ 9.1.1 Show that, when yμ are also Cartesian spacetime coordinates, the relation (9.3)
implies that gρσ(y) = −ηρσ.

✎ 9.1.2 Show that, when both xμ and yμ are Cartesian spacetime coordinates, ∂xμ
∂yρ must be a

Lorentz transformation as discussed in Section 3.1.1.

✎ 9.1.3 Prove (9.9).

✎ 9.1.4 Prove the result (9.14).

9.2 Gravity vs. Yang–Mills interactions
Having identified in Section 9.1.2 the key elements by which tensor algebra as used in Chapter 3
generalizes to the general spacetime geometries (Appendix B.2 has more details), we turn to em-
ploying the gauge symmetry concept from Chapters 5–7 to general coordinate transformations. In
particular, given a 4-tuple of contravariant components Aμ(x) of a vector field as well as a 4-tuple
of covariant components Bμ( x) of another vector field, we quote the definition of the covariant
derivatives:

result (B.55): DμAρ :=
[
∂μAρ + ΓρμνAν

]
and DμBν :=

[
∂μBν − ΓρμνBρ

]
. (9.15)

As shown in Appendix B.2, the second term in these derivatives compensates for the fact that the
frame of reference, i.e., system basis vectors in a curvilinear coordinate system, varies point-to-
point in spacetime. They also ensure that these derivatives are covariant with respect to general
coordinate transformations:( ˜DμAρ(y)

)
=
∂xν

∂yμ
∂yρ

∂xσ
(
DνAσ(x)

)
and

( ˜DμBρ(y)
)

=
∂xν

∂yμ
∂xσ

∂yρ
(
DνBσ(x)

)
, (9.16)

and covariant derivatives of vectors transform as rank-2 proper tensors. That is, these covariant
derivatives behave with respect to general coordinate transformations identically as do the gauge-
covariant derivatives (5.7), (5.117) and (6.6) with respect to the local (gauge) symmetry of Yang–
Mills type models described in Chapters 5–7.

It should then present no surprise that the necessary introduction of the Γρμν-dependent “cor-
recting” terms in the covariant derivatives (9.15) – to accommodate for the spacetime variable
coordinatization of the spacetime geometry – will result in a gauge interaction. Furthermore, the
results (9.48)–(9.49) below will identify this interaction as gravity.

9.2.1 The metric connection and the Christoffel symbol
The formal characterization (B.66) of the covariant derivative is formally identical to the general
form (5.10), i.e., (6.6); its action on a type-(p, q) tensor is given by the general relation owing to
the definition (B.40):

(Dμ T)ν1···νp
ρ1···ρq = (∂μT

ν1···νp
ρ1···ρq ) +

p

∑
i=1

Γνi
μσi T

ν1···σi ···νp
ρ1·········ρq −

q

∑
i=1

Γσi
μρi T

ν1·········νp
ρ1···σi ···ρq ; (9.17)

see also Appendix B.2.3. The well-known special cases are (9.15) and the rank-2 case:

(Dμ T)νρ = ∂μTνρ − ΓσμνTσρ − ΓσμρTρσ. (9.18)



9.2 Gravity vs. Yang–Mills interactions 323

Notice: the precise index notation of the covariant derivative action on tensor densities depends
on the rank and type of those tensor densities, as then also does the action of the Levi-Civita
connection 4-vector IΓμ, i.e., the Christoffel symbol Γρμν.

It follows that the symbol Γρμν transforms inhomogeneously – and so is not a tensor:

Γρμν(y) =
∂xσ

∂yμ
∂xτ

∂yν
∂yρ

∂xκ
Γκστ(x) +

∂yρ

∂xσ
∂2xσ

∂yμ∂yν
, (9.19)

exactly as in the case of gauge 4-vector potentials in the (abelian) electrodynamics (5.89) and
non-abelian chromodynamics (6.6b). At a first glance, the inhomogeneous term in the expres-
sions (5.89) and (6.6b) is proportional to (∂μϕϕϕϕ) = (∂μU)U−1, which may seem different from the
second term in the result (9.19). However, using the matrix notation

[U ]ρσ =
∂yρ

∂xσ
, we have

∂yρ

∂xσ
∂2xσ

∂yμ∂yν
= [U ]ρσ

∂

∂yμ
[U−1 ]σν, (9.20)

which then fully agrees with (∂μϕϕϕϕ) = (∂μU)U−1 = −U(∂μU−1), up to a conventional sign of the
phase “angle” ϕϕϕϕ.

Comment 9.2 The transformations U =
[ ∂y
∂x

]
employed here are general coordinate trans-

formations [☞ Definition 9.1 on p. 319], which form a (gauge) group only in a restricted
sense.4 The physical manifestations of the theory in which IΓμ is the gauge potential and U
the gauge transformation will be identified below as gravity; see equations (9.48)–(9.49).

One may also construct the so-called the connection (differential) 1-forms5

AAAA := dxμAμ, i.e., IΓIΓIΓIΓ := dxμIΓμ. (9.21)

Since AAAA = dxμ Aa
μ Qa and Qa are elements of the algebra of the gauge group, one says that AAAA

is valued in the gauge algebra. Similarly, IΓIΓIΓIΓ is a differential 1-form with values in the algebra of
the group of transformations (B.41); the covariant differential dxμDμ is also-called the Levi-Civita
connection.

Conclusion 9.4 As the algebra of a group is essentially specified by linearizing (A.9), it
follows that IΓIΓIΓIΓ may be regarded as a differential 1-form that takes values in the algebra of
transformations of the tangent 4-plane (at any given spacetime point) into itself, which is
the algebra of the Lorentz group, Spin(1, 3). Although no spinor appears in this discussion,
the Lorentz group of course must act unambiguously on spinors also, whereupon we write
Spin(1, 3) instead of SO(1, 3) [☞ discussion about relations (5.45)–(5.48)].

However, note the difference: For the Yang–Mills gauge symmetries in Chapters 5–7, the
unitary operator of the symmetry transformation, U := exp{igcϕ

a(x)Qa/h̄}, depends on (the co-
ordinates of) the spacetime point x = (x0, . . . , x3) but describes a change in parametrizing another,
abstract space of generalized phases of wave-functions. Within our present context, [U ]ρσ = ∂yρ

∂xσ
depends on the spacetime point x, but simultaneously describes the change in the coordinate
parametrization (basis elements) of that very same spacetime. Besides, the coordinate transfor-
mations xμ → yν = yν(x) are nonlinear in general. This conceptual as well as literal nonlinearity

4 The binary combination of two transformations exists only when they “concatenate”: ∂xμ
∂yν

∂zρ
∂xμ = ∂zρ

∂yν and ∂xμ
∂yν

∂yν

∂zρ = ∂xμ
∂zρ ,

but a product such as ∂xμ
∂yν

∂zν
∂wρ does not simplify as a closed binary operation. This structure curiously reminds us of the

so-called “renormalization group,” see Section 5.3.3 on p. 210 ☞ .
5 Instead of dxμ, one may of course use any arbitrary basis elements, eμ, resulting also in 1-forms, albeit not differential.

The use of the dxμ-basis is however standard, as it provides a connection with differential and integral calculus.
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provides the root of all differences between (Yang–Mills) gauge theories and the general theory of
relativity, viewed as a gauge theory.

This difference also reflects in the following: The gauge vector potential (6.6c) has a matrix
representation:

Aμ := Aa
μ Qa → [Aμ]αβ. (9.22)

The gauge vector potential for general coordinate transformations (9.20) is the Levi-Civita
connection 4-vector,

IΓμ → [IΓμ]νρ, (9.23)

that acts upon a vector according to the relations (9.15), in perfect analogy with the action of the
chromodynamics gauge vector potential (9.22) upon a quark wave-function:

[Aμ · Ψ]α = [Aμ]βα Ψβ ↔ [IΓμ · V]ρ = Γρμ ν Vν. (9.24)

Note, however, that the chromodynamics gauge potentials are matrices in the abstract space of
(color) phases and covariant vectors in real spacetime. By contrast, the Christoffel symbol is a
matrix in the very same spacetime wherein it is also a connection 4-vector. What is more, it is not
hard to show that (see, e.g., the derivation of (B.59) in Appendix B.2.3)

Γρμν = 1
2 gρσ

[∂gσν
∂xμ

+
∂gμσ
∂xν

− ∂gμν
∂xσ

]
. (9.25)

That is, the gauge potential for general coordinate transformations, the Levi-Civita connection
4-vector IΓμ, can be derived from the metric tensor (9.3),6 which thereby serves as a gauge
“ pre-potential.” In Yang–Mills gauge theories, no such thing exists.

In turn, relation (9.25) is equivalent to the result

Dμ gνρ = 0 ⇔ Dμ gνρ = 0. (9.26)

That is, the metric tensor and its inverse are “covariantly constant,” so (9.25) may just as well be
derived from either of the two relations (9.26). Again, Yang–Mills gauge theories contain no such
nontrivial “covariantly constant” object.

Thus, while the electric and magnetic fields may be obtained as derivatives of an electromag-
netic potential (5.15)–(5.73) Aμ, this potential cannot be obtained as a derivative of some more
fundamental prepotential. Similarly, chromodynamics fields Fμν = Fa

μνQa can also be expressed in
terms of a chromodynamics potential (6.15) Aμ = Aa

μQa, but these potentials cannot be expressed
in terms of something more fundamental yet. In sharp contrast, the Christoffel symbol Γρμν may be
and is expressed in terms of a derivative of the metric tensor (9.25) and the inverse metric tensor.
From relations (9.25) it also follows that the Christoffel symbol is symmetric with respect to the
exchange of the indices

Γρμν = +Γρνμ. (9.27)

In the Yang–Mills gauge vector potentials [Aμ]αμ, an analogous symmetrization (here, for μ ↔ α)
simply makes no sense at all: μ and α indicate basis elements in completely different spaces.

6 Strictly speaking, this is true only in the absence of fermions. With fermions present, one uses the so-called Palatini
formalism, wherein the metric tensor and the Levi-Civita connection 4-vector IΓμ are independent.
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Digression 9.1 Some useful consequences of the relations (9.25)–(9.26) are
∂gμν
∂xσ

= Γρμσgρν + Γρνσgρμ,
∂gμν

∂xσ
= −gμρΓνσρ − gνρΓμσρ, (9.28a)

Γμμν =
∂

∂xν
ln

(√−g
)
, g := det[g..]; g < 0 because of signature (1, 3), (9.28b)

where we used the relation
∂g
∂gμν

= g gμν, so that
∂g
∂xρ

= g gμν
∂gμν
∂xρ

. (9.28c)

The signature is the number of positive and negative eigenvalues of the metric
tensor [☞ discussion about the expression (3.19) and Definition 3.3 on p. 90].

Digression 9.2 Also, definition (9.17) produces the following oft-used results:

grad( f )μ := Dμ f = (∂μ f ); (9.29a)

curl(V.)ρσ := εμνρσDνVμ = εμνρσ(∂νVμ); (9.29b)

curl(V.)ρσ := εμνρσDμ(gνλVλ) = εμνρσ∂μ(gνλVλ); (9.29c)

div(V.) := DμVμ =
1√−g

(
∂μ(

√−g Vμ)
)
; (9.29d)

div(V.) := Dμ(gμνVν) =
1√−g

(
∂μ(

√−g gμνVν)
)
; (9.29e)


 f := Dμ(gμνDν f ) =
1√−g

[
∂μ

(√−g gμν(∂ν f )
)]

. (9.29f)

Note that, in 1+3-dimensional spacetime, the curl of a 4-vector is a rank-2 tensor. On the
other hand, the spacetime analogue of �∇2 �A ≡ �∇(�∇·�A) − �∇×(�∇×�A) may be used to
compute


Aμ =
[

gμν∂ν

(
∂ρ

(√−g Aρ
)

√−g

)
+

1√−g
εμνρσεαβκλ∂ν

( (∂αAβ)√−g
gκρgλσ

)]
. (9.29g)

9.2.2 The curvature of spacetime
Finally, just as the gauge field Fμν is defined in relation (6.15) as the commutator of covariant
derivatives, so too may the Riemann curvature tensor be defined:

Rμνρσ :=
[

Dμ , Dν
]
ρ
σ =

[(
δσλ∂ν + Γσνλ

)
Γλμρ

]− [(
δσλ∂μ + Γσμλ

)
Γλνρ

]
= ∂νΓσμρ − ∂μΓσνρ + ΓσνλΓλμρ − ΓσμλΓλνρ. (9.30)

Note the formal similarity of the defining expression (9.30) and the definition of the gauge field for
non-abelian gauge symmetry (6.15). However, unlike Fμν which is an antisymmetric rank-2 tensor
and the components of which are matrices in the abstract space of phases, the Riemann tensor is a
rank-4, type-(1, 3) tensor. Besides, it may be shown that [508, 62, 367, 548, 66, 96]

Rμνρρ = 0, (9.31)
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and that the closely related tensor

Rμν ρσ := Rμνρλ gλσ (9.32a)

satisfies the relations:

Rμν ρσ = −Rνμ ρσ, (9.32b)

Rμν ρσ = −Rμν σρ, (9.32c)

Rμν ρσ = +Rρσ μν, (9.32d)

ελνρσRμν ρσ = 0, 1st Bianchi identity, (9.32e)

εκλμνDλRμν ρσ = 0, 2nd Bianchi identity. (9.32f)

This 2nd Bianchi identity (9.32f) is both formally and conceptually analogous to the Bianchi
identity (5.87) in electrodynamics and (6.19) for non-abelian gauge fields.

Relation (9.31) is analogous to the requirement that in the expansion Fμν = Fa
μν Qa, the

generators Qa of non-abelian factors in the gauge group are traceless: Tr[Qa] = [Qa]αα = 0. This
is certainly true of the gauge field of the SU(3)× SU(2)w group, and is not true precisely for the
abelian electromagnetic U(1) field Fμν. The Riemann tensor Rμνρσ may be regarded as a special
rank-2 and type-(0, 2) tensor, the components of which are matrices and traceless rank-2 and type-
(1, 1) tensors, Rμνρσ = [Rμν]ρσ, subject to the additional constraints (9.32b)–(9.32f). The fact that
both Fμν and Rμνρσ are defined as commutators of appropriate covariant derivatives then guar-
antees the first of the relations, (9.32b). This similarity permits the interpretation of the Riemann
tensor as a general coordinate transformation analogue of the tensor Fμν. The components Rμνρσ

are then interaction fields associated with general coordinate transformations, and in fact represent
the general-relativistic generalization of the gravitational field; see below.

The very existence of the definition (9.32a) points to the difference between Rμνρσ and
[Fμν]αβ. For orthogonal and symplectic gauge groups,7 their invariant quadratic forms would play
the role of gλσ and produce [Fμν]αβ. Unitary groups (such as SU(3)c) have no such tensor, and for
them there can exist nothing analogous to definition (9.32a). Also, for unitary gauge groups there
exist no analogues of the relations (9.32c)–(9.32e).

Furthermore, for Yang–Mills gauge fields, [Fμν]αβ, there is no way to perform the contraction
between one of the “matrix” indices α or β and one of the “tensor” indices μ or ν. In turn, the
contractions that can be performed,

gμνFμν ≡ 0,
{

Tr[Fμν] = [Fμν]αα = 0, for semisimple Lie groups,
Tr[Fμν] = Fμν, for U(1) factors,

(9.33)

are trivial: The first equality holds owing to the fact that gμν = + gνμ but Fμν = −Fνμ. The second
one follows from the fact that Tr[Qa] �= 0 only for U(1) factors.

The situation is, however, different for the Riemann tensor: neither is

the Ricci tensor: Rμρ := Rμνρν, (9.34)

trivial, nor is its trace,

the scalar curvature: R := gμρ Rμρ = gμρ Rμνρν. (9.35)

7 Orthogonal and symplectic groups may be defined as the groups of linear transformations of some specified real vector
space that preserve a (pseudo-)Euclidean, i.e., symplectic quadratic form, respectively [☞ Appendix A]. However, this
invariant quadratic form does not determine the gauge potential of Yang–Mills theories with orthogonal and symplectic
group of symmetries, unlike the fact that the relation (9.25) does determine the Christoffel symbol in terms of the
metric.
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It is also useful to know that, following Conclusion 9.4 on p. 323, we have that the differential
2-form8

RRRR :=
[

dxμDμ , dxνDν
]
, i.e., [RRRR]ρσ := dxμ dxν Rμνρσ (9.36)

also has values in the algebra of the Lorentz group Spin(1, 3).
Definition (9.30) shows that the components of the Riemann tensor Rμνρσ are derivatives

of the second order (or are quadratic in derivatives of the first order) of the metric tensor com-
ponents,9 but it contains also the inverse metric tensor. Rμνρσ is therefore a nonlinear function
of the metric tensor components, gμν, but precisely of second order in spacetime derivatives of
those components.10 The same is then true also of the Ricci tensor (9.34), as well as the scalar
curvature (9.35).

Yang–Mills gauge theories have nothing analogous to the expressions (9.34)–(9.35). There,
the Lagrangian density (6.23) is found in the form − 1

4 Tr[Fμν Fμν], which is quadratic in the deriva-
tives of Aμ. This Lagrangian density then yields equations of motion (6.24) that are analogous to
Gauss’s law for the electric field and Ampère’s law for the electromagnetic field (6.37).

Analogously to the expression − 1
4 Tr[FμνFμν] in the Lagrangian density (6.23), the Hamilton

action with the Riemann tensor would be proportional to the integral∫ √−g d4x Rμνρσ gμκgνλ Rκλσ
ρ. (9.37)

Since both
√−g d4x and Rμνρσ gμκgνλ Rκλσρ are scalar quantities, this integral is invariant un-

der general coordinate transformations. Varying this action by the components of the Christoffel
symbol would, in the standard fashion, produce Euler–Lagrange equations of the second order in
derivatives of the Christoffel symbol, IΓ. However, the Christoffel symbol is itself a derivative of
the metric tensor, and varying this action by components of the metric tensor (which is more fun-
damental than the Christoffel symbol) would produce Euler–Lagrange equations of motion for the
metric tensor components that are of the fourth order in spacetime derivatives, which agrees with
neither classical (non-quantum) theory of gravity nor with experimental facts about gravity.

Fortunately – and completely unlike in Yang–Mills gauge theory – with the Riemann tensor it
is possible to define another, so-called Einstein–Hilbert action:

c3

16π GN

∫ √−g d4x R, where R (9.35)= gμρ Rμνρν. (9.38)

The powers of the natural constants c, h̄ and GN in the prefactor are determined:

1. by requiring the Hamilton action to have the dimensions ML2

T
[☞ Sections 1.2.3 and 1.2.2],

2. by definition (3.10) whereby [d4x] = L4 (note: d4x = cdt d3�r ),11

3. by definitions (9.2), (9.25) and (9.30), from which it follows that [gμν] = 1,
[Γρμν] = L−1 and [Rμνρσ] = L−2, respectively.

The conventional numerical prefactor 1
16π simplifies many derivations and many final results.

Varying this action by the metric tensor components produces [508, 62, 367, 548, 66, 96]
8 When defining differential p-forms, one automatically uses the antisymmetric product of basis elements and without

any notational distinction: (· · ·dxμdxν· · ·) = −(· · ·dxνdxμ· · ·).
9 All told, every summand in the defining expression (9.30) contains precisely two spacetime derivatives.

10 Unlike the quadratic, cubic or another expression of a relatively low degree, the components of the inverse metric tensor
are by definition ratios of the determinants of various cofactors and the determinant of the entire metric tensor. A Taylor
expansion in the components of the original metric tensor is then an infinite series, containing arbitrarily high powers
of the components of the original metric tensor. This makes the inverse metric tensor, and then also the Riemann and
other curvature tensors, very nonlinear.

11 Some Authors imply d4x := dt d3�r, so that the prefactor in the action (9.38) has c4 instead of c3 as given here.
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Rμν − 1
2 gμνR = 0. (9.39)

This system of differential equations, the Einstein equations, determines the metric tensor com-
ponents as functions of the spacetime coordinates, and in the absence of all matter, i.e., in empty
space. The combination Gμν := Rμν − 1

2 gμνR is called the Einstein tensor.
Already, writing the Einstein equations (9.39), with definitions (9.30) and (9.25), indicates

the essential differences from Yang–Mills gauge theories: The differential equations (6.37) are at
most cubic in the 4-vector potentials Aμ, while the Einstein equations (9.39) are very nonlinear in
the metric tensor components. The definition of the Christoffel symbol and the scalar curvature in-
volve the inverse metric tensor, the components of which are ratios of cubic polynomials in the com-
ponents gμν and the determinant det[gμν]. This much more radical nonlinearity of the differential
equations (9.39) – and also the action (9.38) from which the Einstein equations follow – is the root
of the technical differences between the general theory of relativity and Yang–Mills gauge theories.

9.2.3 Coupling of gravity and matter
Finally, the operations so far defined may be combined and produce a relevant result for our present
purposes:

Conclusion 9.5 In the general case, Hamilton’s action is

S[φi(x)] :=
∫ √−g d4x L

(
φi(x), (Dμφi(x)), . . . ; x

)
, (9.40)

g := det[g(x)], d4x := 1
4! εμνρσdxμdxνdxρdxσ, (9.41)

where L is the “Lagrangian density” (in the sense of “Lagrangian per unit 4-volume”). In
turn, both

√−g d4x and L are scalars, i.e., invariants with respect to general coordinate
transformations [☞ Definition 9.1 on p. 319].

Comment 9.3 Lagrangian densities L
(
φi(x), (∂μφi(x)), . . . ; x

)
constructed within the

special-relativistic field theory may continue to be used, but “covariantizing” the deriva-
tives, ∂μ �→ Dμ := ∂μ + IΓμ, where IΓμ is the formal Levi-Civita connection 4-vector, which
when acting on tensors may be represented by the Christoffel symbol (9.17).

In the general case, the covariant derivative is Dμ = ∂μ + IΓμ + ∑k
igk
h̄ c A(k)

μ ·Q(k), where
Q(k)

ak
are generators of the kth factor in the Yang–Mills group of gauge symmetries with the

coupling parameter gk and gauge 4-vector potentials A(k) ak
μ .

In the general case, let LM be the Lorentz-invariant Lagrangian density for any type of mat-
ter – here, “matter” denotes everything except the metric tensor gμν, the Levi-Civita connection
4-vector potential IΓμ, and the Riemann tensor Rμνρσ and quantities constructed from these. The
corresponding model that is invariant with respect to general coordinate transformations has the
Hamilton action ∫ √−g d4x

[ c3

16π GN
R −LM

]
, (9.42)

where all the derivatives in the Lagrangian density LM are “covariantized” as discussed in Com-
ment 9.3 on p. 328. Varying this action by the components of the inverse metric tensor yields

δR
δgμν

+
R√−g

δ(
√−g)
δgμν

= −16π GN

c3
1√−g

δ(
√−g LM)
δgμν

, (9.43)

that is [508, 62, 367, 548, 66, 96],

Rμν − 1
2 gμνR =

8π GN

c4 Tμν, (9.44)
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where the rank-2 and type-(0, 2) tensor

Tμν := − 2c√−g
δ(
√−g LM)
δgμν

(9.45)

has the physical meaning of the energy–momentum tensor density for the physical system
described by the Lagrangian density LM.

Digression 9.3 Note that the inverse metric tensor and the metric tensor of course are
not independent quantities, since the inverse metric tensor is defined so as to satisfy

gμν gρν = δ
ρ
μ, gμν = +gνμ ⇒ gμν = +gνμ. (9.46a)

It then follows that varying the inverse metric tensor is not independent of varying the
metric tensor itself:

0 = δ(δρμ) = δ(gμν gρν), (9.46b)

⇒ δgμν = −gμρgνσ (δgρσ), and
δ

δgμν
= −gμρgνσ

δ

δgρσ
. (9.46c)

Varying the action (9.42) by various fields that represent various “matter” degrees of free-
doms produces the Euler–Lagrange equations of motion for these fields. As all the derivatives in the
Lagrangian density LM are covariantized, the resulting Euler–Lagrange equations of motion will,
in the general case, depend on the Levi-Civita connection 4-vector IΓμ as well as on the metric gμν.
The Euler–Lagrange equations of motion and the Einstein equations (9.44) then form a coupled
system of differential equations, which are certainly nonlinear in the metric tensor components.

Although such coupled systems of differential equations most often are not soluble in closed
form, the geometric meaning of the Einstein equations (9.44) is very clear:

1. On the left-hand side, Rμν− 1
2 gμνR is a nonlinear expression in the metric tensor components,

which is of precisely second order in spacetime derivatives; the left-hand side depends only
on the metric tensor components and their spacetime derivatives.

2. On the right-hand side, Tμν is the energy–momentum tensor density, which describes the
spacetime (and general-relativistic) generalization of mass of the matter.

The differential equation (9.44) thus determines the metric tensor, for which the energy–
momentum tensor density plays the role of the “source” – just as the differential equation
representing Gauss’s law determines the electric field for which electric charge density plays the
role of the source, and Ampère’s law determines the electromagnetic field for which the electric
current density plays the role of the source.

What’s more, comparing the Einstein equations with the differential equations representing
the Gauss–Ampère laws is more than suggestive: it may be shown that the energy–momentum
tensor density, Tμν, is indeed the Noether “current” density that corresponds to the continuous
symmetry of spacetime translations.

Since the metric tensor is the quantity that determines the spacetime geometry, we have:

Conclusion 9.6 Conceptually, the Einstein equations are perfectly analogous to Gauss’s law
for the electric field and Ampère’s law for the electromagnetic field, and they determine the
spacetime geometry, for which the energy–momentum tensor density of the present matter
is the “source,” i.e., the “driving force.”

That is: by virtue of its presence, matter curves spacetime.
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Digression 9.4 Relation (9.24) gives a formal correspondence between Yang–Mills gauge
theories and the general theory of relativity:

[Aμ]αβ ←→ Γρμν, and so also [Fμν]αβ ←→ Rμν ρσ. (9.47a)

This formal correspondence is also qualitatively correct, and foremost in its geometric
sense, where the tensors Fμν and Rμν ρσ represent the curvature of the effective spacetime
for the purposes of field propagation and particle motion.

However, in a strictly practical sense – the so-called “engineering” spirit of Sec-
tion 9.3.4 that also permeates the discussion leading to Conclusion 9.6 – the formal
correspondence (9.47a) is not appropriate.12 The Einstein equations (9.44) identify the
differential expression that is of second order in spacetime derivatives of the metric tensor
with the energy–momentum tensor density Tμν for that distribution of matter:{

Rμν− 1
2 gμν R = 1

2 gρσ(∂μ∂ρgνσ + ∂ν∂ρgμσ) + · · ·
}

=
8π GN

c4 Tμν. (9.47b)

That system of differential equations is formally analogous to the Gauss–Ampère
laws (5.88), expressed in terms of the gauge potential:{

(
Aμ) − ημν(∂ν∂ρAρ)
}

=
1

4πε0

4π
c

jνe . (9.47c)

Comparing equations (9.47b) and (9.47c) implies the correspondence

Aμ ←→ gμν, Fμν ←→ Γρμν, jμe ←→ Tμν, (9.47d)

which better fits this “engineering” sense. The differences between the correspon-
dences (9.47a) and (9.47d) stem from the already mentioned differences, and foremost
from the following facts:

1. Both in Yang–Mills gauge theories and in the general theory of relativity,
the covariant derivative is defined so that Dμ − ∂μ ∝ Aμ, i.e., Dμ − ∂μ ∝
IΓμ. However, Aμ cannot be expressed as the derivative of anything “more
fundamental,” whereas IΓμ can: see equation (9.25).

2. Both in Yang–Mills gauge theories and in general theory of relativity, the
curvature is defined as the commutator [Dμ, Dν]. However, the Hamilton ac-
tion for Yang–Mills gauge theory is quadratic in the curvature, while the
Einstein–Hilbert action is linear in the (scalar) curvature (9.35).

Finally, the identity

R = −gμν
(
ΓσμρΓρνσ − ΓρμνΓσρσ

)
+ ∂μKμ (9.47e)

shows the Einstein–Hilbert Lagrangian to be quadratic in IΓμ, making it similar – though
definitely not identical – to the Yang–Mills type Lagrangians (5.76) and (6.23), in further
support of the “engineering” correspondence (9.47d).

12 This practical sense is regarded “engineering” in the sense that the Gauss–Ampère laws may be used to find the desired
electromagnetic field, by constructing the appropriate distribution of charges and currents. Analogously, the Einstein
equations (9.44) may be used so that by constructing a particular distribution of matter one produces the desired
gravitational field, and so also the spacetime of the desired curvature.
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9.2.4 Geometry and Newtonian limit

In turn, if we take LM = m
√

gμν ∂xμ
∂t

∂xν
∂t ,13 which is the Lagrangian density [☞ definition L0 in

Digression 3.7 on p. 93, and defining equation (9.2)] for a particle that moves in spacetime with
the metric tensor gμν, then varying the action (9.42) by xμ yields

d2xρ

dt2 + Γρμν
dxμ

dt
dxν

dt
= 0. (9.48)

These are the differential equations that determine the so-called geodesic (extremal) lines. In flat
spacetime, gμν = −ημν and the Christoffel symbol vanishes, so equation (9.48) gives

..
xμ = 0,

i.e., xμ = xμ0 + vμ0t gives straight lines in spacetime. Rearranging the second term we obtain the
analogue of Newton’s second law:

m
d2xρ

dt2 = Fρgrav := −m Γρμν
dxμ

dt
dxν

dt
, (9.49)

where the right-hand side provides the gravitational force that curves the trajectory of the particle,
the acceleration of which appears on the left-hand side.

Conclusion 9.7 The possibility of reinterpreting essentially geometric information as essen-
tially physical information

spacetime curvature
appearing in equation (9.48)

}
⇔

{
definition of the force and
interaction in equation (9.49)

(9.50)

points to the fundamental equivalence of these two ways of thinking and explaining natural
phenomena.

Of course, this is merely one of the simplest examples, but it should be clear that now even in the
most general context – including also the Yang–Mills type of gauge interactions14 [☞ Chapters 5
and 6] – the coupled system of the Einstein equations and the general-relativistically covariant
Euler–Lagrange equations of motion may be reinterpreted:

1. either in a purely geometric sense, where objects move along geodesic (extremal) trajectories
defined by the (charge/color/isospin-sensing) curvature of spacetime,14

2. or in a purely “physicsy” sense, where objects move under the influence of forces with which
these objects affect one another.

It behooves us to keep in mind that this latter way of interpreting natural phenomena implicitly
presupposes the existence of an “empty” spacetime in which these objects move. Therefore, the
first, geometric way of interpretation is more economical, and represents the basis of “geometriz-
ing” physics: the notion of force may be replaced by the notion of curvature in the (appropriately
generalized) spacetime; see also Comment 3.2.

Starting from (9.48), following Pauli [414], we focus on a spatial component of x, xρ → xk,
use that x0 = ct, and assume that gμν deviates only slightly from its flat-space value, −ημν, and
obtain

d2xk

dt2 ≈ −c2 Γk
00, (9.51)

13 Here, t denotes an arbitrary parameter of the dimension of time, which grows monotonously along the worldline of the
given particle.

14 From this “geometrized” point of view, the various phases that are subject to gauge transformation are to be included in
the “total spacetime.” Since these phases vary over the usual spacetime, the resulting structure is a called a fiber bundle,
where the spacetime-variable phases span the fibers over the base spacetime. The fiber-wise curvature is measured by
the Fμν-type tensors, and is detected only by particles that have the appropriate type of charge: electromagnetic, weak
isospin or chromodynamic color.
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where terms quadratic in the small deviations γμν := (gμν+ημν) have been dropped. Assuming fur-
thermore that the components of the metric gμν are slowly varying in time so that time derivatives
may be neglected,

Γk
00 = 1

2 gkσ(∂0gσ0 + ∂0g0σ − ∂σg00
) ≈ − 1

2 gk�(∂�g00). (9.52)

In fact, since we must keep ∂�g00 = ∂�(γ00−1) = (∂�γ00), where γ00 is the small deviation,
dropping terms that are second order in γμν allows us to drop the (also small) contributions from:

1. off-diagonal terms from the �-summation, and
2. the deviations in gkk from (−ηkk = 1), whereby gkk → 1.

This produces

d2xk

dt2 ≈ 1
2 c2(∂kγ00), i.e.,

d2�r
dt2 ≈ 1

2 c2(�∇γ00)
!= −�∇ΦN, (9.53)

and allows us to identify − 1
2 c2γ00 := − 1

2 c2(g00+1) with Newton’s gravitational potential, such as
ΦN = −GN

M
r for a point-like source of gravity of mass M, so the potential energy of the considered

particle with mass m at a distance r from the gravitational source is mΦN = −GN
mM

r .
Much more detailed derivations of the Newtonian weak-field limit of gravity may be found

in the literature; see for example Refs. [96, 95, 271, 58].

9.2.5 Exercises for Section 9.2

✎ 9.2.1 Prove the relations in Digression 9.1 on p. 325.

✎ 9.2.2 Prove the relations in Digression 9.2 on p. 325.

✎ 9.2.3 Prove that the Riemann tensor has 20 independent degrees of freedom. (Hint: the rank-
4 tensor itself of course has 44 = 256 components. Show that the relations (9.32b) reduce this to 36,
the relation (9.32d) further to 21, and relation (9.32e) to 20.)

✎ 9.2.4 Prove the relation (9.32f) using the definition (9.30) of Rμνρσ.

✎ 9.2.5 Prove that the Ricci tensor is symmetric: Rμν = Rνμ.

✎ 9.2.6 Prove that the equations (9.48) are covariant, i.e., that a coordinate substitution
changes these equations only up to a non-vanishing overall multiplicative factor.

✎ 9.2.7 Derive the Euler–Lagrange equations of motion for the n-plet of scalar fields φi(x) with
the Lagrangian density

L [φi] =
1
2

gμνδij (Dμφ
i)(Dνφ

j) − m2c2

2h̄2 δijφ
iφj. (9.54)

(Hint: since φi are Lorentz-scalars, determine first the action of Dμφi from relation (9.17).)

✎ 9.2.8 From the Lagrangian density (9.54), derive the energy–momentum tensor density,
Tμν, and the system of Euler–Lagrange equations from the previous exercise coupled with
the Einstein equations.
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9.3 Special solutions
Solutions of the Einstein equations (9.44) represent various spacetime geometries – various
universes15 – of which each one may serve as the background/arena in which all “other” physics
happens, including the elementary particle physics as analyzed so far. Besides, the Einstein equa-
tions – as a system of differential equations for the metric tensor components – are nonlinear,
making the existence of a growing class of exact solutions all the more interesting.

9.3.1 The Schwarzschild solution
Only a month after the publication of Einstein’s general theory of relativity and gravitation, in
1915, Karl Schwarzschild published the first and best known exact solution to the Einstein equa-
tions. Six years later, the mathematician George David Birkhoff proved a theorem16 whereby any
spherically symmetric solution of the Einstein equations without matter (9.39) must be stationary
and asymptotically flat, i.e., the geometry of the outer region of spacetime must be described by
the Schwarzschild metric tensor (see Refs. [367, 264, 103, 548, 131] and also [128, 587, 127]),
given here in spherical coordinates:

Schwarzschild

{ [gμν] = diag
(− fS(r), 1

fS(r) , r2, r2 sin2(θ)
)
,

ds2 = − fS(r)c2dt2 + 1
fS(r)dr2 + r2(dθ2 + sin2(θ) dϕ2),

(9.55a)

where
fS(r) :=

(
1 − rS

r

)
, rS =

2GN M
c2 . (9.55b)

As the metric tensor (9.55) satisfies the Einstein equations with Tμν = 0, it follows that the
Schwarzschild solution describes empty spacetime, in the sense that this is a possible geometry
of spacetime in the absence of any matter. The mass M := c2rS

2GN
that may be ascribed to the point-

like object at the origin of the coordinate system then does not represent a particle of matter that
is placed there, but is a characteristic of spacetime itself [☞ Digression 9.5 on p. 340], which for
observers outside rS is curved as if there existed an object of mass M.

The meaning of the Schwarzschild radius, rS, is as follows: The well-known expression for
the (first) escape velocity, i.e., the velocity of separation from a planet of mass M at a distance r
from the center of the planet is

v1 =

√
2GN M

r
. (9.56)

It follows that the separation velocity at the Schwarzschild radius becomes v1(rS) = c. This literally
means that Schwarzschild’s solution (9.55) holds for r � rS. For observers that are outside the
Schwarzschild radius, objects that pass through the surface of the sphere of radius rS can no longer
return. This sphere is thus called the “event horizon” and effectively separates the exterior from
the interior. As the same conclusion holds also for light, classical physics predicts that the interior
of this horizon is completely black for observers in the exterior – whence the popular name “black
hole.” Formally, the metric tensor (9.55) is applicable also in the interior of the event horizon, but

15 The distinction between a “spacetime geometry” and a “universe” – as the latter word is used in this chapter – is far from
strict: the latter term is used merely to emphasize its global meaning. A “universe,” after all, has an all-encompassing
ring to it and so allows “spacetime geometry” to have either just a local reference, if desired, or a fully global one.
In recent times however, the terms “multiverse” and “metaverse” came into vogue, denoting a collection – sometimes
infinitely large – of universes [513, 514, 515, 557, for starters]. Especially when these universes within a multiverse are
connected, the connotation of globalness of a single universe is restricted in some way or another, at the least. Herein,
in turn, a “universe” will be used to denote a closed, isolated and geodesically complete spacetime, unless explicitly
stated otherwise.

16 It was recently discovered that this theorem, many years known under Birkhoff’s name, was proven two years earlier
(in 1919) by the Norwegian physicist Jørg Tofte Jebsen [297].
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here the coordinate t becomes space-like and r becomes time-like; the physical meaning of this
change remains uncertain, foremost because – at least within classical physics17 – it is not possible
to design an experiment (even a thought-experiment) with which one could compare the evolution
of physical phenomena outside the event horizon with those unfolding within the horizon.

Singularities
The functional dependence of the Schwarzschild metric on the radius indicates that there exist two
special places within the space with the geometry (9.55):

1. the Schwarzschild radius, where fS(r) = 0, so the metric tensor has a singularity: the
coefficient of the dt2 term vanishes, and the coefficient of the dr2 term diverges;

2. the coordinate origin, where fS(r) diverges, so the coefficient of the dt2 term diverges, and
the coefficient of the dr2 term vanishes.

However, the metric tensor transforms under general coordinate transformations as a rank-2 and
type-(0, 2) tensor, and it is not clear a priori if these special places are indeed singularities. As the
metric tensor is of type (0, 2), this transformation has the form [☞ Definition B.2 on p. 511]

gμν(ξ) =
∂ζρ

∂ξμ
gρσ(ζ)

∂ζσ

∂ξσ
⇐⇒ gggg′ = UT gggg U (in matrix form), (9.57)

which is not a similarity transformation. Thus, neither the characteristic polynomial, det[gggg − λ1],
nor the eigenvalues of the matrix gggg are invariants. The only invariant that can be constructed from
the metric tensor is δρμ = gμνgρν, which produces no information about possible singularities.

However, depending on the first and second derivatives of the metric tensor components,
the Riemann curvature tensor does contain information about their (non)analyticity, and one only
needs to find a way to extract that information in an invariant fashion. The scalar curvature (9.35)
is one such invariant. As the Riemann tensor has 20 independent degrees of freedom [☞ Exer-
cise 9.2.3], this leaves precisely 19 independent invariants, but an explicit listing of such invariants
remains an open problem☞ . Now, there do exist two simple quadratic invariants

‖Rμν‖2 := Rμν gμρgνσ Rρσ and ‖Rμνρσ‖2 := Rμνρσ gμαgνβgργgσδ Rαβγ
δ, (9.58)

of which the second, the so-called Kretschmann invariant for the Schwarzschild metric, equals

‖Rμνρσ‖2 =
48GN

2 M2

c4 r6 , (9.59)

and is indeed divergent at the coordinate origin, r = 0. This proves that the coordinate origin
is really a singularity of the geometry. The fact that neither the scalar curvature (9.35) nor the
quadratic curvature invariants (9.58) diverge on the event horizon does not prove that the location
r = rS is not a singularity. It remains, in principle, to check 17 other independent invariants; the
divergence of any one of those invariants on the sphere r = rS would prove that the event horizon
is a singularity. Unfortunately, as no list of 20 independent invariants is known, such a direct
verification is not available in practice.18

17 The quantum theory of gravity is not a complete theory, and this analysis is not without debate. However, in the early
1970s, Stephen Hawking was among the first to apply the “semi-classical” analysis and so discover that black holes
radiate, emitting the so-called Hawking radiation. The same methods led to the derivation of the Bekenstein–Hawking
formula according to which the entropy of a black hole is proportional to the surface area of the event horizon. A recent
application of stringy methods and the gravity–gauge duality [☞ p. 443] discovered newer, and not just semi-classical
results.

18 Nor may this suffice even in principle: As discussed in Ref. [264, Section 8.1], because of the non-definiteness of the
metric gμν, there could exist singular solutions to the Einstein equations for which all invariant curvature polynomials
(constructed from gμν, gμν, εμνρσ and Rμνρσ) are finite. Also, there do exist special solutions such as the Taub-NUT
(Newman, Unti and Tamburino) solution, where the invariant curvature polynomials remain bounded but the spacetime
contains incomplete geodesics within a compact neighborhood of the horizon.
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Fortunately, Georges Lemâıtre discovered in 1933 that the coordinate substitution (intro-
duced by Arthur Eddington in 1924, without noting the significance)

dτ := dt +
√

rS

r
dr/c

(1 − rS
r )

, d� := dt +
√

r
rS

dr/c
(1 − rS

r )
(9.60a)

changes the appearance of the Schwarzschild metric tensor into

ds2 = −c2dτ2 +
( 2rS

3(�− cτ)

) 2
3
d�2 + r2(dθ2 + sin2(θ)dϕ2) (9.60b)

and so clearly shows that the sphere r = rS, i.e., � = �S :=
( 2

3 rS+cτ
)

is free of singularities.
Thus, the event horizon is a completely non-singular location in spacetime and the unlucky

observer who drifts through it would notice nothing unusual in his immediate vicinity – except that
he would not be able to return outside the event horizon. This phenomenon is often compared with
the fact that fish that arrive too close to a waterfall can no longer return upstream.

In turn, the r = 0 location is indeed a real singularity [☞ equations (9.58)–(9.59)], and its
existence explains the fact that the Schwarzschild solution describes empty space with no mat-
ter located within the event horizon, although the coordinate origin may be ascribed the mass
M = rS c2

2GN
. More precisely, any Gaussian sphere that fully encloses the event horizon will detect

a gravitational field as if within it there existed a mass M. However, such a Gaussian sphere can
be shrunk down only as far as the event horizon; beyond that, no information could be extracted
from the gravitational field detectors (scales) bedecking the Gaussian sphere. Mathematically, this
unusual property stems from the nonlinearity of the Einstein equations and the singularity of the
Schwarzschild solution of those equations. Physically, this indicates the self-interaction of the grav-
itational field – which is conceptually very similar to the self-interaction of non-abelian Yang–Mills
gauge fields [☞ so-called “glueballs,” discussed on p. 239], and this self-interaction mimics a ma-
terial particle located at the origin. In fact, the formation of black holes may be described as a
phase transition [148, 147] and even have a Landau–Ginzburg effective description [149], much
like the Higgs effect [☞ Section 7.1]. However, unlike the fact that black holes have mass, no
self-interacting non-abelian Yang–Mills gauge field configuration could exist that would exhibit a
non-vanishing charge (color, isospin,. . . ) at the origin.

There is, however, another important conceptual difference in describing and modeling Yang–
Mills interactions and gravity:

1. The standard models of Yang–Mills interactions [☞ Chapters 5–7] are formulated in flat and
infinitely large spacetime, which has the geometry of R1,3, i.e., real 4-dimensional spacetime
with the flat metric gμν = −ημν.

2. Models of gravity generally involve a choice of a nontrivial metric gμν �= −ημν, defined on a
spacetime that need not at all have the simple structure of R1,3.

When modeling gravity, we are free to chose a spacetime where portions – such as singular points –
are excised. If all singular points are excised, the remaining spacetime will be singularity-free,
but this typically comes at a price: there will exist geodesic paths, solutions to equations (9.48),
which tend towards the points that have been excised or are otherwise absent from the given
spacetime. It then may or may not be possible to “fill in” (complete) this spacetime in a way that
renders all geodesics complete and also (re-)introduces no singular points. Already this observation
should make it clear that the (non-)singularity of spacetime is a rather delicate issue that cannot
be resolved simply by identifying whether or not all curvature invariants (were one even able to
enlist them all) are (non-)singular.
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In addition, geodesic incompleteness is not the only way of detecting an incompleteness in
the spacetime, and it is standard [367, 264] to distinguish at least three a-priori different notions
of completeness and incompleteness as its logical negative:

Definition 9.2 A spacetime is geodesically complete if every geodesic path can be extended
infinitely within the given spacetime. One may further specify geodesic (in)completeness by
restricting to time-like , null or space-like geodesics.

This permits the logical possibility that a given spacetime with a given choice of metric is both
time-like and null-geodesically complete, but contains incomplete space-like geodesics.

Besides considering geodesic paths as a continuous sequence of points, one may consider any
other (discrete) Cauchy sequence of points; this leads to:

Definition 9.3 A spacetime is metrically complete if every Cauchy sequence converges to a
point within the given spacetime.

For a positive-definite metric, it turns out that the geodesic and metric notions of (in)completeness
are equivalent [317, 318]. However, the physically interesting case involves the Lorentzian metric
of signature (1, 3), which is not positive-definite, and where this equivalence does not hold.

There is also another definition, due to C. Ehresmann (1957) and B. G. Schmidt (1971),
which generalizes geodesic completeness: One considers all possible smooth (once differentiable)
curves in a given spacetime and shows that the length of any such curve is finite in a given
parametrization if and only if it is also finite in any other parametrization obtained by parallel
transport. Variables parametrizing such curves in a 1–1 fashion are called (generalized) affine pa-
rameters. Curves with this class of parametrization define a bundle, which is then used in the
definition [264]:

Definition 9.4 A spacetime is b-complete if every once-differentiable curve of finite length
as measured by a generalized affine parameter is within the given spacetime.

If a finite once-differentiable curve with its end-point(s) contained in the spacetime is a geodesic,
this geodesic is complete in the sense of Definition 9.2. If the metric is positive-definite,
b-completeness coincides with metric completeness.

The metric is of course not positive-definite in the physically interesting Lorentzian spacetime,
in which case it turns out that b-completeness of spacetime implies its geodesic completeness,
but the converse is not true [264]. This prompts Hawking and Ellis to define a spacetime to be
singularity free if it is b-complete, and concede that:

. . . one might possibly wish to weaken this condition slightly, to say that space-time is
singularity-free if it is only non-spacelike b-complete, i.e., if there is an end-point for
all non-spacelike C1 [once-differentiable] curves with finite length as measured by a
generalized affine parameter.

Needless to say, a detailed analysis of singularities in spacetime geometry and the theory of grav-
ity is much more involved than the purely algebraic considerations around equation (9.59) and
certainly beyond our present scope. In addition, the study of gravitation, spacetime geometry, as-
trophysics and cosmology brings up the questions whether a singularity could dynamically develop
within an initially non-singular spacetime, whether an initially singular spacetime could dynami-
cally de-singularize, and how various singularities might interact with each other. The interested
Reader is therefore directed to standard references [367, 264, 548, 66, 96], to begin with.
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9.3.2 Charged and rotating solutions
In 1916–18, Hans Reissner and Gunnar Nordstrøm generalized the Schwarzschild solution to
electrically charged black holes:

Reissner–
Nordstrøm

{
[gμν] = diag

(− fRN(r), 1
fRN(r) , r2, r2 sin2(θ)

)
,

ds2 = − fRN(r)c2dt2 + 1
fRN(r)dr2 + r2(dθ2 + sin2(θ) dϕ2),

(9.61a)

where

fRN(r) :=
(

1 − rS

r
+

r2
q

r2

)
, rq :=

√
q2 GN

4πε0 c4 . (9.61b)

This solution has a horizon at the location where grr → ∞, i.e., where fRN(r) = 0:

r± = 1
2

(
rS ±

√
r2

S − 4r2
q

)
. (9.62)

For 2rq < rS, the concentric spheres of radii r+ and r− are two concentric horizons. When 2rq = rS,
the two horizons coincide, and this case is called the extremal Reissner–Nordstrøm solution. Using
equations (9.55b) and (9.61b), the extremal case is characterized by the relation q =

√
4πε0GN M.

For two extremal Reissner–Nordstrøm solutions of the same-sign electric charge, the gravitational
attraction precisely cancels the electrostatic repulsion and there is effectively no interaction. In the
case when 2rq > rS, i.e., when q >

√
4πε0GN M and the black hole is “overcharged,” there are

no horizons and the singularity at the coordinate origin would be visible to the observer at any
distance.

Comment 9.4 A singularity that is not enclosed by an event horizon is called “naked.” The
existence of naked singularities would violate Roger Penrose’s cosmic censorship hypothesis
(to wit, that every singularity is enclosed within an event horizon and is accessible to no
“outside” observer). In accord with this hypothesis, it is believed that the gravitational
collapse of matter cannot create naked singularities☞ .

The exact solution for a chargeless, static, spinning black hole was discovered by Roy Kerr
only in 1963, and is now most often specified in the coordinates given by Robert H. Boyer and
Richard W. Lindquist in 1967:

Kerr

⎧⎪⎪⎨⎪⎪⎩
ds2 = −

(
1 − rS r

ρ2

)
c2dt2 + ρ2

( 1
Δ

dr2 + dθ2
)

+
(

r2 + �2 +
rS r �2

ρ2 sin2(θ)
)

sin2(θ) dϕ2 − 2rS r � sin2(θ)
ρ2 c dt dϕ,

(9.63a)

where

� :=
L

Mc
, ρ :=

√
r2 + �2 cos2(θ), Δ := r2 − rS r + �2, (9.63b)

and L is the angular momentum. Note that – unlike in the Schwarzschild (9.55) and Reissner–
Nordstrøm (9.61) solutions – the Kerr metric tensor is not diagonal: the (ct, r, θ, ϕ) coordinates
are not orthogonal in the Kerr geometry. This solution possesses two event horizons at the location
where grr → ∞, which gives two concentric spheres of radii

r±H = 1
2

(
rS ±

√
r2

S − 4�2
)

, (9.64)
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of which r+
H is clearly the relevant event horizon for outside observers. In turn gtt → 0 occurs on

the ellipsoids (adopting Visser’s nomenclature [540]):

ergosurface r±E = 1
2

[
rS ±

√
r2

S − 4�2 cos2(θ)
]
. (9.65)

The space between the outer one of these ellipsoids and the outer one of the spherical event
horizons is called the ergoregion. Objects that enter through the outer ergosurface (9.65) must
co-rotate with an angular speed of at least

Ω = − gtϕ

gϕϕ
=

2rS r � c
ρ2(r2 + �2) + rS r �2 sin2(θ)

, (9.66)

even if this implies that they move faster than c, in reference to outside observers. Such superlu-
minal motion, however, does not contradict the theory of relativity, as in a real sense the spacetime
itself inside the ergoregion co-rotates akin to a radially accelerating conveyor belt, and objects
are – in reference to this co-rotating spacetime – not moving faster than c.

However, since the ergosurface (9.65) is not a “one-way” event horizon, objects can dip into
the ergoregion and come back out of it. As the motion during the passage through the ergoregion
is faster than a “parallel” motion outside the ergoregion, such an object will draw energy from the
spinning black hole. Indeed, consider a conveyer belt that passes through the ergoregion but loops
back outside the ergoregion. The co-rotation within the ergoregion will thus drive the conveyor
belt outside the ergoregion and so do useful work. This process of drawing energy from a spinning
black hole is called the Penrose process, after Roger Penrose, who discovered this possibility. Also,
there exist trajectories that pass through the ergoregion, which make it possible to travel backwards
in time.

Two years later, in 1965, Ezra Newman found a generalization of the Kerr metric tensor, for
an electrically charged spinning black hole:

Kerr–Newman

⎧⎪⎪⎨⎪⎪⎩
ds2 = − Δ

ρ2

(
c dt − � sin2(θ) dϕ

)2
+ ρ2

( 1
Δ

dr2 + dθ2
)

+
sin2(θ)
ρ2

((
r2 + �2)dϕ− �cdt

)2
,

(9.67a)

where

� :=
L

Mc
, ρ :=

√
r2 + �2 cos2(θ), Δ := r2 − rS r + �2 + r2

q , rq :=

√
q2 GN

4πε0 c4 , (9.67b)

and L, M, and q are the angular momentum, the mass and the electric charge of the black hole.
Just as the Kerr metric tensor (9.63), the Kerr–Newman metric tensor (9.67) is also not diagonal,
and the (ct, r, θ, ϕ) coordinates are not orthogonal in the Kerr–Newman geometry.

Furthermore, direct computation proves that the location ρ = 0 is a true coordinate sin-
gularity for both the Kerr geometry (9.63) and the Kerr–Newmann solution (9.67), since the
Kretschmann curvature invariant ‖Rμνρσ‖2 defined in equations (9.58) diverges there. Given that
the location r = 0 within the standard interpretation of the coordinates (r, θ, ϕ) is a single point,
the result

ρ = 0 ⇔ r = 0, and
(
θ = π

2 if � �= 0
)
, (9.68)

may appear puzzling, in that the coordinate location “r = 0 and (θ �= π
2 if � �= 0)” is singular

in neither the Kerr geometry nor the Kerr–Newmann geometry. This indicates that the coordinate
locations “within the coordinate origin,”
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O∗ := {r = 0, θ= π
2 , ϕ∈ [0, 2π]} and O◦ := {r = 0, θ �= π

2 , ϕ∈ [0, 2π]}, (9.69)

must be distinguished. This makes it obvious that the coordinates (r, θ, ϕ) must not be in-
terpreted literally as the standard spherical coordinates for the Kerr and the Kerr–Newmann
geometries, (9.63) and (9.67), respectively; R. Wald provides the standard argument for O∗ to be
interpreted as a ring-shaped singularity in these geometries [548, pp. 314–315]; see also [540].
Consequently, the whole coordinate region

O := {r = 0, θ ∈ [0,π], ϕ ∈ [0, 2π], ϕ " ϕ+ 2π} (9.70)

must be regarded as a null 2-sphere standing in the place of the standard coordinate origin, and
the singularity of the Kerr and the Kerr–Newmann geometry is then located on the equator of this
null 2-sphere. This recalls the process of “blowing up a singularity,” where the null 2-sphere is the
“exceptional divisor” [279, for starters].

Not even a decade later, in 1972–3, Akira Tomimatsu and Humitaka Sato discovered a class of
exact solutions [523, 524, 270] [☞ also [200] for a recent review and applications] that generalize
the Kerr solution (with polar coordinates ρ :=

√
x2+y2 and ϕ):

Kerr–Tomimatsu–Sato ds2 = −Fc2[dt−ω dϕ
]2 + F−1[E (dρ2+dz2)+ρ2dϕ2], (9.71a)

where the functions E, F and G are most easily expressed in terms of prolonged spheroidal
coordinates (ξ, η, ϕ):

x = ρ0

√
(ξ2−1)(1−η2) cos ϕ, y = ρ0

√
(ξ2−1)(1−η2) sin ϕ, z = ρ0 ξη, (9.71b)

so ρ = ρ0
√

(ξ2−1)(1−η2):

E(ξ, η) :=
A(ξ, η)

p2δ(ξ2−η2)δ2 , F(ξ, η) :=
A(ξ, η)
B(ξ, η)

, G(ξ, η) :=
2L/mc
A(ξ, η)

(1−η2)C(ξ, η), (9.71c)

where A(ξ, η), B(ξ, η) and C(ξ, η) are polynomials of degree 2δ2, 2δ2 and (2δ2−1), respectively,
and where the constants ρ0 and p are algebraic functions of the mass m, angular momentum L,
the integral parameter δ and the natural constants [523, 524]

ρ0 :=
GN

c2
p
δ

m and p =

√
1 − c2

GN
2

L2

m4 . (9.72)

The Tomimatsu–Sato solutions depend on the parameter δ, so that δ = 1 gives the Kerr solution,
but for δ �= 1 the Tomimatsu–Sato solutions contain naked singularities.

— ❦ —

It is important to understand that the very nontrivial solutions (9.55), (9.61), (9.63), (9.67)
and (9.71) are but a few special – and physically very interesting – representatives of a general
class of solutions of the Einstein equations without matter. In other words, solutions to the Einstein
equations (9.39) include very nontrivial geometries that even contain locations (in the presented
case, the so-called black holes) that have the appearance of a particle: they have a mass, and may
have electric charge and intrinsic angular momentum.
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Digression 9.5 It is reasonable then to inquire whether, e.g., the electron could be simply
a charged black hole. However, with the mass and the charge of the electron, one easily
obtains

rS(e−) = 1.353× 10−57 m � �P and rq(e−) = 9.152× 10−37 m < �P. (9.73a)

Since rS(e−) < rq(e−), this black hole has no event horizon, and represents a naked
singularity. However, as both characteristic radii are smaller than the Planck length,
Conclusion 1.5 on p. 30 indicates that this model is unverifiable. That is, because of Con-
clusion 1.5, it simply is not possible to determine any concretely verifiable consequence
of representing the electron by a charged miniature (classical!) black hole.

Strictly speaking, the complete theory of quantum gravity does not exist,19 so that
only estimates exist that indicate that – contrary to the name – quantum black holes
radiate. This radiation is named after Stephen Hawking, who in 1974 explained the
quantum process that enables this radiation, and without violating the “one-way” nature
of the event horizon. These estimates indicate that black holes lose mass via the Hawking
radiation, and so have an “evaporation time” [403]:

tevap. ≈ 5,120π
GN

2

h̄ c4 M3 ≈ 8.407× 10−17(M/kg
)3 s. (9.73b)

For charged leptons and quarks, electric charge conservation would have to obstruct their
evaporation, but for neutrinos with a mass mν < 2 eV ∼ 3× 10−36 kg the evaporation
time is of the order < 4× 10−127 s, which is some 83 orders of magnitude shorter than
the Planck time. Conservation of angular momentum ( 1

2 h̄) of all fundamental fermions
would also have to obstruct their evaporation – including neutrinos – when represented
by a miniature black hole: Indeed, the Hawking radiation may consist only of particles
that are lighter than the black hole that is evaporating by means of this radiation; only
photons are lighter than neutrinos, but photons have integral spin.

In principle, therefore, miniature black hole models for quarks and leptons would
have to be stable, but such models would seem to be essentially unverifiable owing
to the result (9.73a); see however also Refs. [420, 421, 336, 17, 464, 57, 78, 79].
In particular, it has been known since 1968 [98] that a Kerr–Newmann black hole
has no electric dipole moment, but does have a magnetic dipole moment with a gy-
romagnetic ratio equal to 2, just like the Dirac electron without the field theory O(α)
corrections [☞ Digression 4.1 on p. 132].

Finally, the general solutions to the Einstein equations without matter (9.39), including the
Schwarzschild, the Reissner–Nordstrøm, the Kerr and the Kerr–Newman geometry, define a class
of macroscopic geometries of various possible vacua; i.e., empty spacetimes. In such models, the
central objects such as black holes are not to be treated as matter, but as a geometric property
(defect) of spacetime itself. Even qualitatively, this recalls the “topological” solutions discussed
in Section 6.3.1, including also the Dirac magnetic monopole from Section 5.2.3, other similar
solutions [☞ Conclusion 6.7 on p. 248], and the “glueball” solutions in non-abelian Yang–Mills
gauge theories, discussed on p. 239.

19 String theory is known to be a quantum theory that contains gravity; the technical development of this theory suffices
to confirm these estimates but not yet to compute any corrections.
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9.3.3 Other interesting solutions
This section will explore some known solutions to the Einstein equations. As in the previous section,
the solutions are specified by providing the line element ds2 = gμνdxμdxν. This determines the
“background” spacetime geometry [☞ Conclusion 6.8 on p. 248] in which one may analyze the
motion of particles, the presence of which one supposes is a small perturbation to the energy–
momentum tensor density and so also the Einstein equations, so that the spacetime geometry is
not significantly changed. Such solutions are often called “universes” or “worlds,” understanding
that this is an extremely simplified picture where this “world” consists only of the background
spacetime geometry, the matter/energy required to stabilize this geometry, and the test particles
the effect of which upon the geometry may be neglected. The interested Reader is directed to the
catalogues [497, 372] for starters.

Standard geometries in cosmology
The definition of the geometry that is most often used in cosmology and is understood to be the
standard was provided by Alexander Friedman, Georges Henri Joseph Édouard Lemâıtre, Howard
Percy Robertson and Arthur Geoffrey Walker, and this we will refer to as the FLRW geometry.
(Depending on the historical precision and socio-political accent, Authors in the research literature
not infrequently omit one or more of these names and initials.) The metric tensor of the FLRW
geometry is given in terms of the “reduced-circumference polar coordinates”:

FLRW ds2 = −c2dt2 + a2(t)dΣ2,

{
dΣ2 :=

[ dr2

1 − K r2 + r2dΩ2
]
,

dΩ2 := dθ2 + sin2(θ)dϕ2,
(9.74)

where a(t) is a dimensionless “scale function” of time, and K is the Gauss curvature of the space
at the time when a(t) = 1. Alternatively, one writes k := K

|K| = ±1 a k = 0 when K = 0, whereby
r is a dimensionless variable in the direction of the distance from the coordinate origin and a(t)
has the physical dimensions of length. In the case of positive curvature, space is a 3-sphere and
the coordinates (r, θ, ϕ) cover only half of this space in a single-valued fashion, whereupon they
are called the “reduced-circumference polar coordinates”: in analogy with the cylindrical distance
from the z-axis on the surface of a 2-sphere, the radial variable r grows from the north pole up to
the equator but then decreases towards the south pole and this results in the two-valuedness of
the coordinate system. Instead of (r, θ, ϕ), we may use the hyper-spherical coordinates:

dΣ2 = dr2 + S 2
K (r)dΩ2, SK(r) :=

⎧⎪⎨⎪⎩
1√
K

sin(r
√

K) K > 0,
r K = 0,

1√
|K| sinh(r

√|K|) K < 0,
(9.75)

which do not have this drawback.
This metric tensor solves the Einstein equations in the case when the matter has a homoge-

neous and isotropic energy–momentum tensor density, so that the Einstein equations reduce to the
pair: ( .

a
a

)2
+

Kc2

a2 − Λc2

3
=

8πGN

3
�, (9.76a)

2
..
a
a

+
( .

a
a

)2
+

Kc2

a2 − Λc2 = −8πGN

c2 p, (9.76b)

where � and p denote the density and pressure of matter, and Λ is the cosmological constant. Since
the redefinitions

�→ �− Λc2

8πGN
and p → p +

Λc4

8πGN
(9.77)
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effectively eliminate the cosmological constant, it follows that the presence of the cosmological
constant may be simulated by something that (1) permeates the universe, (2) is homogeneous and
isotropic, and (3) the pressure and the density of which satisfy the relation

p = −�c2. (9.78)

Generally, anything that has a negative pressure (p/� < 0) is called dark energy and its presence in
the FLRW cosmology induces the universe to expand. For an accelerated expansion of the universe
it would suffice were the dark energy to satisfy the relation

p < − 1
3�c2. (9.79)

A scalar field with this property is dubbed quintessence, and the ratio p/� is then not necessarily a
constant. Finally, one obtains an extremely accelerated expansion of the universe if

p < −�c2, (9.80)

which is then referred to as phantom energy. Note that these are phenomenological definitions:

Definition 9.5 Anything homogeneous and isotropic throughout the whole spacetime is
called:

dark energy if the pressure is negative: p/� < 0;
quintessence if the density and the pressure satisfy (9.79): p/� < −c2/3;
cosmological constant if the density and the pressure satisfy (9.78): p/� = −c2;
phantom energy if the density and the pressure satisfy (9.80): p/� < −c2.

Dark energy is thus an umbrella term including its three more specific types. The demarcations
are determined by the qualitative differences in the induced evolution of the universe: The cosmo-
logical constant causes the spacetime geometry to accelerate its expansion, while phantom energy
causes this expansion to diverge in finite time. In turn, models of quintessence typically involve
at least one dynamical field, which then varies over spacetime; moduli fields in superstring theory
are natural and oft-tried candidates [☞ Footnote 34 on p. 443].

Of particular interest are the special cases of the FLRW geometry [367]:

ds2 =

⎧⎪⎨⎪⎩
−c2dt2 + a 2

0 e+2c
√

Λ/3 t d�r 2, de Sitter,

−c2dt2 + d�r 2, Minkowski,

−c2dt2 + a 2
0 e−2c

√
Λ/3 t d�r 2, anti de Sitter,

(9.81)

where H := 2
√

Λ/3 > 0 is the so-called Hubble constant,20 and d�r 2 = d�r·d�r is the familiar
Euclidean norm of the spatial differential d�r. Because of using the familiar (flat) Euclidean norm
for the spatial part of the differential, the coordinates in equation (9.81) are also called the “flat
coordinates.” There also exists the “static” parametrization

ds2 = −c2(1 ∓ 1
3 Λρ2)dτ2 +

(
1 ∓ 1

3 Λρ2)−1dρ2 + ρ2(dθ2 + sin2(θ)dφ2), (9.82)

where ρ is a suitable “radial” coordinate; for a precise relation between equations (9.81)
and (9.82), see Ref. [367]; the upper (negative) sign produces the metric for the de Sitter space-
time, and the lower (positive) sign for the anti de Sitter spacetime. Finally, there also exists the
quotient parametrization

ds2
AdS = L2

z2

(− c2dt2 + dx2 + dy2 + dz2). (9.83)

20 The proposal that the universe is expanding and with a rate now called the Hubble constant was made by Georges
Lemâıtre in 1927, two years before Edwin Hubble confirmed and more precisely determined the expansion rate; see
Refs. [550, 532, 68] and the references therein.
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Expression (9.82) should make it clear that the de Sitter spacetime has a spherical horizon with
the radius ρH =

√
3/Λ. In turn, the z2 → 0 limiting case of the expression (9.83) defines the flat

metric −dz2 = −c2dt2 + dx2 + dy2 on a (2+1)-dimensional space with the Minkowski metric, and
that forms the “conformal limit” of the anti de Sitter spacetime.

Finally, the (n+1)-dimensional de Sitter spacetime may be defined also as the orthogonal
group coset O(1, n+1)/O(1, n), and the anti de Sitter spacetime equals O(2, n)/O(1, n).

— ❦ —

Note that the gμν-trace of the Einstein equations (9.44) produces R = − 8πGN
c4 T. Substituting this

into equation (9.44) yields

Rμν =
8πGN

c4

[
Tμν − 1

2 gμνT
]
. (9.84)

This makes it clear that every solution where the energy–momentum tensor density of matter
vanishes, Tμν = 0, the Ricci tensor also must vanish. And the other way around, the vanishing
of the Ricci tensor, via the Einstein equations (9.44), implies that Tμν = 0 also. The geometries
(choices of the metric tensor) for which the Ricci tensor vanishes (and so Tμν = 0) are called Ricci-
flat geometries. This of course includes the flat geometry, where the metric tensor gμν = −ημν is a
constant, and all components of both the Christoffel symbol and the Riemann tensor vanish.

In turn, neither the vanishing of the Ricci tensor – nor even of the entire Riemann tensor –
implies that the metric is flat. For example, the Kasner geometry has the metric tensor defined
as [367, generalized]

Kasner ds2 = −c2dt2 +
3

∑
i=1

( t
Ti

)2pi (dxi)2, (9.85)

where Ti are arbitrary constants with units of time. If the parameters pi are chosen to satisfy the
Kasner conditions

3

∑
i=1

pi = 1 =
3

∑
i=1

(pi)2, (9.86)

the Einstein tensor (Gμν := Rμν − 1
2 gμνR) and even the Ricci tensor vanish. If we further set

any two of three parameters pi to be zero and the third to be 1, then the entire Riemann ten-
sor vanishes, although the metric tensor is not equal to −ημν, the constant metric tensor of flat
spacetime.

One of the unusual properties of the Kasner geometry inexorably follows from Kasner’s con-
ditions (9.86) themselves: one of the three parameters must be non-positive. That is, we have

equation (9.86) ⇒
{ p±2 = 1

2

(
1 − p1 ±

√
1 + 2p1 − 3p 2

1

)
,

p±3 = 1 − p1 − 1
2

(
1 − p1 ±

√
1 + 2p1 − 3p 2

1

)
,

(9.87)

where − 1
3 � pi � 1 for i = 1, 2, 3. It is easy to verify that the only non-negative solutions are the

permutations of the triple �p = (0, 0, 1). In turn, if one of the parameters is maximally negative,
we have permutations of the triple �p = (− 1

3 , 2
3 , 2

3 ). A few examples with rational values are the
permutations of �p = (− 2

7 , 3
7 , 6

7 ), (− 3
13 , 4

13 , 12
13 ), (− 6

19 , 10
19 , 15

19 ), (− 4
21 , 5

21 , 20
21 ), (− 5

31 , 6
31 , 30

31 ), etc.

Since
√−g = ct/(T p1

1 T p2
2 T p3

3 ), the volume of Kasner geometry expands linearly in time.
However, except for the class where the values (p1, p2, p3) are permutations of the triple (0, 0, 1)
and where the Kasner geometry stagnates in two directions and expands in the third, the Kasner
geometry expands in two spatial directions but shrinks in the third in all other cases.
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Gödel’s universe
One of the most unusual solutions to the Einstein equations was discovered in 1949 by Kurt Gödel;
the metric tensor for the geometry of the so-called Gödel universe is specified as [372, 219]

Gödel ds2 = −c2dt2 +
dr2

1 +
( r

rg

)2 + r2
[
1 −

( r
rg

)2]
dφ2 + dz2 − c

2
√

2 r2

rg
dt dφ, (9.88)

where rg is the Gödel radius. These cylindrical coordinates (t, r, φ, z) co-rotate with the entire
universe, which results in the additional non-diagonal dt dφ-term.

In this universe and with reference to the coordinate system (t, r, φ, z), a light ray that starts
from the coordinate origin in the horizontal (r, φ)-plane follows an elliptical path that bends in
the counter-clockwise direction. At the point where it reaches the distance rg from the coordinate
origin, the light ray is moving in the +êφ direction and begins to return to the coordinate origin,
where it closes the elliptic path. Thus, observers that are at rest in the coordinate origin cannot see
outside the cylinder of the horizontal radius of rg, which then defines an optical horizon for these
observers. This curious property is a consequence of the fact that the light cones (generated by
light-like vectors) at every point of the (x, y)-plane tilt in the +êφ direction at an angle (away from
the coordinate t-axis) that grows with the distance from the origin. At the distance rg ln(1 +

√
2) ≈

0.88 rg, the light cone tilts over so much that one of the light-like vectors becomes parallel with
+êφ and generates a circular light-like path in the (x, y)-plane: a beam of light can be emitted so
as to travel on a closed circle of radius ≈ 0.88 rg – without advancing in coordinate time, t [264].

A

Optical
horizon for A

B

Optical horizon for B

C

Optical horizon for C

Figure 9.3 Optical horizons for observers A, B and C in the Gödel universe.

For an observer located outside the coordinate origin there exists a similar optical horizon,
of an ovoid shape where the ovoid is narrower and longer in the region further away from the
coordinate origin, as shown in Figure 9.3. Note that, by the definition of the optical horizon in the
Gödel universe, light returns owing to the Doppler effect and the co-rotation of the entire universe
and not owing to gravity. This optical horizon is thus of an essentially different nature from the
event horizon in the Schwarzschild geometry.

In turn, a particle with a non-vanishing mass that is at some point at rest with respect to
this coordinate system remains in that resting state, i.e., moves only in time. Thus, the coordinates
(t, r, φ, z) are called co-rotating, and the radius rg presents the effective optical horizon. For the
Gödel universe it is convenient to define the angular speed

Ωg :=
√

2 c
rg

(9.89)

with which the matter “at rest” and the entire Gödel universe rotate.
In spite of this rotation, the geometry (9.88) is homogeneous. From the form of the metric

tensor, it should be clear that translations in the êt and êz directions as well as rotations in the êφ
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directions are isometries (symmetries of the metric tensor) and that they are respectively generated
by the differential operators

X0 := 1
Ωg
∂t, X3 := rg ∂z and X2 := ∂φ. (9.90)

As for the radial direction, ∂r is clearly not a symmetry as this would translate r → r + r0, leaving
a cylindrical “hole” of radius r0, whereas a r → r − r0 translation would map points near the z-axis
into a nonexistent domain with the absurd value r < 0. However, it turns out that there do exist
two differential operators,

X1 :=
1√

1 +
( r

rg

)2

[
r√
2c

cos φ ∂t + rg
2

[
1 +

( r
rg

)2] sin φ ∂r + rg
2r

[
1 + 2

( r
rg

)2] cos φ ∂z

]
, (9.91)

X4 :=
1√

1 +
( r

rg

)2

[
r√
2c

cos φ ∂t − rg
2

[
1 +

( r
rg

)2] cos φ ∂r + rg
2r

[
1 + 2

( r
rg

)2] sin φ ∂z

]
, (9.92)

that do generate isometries. Gödel, in his original work in 1949, already used four of these five
isometries to show that this geometry is homogeneous, and it was shown in 1992 [167] that the
complete set of five isometries closes the so(3) ⊕ tr(R1,1) algebra:

L1 := X4, L2 := X1, L3 := −i(X0+X2),
{ [

L j , Lk
]

= iε jk
�L�,[

L j , X0
]

= 0 =
[

L j , X3
]
,

(9.93)

where tr(R1,1) is the abelian algebra of translations in the (t, z)-plane. These symmetries can then
be used to map points, paths, vectors and other tensors from one point of the Gödel universe
into another, so that it suffices to work out the geometric properties with reference to the given
coordinate system (9.88) and with the origin of the spatial coordinates as the reference point.

The coordinate time t and the proper time τ are identical for the observer “at rest” at the
coordinate origin. Very near the z-axis, so for r ∼ 0, the Gödel geometry is approximately flat (in
cylindrical coordinates). Using the homogeneity and the action of the algebra (9.93), this then
holds locally for any observer.

In the co-rotating basis the Einstein tensor (Gμν := Rμν − 1
2 gμνR) is given as

[Gμν] = Ω2
g diag(−1, 1, 1, 1) + 2Ω2

g diag(1, 0, 0, 0). (9.94)

The Einstein equations then dictate that this geometry is maintained by a type of matter for which
the energy–momentum tensor density has the same value. The first contribution describes the
so-called lambda-vacuum, i.e., the solution with the cosmological constant [☞ relations (9.77)–
(9.79)]. The second contribution describes a co-rotating perfect (and all-permeating) fluid, i.e.,
a co-rotating dust.21 Note that the coefficients of the two contributions must be in the precise
proportion as given in equation (9.94).

Conclusion 9.8 The Gödel geometry of spacetime may be understood as the result of an
even permeation of the whole spacetime with dark energy (cosmological constant) and a
perfect fluid, and in the precise proportion provided in the expression (9.94).

The Gödel geometry is a relatively rare example of a geodesically complete and non-singular
geometry [☞ the lexicon entry, in Appendix B.1]: The coordinate system (9.88) covers the entire
Gödel spacetime, and contains no singularity; it also has an unusually symmetric structure (9.93).
21 The cylindrical solution with co-rotating dust was discovered in 1924 by Cornelius Lanczos [325], but the solutions is

better known after Willem Jacob van Stockum, who analyzed it in 1937 [534].
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Traveling through time
Of course, every particle incessantly travels – through time, in the direction of time flow. However,
the Lanczos–Stockum solution of co-rotating dust and Gödel’s co-rotating universe were amongst
the first solutions to contain so-called closed time-like curves; the Kerr solution (9.63) also has
such curves. Those are curves for which the tangent vector is always time-like [☞ Definitions 3.3
on p. 90], but which are closed in spacetime. An ordinary particle with nonzero mass may travel
along such a curve, and so can return into its own past!

observer

Figure 9.4 A time-like closed path in the Gödel universe.

The simplest such closed time-like curve in the Gödel universe is an ovoid path in the (x, y)-
plane, e.g., with the x-axis as its symmetry axis, as shown (following the analysis of Ref. [219]) in
Figure 9.4. Similar, but much more complicated closed time-like curves may then be found both in
the Gödel universe, and in the Lanczos–Stockum solution with co-rotating dust, and also in many
other exact solutions [☞ catalogues [497, 372] as well as the texts [367, 548]]. Note that, follow-
ing the path in Figure 9.4, the particle moves backwards in time only outside the optical horizon of
the observer at the coordinate origin. Also, Ref. [219] gives the necessary conditions: For a particle
to move along such a closed time-like curve, it must be launched with the initial speed v � 0.98c
(measured in the co-rotating coordinate system) and from a location r � 1.7rg, as well as any other
initial conditions that are obtained from these by isometry algebra transformations (9.93).

These concrete, exactly solved examples are particularly important to indicate the fact that
many intuitively clear and acceptable characteristics of flat spacetime – including also the perhaps
beguiling but precisely resolved situations in the special theory of relativity22 – simply need not
hold in the general theory of relativity. For details about closed time-like curves, the ambitious
Reader should consult the books [519, 265].

Digression 9.6 Most typical scenarios of reversing the direction of traveling in time con-
tradict energy conservation: Suppose an object X were to travel forward in time from
t < t0 to t1 > t0, then “turn around” to travel in time from t1 back to t0 < t1, and
then continue traveling in time forward as usual, through t1 and beyond. Figure 9.5
depicts this process in two versions, to the left where the object X travels continu-
ously backward in time, and to the right where it “jumps.” So, in version (a), the

22 The so-called paradoxes most often mentioned are the twin-paradox, and those of the ladder and the barn, the ruler
and hole in the table, but there exist many others [512]. Not one of these puzzling situations is a real paradox and
merely indicates that many of our notions acquired in everyday life are approximations that are really fit only for flat
spacetime or at most locally, and so must be reconsidered and adapted beyond such local applications. For example,
simultaneity becomes a relative notion, and the rigid body makes sense only at non-relativistically small speeds, since
the action of the force cannot propagate through the body faster than the speed of light in vacuum, so that each body
bends under the influence of non-simultaneous forces.
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Figure 9.5 Two typical scenarios of time-travel: (a) with continuous backward travel, and
(b) with “instantaneous” backward travel. Energy is measured by adding up all contributions at
spacetime points simultaneous to a given observer and connected by the dashed lines. In both
scenarios, energy fails to be conserved.

change �E0 = (mX+mX)c2 occurs as time passes from before t0 to after t0, and then
�E1 = −(mX+mX)c2 as time passes through t1. In version (b), �E0,1 = ±mX c2 at these
two points in time. In diagrams with elementary particles similar to (a), another kind of
particle is emitted from the point B and absorbed at the point C to balance 4-momentum
conservation.

However, in the general, nontrivial geometries (and topologies) necessary to de-
scribe gravity in all generality, energy and 3-momentum are not globally well defined.
These quantities are spatial 3-dimensional integrals of the Tμν components of the energy–
momentum density tensor, where the domain of integration is a 3-dimensional space-like
hypersurface of simultaneous points in the 4-dimensional spacetime, as chosen by a spe-
cific class of observers. Most admissible 4-dimensional spacetime geometries admit a
wide variety of such 3-dimensional space-like hypersurfaces, over which the required
integrals produce widely differing results; the analysis is improved by restricting to co-
ordinate systems satisfying the de Donder gauge condition, ∂μ(

√−ggμν) = 0 [2]. This
exhibits the close relationship between energy conservation and time-travel, so the simple
energy-conservation argument in Figure 9.5 need not hold. In fact, no general argument
preventing time-travel can exist.

Counter-intuitively, and using the isometry algebra (9.93), it was shown [219] that the closed
time-like curves in the Gödel universe nevertheless do not violate causality. In other cases, such
as the closed time-like curves through the ergoregion of the Kerr geometry, paths that go through
“wormholes” [☞ below] and many others [519, 265], where causality may be violated in prin-
ciple, semi-classical arguments indicate that the quantum physics probably precludes violations
of causality. However, based on such semi-classical arguments, Stephen Hawking hypothesized in
1992 that there exists a general chronology protection principle, except within the indeterminacy
specified by Heisenberg’s relations. Much milder is the hypothesis proposed by Igor Novikov back
in 1975, whereby only self-consistent paths are permitted; this also includes traveling backwards
in time if this does not cause a change in the existing history. A survey of these hypotheses and
other practical, technical and conceptual questions related to closed time-like curves may be found
in Refs. [542, 544]. Of course, as no complete theory of quantum gravity exists as yet, physical re-
alizations of traveling along closed time-like curves and the physical realization of even chronology
violation remain an open question☞ .
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9.3.4 Engineering spacetime, wormholes and topological bridges
Returning to the Einstein tensor (9.94) in the Gödel universe, which the Einstein equations equate
with the energy–momentum tensor density of the matter/energy that maintains this geometry,
points to an important property of the nonlinear system of Einstein equations (9.44):

Conclusion 9.9 For each i = 1, 2 . . . , let T(i)
μν denote the energy–momentum tensor density

for the ith matter/energy distribution, and g(i)
μν the corresponding solution of the Einstein

equations (9.44). The joint matter distribution (if this is physically achievable) has the
energy–momentum tensor density ∑i T(i)

μν and the solution of the Einstein equations (9.44)
g(Σ)
μν . However, g(Σ)

μν is most often significantly different from either of the “partial” solutions
g(i)
μν, as well as from their sum.

This property is intuitively acceptable: It should be the case that we can always freely combine
different types of matter/energy (except that two macroscopic material objects, of course, cannot
exist in the same place at the same time) and to add them to any initially given spacetime. The
presence of additional matter/energy then must change the geometry of spacetime again in a
way determined by the Einstein equations. However, the resulting metric tensor, in general, is not
simply an analogous linear combination of metric tensors that follow from the presence of one or
the other component energy–momentum tensor density. Succinctly,

Conclusion 9.10 Energy–momentum density tensors of matter/energy distributions and
their Einstein tensors are additive; the corresponding metric tensors are not.

These conclusions rely on the usual interpretation of the Einstein equations as a differential system
that determines the metric tensor as a function of a provided energy–momentum tensor density
and initial and boundary data.

The converse approach partially follows from the logical sequence in Conclusion 9.8 on
p. 345, and is sometimes referred to as the “engineering approach,” wherein:

1. specify a desired geometry by specifying the corresponding metric tensor;
2. compute the Einstein tensor Gμν = Rμν − 1

2 gμνR for this metric tensor;
3. this specifies the required energy–momentum tensor density Tμν of the matter/energy

distribution that produces/maintains the desired geometry by its presence.
4. Finally, explore:

(a) What (physical/engineering) characteristics should this matter/energy distribution
have, so as to have the required Tμν?

(b) Is it (at least in principle) possible to construct a structure with the matter/energy
distribution and the required Tμν?

For the purpose of classifying the types of matter/energy, the characterizing “energy
conditions” were introduced. To define these conditions, we need:23

1. a time-like 4-vector field with components ξμ(x), i.e., gμνξμξν < 0, ∀x;
2. a light-like (or null) 4-vector field with components kμ(x), i.e., gμνkμkν = 0, ∀x;
3. a causal 4-vector field with components ζμ(x), i.e., gμνζμζν � 0, ∀x.

Since ξμ may be interpreted as a 4-vector that is tangential to the worldline of a massive particle,
it follows that � := Tμνξμξν is the total mass–energy density (of the material particle as well as all

23 Recall that the signature of the metric tensor gμν in the relativistic tradition followed in this chapter is the reverse of the
signature of the metric tensor of flat spacetime, ημν, used in the particle physics tradition; gtt < 0 while ηtt > 0.
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non-gravitational fields that act upon this particle in this spacetime point). Similarly, the quantity
�0 := Tμνkμkν is the limiting value of the mass–energy density � for a massless particle/field.

The following “energy conditions” are used to typify matter/energy:

Condition For all

Dominant gμνTμρTνσζρζσ � 0 and g0 μTμνζν < 0 gμνζμζν � 0, (ζ0 > 0)
Weak Tμνξμξν � 0 gμνξμξν < 0
Null∗ Tμνkμkν � 0 gμνkμkν = 0
Strong

[
Tμν − 1

2 gμνT
]
ξμξν � 0 gμνξμξν < 0

∗ The null condition is also often referred to as “light-like.”

(9.95)

The relationship between these conditions is

Dominant ⇒ Weak ⇒ Null ⇐ Strong, (9.96)

where it is important to note that, nomenclature to the contrary, the strong condition does not
imply the weak, nor vice versa. These conditions also have their “averaged” version, where the
integral of the condition over some spacetime region is satisfied although the condition is violated
somewhere within the given region.

The Einstein–Rosen “bridge”
The Schwarzschild metric tensor (9.55) exhibits two pathological properties at the distance r = rS:

1. the time component, g00 = gtt = −(
1− rS

r

)
c2 vanishes,

2. the radial component, grr = −(
1− rS

r

)−1 diverges.

In turn, as discussed in Section 9.3.1 on p. 334, the divergence or vanishing of an individual
component of the metric tensor does not necessarily imply a real singularity in the geometry.
Moreover, Lemâıtre’s coordinates (9.60) prove that the location r = rS is not singular. This sup-
ports the nagging doubt that the familiar spherical coordinates (t, r, θ, ϕ) – and so maybe even
Lemâıtre’s – do not in fact describe the complete spacetime geometry in the vicinity of the black
hole.

Also, a detailed analysis of the various trajectories of massive particles and light rays that
pass through the event horizon [367] points to a very bizarre property, sketched in the diagram
on the left-hand side of Figure 9.6: Particles directed towards the black hole follow spacetime
paths that are seemingly disconnected when passing through the event horizon and require the
coordinate time to diverge to t → +∞ (whereas the proper time remains finite), and the path
segment within the event horizon to move backwards in coordinate time while computation
proves that the proper time continues to pass forward for massless particles and to stagnate for
light.

In Figure 9.6(a), follow a light ray directed at the black hole from an initial point A, as it
passes through the point C in the coordinate time t = 0, passes through the horizon (r = rS) in
coordinate time t = +∞ at the “point” D, then returns in coordinate time, within the horizon, and
falls into the r = 0 singularity in the spacetime point F. Namely,

for r < rS, fS(r) < 0 so gtt = − fS(r) > 0 and grr =
(

fS(r)
)−1

< 0. (9.97)

Thus, within the horizon, the coordinate t has a space-like character (particles may move in both
directions of t) and the coordinate r has a time-like character, and particles may move only in the
direction r → 0, i.e., towards the singularity. Similarly to a light ray, a massive particle directed
towards the black hole from the initial spacetime point B, passes through the point C in coordinate
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Figure 9.6 The Schwarzschild geometry (a) in the original (t, r) coordinates, (c) in Kruskal–Szekeres
coordinates and (b) the transitionary stadium of the mapping from (a) to (c). A light ray directed
toward the black hole follows the A-C-D-F path, while a particle with a non-vanishing mass directed
toward the black hole follows the B-C-E-G path. The depiction (9.55) is spherically symmetric and
angular coordinates θ, ϕ are not shown; every point in the figure lies on a sphere of the given radius.
The diagram (b) shows how the diagram (a) “opens” in the mapping to the diagram (c).

time t = 0, passes through the horizon (r = rS) in coordinate time t = + ∞ (at the “point” E), and
then returns retrograde in coordinate time within the horizon, and falls into the r = 0 singularity
(G). Throughout, the proper time of a massive particle passes forward, and remains finite.

Besides the appearance of a fictitious singularity at r = rS, the discontinuity of the
path – along which we know that the proper time is not discontinuous – also indicates that
the Schwarzschild coordinates (t, r, θ, ϕ) are not appropriate. The Eddington–Lemâıtre coordi-
nates (9.60) do remove the first but not also the second of these two problems. In 1950, John
L. Synge discovered the incompleteness of the Schwarzschild coordinates, as well as a sys-
tem of coordinates that is complete. Independently and unaware of Synge’s results, Christian
Fronsdal again proved the incompleteness of Schwarzschild coordinates in 1959 (at CERN),
and found a complete analytical description of the Schwarzschild geometry in the form of
a higher-dimensional coordinate system with an algebraic constraint.24 His solution turned
out to be very similar to the solution that Martin Kruskal (at Princeton University) found a
little earlier but did not publish, and of which D. Finkelstein and J. A. Wheeler (then profes-
sors at Princeton University) knew and to whom Fronsdal, in his original work [181], gave
thanks for the communication. Independently from this group of explorers, the same solu-
tion was discovered also by Szekeres György, in Australia; the independent works by Kruskal
and Szekeres were published in 1960 and this finite – and explicit – version of the descrip-
tion is today called the Kruskal–Szekeres diagram, and u and v in Figure 9.6(c), p. 350, are
the Kruskal–Szekeres coordinates [367]. In turn, Fronsdal’s implicit description is today rarely
mentioned.

24 By definition, spaces of solutions of systems of algebraic equations are called algebraic varieties and form a major subject
in the mathematical discipline of algebraic geometry. This connection between mathematics and physics will recur later,
and much more vigorously, with the exploration of (super)strings.
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The Schwarzschild and Kruskal–Szekeres coordinates are related as follows:

K–Sz Schwarzschild

uI , −uII I =
√

r
rS
−1 er/rS cosh

( ct
2rS

)
vI , −vII I =

√
r

rS
−1 er/rS sinh

( ct
2rS

)
K–Sz Schwarzschild

uII , −uIV =
√

1− r
rS

er/rS sinh
( ct

2rS

)
vII , −vIV =

√
1− r

rS
er/rS cosh

( ct
2rS

) (9.98a)

( r
rS
−1

)
er/rS = u2 − v2, t =

{ 2rS
c arth

( v
u

)
in regions I and III;

2rS
c arth

( u
v

)
in regions II and IV;

(9.98b)

where the subscript to Kruskal–Szekeres coordinates denotes the region in which the stated rela-
tion holds. By definition, r � 0, so the half-plane (t, r)r<0 has no physical meaning. However, the
half-plane (t, r)r�0 with the boundary (r = 0) is not geodesically complete – as was shown: paths
that start outside the horizon, pass through the horizon and then fall into the singularity “pass”
through the point at infinity and come back from it. In turn, the domain of Kruskal–Szekeres coor-
dinates (shown in Figure 9.6(c), p. 350, as the part of the (u, v)-plane bounded by the singularity
hyperbolas) is geodesically complete: All geodesic lines are either completely contained within
this region or have a limiting point at infinity and outside the singularity hyperbolas. Also, ev-
ery finite part of every geodesic path is entirely contained within the domain of Kruskal–Szekeres
coordinates.

Figure 9.6(c), p. 350, is the Schwarzschild geometry presented in Kruskal–Szekeres coordi-
nates (u, v): the half-plane (t, r)r�0 from Figure 9.6(a) is mapped into the region bounded by the
“r = rS, t = −∞” diagonal and the upper singularity hyperbola. Figure 9.6(b) shows the “interme-
diate phase” between the Schwarzschild picture and the Kruskal–Szekeres picture, where one sees
that:

1. the diagonal “r = rS, t = −∞” appears by “splitting” the lower Schwarzschild semi-axis
r = rS, t ∈ (−∞, 0] into two semi-axes that then open into the “r = rS, t = −∞” diagonal;

2. the “splitting” of the lower Schwarzschild semi-axis r = rS, t ∈ (−∞, 0] provides the space of
regions III and IV;

3. the upper Schwarzschild semi-axis r = rS, t ∈ [0, +∞) becomes the semi-axis that divides the
regions I and II, and its copy divides the regions III and IV.

The comparative examination of these two coordinates of the Schwarzschild geometry clearly
demonstrates that the mapping (t, r)r�0

1−2−−→ (u, v) is two-valued, i.e., that the Kruskal–Szekeres
picture is a double covering of the Schwarzschild picture.

This double covering implies that every spacetime region with the Schwarzschild geometry
there automatically must have an exact copy, and these two regions touch along the “r = rS,
t = −∞” diagonal in the Kruskal–Szekeres picture. By means of Figure 9.6(b), p. 350, we see that
in the Schwarzschild picture this means that the two copies of spacetime touch along the event
horizon, but only up to the coordinate time t = 0. As the coordinates may be changed by arbitrary
general coordinate transformations [☞ Definition 9.1 on p. 319], the time t = 0 of course has
no invariant meaning and the moment when the two spacetime regions separate depends on the
choice of the observer; the text [367] shows the detailed history of this process from the vantage
point of two different observers.

Since arth(x) = tanh−1(x) = ∑∞
k=0

( x
k

)2k+1, in regions I and III and for sufficiently large
but fixed u∗, we have that t(u∗) ≈ 2rS

cu∗ v, and the Kruskal–Szekeres coordinate v approximates
the Schwarzschild time t. Thus, the Schwarzschild-simultaneous points in Kruskal–Szekeres Fig-
ure 9.6(c), p. 350, all lie on predominantly horizontal and approximately straight lines when
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“sufficiently deep” within the regions I and III;25 in passing through the regions II and IV, these
Schwarzschild-simultaneous points are depicted by the nonlinear curves in the Kruskal–Szekeres
coordinates.

Figure 9.6 (c), p. 350, then clearly indicates that this depicts a dynamical process where, from
the vantage point of a fixed observer outside the event horizon, a “bridge” (or tunnel) appears that
connects the spacetime regions I and III. This process was discovered by Albert Einstein and Nathan
Rosen in 1935, hence its name. However, only in 1962 did John A. Wheeler and Robert W. Fuller
discover that this bridge is in fact an unstable configuration and that neither material objects
nor light can pass through it. Because of this impassability and topological form S2 ×R1 that is
a 3-dimensional generalization of the cylinder (S1 ×R1), these configurations became known as
wormholes.

II

I IIII

IV

III

observer

Two separate “sides” of a black hole, one side
seen from region I, the other from region III.

The Einstein–Rosen bridge is about to open.

The Einstein–Rosen bridge is partially open;
regions I and III are spatially connected.

The Einstein–Rosen bridge is maximally open.

The Einstein–Rosen bridge begins to close;
regions I and III are still spatially connected.

The Einstein–Rosen bridge closes.

Two separate “sides” of a black hole, one side
seen from region I, the other from region III.

Figure 9.7 The Einstein–Rosen “bridge” as a dynamical process. The (≈ time) v coordinate distance
between the lower (earlier) and upper (later) singularity has no physical meaning: Particles directed
towards the “bridge” end up in the upper (future) singularity: massive particles follow the path depicted
by the solid line, light follows the dashed one. The physically accessible regions I and III meet only at
the Kruskal–Szekeres coordinate origin, usually thought of as the circumference of the “throat” of the
bridge.

Figure 9.7 shows the Schwarzschild geometry in the Kruskal–Szekeres coordinates, where
the Schwarzschild-simultaneous hypersurfaces are depicted as predominantly horizontal lines,
which indicate to the right the status of the Einstein–Rosen bridge by a sketch of its cross-section.
The lines C that connect the regions I and III through the Einstein–Rosen bridge always have
a spatial character, i.e., tangent 4-vectors V ∈ Tx(C ) along these lines (x ∈ C ) are space-like,
gμν(x)Vμ(x)Vν(x) > 0 for every x ∈ C . The diagram in Figure 9.7 shows that not even light rays –
in the Kruskal–Szekeres coordinate system, light travels along straight 45◦ lines – can reach either
from the inside of region I into the inside of region III, or the other way. The same is true of real,
massive particles.

Only light rays that are entirely within the event horizon (diagonal lines that intersect in the
center of the diagram in Figure 9.7) pass from the boundary of region I into the boundary of region

25 Recall that the angular coordinates θ and ϕ are not depicted in the diagrams in Figure 9.6 on p. 350, so every point
represents an entire sphere of indicated radius, and every line is then a 3-dimensional space of the R1 × S2 topology,
where the radius of the sphere S2 varies along the line R1, collapsing to a point only where this line R1 touches the
singularity.
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III and the other way around. However, these paths (of light-like character) are forever trapped in
the event horizon.

Conclusion 9.11 In spite of the existence of spatial connections (by paths to which all tan-
gent vectors are of spatial character) between regions I and III, the Einstein–Rosen “bridge”
is forever closed for real particles (which travel along paths of time-like character), including
here light and all other gauge fields.

Comment 9.5 The Einstein–Rosen bridge, however, is not closed to virtual particles.
This in principle permits an interference of wave-functions that permeate through the
Einstein–Rosen bridge, and provides a form of Aharonov–Bohm effect: The spacetime for
Feynman-esque integration over paths (histories) [☞ Procedure 11.1 on p. 416] is multiply
connected and connects otherwise unreachable portions of the universe.

Notice that the topology of spacetime is necessarily a dynamical concept since one of the
dimensions is time-like. Abstractly, the 4-dimensional mathematical space of the physical spacetime
is multiply connected, and the bridge is “always” present. However, the simultaneous points for
any real physical observer, F, form a 3-dimensional subspace, PF,t, of space-like character, so
that all tangent vectors V ∈ Tx(PF,t) to this subspace (for each x ∈ P) are space-like 4-vectors:
gμν(x)Vμ(x)Vν(x) > 0 for every x ∈ PF,t. As the time t of the physical observer F passes, the
topology of this subspace PF,t varies, as sketched in the right-hand half of Figure 9.7 on p. 352.
In the example of the Einstein–Rosen “bridge” in the Schwarzschild geometry, the two separated
regions of space:

1. have a black hole each;
2. these two black holes connect in a moment;
3. the connection of these black holes opens into a space-like “bridge” (wormhole) of the

S2 ×R1 topology;
4. this “bridge” closes before even light can pass through it;
5. there remain two separated regions, with a black hole each.

It can, however, not be overstated that every real physical observer, F, can see only the events that
can signal F from the interior of the “past” light cone C ∧

F,t, the vertex (“here, now”) of which is in
the spacetime point xF,t. Figure 9.7 on p. 352 then makes it clear that no real physical observer can
even see through an Einstein–Rosen bridge. Owing to the somewhat “instantaneous” nature of the
Einstein–Rosen bridge, it vaguely recalls the instantons mentioned in Chapter 6 and the tunneling
through them; see Footnote 16 on p. 248.

Stabilization of traversable wormholes
Recall that the Schwarzschild geometry solves the Einstein equations without an energy–
momentum tensor density on the right-hand side. The above description of the Einstein–Rosen
“bridge” shows that even the topology and geometry of otherwise empty spacetime may be highly
nontrivial.

The geodesically complete picture of the Schwarzschild geometry [☞ Figures 9.6 on p. 350
and 9.7 on p. 352] indicates that the Einstein equations have solutions where the spacetime is
topologically nontrivial. Namely, the regions I and III may be either regions in otherwise separate
universes, or regions in the same universe, which are however arbitrarily far from one another as
measured along any path that does not pass through the Einstein–Rosen “bridge.” Concretely, sup-
pose in a given moment one such “bridge” opens temporarily between a black hole near Earth and
some black hole in this same spacetime, but in the Andromeda Galaxy. In this case our spacetime
would become multiply connected, and the space would become momentarily multiply connected,
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as there exist closed paths that do pass through that “bridge” from Earth to Andromeda, and then
return to Earth along a (much) longer way. In the moment when such a path (space-like, for the
Einstein–Rosen “bridge” is impassable) exists, such a path cannot be continuously shrunk to a
point. Alternatively, such a path is not the boundary of any surface that is entirely contained in the
given spacetime.

This topological property is identical to the property of the surface of a torus, which contains
closed paths that traverse the “big” or the “small” circle at least once, so they cannot be continu-
ously deformed into a point. In contrast to such non-contractible paths, there also exist of course
closed paths that are the boundaries of surfaces that are completely contained in the given space,
and which then may be continuously contracted to a point. Thus “topologically” seen, the surface
of a torus is equivalent to the surface of a 2-sphere to which was added a cylindrical “handle”
(wormhole), as shown in Figure 9.8.

�

Figure 9.8 The torus surface with three topologically distinct closed paths: Neither A nor B can be
continuously deformed into a point as can be done with the path C. Besides, the path A cannot be
continuously deformed into the path B. The same holds for the “sphere with a handle” to the right,
which is topologically equivalent to the torus.

In turn, that multiple connectedness – for real particles, fields and objects – has no practical
meaning as the Einstein–Rosen “bridge” is impassable for them.

It is then reasonable to ask if there may exist some deformation of the Schwarzschild (or
similar) geometry in which some such bridge between otherwise distant spacetime regions could
exist and which would be traversable by real particles, fields and objects.

The metric tensor that exactly describes such a geometry evidently must have elements that
are at least quadratic functions of at least some spatial coordinates, so that the spacetime solution
would have two “branches,” i.e., “sheets,” which would then be connected by a tunnel, and so
that in an adequate geodesically complete spacetime diagram (such as the Kruskal–Szekeres dia-
gram for the Schwarzschild geometry) the otherwise separated regions of spacetime are connected
through that tunnel by time-like paths. For solutions of this type the popular name “wormhole”
was kept, but unlike the Einstein–Rosen space-like “bridge,” these time-like wormholes are named
Lorentzian wormholes [541, 543].

The simplest example is provided by the metric tensor

ds2 = −c2dt2 + d�2 + (k2+�2)
(
dθ2 + sin2(θ)dϕ2), (9.99)

where r = ±√
k2+�2 is the “true” radial coordinate, and k > 0 is a constant. For this metric tensor

one computes the Einstein tensor, in spherical coordinates:

[Gμν = Rμν − 1
2 gμνR] =

k2

(k2 + �2)2 diag
[−c2,−1, (k2+�2), (k2+�2) sin2(θ)

]
. (9.100)
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The Einstein equations then equate this tensor with the energy–momentum tensor density of the
matter/energy that is necessary at the connection of the two “branches” of the solution to maintain
this geometry.

This use of the Einstein equations is identical to the use of the Gauss–Ampère equations in
electrodynamics. There, the spherically symmetric electric field, for example, with a magnitude
that decays as 1/r2 implies that there must exist an electric charge at the coordinate origin that
maintains this field.

As the physical meaning of the Ttt component of the energy–momentum tensor density is the
usual matter/energy density (including all non-gravitational fields), and Trr is the radial pressure
of this matter density, we see that the energy–momentum tensor density that is being equated with
the result (9.100) must represent a very unusual matter/energy: both its density and its radial
pressure are negative. However, in the original paper in 1989, Matt Visser [541] pointed out that
there do exist physical systems that have been realized in laboratories, such as for the Casimir
effect, and which exhibit at least some of these exotic properties. Later research in this respect
discovered several other physical systems, the combinations of which could – in principle – be
used to open and stabilize such Lorentz wormholes.

The fact that the matter/energy that maintains a traversable wormhole must have exotic
properties follows from the simple insight [519]: When light enters a traversable wormhole, the
rays are being focused towards a fictitious center, following the spacetime curvature caused by the
gravitational effect of the energy/matter that maintains the wormhole traversable. The incoming
rays therefore behave precisely as if they are gravitationally focused by the gravitational field of
a massive object. In turn, when the light comes out on the “other side” of a traversable worm-
hole, the rays must be emanating as if they were welling from a center, following the spacetime
curvature caused by the gravitational effects of the energy/matter that maintains the wormhole
traversable. Effectively, these rays are then refracted by the gravitational field, indicating that the
matter/energy density that maintains the wormhole traversable must be less than the density of
empty, flat spacetime, i.e., must be negative.

The interested Reader should consult Refs. [546, 544] for additional examples and literature.

9.3.5 Exercises for Section 9.3

✎ 9.3.1 Verify that the substitutions (9.77) eliminate the cosmological constant from the
equations (9.76).

✎ 9.3.2 Adapting the relation (9.94), specify the proportion of cosmological constant and co-
rotating perfect fluid that can emulate (a) dark energy, (b) quintessence, and (c) phantom
energy.

✎ 9.3.3 Estimate the energy conditions (9.95) for (a) dark energy, (b) quintessence, (c) cos-
mological constant, and (d) phantom energy.

✎ 9.3.4 Determine which of the energy conditions (9.95) are violated by the matter/energy
distribution required to support the Lorentzian wormhole (9.100).





10
Supersymmetry: boson–fermion
unification
The previous chapters, and foremost Chapter 8, show that the development of fundamental physics
is inherently based on the idea of unification, and in three related but distinct ways [☞ Conclu-
sion 8.1 on p. 300]. However, one aspect remains in which the objects in fundamental physics, as
discussed so far, remain separated:

1. The basic building blocks of matter – quarks and leptons – have spin 1
2 h̄ and so are fermions:

they are subject to Pauli’s exclusion principle (no two fermions can coexist in the same state)
and an ensemble of fermions obeys the Fermi–Dirac statistics.

2. Interaction mediators – gauge and Higgs1 fields – have integral spin and so are bosons:
not subject to Pauli’s exclusion principle, their ensemble obeys the Bose–Einstein statistics;
infinitely many bosons in the same state form a Bose condensate.

Digression 10.1 The following parallel practically suggests itself:

1. Subject to Pauli’s exclusion principle, two fermions cannot be simultaneously
in the same quantum state, i.e., “in the same place” in the Hilbert space – just
as in classical physics two material objects cannot be simultaneously in the
same place in the real space.

2. Not subject to Pauli’s exclusion principle, two bosons can be simultaneously
in the same quantum state, i.e., “in the same place” in the Hilbert space – just
as in classical physics two interaction fields can be simultaneously in the same
place in the real space.

Also, matter (substance) elementary particles are fermions, and mediating elementary
particles of interaction fields are bosons [☞ Table 2.3 on p. 67]. As if, by extending clas-
sical physics into quantum, we transported the “events” of physics from spacetime into
the Hilbert space.

1 Recall Conclusion 7.4 on p. 265: Higgs bosons mediate the interaction of other particles with the true vacuum.
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This chapter offers a brief review of the only possible way to bridge this last divide: the sym-
metry transformations that change bosons into fermions and back. The so-extended symmetries of
spacetime are called supersymmetries.

The mathematical structure of supersymmetry is a kind of superalgebras, i.e., of supergroups,
which are abstract algebraic structures that mathematicians have studied since the 1960s. The
special property of supersymmetries among superalgebras is that they contain the Poincaré alge-
bra (i.e., group) in flat spacetime, as well as the corresponding generalization for anti de Sitter
spacetime2 or with so-called conformal symmetry. In 1971, Yuri A. Gol’fand and Evgeny Likhtman
discovered that supersymmetry [☞ Section 10.3] helps in dealing with divergences and renormal-
ization computations in field theory. Besides the conceptual importance, the aim of this chapter
is then also to show this practical aspect of supersymmetry application. The interested Reader is,
besides texts and monographs in physics [189, 387, 562, 560, 129, 76, 344, 308, 556, 516, 8] and
mathematics [178, 125, 535, 461], also directed to the on-line sources [144, 351, 356, 60, 19];
finally, Refs. [115, 186] give a detailed review of the effects and application of supersymmetry in
quantum mechanics.

— ❦ —

Supersymmetry that will be considered here is a global, i.e., rigid symmetry: the symmetry transfor-
mation parameters [☞ definition (10.62)] are constants over all spacetime. Of course, there also
exists a gauge generalization of supersymmetry, where the supersymmetry transformation param-
eters are free functions over spacetime, in perfect analogy with the procedure in Section 5.1. Such
a gauge, i.e., local supersymmetry, turns out necessarily to include gravitation, as well as interac-
tions that are mediated by spin- 3

2 gravitinos, the superpartners of spin-2 gravitons. The structure
of these models is a fascinating unification of gravitation and the gravitons with particles of lower
spin – including gauge 4-vectors, Dirac fermions and scalars, but is also technically much more
demanding than the material covered so far, so the interested Reader is directed to the abundant
literature, and especially to the textbooks [189, 562, 560, 76]. Besides, it turns out that these
“supergravity” models are – by themselves – neither renormalizable nor can they include all the
delicate details of the Standard Model without extension within superstring theory, which will be
reviewed in Chapter 11.

10.1 The linear harmonic oscillator and its extensions
Before delving into a review of concrete applications of supersymmetry in field theory and elemen-
tary particle physics, consider the appearance of supersymmetry in one of the simplest and most
familiar quantum-mechanical systems, in the supersymmetric extension of the linear harmonic
oscillator.

10.1.1 The harmonic oscillator
The linear harmonic oscillator is very well known and studied in full within every quantum me-
chanics course, so we recall only the basic relations, to set up the notation. With the standard
notation

[A, B] := AB−BA and {A, B} := AB+BA, (10.1)

2 The generalization of empty spacetime when the cosmological constant is positive (as is the case with the real spacetime
in which we live) is called de Sitter geometry, whereas the empty spacetime with a negative cosmological constant is
called anti de Sitter geometry [☞ relations (9.81)]. Supersymmetry turns out not to be definable in spacetimes with
de Sitter geometry (Λ > 0). Thus, the value of the cosmological constant is an indirect measure of supersymmetry
breaking, if the fundamental description of Nature indeed is supersymmetric.
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in the “excitation representation,” we have

HLHO := 1
2 h̄ω{a†, a} = h̄ω(a†a + 1

2 ), [a, a†] = 1; (10.2a)

HLHO =
{
|n〉 : 〈n|n′〉 = δn,n′ , ∑

n
|n〉〈n| = 1, n, n′ ∈ 0, 1, 2, . . .

}
, (10.2b)

a|n〉 =
√

n|n−1〉, a†|n〉 =
√

n + 1|n + 1〉, (10.2c)

as well as
HLHO|n〉 = En|n〉, En = h̄ω(n + 1

2 ). (10.2d)

The ground state, |0〉 is characterized by the fact that

|0〉 : a|0〉 = 0 and E0 = 1
2 h̄ω �= 0. (10.3)

The Hilbert space (10.2b) is sketched in Figure 10.1(a), on p. 362. Since every observable physical
quantity F̃ for the linear harmonic oscillator may be expressed as a function of operators a, a†,
[ ✎why?] the relations (10.2a) and (10.2c) suffice to compute every matrix element 〈n′|F̃ |n〉:

F̃ =
∞

∑
p,q=0

cp,q(a†)p(a)q, 〈n′|(a†)p(a)q|n〉 =
{

Np,q δn′−p,n−q, q � n and p � n′,
0 otherwise,

(10.4a)

Np,q =
√

n(n−1) · · · (n−q+1)︸ ︷︷ ︸
q

(n−q+1)(n−q+2) · · · (n−q+p)︸ ︷︷ ︸
p

. (10.4b)

The linear harmonic oscillator is said to be completely solved.

10.1.2 The fermionic extension
Now extend the oscillator (10.2) with a degree of freedom represented by the operators b, b†,
which obey

{b, b†} = 1 and {b, b} = 0 = {b†, b†} ⇒ b2 = 0 = b†2, (10.5)

[a, b] = 0, [a, b†] = 0, [a†, b] = 0, [a†, b†] = 0, (10.6)

and where the Hamiltonian for the extended system is

HLHO+ = 1
2 h̄ω{a†, a} + 1

2 h̄ω̃[b†, b] = h̄
(
ω a†a + ω̃ b†b

)
+ 1

2 h̄(ω− ω̃). (10.7)

Just as in the well-known algebraic analysis of the linear harmonic oscillator, suppose that
the operator b†b (as it occurs in the Hamiltonian) has eigenstates

b†b |ν〉 f = ν|ν〉 f . (10.8)

Then,

b†b
(
b†|ν〉 f

)
= b†(1 − b†b)|ν〉 f =

{ b†(1 − ν)|ν〉 f = (1 − ν)
(
b†|ν〉 f

)
,

b†|ν〉 f − b†2 b|ν〉 f =
(
b†|ν〉 f

)
, b†2 ≡ 0,

(10.9)

computed in two different ways, produces the relation (1−ν)b†|ν〉 f = b†|ν〉 f . That is, ν b†|ν〉 f = 0,
so that

either b†|ν〉 f ≡ 0, or ν = 0 and b†|0〉 f ∝ |1〉 f . (10.10)
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Similarly,

b†b
(
b|ν〉 f

)
=

{
b†b2 b|n〉 f ≡ 0, b2 ≡ 0,

(1 − bb†)b|ν〉 f = b(1 − b†b)|ν〉 f = b(1 − ν)|ν〉 f = (1 − ν)
(
b|ν〉 f

)
,

(10.11)

computed in two different ways, produces the relation (1−ν)b|ν〉 f = 0. Thus,

either b|ν〉 f ≡ 0, or ν = 1 and b|1〉 f ∝ |0〉 f . (10.12)

Consistently with these results, we have that

b|0〉 f ≡ 0, b†|0〉 f = |1〉 f , b|1〉 f = |0〉 f , b†|1〉 f ≡ 0. (10.13)

We define for the extended system:

|n, ν〉 := |n〉⊗|ν〉 f , n = 0, 1, 2, 3, . . . , ν = 0, 1, (10.14a)

which defines the b, b†-extended Hilbert space:

HLHO+ :=
{
|n, ν〉 : 〈n, ν|m, μ〉 = δn,mδν,μ, ∑

n,ν
|n, ν〉〈n, ν| = 1

}
, (10.14b)

where n, n′ = 0, 1, 2, 3 . . . and ν, ν′ = 0, 1, and where the energy levels are given as

HLHO+ |n, ν〉 = En,ν|n, ν〉, En,ν = h̄
[
ω(n + 1

2 ) + ω̃(ν− 1
2 )
]
. (10.14c)

The energy of the ground state, |0, 0〉, is

E0,0 = 1
2 h̄(ω− ω̃). (10.15)

Since n = 0, 1, 2, 3 . . . , it follows that the a†-excitations of the familiar linear harmonic oscillator
are not limited by Pauli’s exclusion principle, and so are identified as bosonic excitations/particles.
Since ν = 0, 1, it follows that the (single possible) b†-excitation does obey Pauli’s exclusion princi-
ple, and so is identified as a fermionic excitation/particle with which the linear harmonic oscillator
is extended.

The Hilbert space of this fermion-extended linear harmonic oscillator is sketched in Fig-
ure 10.1(b), where the white nodes represent bosonic states and the black ones are fermionic
states. In that figure, ω̃ is chosen to be equal to 4

5ω, so that the difference in the energies of the
ground state and the first fermionic excitation, |0, 1〉, is 4

5 of the energy gap between the ground
state and the first bosonic excitation, |1, 0〉.

Digression 10.2 By the way, there exist two distinct conventions for Hermitian conjuga-
tion:

1. the physicists’ rule [189, 76], where (XY)† = Y†X† regardless whether “X”
and “Y” are commuting or anticommuting objects;

2. the mathematicians’ rule [178, 124], where (XY)† = (−1)π(X)π(Y)Y†X† and
where π(X) = 0 for commuting X and π(X) = 1 for anticommuting X.
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These rules coincide except for anticommuting (fermionic) objects, χψ = −ψχ:

physicists’ rule: (ψχ)† = +χ†ψ†, = −ψ†χ†, (10.16a)

mathematicians’ rule: (ψχ)† = −χ†ψ†, = +ψ†χ†. (10.16b)

The product of two real fermions is imaginary by the physicists’ rule, but real by the
mathematicians’ rule. Herein, we adopt the physicists’ practice and rule.

10.1.3 The supersymmetric oscillator
With the operators a, a†, b and b†, we define the bilinear operators (b†a) and (a†b), for which we
compute

[HLHO+ , b†a] = h̄(ω̃−ω)b†a, [HLHO+ , a†b] = h̄(ω− ω̃)a†b, (10.17)

{a†b, b†a} = a†a + b†b. (10.18)

This shows that the choice ω̃ → ω gives a special case, where the operators

H := h̄ω(a†a + b†b), Q :=
√

2h̄ω a†b, Q† :=
√

2h̄ω b†a, (10.19)

define the so-called supersymmetry algebra, for which

{Q†, Q} = 2H, [H, Q] = 0 = [H, Q†] (10.20)

are the defining relations. The last two relations show that the operators Q and Q† generate sym-
metries of this specially tuned (ω̃ → ω) fermion-extended oscillator. The first relation identifies
the operators Q and Q† as square-roots of this specially tuned fermion-extended Hamiltonian H.

Finally, we compute

Q†|n+1, 0〉 =
√

2h̄ω(n+1)|n, 1〉, and Q|n, 1〉 =
√

2h̄ω(n+1)|n+1, 0〉, (10.21)
1
2

{
Q†, Q

}|n, ν〉 = H|n, ν〉 = h̄ω(n+ν)|n, ν〉, (10.22)

so that

En,ν = h̄ω(n+ν). (10.23)

Thus, for every n = 0, 1, 2, 3 . . . , the states |n+1, 0〉 and |n, 1〉 form a degenerate pair of states that
the operators Q and Q† map one into another, as is shown in Figure 10.1(c).

It is now clear that the ground state, |0, 0〉, is the only non-degenerate state and that it has a
vanishing energy; the spectrum in Figure 10.1(c) fully exhausts the Hilbert space (10.14b) for this
specially tuned (ω̃ = ω) extended harmonic oscillator. The action of the operators Q, Q† on the
Hilbert space (10.14b) is manifestly a symmetry. With respect to this symmetry, only the ground
state |0, 0〉 is invariant, while for every n = 1, 2, 3 . . . ,

(|n+1, 0〉; |n, 1〉) is a boson–fermion pair of
superpartner states, a so-called supermultiplet.

Definition 10.1 A symmetry is called supersymmetry if (1) it maps bosonic states into
fermionic ones and vice versa, and (2) it is generated by operators Q and Q† the anticom-
mutator of which contains the Hamiltonian H of the system.
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Figure 10.1 A sketch of Hilbert spaces: (a) the linear harmonic oscillator, (b) its fermionic extension
with ω̃ ≈ 4

5ω, (c) its supersymmetric fermionic extension.

Digression 10.3 The dimensions (units) of the quantum-mechanical supersymmetry
generator follow directly from relations (10.20), and are given as [Q] =

√
ML
T .

The system described by the creation and annihilation operators, a†, b† and a, b respectively,
for which the (anti)commutation relations (10.2a) and (10.5)–(10.6) hold and the Hamiltonian is
specified by the first of equations (10.19), is the supersymmetric harmonic oscillator. In the general
case the states are represented by wave-functions, which are functions of time and of the general
form:

φ(t) := ∑n φn(t)|n, 0〉, and ψ(t) := ∑n ψn(t)|n−1, 1〉,
= ∑n φn(t) (a†)n√

n!
|0, 0〉, = ∑n ψn(t) (a†)n−1b†√

(n−1)!
|0, 0〉, (10.24)

where φ(t) is a bosonic state and ψ(t) a fermionic one. Let B and F be the vector spaces spanned
by bosonic and fermionic wave-functions, respectively. Then the operators Q and Q† map

Q ⊕ Q† : B :=
{

∑
n
φn(t)|n, 0〉

}

 F :=

{
∑
n
ψn(t)|n−1, 1〉

}
, (10.25)

except for the ground state, |0, 0〉, which both Q and Q† annihilate. The ground state thus forms the
kernel of the supersymmetry mapping (10.25) [☞ the lexicon entry for “kernel,” in Appendix B.1].
Since the mapping Q ⊕ Q† acts both ways, the kernel could – in general – have both a bosonic and
a fermionic component, so the precise statement is that{

φ0(t)|0, 0〉} = ker(Q ⊕ Q†) ∩B. (10.26)

The function φ0(t)|0, 0〉, as a special mode in the expansion (10.24), is often referred to as the
“zero mode.”

In the general supersymmetric case3 it is possible that the mapping (10.25) has both bosonic
and fermionic components in the kernel, i.e., it is possible that there exist nB bosonic and nF

fermionic states that are annihilated by both Q and Q†. With such a generalization in mind, we
have:

3 A quantum-mechanical system with the general Hamiltonian for which there exist adequately general operators Q and
Q† so that the relations (10.20) hold is supersymmetric [☞ Refs. [115, 186] for a classification and examples].
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Definition 10.2 (the Witten index) For a quantum-mechanical system with a Hamiltonian H
and a Hermitian-conjugate pair of operators (Q, Q†) that satisfy the relations (10.20), define

ιW := nB − nF (the Witten index), (10.27)

nB = dim
(

ker(Q ⊕ Q†) ∩B
)

, nF = dim
(

ker(Q ⊕ Q†) ∩F
)

, (10.28)

where B and F are the vector spaces of bosonic and fermionic states, so that the Hilbert
space of the system is H = B ⊕F , and (Q ⊕ Q†) : B 
 F .

In 1981, Edward Witten showed that this index – by definition integral – can change only with
radical changes in the Hamiltonian, such as the radical change in the potential from the harmonic
1
2 mφ2 to the anharmonic 1

4λφ
4. For example, if the potential is given as

V(φ) = 1
2

(
mφ+ λφ2)2, with |m|, |λ|<∞, (10.29)

the Witten index continues to have the constant value (ιW = 2) for arbitrary finite values of the
parameter m while λ �= 0. The value of the index changes discontinuously (into ιW = 1) in the
parameter subspace where λ = 0. The Witten index is similarly constant with almost all continuous
changes in parameters such as the parameters in the Lagrangian density (7.9). Using this stability,
Witten proved the theorem within field theory [573]:

Theorem 10.1 (Witten) Supersymmetry may be broken spontaneously only if ιW = 0. Con-
versely, supersymmetry must remain an exact symmetry while ιW �= 0.

This theorem then automatically also holds within quantum mechanics (adequate for this section),
and within statistical physics.

That is, the Witten index ιW is an obstruction for supersymmetry breaking. By definition in-
tegral, ιW cannot change continuously with continuous changes in parameters and so can change
only abruptly. This property makes the Witten index one of the first examples of quasi-topological
invariants in physics, after Dirac’s quantization of the magnetic monopole (5.98) charges. How-
ever, the relationship between the Witten index and (super)symmetry breaking is definitely the
first example where such an invariant plays the role of an obstruction for a physical process such
as the breaking of a symmetry and the accompanying phase transition.

Digression 10.4 It proves useful to list the parameters of a model, then designate the sub-
spaces of this parameter space according to the values of the Witten index; this produces
the first, rough sketch of the phase diagram for the system.

If the parameter space has at least two subspaces (two phases), each labeled by “its”
value of the Witten index, then a change of the parameters that moves from one into the
other subspace describes a phase transition. In a phase transition, the Hilbert space of
the model changes radically: if we treat the potential (10.29) quantum mechanically, so
φ = φ(t), the radical change is seen from the fact that:

1. For λ �= 0, the Hilbert space Hλ �=0 consists of wave-functions that must decay
asymptotically as exp{−α|φ|3}, for φ→ ±∞ and a suitable α > 0.

2. For λ = 0, the Hilbert space Hλ=0 consists of wave-functions that must decay
asymptotically as exp{−β|φ|2}, for φ→ ±∞ and a suitable β > 0.
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Since exp{−α|φ|3} decays faster than exp{−β|φ|2}, then Hλ �=0 �Hλ=0, and the Hilbert
space over the generic part of the parameter space (where λ �= 0) is thus more limited
than the Hilbert space over the special subspace where λ = 0, and where the Hilbert
space is strictly larger.

10.1.4 Exercises for Section 10.1

✎ 10.1.1 Compute the results (10.4).

✎ 10.1.2 Find an alternative to equation (10.13), or prove that this is the only possibility.

✎ 10.1.3 Using the definitions (10.19), compute equations (10.20).

✎ 10.1.4 Compute equation (10.23).

✎ 10.1.5 Verify (or disprove) the claims made in Digression 10.4.

10.2 Supersymmetry in descriptions of Nature
The previous section introduced and defined supersymmetry as a symmetry of a very simple model,
which may perhaps appear to be an artificial toy, an abstract example that is not applicable in the
“real world.” However, the early history of the discovery and application of supersymmetry is a
meandering and branching story that indicates both a wide applicability, as well as the fact that
many ideas in physics are conceived of in one area, but are then applied more successfully and
notably in another area. Something like that was already seen in the telegraphic review of the
discovery of spontaneous symmetry breaking, on p. 252.

10.2.1 Applications of supersymmetry
While supersymmetry in fundamental physics is still awaiting experimental confirmation [182],
this fermion–boson symmetry has found rather successful applications elsewhere. In fact, novel
applications of supersymmetry are still being discovered, so that this review is, at best, a starting
point for the interested Reader.

Supersymmetry and hadrons Already in 1966–8, Hironari Miyazawa had discovered the (approx-
imate) boson–fermion symmetry as a formal mapping between mesons (bosons) and baryons
(fermions). Miyazawa’s approach required the use of the su(6|21) superalgebra, which was a very
unfamiliar structure at the time, and this phenomenological approach did not gain much accep-
tance. Recall Pauli’s denigrating stance towards group theory and its methods [☞ p. 150], which
remained well-entrenched until Gell-Mann and Ne’emann used SU(3) f in hadron classification –
seven or eight years after Miyazawa! Much later, it turned out [☞ e.g., Ref. [100]] that Miyzawa’s
approach together with the quark model (which was accepted only several years after Miyazawa’s
work) yields quite good results, and is useful in hadron phenomenology.

Supersymmetry and strings In 1971, Jean-Loup Gervais and Bunji Sakita [549] discovered the
boson–fermion symmetry in fermionic string theories, which is actually a superconformal sym-
metry – a combination of supersymmetry and conformal symmetry. At the time, string theory
competed with the quark model in attempting to describe hadrons and strong interactions. As the
quark model soon (1973–4) proved to be superior in describing hadrons and strong interactions,
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this application of supersymmetry also fell by the wayside until 1984, when (super)string theory
was revived as a theory of fundamental physics, and not of hadronic bound states [☞ Chapter 11].
Supersymmetry and field theory In the same year, 1971, Yuri A. Gol’fand and Evgeny Likhtman dis-
covered that the use of supersymmetry in field theory removes a large number of divergent results
and markedly simplifies (and sometimes even trivializes) the problem of renormalization [☞ Sec-
tions 5.3.3 and 6.2.4]. Similar conclusions were soon – and independently – published by Dmytro
V. Volkov and V. P. Akulov, in 1972, as well as Julius Wess and Bruno Zumino in 1974. Also in 1974,
Abdus Salam and John A. Strathdee introduced the notion of superspace as a supersymmetric exten-
sion of spacetime, and superfield as fields defined over superspace, and which contain both bosonic
and fermionic fields as components. These ideas soon generated significant interest, and in less
than ten years, Marcus Grisaru, S. James Gates, Jr., Martin Roček and Warren Siegel had already
published the first textbook on supersymmetry, superspace, superfields and supergravity [189];
for more details and topically organized original references, see Ref. [76].
Supersymmetry and nuclear structure On the other, phenomenological side, supersymmetry is used
also in the analysis of nuclear structure; see Ref. [364] for experimental confirmation, a recent arti-
cle [185], the review [399] and references therein. Indeed, atomic nuclei of adjacent isotopes and
elements, which differ only in one neutron or proton, may be treated as superpartners: Suppose a
particular atomic nucleus A

ZX has an even atomic number (the number of protons and neutrons to-
gether) and so is a boson. Then the nuclei that have one neutron more or less, A±1

Z X′, or one proton
more or less, A±1

Z±1X′′, are fermions. The formal boson–fermion (supersymmetric) transformations
A+1

Z X′




A−1
Z−1X′′ 
 A

Z X 
 A+1
Z+1X′′




A−1
Z X′

(10.30)

may all be used to predict the structure and the energy levels of the A±1
Z X′ and A±1

Z±1X′′ nuclei,
starting with the known properties of the A

ZX nucleus. This approximate supersymmetry may even
be used for estimating information about nuclei that in comparison to a well-known A

ZX nucleus
have both an additional proton and an additional neutron, A±2

Z±1X′′′ [401], which fit in the corners of
the diagram (10.30), as well as the so-called hypernuclei, which are short-lived nuclei that captured
a Λ0 baryon [400] and which extend the diagram (10.30) in a third dimension. This application
of supersymmetry is similar to Gell-Mann’s application of SU(3) algebra in classifying hadrons.
Supersymmetry as an approximate, phenomenological symmetry Supersymmetry may be applied
in a similar, approximate and phenomenological fashion wherever bosonic states clearly differ from
fermionic but have (approximately) the same energy [☞ Theorem 10.3 on p. 369 and Eq. (10.20)],
and where the process by which a bosonic state may be transformed into a fermionic one and back
is easy to identify. The simplest example in atomic physics would be the simple ionization of any
neutral atom. Indeed,

1. a neutral atom has A+Z spin- 1
2 particles: Z protons, (A−Z) neutrons and Z electrons;

2. simple ionization removes a single electron, leaving the atom with one fewer electrons.

If A+Z is even, the original neutral atom was a boson, and the once-ionized atom is a fermion,
and vice versa. In any case, the ionization process turns a bosonic state into a fermionic one or the
other way around. The same holds for molecules, and the question is only whether the application
of supersymmetry may help to discover anything new about these relatively well studied systems.
Leaving this to the interested Reader☞ , we return to the supersymmetry in field theory and as a
possible fundamental symmetry.
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Supersymmetry in lower-dimensional systems By far the majority of the real physical systems ex-
tend through all three dimensions of real space. However, there do exist physical systems that may
be regarded, to a good approximation, as 2-dimensional (such as the monolayer systems in solid
state physics: crystals and materials that consists of mostly a single layer of atoms, molecules or
ions) or even just 1-dimensional (such as the enormously long molecules of DNA in biophysics).

Supersymmetry may, of course, also be discovered in such systems, as is the case with the
monolayer system of graphene, where supersymmetry and the Witten index successfully describe
the appearance of the unconventional quantum Hall effect; see, e.g., the articles [402, 153, 5, 408,
347] as well as the references cited therein.

Three levels of fundamental physics Even in fundamental physics, supersymmetry [☞ Defini-
tion 10.1 on p. 361] may occur in either of the three very different (albeit closely related) levels;
see also Section 11.2 for a slightly different layering of the (super)string theoretical system, and
so also the layered appearance and application of supersymmetry. These are:

1. The description of the physical system itself – whether in the classical Hamiltonian
formalism, or in the formalism of quantum mechanics or field theory – in the real
(3 + 1)-dimensional spacetime. If supersymmetric, the list of supersymmetry generators
contain the Hamiltonian density for the given physical system, and also the linear mo-
mentum densities. The algebra of operators that are assigned to these physical quantities
is then given by relations that contain the algebra (10.20), but are typically rather more
complicated (10.63).

2. In analyzing any physical system, the dynamics and the evolution in time are important,
and the so-called dimensional reduction to the worldline offers a frequently used approach
to analysis. In this approach, for every physical quantity:4

(a) First neglect the dependence on spatial coordinates, and treat the result as a (relativistic
or non-relativistic, as needed) quantum-mechanical system.

(b) All symmetries of the higher-dimensional theory remain to be symmetries of the dimen-
sionally reduced quantum-mechanical “shadow,” but the dynamics of the 1-dimensional
system – and of the supersymmetry algebra (10.20) or (10.31) too – is simpler to
analyze.

(c) A dynamical solution to the 1-dimensional system and its symmetries (which con-
tain the “shadows” of the Lorentz symmetries of the original higher-dimensional
system) are used to reconstruct a corresponding dynamical solution to the original
higher-dimensional system.

3. In the Schrödinger picture, every quantum description of any model has a Hilbert space
of state functions (or state operators), upon which the Hamiltonian of the system has an
induced action. If the system has a supersymmetry, it then manifests as an (induced) su-
persymmetry in the Hilbert space. Owing to the separate role of time in the Schrödinger
picture, this supersymmetry always has the 1-dimensional algebra (10.31).

Conclusion 10.1 Every supersymmetric model always contains an inherently 1-dimensional
(induced) supersymmetry (10.31) in the Hilbert space, which is physically distinct from
the dimensional reduction in the second item of the above list, even if they turn out to be
mathematically isomorphic. See also Digression 10.1 on p. 357.

4 Although many researchers intuitively use this conceptual approach, to the best of my knowledge, the first formal
description of this conceptual approach to the research program appeared in Ref. [197].
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10.2.2 Additional (super)symmetry
The introductory form of supersymmetry, given in relations (10.20), and Definition 10.1 on p. 361,
suggests some simple generalizations.

On one hand, it is evidently possible to find systems with several pairs of supersymmetry
generators, e.g., proton and neutron ones in supersymmetric models of nuclear structure; see the
diagram (10.30). Denote such replicas by Qi, Q†j, so that the defining relations (10.20) become{

Q†i , Q j
}

= 2δi
j H,

[
H , Qi

]
= 0 =

[
H , Q†j ], i, j = 1, 2, . . . , N. (10.31)

Equivalently, it is possible to introduce a real basis

Qj := Q j + Q†j and QN+j := i
(
Q†j − Q j

)
, j = 1, 2, . . . , N, (10.32a){QI , QJ

}
= 2δI J H,

[
H , QI

]
= 0, I, J = 1, 2, . . . , 2N, (10.32b)

and then generalize to a supersymmetric algebra (10.32b) with an odd number of real gener-
ators QI . In this real (Hermitian) basis, Q 2

I = H holds, and QI may literally be treated as
square-roots of the Hamiltonian. On the other hand, the supersymmetry algebra may be defined
starting with the relations (10.32b), including the case of an odd number of real operators QI . The
supersymmetry (10.31)–(10.32) is referred to as “2N-extended supersymmetry.”

Superalgebras (10.31) and (10.32) may be further extended by adding bosonic operators
(with various possible actions upon the considered physical system), as well as by adding com-
mutation relations among these additional bosonic operators and the operators given by (10.31),
i.e., (10.32). For example, to the relations (10.32b) we may add a matrix of operators Z I J , so that
the relations (10.32b) are replaced with{QI , QJ

}
= 2δI J H + Z I J ,

[
H , QI

]
= 0, I, J = 1, 2, . . . , 2N, (10.33)

where

δI JZ I J = 0,
[QI , Z JK

]
= 0 =

[
H , Z I J

]
,

[
Z I J , ZKL

]
= 0, (10.34)

which represents a central extension of the superalgebra (10.32b). On the other hand, the last
group of commutation relations, [Z I J , ZKL] = 0, may also be replaced by[

Z I J , ZKL
]

= f I J KL
MNZMN , (10.35)

so that the operators Z I J generate some nontrivial Lie algebra [☞ Appendix A]. The physical mean-
ing of some of the operators Z I J may well be spacetime (such as translations, rotations and Lorentz
boosts), in which case at least some of the commutators [H, Z I J ] become non-vanishing. The re-
maining Z I J ’s may generate “internal” symmetries such as the gauge symmetries corresponding to
changes in the phases of complex wave-functions, weak isospin and color in the Standard Model.
In the equations (10.33)–(10.35), it was assumed that [Z I J ] = [H] = ML2

T2 , so that the coeffi-
cients f I J KL

MN must have these same dimensions (units) – or be scaled by an appropriate constant
of such dimensions. In a concrete application, this may well need to be modified by introducing
appropriate constants (h̄, c, etc.) in these equations.

Extending this analysis to include fermionic (super)symmetry operators, and correspondingly
to superalgebras where the binary operation is the supercommutator:

[
X , Y

}
:= X Y − (−1)|X||Y|Y X, |X| =

{
0 if X is a boson,
1 if X is a fermion.

(10.36)
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The general theory of algebraic structure imposes only the requirement that the various
(anti)commutation relations (10.20)–(10.35) be self-consistent, for which the verification of the
generalization of the Jacobi identities is necessary and sufficient:

0 ≡ [
B1, [B2, B3]

]
+

[
B2, [B3, B1]

]
+

[
B3, [B1, B2]

]
, (10.37a)

0 ≡ [
B1, [B2, F3]

]
+

[
B2, [F3, B1]

]
+

[
F3, [B1, B2]

]
, (10.37b)

0 ≡ {
F1, [F2, B3]

}
+

{
F2, [F1, B3]

}
+

[
B3, {F1, F2}

]
, (10.37c)

0 ≡ [
F1, {F2, F3}

]
+

[
F2, {F3, F1}

]
+

[
F3, {F1, F2}

]
, (10.37d)

where B1, B2, B3 are any three bosonic operators and F1, F2, F3 are any three fermionic operators
from the considered superalgebra.

Digression 10.5 A superalgebra S is the generalization of the algebraic structure of alge-
bra, the elements of which are either even (bosonic) B1, B2, . . . ∈ S0, or odd (fermionic)
F1, F2, . . . ∈ S1. The binary “multiplication” operation is called the “supercommutator,”
denoted [ , }, such that:

[B1, B2} := [B1, B2] ∈ S0, [B1, F1} := [B1, F2] ∈ S1, [F1, F2} := {F1, F2} ∈ S0.
(10.38a)

The supersymmetry algebra is then specified by the defining relations

[Xa, Xb} = i fab
cXc, (10.39)

which define the Killing–Cartan metric tensor:

gab := fac
d fbd

c. (10.40)

For example, in the supersymmetry algebra (10.32b), define X0 = H and X I = QI where I =
1, 2, . . . , 2N. Then

f00
0 = 0 = f00

I , f I J
0 = −iδI J , f0I

J = 0 = f I J
K, (10.41)

so the complete Killing–Cartan metric tensor vanishes identically:

g00 = f00
0 f00

0 + f0K
0 f00

K + f00
L f0L

0 + f0K
L f0L

K= 0, (10.42a)

g0J = f00
0 f J0

0 + f0K
0 f J0

K + f00
L f JL

0 + f0K
L fJL

K = 0, (10.42b)

gI J = f I0
0 f J0

0 + f IK
0 f J0

K + f I0
L f JL

0 + f IK
L f JL

K = 0, (10.42c)

where the only nonzero factors are underlined. This high level of degeneracy prevents an effective
application of standard (Lie-algebraic) methods of classification and study.

Also, representations of supersymmetry algebras are vector spaces of the form B ⊕F , where
B denotes the vector space of bosonic wave-functions and F is the vector space of fermionic
wave-functions, which the supersymmetry transformations map into each other, generalizing the
relation (10.25). Note that H = B ⊕ F is actually a complete Hilbert space for the consid-
ered model, and in supersymmetric theories one automatically and by definition considers the
(super)symmetries of this complete Hilbert space. Automatically, we obtain results of the form

〈b|F|b〉 ≡ 0 ≡ 〈 f |F| f 〉 , 〈 f |B|b〉 ≡ 0 ≡ 〈 f |B| f 〉 , ∀|b〉 ∈ B, ∀| f 〉 ∈ F , (10.43)
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where B is any bosonic operator and F any fermionic operator; they are called super-selection
rules and hold in all models with supersymmetry. This result is consistent with the definition of
the “fermionic number,” which is 1 for all fermions (states, functions, operators, . . . ) and 0 for all
bosons. In products, this number is added, and it is defined modulo 2. Thus, e.g.,

F
( 〈b|F|b〉 ) = F

(〈b|) + F
(
F
)
+ F

(|b〉) = 0 + 1 + 0 = 1 �= 0, (10.44a)

F
( 〈 f |F| f 〉 ) = F

(〈 f |) + F
(
F
)
+ F

(| f 〉) = 1 + 1 + 1 = 3 " 1 (mod 2), �= 0, (10.44b)

and so on. It turns out that this “fermionic number” may be defined consistently in spacetimes
of all dimensions, and that it differentiates spinorial from tensorial representations of the Lorentz
group. Also, the Witten index (10.27) may be formally defined as

ιW = Tr
H

[
(−1)F ]. (10.45)

10.2.3 Exercises for Section 10.2

✎ 10.2.1 By explicit computation show that the operators Qi, Q†j and H that satisfy the
algebra (10.33) also satisfy the Jacobi identities (10.37).

✎ 10.2.2 By explicit computation show that the operators Qi, Z I J and H that satisfy the
algebra (10.31) also satisfy the Jacobi identities (10.37).

10.3 Supersymmetric field theory
In the 1960s (before the experimental confirmation and consequent wide acceptance of the quark
model!), many elementary particle physics researchers explored how much and what may all be
proven and established about the behavior of leptons and hadrons – without a detailed knowledge
of their dynamics, i.e., without knowing the “microscopic” theory of these interactions. Also, at-
tempts were made to combine the symmetries of spacetime, such as the rotational (i.e., angular
momentum or spin) SU(2) group of symmetries, with the so-called internal symmetries of ele-
mentary particles, such as isospin and its SU(3) f generalization by Gell-Mann and Ne’emann. The
successful non-relativistic combination SU(2)× SU(3) f ⊂ SU(6) surprisingly turned up the frus-
tration:5 a fully relativistic generalization could not be found, rousing suspicions of a profound
obstruction.

Indeed, in 1965, Lochlainn O’Raifeartaigh published a proof [396, 397] of the theorem that
today bears his name, and which may be paraphrased simply as [344]:

Theorem 10.2 (O’Raifeartaigh) The Hilbert space of the states of a particle with finite and
non-vanishing mass is invariant with respect to the action of the Lie group of trans-
formations that contains the Poincaré group (Lorentz transformations and spacetime
translations).

A sharper version of one key aspect of this theorem was provided by P. Roman and C. J. Koh the
same year [463]:

Theorem 10.3 (Roman–Koh) Distinct particles and states transformed into each other by a
Lie group have the same Lorentz-invariant mass m :=

√
p·p.

Only two years later, Sidney Coleman and Jeffrey Mandula (in 1967) proved the theorem [111]
for all relativistic field theories:

5 This SU(6) is indeed part of Miyazawa’s su(6|21) superalgebra framework mentioned in Section 10.2.1.
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Theorem 10.4 (Coleman–Mandula) In any model of particles with finite and non-vanishing
masses and which (directly or indirectly) interact with each other, the only permissible
symmetries form the Poincaré group and some Lie group, the elements of which commute
with all of the Poincaré group of symmetries.

It then follows that no (bosonic) symmetry transformation can change the fermionic number of
any state or particle upon which the operator acts, i.e., the fermionic number of the wave-function
that represents this state or particle.

In 1975, Rudolf Haag, Jan Łopuszanski and Martin Sohnius noticed the “hole” in these results:
It was tacitly assumed that the symmetry operators were bosonic, so that the symmetries form a
Lie group, and the group generators satisfy a Lie algebra where the operation of multiplication is a
commutator. The more general algebraic structures defined by bosonic as well as fermionic opera-
tors together are superalgebras, where the binary operation is a supercommutator (10.36). Within
this extension of the Lie algebras, Haag, Łopuszanski and Sohnius proved the theorem [255]:

Theorem 10.5 (Haag–Łopuszanski–Sohnius) In every model with a (1) finite number of dis-
tinct types of particles, (2) each of which has a finite and non-vanishing mass, and (3) with
an asymptotically complete S-matrix,6 the only permissible symmetries form a so-called
supersymmetric extension of the product of the Poincaré group and some Lie group, the el-
ements of which commute with all of the Poincaré group of symmetries [☞ Definition 10.3].

Definition 10.3 The Poincaré algebra, po(1, 3) = spin(1, 3) :+ tr(R1,3), [☞ Section A.5.3] is
generated by Lorentz transformations (A.110) and spacetime translations (A.109), i.e., the
operators Lμν and Pμ, respectively, which satisfy the relations schematically given as [☞ also
the definition (10.64)]

[ L, L′ ] = L,′′ [ L, P ] = P′, [ P, P′ ] = 0. (10.46)

The supersymmetric extension of the Poincaré algebra then has the additional spin- 1
2

generators Q, which satisfy the relations schematically given as

{Q, Q ′} = P ⊕ Z, [L, Q] = 1
2 Q ′, [P, Q] = 0, (10.47a)

[Z, Z ′] = Z,′′ [L, Z] = 0, [Z, P] = 0, [Z, Q] = 0. (10.47b)

The generators Q are called supercharges , and Z are central charges .

Comment 10.1 Theorem 10.5 also guarantees that in all relativistic field theories only the
supersymmetric generators, and exclusively with spin 1

2 , may change the spin (and also the
fermionic number) of the particles upon which they act, and to extend the symmetries into
supersymmetry. Also, it is known that the inclusion of massless particles does not change
the conclusion of the theorem if those particles are Yang–Mills gauge bosons and their
superpartners (gauginos).

Digression 10.6 Without inserting any dimensionful constants such as h̄ or c in the
equations (10.46)–(10.47), the implied dimensions of these field theory supersymmetry
generators Q and central charges Z are [Q] =

√
ML
T and [Z] = ML

T , which differ from
their quantum-mechanical counterparts because of P0 = −H/c; see Digressions 10.3 on
p. 362 and 10.7 on p. 378.

6 The S-matrix by definition maps all possible incoming states of the system into all possible outgoing states.
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10.3.1 Supersymmetry stabilizes the vacuum
Upon review – with the benefit of a century’s worth of hindsight – the need to include quan-
tumness in the description of Nature may be understood as the only universal property that
stabilizes the atoms and so also all the tangible matter [☞ Digression 2.3 on p. 45]. Besides, the
quantumness of physics unifies the concepts (our idealized mnemonic imagery) of particles and
waves [☞ Section 8.1.1 on p. 297].

On the other hand, the need to include (general) relativity in the description of Nature was
seen in Chapters 5, 6 and 9 to be part of a universal gauge principle that connects the existence of
unmeasurable degrees of freedom in the description of Nature with local symmetries, then interac-
tions and curvature of spacetime in which the physical particles move and fields extend. Besides,
the special theory of relativity unifies space and time into spacetime, energy and momentum into
4-momentum, rotations and boosts into the Lorentz group, etc. The general theory of relativity
unifies the notion of gravitation and acceleration, and provides the inherent relation between the
curvature of spacetime and the presence of matter.

On the third hand, already the classical and certainly the quantum field theory indicate that
the precise definition of observable quantities is not infrequently a very delicate task – the naive
expressions even for the energy of empty spacetime not infrequently diverge [☞ Digression 3.13
on p. 123, and Sections 5.3.3 and 6.2.4]. Besides, in interactive field theories that include gravity
even the ground state of a system is not guaranteed to have a non-negative energy, nor in fact is it
guaranteed to have a globally defined energy bounded from below.

Regarding this last issue, supersymmetry helps (which is stated here with no detailed and
mathematically strict justification and proof):

Conclusion 10.2 Supersymmetry offers (as best as known) the only universal mecha-
nism for stabilizing the vacuum: in every system without gravity [☞ Ref. [73] for energy
positivity conditions without supersymmetry],

1. the minimum of energy is zero if and only if the system is supersymmetric;
2. the minimum of energy is positive if the system has a spontaneously broken super-

symmetry.

Comment 10.2 If the description of the system includes the general theory of relativity (to
describe gravity), the energy is not a globally well-defined quantity, and statements of non-
negativity of energy do not have an invariant meaning.

Besides, supersymmetry is the only property that may unify bosons and fermions [☞ Theo-
rems 10.2 on p. 369, and 10.4 on p. 370]. For a compact and comprehensive summary of these
properties, see Table P.1 on p. xiii, i.e., Table 11.1 on p. 409.

Technical advantages of supersymmetry
Even when spontaneously broken, supersymmetry also has two technically very advantageous
consequences:

1. it significantly lessens (or even eliminates) the need for renormalization of parameters in
field theory;

2. it prevents the “mixing” of characteristic energies.

That is, in any model (in field theory without supersymmetry) where in the classical version
there exist two distinct characteristic energies (such as the energy of electro-weak unification,
mW c2 ∼ 102 GeV and the energy of grand unification mX ∼ 1015 GeV), quantum effects “spoil” results
such as masses of the order 102GeV/c2 via renormalization “corrections” of order 1015GeV/c2.
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Since masses are by definition invariant with respect to the action of Lorentz symmetries as
well as all gauge symmetries, no fundamental symmetry principle – except supersymmetry – can
“protect” them from such catastrophic quantum corrections.7 Thus, in models without supersym-
metry we may expect only one (the largest) effective characteristic energy, which in theories with
gravity must be the Planck mass, MP ∼ 1019GeV/c2. All other masses then would have to be a multi-
ple of this big mass and there is no reason for the existence of minuscule dimensionless coefficients
such as [☞ result (7.132b), and Tables 4.1 on p. 152, and C.2 on p. 526]

mνe

MP
� 10−28,

me

MP
∼ 10−23,

mu

MP
∼ 10−22, (10.48)

for them to remain stable with respect to quantum corrections, and much smaller than O(1) num-
bers. It follows that in models without supersymmetry there is neither a fundamental reason for
the masses of the elementary particles to be so many orders of magnitude smaller than the Planck
mass, nor a mechanism that would “protect” such minuscule masses (were we to choose them so
“by hand”) from quantum corrections.

The presence of supersymmetry in any theoretical model (and so too in the Standard Model),
has an important effect on the appearance (and stability with respect to quantum corrections) of
experimentally established minuscule parameters such as (10.48) [189, 562, 560, 76]:

Theorem 10.6 In any supersymmetric model, quantum effects do not change the part of the
Lagrangian density that stems from the so-called superpotential [☞ Section 10.3.2].

Corollary 10.1 Although – all by itself – supersymmetry cannot cause minuscule parameters
such as (10.48), supersymmetry does “protect” them if they enter via Lagrangian terms that
stem from the superpotential, and in particular owing to the shift in the Higgs field in the
process of spontaneous symmetry breaking. In practice, that includes all masses.

This property of supersymmetry is exceptionally advantageous in the technical sense, because of the
fact that most field theory models are analyzed and used in practice within perturbative computa-
tional frameworks described in Procedure 5.1. Renormalization is inherently a feature of iterative
additions of ever higher contributions within a perturbative computational framework. Therefore,
the appearance of divergences, the need for renormalization as well as the property of softening
and limiting this need via supersymmetry is – by definition – a technical and not a conceptual
property. This characterization holds even if some of the “non-perturbative” results and properties
of a particular model are known [☞ Section 6.3], and they are:

1. statements about the existence of alternative vacua which cannot be computed by pertur-
bative methods defined about the usual vacuum, but where the results are again obtained
by some kind of perturbative computation about some such alternative vacuum,

2. general statements about the whole Hilbert space.

— ❦ —

In all Yang–Mills type gauge field theories [☞ Chapters 5 and 6], the divergences can be removed
from precisely defined expressions for measurable physical quantities [☞ Section 3.3.4, especially
the closing part and the discussion about Digression 3.11 on p. 122, to begin with]. In as much
as the renormalization procedure has not satisfied the intuition and conceptual insight of some of
the most influential twentieth-century physicists, the number of live physicists who do not accept

7 The notable exceptions to this reasoning are the “pseudo-Goldstone modes” mentioned in Section 7.2.3.
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renormalization pragmatically as a “procedure that works” is ever smaller [☞ paraphrasing Max
Planck, on p. 124 and Digression 3.11 on p. 122]. However, the renormalization procedure is, indu-
bitably, a technical detail of the current understanding of Nature, and not a fundamental principle
of this (not even the current) understanding.

It should then be clear that the original motivation for supersymmetry stemmed from the
very practical fact, of which Gol’fand and Likhtman discovered the first glimpses in 1971, that
this peculiar type of symmetry automatically removes many of the divergences that occur in field
theory. A detailed analysis of this general procedure is far outside the scope of this book, although
some of the simplest aspects will nevertheless be made visible.

Sections 5.3.3 and 6.2.4 showed concrete (albeit the simplest) Feynman computations with
diagrams where the need for renormalization appears. In the remainder of this section we will
consider one (the simplest) conceptual problem in field theory, and then also the mechanism by
which supersymmetry completely removes this problem.

Vacuum energy
Consider, for example, a scalar field with the Lagrangian density (7.9), where we set for simplicity
λ→ 0:

LKG = 1
2η

μν(∂μφ)(∂νφ) − 1
2

(mc
h̄

)2
φ2 = 1

2c2

.
φ2 − 1

2

[
�∇2 +

(mc
h̄

)2]
φ2. (10.49)

The Euler–Lagrange equation of motion derived from this Lagrangian density is[ 1
c2 ∂

2
t − �∇2 +

(mc
h̄

)2]
φ(x) = 0, (10.50)

the so-called Klein–Gordon equation. If we expand φ(x) in plane waves,

φ(x) = 1
(2π)3/2

∫
d3�k φ�k(x), φ�k(x) := f�k(t) ei�k·�r, (10.51)

the �∇2-term produces the eigenvalue −�k2, and the equation of motion becomes[
∂2

t +
(
�k2c2 + m2c4

h̄2

)]
f�k(t) = 0. (10.52)

The wave-modes φ�k(x) are linearly independent, so every plane wave φ�k(x) behaves as an
independent degree of freedom, “counted” by the vectors�k, and with the dynamics of the harmonic
oscillator with the frequency c

√
�k2 + m2c2

h̄2 . The presence of interactions (as would be produced by
the 1

4λφ
4 term in the Lagrangian density (7.9) and which we have omitted for simplicity) couples

these independent oscillators but does not reduce their number nor does it destroy their linear inde-
pendence. Every such quantum oscillator has its stationary states with energies [☞ relation (3.37)]

En,�k = E�k(n + 1
2 ), E�k := h̄ c

√
�k2 + m2c2

h̄2 =
√

(h̄�k)2c2 + m2c4, (10.53)

and the energy of the entire field (summed over all oscillators, of course) in the ground state is

Evacuum = 1
2

∫
d3�k E�k = 2π

∫ ∞

0
k2dk

√
h̄2k2c2 + m2c4. (10.54)

This evidently diverges ∼ k4 as k → ∞: there are (continuously) infinitely many vectors�k and all
except�k =�0 have a positive magnitude�k2 > 0.

For the free electromagnetic field, the result is virtually identical, only with the ultra-
relativistic expression E�k = |h̄�k|c, since mγ ≡ 0, so the result for Evacuum diverges again.

However, modeling after the supersymmetric harmonic oscillator in Section 10.1.3, we may
construct a supersymmetric model beginning with:
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1. a pair of fields (10.51) combined into a complex scalar field φ(x);
2. the Lagrangian density of the type (7.19), but with λ→ 0;
3. adding a complex Weyl fermion Ψ+(x) of left chirality [☞ Section 5.2.1 on p. 172] and an

auxiliary complex field F(x);
4. adding Lagrangian (counter)terms that are specially tuned so that:

(a) the Hamilton action for the whole system (φ; Ψ+; F) is invariant with respect to the
linear action of supersymmetry;

(b) the Euler–Lagrange equations of motion form a system of:
i. one differential equation of the second order for the complex field φ(x),

ii. one pair of differential equations of the first order for the two components of the
complex Weyl fermion Ψ+(x) – which also means that one linear combination
of these components is the canonical coordinate while another is the canonically
conjugate momentum,

iii. one non-differential equation or the auxiliary complex field F(x).

The non-differential equation obtained in step 4(b)iii holds point-by-point in all of spacetime sepa-
rately, and so can be used – at least in principle – to substitute its solution back into the Lagrangian
density, whereupon the differential equations in steps 4(b)i and 4(b)ii need to be re-derived from
the so-substituted Lagrangian density. These differential equations of motion, however, express the
values of the fields φ(x) and Ψ+(x) at any one point in spacetime in terms of the values of those
fields at infinitesimally nearby points, and so describe dynamical (continually propagating) fields.
A detailed analysis of the physical degrees of freedom then shows that all states in the Hilbert space
(except for the ground states, with a vanishing energy) occur in boson–fermion pairs, generalizing
the situation shown in Figure 10.1(c), on p. 362.

In so-constructed models the result (10.23) guarantees that the equivalent computation for
the vacuum energy gives Evacuum = 0. This, in fact, is a direct (and so universal) consequence
of the algebra (10.31), and up to a factor c−1 also of the algebra (10.47) [☞ Digression 10.6 on
p. 370], where

∑
i
{Q†i, Qi} = 2NH, since Tr[δi

j] = N, (10.55)

and where it is easy to show that the left-hand side is non-negative. The algebraic details of
all consistent generalizations of supersymmetry – as long as the trace of the coefficient in front
of the Hamiltonian (δi

j) on the right-hand side of equation (10.31) is positive – guarantee the
non-negativity of the Hamiltonian spectrum, so that 〈H 〉 � 0 is a universal result in all (rigidly)
supersymmetric theories.

Supersymmetric states, supersymmetry breaking and details
The states |Ω〉 with vanishing energy, for which 〈Ω|H |Ω〉 = 0, must in turn satisfy

0 = 〈Ω|H|Ω〉 =
〈

Ω
∣∣ 1

N ∑
i

{
Q†i, Qi

}∣∣Ω〉
= 1

N ∑
i

{
〈Ω∣∣Q†i Qi

∣∣Ω〉 + 〈Ω∣∣Qi Q†i∣∣Ω〉
}

= 1
N ∑

i

{∣∣Qi|Ω〉∣∣2 +
∣∣Q†i|Ω〉∣∣2}, (10.56)

which is a sum of non-negative contributions, so each must vanish separately, whereupon

both Qi|Ω〉 = 0 and Q†i|Ω〉 = 0 for all i. (10.57)

From there, it follows that

Uε,ε|Ω〉 = |Ω〉, Uε,ε := exp
{− i(ε·Q + ε†·Q†)

}
, (10.58)
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whereby the states |Ω〉 are supersymmetric, i.e., unchanged under the supersymmetry transforma-
tion.

There may exist several supersymmetric states, and even continuously many. In the general
case, when the bosonic (fermionic) states form a space VB (i.e., VF), the Witten index is given by
the relation

ιW := χE(VB) − χE(VF), (10.59)

where χE(X ) is the Euler characteristic of the space X , which reduces to the previous defini-
tion (10.27) since the Euler characteristic of a point equals χE(·) = 1 – and which also holds for
any space that contracts (continuously) to a point, such as Rn and Cn.

From this analysis it follows that the Hilbert space of every supersymmetric model can only
consist of:

1. supersymmetric states (of zero energy, so these are the ground states of the system),
2. supersymmetric boson–fermion pairs of states with positive energy.

In supersymmetric models, every E > 0 energy level must be evenly degenerate. That is, for each
bosonic state, |ba〉 with Ea �= 0, we construct the fermionic state | fa,I〉 := QI |ba〉 and vice versa:

H|ba〉 = Ea|ba〉 ⇒ |ba〉 =
H

Ea
|ba〉 =

QIQI

Ea
|ba〉 =

1
Ea

(QI | fa,I〉
)
, (10.60)

which is evidently possible if and only if Ea �= 0. (It is possible to prove further also that the total
number of bosonic and fermionic states with a given energy Ea �= 0 must be the same [560].)
Thus, only the degeneracy of the ground state(s) (where E = 0) is not determined and only the
ground state(s) may be non-degenerate, and only if the Witten index is nonzero, ιW �= 0.

In supersymmetric models, the Hilbert space is of the form of a direct sum of so-called
“sectors,” of which every one consists of one ground state (with E = 0) and an infinite ladder
of boson–fermion pairs of states (with E > 0), formally obtained by acting with operators of cre-
ation on the given ground state, just as is the case in Figure 10.2(a), and which generalizes the
situation shown in Figure 10.1(c), p. 362.

(a)

E

0
SuSy

(b)

Figure 10.2 A sketch of a sector in the Hilbert space of a supersymmetric system, before (a) and
after (b) spontaneous supersymmetry breaking; ESuSy is the supersymmetry-breaking parameter. For
supersymmetry to be broken, the Witten index must vanish, which means that the ground states must
occur in boson–fermion degenerate pairs.

If there are no supersymmetric (ground) states with E = 0 energy, supersymmetry is broken:
The states in the Hilbert space are formally obtained as a direct sum of sectors, each of which is
obtained by choosing a state with lowest, albeit positive, energy and upon which one acts with
creation operators. These sectors of the Hilbert space in the general case form semi-infinite ladders
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of bosonic and (independently) fermionic states, and those states are not guaranteed to be ordered
in pairs as shown in Figure 10.1 on p. 362, and in Figure 10.2.

Spontaneous supersymmetry breaking If supersymmetry is broken because the system of Euler–
Lagrange equations of motion in the list on p. 374 does not have a solution for which the potential
energy minimum8 equals zero, and Hamilton’s action functional continues to be supersymmetric,
supersymmetry is said to be spontaneously broken. In such cases, every sector of the Hilbert space
looks like a semi-infinite ladder of states, as shown in Figure 10.2(b), and where the difference
between the masses of adjacent bosonic and fermionic states, ESuSy, is the supersymmetry-breaking
parameter; in the limiting case ESuSy → 0, this sector returns from the shape in Figure 10.2(b) into
the shape in Figure 10.2(a). In practice, this case is confirmed by analyzing the subsystem of non-
differential equations in step 4(b)iii on p. 374, and the simplest model (named after the physicist
who discovered this possibility, Lochlainn O’Raifeartaigh) where supersymmetry is spontaneously
broken requires at least three distinct super-multiplets (φa; Ψa

+; Fa) a = 1, 2, 3 [189, 560]; see
Digression 10.11 on p. 385.

Explicit supersymmetry breaking If supersymmetry of the Hamilton action is breaking because of
the occurrence (or addition “by hand”) of a term in the Lagrangian density, supersymmetry is said
to be explicitly broken by that term. The effect of the explicit supersymmetry breaking on the Hilbert
space of course depends on the concrete Lagrangian term that breaks supersymmetry.

— ❦ —

A detailed analysis of the mechanism whereby supersymmetry removes the need for renormalizing
parameters in the Lagrangian density that stem from the superpotential [☞ Section 10.3.2] is far
beyond the scope of this book. However, at least intuitively, the source of this property is seen
from the fact listed in Rule 7 for Feynman calculus with the diagrams in quantum electrodynam-
ics [☞ Procedure 5.2 on p. 193]. That is, each fermionic loop (closed path) in a given Feynman
diagram requires an additional factor of (−1) as compared to an otherwise identical diagram
where that same loop is bosonic. If then the Feynman diagrams Γ and Γ′ differ only by:

1. the loop C ⊂ Γ is a closed path of particle X in the diagram Γ,
2. the loop C ⊂ Γ′ is a closed path of the superpartner of particle X in the diagram Γ′,

the contributions to the amplitude of probability cancel M(Γ) + M(Γ′) = 0.
It remains of course to precisely determine when and in precisely which perturbative cal-

culations do contributions always occur in such canceling pairs. For the details and a precise
formulation of this theorem on non-renormalization in supersymmetric models, the interested
Reader is directed to the standard textbooks [189, 562, 560, 76].

10.3.2 Supersymmetry in 1+3-dimensional spacetime
In spacetime, the Hamiltonian is the time component of the 4-momentum operator, so the rela-
tion (10.33) may be adapted by replacing the operator Z I J with the operators of linear momentum.
Also, since the supersymmetry generators Q I , according to the Haag–Łopuszanski–Sohnius the-
orem, transform as spin- 1

2 representations of the Lorentz group, the index I must count the
components of the corresponding spinor, or several copies of it.

For the purposes of this introductory text, we restrict to simple (unextended) supersymmetry,
the generators of which form a single Dirac spinor. Generalizations are described in the literature;

8 By potential energy we mean the value of the total energy, i.e., Hamiltonian where all derivatives of all fields are set to
zero.
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see e.g., Refs. [189, 562, 560, 129, 76, 308, 178, 535, 461, 144, 351, 356, 60, 19, 115, 186] for
starters.

Superalgebra and supersymmetry
We are interested in the Lorentz group in 1+3-dimensional spacetime, with the very convenient
fact (A.5.2) that the algebra of the Lorentz group Spin(1, 3)∼= SL(2; C) is isomorphic with the direct
sum of two copies of the algebra spin(3) = su(2), which is in turn very familiar both from classical
as well as from quantum mechanics as the group of rotations, i.e., spin. It is then convenient to
use the notation that expresses this mathematical structure [☞ Section A.5 to begin with, and the
textbooks [189, 560, 76] for more precise and abundant details].

The 4-component Dirac spinor may be decomposed, in a Lorentz-invariant way, into two
2-component Weyl spinors [☞ Section 5.2.1 on p. 172, Appendix A.6 and especially A.6.2], which
in Weyl’s (chiral) basis of the Dirac matrices (A.132) is

Ψ ≡ Ψ+ + Ψ− = (γγγγ+Ψ) + (γγγγ−Ψ), Ψ+ �→
[
ψα
0

]
and Ψ− �→

[
0
χ.
α

]
, α,

.
α = 1, 2. (10.61)

In simple supersymmetry, the total number of generators, Qα and Q.
α, is minimal and itself

forms a Dirac spinor. The supersymmetry transformation operator, following the definitions (5.20)
and (6.2), then is

Uε,ε := eδQ(ε) = 1 + δQ(ε) + · · · , δQ(ε) := −i
(
ε·Q + ε·Q )

. (10.62)

The defining relations of supersymmetry without any central extension are9{
Qα , Q.

α

}
= −2 σμ

α
.
α

Pμ,
[

Lμν , Qα

]
= ih̄(σσσσμν)αβQβ, (10.63a)[

Lμν , Pρ
]

= ih̄
(
ημρPν − ηνρPμ

)
,

[
Lμν , Q.

α

]
= ih̄(σσσσμν).α

.
βQ .

β
, (10.63b)[

Lμν , Lρσ
]

= ih̄
(
ημρLνσ − ημσLνρ + ηνσLμρ − ηνρLμσ

)
, (10.63c)

with all other (anti)commutators vanishing, and where the matrices σσσσμν are defined in rela-
tions (A.158) [☞ Appendix A.6.2 in more detail]. The generators Pμ and Lμν have the well-known
differential operator representation over spacetime [☞ also relations (A.111)],

Pμ = h̄
i ∂μ and Lμν := h̄

i (ημρxρ∂ν − ηνρxρ∂μ), (10.64)

while Qα and Q.
α are at this point abstract operators. For them to acquire a differential operator

representation, spacetime itself must be extended, and we now turn to this.

Superspace
In 1974, Abdus Salam and John Strathdee postulated superspace, as an extension of spacetime and
in which spacetime is contained as a subspace. Since then, supersymmetry researchers mostly form
two schools: those who fully rely on superspace and the methods of super-functional analysis, and
those who regard superspace as an irrelevant crutch. However, it has been proven recently [282]
that the canonical relation10 [H, t] = ih̄ and self-consistency of the supersymmetry algebra (10.31)
via Jacobi identities (10.37) implies the existence of superspace. Although the very existence of

9 The negative sign in the first of relations (10.63) follows from that in relations (3.35) and (3.38).
10 In spacetime, this is [pμ, xν] = −ih̄δνμ, where the negative sign in the right-hand side stems from the definition (pμ) =

(−E/c ,�p) [☞ the derivation of equation (3.35)], as well as the identification of E → ih̄ ∂
∂t and �p → h̄

i
�∇ in the

coordinate representation. Keep in mind that time t in quantum mechanics and spacetime coordinates xμ in quantum
field theory are not eigenvalues of any Hermitian operators but parameters [☞ Ref. [29] for a detailed discussion in
quantum mechanics].
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superspace does not force us to use it, this will be convenient for the purposes of this book, since it
explicitly represents and effectively uses the unification of bosons and fermions.

The standard superspace is the extension of spacetime that in addition to the four bosonic
coordinates has another four fermionic, anticommuting coordinates:

x �→ (xμ; θα, θ
.
α) = (ct, x1, x2, x3; θ1, θ2, θ

.
1, θ

.
2), {θα, θβ} = 0 = {θα, θ

.
α}. (10.65)

The corresponding derivatives also anticommute:

∂α :=
∂

∂θα
, ∂.α :=

∂

∂θ
.
α

,
{
∂α, ∂β

}
=

{
∂α, ∂ .

β

}
=

{
∂.α, ∂ .

β

}
= 0. (10.66)

It is not hard to verify that the combined operators

Qα := i∂α + h̄σμ
α
.
α
θ
.
α∂μ and Q.

α := i∂.α + h̄σμ
α
.
α
θα∂μ (10.67)

satisfy the relations (10.63) and so, together with the definitions (10.64), give a differential rep-
resentation of the abstract operators in the algebra (10.63). Newcomers in this field usually find it
surprising that there exists a second pair of operators

Dα := ∂α + ih̄σμ
α
.
α
θ
.
α∂μ and D.

α := ∂.α + ih̄σμ
α
.
α
θα∂μ (10.68)

that satisfy {
Dα , D.

α

}
= −2σμ

α
.
α
Pμ = 2ih̄σμ

α
.
α
∂μ, (10.69)

as well as the other relations (10.63) upon substituting Q → D and Q → D, and finally that{
Dα , Qβ

}
= 0 =

{
Dα , Q .

β

}{
D.
α , Qβ

}
= 0 =

{
D.
α , Q .

β

} }
⇔

{
U−1
ε,εDαUε,ε = Dα,

U−1
ε,εD.

αUε,ε = D.
α.

(10.70)

Recalling the property (10.70), Dα and D.
α are usually called super-covariant derivatives, although

they are in fact invariant with respect to supersymmetry transformations; for brevity and to avoid
this imprecision, we use “super-derivative” instead. Note that

−iQα = Dα − 2ih̄σμ
α
.
α
θ
.
α∂μ and − iQ.

α = Dα − 2ih̄σμ
α
.
α
θα∂μ. (10.71)

Digression 10.7 The definitions (10.64) and relations (10.63) and (10.69) imply that the
physical dimensions (units) of the operators in the supersymmetry algebra are

[Pμ] =
M L

T
, [Lμν] =

M L2

T
, [Qα] = [Q.

α] =

√
M L

T
= [Dα] = [D.

α]. (10.72a)

Also,

[θα] = [θ
.
α] =

√
T

M L
, so [h̄θασμ

α
.
α
θ
.
α] = [xμ]. (10.72b)

In turn, using the high energy particle physics convention where powers of h̄ and c are
implied and unwritten, the dimensions of these field theory operators are expressed by
specifying the appropriate power of energy:

[Pμ] = 1 = [H], [Lμν] = 0, [Qα] = [Q.
α] = 1

2 = [Dα] = [D.
α],

[θα] = [θ
.
α] = − 1

2 , [xμ] = −1,
(10.72c)

implying, e.g., that
√

MeV
c are units for Qα and h̄ c

MeV for xμ; see Digressions 10.3 on p. 362
and 10.6 on p. 370, as well as Table C.5 on p. 528.
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Superfields
Since all the operators in the algebra (10.63) are now realized as differential operators (10.64),
(10.67) and (10.68) with respect to the coordinates of superspace (10.65), it is natural to
introduce functions over superspace, so-called “superfields,” F(x; θ, θ). The very definition of
coordinates (10.65) implies that they are nilpotent:

{θα, θβ} = 0
α=β
=⇒ 0 = {θα, θα} = 2(θα)2 ⇒ (θα)2 = 0, α = 1, 2; (10.73a)

{θ
.
α
, θ

.
β} = 0

.
α=

.
β

=⇒ 0 = {θ
.
α
, θ

.
α} = 2(θ

.
α)2 ⇒ (θ

.
α)2 = 0,

.
α = 1, 2. (10.73b)

Therefore, every function of the variables θα, θ
.
α has a formal Taylor expansion that terminates and

gives a finite polynomial:

F(x; θ, θ) = φ(x) + θαψα(x) + θ
.
αχ.

α(x) + · · · + θ2θ2F (x), (10.74)

where the coefficients in the expansion are ordinary functions over ordinary spacetime and where
θ2 := 1

2 εαβθ
αθβ and θ2 := 1

2 ε.α .βθ
.
αθ

.
β [☞ Appendix A.6.2 and especially Comment A.3 on p. 490, for

notation]. If F(x; θ, θ) is given as a commuting, scalar superfield and since the θ, θ coordinates anti-
commute, the coefficient functions – called component fields – alternate between being commuting
and anticommuting:

0. φ(x) is a commuting function and a scalar,
1. ψα(x) and χ.

α(x) are anticommuting functions and spin- 1
2 spinors,

...
4. F (x) is a commuting function and a scalar.

Alternatively, the component fields may be defined as the coefficients in the Taylor expansion
over (θα, θ

.
α), using the super-derivatives projected to the spacetime subspace of superspace:

φ(x) := F(x; θ, θ)
∣∣; (10.75a)

ψα(x) :=
[
DαF(x; θ, θ)

]∣∣; (10.75b)

χ.
α(x) :=

[
D.
αF(x; θ, θ)

]∣∣; (10.75c)

F(x) := − 1
4

[
D2F(x; θ, θ)

]∣∣; (10.75d)

Vα.α(x) := − 1
2

[
[Dα, D.

α]F(x; θ, θ)
]∣∣, Vμ := 1

2σ
.
αα
μ Vα.α; (10.75e)

G(x) := − 1
4

[
D2F(x; θ, θ)

]∣∣; (10.75f)

λα(x) := − 1
4

[
D2DαF(x; θ, θ)

]∣∣; (10.75g)

κ.α(x) := − 1
4

[
D2D.

αF(x; θ, θ)
]∣∣; (10.75h)

F (x) := 1
32

[
(D2D2 + D2D2)F(x; θ, θ)

]∣∣ (10.75i)

where the vertical right-delimiter denotes the projection to the “ordinary” spacetime:

( X )
∣∣ := lim

θ,θ→0
( X ). (10.76)

These definitions use super-derivatives instead of ordinary partial derivatives:

1. Since all definitions (10.75) contain a projection θ, θ → 0 that annihilates contribu-
tions that include ih̄σσσσμ·θ∂μ and ih̄θ·σσσσμ∂μ, the end result is the same as if Dα → ∂α and
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D.
α → ∂.α were used – up to spacetime derivatives of component fields of “lower” physical

dimensions (units), obtained upon multiple application of super-derivatives, where one of
these derivatives acts on the θ, θ coordinates in the other.

2. The advantage of using super-derivatives in the definitions (10.75) follows from the rela-
tions (10.70): Q and Q may be freely anticommuted with the super-derivatives D, D, which
is not true of ordinary partial derivatives ∂α, ∂.α.

3. The super-covariant derivatives may be used for imposing superdifferential constraints,
which are then evidently covariant with respect to supersymmetry transformations, im-
plemented by the operator (10.62) [☞ Section 10.3.3].

Note: when acting upon superfields and superdifferential expressions of superfields, whereas
the super-derivatives Dα, D.

α act as usual, from the left, the supersymmetry generators Qα, Q.
α act

from the right [189, 76]. Thus,

Qα

(
F
)

= F
←−
Qα = +(QαF), but Qα

(
DβF

)
= (DβF)

←−
Qα

(10.70)= −(
Qα ◦DβF

)
, (10.77)

where in the final expressions, both +QαF and −QαDβF act as usual, from the left. It is useful to
note that the operators used in the definitions (10.75) form a hierarchy of super-derivatives:

−

−

−

+1
32

2

2

2

2

2 2

−

−

2

2

4

1
44

1

4
1 1

4
1

(10.78)

This structure is partially ordered by the physical dimension [☞ Digression 10.7 on p. 378], which
grows upward in the diagram (10.78), and by successive application of Dα and D.

α denoted by
arrows in the diagram (10.78).

Example 10.1 The infinitesimal supersymmetry transformations of any component field
may be obtained by computing the projection

D [δQ(ε)F]
∣∣ (10.70)= δQ(ε)(DF)

∣∣ =
[− i(ε·Q + ε·Q)(DF)

]∣∣
=

(
ε·(D − 2ih̄σσσσμ·θ ∂μ) + ε·(D − 2ih̄θ·σσσσμ∂μ)

)
(DF)

∣∣ =
(
ε·D + ε·D)

(DF)
∣∣,

(10.79)

where D is the specific D-operator from the basis (10.78) that projects on the desired
component field within the superfield F. For example,

δQ(ε)φ =
(
εαDα + ε

.
αD.

α

)
F
∣∣ = εαψα + ε

.
αχ.

α; (10.80)

δQ(ε)ψα = (ε·D + ε·D)(DαF)
∣∣ = 1

2ε
βεβαD2F

∣∣ + ε
.
α
( 1

2{Dα, D.
α} − 1

2 [Dα, D.
α]
)
F
∣∣

= 1
2ε
βεβα(−4F) + ih̄σμ

α
.
α
ε
.
α(∂μφ) − 1

4σ
μ

α
.
α
ε
.
α
(
σ

.
ββ
μ [Dβ, D .

β
]F

)∣∣
= 2εαβε

βF + ih̄σμ
α
.
α
ε
.
α(∂μφ) + σ

μ

α
.
α
ε
.
αFμ; etc. (10.81)
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Another key property is that every function of the form

[D2D2 f (F1, F2, . . . )]
∣∣ (10.82)

is automatically an invariant under the supersymmetry transformation. More precisely, we have
the standard result:

Theorem 10.7 For every analytic functional expression f (F1, F2, . . . ) constructed from su-
perfields F1, F2, etc., the Hamilton action of the form

∫
dx [D2D2 f ]

∣∣ is supersymmetric:

δQ(ε)
∫

d4x [D2D2 f (F1, F2, . . . )]
∣∣ =

∫
d4x ∂μKμ = 0, (10.83)

where the functional expression and the component fields of the superfields Fi satisfy
the restrictions that are usual in field theory, and which guarantee that the spacetime
integrals (10.83) are well defined and convergent.

Comment 10.3 The concrete choice of the functional expression f (F1, F2, . . . ) of course
depends on which concrete terms one desires in the Lagrangian density:

L := [D2D2 f (F1, F2, . . . )]
∣∣. (10.84)

By definition, the Lagrangian density is said to be supersymmetric if it defines a supersym-
metric Hamilton action, which means that δQ(ε)L = ∂μKμ suffices.

Proof The result (10.83) follows from direct computation with the two terms:

δQ(ε)
∫

d4x [D2D2 f (F1, F2, . . . )]
∣∣ (10.71)=

∫
dx

{
(ε·Dα + ε·D + . . . )D2D2 f (F)

}∣∣∣
θ,θ→0=

∫
d4x

{
εα DαD2︸ ︷︷ ︸

≡0

D2 f (F) + ε
.
αD.

αD2D2 f (F)
}∣∣∣

(A.164)=
∫

d4x
{
ε
.
α
[−4ih̄σμ

α
.
α
∂με

αβDβ + D2D.
α

]
D2 f (F)

}∣∣∣
=

∫
d4x

{
∂μ

[−4ih̄ε
.
ασ
μ

α
.
α
εαβDβD2 f (F)]

∣∣︸ ︷︷ ︸
:=Kμ

+ε
.
αD2 D.

αD2︸ ︷︷ ︸
≡0

f (F)
∣∣ }

=
∫

spacetime
d4x ∂μKμ =

∮
∂(spacetime)
(d3x)μ Kμ, (10.85)

where the last integral vanishes, since the “boundary” of spacetime is an infinitely distant 3-sphere,
where the fields, and also the integral of Kμ, are routinely required to vanish. 
�

Comment 10.4 As it is only necessary for the entire integral
∮
∂(spacetime)
(d3x)μ Kμ to vanish, it would

suffice for the expression Kμ to vary “at infinity” so that the sum over the infinitely distant
(spacetime) 3-sphere should evaluate to zero.

Digression 10.8 Given an anticommuting (Grassmann) variable θ, integration over θ that
is invariant with respect to constant translations θ→ θ+ ε must in fact be functionally
identical to the partial θ-derivative:

∫
dθ f (θ) ≡ ∂

∂θ f (θ); this is called Berezin integration,
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after Felix Alexandrovich Berezin. Since θ must be nilpotent, the result of such integration
must be θ-independent, and no loss is incurred by appending the θ → 0 projection.
However, delimited by this trailing projection, the action of a super-derivative such as
D := ∂

∂θ + ih̄θ ∂∂x (where x is a commuting variable) is identical to the action of a partial
θ-derivative, which in turn is identical to Berezin integration:

[D f (θ)]
∣∣ =

[ ∂
∂θ

f (θ)
]∣∣∣ =

∫
dθ f (θ). (10.86)

The θ, θ→ 0 projection (10.76) of the 4-fold super-derivative (10.84) of any superfield
function is thus equal to its d2θd2θ-integral. In turn, this re-interprets the integral–super-
derivative combination such as in (10.83) as a d4xd2θd2θ-integration over the whole
superspace and so provides a completely uniform and geometrical treatment. In prac-
tice, however, one evaluates these integrals by means of projections of super-derivatives,
which is why they are so indicated throughout this chapter.

10.3.3 The chiral and the gauge superfield
The superfield F(x; θ, θ) may also be regarded a partially ordered set of component fields, which
may be partially ordered by growing physical dimensions (units) akin to the diagram (10.78).
Preserving this structure, it is possible to impose constraints on some of the component fields,
which is most effectively achieved using super-derivatives.

Super-constraints and the chiral superfield
Using the superfields and super-derivatives Dα and D.

α, it is possible to specify superdifferential
equations that – because of the relations (10.70) – transform covariantly with respect to the action
of supersymmetry transformations Uε,ε, given by equation (10.62).

One of the simplest such superdifferential equations defines the so-called chiral (and the
conjugate, anti-chiral) superfield:11

chiral D.
α Φ = 0 and anti-chiral Dα Φ = 0. (10.87)

It is then not hard to show that

φ := [Φ]
∣∣, ψα := [DαΦ]

∣∣, F := − 1
4 [D2Φ]

∣∣ (10.88)

are the only non-trivial component fields: two complex scalar fields φ and F, and one 2-component
complex spin- 1

2 field ψα; the physical dimensions (units) of these two scalar fields, however, are
not equal: [F] = [φ]·ML

T . The remaining components either vanish or do not include new fields;
for example,

[D.
αΦ]

∣∣ (10.87)= 0, [D2Φ]
∣∣ (10.87)= 0, (10.89)

[D.
αDαΦ]

∣∣ (10.69)= [(2σμ
α
.
α
Pμ − DαD.

α)Φ]
∣∣ (10.87)= [(−2iσμ

α
.
α

h̄∂μ)Φ]
∣∣ = −2ih̄σμ

α
.
α
(∂μφ). (10.90)

Supersymmetric transformations are easily derived following Example 10.1 on p. 380:

δQ(ε)φ = (ε·D + ε·D)Φ
∣∣ = ε·ψ; (10.91a)

11 The analogy with complex-analytic functions is fully justified and valuable.
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δQ(ε)ψα = (ε·D + ε·D)
DαΦ

∣∣ =
( 1

2ε
βεβαD2 + 2ih̄ε

.
ασ
μ

α
.
α
∂μ

)
Φ
∣∣,

= 2εαβε
β F + 2ih̄σμ

α
.
α
ε
.
α(∂μφ); (10.91b)

δQ(ε)F = (ε·D + ε·D)(− 1
4 D2Φ)

∣∣ = − 1
4ε

.
α
(
4ih̄σμ

α
.
α
εαβ∂μDβ

)
Φ
∣∣,

= −ih̄σμ
α
.
α
ε
.
αεαβ(∂μψβ). (10.91c)

Digression 10.9 Iterating the result (10.91), one can show that

[δQ(ε(1)), δQ(ε(2))](φ;ψα; F) = 2ih̄(ε(2)·σσσσμ·ε(1) − ε(1)·σσσσμ·ε(2))∂μ(φ;ψα; F). (10.92a)

That is, the commutator of two supersymmetry transformations formally equals a
translation in spacetime. However, notice that this translation parameter,

ε
μ
(1,2) := (ε(2)·σσσσμ·ε(1) − ε(1)·σσσσμ·ε(2)), (10.92b)

is not an ordinary spacetime vector! The supersymmetry transformation parameters,
εα(1), ε

α
(2) anticommute, and so are nilpotent [☞ relations (10.73)]; the vector (10.92b)

is therefore itself (degree-4) nilpotent: (εμ(1,2))
4 ≡ 0 for any μ = 0, 1, 2, 3. Similarly,

ε·ψ is only formally a “shift” in the scalar field φ, according to the transformation
relation (10.91a), since the expression ε·ψ(x) is in every spacetime point (degree-4)
nilpotent and the function φ(x) in every spacetime point has values that are ordinary,
i.e., non-nilpotent commuting complex numbers.

Conclusion 10.3 Although the (symmetrized) iterative application of the supersymmetry
generators Qα and Q.

α is equivalent to the application of the spacetime translation gener-
ator Pμ, supersymmetry transformations (10.62) do not produce transformations in “real”
spacetime.

The fact that supersymmetry transformations map the fields φ(x) ↔ ψα(x) ↔ F(x) (and
their derivatives) in every spacetime point, however, remains.

Notice that chiral superfields (at the same spacetime point) form the “ring” algebraic struc-
ture [☞ the lexicon entry, in Appendix B.1]:

Conclusion 10.4 The product of two chiral superfields is again a chiral superfield:

D.
αΦ1 = 0 = D.

αΦ2, ⇒ D.
α(Φ1Φ2) = 0, (10.93)

with the usual rules of distribution between multiplication and addition. It follows that
chiral fields (at the same spacetime point) form the “chiral ring.” Moreover, it follows that
an arbitrary analytic function of chiral superfields (defined by its Taylor expansion) is also
a chiral superfield.

Theorem 10.8 The most general supersymmetric Lagrangian density for a chiral superfield
Φ must be of the form

L [Φ] = [D2D2 K(Φ†, Φ)]
∣∣ + [D2 W(Φ)]

∣∣ + [D2 W(Φ†)]
∣∣. (10.94)

Proof Since the Lagrangian density must be real, for the first term of the general form (10.84)
one selects a real function K(Φ†, Φ), and adds the second term and its Hermitian conjugate where
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W(Φ) is an arbitrary analytic function. Indeed, this second term is also (and independently!)
supersymmetric:

(ε·Q + ε·Q) D2 W(Φ)
∣∣

(10.71)= εα(iDα − 2h̄σμ
α
.
α
θ
.
α
∂μ) D2 W(Φ)

∣∣ + ε
.
α(iD.

α − 2h̄σμ
α
.
α
θα∂μ) D2 W(Φ)

∣∣
θ,θ→0= iεα DαD2︸ ︷︷ ︸

≡0

W(Φ)
∣∣ + iε

.
α(−2ih̄σμ

α
.
α
∂με

αβDβ + D2D.
α)W(Φ)

∣∣
= ∂μ

[
2h̄ε

.
ασ
μ

α
.
α
εαβDβW(Φ)

∣∣]︸ ︷︷ ︸
Kμ

+ iε
.
αD2 D.

αW(Φ)︸ ︷︷ ︸
=0

∣∣ = ∂μKμ, (10.95)

so the
∫

d4x-integral vanishes again, owing to the usual restrictions on the fields. Listing all possible
Lorentz-invariant terms, one shows that the expression (10.94) is the most general form of a
supersymmetric Lagrangian density. 
�

The standard choice K(Φ†, Φ) = Φ†Φ gives (after some “D-gymnastics” [☞ rela-
tions (A.162)–(A.165)]) the standard Lagrangian density for a scalar φ and a fermion ψα, and
the total resulting Lagrangian density is – up to integration by parts for symmetrization of the
expression,

L [Φ] = −(∂μφ∗)ημν(∂νφ) − i
2σ

μ
.
αα
[
ψ.
α(∂μψα) − (∂μψ.

α)ψα
]
+ F∗F

+ F W ′(φ) + 1
2 ε
αβψαψβ W ′′(φ) + F∗ W ′(φ∗) + 1

2 ε
.
α
.
βψ.

αψ
.
β

W ′′(φ∗). (10.96)

Since the Euler–Lagrange equations of motion for the component fields F and F∗,

F∗ = −W ′(φ) and F = −W ′(φ∗), (10.97)

are non-differential equations in F and F∗, they may be used to substitute F and F∗:

L [Φ] = − i
2σ

μ
.
αα
[
ψ.
α(∂μψα) − (∂μψ.

α)ψα
]− (∂μφ∗)ημν(∂νφ)

− |W ′(φ)|2 + 1
2 ε
αβψαψβ W ′′(φ) + 1

2 ε
.
α
.
βψ.

αψ
.
β

W ′′(φ∗). (10.98)

The constant h̄ has been eliminated in the expressions such as (10.94)–(10.98) by redefining
the component fields to emphasize the similarity with the Lagrangian density (7.34) [☞ Exer-
cise 10.3.6 on p. 388]. A similar redefinition of the fermion fields ψα,ψ.

α and the use of the
basis (A.132) for the Dirac γγγγ-matrices shows the first term (10.98) to give the standard Lagrangian
density (5.68a) for Dirac fermions.

The computation (10.94)–(10.98) clearly shows that the D2D2Φ†Φ| term produced the stan-
dard “kinetic” part of the Lagrangian density, while the terms D2W(Φ)|+ D2W(Φ†)| produce, after
eliminating F and F∗ via their equations of motion (10.97), the potential

V(φ) = |W ′(φ)|2 � 0. (10.99)

Finally, the terms −ψ2W ′′(φ∗) − ψ
2W ′′(φ∗) provide the supersymmetric completion of the poten-

tial |W ′(φ)|2. Owing to the relation (10.99) with the potential, the function W(Φ) is called the
superpotential.
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Digression 10.10 On one hand, owing to Theorem 10.7 on p. 381, and the similar re-
sult (10.95), the Lagrangian density (10.96) is known to be supersymmetric, i.e., its
infinitesimal supersymmetry transformation δQ(ε) = −i(ε·Q + ε·Q) changes the La-
grangian density (10.96) into a total derivative. This may also be directly verified by
substituting the supersymmetry transformations of the component fields

δQ(ε)φ = εαψα, δQ(ε)ψα = 2εαβε
βF + 2ih̄σμ

α
.
α
ε
.
α(∂μφ),

δQ(ε)F = ih̄σμ
α
.
α
εαβε

.
α(∂μψβ)

(10.100a)

into the Lagrangian density (10.96).
However, the Lagrangian density (10.98) is not invariant with respect to the super-

symmetry transformations (10.100a)! These transformations represent the original (and
linear) supersymmetry action upon the superfield Φ, i.e., upon the component fields –
including F. The elimination of F by (10.97) changes this action, so that the transforma-
tion rules (10.100a) also change, and the Lagrangian density (10.98) is invariant with
respect to the so-changed transformations. As W ′(φ) is nonlinear in the general case,
these changed supersymmetry transformation rules are also nonlinear.

Digression 10.11 The simplest model in which supersymmetry is spontaneously broken
was found by O’Raifeartaigh, and has the superpotential

D2[λΦ0 + mΦ1Φ2 + gΦ0Φ 2
1 ]

∣∣ + h.c., (10.101a)

where Φ0, Φ1 and Φ2 are three chiral superfields. The non-differential equations of
motion for the auxiliary components F0, F1 and F2 are (10.98)

F0 = −λ− gφ 2
1 , F1 = −mφ1 − 2gφ0φ1, F2 = −mφ2, (10.101b)

which make the potential in this model into (10.99)

V =
2

∑
k=0

∣∣Fk|2 =
∣∣λ+gφ 2

1
∣∣2 +

∣∣mφ2+2gφ0φ1
∣∣2 +

∣∣mφ1
∣∣2. (10.101c)

This cannot possibly vanish: the last term can vanish only where φ1 = 0 and where
the potential becomes V = |λ|2 + |mφ2|2 > 0. Supersymmetry is therefore broken
spontaneously as there is no solution to the equations of motion where V = 0.

One of the original ideas for the application of supersymmetry was to find superfields where the
bosons and fermions of the Standard Model [☞ Table 2.3 on p. 67] would all be component fields
of the same superfields. However, the component fields of the same superfield differ only by spin,
and not by charges (electric, weak isospin or color), so this is not possible: the Standard Model
fermions have completely different charges from the bosons.

It follows that identifying the 2-component Weyl fermion ψα(x) ∈ Φ(x; θ, θ) with a left-
handed chiral half of a Dirac 4-component wave-function of the electron, the complex scalar field
φ(x) ∈ Φ(x; θ, θ) is the electron superpartner, the so-called selectron, which must be added to the
list in Table 2.3 on p. 67. Bosons with the charges given in Table 7.1 on p. 275 have not been de-
tected experimentally, while supersymmetry implies their existence; one jokes that supersymmetry
is already 50% experimentally verified. However, this means that supersymmetry – in Nature –
must be broken, and in such a way that the masses of the bosonic superpartners of the elementary
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fermions from Table 2.3 on p. 67 are sufficiently big, bigger than the masses of the elemen-
tary fermions by the amount ESuSy/c2, so that this explains why they have not been detected
experimentally so far [☞ examples in Figure 10.2 on p. 375].

The gauge superfield
Consider now the real superfield A† = A. The component fields may be found by means of
Taylor-esque projections (10.75); specifically, the projection (10.75e) finds the real 4-vector field
Aμ(x) ∈ A(x; θ, θ). On the other hand, the same component of the combined superfield i(Φ−Φ†)
gives

1
4σ

.
αα
μ

[
[Dα, D.

α]i(Φ − Φ†)
]∣∣ = 2h̄

(
∂μ &e(φ)

)
, (10.102)

so that the superfield transformation

A → A′ = A + i(Φ − Φ†) ( Aμ → A′
μ = Aμ + ∂μ

(
2h̄ &e(φ)

)
(10.103)

contains the gauge transformation (5.89) of the vector component field, where − h̄
c &e(φ) plays

the role of the gauge local parameter. Of course, if the chiral superfields Φi are intended one for
each Standard Model elementary fermion and we introduce the real superfield A ( Aμ for the
electromagnetic field, to parametrize the gauge transformation of the electromagnetic field we
must introduce a separate chiral superfield Λ, the scalar component of which plays the role of the
gauge local parameter.

A detailed analysis [189, 562, 560, 76] of the component fields in the combination A +
i(Λ − Λ) shows that a suitable choice of the superfield Λ eliminates the component fields in the
“lower half” of the superfield A, as per diagram (10.78). However, it is more practical to define
the chiral–anti-chiral pair of fermionic superfields:

Aα := (D2DαA) and A.
α := (D2D.

αA), (10.104)

which satisfy
A = A† ⇒ εαβDαAβ = ε

.
α
.
βD.

αA .
β
, (10.105)

and the components of which include

Aα

∣∣ =: λα, A.
α

∣∣ =: λ̄.
α, (10.106a)

DαAβ

∣∣ =: εαβD + i(σσσσμν)αγ εβγFμν, D.
αA .

β

∣∣ =: ε.
α
.
β
D + i(σσσσμν)

.
γ.
α ε .β .γFμν, (10.106b)

D2Aα

∣∣ = −ih̄σμ
α
.
α
ε
.
α
.
β(∂μλ̄ .

β
), D2A.

α

∣∣ = −ih̄σμ
α
.
α
εαβ(∂μλβ). (10.106c)

Here,
Fμν := (∂μAν − ∂νAμ), (10.107)

and the component fields from the “lower half” of the original superfield A show up neither in the
expressions (10.106) nor in any other projection of the superfields Aα and A.

α. A supersymmetric
Lagrangian density that includes the standard − 1

4 FμνFμν Lagrangian density is then obtained from
the expression

L [A] = − 1
4 [D2 εαβAαAβ]

∣∣− 1
4 [D2 ε

.
α
.
βA.

αA .
β
]
∣∣

= − 1
4 FμνFμν − ih̄

2 σ
μ
.
αα
[
λ̄.
α(∂μλα) − (∂μλ̄.

α)λα
]
+ 2D2. (10.108)

The first term is – up to a (re)scaling of the field Aμ – the Lagrangian density that is identical to
the density in the expression (5.76) for electromagnetic fields. The equations of motion for the
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spinor fields (λα, λ̄.
α) are the Dirac equations, which is typical for spin- 1

2 fermions, but the mass
of these spinors vanishes. These then are the superpartners of the gauge fields and are in general
called gauginos.12 Notice that the relation (10.105) equates the component functions that occur in
D- and D-projections (10.106b), but leaves λ̄.

α formally independent of λα. The condition (10.105),
however, guarantees that the Dirac spinor (λα, λ̄.

α) has four real independent components.

Supersymmetric electrodynamics
The minimal supersymmetric Lagrangian density where the chiral field F interacts with the gauge
superfield A, for the supersymmetric version of electrodynamics for example, is obtained in the
form

L = − 1
4 [D2 εαβAαAβ]

∣∣− 1
4 [D2 ε

.
α
.
βA.

αA .
β
]
∣∣ +

[
D2D2 Φ eqΦA Φ

]∣∣. (10.109)

This Lagrangian density is invariant with respect to the gauge transformations

A → A + i(Λ − Λ), Φ → eiqΦΛΦ, Φ → e−iqΦΛΦ, (10.110)

which coincide with the transformations (5.14a) for the component fields Aμ, and that of the
ψα ∈ Φ with the left-handed chiral projection of the transformation (5.14b). Expanding the ex-
pression (10.109) produces the Lagrangian density for supersymmetric electrodynamics, where the
additional terms involve the superpartners of both the photon (itself represented by the 4-vector
potential Aμ), and the left-handed chiral electron (represented by the fermion field ψα).

To extend this minimal model so as to include also the right-handed chiral electron, we must
introduce another chiral field, Φc := C(Φ), which is defined so that ψc

α is the left-handed chiral
spin- 1

2 fermionic field with the electric charge opposite to that of the electron. Then, ψc.
α
∈ Φc is

the right-handed chiral spin- 1
2 fermions field with the electric charge equal to the electron charge.

Therefore, the Lagrangian density for electrodynamics with a massive electron must be of the form

L = − 1
4 [D2 εαβAαAβ]

∣∣− 1
4 [D2 ε

.
α
.
βA.

αA .
β
]
∣∣ +

[
D2D2 Φ eqΦA Φ

]∣∣ +
[
D2D2 Φc e−qΦA Φc]∣∣

+ m
{
[D2ΦΦc]

∣∣ + [D2Φ Φc]
∣∣}, (10.111)

where we added terms in the second row, which produce the Lagrangian terms m(ψ·ψc + ψ·ψc)
for the electron, as well as (after eliminating the auxiliary scalar fields F and Fc using their non-
differential equations of motion) m2φφc ≡ m2|φ|2 for the selectron.

The minimal supersymmetric Standard Model
The construction of the complete supersymmetric Standard Model is now seen as a generalization
of the procedure that led us to the Lagrangian density (10.111). For the details of this construction,
the interested Reader is directed to the abundant literature [☞ textbooks [189, 562, 560, 76] to
begin with]. However, note:

1. On one hand, supersymmetry conceptually unites bosons and fermions – and requires that
every boson has a fermion superpartner, and vice versa.

2. On the other hand, the concrete bosons and fermions of the Standard Model cannot be each
others’ superpartners, since the (gauge and Higgs) bosons in the Standard Model transform
differently from the fundamental fermions in the Standard Model with respect to the action
of the gauge group SU(3)c × SU(2)w × U(1)Q.

12 Superpartners of bosonic particles are named using the boson’s name with an attached -ino suffix, such as photino,
gluino and higgsino. The superpartners of fermionic particles are named by attaching an s- prefix to the fermion’s name,
such as selectron, sneutrino and squark.
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Also, it turns out that the details of the fermion mass hierarchy require introducing not one but
two chiral superfields for each Higgs field in the Standard Model, and it follows:

Conclusion 10.5 The so-called Minimally Supersymmetric Standard Model (MSSM) re-
quires a little over twice as many particles as the Standard Model.

Considering this simple counting of degrees of freedom used to describe Nature, the rea-
son for supersymmetrizing the Standard Model certainly is not economy. However, recall the
conceptual and practical (technical) consequences of supersymmetry [☞ Section 10.3.1]:

1. vacuum stabilization,
2. mass hierarchy stabilization, and
3. simplification of the renormalization procedure.

Note also the fact that before the invention of supersymmetry, which successfully solves these
problems of the Standard Model, these problems were hardly mentioned. Of course, that owes
partly to the approach of describing Nature pragmatically and axiomatically:

Comment 10.5 Theoretical models are constructed with the aim to describe, in a logi-
cally coherent and consistent theoretical system, the known phenomena without predicting
nonexistent phenomena, and while keeping the necessary assumptions as few as possible.

These assumptions (axioms) are re-examined only when the resulting theoretical sys-
tem “paints” the development of the model “into a corner” and when within this theoretical
system it is not possible to construct a model that does not err in a concrete aspect of the
description of Nature, or when an opportunity emerges to explain it in a conceptually more
fundamental or practically simpler system of assumptions.

Of course, the question remains: In what measure is supersymmetry of help in models of
quantum physics that contain the general theory of relativity? Considering that the complete theory
of quantum gravity does not exist yet, a final answer to this question then does not exist either☞ .
However, the next chapter will permit us to say a little more about this.

10.3.4 Exercises for Section 10.3

✎ 10.3.1 Prove that the left-hand side of the relation (10.55) is non-negative.

✎ 10.3.2 Show that the operators (10.67) and (10.68) satisfy the operatorial relations (10.69)
and (10.70).

✎ 10.3.3 Confirm the relations (10.91).

✎ 10.3.4 Confirm the result (10.95).

✎ 10.3.5 By iterative and consistent use of relations (10.69) and definitions (10.88) (a.k.a.
“D-gymnastics”), derive equation (10.96) from (10.94).

✎ 10.3.6 Return the proper factors of h̄ and c in the expressions (10.96)–(10.98).
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10.4 Classification of off-shell supermultiplets
Recall Procedure 5.1 on p. 193, which is generally accepted as the only systematic procedure ap-
plicable in all known models of quantum field theory [☞ also Procedure 11.1 on p. 416]. For the
purposes of this procedure we must define an integral of the general type∫

D[ φ ] eiS[φ]/h̄ (10.112)

to be computed over all possible fields, here represented by the symbol φ. S[φ] is the classical
Hamilton action, which according to Hamilton’s principle has a minimum for the choice of fields
φ that satisfy the classical (Euler–Lagrange) equations of motion, i.e., for fields φ that are on
shell. For such classical fields, S[φ] is minimal, and the integrand exp{iS[φ]/h̄} oscillates min-
imally. By contrast, a choice of the fields that are “far” from such classical fields then causes
the integrand to oscillate very fast, so that the contributions mostly cancel. The naive reason-
ing then is that the contributions of the classical fields dominate the formal integral (10.112). This
is in no way proven rigorously, as the space of the choices of the fields φ is infinite-dimensional:
although the contribution to the integral (10.112) from any one non-classical field is infinites-
imally small, there are continuously many such fields and the sum over them may well even
diverge.

However, we certainly know that the fields over which the integration (10.112) is to be
performed must a priori be off-shell, i.e., not subject to any differential equation, and foremost
not the classical (Euler–Lagrange) equations of motion: that would be outright contradic-
tory. Quantum supersymmetric models then must be constructed using off-shell supermultiplets
(collections of particles and their superpartners); in models of supersymmetric quantum field
theory, both the known particles and all their superpartners must be represented by off-shell
fields.

With that in mind it is then surprising that four decades after the introduction of supersym-
metry in field theory there is still no complete theory of off-shell representation of supersymmetry
algebras☞ . Recent research in this direction [139, 140, 141, 142] indicates a fantastic and com-
binatorially complex multitude of possibilities, very different from the well-known theory of the
finite-dimensional unitary representations of Lie algebras, and even the supersymmetric on-shell
representations, which are well known.

The remainder of this section gives a telegraphic description of this research, mostly so as
to indicate some open possibilities for research. However, this introduction is restricted to intact
supermultiplets13 – those that have not been constrained or gauged in any way. Constrained and
gauged (gauge-equivalences of) supermultiplets are indeed very widely used, and the interested
Reader is directed to the textbooks [189, 562, 560, 76].

10.4.1 One-dimensional supersymmetry as the common denominator
Recall the three levels of theoretical analysis of physical systems [☞ description on p. 366] where
supersymmetry may show up, and especially the second and third levels of analysis, where
supersymmetry reduces to supersymmetric quantum mechanics, with the algebra{QI , QJ

}
= 2δI JH,

[
H , QI

]
= 0, I, J = 1, . . . , N, (10.113)

where H = ih̄∂τ is the Hamiltonian and τ the proper time, and where in the general case one does
not require N to be even as in the relations (10.32). Note that we revert to the quantum-mechanical
normalization, [Q I ] =

√
ML
T .

13 The adjective “intact” is simply shorter than the detailed “unconstrained and ungauged.”
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Following the lesson from the conclusion in Digression 10.9 on p. 383, or even just sim-
ply the pragmatic application of supersymmetry as a transformation that maps bosons into
fermions and back, the goal of classifying representations of supersymmetry is to classify all
possible supermultiplets, i.e., collections of bosons and fermions that supersymmetry maps one
into the other. To this end, it is convenient to introduce a graphical notation as described in
Table 10.1.14

Table 10.1 The correspondence between Adinkras and supersymmetry transformations gives:
node↔ component field; white/black node↔ boson/fermion; Ith color/index edge↔ QI ; dashed
edge↔− sign; edge direction↔ 1 (∂τ when following an edge in the opposite direction). In addi-
tion, the Adinkras are drawn putting the nodes at levels proportional to their relative units, so the
implicit edge directions are upward.

Adinkra Supersymmetry transf. Adinkra Supersymmetry transf.

QI

[
ψB
φA

]
=

[
i
.
φA
ψB

]
QI

[
ψB
φA

]
=

[−i
.
φA

−ψB

]

QI

[
φA
ψB

]
=

[ .
ψB
iφA

]
QI

[
φA
ψB

]
=

[− .
ψB

−iφA

]

Edges are here labeled by the index I; for a fixed I, they are drawn in the Ith color.

The next two examples of supermultiplets of N = 2 supersymmetric quantum mechanics
should clarify the application of the rules in Table 10.1.

Example 10.2 The simplest supermultiplet is of the general form that reflects the basis of
the type (10.78):

Q1 φ = ψ1, Q2 φ = ψ2, (10.114a)

Q1 ψ1 = i
.
φ, Q2 ψ1 = −iF, (10.114b)

Q1 ψ2 = iF, Q2 ψ2 = i
.
φ, (10.114c)

Q1 F =
.
ψ2,

Ψ2Ψ1

Φ Q2 F = − .
ψ1. (10.114d)

The black edges depict the action of the Q1 supercharge and the gray edges the Q2-
action. The fact that in a two-colored quadrangle (10.114) an odd number of edges must
be dashed (i.e., the corresponding supercharge action has an additional −1 sign) follows
from the fact that

φ
Q1−→ ψ1

−Q2−−→ F : F = −Q2
(Q1(φ)

)
,

φ
Q2−→ ψ1

Q1−→ F : F = Q1
(Q2(φ)

)
,

}
⇒ Q1Q2 = −Q2Q1, (10.115)

in agreement with equation (10.31).

14 A graphical representation of a system of equations offers the evident advantage of heuristic insight and is not at all a
new idea [177]; the formalization of such graphs – called Adinkras – for the purposes of supersymmetry, however, is of
recent origin [139]. They are particularly useful in depicting intact supermultiplets.
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Example 10.3 Another example of an N = 2 supermultiplet is

Q1 ϕ1 = χ1, Q2 ϕ1 = χ2, (10.116a)

Q1 ϕ2 = χ2, Q2 ϕ2 = −χ1, (10.116b)

Q1 χ1 = i
.
ϕ1, Q2 χ1 = −i

.
ϕ2, (10.116c)

Q1 χ2 = i
.
ϕ2,

χ2χ1

ϕ1 ϕ2 Q2 χ2 = i
.
ϕ1. (10.116d)

Formally, equating (φ;ψ1ψ2; F) = (ϕ1;χ1,χ2;
.
ϕ2) identifies the two supermultiplets, but

this implies the relation F = .
ϕ2 and so ϕ2 =

∫
dτ F, which is evidently non-local. The two

supermultiplets, (10.114) and (10.116), thus cannot be considered equivalent off-shell
supermultiplets.

Both examples, 10.2 and 10.3, depict supermultiplets that consist of two bosons and two
fermions. The difference is indicated by the fact that in Example 10.2 [F] = [φ]·ML2

T2 , whereas
in Example 10.3 [ϕ1] = [ϕ2]; see Table C.5 on p. 528. It is then evident that the supersymmetric
Lagrangian of the form

L2 := 1
2μ

[
( .
ϕ1)2 + ( .

ϕ2)2 + 2i
h̄ (χ1

.
χ2 − .

χ1χ2)
]
, (10.117)

with an appropriate characteristic constant μ, produces the familiar equations of motion: second
order in time derivatives for the bosons ϕ1, ϕ2 and first order for fermions χ1,χ2. By contrast, the
analogous supersymmetric Lagrangian

L1 := 1
2μ

[
(
.
φ)2 + 1

h̄2 F2 + 2i
h̄ (ψ1

.
ψ2 −

.
ψ1ψ2)

]
(10.118)

produces the usual equations of motion for the boson φ and the fermions ψ1,ψ2, but an algebraic
equation for the boson F [☞ step 4(b)iii on p. 374, as well as the equations of motion (10.97)].

This dynamical information is thus encoded by the “height arrangement” of the nodes in
the Adinkra, which defines the relative physical units of the component fields in the depicted
supermultiplet.

Digression 10.12 The formal difference between the supermultiplets (10.114)
and (10.116) is seen by analyzing the identifications(

φ;ψ1,ψ2; F
) =−−→ (

ϕ1;χ1,χ2; ( .
ϕ2)

)
,(

φ, (
∫

dτ F
)
;ψ1,ψ2)

=←−− (
ϕ1, ϕ2;χ1,χ2

)
.

(10.119)

This gives a formal bijection between the two supermultiplets. However, since ∂τ : ϕ2 �→
(
.
ϕ2) annihilates the constant term in a power expansion of the function ϕ2(τ) and ∂−1

τ :
F �→ (

∫
dτ F) adds an arbitrary (integration) constant, this formal bijection is not a

perfect 1–1 mapping in both ways, and the supermultiplets (10.116) and (10.114) must
be considered different.

Digression 10.13 For the Lagrangians (not Lagrangian densities!) L1 and L2 to have the
units of energy and μ to be identifiable as a mass, [φ] = [ϕi] = L, [ψi] = [χi] =

√
ML2

T
and [F] = ML3

T2 .
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Supermultiplets that can be depicted with Adinkras (graphs that are constructed based on
the rules in Table 10.1 on p. 390 [☞ article [139] for the appropriate theorems and details]) have
the property that the supersymmetric mapping from bosonic to fermionic component fields and
back may also be represented by a system of superdifferential relations:

D IΦi = (LI)i
αΨα, D IΨα = ih̄(RI)α i .

Φi, (10.120)

where the index I counts supercharges, i the bosonic superfields Φi, α the fermionic superfields
Ψα, chosen so that:

1. component fields φi = Φi| and ψα = Ψα| (up to a ∂τ- or ∂−1
τ -prefactor as needed) are the

complete system of component fields for the desired supermultiplet, and
2. in every row and every column, the numerical matrices (LI)i

α and (RI)α i have precisely
one nonzero entry, which equals ±1.

Because of the relations (10.71), the system of superdifferential relations specifies the supersym-
metric transformations within the supermultiplet.

Although there exist supermultiplets that do not satisfy these requirements, all worldline
off-shell supermultiplets may be constructed starting with such “adinkraic” supermultiplets [284,
143]. Adinkras for a few such supermultiplets for small N (in the variant where neither ∂τ- nor
∂−1
τ -prefactors were used) are

(10.121)

It should now be clear that there exist a combinatorially (hyper-exponentially) growing number
of different node-height arrangements in Adinkras with growing N. Every new node-height ar-
rangement corresponds to a new application of ∂τ- and ∂−1

τ -prefactors, which then specifies a
new supermultiplet, which in turn results in a number of different supermultiplets that grows
combinatorially with a growing N.

In turn, the matrices LI and RI in the equations (10.120) satisfy the relations

(LI)i
α (RJ)αk + (LJ)i

α (RI)αk = 2δI J δ
k
i , (10.122)

(RI)α j (LJ)j
β + (RJ)α j (LI)j

β = 2δI J δ
β
α , (10.123)

which define a double cover of the Clifford algebre Cl(0, N).15 In the original articles [195, 197,
196, 198, 199, 194, 193] the algebra (10.123) was denoted GR(d, N), where it is assumed that,
as needed, the superfields Φi, Ψα may be replaced by their ∂τ-derivatives. Indeed, this formal
∂τ-mapping connects all supermultiplets with the same “chromo-topology” [139]. For the rela-
tively simple case of quantum-mechanical N = 2 supersymmetry, iterations of such ∂τ-mapping
yield the cyclic sequence

the overall ¶τ-derivative of the initial Adinkra

¶τ

¶τ

¶τ

(10.124)

15 The double-covered Clifford algebra is obtained by identifying LI , RI
2–1�−→ eI .
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For quantum-mechanical N = 3 supersymmetry, the analogous cyclic sequence is

(10.125)

where the gray-highlighted Adinkra (bottom, right) is identical (up to the overall level, indi-
cated by the gray dot-n-dash line) to the initial one, at far left, thus repeating the cycle. These
illustrations show that for the (even just adinkraic) finite-dimensional representations of quantum-
mechanical N-extended supersymmetries the number of possible node-height arrangements – and
so the number of different supermultiplets – grows combinatorially with the growing number of
supersymmetries, N.

In addition, starting with N = 4, there emerges a new possibility – “projections” – of which
more in the next section. May it suffice here to show but one example:

ϕ0000 = (∂τ–2ϕ1111 )

ϕ1100 = ϕ0011

(∂τ–2ϕ1111
2)

ϕ1100

ϕ0000

ϕ0011

2

(10.126)

The dashed double-ended arrows indicate some of the pairs of component fields in the left-
hand supermultiplet that are identified so as to obtain the component fields of the right-hand
supermultiplet. The naming convention of the labeled component fields is explained in the next
section.

It has been proven that the number of such “adinkraic” off-shell supermultiplets grows
fantastically fast with the number of supersymmetries, and one expects about 1047 distinct super-
multiplets for N � 32, which are expected to form about 1012 equivalence classes [141, 142].
Finally, it has been shown that an infinite number of ever larger (and non-adinkraic) super-
multiplets can be constructed as networks of adinkraic supermultiplets, connected by one-way
supersymmetry transformations [284]; this is also the structure of some rather well-known
supermultiplets of simple supersymmetry in 4-dimensional spacetime [190].

— ❦ —

For such a (worldline) supermultiplet to be the 1-dimensional “shadow” of a supermultiplet from a
4-dimensional supersymmetric field theory, it is necesary that both the component fields and the su-
percharge action are compatible with Poincaré symmetry in 4-dimensional spacetime. One expects
this to be a rather nontrivial requirement [197, 157, 158, 191, 283], which should drastically re-
duce the number of possible supermultiplets in higher-dimensional spacetime, but this verification
(dimensional reconstruction) is far from solved in general ☞ ; see Refs. [157, 158, 191, 283, 409].

10.4.2 Supermultiplets and binary encryption
It is fascinating that the classification of off-shell quantum-mechanical supermultiplets [140, 142]
is closely related to the classification of doubly even binary linear block codes, which may be used
in error-detecting and error-correcting encryption [286].
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That is, in the quantum-mechanical N-extended supersymmetry (10.113) we have N real
supercharges QI , so that a supermultiplet may be identified – up to an application of ∂τ- and/or
∂−1
τ -prefactors – with a complete iterative application of all QI ’s upon some starting component

field. The supermultiplet in Example 10.2 on p. 390 may be reconstructed also as{
φ, ψ1 := Q1(φ), ψ2 := Q2(φ), F := Q1

(Q2(φ)
) }

, (10.127)

and the supermultiplet in Example 10.3 on p. 391 as{
ϕ1, χ1 := Q1(ϕ1), χ2 := Q2(ϕ1), ϕ2 := ∂−1

τ

(Q1(Q2(ϕ1)
) }

. (10.128)

As the defining relations of the supersymmetry algebra (10.113) imply that

QIQJ = −QJQI , I �= J, (10.129a)(QI
)2 = H, I = 1, . . . , N, (10.129b)

it follows that every formal Q-monomial can be expressed as a linear combination of H-multiples
of lexicographically ordered monomials from the basis{

Qb := Qb1
1 Qb2

2 · · · QbN
N , bI = 0, 1, I = 1, . . . , N

}
. (10.130)

Evidently, there are ∑N
k=0 (N

k ) = 2N so-ordered Q-monomials and they are unambiguously encoded
by the binary exponents bI , which may be concatenated into a binary number of a formal binary
exponent b. Following the examples (10.127) and (10.128), we define{

φb

ψb

}
:= Qb(φ00···), when |b| :=

N

∑
I=1

bI is
{

even,
odd.

(10.131)

The field identification in the relation between the two Adinkras (10.126) requires the
imposition of the operatorial conditions16

Q1Q2 " +Q3Q4, Q1Q3 " −Q2Q4, Q1Q4 " +Q2Q3, (10.132a)

in addition to the relations (10.113), i.e., (10.129). Indeed, acting (always only from the right!)
by the operators Q1,Q2,Q3 and Q4 on the relations (10.132a) produces

HQ1 " +Q2Q3Q4, HQ2 " −Q1Q3Q4, HQ3 " +Q1Q2Q4, HQ4 " −Q1Q2Q3, (10.132b)

and then, finally, also
(H2 = −h̄2∂2

τ) " −Q1Q2Q3Q4. (10.132c)

This last relation corresponds to the identification of the component fields:(
H2φ0000 = −h̄2(∂2

τφ0000)
)

=
(
−Q1Q2Q3Q4(φ0000) =: −φ1111

)
. (10.133)

Similarly, other relations (10.132) encode all other identifications (10.126), and so also the pro-
jection of the bigger, left-hand side supermultiplet to the smaller, right-hand side supermultiplet.
It is essential to note that the relations (10.132) do not impose any ∂τ-differential equation upon
any of the component fields, and each field – and so the entire supermultiplet – remains off-shell.

16 By operatorial conditions/relations one implies conditions/relations between two operatorial expressions, and which
conditions/relations must hold when the left-hand and the right-hand sides of the equality are applied on any object
upon which the operation of the given operators is defined.
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Digression 10.14 Note that – up to additional H-factors – each of the eight
relations (10.132) may be obtained from any other one. For example,

HQ2 " −Q1Q3Q4
·Q3−−→ HQ2Q3 " −Q1Q3Q4Q3 = +HQ1Q4. (10.134a)

In that sense are the three relations (10.132a) “basic” since all other relations (10.132b)–
(10.132c) follow with no additional H-factors, whereas the converse does not follow.
Jointly, the relations (10.132a) may be written as

QIQJ − 1
2 ε I J

KLQKQL " 0, (10.134b)

which indicates the need for the Levi-Civita symbol ε I JKL, where all four indices have
precisely one of the four possible values – corresponding to the binary number b =
1111 [☞ Ref. [141] for analogous relations that correspond to other codes].

All the relations (10.132), and so also all the identifications (10.126) are almost unambigu-
ously encoded by the binary number b = 1111,17 which generates a so-called “binary doubly
even linear block code” d4 [286], which is also the simplest such code. These codes are used in
binary encryption that helps in communications by enabling the detection of transmission errors
and even some corrections, and without re-transmitting the original message. Once projected, as
in the example (10.126), the smaller supermultiplet may be connected with various “node-height
rearrangements” by applying the formal ∂τ- and ∂−1

τ -prefactors, which then generates all possible
supermultiplets with that chromo-topology [142].

Thus, the classification of off-shell worldline supermultiplets is closely related to the clas-
sification of “binary doubly even linear block codes,” and gives a close relationship between
supersymmetry and encryption – which is a fully unexpected and fascinating result in this research.
Numerically, it is even more fascinating that there are at least ∼1047 such codes for N � 32
(which is a limit suggested by the M-theoretic extension of superstrings), and that they form at
least ∼1012 equivalence classes; moreover, the number of supermultiplets of which the “chromo-
topology” [142] is defined by any one such code itself grows combinatorially with N, which further
increases the “menagerie.”

The construction and classification of off-shell supermultiplets in higher-dimensional space-
times starting from the so far discussed worldline off-shell supermultiplets is in progress [157, 158,
191, 283, 409] ☞ . In addition, other approaches and methods can complement these efforts, even
if in more specific setting (such as for a fixed number of supersymmetries, N): see, for example,
Refs. [281, 292, 47], to begin with.

10.4.3 Exercises for Section 10.4

✎ 10.4.1 Prove that the Lagrangian terms (10.117) and (10.118) are invariant with respect to
the supersymmetry transformations (10.114)–(10.116).

✎ 10.4.2 Derive and solve the equations of motion defined by the Lagrangian density (10.117).

✎ 10.4.3 Complete the Lagrangian term L3 = ω(ϕ1
.
ϕ2−ϕ2

.
ϕ1) + · · · so it is invariant with

respect to the supersymmetry transformations (10.116).

✎ 10.4.4 Derive and solve the equations of motion defined by the Lagrangian density L1 +L3,
as defined in the expression (10.117) and the solutions of Exercise 10.4.3.

17 Except for the choice of the relative sign in equation (10.134b), for cases with a total of N = 4k supersymmetries.





11
Strings: unification of all
foundations of reality
The theory (i.e., theoretical system) of strings was already mentioned in Chapter 1 and Sec-
tion 10.2, and in a very fleeting way also in the historical review in Chapter 2 – which must
be supplemented before we turn to even a non-technical review of the theoretical system as well
as some of the lessons from this research. The historical review will therefore introduce a few new
terms, which will thereafter be clarified in the remainder of this chapter.

By now, there exist complete and pedagogically well organized texts on string theory [225,
224, 417, 483, 434, 124, 594, 398, 298, 46, 312, 251, 510], lecture notes [424, 381, 432, 170,
430], in relation to Yang–Mills gauge theories [439], recent reviews [373] and even popular books
at the “guide for complete idiots” level [375, 358, 299]. This, final chapter – and the entire book –
can then possibly serve only as an aperitif and prerequisite to most of this growing literature.

11.1 Strings: recycling, recycling. . .

Only about four decades old, the string theoretical system is based on the fundamental idea that the
elementary particles – the basic building blocks of Nature and the Democritean ideal indivisibles –
are not point-like. As we have concluded (with the benefit of hindsight!) already in Section 1.3.3,
there exist natural limits to the tininess of elementary objects, and the “material point” is merely
an idealization.1 For students who have successfully completed a course in electrodynamics, it will
be natural to regard these basic building blocks as 1-dimensional elementary objects in the next
order of approximation (multipole expansion). Except, unlike a rigid dipole (rigid bodies being a
non-relativistic idealization), strings are relativistic one-dimensional objects that possess “internal”
dynamics, which essentially stems from their 1-dimensionality. However, these fundamental strings
do not consist of anything “more elementary,” and it is precisely the dynamics of this irreducible

1 As was mentioned in the Preface, what exactly is identified as an elementary object is historically qualified. Chemists
of the nineteenth century had rightly considered atoms as elementary; in the transition into the twentieth century,
electrons and atomic nuclei appeared elementary, but it soon became evident that the nuclei consist of more elementary
nucleons, and up until the last quarter of the twentieth century the list of elementary particles consisted of several
leptons and a combinatorially growing list of hadrons. In the last quarter of the twentieth century, the list of elementary
particles shortened to the compact Table 2.3 on p. 67, to a dozen or so elementary fermions and another dozen or so
mediators of their interactions.
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non-point-likeness that produces the unexpected complexity of the string theoretical system as well
as many other properties with no precedent in the physics of elementary particles.

11.1.1 The original idea and application
The basic ideas (roots) of the string theoretical system date back to 1943, when Werner Heisenberg
introduced the idea of the S-matrix. Namely, Heisenberg noticed that the familiar notions used in
the classical description of physics (space, time, particle, etc.) need not be well defined in quantum
physics, and tried to design a formalism that deals only with observable quantities [☞ quote on
p. xi ].2 By definition, the S-matrix of a physical process maps precisely every incoming state into
every possible outgoing state, and depends only on the positions, momenta, energies, etc., defined
and measured sufficiently far from the location of all interactions. Thus designed, the incoming
and the outgoing states are called asymptotic, and the S-matrix theory is maximally non-local in
the sense that it specifies relations only between events that are sufficiently separated in spacetime.

In the late 1950s and the 1960s, this approach grew into a program, the so-called “S-matrix
theory,” the most notable advocates of which were Stanley Mandelstam and Geoffrey Chew. Hen-
drik Kramers and Ralph Kronig discovered that assuming the S-matrix to be analytic allowed one
to derive dispersion relations, which in turn imply causality between the asymptotic states even
when causality is not microscopically well defined.

String theory – or, more precisely, the “dual resonant model” – was originally invented to
describe hadrons, in the late 1960s. Namely, in collisions at sufficiently high energies, mesons
become spatially elongated, somewhat akin to Figure 1.5 on p. 28, i.e., in display (4.101). In
1968, Gabrielle Veneziano discovered the formula (soon to be dubbed the Veneziano amplitude)
that describes very well the amplitude of the effective cross-section of mesonic A+B → C+D
collisions [☞ [434, Vol. 1] as well as [594]]:

M(pA, pB; pC, pD) ∝
g2

α′ I(s, t), (11.1a)

I(s, t) :=
∫ 1

0
dλ λ−α

′s−2(1−λ)−α
′t−2 =

Γ(−α′s−1)Γ(−α′t−1)
Γ(−α′(s+t)−2)

, (11.1b)

where Γ(z) is the Euler gamma function, and the ratio B(a, b) := Γ(a)Γ(b)
Γ(a+b) that appears in the

Veneziano formula (11.1) is the Euler beta function. The variables s, t, u in the Veneziano ampli-
tude (11.1) are the Mandelstam variables (3.62), which appear in the analysis of the lowest order
Feynman calculus for the process A+B → C+D:

p

p

q

(a)
p

p

:= −q2 = −(p 2
A + p 2

B )

p

p

q′

(b)
p

p

:= −(q′)2 = −(p 2 − p 2)

p

pC

q′′

(c)
p

pD

:= −(q′′)2 = −(p 2 − p 2)

(11.2)

The amplitudes for these sub-processes evidently satisfy the relations

M(a)(pA, pB; pC, pD) = M(b)(pA,−pC;−pB, pD) = M(c)(pA,−pD; pC,−pD). (11.3)

2 One knew that protons and neutrons have finite sizes, about 10−15 m, and that the strength of the interaction between
them at such distance was without precedent. As one after another of the attempts to model this force failed to correctly
account for its peculiarities, Heisenberg believed the properties of space and time to radically change at nuclear and
smaller distances.
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However, for A+B → C+D meson collisions, experiments show that the first two amplitudes
are in fact equal – which agrees with the Veneziano formula (11.1). In other words, the first two
diagrams are only two different depictions of the very same physical process, so that these two
depictions are equivalent, i.e., dual to one another.

Generalizations for amplitudes of collisions where more than four incoming and outgoing
mesons appear were soon discovered by Yoichiro Nambu (1968), Holger Bech Nielsen (1969) and
Leonard Susskind (1969) [549]. All these results indicated that the mediating state that carries the
transfer 4-momenta q, q′ and q′′ in the diagrams (11.2), may be represented as a linear superpo-
sition of infinitely many linear harmonic oscillators (resonances) with masses and frequencies that
were determined by the poles of the Euler gamma function, and which are all integral multiples
of a fundamental mass, i.e., frequency. This property evidently points to the possibility of interpre-
tation of the mediating state as something filamentary, of which these linear harmonic oscillators
are the Fourier modes.

This is where the original identification of mesons with open strings (akin to the letter “I”)
emerges from the so-called “dual resonant model,” where duality refers to the equivalence in the
description of the first two collision processes (11.2) using either one of the two string-diagrams:

pA pB

pC pD

q �
pA pB

pC pD

q′
(11.4)

It is evident that the two surfaces in the Feynman diagrams (11.4) are equal, merely specified in
somewhat different parametrization and with a differing interpretation of the “mediating” state,
here denoted by the gray line. In the model name, “dual resonant model,” the adjective resonant
refers to the infinite sequence of harmonic resonances – the Fourier modes of the mediating state –
whether these are identified with a virtual string that propagates upward (time-like) in the left-
hand diagram, or to the right (space-like) in the right-hand diagram. In this model, each concrete
meson is identified with one of the Fourier modes of the string, whereby the incoming and the
outgoing mesons are also represented as strings, fixed into the configuration of the particular
Fourier mode that corresponds to the given meson.

These diagrams make it evident that strings interact by joining the end-points and splitting
in two, so the two incoming open strings in the left-hand diagram (11.4) join into one, mediating,
which subsequently splits into the two outgoing strings. The dual resonant model (of strings)
was very popular and intensively explored in the period 1968–74, by which time certain essential
properties of this model were discovered:

1. Open strings (akin to the letter “I”) may join into closed strings (akin to the letter “O”), the
Fourier modes of which have no charge and for which the effective cross-section grows with
the energy. In the late 1960s, Vladimir Gribov dubbed this subset of mesons the “pomeron
sector,” after Isaak Pomerančuk, who proved their necessary existence in all string models.3

2. In the pomeron sector, the Veneziano amplitude is fully (s, t, u)-symmetric, so that

M(pA, pB; pC, pD) ∝
g2

α′
[
I(s, t) + I(t, u) + I(u, s)

]
, (11.5)

3 Geoffrey Chew and Steven Frautschi brought many of the results obtained by (then) Soviet Union physicists to the
West within their “democratic” theory, in which “hadrons consist of hadrons” and have no other, “more elementary”
constituent factors and which is sometimes also referred to as the “bootstrap model,” alluding to a story involving Karl
Friedrich Hieronymus, Freiherr von Münchhausen [65]. This reminds us of fractals – an idea that Benoit Mandelbrot
would introduce in mathematics several years later, in 1975.
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which is depicted by the fact that the three string-diagrams for these three sub-processes:

(11.6)

are in fact the same surface, merely differently parametrized.
3. The pomeron sector always contains also a massless spin-2 Fourier mode (this particle was

dubbed the pomeron), whereas such a hadron was never experimentally detected.
4. The consistency of the dynamics of (bosonic) strings, which must move relativistically, re-

quires them to propagate through a flat spacetime of 25 + 1 dimensions. Supersymmetric
strings, which Jean-Loup Gervais and Bunji Sakita discovered in 1971 [551], consistently
propagate through (9 + 1)-dimensional flat spacetime.

5. All string models without supersymmetry contain tachyons, the presence of which in the spec-
trum indicates an instability [☞ Digression 7.1 on p. 261]. Supersymmetry – in any model,
not just string models – precludes the existence of tachyons and so stabilizes the vacuum
(ground state) of the model [☞ Section 10.3.1].

The well-nigh overnight success of the quark model [☞ Sections 2.3.12 and 2.3.13] in 1974
completely suppressed the dual resonant model of hadrons and their depiction as strings, and
string theory became ignored.

In the same year, 1974, Tamiaki Yoneya and independently Joël Scherk and John Schwarz
noticed that string theory can be applied not as a model for hadrons, but as a model of grav-
ity [☞ Footnote 13 on p. 13]. The pomeron (the nonexistent massless spin-2 hadron) was thus
identified with the graviton, and the string tension (T0) and parameter α′ in the Veneziano
formulae (11.1) and (11.5) were now related through the extended equality

α′ =
1

2πT0 h̄ c
=

GN

h̄c5 , (11.7)

with the Newton constant, where the units are

[α′] =
T4

M2L4 = (energy)−2, [T0] =
ML
T2 =

[energy
length

]
. (11.8)

This changes the characteristic length of strings from the characteristic size of hadrons to the
Planck length:

�S :=
√
α′ h̄ c =

√
h̄ c

2πT0
∼ 10−15 m → �S = �P ∼ 10−35 m. (11.9)

This suggestion remained mostly ignored, partly because of the sudden focus on the quark model,
and partly owing to the fantastic requirement that spacetime in string theory would have to have
25+1 dimensions (9+1 with supersymmetry). Scherk and Schwarz supposed that the so-called
(Nordstrøm)–Kałuża–Klein compactified geometry could reduce the effective spacetime dimension
to 3+1.4

4 The idea that space may be more than 3-dimensional, and that the additional dimensions are periodic and with too
small a radius to be detected stems from Gunnar Nordstrøm, in 1914. However, this model was based on his model of
gravity, which differs from the general theory of relativity, and (as determined by 1919) also from Nature. Thus, this
compactification idea was mostly forgotten together with his theory of gravity, until Theodor Kałuża in 1919 and Oscar
Klein in 1926 independently revived it.
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By the early 1980s, relatively few physicists were working on string theory, but even in this
period of relative isolation, several significant results were derived:

1. In 1979, Daniel Friedan proved a fascinating fact about the (1+1)-dimensional field theory
defined on the worldsheet swept out in time by strings. Requiring that quantum corrections
do not renormalize the background metric of the spacetime through which the string prop-
agates reproduces and generalizes the Einstein equations for gravity. That is, the quantum
dynamics of strings implies gravity in the spacetime through which the strings move.

2. In 1981, Alexander Polyakov proved that the Hamilton action

S[X] =
1

4πα′ h̄ c2

∫
Σ

d2ξ gαβ(ξ) (∂αXμ) Gμν(X) (∂βXν) (11.10)

is classically equivalent to the Hamilton action

S[X] = −T0

c

∫
Σ

d2ξ
√
−det

[
(∂αXμ) Gμν(X) (∂βXν)

]
, (11.11)

which Yoichiro Nambu and independently Tetsuo Goto originally formulated as the surface
area of the worldsheet Σ that the string sweeps in spacetime X . Here Xμ(τ, σ) are the coor-
dinates that indicate where in spacetime X is the point ξα = (cτ, σ) of the string worldsheet
Σ. The advantage of the Polyakov theory for the quantum theory of strings is evident: The
quantization of the Hamilton action (11.11) is far more complicated (and without a generally
accepted treatment) than that of the action (11.10). In turn, the geometric interpretation of
equation (11.11) as the surface area of the string’s worldsheet, which the Hamilton’s minimal
action principle minimizes, is retained by the virtue of the fact that the matrix

(X∗G)αβ := (∂αXμ) Gμν(X) (∂βXν) (11.12)

is the metric tensor on the worldsheet, induced (“pulled back”) by the mapping X : Σ → X
from the metric tensor Gμν(X) in spacetime.

3. Michael B. Green and John Schwarz discovered that two string models (II A and II B) are
the T-dual of one another. This “T-duality” and its generalizations later proved to be one of
the most important properties in the string theoretical system, by which all stringy models
essentially differ from all pointillist models.5

4. In 1984, Louis Alvarez-Gaumé and Edward Witten published Ref. [12] (which had in its
preprint form circulated since August 1983) with a detailed analysis of anomalies [☞ Sec-
tion 7.2.3] in interactions with gravity, and with the result that the only models in
(9+1)-dimensional spacetime where these anomalies do not destroy self-consistency are the
string models II A (which is not chiral and so has no anomalies) and II B (where the anomalies
cancel).

11.1.2 The string revolution
In summer of 1984, a preprint by Michael B. Green and John Schwarz started the “first string rev-
olution,” by publishing the proof [223] that Alvarez-Gaumé and Witten had omitted an important
anomaly-cancellation possibility, and then demonstrated a concrete – and unexpected – mechanism
(now called the Green–Schwarz mechanism) whereby anomalies cancel in the particular cases of
SO(32) and E8 × E8 gauge symmetries! (Open strings with SO(32) gauge symmetry were known;
no string model with the E8 × E8 gauge symmetry was then known.)

5 To emphasize the fact that picturing elementary particles as idealized point-particles is but an approximation, in this
chapter I will use the suggestive adjective pointillist.
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Early in 1985, the papers (in circulation since late in 1984) by David J. Gross, Jeffrey
A. Harvey, Emil Martinec and Ryan Rohm [247, 246, 248] were published, wherein the so-
called heterotic string models were constructed: one with SO(32) and another with E8 × E8
gauge symmetry. Only a few months later, Philip Candelas, Gary Horowitz, Andy Strominger
and Edward Witten showed [88], following the just-published work by Candelas with Derek
Reine [90], that the (9 + 1)-dimensional spacetime of the E8 × E8 heterotic string model may
be compactified (à la Nordstrøm–Kałuża–Klein) on a complex Calabi–Yau 3-fold Y ,6 so as to
produce an effective model with E6 × E8 gauge symmetry in (3+1)-dimensional spacetime and
with 1

2χE(Y ) families of left-handed (chiral) fermions in the 27-dimensional representation of
the E6 gauge group! (χE(Y ) is the so-called Euler characteristic of the space Y .) Since E6
contains the SU(5), the SO(10) and the SU(3)c × SU(3)L × SU(3)R grand-unifying groups, it
was clear that there exist string models that can contain the Standard Model of elementary
particles.

Candelas soon showed that the details of the geometry of the complex Calabi–Yau 3-fold used
in the compactification correlate with dynamical parameters in the Standard Model [114], which
indicates that many if not all details of the Standard Model very likely may be derived from details
of the geometry of so-compactified string models. This correlates many (if not all) of the physics
properties of superstring models with the geometry of (generalized) spacetime!

Between spring 1984 and spring 1985, the attitude of most researchers in elementary particle
physics completely changed, from totally ignoring string theory to fully focusing on constructing
and exploring its models, including their compactifications.7

Soon, string models were constructed that at first blush had no geometric interpreta-
tion [377, 378]. Namely, in pointillist models, the configuration space is directly generated from
the spacetime X through which these points move, and the dynamics of these material points
is determined by the familiar geometry of the spacetime X . In string models, the configuration
space has a more complex structure. The Fourier spectrum of strings contains modes that propa-
gate both in one and in the other direction around the closed string, these two classes of modes are
independent and may satisfy different boundary conditions. This not only effectively doubles the
configuration space but also permits constructions that are simply impossible in pointillist theories.
This also requires a generalization of the usual structures in geometry – where the research is still
developing☞ . In 1993 Edward Witten constructed, and Jacques Distler and Shamit Kachru asym-
metrically generalized the first class of models [574, 136] that interpolate between “geometric”
Calabi–Yau models and “non-geometric” Landau–Ginzburg orbifold models first proposed by Cum-
run Vafa. The name of these latter models indeed points to the fact that these are generalizations
of the Landau–Ginzburg model as we have seen in Section 7.1.1. In these interpolating models,
the “geometric” and “non-geometric” constructions appear as different phases of the same physical
system defined on the worldsheet.

11.1.3 The second string revolution
It was already known in 1976 [482] that string models also include p-dimensional hypersurfaces
where the open strings end if they are to satisfy Dirichlet boundary conditions [☞ Digression 11.6
on p. 415]. The integral parameter p = 0 here denotes a point, p = 1 refers to a string (filament),

6 The term “compactification” implies that the spacetime geometry changes X = R1,9 → R1,3 ×Y , where Y is a com-
pact real 6-dimensional space, and R1,3 is the (3+1)-dimensional flat spacetime. Here, Y is a complex 3-dimensional
subspace of some better known space, typically specified by a system of algebraic equations.

7 In April 1983, I was present at a lecture by John Schwarz about strings at ICTP, in Trieste, when no one from the
audience of some 300 or so active researchers in elementary particle physics asked a question after the lecture, except
for Herman Nicolai who hosted the event.
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p = 2 to a membrane, etc. During 1989–95, Joe Polchinski showed that these so-called Dp-branes,8

for consistency, must be treated as independent dynamical objects. They are then as fundamental
as the strings from which one may have started [☞ articles [438, 433] or books [434, vol. 2]
and [298]]. In this nomenclature, in the original model of open bosonic strings with SO(32)
gauge group, the full (25+1)-dimensional spacetime is a D25-brane, and the end-points of the
open strings are restricted to this 25-dimensional space but move freely in it. Many of these various
elementary p-branes are, in the string theoretical system, in fact elementary (extremely charged)
black objects – a realization (recycling [☞ Footnote 13 on p. 13]) of the idea in Digression 9.5 on
p. 340, just not for electrons but for these new, p-dimensional objects. This makes it clear that the
name “string theory,” and even “string theoretical system,” is a misnomer: this theoretical system
must include objects of various dimensions9 [☞ Section 11.4]!

By 1995, Leonard Susskind had included Gerardus ’t Hooft’s holography principle in string
theory, whereby the high-energy excitations of strings coincide with the thermal states of black
holes and by which the fluctuations of the event horizon describe not only the degrees of freedom
of the black hole itself but also of the nearby objects. That same year, Edward Witten showed that
the five basic string models (open, the SO(32) heterotic, the E8 × E8 heterotic, the Type II A and the
Type II B) as well as their various compactifications may be regarded as limiting cases of a more fun-
damental, so-called “M-theory,” which he showed to also have a sixth limiting case, which contains
the (otherwise unique) point-particle supergravity in (10+1)-dimensional spacetime [575].

Digression 11.1 M-theory extended string theory thus incorporates (rather than falsifies
in a Popperian sense) point-particle field theory, and requires it to have the specific sym-
metries and structure of the 11-dimensional supergravity, enriched by including also
specific 5-branes.

The unification of these various models into a theoretical system of strings (by now extended
by various p-branes), i.e., M-theory, around 1995, is regarded as the “second string revolution,”
whereby the revolution of 1984 is in retrospect counted as the first. Some Authors regard the
change of application of string models in 1974 (from hadrons to gravity) as the first revolution, so
their counting is shifted by one from the one used herein.

Following Witten’s implicit “definition” of M-theory, Tom Banks, Willy Fischler, Stephen
Shenker and Leonard Susskind generalized the holography principle to the whole M-theory. Juan
Maldacena then noticed [354] the following sequence of relationships:

1. Low-energy excitations near a black hole are represented by physical objects that are
localized near the event horizon of the black hole.

2. In the case of extremely charged Reissner–Nordstrøm black holes, the event horizon is of
the form AdSd × S9−d, where AdSd denotes the d-dimensional anti de Sitter space (9.81)
and the sphere S9−d carries the flux of some gauge field.

3. This latter configuration may be described by an N = 4 supersymmetric (and conformally
symmetric) version of Yang–Mills field theory [☞ Chapter 6 and 10].

8 The coinage “p-brane” appears in the literature, as a back-formation from membrane, and where the number p denotes
the number of spatial dimensions. Continuing this back-formation, the term “brane” is used even all by itself as a
dimensionally non-specific collective name.

9 This provides an opportunity for a neatly rhyming recap: the theoretical system of strings and things.
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This sequence of relationships was soon generalized, worked out and theoretically confirmed in
detail (by Edward Witten, Steven Gubser, Igor Klebanov and Alexander Polyakov, among oth-
ers [510]), and is today called the AdS/CFT (or, more generally, the gravity/gauge) correspondence
and represents a concrete theoretical realization of the holography principle. In a roundabout way,
the string theoretical system has thus returned to its original application, to the description of
interactions via gauge fields.

On the other hand, soon after Witten’s proposal of M-theory, Cumrun Vafa generalized this
proposal into the so-called F-theory, which indicates the existence of a phase of this united theory
in which the spacetime has 12 dimensions [530] – and for which the effective 12-dimensional field
theory is known only in various (partially) compact variants, and for which it is not determined if
it has 10+2 or 11+1 space+time dimensions (there exist arguments for both cases) ☞ .

11.1.4 The third string revolution
The numerologically inclined Reader must have noticed the approximate cycle of about 11 years
(just like Sun-spots?) between:

1. since 1974: strings are used to describe gravity and not hadrons;
2. since 1985: the five basic string models and their compactifications;
3. since 1995–7: indirect hints of M- and F-theory as the completion of the string theoretical

system, as well as the establishment of the AdS/CFT correspondence.

However, 2007 arrived after an unhurried percolation of several ideas that fused into the picture
of the landscape of string theories and the swamp of other models [☞ the book [505], a partial
critique [152], the works [531, 395], as well as the rest of this chapter for starters]. For some
participants and observers, the shift in understanding the task, the purpose, and even the power of
physics – with the backdrop of this landscape and swamp – represents an anti-catharsis. Namely,
the very idea of the existence of an enormous and connected “web” of all possible string models is
not new,10 and draws its roots from the phase diagrams in grand-unified models [☞ Chapter 8],
which in turn conceptually remind us of the phase diagrams in the physics of bulk materials.

The open question is, however:

1. is there a principle (such as minimization of free energy in statistical mechanics) that singles
out one of all those models – hopefully such that it describes Nature just the way we observe
it?

2. or is this Universe of ours selected by the fact that we – such as we are – could not even exist
in some different Universe; which is the so-called “anthropic principle?”

Some regard the adoption of this anthropic principle as a revolution in understanding Nature, while
others on the opposite end of a continuous palette of opinions regard this as a sign of intellectual
capitulation; yet others regard it as a signal of the hopelessness of “string theory” within the science
of physics [☞ paraphrasing Planck, on p. 124]. And then, there is also the infrequently adopted,
but to my mind important view, best stated by Douglas Adams:

This is rather as if you imagine a puddle waking up one morning and thinking, “This is
an interesting world I find myself in – an interesting hole I find myself in – fits me rather
neatly, doesn’t it? In fact it fits me staggeringly well, must have been made to have me
in it!” This is such a powerful idea that as the sun rises in the sky and the air heats up

10 Early results in this direction [227, 226, 86, 87] came before their time: seven years later, their physics aspects started
clearing in cases with more supersymmetry [22, 23, 24]. Two years after that, the original application of this physical
process was shown to require some “isolated” models [304]; see however also recent works such as Refs. [492, 582,
290, 365] and references therein for some recent developments☞ .
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and as, gradually, the puddle gets smaller and smaller, it’s still frantically hanging on to
the notion that everything’s going to be alright, because this world was meant to have
him in it, was built to have him in it; so the moment he disappears catches him rather
by surprise. I think this may be something we need to be on the watch out for. [6]

Somewhat in response to the realization of this seemingly unprecedented and complex
opulence of the landscape and the swamp,11 and the development in the vantage point (the
ambivalence between the anthropic and the minimizing principle) within the string theoretical
system, and partly also as a reply from the shadow of the fantastic activity around string models,
there emerged critical reviews [490, 577], which are not infrequently kibitzing and criticize even
just the interest in “string theory” since it is “too general to be experimentally falsified” [para-
phrased, T.H.].12 The basis of this critique stems from the fact that the string theoretical system has
an immense (perhaps even infinite-dimensional [453]) continuous parameter space, which makes
it seem impossible to refute, i.e., demonstrate that none of those choices can produce a realistic
theory – or, more precisely, a concrete model that describes the observed Nature.

However, this is a very naive view of both the refutation process, as well as the logical jus-
tification of refuting. For example, the N = 8 supergravity in (3+1)-dimensional spacetime also
contains a continuum of parameter choices, but since the 1980s it has been known with certainty
that all the models within this theory possess the (non-realistic) unbroken parity symmetry; as
of recently, we also know that all these models are most probably non-renormalizable [☞ Defi-
nition 5.1 on p. 211]. In fact, before the Green–Schwarz discovery (in 1984) of the mechanism
of anomaly cancellation that was missed by the otherwise complete analysis of Alvarez-Gaumé
and Witten, it was trusted that the analysis of anomalies offers a systematic characteristic of all
string models (except for Type IIA and Type IIB, which in turn do not contain the Standard Model)
that disqualified them all [☞ Section 11.1.2]. This definitely proves that even infinite-dimensional
collections of models can in principle be ruled out. By virtue of the Green–Schwarz mechanism
of anomaly cancellation in specific cases, the number of possible string models is significantly
restricted.

In turn, even the Standard Model of elementary particles contains a continuum of parametric
possibilities [☞ Chapter 7], and is reliably known to contain neither explanation nor a selection
mechanism from among the possible choices of these parameters. By contrast, the last decade of
research – and the imagery of the landscape and the swamp – indicates that the parameters in the
string theoretical system in fact form a discretuum – a sufficiently dense but countable (and perhaps
even finite) subset of parametric choices that is fixed among others also by a generalization of the
Dirac mutual quantization of the electric and magnetic charges [☞ originally [74] and also the
more recent general review [31]].

More generally and paraphrasing Refs. [505, 531, 395], there exists an immense landscape
of perfectly quantum-consistent string models that contain the characteristics of Nature as we
know it and which we inhabit. It is then believable that amongst those models there exists one that
simultaneously features all of the characteristics of precisely our Nature, and with no “surplus.”

11 In reality, the plethora of theoretical models could always have been seen, but was not since many of the properties
such as the dimension of spacetime or the choice of the gauge groups were taken for granted.

12 For example, Lee Smolin [489, 490] promotes loop (quantum) gravity [☞ below] as competing with strings. Peter
Woit [577] applies Pauli’s denigrating “not even wrong” to “string theory” (which he openly calls a “failure”) and
lobbies theorists to do something else – without himself contributing to any concrete research. Bert Schroer, amid
numerous historical-philosophical essays, lobbies for a very non-standard formalism that also contains a “delocalization”
of point-particles [478, 479, and references quoted therein], which is “mistakenly interpreted as a string” (whatever
that might mean). The critical review of Smolin’s and Woit’s books [490, 577] that Joe Polchinski published in the
bimonthly American Scientist (Jan./Feb. 2007) caused a highly ramified tree of internet blog-debates that are freely
accessible [☞ [436, 491, 429, 435] as well as [576], for starters].
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There also exists a much larger swamp of classical, semi-classical and otherwise partially quantum-
consistent models, which are however not completely quantum-consistent (and do not belong to
the theoretical system of strings with its M- and F-theoretic extensions). The landscape models
emerge from this swamp like islands.

Conclusion 11.1 The (M- and F-theory extended) (super)string theoretical system is the
first one in the history of fundamental physics that can predict a countability – and maybe
even finiteness – of the number of perfectly quantum-consistent models with an adequate
content of matter, broken P- and CP-symmetries, gravity and gauge interactions, and the
first one that still maintains the hope that one of its models faithfully and completely
describes our Nature.

Given the fact that theoretical systems are by construction axiomatic systems that seem complex
enough to be subject to Gödel’s incompleteness theorem [☞ the lexicon entry, in Appendix B.1,
and Appendix B.3], this feature of the string theoretical system is even surprising!

Besides, “string theory” is actually a theoretical system, which is pointless to falsify much
as the theoretical system of classical mechanics is not falsified, nor can it be falsified in the naive
Popperian sense [☞ Digression 1.1 on p. 9, Section 8.3.1 and Digression 11.2 on p. 408]. The
string theoretical system contains models that are very successful in describing various natu-
ral phenomena, amongst which are also some characteristics that previously had been simply
taken for granted [☞ Section 11.2]! Finally, as understood nowadays, the string theoretical sys-
tem [434, Vol. 2, Figure 14.4] contains various (super)string models that are in fact limiting cases
of a more fundamental theory (provisionally identified with the hints of M- or even F-theory)
of which we so far know only what can be discerned from the vantage points of known special
limiting cases. It is simply too early to tell.

11.1.5 Quantum gravity
The string theoretical system is by no means the only attempt at a rigorous definition and con-
struction of both a qualitative and a quantitative description of quantum gravity [367, 322, 291,
495, 310, 67, 465, 342].

Namely, unlike Yang–Mills gauge theories, the (gauge) general theory of relativity is not
renormalizable [217], nor is any field theory that includes gravity.13 The technical part of the
problem indubitably stems from the essentially nonlinear nature of the general theory of relativ-
ity [☞ Chapter 9]. Thus, a “complete theory of quantum gravity” simply (so far) does not exist
(and even less existent is its quantum-consistent unification with the Standard Model). There exist
the following more or less well developed candidates:

1. the (M- and F-theory extended) (super)string theoretical system,
2. loop (quantum) gravity (LQG),
3. various modifications of gravity.

The original idea in the loop (quantum) gravity approach is that the quantization procedure
should be applied starting from a classical Hamilton action for gravity, which is classically equiva-
lent to the Einstein–Hilbert action (9.38), but offers some (technical) advantage in the quantization
procedure. By contrast, the Einstein equations (9.44) and the Einstein–Hilbert action (9.38) are
only approximate results in the string theoretical system [☞ Section 11.1.1].

13 So-called perturbative gravity is an effective description of quantum gravity where the perturbative contributions are sys-
tematically suppressed by powers of ratios of the form E/(MP c2), where E is the characteristic energy of the considered
process. In this formulation, there evidently is no chance of obtaining convergent results when the energy E approaches
MP c2 ∼ 1019GeV/c2, but the description becomes ever better at ever lower energies [343, and the references therein].
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There exist more or less critical and relatively contemporary reviews of these alternative
approaches (2 and 3), and the interested Reader is directed to these resources, e.g., starting
with [11, 386, 385, 467, 466, 468] and the plentiful references in those works.

The alternative approach to quantizing gravity, the so-called loop (quantum) gravity, draws
on the earlier geometrodynamics approach [310] and the use of Abhay Ashtekar’s variables [21].
These were defined (in 1986) as certain contour integrals and so correspond to the (homotopy)
classes of these contours. The practice within this approach regarding the treatment of symmetries
and the subsequent constraints upon quantum states, however, radically differs from canoni-
cal (and so also Dirac, BRST, BV and BVF) quantum treatment of constraints [386, 385, 11],
which is the essential building block element in the whole fundamental physics that led to the
Standard Model, grand-unified models, and also the string theoretical system [☞ texts such
as [554, 555, 484, 496]]. In this respect, it is not clear whether the approach to quantization
in loop (quantum) gravity is in agreement with Nature as canonical quantization is known to be.
Namely, the formalism of loop (quantum) gravity does not seem to detect any of the anomalies,14

so it is not clear how this procedure could possibly be consistent with the Standard Model wherein
anomalies play a crucial role.

However, the very definition (and evident possibility of identifying these contours with
strings) indicates a possible connection between loop (quantum) gravity and string models. At
any rate, however, loop (quantum) gravity for now does not even try seriously to unify gravity
with other interactions and matter, and this approach is in this sense in a very different (and much
more modest) category than the string theoretical system.

In other conceptual approaches, one postulates that on small enough distances either the
Lorentz symmetry is no longer valid [☞ [273] and the recent review [545]], and perhaps
even the space ceases to be a continuous topological space as one otherwise usually regards it
and becomes something akin to foam [☞ Footnote 2 on p. 398], or the law of gravity changes
on cosmic scales [155, and references therein], or some other characteristic of gravity and/or
spacetime varies. In the spacetime foam approach, the macroscopic and well-known character-
istics of spacetime (continuity, smoothness) are simply a result of averaging over an enormous
ensemble of structures that are, each by itself, of a wholly different nature. For astrophysical
considerations that prompt such modifications of the “ΛCDM” (Einstein gravity with a cosmo-
logical constant, Λ, and cold dark matter) model and a review of modified Newtonian dynamics
(MOND) proposals, see recent reviews such as Refs. [180, 498, 156] and references therein.
In loop (quantum) gravity, spacetime also emerges as a dynamical and produced structure: The
space itself is produced from so-called spin networks, which in time sweep out the so-called
spin foam, whereby these two a-priori independent approaches turn out to have a common
point.

Somewhat more recent are approaches wherein gravity emerges from a simpler theory that
included neither general coordinate invariance nor a version of Einstein’s equivalence princi-
ple [486, 315]. It is also possible to apply the gauge principle to different subsets of general
coordinate transformations or treat them in somewhat different ways, and so obtain differently
gauged theories of gravity [451, 276].

Finally, the common characteristic of all these approaches to quantum gravity is that, so far,
no feasible experiment is known that would rule out or confirm any one of them. For example,
the stringy corrections to the Einstein equations are too small to be measurable except in strongly
curved spacetime, as should be the case near a singularity.

14 See Digression 7.2. Also, LQG fails to explain the ultimate fate of the well-known Goroff–Sagnotti two-loop diver-
gence [217] that signals the failure of conventional renormalization within quantum gravity; see also Refs. [386, 385,
11] for a more detailed discussion of shortcomings of the LQG approach.
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11.2 The theoretical system of (super)strings
The subject matter of elementary particle physics had by the end of the twentieth century
grown beyond the usual confines of a physics discipline such as, e.g., atomic physics, molecu-
lar physics or astrophysics. On one hand, the subject matter is not a single, relatively bounded
domain of natural phenomena and structures, but forms a hierarchy of at least two levels of such
structures15 [☞ Table 2.5 on p. 71]:

1. hadron physics,
2. quark–lepton physics,

and a third, essentially different level, temporarily identified as

3. (M- and F-theory extended) (super)string physics, including alternative approaches such as
loop (quantum) gravity, spacetime foam and other modifications of gravity.

On the other hand, (super)string theory is no longer a concrete theory of one concrete (our)
reality, but a theoretical system that we hope will be able to describe our reality also. In the same
sense, nor is classical (non-relativistic and non-quantum) physics a single, particular theory of a
single, particular mechanical system, but a theoretical system applicable to a broad (continuous,
in fact!) spectrum of phenomena, both natural and also completely artificial.16

Digression 11.2 Classical mechanics – as a very well known theoretical system – is
perfectly applicable to force laws: F = αx

√
17, F = βxx/x0 , F = γ

arctan(x/x0)
ln(1+kx) , etc. From

among uncountably many functional forms, our Nature chose F = −kx + O(x3) for
springs, but F = k′

r for gravity. In 3-dimensional space (and with one dimension of time),
Bertrand’s theorem [327, 213] guarantees that only these two force laws provide for sta-
ble orbits, but nothing – within the theoretical system of classical mechanics – prevents
the existence of F ∝ 1

x+x0
springs, or F ∝−r gravity. Yet, no one deems classical mechan-

ics any less “scientific” because of its inability to “predict” the correct force law from first
principles.

Amusingly, extending classical mechanics by including the gauge principle permits
one to derive the ∝ 1/r force law for gravity (in (3 + 1)-dimensional spacetime). Extend-
ing it by including some ideas about elasticity (either by postulate or as derived from the
microscopic structure and interactions within materials) permits one to derive the ∝−x
restoring force law of springs. This supports the expectation that many of the particular
but unexplained characteristics of the Standard Model will be explained by (and derived
from) developments beyond the Standard Model itself.

The next step in the evolution of that theoretical system is provided by the theory of relativity
and quantum theory; the coherent unification (but without gravity, and so without accelera-
tion) is known as quantum field theory. Conceptually, this is a well-defined theoretical system,

15 The delineation of these “levels” is of course practical but artificial; Nature is one. Just as there exist chemical processes
that belong both in organic and in inorganic chemistry, so does the structure of small nuclei (those of deuterium, tritium,
helium,. . . ) belong both in nuclear and in hadron physics, and the structure and dynamics of quark bound states both in
hadron and in “quark–lepton physics.” Finally, the electromagnetic (and also gravitational) interaction of course appears
through all this physics, from microscopic to macroscopic scales.

16 It is not difficult to see that even a small change in the concrete value of some of the natural constants would have
significant repercussions with the end result that such a World would be significantly different from ours – and, thus, very
unnatural. Numerous humorous examples of such ilk form the scientific basis for the popular books for laymen [183].
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in that it is known that all field theory necessary in the Standard Model of elementary particle
physics [☞ Chapters 3–7] is renormalizable and has no anomalies.

The remaining step in this evolution then must include gravity, and for this the (M- and
F-theory extended) (super)string theoretical system is the most successful candidate.

One hopes that the true fundamental Theory of Everything is simply finite, and that no renor-
malization is needed; there do exist indications that this may well be the case with (super)string
models. Finally, string models as a class of theoretical constructions are still the most likely milieu
for approaching the Theory of Everything. It is literally too early to judge, owing to the simple
reason that the class of (M- and F-theory extended) (super)string models is by far not known
sufficiently well [505] – although one knows things about string models that one would not even
have thought of asking of the physics before strings.

11.2.1 General requirements
The basic characteristics of Nature, as uncovered by the physics of the twentieth century, are sum-
marized in Table 11.1. Any theoretical system with the ambition to describe Nature must contain
these characteristics as its integral properties. Alternatively, were we to wish to substitute any of
the listed characteristics with something else, we would have to prove not only that the alternative
equally well generates models of natural phenomena, but also that it fits equally well with all other
characteristics of Nature.

Table 11.1 Characteristics of describing Nature, key properties/purpose and the resulting unifications

Characteristic Universal property Unifies/describes

Quantumness Stabilizes atoms Waves and particles

G
au

g
e

p
ri

n
ci

p
le Special relativity Links symmetries,

conservation laws,
forces/interactions

and geometry

Spacetime, energy–momentum

General relativity Acceleration-gravitation, mass-inertia

Relativity of phases
(of wave-functions)

(Electro-magneto)+weak,
and strong interactions

Supersymmetry∗ Stabilizes vacuum Bosons and fermions
∗ Supersymmetry is the only characteristic listed here that is not yet experimentally verified, but is the only
(known!) universal characteristic of which the consequences include vacuum stabilization.

Conclusion 11.2 Nature is one; the fragments of our description of Nature sooner or later
must fit into a single, coherent and consistent whole.

11.2.2 The spacetime perspective
Start with the simplest example, where an open string moves through flat space. Let σ be a co-
ordinate along the string, so that σ = 0 and σ = �S are the end-points (and σ ∈ [0, 2�S] for a
closed string, where we identify the ends to form a circle of circumference 2�S), and let τ be the
proper time of the string.17 If Xμ are the coordinates in the target spacetime X through which
that string moves, then (X0(τ, σ), X1(τ, σ), . . . , Xn−1(τ, σ)) is the n-plet of coordinate functions that
specify where the point σ on the string, at the proper time τ, is located in the target spacetime X ,
where dim(X ) = n.

17 Since a string is not a point and different parts of the string may move with different velocities, every point on the string
has its own proper time, and we only require that the parametrization of proper time vary continuously from point to
point along the string so that the pair of variables (τ, σ) provides a coordinate system covering the worldsheet swept
out by the string.
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As the proper time τ passes, the string sweeps out the worldsheet on which we may introduce
the general coordinates (ξ0, ξ1). Suppose that the string is at rest so cτ = ξ0 = X0 and that it
extends along the coordinate X1 = ξ1 = σ. Then, the surface of the worldsheet is obtained by
the integral

∫
dX0dX1. In the general case, when the string moves arbitrarily through the target

spacetime, a coordinate change must include all coordinates Xμ as well as the metric tensor of the
target spacetime, and the result is the Nambu–Goto action (11.11).

Geometrically, the n-tuplet of functions Xμ(ξ) provides the mapping X : Σ → X of the
worldsheet Σ (that the string sweeps out in the process of moving) in the target spacetime X , and
the Hamilton action (11.11) characterizes this mapping.

Comment 11.1 To be precise, X(Σ) ⊂ X denotes the image of the worldsheet in the target
spacetime, to be distinguished from the abstract worldsheet Σ. For example, a constant
mapping X produces the image X(Σ) that is a single point in X .

Namely, for every possible image of the worldsheet that connects the string in any given initial
position and the string in any given final position, one can compute the action S[X]. The classi-
cal worldsheet is the one that minimizes the Hamilton functional S[X], and provides a textbook
example of the application of Hamilton’s variation principle [☞ Figure 11.1]. From this vantage

Start

Final

Spacetime

Time

(Σ

Σ

)

Start

Final

μ

Figure 11.1 An image of the worldsheet of an open string in spacetime.

point, of primary importance is the motion of the string from its initial into its final position and
the image of the worldsheet that this string sweeps out in the spacetime X(Σ) ∈ X . The canonical
quantization of the dynamics of this motion – using the Hamiltonian defined originally from the
Nambu–Goto action (11.11) and subsequently from the Polyakov action (11.10) – gave the origi-
nal results such as the critical dimension dim(X ) = 26 for the ordinary string, i.e., dim(X ) = 10
for the supersymmetric string, where the string oscillators are accompanied also by supersymmet-
ric partners. The string end-points (i.e., the “side” edges of the surface X(Σ)) may be assigned
charges. Strings interact by splitting in two and by joining ends [☞ Figure 11.2] – recall that

Time

Start

Final 1 Final 2
Time

Start 1
Start 2

Final

Figure 11.2 String interactions: splitting of one string into two, and joining two strings into one.
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the original inspiration for strings were mesons.18 In mesons, the string end-points are identified
as the locations of the quark and the antiquark that carry charges (isospin, electric charge, . . . ),
while the string itself represents the continuous and two-way flux of the chromodynamic field
that binds the quark and the antiquark. It follows that one end-point of a string may join with
another end-point of that or another string only if all charges on one of the two end-points are of
the opposite type from the charges on the other of the two end-points. Also, when a string splits,
the two newly created end-points must have opposite charges. Thus, open strings with charged
end-points represent the combination (q, q ), where q is the n-dimensional “charge.”19 For either
of the two end-points of one string to be able to join with either of the two end-points of an-
other, their interactions must be governed by the group SO(n); quantum consistence then requires
n = 32 [225].

Time

(a)
A

Interaction: the worldline
bifurcates at a
Lorentz-invariantly
specified place

B C

(b)
A

Interaction: the worldsheet is
everywhere smooth

B C

Figure 11.3 The A → B + C decay in the pointillist description (a), and in the stringy description (b).

The conceptual difference between pointillist and stringy descriptions of a simple process,
e.g., the decay of a particle (3.130) A → B+C, may be seen in Figure 11.3, for an example
with a closed string. In the case of the interaction of open strings [☞ illustrations (11.4)], in
certain subsets of coordinate systems there still exist special points at the edge of the string’s
worldsheet [☞ the cusp-like edge-points of the surfaces in the illustrations (11.4)]. However, it
may be shown that this worldsheet parametrization is, via a conformal mapping, equivalent to
another, where these particular points are not singled out.

Since the parametrization of the worldsheet that connects the starting and the final positions
of the strings in any process cannot even in principle be measured, the measurable quantities in
the stringy description must be averaged over all possible parametrizations. In doing so, not only
do we have to average over all parametrizations of a fixed abstractly specified worldsheet that
connects the starting with the final positions of the strings, but we must average also over all
possible worldsheets that satisfy those boundary conditions. The decay process A → B + C is thus
described by Feynman diagrams such as in Figure 11.3 only in the lowest approximation. The next
approximation requires adding the probability amplitudes depicted by the Feynman diagrams such
as in Figure 11.4. In the pointillist description of elementary particles, the two Feynman diagrams
contribute differently and separately – and in fact contribute to the renormalization of different
physical quantities. In the stringy variant the contributions of the two Feynman diagrams are equal,
since the worldsheets of those diagrams are equivalent: one of these worldsheets may be mapped
into the other by means of a continuous deformation.

18 It is certainly not clear how to represent baryons in this naive picture, which is the additional reason for neglecting
strings as a model for hadrons.

19 In the sense that the electric charge is a 1-dimensional charge, isospin is a 2-dimensional charge, color is a 3-dimensional
charge, etc.
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(a)

�=

(b)

=

Figure 11.4 Feynman diagrams for first-order corrections to the A → B + C decay, in the pointillist
description (a), and in the stringy description (b).

This engenders the intuitive impression that the string theoretical system is much better
defined in the technical sense, and that the renormalization process may in fact not even be
necessary.

11.2.3 The worldsheet perspective

The geometrical difference between the pointillist and the stringy depiction of physical pro-
cesses [☞ Figures 11.3–11.4 on pp. 411–412] as well as the form of the action (11.10) points to an
alternative perspective: the Hamilton action (11.10) evidently can be interpreted as an action for
a physical system that “lives” in the (1+1)-dimensional spacetime of the abstract worldsheet of the
string. The function Xμ(ξ) is here simply the μth field that is a scalar with respect to the (1+1)-
dimensional Lorentz symmetry transformations. From this perspective, the (1+1)-dimensional
worldsheet spacetime Σ is the fundamental spacetime, in which the geometry is specified by the
metric tensor gαβ(ξ). The spacetime X is here simply the (abstract) target space in which the
fields Xμ(ξ) take values and in which the metric tensor Gμν(X) specifies how to compute the
kinetic Lagrangian term for the 26-ple of fields (X0, . . . , X25).

From the worldsheet perspective, the choice X = R1,25 simply produces a model with 26
scalar (coordinate) fields, subject to the Polyakov action

S[X ; ημν] =
1

4πα′ h̄ c2

∫
Σ

d2ξ gαβ(ξ) ημν (∂αXμ)(∂βXν)

=
1

4πα′ h̄ c2

∫
Σ

d2ξ gαβ(ξ)
[
(∂αX0)(∂βX0) −

25

∑
i=1

(∂αXi)(∂βXi)
]
,

(11.13)

where we note that the contributions of 25 scalar functions X1, . . . , X25 have the “wrong” sign of
this generalized “kinetic” term,20 which is specified by the choice of parameters:[

Gμν(X)
]

from (11.10)
�−→ [

ημν
]

= diag[1,−1, . . . ,−1], μ, ν = 0, . . . , 25, (11.14)

which in the target space X = R1,25 represents the metric tensor.

20 The sign of the whole Hamilton action depends on the choice of whether the metric tensor gαβ(ξ) on the worldsheet
follows the “particle” or “relativist” convention – compare Chapters 3 and 9 – which is not essential here. The relative
negative sign in the Lagrangian density (11.13), however, is essential and follows from the choice of the signature of the
metric tensor Gμν(X) in the target space X .
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Digression 11.3 In the familiar application of field theory in elementary particle physics
in (3+1)-dimensional spacetime, the fields in the Lagrangian densities such as (5.118),
(6.23) and (7.78) represent quarks, leptons, gauge and Higgs fields. Each of these (clas-
sical!) fields takes values in a corresponding number of copies of the real or complex
space, R or C. The geometry – and topology – of these “target” spaces is trivial: they
are contractible; they can be continuously contracted (by scaling) to a point, and so also
contain no subspace that could not be continuously contracted to a point.

Digression 11.4 The essential reason for the existence of a critical dimension is precisely
the non-point-like nature of strings. Owing to their spatial extension, each string it-
self has an infinite sequence of harmonic resonances, each of which contributes to the
Hamiltonian. Each of the infinitely many such quantum oscillators contributes a non-
vanishing “zero energy” [☞ the constant term in equation (10.2a)], making a formally
divergent sum – but one that may be unambiguously assigned a unique, finite and def-
inite value [259]. These contributions to the Hamiltonian are offset by the freedom
of general coordinate transformations [☞ Definition 9.1 on p. 319] on the worldsheet,
ξα(τ, σ) → ζα(ξ(τ, σ)). For the ground state and the observables of a quantum theory
of strings to be well defined, the net “zero energy” must in fact vanish. This cancella-
tion limits the ways in which the string can oscillate, and thereby the structure of the
(generalized) spacetime probed/spanned by those oscillations [224, 434, 594, 46, 312].

In particular, the types of oscillation possible in flat spacetime limits this spacetime
to have the “critical” 25+1 dimensions. Including fermionic and other types of oscillators
reduces the critical dimension of the spacetime at the expense of adding structure to it.
In particular, to reduce the critical dimension of this flat “target” spacetime to 9+1, one
may include oscillators that generate N = 1 supersymmetry and either E8 × E8 or SO(32)
gauge symmetry, or one may include oscillators that generate N = 2 supersymmetry in
the (9+1)-dimensional spacetime.

Herein, we cannot delve into the details of such computations as existing texts
do [225, 224, 434, 594, 46, 312]. Suffice it here to mention that Polchinski [434]
demonstrates the existence and computes the value of the critical dimension in seven
different ways; one of these is detailed accessibly by Zwiebach [594], another by Kir-
itsis [312]. In turn, it seems that the quantization approach in loop (quantum) gravity
does not identify the anomalies of which the cancellation produces the critical dimen-
sion [386, 385], whereby the results of this quantization approach do not agree with the
results of standard methods.

Amusingly, the shift in perspective, from spacetime to the worldsheet, provided inspiration to
explore the analogous shift in perspective in pointillist models: from spacetime to the worldline.
Evidently, instead of a field theory in (1+1)-dimensional worldsheet spacetime, here we have a
field theory in (0+1)-dimensional time – i.e., ordinary mechanics!

Indeed, this formalism is much better understood, and the analysis ought in fact to be simpler!
However, even a swift glance at the Feynman diagrams in the left-hand side of Figures 11.3 on
p. 411 and 11.4 on p. 412 indicate serious difficulties: The worldline on which one is to construct
the (quantum and relativistic) mechanical model bifurcates and so is not a Hausdorff space! In
the so-designed model, one would have to define functions such as scalar fields Xμ(ξ) in the



414 Strings: unification of all foundations of reality

expression (11.13), but now as functions of one argument, Xμ(τ). Here, τ stands for the proper
time τ, which is however not even unambiguously defined: its domain space – the worldline – is
in fact not a simple line. Also, at the bifurcation points even the first derivatives with respect to
the variable τ (necessary in Lagrangian dynamics) are multi-valued, and already the set-up of this
approach indicates serious technical difficulties.

On the other hand, the worldsheet swept out by interacting strings is everywhere smooth
(and so also all the worldsheet derivatives, not just ∂αXμ(ξ) needed in Lagrangian dynamics)
and each Hamilton action such as (11.10) is perfectly well defined – even with arbitrarily many
“handles” (the right-hand diagrams in Figure 11.4 on p. 412, both have one “handle”), i.e., even
for an arbitrarily high order contribution in the stringy version of the usual Feynman perturbation
theory.

Digression 11.5 The shift in perspective – from spacetime, understanding this to be the
“real” spacetime in which we live,21 into the worldsheet spacetime – inexorably leads to
the question: “Can the spacetime dimension, n = dim(X ), be something other than
n = 4?” In all of the “pre-stringy” development of fundamental physics through the Stan-
dard Model and beyond [☞ Chapter 8], the “obvious” dimension of spacetime, 3 + 1,
was taken for granted. The Nordstrøm–Kałuża–Klein model (in 1914, and 1919–26) was
a small exception to this fact, but one that was forgotten owing to its initial lack of success
in unifying gravity and electromagnetism – which solidified the opinion (prejudice?) that
the 4-dimensionality and even uniqueness of spacetime were obvious. Also, all particle
research implicitly assumed spacetime to be flat, open and infinitely large, X = R1,3.
Nontrivial geometries [☞ Chapter 9] had occupied the attention of the separate team of
researchers, mostly “relativists,” who for the most part did not follow the contemporary
developments in elementary particle physics; in turn, neither did “particle physicists” fol-
low the contemporary developments in the research of nontrivial solutions in the general
theory of relativity.

The stringy shift in perspective irrevocably erased that chasm.

There is another property of the string theoretical model that is easiest to see from this
perspective. Consider the Hamilton action (11.13) and simplify it by choosing coordinates ξ0 = τ

and ξ1 = σ, so that (gαβ) =
[

c2 0
0 −1

]
; to describe a closed string, take the coordinate σ to be

periodic σ " σ+ 2πR. Varying the action (11.13) then produces the equations of motion

∂+∂−Xμ = 0, μ = 0, . . . , 25, ∂± := 1
2

[
∂
∂σ ± 1

c
∂
∂τ

]
, (11.15)

the general solutions of which are

Xμ(τ, σ) = Xμ
L (σ+) + Xμ

R (σ−), ∂+Xμ
R (σ−) = 0 = ∂−Xμ

L (σ+), σ± := (cτ±σ). (11.16)

That is, the general solution of the D’Alembert equation in (1+1)-dimensional spacetime is a linear
combination of two arbitrary functions, Xμ

L and Xμ
R , each of which depends however only on one

variable, σ+ and σ−, respectively. Since Xμ
L (σ+) remains constant when after the time �τ > 0

21 This manifest subjectivity is the first indication that the (3+1)-dimensional spacetime in which we live is neither the
only one nor is it uniquely defined in physics models. Namely, this “real” or “true” spacetime is no more “real” than the
(1+1)-dimensional spacetime of the string worldsheet, or even the 1-dimensional worldline that a point-particle sweeps
out as time passes. The spacetime in which objects (particles, strings, . . . ) move is typically called the target spacetime,
in the sense of the mapping depicted in Figure 11.1 on p. 410, and as will become clearer in Section 11.2.4.
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the σ coordinate shifts to the left (�σ = −c�τ < 0), the function Xμ
L (σ+) “moves” to the left;

analogously, the function Xμ
R (σ−) “moves” to the right.

It is of paramount importance that the Lorentz group Spin(1, 1) in (1+1)-dimensional space-
time is abelian (commutative), whereby all irreducible representations are 1-dimensional. It is not
hard to show that the Lorentz group does not mix Xμ

L (σ+) and Xμ
L (σ−). The only linear trans-

formation that swaps Xμ
L (σ+) ↔ Xμ

L (σ−) is the discrete transformation of parity, P : σ+ ↔ σ−.
Thus, every string model automatically has for every scalar field Xμ(ξ) two independent functions
Xμ

L (σ+) and Xμ
L (σ−), which may well be treated completely independently. The generalization of

this phenomenon to worldsheets with arbitrary metric is only technically more complex, but con-
ceptually remains the same, precisely owing to the signature and commutativity of the Lorentz
group on the string worldsheet.

This type of “doubling” of degrees of freedom evidently does not exist in pointillist models.
In turn, in models where the material points are replaced by p-dimensional objects with p > 1, the
Lorentz group on the world-“(p+1)-volume,” Spin(1, p), for p > 1 is no longer abelian (commuta-
tive), and there is no Lorentz-invariant separation of the fields Xμ into two or more independent
functions. The separation of fields on the string worldsheet into left- and right-moving functions
is therefore a unique phenomenon in string models, and ensures the uniqueness of some of the
features in string models.

Digression 11.6 The combination of these two perspectives may even offer a useful
insight into a phenomenon that is harder to understand from either one of the two
perspectives.

Let Xμ̂(τ, σ) be the μ̂th string coordinate for some fixed μ̂; as a function of the
string proper time, τ, and coordinate σ along the string, the function Xμ̂(τ, σ) has the
classical equation of motion (11.15) and one may consider two basic types of boundary
conditions in the spatial coordinate σ:

Dirichlet condition Xμ̂(τ, 0) = xμ̂0 , Xμ̂(τ, �S) = xμ̂1 , (11.17a)

von Neumann condition ∂σXμ̂(τ, 0) = ′
xμ̂0 , ∂σXμ̂(τ, �S) = ′

xμ̂1 , (11.17b)

where xμ̂0 and xμ̂1 are constant positions along the μ̂-axis, and
′
xμ̂0 and

′
xμ̂1 are dimensionless

constants. The von Neumann condition at either end of the string imposes no restriction
on either the position of that end-point or the velocity of its motion. Thus, string end-
points with von Neumann conditions are simply free. However, imposing the Dirichlet
condition to an end of a string fixes the target space position of that end, at the location
xμ̂0 , i.e., xμ̂1 .

So, if a certain string is to satisfy the boundary conditions, say,

von Neumann ∂σXμ(τ, 0) = 0, ∂σXμ(τ, �S) = 0, μ = 0, . . . , 9, (11.17c)

Dirichlet Xμ(τ, 0) = 0, Xμ(τ, �S) = L, μ = 10, . . . , 25, (11.17d)

the σ = 0 and σ = �S ends of that string are trapped on the (9 + 1)-dimensional co-
ordinate hypersurfaces specified, respectively, by the conditions xμ0 = 0 and xμ1 = L
for μ = 10, . . . , 25. These two (9 + 1)-dimensional spacetime hypersurfaces are two
D9-branes (each with 9 space-like and 1 time-like dimension).

The existence of such p-dimensional (0 � p � 25) objects – called “Dp-branes” –
in string theory was already known in 1976 [482]; their dynamics was explored and
emphasized only much later [434, 433, 438, 298].
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11.2.4 Of models, again
It will be useful to reflect on the importance of the shift in perspective from Section 11.2.2 to
Section 11.2.3. Note the common denominator in both perspectives – and with the benefit of
hindsight we see that this is the case also in all theoretical systems of contemporary physics – the
fact that scientific models have the following canonical geometrical content:

Procedure 11.1 Theoretical models in general are constructed by specifying the following
structural elements [☞ also the Procedure 5.1 on p. 193]:

1. A domain space, D, with local coordinates ξ.
2. A target space, T.
3. Maps ϕ : D → T, values of which serve as local coordinates in T. In physics

parlance, ϕ represents the generalized coordinates, i.e., the fields of the model.
4. The dynamical functional S[ϕ; C] =

∫
D L (ϕ,

.
ϕ, . . . ; C) and boundary conditions,

where C denote auxiliary parameters that specify the model.
5. Probing currents/sources ϑ, which are fields over the domain space D, chosen so

that
∫
D ϑ·ϕ is invariant under the action of all symmetries and general coordinate

transformations [☞ Definition 9.1 on p. 319] in the model.

The classical version of the so-specified model is immediate: varying the action S[ϕ; C]
produces the equations of motion, to which one must find solutions that satisfy the given
initial/boundary conditions.

Instead of a formal proof of the identifications made in Procedure 11.1, suffice it here to consider
the following examples:

Example 11.1 Non-relativistic classical mechanics of a massive point-particle
The domain space is D = R1 (time), the target space is T = R3 (space),

S[�r] =
∫

dt L(�r,
.
�r, . . . ), L(�r,

.
�r, . . . ) = m

2

.
�r 2 − V(�r), (11.18)

where V(�r) is the potential energy and �r(t) the mapping �r : (D = R1) → (T = R3).
Choosing the coordinates�r = ξ iêi, Hamilton’s variational principle produces the Euler–
Lagrange equations of motion

∞

∑
k=0

(−1)k dk

dtk

[
∂L

∂
( dkξ i

dtk

)] = 0, (11.19)

which are to be solved subject to the boundary conditions for the classical solution.
Relativistic theory is conceptually the same, but with L = −mc2

√
1 − �v 2

c2 − V(�r).

Example 11.2 Non-relativistic classical mechanics of n massive point-particles
The domain space is D = R1 (time), the target spaces is T = R3n = ⊕n

a=1(R3)i,

S[�ra] =
∫

dt L(�ra,
.
�ra, . . . ), L(�ra,

.
�ra, . . . ) = 1

2

n

∑
a=1

ma
.
�r 2

a − V(�r1, · · · ,�rn), (11.20)

where the n-tuple of 3-vectors {�ra(t), a = 1, . . . , n} is the mapping �ra : (D = R1) →
(T = R3n). Choosing the coordinates�ra = ξ i

aêi, Hamilton’s variational principle produces
the Euler–Lagrange equations of motion
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∞

∑
k=0

(−1)k dk

dtk

[
∂L

∂
( dkξ i

a
dtk

)] = 0, a = 1, . . . , n, (11.21)

which are to be solved subject to the boundary conditions for the classical solution.

Example 11.3 Classical electromagnetic field without free charges and currents
The domain space is D = R1,3 (the (3+1)-dimensional spacetime), the target space is
now the quotient space [☞ Appendix A.1.1] T = (R1,3/R1,1) ∼= R0,2 (the physical po-
larizations of all gauge fields are 4-vector potentials modulo gauge transformations),

S[Aμ] =
∫

d4x L ((∂μAν), . . . ), L ((∂μAν), . . . ) = − 4πε0
4 FμνFμν, (11.22)

where Fμν := (∂μAν − ∂νAμ), and the 4-vector Aμ is the function that maps A : R1,3 →
R1,3, but owing to gauge invariance all four components A0, . . . , A3 are not independent.
Imposing the Lorenz and the Coulomb gauge [☞ discussion about equation (5.91)] the
temporal and longitudinal component are eliminated, which leaves the 2-dimensional
space R0,2. Hamilton’s variational principle produces the Euler–Lagrange equations of
motion

∂L
∂Aμ

− ∂ν
∂L

∂(∂νAμ)
+ ∂ν∂ρ

∂L
∂(∂ν∂ρAμ)

− · · · = 0, (11.23)

which are to be solved subject to the boundary conditions for the classical solution.

Example 11.4 Classical electromagnetic field with free charges and currents
The previous example is easily modified by adding the “probing currents/sources.” These
are – reading off from the Lagrangian density (5.22) – simply the probing/test electric
charge density and current density, ρ,�j. These should be distinguished from any charge
and current density that are provided so as to produce a particular desired field. Notice
that the gauge transformations (5.14a) change

(ρΦ −�j·�A) → ρΦ − ρ
.
λ−�j·�A −�j·�∇λ = (ρΦ −�j·�A) − (�j·�∇λ+ ρ

.
λ).

(11.24)

Under the spacetime integral, partial integrations yields

δgauge

∫
d4x (ρΦ −�j·�A) =

∫
d4x (�∇·�j+ .

ρ) λ−
∫

dt
∮

S2
∞

d2�r (�∇·�j λ) −
∫

d3�r
[
ρ λ

]t=+∞
t=−∞.

(11.25)

The requirement that (ρΦ −�j·�A) remain gauge-invariant for all arbitrary gauge param-
eter functions λ(x) imposes the conditions on the probing charge and current densities:
(1) they must vanish sufficiently fast at the boundary of the spacetime domain (�j at spa-
tial infinity, ρ at time-like infinity) for the first integral to vanish after the application of
Gauss’s theorem, and (2) they must satisfy the continuity equation,

.
ρ = −�∇·�j.
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The quantum version of the model described in Procedure 11.1 may be obtained – among a
historical sequence of various approaches that conceptually follow the so-called canonical quanti-
zation22 – using the Feynman–Hibbs path-integral formalism. A proper and detailed introduction
to the path-integral formalism and its applications is best deferred to the texts on the sub-
ject [459, 537, 509, 165, 123, 316, 277]. Suffice it here to provide a heuristic motivation, based
on Feynman’s original intuitive imagery of summing over all possible histories of a system and
extending the analysis familiar from quantum mechanics.

Source
Glint

Source
Glint

Source
Glint

Figure 11.5 Three progressively more complicated double-slit experiments: Left, with two options,
passing either through one or the other slit; middle with 22 = 4 options; right, with 23 = 8 options.

Consider the standard two-slit experiment, where a quantum particle is emitted from one
side of the two-slitted screen and is then detected on the other side, at a specific location on a
scintillating screen, as shown on the left-hand side of Figure 11.5. This arrangement is discussed
in most texts of quantum mechanics, and the intensity of the glint on the scintillating screen
is determined by computing the interference between the particle/wave traveling along the two
distinct types of paths, one passing through the top slit, the other through the bottom one. The
middle arrangement, with two consecutive two-slit experiments offers 22 = 4 options: top–top,
top–bottom, bottom–top and bottom–bottom. The right-most arrangement offers 23 = 8 options,
and so on. With n consecutive screens, each with p slits, there are pn options for the particle
passing through them, and the intensity of the glint on the scintillating screen is determined by the
interference of the particle/wave traveling along all possible paths.

By letting both the number of screens and the number of slits in them grow infinitely, the
collection of possible paths grows to include all possible paths that start at the source and end
at the glint.23 This is precisely as if there were no screens at all, but we expressly avoid presup-
posing which way a particle/wave moves from one point to the next. That in turn is precisely
the situation with quantum physics, where we expressly avoid relying on classical equations
of motion to determine the path of a particle between the only two points where it has been
observed!

The intensity of the glint is thus determined by the total interference of the particle/wave
traveling along each one from the ensemble of all possible paths from the source to the glint. Along
each path, one should calculate the net phase of the particle/wave, as the difference between them
determines the result of interference between particles/waves arriving along any two of the paths.
This is effectively accomplished by summing phase factors ei phase over the ensemble of all possible
paths. Feynman and Hibbs proved [165] that (1) this reasoning can be extended to all models of
quantum physics, and (2) the correct phase-factor is in fact exp{−iS[ϕ; C]/h̄}, with S[ϕ; C] the
classical action for the system considered, as in Procedure 11.1.

22 The contemporary BRST- and ZJBV-quantization in the Lagrangian formalism and the BFV-quantization in the Hamilto-
nian formalism are direct and universal generalizations of canonical quantization (as it is traditionally called), and are
thus just as canonical. See Ref. [554] for pre-BRST methods, and [268, 555, 484, 496, 589, 590] for contemporary
treatments.

23 In fact, there is no a-priori reason to exclude back-tracking paths either.
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With the data provided in Procedure 11.1, one then defines the partition functional

Z[ϑ; C] :=
∫

D[ϕ] e−
i
h̄ (S[ϕ;C]+

∫
d4x ϑ·ϕ), (11.26)

where
∫

D[ϕ] is the functional integral summing over all (independent and unconstrained, i.e., free
and certainly off-shell) fields ϕ. This quantity turns out to be a generating function for so-called
n-point correlation functions [459, 165, 123, 316, 277]

G(ξ1, ξ2, . . . ) :=
〈
ϕ(ξ1) ϕ(ξ2) · · · 〉 (11.27)

=
1

Z[ϑ; C]

[ δ

δϑ(ξ1)

δ

δϑ(ξ2)
· · · Z[ϑ; C]

]∣∣
ϑ→0′ , (11.28)

which produce the probability amplitude for the correlation of perturbations in the field ϕ at the n
points in the domain space, ξi ∈ D. They generalize the (2-point) Green function. From (11.26),
one can also easily define the so-called effective action

Seff.[ϕ∗; C′] := ih̄ log
( ∫

D[ϕ] e−
i
h̄ S[(ϕ∗+ϕ);C]

)
. (11.29)

The fields ϕ∗ are called “background,” and provide the interpretation of ϕ as the (quantum) fluc-
tuations around this background. The effective action Seff.[ϕ∗; C′] may well be used as if a classical
action, producing equations of motion for the background fields, ϕ∗. However, owing to the in-
tegration over all “fluctuations” in the right-hand side of the definition (11.29), Seff. effectively
includes quantum corrections.

The concrete and technically precise use of the general framework based on (11.26)–(11.29)
requires the expanse afforded by quantum field theory texts such as Refs. [459, 165, 123, 316,
277], but the above intuitive motivation, formal definitions and concepts still permit making two
key observations. First, note that the definition in no way guarantees that Seff.[ϕ∗; C′] would even
resemble the original action S[ϕ; C′]. We thus revisit Definition 5.1 on p. 211 and make it more
precise:

Definition 11.1 A quantum system is renormalizable if the effective action, Seff.[ϕ∗; C′],
has the same functional form and dependence of its parameters as the original action,
S[ϕ; C], and where the formal transformation S[ϕ; C] → Seff.[ϕ∗; C′] is fully described by
the renormalization of the system parameters, C → C′.

Second, we note that the quantities such as (11.26), (11.28) and (11.29) are in practice
most often calculated perturbatively, and individual contributions turn out to be calculable using
Feynman diagrams – the same tools we have seen in Sections 3.3, 5.3–5.4 and 6.2. It turns out
that the partition functional Z[ϑ; C] receives contributions from all possible Feynman diagrams,
whereas the effective action Seff.[ϕ∗; C′] receives contributions only from the connected diagrams.
That is, contributions to the effective action are those of the partition functional, however with the
contributions from disconnected Feynman diagrams subtracted [425, 586]. Both formally and in
their physical meaning, these subtractions depicted by disconnected Feynman diagrams generalize
the “excisions” that appear in the quantum-mechanical perturbative calculations (3.93)–(3.102).

— ❦ —

The space of all mappings TD := {D → T} over which the integral (11.26) is to be computed – in
the general case – is not the same as the configuration space. Namely, a concrete physical system
is very often limited by constraints, χ(ϕ) = 0, which “restrict” the mappings. The integral (11.26)
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is defined over free mappings, and constraints are to be included into the dynamics by means of
Lagrange multipliers S[ϕ; C] → S[ϕ; C] +

∫
D Λ·χ(ϕ), so that varying the Lagrange multipliers Λ

imposes the constraints χ(ϕ) = 0. Among other cases, every symmetry of a system is a constraint
since the symmetry transformation, S, does not change the physical state |Ψ〉, whereby it is always
true that

S|Ψ〉 = |Ψ〉 i.e., χa|Ψ〉 = 0, where χa := −i
∂S

∂εa

∣∣∣
ε=0

and S = e iεaχa , (11.30)

and where εa denotes the ath symmetry transformation parameter.

Digression 11.7 In 1950–1, P. A. M. Dirac showed [132, 133] that it is essential to en-
sure that the dynamics of the system (in the Hamiltonian formalism, generated by the
Hamiltonian) preserves the constraints χi. In classical physics, this means that all Pois-
son brackets {χi,χj} and {H,χi} must automatically equal a linear combination of the
constraints, and the model is consistent only if this can be achieved by a combination of:

1. extending the collection of all constraints, {χ1,χ2, . . . },
2. redefining the Poisson brackets (into Dirac brackets),

whereby the (redefined or not) brackets must satisfy the Jacobi identity (6.18).
In quantum physics, the analogous situation must hold for commutators, i.e., an-

ticommutators between spinor operators, including the generalization of the Jacobi
identities (10.37). So far, the most general known procedures that ensure this are the
Zinn–Justin–Batalin–Vilkovisky (BV) quantization [40, 41, 555, 484] in the Lagrangian
formalism, and the Batalin–Fradkin–Vilkovisky (BFV) quantization [174, 39, 172, 36] in
the Hamiltonian formalism.

Considerations and statements such as these, in this section and also in Sections 8.1.1
and 8.3, actually are not themselves part of physics (the subject matter of which is Nature), but of
a discipline the subject matter of which is the scientific discipline “physics” and its structure. In the
analogous situation, the discipline of which the subject matter is mathematics is called metamath-
ematics [314]. Analogously, the discipline of which the subject matter is physics should be called
metaphysics, but this name is already the standard moniker for a branch of philosophy concerned
with the nature of existence and of the world.

As this discipline (about the formal structure of physics) is by its nature (just as in the descrip-
tion of the Procedure 11.1 and in Appendix B.3) rather mathematical, perhaps metamatephysics
would not be too inappropriate?

11.2.5 Reconstructing the spacetime perspective
The shift in perspective from the spacetime (in Section 11.2.2) to the worldsheet (in Sec-
tion 11.2.3) of course has its inverse process that reconstructs the effective spacetime field theory
from the original worldsheet field theory.

Namely, the worldsheet Hamilton action and partition functional

S[X; Gμν, . . . ] =
∫
Σ

L (Xμ, (∂αXμ), . . . ; Gμν, . . .︸ ︷︷ ︸
parameters

),

Z[Y; G] =
∫

D[X ] e
i
h̄ S[X;Gμν ,... ]+

∫
Σ Y·X ,

(11.31)
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where the parameters specify the concrete model in question. In the concrete actions (11.13)
and (11.31), for example, there appears the metric tensor[

Gμν(X)
]

from (11.10)
�−→ [

ημν
]

= diag(1,−1, . . . ,−1), μ, ν = 0, . . . , 25. (11.32)

Using the partition functional Z[Y; G], we may compute how quantum fluctuations alter these
specified parameters, and in 1979, Daniel Friedan showed that the condition – that these quantum
fluctuations do not alter the chosen metric tensor – reproduces (at the lowest order in perturbative
computations) the Einstein equations for the given metric tensor.

Similar results hold for all parameters in the Hamilton action (11.31): the condition for quan-
tum stability of every parameter is an equation that in the lowest order of perturbative computation
looks like a classical equation of motion for the physical quantity represented by this parameter.
Thus, quantum stability of models defined on the worldsheet Σ defines the effective field theory
in the spacetime X , such that the classical equations of motion equal the condition for quantum
stability of the original worldsheet model. Let {φa " δGμν, . . . } be the collection of all parameter
fluctuations in the Hamilton action (11.31).24

Next, construct a Hamilton action (of the second level):∫
X

L (φ, (∂μφ), . . . ;Gab, . . . ), L = Gab Gμν (∂μφa)(∂νφb) + · · · , (11.33)

where Gab (and similar) parameters in the Lagrangian density (11.34) are chosen so that the classi-
cal equations of motion for the φa " δGμν, . . . variations of the parameters in the Hamilton action
of the first level precisely produce the conditions for the quantum stability of the model (11.31).

Of course, this new Hamilton action defines the quantum model

S[φ;Gab, . . . ] =
∫
X

L (φa, (∂μφ
a), . . . ; Gab, . . .︸ ︷︷ ︸

parameters

),

Z[J;G] =
∫

D[φ] e
i
h̄ S[φ;Gab,... ]+

∫
X J·φ,

(11.34)

where F is the target space, where φa take values. This quantum model is then the effective quan-
tum field theory in spacetime X of which a part (in a realistic model, see Section 11.3) is identified
with the “real” spacetime in which we live. In this model, φa " δGμν, . . . are fields that are iden-
tified with the “real” fields such as the graviton (for δGμν), the photon, the electron, the quark,. . .
To keep the notation simple, only the graviton is explicitly written (in φa " δGμν, . . . ), but each
of the fields in the Standard Model may be identified as the variation of some parameter in the
Hamilton action (11.31).

Evidently, the concept of generating the Hamilton action (11.34) from the previous, world-
sheet Hamilton action (11.31) can be repeated: The quantum model (11.34) itself depends on
parameters Gab, . . . The quantum stability of the model (11.34) produces conditions for the vari-
ations ΦA ∼ δGab, . . . One then constructs a Hamilton action (of the third level) for the variables
ΦA, which is chosen so that the equations of motion for ΦA are precisely the conditions for quan-
tum stability of the model (11.34) from the previous (second) level. This Hamilton action of the
third level then defines the effective quantum field theory that “lives” in the target space of the
quantum model (11.34) of the previous, second level. In principle, this iterative construction of

24 The presentation here is drastically simplified! In practice, one must first construct the Hilbert space where the states
are constructed akin to the linear harmonic oscillator, and with the creation operators from the expansion (11.38).
In this Hilbert space there exist, e.g., states such as G(m,n)

μν (X)a
μ
m,Ra

ν
n,L|0〉, amongst which the expectation values with

m = −1 = n define the metric tensor Gμν(X) on the spacetime X in which the coordinate fields Xμ(ξ) take values.
The variables {φa " δGμν, . . . } therefore parametrize the fluctuations in the Hilbert space of the worldsheet model.
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ever higher levels of effective field theories never stops; the iterative scheme may be presented
formally: {

D(k+1)

ϕ(k+1)−−−→ T(k+1)

}
; δS(k+1)[ϕ(k+1); C(k+1)] = 0; δqu.C(k+1) = 0; (11.35a)

‖{
D(k)

ϕ(k)−−→T(k)

}
; δS(k)[ϕ(k); C(k)] = 0︸ ︷︷ ︸

classical physics

; δquantumC(k) = 0;︸ ︷︷ ︸
quantum stability

(11.35b)

where the scheme begins with the level where D(1) = Σ is the string worldsheet, T(1) the (ex-
tended) target spacetime (in the (3 + 1)-dimensional portion of which we seem to live), ϕ(1) are
the coordinate fields immersing D(1) → T(1), and C(1) are the “coupling constants” of this first level
field theory, including quantities that are in turn identified as structural characteristics of T(1), such
as the metric tensor.

Conclusion 11.3 String models contain an infinitely iterative hierarchy of (effective) field
theories, defined by iteratively following the construction of the Hamilton action (11.34)
from (11.31) [☞ scheme (11.35)].

Of these, (at least) the first three “levels” are used routinely: the first level describes the dynamics
of the (super)strings themselves (11.31), the second level describes the dynamics of the fields such
as the quarks and leptons (11.34), the third level is used to explore the so-called modular spaces.
Namely, the parameters Gab in the second level Hamilton action, in the expressions (11.34), deter-
mine the geometry of the domain spacetime of this (second) level, and represent points in the space
of possible geometries. Variations of these parameters then represent variations of these geome-
tries and so represent local coordinates in the space of possible geometries, the so-called modular
space. Such a modular space is then the target space in the third level and the Hamilton action in
this third level then contains parameters that correspond to the structure of this modular space. In
this way, the third level field theory within (super)string theories serves also as a “laboratory” for
studying the structure of this modular space. It is interesting to mention that the physically moti-
vated choice of the Zamolodchikov metric tensor on modular spaces of so-defined models coincides
with the mathematically “natural” choice of the Weil–Petersson metric tensor [89], whereby the
successful applications of these physical models in mathematics – amongst which some original
works are collected in Refs. [85, 84] – were a fascinating surprise.

11.3 Towards realistic string models
The choice (11.13) is clearly but the simplest case, when the strings move through flat, empty and
infinitely large spacetime. However, it is fairly simple to change this geometry in this model. For
example, some of the scalar fields Xμ(ξ) may be required to satisfy a periodicity condition, and
constantly so over the worldsheet Σ, for simplicity:

Xi(ξ) " Xi(ξ) + 2πRi, i = 4, . . . , 25, ∀ξ ∈ Σ. (11.36)

As a result, the scalar fields X0(ξ), . . . , X3(ξ) still take values in an open, flat and infinitely large
space, R1,3. However, each of the scalar fields X4(ξ), . . . , X25(ξ) now takes values in what is
seen to be a closed and finite (compact! ) circle of radius R4, . . . , R25. The shape of the target
space (in which the functions X0(ξ), . . . , X25(ξ) take values) has through the imposition of the
conditions (11.36) turned into

X = R1,25 (11.36)−−−−→ X ′ = R1,3 × T22, T22 := S1
(R4) × · · · × S1

(R25). (11.37)
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The space X ′ is compact in 22 directions, but remains non-compact in the X0, . . . , X3 di-
rections. The conditions (11.37) represent a direct application of the Nordstrøm–Kałuża–Klein
compactification.

Besides, two additional modifications may be introduced owing to the special properties of
the (1+1)-dimensional worldsheet:

1. For the scalar “coordinate” fields, such as X4, . . . , X25, one may use the opportunity described
in the discussion of the relations (11.15)–(11.16): Each of these 22 fields harbors two in-
dependent functions, upon which boundary and/or periodicity conditions may be imposed
independently – and so differently.

2. The oscillators obtained through Fourier decomposition of functions (11.16) are bosonic and
in the quantum variant correspond to creation and annihilation operators, just as with linear
harmonic oscillators. Exclusively in physics defined on the (1+1)-dimensional worldsheet,
every pair of bosonic creation/annihilation operators may be substituted with two pairs of
fermionic creation/annihilation operators.25

The above two peculiarities of field theory in (1+1)-dimensional worldsheet spacetime (the
independence of left- and right-moving modes in fields and the possibility of fermionization of
bosons – and reciprocally of bosonizing fermions) makes the following construction possible:

Construction 11.1 (heterotic string) Replace the 16 right-moving functions X10
R , . . . , X25

R with
32 right-moving fermions, λ1

R, . . . ,λ32
R . Impose periodicity to the left-moving functions

X10
L , . . . , X25

L , so that this 16-tuple of functions X10
L , . . . , X25

L takes values on a 16-dimensional
torus that is identical with the so-called maximal torus of either the E8 × E8 or the
D16 = so(32) algebra. The Hilbert space in such a model is built akin to the Hilbert
space in Section 10.1.3, applying creation operators from the Fourier expansion following
Refs. [225, 224, 434, 594],

Xμ(τ, σ) = xμ + pμ
p− cτ + i

√
α′
2

+∞

∑
n=−∞

n �=0

[
a
μ
n,R

n
e−2πinς+ +

a
μ
n,L

n
e2πinς−

]
, (11.38)

where

ς± := (σ± cτ)/�S, and a
μ
−n,R = (a

μ
n,R)

†, a
μ
−n,L = (a

μ
n,L)

†, (11.39)

and where p± are the momenta corresponding to the coordinates x± := 1√
2
(x0 ± x1). By

choosing x+ to be along proper time, x+ = τ, x+ and p+ are to be treated as simple parame-
ters, but x−, x2, . . . , x9 and a

μ
n,R, a

μ
n,L and their canonically conjugate variables p−, p2, . . . , p9

and a
μ
−n,R, a

μ
−n,L are all the familiar quantum operators. The traditional normalization is

provided by the canonical commutation relations

[x−, p−] = −ih̄, [xμ̂, pν̂] = ih̄δμ̂ν̂ , μ̂, ν̂ = 2, . . . , 9; (11.40a)

[aμm,R, aνn,R] = nδμνδn,−m, [aμm,L, aνn,L] = nδμνδn,−m. (11.40b)

A similar oscillator expansion also exists for X10
L , . . . , X25

L and λ1
R, . . . ,λ32

R . Gross, Harvey,
Martinec and Rohm showed [247, 246, 248] that such a model:

25 This transformation and its unique existence within field theory in (1+1)-dimensional spacetime was noticed in 1935–7
by Pascual Jordan, who attempted to explain a photon as a bound state of a neutrino and an antineutrino [301];
owing to the failure of this application, the basic idea of fermionization was itself neglected until its successful
recycling [☞ Footnote 13 on p. 13] within string theory.
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1. effectively describes the propagation of strings through a (9+1)-dimensional, flat
and infinitely large spacetime, R1,9, parametrized by the values of the scalar fields
X0(ξ), . . . , X9(ξ);

2. the geometric and physical meaning of x0, . . . , x9 is that they are the center of
mass coordinates of the string;

3. with a suitable choice of the relative coefficients in the Hamilton action, the sys-
tem exhibits a supersymmetry owing to the presence of fermionic modes that
replaced the bosonic functions X10

R , . . . , X25
R ;

4. with a suitable choice of the radii R10, . . . , R25 and angles between the coordi-
nates X10, . . . , X25, the system also has either the E8 × E8 or the SO(32) gauge
symmetry.

These two specifically stringy constructions are called heterotic strings and proffer the possi-
bility to construct models that contain (much more than) enough gauge symmetry and matter to
describe the “real world” [247, 246, 248].

This telegraphic synopsis is a far cry from describing the details of the construction of these
string models, whereby the construction certainly appears to be rather ad hoc. The technical details
and consistency conditions in these constructions are, however, very rigorous; for example, these
conditions single out the gauge group to be either E8 × E8 or SO(32), and the number of “flat and
infinitely large” spacetime dimensions to be precisely 9+1 and only if the model is supersymmetric.

11.3.1 Partially compact topology and geometry
Somewhat in the manner of the Nordstrøm–Kałuża–Klein compactification (11.37), Philip Cande-
las, Gary Horowitz, Andy Strominger and Edward Witten showed that by substituting the spacetime
geometry

R1,9 −→ R1,3 ×Y (11.41)

in the E8 × E8 heterotic string model, the system remains minimally (simply) supersymmetric pre-
cisely if the real 6-dimensional space Y is chosen to be in fact a complex 3-dimensional, compact
and so-called Calabi–Yau space,26 a.k.a., 3-fold. The hallmark feature of such spaces is that they
admit a metric tensor giı̄ for which:

1. giı̄ is Kähler, i.e., giı̄ = ∂
∂zi

∂
∂zı̄ K(z, z̄), where K(z, z̄) is the Kähler potential;

2. the Ricci tensor computed from this metric is a total derivative, so
∮

S dz·R·dz = 0 for every
closed real 2-dimensional (complex 1-dimensional) surface S ∈ Y .

Here (z1, z2, z3) are complex local coordinates for Y , and zı̄ = (zi)∗. Since the space R1,3 ×Y is
compact in the Y -directions, such constructions are referred to as Calabi–Yau compactifications.
Note that, unlike the original Nordstrøm–Kałuża–Klein compactification, here the metric tensor
components in the directions of the compact space Y do not produce any gauge fields, as Calabi–
Yau 3-folds have no isometries.

Without delving into the details of such constructions (to which end the interested Reader
is directed to the book [279] and the references therein), may it suffice here to mention that
the complex 3-dimensional compact Calabi–Yau spaces have two variable characteristic numbers,
denoted h1,1 and h2,1, and that Calabi–Yau compactifications of the E8 × E8 heterotic string models
produce:

26 Eugenio Calabi’s conjecture, that the necessary and sufficient criterion for a complex 3-dimensional, compact space to
admit a Käbler metric is that its first Chern class should vanish, was proven in 1974 by Shing-Tung Yau, for which
he was awarded the Fields Medal. For a detailed history of both the related mathematical discoveries as well as their
applications in physics and especially in (super)string theory, see Ref. [584].
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1. an effectively (3+1)-dimensional, flat and infinitely large spacetime, R1,3;
2. minimal (simple) supersymmetry, as described in Section 10.3.2;
3. the gauge symmetry group is reduced to E6 × E8;
4. matter fields, in the following collections:

(a) h2,1 copies of the 27-representation of the group E6,
(b) h1,1 copies of the 27-representation of the group E6;

5. a connection between the otherwise arbitrary Standard Model parameters, such as the
Yukawa coupling parameters he, hu, hd, hν [☞ Section 7.3.1] and the geometry of the
selected Calabi–Yau space Y .

Every 27-representation of the (compactification-reduced) gauge group E6 contains one family of
Standard Model fundamental fermions with the usual SU(3)c × SU(2)w × U(1)Q ⊂ E6 charges,
and the 27-representation contains the same particles but with wrong (opposite) charges. Ideally,
one would like to construct a Calabi–Yau space with h2,1 = 3 and h1,1 = 0, or the other way
around.27 Besides, if the given Calabi–Yau space is not simply connected, it is possible to establish
a flux of “background” gauge field along a closed contour that cannot be continuously contracted to
a point. Such a non-contractible closed-contour integral of such a flux effectively serves as a Higgs
field: It breaks the gauge symmetry and can “pair” fields from the 27-representation with fields
from the 27-representation and provide them with a mass of the order of 1017−19GeV/c2. For further
details about constructing Calabi–Yau spaces and analyzing the models obtained by compactifying
on Calabi–Yau spaces, the interested Reader is directed to search the contemporary literature (at
www.arXiv.org), perhaps with some help from the by now two decades old Ref. [279] for starters.

11.3.2 Mirror symmetry
The analysis of the application of Calabi–Yau spaces in compactification of string models discov-
ered the phenomenon that for every model with h2,1 “families” and h1,1 anti-“families” one may
construct a “mirror-dual” model in which the number of “families” and anti-“families” is flipped
(Brian Greene and Ronen Plesser, 1990 [236]):

(Y , Y ′) : h2,1(Y ) = h1,1(Y ′), h1,1(Y ) = h2,1(Y ′). (11.42)

It was soon proved [51, 83] that the phenomenon is rather typical, which provided support for a re-
search field that may rightly be called experimental mathematics. Namely, between 1984 and 2002,
the catalogue of constructions grew from a handful to nearly half a billion [☞ review [321] and
references therein], and the statistically significant tendencies in this collection acquire significant
probabilities of being systemic, and then are well worth exploring as candidates for mathemati-
cally rigorous theorems. Besides, the insight into the physical qualities of the models in which these
tendencies are noted may provide an argumentation that is fully alien to the mathematical tradi-
tion, whence these tendencies may appear surprising or even “magical” from the mathematicians’
vantage point.

One such example is precisely the “mirror duality,” where the identifications are in fact not
only on the level of numerical characteristics (11.42), but also among certain physically moti-
vated algebraic structures that correspond to Yukawa interactions (7.133f). Using this physics
insight, mirror duality may be used to compute certain mathematical characteristics of Calabi–
Yau spaces [85, 84, 49, 50], to which end the “purely mathematical” methods are still not known,
and which at first seemed fantastic and unbelievable.

However, intrigued by the manifest computational efficiency, mathematicians had already in
the same year, 1993–4, proved the phenomenon of “mirror duality” within a well-defined class of

27 It is always possible to completely flip the construction, so that all Yang–Mills gauge charges are reversed.
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constructions [42, 71, 43]. In turn, this gave rise to a whole “industry” of research [583, 235,
426, 117, 124, 274], and then also the proof that the “mirror duality” – in the general case – is an
example of the so-called T-duality [501].

Definition 11.2 Two spacetimes, X and X ′, are T-dual if the string model that describes
string propagation through the spacetime X is physically identical to the string model that
describes string propagation through the spacetime X ′.

In other words, the spacetimes X and X ′ are T-dual if strings, by propagating through them, do
not distinguish between them. In the case when X = R1,3 ×Y a X ′ = R1,3 ×Y ′, T-duality is
naturally referring to the Y and Y ′ (“purely” space-like) factors. This relation between the spaces
Y and Y ′ is thus indirect, as it is based on an identification of structures between observable
quantities, as schematically presented in Figure 11.6. Precisely because of this indirectness are

=Quantum string observables

Σ

Quantum string observables

Hilbert space [ −→ ] Hilbert space

Partition functional Partition functional

Hamilton action Hamilton action

Figure 11.6 A depiction of the indirect relation of “stringy duality” between spacetimes X and X ′.

the so-obtained relations very unexpected, so that the construction and exploration of relations
between string models may be regarded also as a machine for generating mathematically non-
trivial conjectures, the final proof of which then significantly advances both mathematics and,
reciprocally, also physics [455].

Recently, one such physically motivated and unusual general construction [51] of “mirror
dual” Calabi–Yau spaces from 1993 was re-examined, providing it with a mathematically more
natural formulation 16 years later, and then also with a rigorous proof [320, 108, 72]. It seems
worthwhile to note that this construction of “mirror dual” spaces holds even when not all of the
defining conditions of Calabi–Yau spaces are fulfilled, and so points to a much more general phe-
nomenon in algebraic geometry, for which there is no other indication, and the mathematical
implications of which are only now being explored☞ .

Notice also that the so-defined “stringy duality” is being identified at the level of quantum
observables, which are understood to act upon a Hilbert space, and a partition functional for
concrete computations. In particular, it is logically not necessary for a model to have a Lagrangian
formulation and the associated geometric interpretation. In fact, models have been constructed for
which at the time only the partition function was known, and neither a Lagrangian formulation nor
a geometrical interpretation was known or needed; see Ref. [203], for starters, and [26, 503, 335]
for related recent references.

11.3.3 Variable geometry and cosmology
The basic idea in the Nordstrøm–Kałuża–Klein compactification was the assumption that the entire
spacetime has the structure of a product such as X = R1,3 ×Y . That is, at every point of the first
factor there exists an entire copy of the second factor and vice versa; also, all copies of the second
factor “along” the first factor are identical, and vice versa.
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Of course, this may be generalized so that one factor varies from point to point of the other
factor. That is, the compact Calabi–Yau space Y may depend on the location in the non-compact
space R1,3. In the general case, such variations define a structure called fibration in mathematics,
and the type of the variation provides a finer classification of such constructions. Two examples
of fibration are shown in Figure 11.7. In the case of fibering a complex 3-dimensional compact

(a) (b)

Figure 11.7 Two simple examples of fibration of a loop (∼ S1) along a line: (a) the loop changes its
geometry but not its topology, (b) the loop changes both its geometry and its topology (S1 → 2S1 →
S1). In the latter case, there necessarily exist points in the base (horizontal) space where the loop is
singular (indicated by the stars).

Calabi–Yau space “along” a (3+1)-dimensional spacetime, the situation is of course much more
complicated than the simple examples in Figure 11.7 [237, 228]. However, if we suppose that the
variations of the compact complex 3-dimensional Calabi–Yau space Y along the spacetime R1,3

occur subject to certain complex-analytic limitations, it follows that [228]:

1. The compactification space Y must become singular at some spacetime points x∗ ∈ R1,3,
similarly to the situation in Figure 11.7(b).

2. The spacetime locations x∗ ∈R1,3 where the Calabi–Yau space Y becomes singular for a
typical (3+1)-dimensional observer look like massive objects.

3. The metric tensor in spacetime in the vicinity of these objects has an additional contribution

δ gμν = (∂μφa)Rab(φ) (∂νφb), (11.43)

where φa(x) are the scalar fields in spacetime R1,3 (not on the worldsheet Σ), which rep-
resent the changes in the complex-analytical structure of the compactifying space Y . The
tensor Rab is the Ricci tensor, computed from the metric tensor Gab(φ) given on the target
(modular) space in which the scalar field φa(x) takes values.

4. The total number and degree of singularizations may be computed exactly for any concrete
model, and is a topological characteristic of the model.

5. With the analytic limitations specified in Refs. [237, 228], these massive objects are lines of
cosmic proportions – cosmic strings – and affect the distribution of matter (galaxies) in the
universe. The gravitational field of filamentary objects in 3-dimensional space decreases as
∼ r−1, and so dominates in accreting matter from which stars, stellar systems, galaxies and
clusters form.

6. Relaxing the analytic limitations [237, 228], the dynamics of these cosmic strings may be
analyzed perturbatively, but the total number of interactions (joining and splitting) of these
cosmic strings is an exactly computable topological invariant for every model.

Thus, in this rather unexpected way, the details of the (microscopic!) string models also have
direct cosmological consequences. The connection between the physics of elementary particles and
cosmology is already known even in the popular literature [551], but contemporary research in
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this area is outside the scope of this book. However, this connection became much more direct
in constructing stringy models, whereby the purpose of the following section is to at least offer a
sampling from this rich research palette.

11.3.4 Localization of gravity
Courses in electrodynamics show that the discontinuities in the electric and the magnetic fields
stem from distributions of electric charges and currents. The coordinate origin, r = 0, is in this
sense a discontinuity in the radially directed electric field, 1

4πε0

q
r2 r̂. The reason behind the re-

lation between discontinuities in the electromagnetic field and the electric charge and current
distributions is of course provided by the Gauss–Ampère laws. The differential equations (5.72a),
i.e., (5.78), that represent these laws may be applied both ways:

1. For a given electromagnetic field, we may compute the electric charge and current
distribution that produces it.

2. For a given electric charge and current distribution, solve the differential equation and find
the produced field.

Regarding gravity and the general theory of relativity, the Einstein equations (9.44) are analo-
gous to the Gauss–Ampère equations. One then expects that discontinuities and other peculiarities
in the gravitational field and spacetime curvature may be addressed in an “engineering” fashion,
by assembling appropriate distributions of matter [☞ Section 9.3.4].

In typical superstring models, the consistency in dynamics requires that the spacetime
through which the superstrings move has 9+1 dimensions. It is then reasonable to ask if it is possi-
ble to construct a model where the (9+1)-dimensional spacetime has (3+1)-dimensional isolated
subspaces (“defects”) of which some may perhaps serve as our universe. In such a construction,
one must establish:

Q.1 Are there (9+1)-dimensional spacetimes with (3+1)-dimensional “defects”?
Q.2 Are there matter modes that are effectively “trapped” in these “defects”?
Q.3 Do Yang–Mills fields have modes that are effectively “trapped” in these “defects”?
Q.4 Does gravity have precisely one mode that is effectively “trapped” in these “defects”?
Q.5 And, of course, is there at least one (3+1)-dimensional “defect” in which all of the above-cited

features occur☞ ?

Applying Gauss’s law within the (3+1)-dimensional spacetime of such defects uses a static sub-
space of the 3-dimensional space that encloses the source – electric charge or mass – and may be
“radially” contracted to the very location of the source. For point-like sources [☞ Section 11.4] in
3-dimensional space, these then are 2-dimensional surfaces, the surface area of which grows with
the square of the linear size, whereby the electrostatic and gravitational fields decrease ∼ r−2 to
maintain the constant flux – as we know is the case in Nature.

In turn, if Yang–Mills gauge fields and/or gravity are not trapped in the (3+1)-dimensi-
onal defect, the fields will decrease faster: If the field permeates an n-dimensional space, the
Gaussian enclosing “wrap” is an (n−1)-dimensional sphere, whereupon the Yang–Mills as well as
gravitational fields (and forces) decrease following a ∼ r1−n law.

— ❦ —

It turns out that the answers to the first three of the above questions are positive, and under very
general conditions [280]. Namely, the condition that the compactification space (11.41) is of the
Calabi–Yau type (that it admits a metric tensor of which the Ricci tensor is a total derivative), in
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the worldsheet field theory perspective (“first level” [☞ Section 11.2.4]) becomes a cancellation
condition for certain anomalies.

From that same perspective, this same anomaly cancellation condition holds equally for the
non-compactified part of the spacetime; for the R1,3 factor (11.41), this anomaly cancellation con-
dition is trivially satisfied. Recall that anomalies are an indication of contradictions in the quantum
model – here, in the quantum field theory in the (1+1)-dimensional worldsheet spacetime.

The corresponding geometric condition in (9+1)-dimensional spacetime field theory (“sec-
ond level”) is that the entire spacetime must admit a metric tensor, the Ricci tensor of which is
a total derivative. Of course, in the situation (11.41), this is trivially satisfied, since the entire
Riemann tensor over the R1,3 factor vanishes. However, this implies that the Wick-rotated t→ it
analytic continuation of spacetime may be chosen to be a non-compact, complex 5-dimensional
Calabi–Yau space.

Existence of large universes with isolated sub-universes
The general property of all Calabi–Yau spaces is that they typically have a large number of non-
trivial subspaces, which neither have boundaries themselves nor are the boundary of some other
subspace – just like the closed contours A and B in Figure 9.8 on p. 354 and the left-hand
illustration in Figure 11.8. The complex 3-dimensional Calabi–Yau spaces – used in compactifi-
cation (11.41) – have such real 2-, 3- and 4-dimensional subspaces [279]. Complex 5-dimensional
Calabi–Yau spaces have such real k-dimensional subspaces with k = 2, . . . , 8. However, such sub-
spaces are not isolated, just as the closed paths of type A and B on the surface of a torus are not:
each of these contours has continuous deformations/shifts, such as those depicted in the left-hand
side of Figure 11.8.

A

B

A

B

A �

Figure 11.8 The torus surface (left) with two deformable topologically nontrivial closed paths: neither
A nor B can be continuously deformed to a point but they can both be deformed into a continuum of
“nearby” paths. In the “pinched” torus surface (right), however, the point A� is isolated [☞ text].

In stark contrast, the surface of the “pinched” torus, on the right-hand side of Figure 11.8
contains the point A�, which is the limiting case of the 1-dimensional subspaces, the closed paths
of type A. The point A� is geometrically and even topologically singled out: any sufficiently small
neighborhood of every other point on the surface of the “pinched” torus is of the form of a circle
(disc); every neighborhood of the point A� is of the form of two cones joined at their vertices, and
this vertex is a “double point,” which is the property that isolates this point.

The surface of a torus is in fact a compact complex 1-dimensional Calabi–Yau space, and
serves as an intuitive model for higher-dimensional constructions. However, the fact that the
double point is also necessarily singular happens only in spaces of one complex dimension.
Within complex 3-dimensional Calabi–Yau spaces, such special isolated subspaces are of the form
of non-singular real 2-dimensional spheres; they have smooth neighborhoods, but nevertheless
cannot be deformed/shifted within the given complex 3-dimensional Calabi–Yau space and so are
isolated [279].
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In general, virtually all complex n-dimensional Calabi–Yau spaces contain special subspaces
of complex dimension * n−1

2 +, the integral part of the fraction n−1
2 . For n = 5, these are complex

2-dimensional, i.e., real 4-dimensional subspaces!
Much as a real 2-dimensional surface of a torus serves as an example of a compact complex 1-

dimensional Calabi–Yau space, the 2-dimensional cylinder serves as an example of a non-compact
complex 1-dimensional Calabi–Yau space. Besides, note that the 2-dimensional sphere has a posi-
tive curvature, but that excising two separate points (the 0-dimensional Calabi–Yau space) leaves
behind a surface that is a continuous deformation of a cylinder, which is flat: there exists a global
and single-valued metric tensor for which the Riemann tensor vanishes.

Similarly, every non-compact complex n-dimensional Calabi–Yau space may be obtained by ex-
cising from a compact complex n-dimensional Fano space28 a compact complex (n−1)-dimensional
Calabi–Yau subspace [520, 521]. If the surgery is arranged to also excise part of a special, iso-
lated real 4-dimensional subspace, its remainder is then also non-compact. After a “reverse” it→ t
analytical continuation so that one of the four real dimensions is again time-like, these now (3 + 1)-
dimensional non-compact subspaces really can serve as isolated examples of (3+1)-dimensional
spacetime [280].

Conclusion 11.4 It follows that the analytical continuation of a typical non-compact com-
plex 5-dimensional Calabi–Yau space is a (9+1)-dimensional spacetime that contains
numerous isolated (3+1)-dimensional sub-spacetimes.

Localization of matter and Yang–Mills gauge interactions
For every example of a complex space Z with a complex algebraic subspace X ⊂ Z, specified as
the space of solutions of the system of algebraic equations

X ⊂ Z : X :=
{

z ∈ Z , Φ(z) = 0
}

, (11.44)

there exists a class of restricted functions [☞ [82, 52] and the references therein], defined via the
complex n-dimensional generalization of residues,

f (x) := Res
z∈X

[
f (z)

Φ(z)

]
, x ∈ X = Φ−1(0). (11.45)

These functions vanish outside X ⊂ Z, and within X adequately represent fields – both for matter,
and also for Yang–Mills gauge fields. It remains of course “merely” to find a concrete non-compact
complex 5-dimensional Calabi–Yau space, with a suitable isolated subspace in which (after analytic
continuation so that one of the coordinates in X is time-like) the number and type of localized
fields can reproduce the contents of the elementary particle physics Standard Model [☞ Table 2.3
on p. 67, as well as Conclusion 2.2 on p. 46].

In the 1990s, string models were routinely constructed containing various p-branes on which,
by their very definition, end-points of open strings are trapped on the given p-brane. This then
guarantees localized degrees of freedom amongst which it seems realistic to seek the particle
content of the Standard Model, including the Yang–Mills gauge fields.

However, owing to significant differences between Yang–Mills gauge fields and the gravita-
tional field [☞ Section 9.2] and since the graviton is inherently realized in string theory by closed
strings [☞ discussion that leads to (11.7)], it is not clear that the analysis in Refs. [82, 52] may
be adapted so as to be applied to gravity.29 Thus, the proposal wherein the additional six spatial
28 after the Italian mathematician, Gino Fano, spaces with a positive curvature are called Fano spaces.
29 The works of Keiichi Akama and other researchers in Japan and the Soviet Union 1967–82 [☞ [9] and the references

therein], where it is shown that an effective general relativity and gravity may be induced in (5+1)-dimensional models
with (3+1)-dimensional vortices, until recently were not known outside Japan and the former Soviet Union. However,
these models are not renormalizable, and cannot be part of a fundamental theoretical system.
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dimensions are not compactified and unobservably small, but it is our (3+1)-dimensional space-
time that is an isolated part – “defect” – within the (9+1)-dimensional spacetime, could not be
taken seriously. Compactification à la Nordstrøm–Kałuża–Klein remained the only known logical
possibility for constructing realistic string (and so also M- and F-theory extended) models, almost
to the end of the twentieth century.

Localization of gravity
In 1999, Lisa Randall and Raman Sundrum discovered a relatively simple situation in which gravity
is localized at (a part of) the boundary of a space [450], which “opened vistas and paved avenues”
for constructing alternatives to compactification models.
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Figure 11.9 The Randall–Sundrum cosmology toy-model.

Randall and Sundrum studied the toy-model wherein spacetime is 5-dimensional geometry
reminiscent of a capacitor: the 5-dimensional spacetime is of the form R1,3 × I, where I = [0, L] is
the closed interval, i.e., the interval together with its boundary points, as in Figure 11.9. From the
definition of the coordinate y, it follows that it can only have non-negative values, and the metric
tensor in the 5-dimensional spacetime R1,3 × [0, L] must depend on |y|. However, since the Einstein
tensor – the left-hand side of the Einstein equations (9.44) – is a differential expression of second
order in spacetime derivatives of the metric tensor components, it follows that the Riemann, Ricci
and Einstein tensors, as well as the scalar curvature, must include terms proportional to the Dirac
δ-function, δ(y).

Concretely, Randall and Sundrum define

ds2 = −e−2k|y|ημνdxμdxν + dy2, i.e., [gggg(x, y)] =

⎡⎢⎣ −e−2k|y| 0 0 0 0
0 e−2k|y| 0 0 0
0 0 e−2k|y| 0 0
0 0 0 e−2k|y| 0
0 0 0 1

⎤⎥⎦ , (11.46)

whereby the Ricci tensor and the scalar curvature are

[RRRR] =

[
−ημν e−2k|y| f (y) 0

0 g(y)

]
,

{
f (y) = 2k

[
δ(y) − 2k sig2(y)

]
,

g(y) = 4k
[
2 δ(y) − k sig2(y)

]
,

(11.47a)

R = 16 k δ(y) − 20 k2 sig2(y) =
{

16 k δ(y) y = 0,

−20 k2 y �= 0.
(11.47b)

Here

sig(y) :=

{ −1, y < 0,
0, y = 0,

+1, y > 0,
so sig2(y) :=

{ +1, y �= 0,
0, y = 0, (11.48)
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and the results hold in the vicinity of y = 0, as if L → ∞. The exact result is more complicated and
of course must include terms with δ(y−L) and sig2(y−L) because of the analogous effect of the
y = L boundary.

The Einstein equations then dictate that Tμν must contain terms proportional to δ(y), δ(y−L),
sig2(y) and sig2(y−L). This implies that the maintenance of such a geometry requires the existence
of matter that is localized at the y = 0 and the y = L boundaries of this 5-dimensional “universe,”
as well as matter that permeates this universe along the fifth, y-coordinate. However, it is more
important that the differential equations for the metric tensor components, after separation of
variables and a suitable substitution z = z(y), include the differential equation [450],

[
− 1

2
d2

dz2 + Ṽ±(z)
]
ψ̂(z) = 0, Ṽ±(z) =

15 k2

8(k |z| + 1)2 ± 3
2 k δ(z) − m2c2

h̄2 , z, y � 0, (11.49)

with the upper sign at the position y = L and the lower sign at y = 0. The appearance of the Dirac
δ-function in the otherwise rather mildly peaking “potential” reminds us of the familiar system
from non-relativistic quantum mechanics. This implies that the case Ṽ−(z) – i.e., at the y = 0
copy of the R1,3-like “capacitor” plate in Figure 11.9 on p. 431 – has solutions with the following
properties:

1. There exists a single, square-normalizable mode with negative energy, localized at y = 0,
and its amplitude decays exponentially with y.

2. There is a continuum of modes:
(a) with continuous mass/energy m2 ∈ [0, +∞),
(b) the envelopes (amplitudes) of which are very small near z = 0 because of the 15 k2

8(k|z|+1)2

barrier,
(c) which asymptotically (for |z| → ∞) approach plane waves.

3. Owing to the property 2(b), the interference between the unique localized (“bound-state”)
mode and the continuum of modes is suppressed.

Randall and Sundrum then showed [450] that the unique localized mode in the metric tensor
effectively serves as the metric tensor in the R

1,3
y=0-boundary of their 5-dimensional model, and leads

to a usual formulation of the general theory of relativity in this part of the boundary, as well as
to the familiar Newton/Kepler gravitational potential ∼ r−1. The continuum of modes produces a
correction of Newton’s law of gravity:

V(r) = GN
M1 M2

r

(
1 +

1
(kr)2

)
, (11.50)

where the parameter k is a measure of the curvature (not the size!) of the 5-dimensional spacetime
along the fifth coordinate.

Conclusion 11.5 Comparing equations (11.50) and (11.47b) shows that the correction to
Newton’s law of gravity is suppressed by the curvature of the “big” spacetime along the
fifth dimension, and not the size of this fifth dimension. This result is qualitatively differ-
ent from similar results in compactification models: There, all corrections that stem from
the existence of compact dimensions are always suppressed by the volume of the (small)
compact space.

The fifth coordinate in the Randall–Sundrum model may well be even infinitely
large(!); its existence nevertheless changes the effective (3+1)-dimensionality of physics
in the y = 0 boundary 3-brane no more than as specified in equation (11.50).
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This important result started a “minor industry” of elaborations of this and similar ideas, whereby
the string theoretical system again forayed into cosmology with these brane geometry models. In
the 1990s, many details of the interactions between various p-branes and other more-or-less exotic
objects that appear in the string theoretical system were worked out. Now that we know of the
Randall–Sundrum mechanism for localizing gravity, it is worth exploring the possibility that some
of these p-branes – as well as other (9+1)-dimensional spacetimes – are of cosmic proportions,
and that we happen to live on one of these 3-branes, which provides the basic conceptual idea of
the cosmology of so-called brane-worlds [☞ [352], for a recent review].

— ❦ —

Amongst such models an interesting possibility emerges that again links the microscopic and the
macroscopic physics in unusual ways: Namely, we know that no supersymmetric partner particle of
any of the known particles has ever been found, so – if the fundamental theory of Nature is super-
symmetric at all, supersymmetry must be broken, and direct experimental evidence for this (e.g., a
Goldstone fermion) is also lacking. On the other hand, the discovery that our universe is expanding
in an accelerated fashion implies that the corresponding geometry (in large, cosmic proportions) is
the de Sitter geometry. However, it is known [189, 562, 560, 76] that the de Sitter geometry does
not admit supersymmetry. Nevertheless, it is possible to construct superstring models containing a
(3+1)-dimensional sub-spacetime, i.e., 3-brane [53] [☞ also [485, 303, 302] and [16, 120] for
recent works]:

1. with the de Sitter geometry,
2. with localized gravity,
3. with an exponential relation between the Planck mass and the mass of W±- and Z0-bosons,
4. where the geometry is induced by the presence of a modular field,30

5. with the cosmological constant related to the supersymmetry breaking [54].

It follows that it is possible to break supersymmetry by means of the spacetime geometry, which
in turn is produced by the interaction of gravity with modular fields that are unique to stringy
models.

However, this is but one of many possibilities; one “merely” ought to find the model in which
on some of its 3-branes with localized gravity there exist enough localized matter and Yang–Mills
gauge fields for the Standard Model [☞ Table 2.3 on p. 67, and Conclusion 2.2 on p. 46]. The
Reader interested in this class of brane-world models is directed to the rich literature, starting for
example with Ref. [452] for relations with strings, and Ref. [101] for F-theory extensions.

Exospace
Besides the two general mechanisms discussed so far,

compactified worlds the Norstrøm–Kałuża–Klein compactification, both the
constant (11.41), and the variable kind as discussed in Section 11.3.3,

brane-worlds the Randall–Sundrum mechanism of localizing gravity to some
of the sub-spacetimes of a big, (9+1)-dimensional spacetime,

there is however also a third possibility.
Namely, physics without strings is based on describing the motion of point-like particles (“ma-

terial points”) and their extension, “point-local” fields: Although a field by definition extends and

30 This is literally a stringy “signature.” The particular modular field involved here is not single-valued: rotations in a
plane within the “extra” dimensions induce a so-called Möbius, or SL(2; Z) transformation in the field. This occurs in
no non-stringy theory/model, and every string model contains this particular modular field.
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permeates the entire space, functions that are used to describe fields are fundamentally local quan-
tities. For example, the gauge potential Aμ(x) depends on the coordinates of a single point in
spacetime, and the differential equations that mathematically represent the laws about such fields
are local: the fluctuation of the field at any one point in spacetime causes – via the local differ-
ential equation of motion – the propagation of the fluctuation from one spacetime point to the
infinitesimally neighboring points.

The physics of strings is not local in the same sense. From the worldsheet perspective, the
field theory in (1+1)-dimensional worldsheet spacetime is not local in the same sense as it is
in the (3+1)-dimensional spacetime. Students who have successfully passed a course in elec-
trodynamics must know that the Green functions for the wave operator (the d’Alembertian) in
(n+1)-dimensional spacetime grow with the distance when n < 2. Thus, scalar fields in (1+1)-
dimensional spacetime correlate between arbitrarily distant fluctuations, and so are fundamentally
global and non-local fields.

On the other hand, from the spacetime perspective in which the strings propagate, it is clear
that strings are not local objects, but exist simultaneously (however this to be understood) in a
continuum of space-like separated points within the spacetime – this is a property of all extended
objects, including also all p-branes with p > 0. Besides, the following facts also hold about string
interactions:

• String interaction is local in the spacetime in which the strings propagate: From any ob-
server’s reference system, the joining of two strings into one and the splitting of a string into
two happens at one spacetime point.

• String interaction is not local in the configuration space of strings; if it were, two strings
would be joining into one (and one splitting into two) in a single point in the configuration
space – which is a particular configuration of the entire string.

• String interaction is not local in the string worldsheet spacetime; moreover, a string interac-
tion represents a “cosmological” fusion of two such (1+1)-dimensional spacetimes into one,
or the splitting of one into two.

Of course, these are merely picturesque indications that the motion and interactions of strings (in
fact, of all p-branes for p > 0) differ essentially from those of point-particles (0-branes).

It turns out, however, that these differences are crucial in determining through what kinds
of spacetimes strings – and more generally, p-branes with p > 0 – can consistently propagate. It
was already known in 1985 that so-called orbifolds – spaces with conical singularities of the form
Rn/D where D is the action of some finite group of rotations – pose no problem [138, 137].
A complete and final criterion to answer the question “through how singular a spacetime can
strings consistently propagate” is not yet known ☞ , but it is known that requiring supersymmetry
in stringy dynamics permits singularities of rather high degree [278]. This certainly includes both
orbifold and canonical singularities [☞ the “Young Persons’ Guide” [454]]. The hallmark prop-
erty of these types of singularities is that they can be smoothed by means of processes called
blow-up, deformation and small resolution, which either maintain or can be restricted to main-
tain all the characteristics essential for superstring dynamics, such as Ricci flatness [279, for
starters].

Closely related to singular spaces are so-called stratified pseudo-manifolds through which
strings also move consistently [24].31 Such spaces generalize the cases shown in Figure 11.9 on
p. 431, where the 5-dimensional space has 4-dimensional “boundary” parts. In general, stratified
pseudo-manifolds are connected unions of several parts organized by dimension so that:

31 The Authors of Ref. [24] have not emphasized this fact explicitly, but their Figure 19 explicitly depicts a complex
3-dimensional pseudo-manifold with a complex 1-dimensional connected additional part.
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1. separately taken, every part is a space of constant dimension,
2. subspaces of the same dimension form a stratum,
3. there may exist more than one stratum, i.e., parts of more than one dimension.

Instead of detailed definitions, may it suffice here to consider the two examples in Figure 11.10.
The left-hand example is a surface (a), defined by the equation z = (x/y)2, with a self-intersection
along the non-negative part of the z-axis, where the surface evidently has two-fold defined tangent
vectors and has “unusual” (exotic) neighborhoods. However, this surface may be decomposed into:

0. the (excised) 0-dimensional stratum: the coordinate origin O,
1. the (excised) 1-dimensional stratum: positive z-axis denoted z+,
2. the (remaining) 2-dimensional stratum: two surfaces, A and B.

In this example, every point x∗ of every stratum has arbitrarily near points that belong to a higher-
dimensional stratum; in general, this need not be true.

The right-hand side of Figure 11.10 shows a more unusual but also more general example (b),
which may be decomposed into:

(a)

+

(b)

Figure 11.10 Two stratified pseudo-manifolds.

0. the (excised) 0-dimensional stratum: the point D,
1. the (excised) 1-dimensional stratum: the “seams” C1 and C2 (on the back side) and the “tail”

E,
2. the (remaining) 2-dimensional stratum: two “wings” B1 and B2 and the surface of the sphere

A with three holes (two line-like cuts where the “seams” C1 and C2 were excised, and one
point-like hole where the point D was excised).

Unlike example (a), not every point of the 1-dimensional stratum has points in the higher-
dimensional stratum (the surface of the sphere A and of the wings B1 and B2 and without the
“seams” C1 and C2) that are arbitrarily close to it. To wit, each point in the “seams” Ci is arbitrarily
near some points in both wings, B1 and B2, and in the sphere A. On the other hand, most points
in the “tail” E are nowhere near any point in the 2-dimensional stratum. One says that the “tail”
E is outside the 2-dimensional stratum. Extending the nomenclature of Ref. [24], let the prefix
exo- denote the exotic parts that are mostly outside the highest(-dimensional) stratum. As the high-
est dimension in this example is two (2), the only exo-space (here, exo-line) is the 1-dimensional
“tail” E.

Also, the complete pseudo-manifold (b) in Figure 11.10 does not have well (unambiguously)
defined derivatives at the “seams” C1 and C2 as well as at the joining point D. This is also true of
the example (a), along the non-negative semi-axis z � 0.
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Finally, the spacetime (so-called brane geometry) in a string model can easily be some such
stratified pseudo-manifold Z that contains (3+1)-dimensional exo-space X ⊂ Z , i.e., that Z
admits a metric tensor32 that gives a 4-dimensional exo-space X the Lorentzian signature, (1, 3).
For example, Z could be caricatured by the right-hand example in Figure 11.10, where X could
be represented by the “tail” E and which could of course easily be of cosmic proportions. To an
observer who is in a part of X sufficiently far from the region where X joins with the “rest” of
the complete spacetime Z , the spacetime evidently looks 3+1 dimensional. However, an observer
who is sufficiently close to the connecting region between X and the “rest of Z ” will of course be
able to experimentally verify that by passing from X into the “rest of Z ” the number of spacetime
dimensions changes. In such a model, all (gravitational and Yang–Mills gauge) fields must be
localized, simply as they have nowhere else to propagate in the neighborhood of almost all points
in X . Then, the Gaussian surface that encloses point-like sources (charges and/or masses) may
almost everywhere in X be chosen to be a sphere of surface 4πr2 at a distance r from the source,
whereby the Coulomb and the Newton/Kepler forces indeed decrease as ∼ r−2. The exploration
of such models is in its infancy☞ , but it is clear that in many models the p-branes may well be
exo-branes, just like in Figure 19 of Ref. [24] or in the right-hand example in Figure 11.10. For
mathematical details about stratified pseudo-manifolds, the Reader is directed to the literature,
e.g., starting with the book [313].

11.3.5 Exercises for Section 11.3

✎ 11.3.1 For the metric tensor in (2+1)-dimensional spacetime

ds2 = −e−2k|y|c2dt2 + e−2k|y|dx2 + dy2, i.e., [g(x, y)] =
[
−e−2k|y| 0 0

0 e−2k|y| 0
0 1

]
, (11.51)

compute (for m, n, p, r = 0, 1, 2):

1. the Christoffel symbol Γp
mn;

2. the Riemann tensor Rmnp
r;

3. the Ricci tensor Rmn;
4. the scalar curvature Rmn;
5. the Einstein tensor Gmn := Rmn − 1

2 gmnR.

✎ 11.3.2 Show by direct computation that the change e−2k|y| → e−2ky in the metric tensor
definition in the previous exercise “erases” all matter localized in the spacetime plane y = 0
and that the results for Γp

mn, Rmnp
r, Rmn, R and Gmn agree with the formal substitution

sig2(y) → 1 in the results of the previous exercise.

11.4 Duality and dual worldviews
Section 5.2.2 showed that there exists a symmetry between the electric field, charge and current
on one hand, and the magnetic field, charge and current on the other [☞ Conclusion 5.4 on
p. 185]. The fact that – as best as known – there are no magnetic monopoles in Nature, i.e.,
monopole magnetic charges and currents means that the duality rotation (5.85), EM(ϑ), may be
applied simultaneously both to electromagnetic fields and to electromagnetic sources so that this
basis is – everywhere in the universe “simultaneously”! – “turned” orthogonal to (ρm/c,�jm/c2) so
that only (cρe,�je) remain. However, the same system can be equally well described in the “basis”

32 The metric tensor may be defined separately in each part of constant dimension, and then require that these tensors
coincide in places where the various parts touch.
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that is “turned” orthogonal to (cρe,�je) so that only (ρm/c,�jm/c2) remain, as was summarized in
Conclusion 5.4 on p. 185. This then provides two dual descriptions of Nature.

Exploration of the string theoretical system discovered many other such dual relations
between many (sometimes very) different models. In this sense, one says:

Definition 11.3 Two given descriptions of Nature, O1 and O2, are dual if they are physically
indistinguishable , i.e., if the collection of all physical observables (together with all rela-
tions between them) in the description O1 is isomorphic to the corresponding collection in
the description O2.

(There may be more than two dual descriptions, so one talks of triality, but in
practice one never talks of quadrality, quintality, or any other n-ality.)

Given the complexity of the relations between the physical system, the mathematical model, the
solutions to that model and measurable (verifiable) results [☞ Figure A.2 on p. 457], the limita-
tions on the mathematical model itself are evidently very indirect and roundabout. It should then
be clear that the mental caricatures and images that one uses in formulating the model are merely
a crutch in the construction of the model, and not “the one and true” image of “reality” – recall
the Copernican legacy [☞ Section 1.1.1]. Thus, as long as two or more models (even if based
on different images) equally well describe Nature, we are free to choose which of these two (or
more) images to tentatively identify with Nature [☞ Section 11.3.2, and especially Figure 11.6 on
p. 426]. In doing so, we must stick to the facts [☞ Example 1.1 on p. 11]:

1. The chosen image is but one of the a-priori equally “real” formulation images.
2. The choice of the formulation image is, without an experimentally verifiable difference,

subjective and tentative.
3. Measurable results (and not the formulation image) of a model make up its goal, and so also

its point.

The last two decades made it ever clearer that the string theoretical system integrally con-
tains multiple differing formulation images in describing the same “thing” – which lends support
to conceiving of a new (unexplored and undeveloped☞ ) kind of “symmetry,” acting via correspond-
ing transformations between different formulation images, and which are not the usual gauge
symmetries [126, 77, 470].

11.4.1 T-duality
The first examples of duality were discovered more-or-less accidentally, whereby this research re-
minds us of experimental physics where the first task is to find as many examples as possible so
as to perceive the common properties, so as to then seek the basic principles of this phenomenon.
Although there exist many seemingly different examples of T-duality, it turns out that this is one of
the simpler classes of duality, and that other types of duality are progressively more and more un-
usual – from the vantage point of the well-known general properties in previously known physical
models. This of course merely points to the fact that the (M- and F-theory extended) (super)string
theoretical system has radically new, unknown and unexpected properties.

R→1/R duality
The first signal of this multiplicity is the so-called R → 1/R duality, which is described in detail in
textbooks [434, 594, 46]. This is an essential consequence of the fact that strings are not point-like
and that the relation between strings and the spacetime through which they move is very different
from the analogous relation for point-like particles.
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Let the ı̂th spacetime coordinate (for some fixed ı̂ > 0) be periodic and closed into a circle of
circumference 2πR. To a string that propagates through such a spacetime, the coordinate field in
this periodic direction must satisfy the same periodicity condition:

Xı̂(τ, σ) " Xı̂(τ, σ) + 2πw R, w ∈ Z, (11.52)

where w counts how many times the string is wrapped around the circle of the periodic coordinate.
This periodicity changes neither the Hamilton action nor the Lagrangian density, but imposes the
linear momentum quantization in the direction of the periodic (compact) coordinate:

pı̂ n =
nh̄
R

, n ∈ Z, fixed ı̂. (11.53)

The proper generalization of the relation (3.36) gives the square of the Lorentz-invariant mass of
that string [434, 594] as

m2c2 =
n2 h̄2

R2 +
w2R2

α′2 h̄2c4
+

2
α′c2

(
NL + NR − 2

)
, (11.54)

where NL and NR are the total excitation numbers for the left-moving and the right-moving os-
cillators (11.38), respectively, counting only oscillators that are transversal to the worldsheet and
which satisfy the condition

nw + NR − NL = 0. (11.55)

Manifestly, the relations (11.54)–(11.55) remain unchanged under the exchange

n ↔ w, and R ↔ α′ h̄2c2

R
=

�S
2

R
, (11.56)

which implies that string models do not distinguish between spacetimes in which a periodic coor-
dinate describes a circle of circumference 2πR and those with a circle of circumference 2π(�S

2/R).
For a complete proof of this equivalence according to the diagram in Figure 11.6 on p. 426, see
Chapter 8 in the textbook [434, Vol. 1].

Manifestly, if R < �S, then (�S
2/R) > �S. Thus, a spacetime with a compact dimension

that is smaller than the string characteristic size, �S ∼ 10−35 m, is equivalent to a spacetime where
the compact dimension is reciprocally larger than this characteristic length. In this sense, com-
pact dimensions cannot be “too small” to be “seen” by strings – which is exactly the opposite
behavior from that in “pointillist” models, for which �P ∼ 10−35 m is the minimal discernible
distance [☞ Section 1.3].

This duality between “big” and reciprocally “small” dimensions is called the T-duality, in that
the target space in which the coordinates are all periodic has the geometry of a torus, Tn :=
S1 × · · · × S1 (with n factors).

Mirror duality, again
Mirror duality, discussed in Section 11.3.2, was first discovered as a relation between two Calabi–
Yau compactification models that use two very concrete constructions [236]: the first Calabi–Yau
manifold, X, is the space of solutions to the algebraic equation

5

∑
i=1

z 5
i = 0, zi ∈ C, (z1, . . . , z5) " (λz1, . . . ,λz5), 0 �= λ ∈ C. (11.57)

The other Calabi–Yau manifold is obtained as the quotient space Y = X/(Z5 ×Z5 ×Z5), where
each factor Z5 denotes an independent symmetry of the fifth order, such as the transformation

(z1, z2, . . . , z5) " (ω1z1,ω2z2, . . . ,ω5z5), ω := e2πi/5, ω5 = 1. (11.58)
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It may be computed [236, 279] that h1,1(X) = 1 = h2,1(Y) and h2,1(X) = 101 = h1,1(Y), which
is an indication of the “mirror duality” X ↔ Y. The complete proof [236] is much more detailed
and requires showing that compactifications on the manifolds X and Y are physically equiva-
lent, in the sense of the diagram in Figure 11.6 on p. 426. This construction of an explicit pair of
mirror-dual Calabi–Yau manifolds was soon generalized in several different ways, and Andy Stro-
minger, Shing-Tung Yau and Eric Zaslow had by 1996 proven that all such pairs are special cases
of T-duality [501]. Complementary to this research, done from the perspective of the spacetime
through which the string moves, models in (1+1)-dimensional worldsheet spacetime were also
soon constructed that completely reproduce the mirror duality [188, 371, 192].

— ❦ —

In all these examples, many of the geometric and topological properties of the space X and its
T-dual space XT are different, but dim(XT) = dim(X). Even this need not be the case in other
types of duality.

11.4.2 Gauss’s law and its consequences
The insight that the Einstein equations are the analogue of Gauss’s law for the gauge symmetry of
general coordinate reparametrizations motivates a re-examination of Gauss’s law for the various
possible cases.

Electric and magnetic sources in 4-dimensional spacetime
Electric charge is – in principle – measured by means of measuring the total flux of the electric
field through a closed (Gaussian) surface that encloses the given charge distribution. From the
practical application of this (Gauss’s) law in electrostatics, we know that for the electric field
the smallest possible electric charge is point-like, i.e., 0-dimensional. Of course, a collection of
point-like charges may well form a linear, surface or volume distribution of charges, as most often
observed in Nature. However, the point here is that nothing in the structure of electrodynamics
obstructs an electric charge from being as little as 0-dimensional.

Analogously, the same thought-experiment/measuring may also be set up for a magnetic
field, and it follows that the smallest possible magnetic charge is also point-like – as discussed in
Section 5.2.3. The fact that point-like magnetic charges (magnetic monopoles) are not observed
in Nature is then a puzzling property of our particular Nature, even if we take into account the
relativity of what is called “electric” and what “magnetic” [☞ Conclusion 5.4 on p. 185] ☞ .

In preparation to re-examine this fact in the more general case, consider in a bit more detail
how the application of Gauss’s law produces the minimal dimension (= 0) for electric and magnetic
charges in (3+1)-dimensional spacetime.

Using the 4-vector notation (5.73), the components of the electric field are identified as Ei =
F0i. The flux of the electric field is maximal when measured (integrated) over a surface of which
the tangent plane at every point is orthogonal to the direction of the electric field. (As the electric
field is a 3-vector, in 3-dimensional space the orthogonal subspace is of course a 2-dimensional
surface.) The Gaussian integral over the closed surface (2-dimensional sphere) is then written

ΦE :=
∮

SG

d2�σ · �E =
∮

SG

d2σi Ei =
∮

SG

d2σi F0i =
∮

SG

dxμdxν εμν0i F0i. (11.59)

Owing to the defining properties of the Levi-Civita symbol, εμνρσ := εμνκλη
κρηλσ, we know that

μ, ν �= 0, i, i.e., that dxμ and dxν are differentials of coordinates that are, in every point of the
Gaussian surface SG, orthogonal to the direction of the electric field Ei, as well as to the direction
of time – i.e., they are constant in time. As the electric field �E is directed from the source (positive
electric charge) or towards the sink (negative electric charge), the Gaussian surface SG can then be
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shrunk “radially” – along the ith coordinate in equation (11.59) – to the source/sink of the �E-field,
electric charge itself. The dimension of this source/sink then must be equal to

dim(ρe) � dim(space) − dim(SG) − dim(radius) = 3 − 2 − 1 = 0. (11.60)

That is, electric charges may well be as little as 0-dimensional (point-like).
The components of the magnetic field are identified as Bi := 1

2 ε
ikFjk = 1

2 ε
0ikFjk, i.e., Fjk =

Biε0ik, so unlike equation (11.59), for the magnetic flux we have

ΦM :=
∮

S′G
d2σi Bi =

∮
S′G

dxidxj Bk ε0ijk =
∮

S′G
dxjdxk Fjk

=
∮

S′G
dxμdxν εμν0i

(
1
2 ε

0ijk Fjk
) (5.85)=

∮
S′G

dxμdxν εμν0i
(∗F0i). (11.61)

Again, the use of the Levi-Civita symbol ε0ijk guarantees that dxi, dxj and Bk are mutually orthog-
onal. The Gaussian surface S′

G again may be shrunk “radially” to the magnetic charge itself, the
dimension of which then must be equal to

dim(ρm) � dim(space) − dim(S′
G) − dim(radius) = 3 − 2 − 1 = 0. (11.62)

Thus, in (3+1)-dimensional spacetime the sources (or sinks) of both electric and magnetic fields
may be as little as 0-dimensional (point-like). Notice the similarity between equations (11.59)
and (11.61) owing to the fact that both Fμν and its dual, ∗Fμν, are rank-2 tensors.

Sources for gauge fields in n-dimensional spacetime
The above analysis probably seems unnecessarily complicated for such an “obvious” result.
However, in more than (3+1)-dimensional spacetime, the results are less obvious.

In n-dimensional spacetime, the electric flux is

ΦE :=
∮

SG

dxμ1 · · · dxμn−2 εμ1···μnη
μn−10ημni F0i, (11.63a)

dim(ρe) � (n−1) − (
n−2

)− 1 = 0 : ⇒ point-like electric charges. (11.63b)

The magnetic flux (writing (∗F)ρ1···ρn−2 := 1
2 ε
ρ1···ρn−2 jk Fjk) is

ΦM :=
∮

SG

dxμdxν 1
(n−2)! εμνρ1···ρn−2 (∗F)ρ1···ρn−2 , (11.64a)

dim(ρm) � (n−1) − (2) − 1 = n−4 : ⇒ (n−4)-dimensional magnetic charges. (11.64b)

Thus, in spacetime of more than 3 + 1 dimensions, the magnetic sources/sinks may no longer
be point-like. This follows from the fact that in n-dimensional spacetime the components of the
magnetic field are identified with the components of the dual tensor:

Ei := F0i, but Bi1···in−3 := ε0i1···in−3 jkFjk, (11.65)

so the components of the electric field always form a spatial vector, but the components of the
magnetic field form a spatial rank-(n−3) tensor: A rank-r tensor “emanates” radially from the
source (or towards a sink) that is therefore (r−1)-dimensional.

In string models for the first time there routinely also appear gauge fields for which the gauge
potential itself is an antisymmetric rank-r spacetime (Lorentz) tensor, Aμ1···μr (x). The gauge fields
are then defined using the rank-(r+1) tensor:

Ei1···ir := F0i1···ir , Aμ1···μr := A[μ1···μr ], (11.66)
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Bi1···in−r−2 := ε0 i1···in−r−2 j1···jr+1 Fj1···jr+1 , Fμ1μ2···μr+1 := ∂[μ1
Aμ2···μr+1] (11.67)

where the square brackets around the indices denote total antisymmetrization [☞ the lexicon entry,
in Appendix B.1]:

a[μbν] := 1
2

(
aμbν − aνbμ

)
= 1

2!(n−2)! εμνρ1···ρn−2 ε
κλρ1···ρn−2 aκbλ, (11.68a)

a[μbνcρ] := 1
3!

(
a[μbν]cρ + a[ρbμ]cν + a[νbρ]cμ

)
= 1

3!(n−3)! εμνρσ1···σn−3 ε
ικλσ1···σn−2 aιbκcλ, etc. (11.68b)

These imply the generalization of the relations (11.63b) and (11.64b):

Conclusion 11.6 The minimal dimensions of the electric and magnetic charges in n-dimen-
sional spacetime for gauge interactions with a rank-r gauge potential are

dim(ρe) �
(
(n−1)

)− (
n−(r+1)

)− 1 = r − 1 : electric (r−1)-branes; (11.69a)

dim(ρm) �
(
(n−1)

)− (
r+1

)− 1 = n − r − 3 : magnetic (n−r−3)-branes. (11.69b)

For neither of these to become negative, it follows that

0 �
[
p := (r−1)

]
� (n−4). (11.70)

The upper limit is then always taken to be (n−4) = 7, corresponding to n = 11 in the
M-theory extension of string theory. It is not clear if the F-theory extension could also
permit 8-branes, but 7-branes certainly do play a key role in the original definition of F-
theory [530].

Comment 11.2 Note that all branes have a tension that is determined by a relation of the
type (11.7), and that the largest branes have n−4 spatial dimensions. Such branes can then
“trap” n−4 dimensions of space, obstructing their expansion during the Big Bang, which
provides the possibility of a dynamical explanation of the fact that only 4 dimensions of
spacetime have characteristic scales of cosmic proportions, while the remaining n−4 spatial
dimensions may have a size of the order of the Planck length, �P – thus supporting the
compactification type of spacetime geometry.

This image is supported by the example of the vibrations and motion of a closed string
(as a 1-brane): The vibrations of the string are not limited by the string tension except in
the “radial” direction, which would significantly change the length/circumference of the
string itself. The range of motion of a closed string may thus be parametrized by (1) a
“radial” coordinate that is effectively and naturally “trapped” to be within the order of
magnitude of �P, and (2) one or more “transversal” coordinates that are not so limited. In
this perspective [☞ Section 11.2.3], spacetime is indeed spanned/generated by the modes
of string motion/oscillation, and the range of these oscillations thus describes the geometry
of this generated spacetime as effectively compactified in the “radial” direction but flat in
the “transversal” directions.

Thus, the electro-magnetic duality then implies that the observable dynamics of electric
(r−1)-branes is dual to the dynamics of magnetic (n−r−3)-branes – although these are in most
cases objects of differing dimensions. For example, for rank-2 antisymmetric tensor gauge poten-
tials, Aμν = −Aνμ, so that Fμνρ := (∂[μAνρ]) = 1

3 (∂μAνρ + ∂νAρμ + ∂ρAμν), we have that r = 2, so

dim(ρe) � 1, dim(ρm) � (n−5). (11.71)
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Electric charges are then at least 1-dimensional (linear, filamentary distributions), and magnetic
charges are at least (n−5)-dimensional – point-like in (4+1)-dimensional spacetime, but linear in
(5+1)-dimensional spacetime, etc.

For all these generalized abelian (commutative) fluxes, one defines

d := dxμ∂μ, A(r) := dxμ1 · · · dxμr Aμ1···μr (x), (11.72a)

F(r+1) := dA(r) := dxμ1 · · · dxμr+1
[
Fμ1···μr+1(x) :=

(
∂[μ1

Aμ2···μr+1](x)
)]

. (11.72b)

Then, by direct generalization of the Dirac dual charge quantization condition (5.112), one obtains

q(r)
e

∫
S

F(r+1) = q(r)
e

∮
∂S

A(r)
!= 2π n(r) ∈ 2πZ, ∀S, dim(S) = (r+1). (11.73a)

However, the duality between the magnetic and electric fields in F(r+1) then implies also

q(n−r−2)
m

∫
S′

(∗F)(n−r−1) = q(n−r−2)
m

∮
∂S′

(Ã)(n−r−2)
!= 2π n(n−r−2) ∈ 2πZ, (11.73b)

for every (n−r−1)-dimensional subspace S′ ⊂ X of the spacetime X in which the magnetic
charge is or moves; following Comment 5.6, we define Ã to satisfy ∗F = d∧Ã.

These two quantization relations (11.73) of course produce the same generalization of the
result (5.108). The important novelty follows from its application in cases when the total spacetime
is a product, X = X ′ ×Y , and the pair of quantization conditions (11.73) may be applied using
(iteratively) the dualization (denoted by the symbol ∗) independently within either one of the three
spaces, X , X ′ and/or Y . For example, if dim(X ) = 10, dim(X ′) = 4 and dim(Y ) = 6, we
have

F(r+1), (∗X F)(10−r−1), (∗X ′F)(4−r−1), (∗Y F)(6−r−1) (11.74)

at our disposal, as well as the independent charge-quantization for all these fields. This property
was first noticed in 1996 [500], and four years later it was shown that this condition, within
the string theoretical system, implies the quantization of many quantities that are continuous in
pointillist theories. The resulting discrete available space of models is thus dubbed (in distinction
from continuum) discretuum [74].

Comment 11.3 Interestingly, string models are being applied, fully in the spirit of Sec-
tion 11.1, also in areas of physics that seemingly have no relation with either (relativistic)
elementary particle fundamental physics or cosmology, but where experiments are possible
and even rather easily accessible [☞ for example, Refs. [529, 337], for starters].

Swamp and landscape
In the first decade of the twenty-first century, a trend was noticed in several general properties in
the (M- and F-theory extended) (super)string theoretical system, which distinguishes this theoret-
ical system from the pointillist theoretical system.33 Conceptual differences are mostly in favor of
the stringy models, although they are technically (much more) demanding.

Wherever possible, one can compare the “volume” of the space of possible models within the
string theoretical system with the corresponding result for the pointillist models. For example, in
a model where a scalar field appears, one may inquire how big is the space in which the scalar
field takes values. To this end, we need a preferred “volume” measure, which usually follows from

33 The nomenclature is necessarily imprecise here: The theoretical system of strings necessarily also includes various
irreducible p-branes (of various origins, of various properties and also for various values of 0 � p � 7 or perhaps � 8),
and even 0-branes that are really point-like objects; “theoretical system of strings and things” thus does seem to be a
nitpickingly correct name. By contrast, in pointillist models, all spatially extended objects (and charge distributions as
well as fields) may be reduced to collections of functions that depend on the coordinates of only one spacetime point.
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the (preferred) choice of the metric tensor on the space of values of this scalar field, and the same
choice then also dictates the dynamics in the given model. (Notice that such questions were rarely
if ever raised before the advent of string theory.) The “physically preferred choice” is thus obtained
by reverse reasoning:

field dynamics → metric on the
space of field values

→ volume element for the
space of field values.

(11.75)

Even in the case of a periodic dimension of radius R [☞ first part of Section 11.4.1], strings
effectively “reduce” the space of possible radii, M(R), to the semi-infinite interval R ∈ [�S, ∞),
which is equivalent to the interval R ∈ (0, �S], and the “volume” of which Vol(M(R)) = | ∫ �S

0
dr
r | =

| ∫ ∞
�S

dr
r | diverges but only logarithmically, and only at the limit R → 0, which is dual to the infinitely

large radius where periodicity fails to make sense. By contrast, pointillist models have no reason
for excluding any part of the whole interval R ∈ [0, ∞), except that in the limiting case R → ∞
periodicity fails to make sense; however, the limiting case R → 0 now effectively corresponds to a
new model with spacetime of one fewer dimensions.

The interval [0, ∞) is thus the parametric space of every pointillist model with one periodic
coordinate – together with the limiting case R = 0, which in fact represents a radically different
model. By contrast, the interval [�S, ∞) is the parametric space for stringy models with one periodic
coordinate – and does not include the lower-dimensional “stowaway.”

Even better motivated is the case of a so-called modulus34 in Calabi–Yau compactifications,
including the so-called dilaton–axion (complex) scalar field, where various dualities help to reduce
the otherwise infinite space of choices of values for this field to a space of finite volume. Besides,
every concrete compactification has a finite number of parameters, and so – for every compacti-
fication model – the total number of choices is described by a space of which the volume in the
Weil–Petersson–Zamolodchikov metric [89, and references therein] is finite [522, 348], just as
was the case for the much simpler torus compactifications, where Y in the decomposition (11.41)
is a real 6-dimensional torus.

Conclusion 11.7 From the ever more rigorously verified property that the (M- and F-theory
extended) (super)string theoretical system consists of a discretuum (and not a continuum)
of models,35 it follows that the string theoretical system is a far better defined theoretical
system than any pointillist theoretical system.

This induced the picturesque vision [531] where the vast majority of models that can be
constructed within classical, (in various ways) incompletely quantum and/or quantum but non
general-relativistic physics form a swamp, from which emerge the models that are completely quan-
tum and general-relativistically consistent, and which form the landscape. These latter models, or
at least their non-empty subset, one believes are string models.

Of course, for our Nature, one believes it to be described by some model within the landscape,
and the problem is “only” that there are so many models that one does not know where to start
looking.

AdS/CFT, i.e., gravity/gauge duality
The idea of duality has, for the first time, clearly been manifested in the example of the particle–
wave duality in the creation of standard quantum physics – which belongs to the pointillist

34 Moduli are scalar fields, the expectation values of which parametrize the geometrical characteristics of the compactifica-
tion Calabi–Yau spaces, such as the choice of the complex structure and of the complexified Kähler class. More generally,
the analogous reasoning may apply to all parameters in stringy models [☞ the structure (11.35)].

35 Conceptually, all limitations on the theoretical system that indicate the discreteness of the string theoretical system
follow from a combination of quantumness and general relativity of Nature.
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theoretical system. The electro-magnetic duality – although in fact part of the classical theory –
has acquired a wide application only through its generalization within stringy models and their
M- and F-theory extensions, where it indicates that neither the dimension of mathematical objects
used to represent physical objects nor the dimension of spacetime in which these objects move and
interact are inviolable and sacrosanct constants.

Within the theoretical system of strings, however, a duality was discovered in 1997 that
relates string models with point-particle quantum field theory, the so-called AdS/CFT dual-
ity [354, 440]. By now, this duality has been generalized to many other examples, into a general
gravity/gauge duality [☞ lecture notes [437], where this phenomenon was related to a loophole
in the Weinberg–Witten theorem 6.1 on p. 249]. The general characteristic of the gravity/gauge
dual examples is the identity between the physical observables and relations between them, for
two models that were obtained as different limiting cases of the same superstring model, where

1. one limiting case represents a superstring model with the spacetime geometry that contains
an (n + 1)-dimensional anti de Sitter factor [☞ definition (9.81)],

2. the other limiting case is a point-particle supersymmetric gauge theory, the degrees of
freedom of which are “trapped” at the (n−1)+1-dimensional conformal boundary (with
the Minkowski metric) of the anti de Sitter space [☞ expression (9.83) and the related
discussion].

Contemporary (at the beginning of the twenty-first century) understanding of the string the-
oretical system contains both the consistent and the absolutely comprehensive application of both
(1) the gauge principle and (2) the principle of source/sink completeness [☞ [31] and references
therein]:

Conclusion 11.8 (conjecture) In consistent quantum models with gravity, (1) all symme-
tries are gauged, and (2) all sources/sinks (electric and magnetic) for all gauge fields are
included and satisfy the appropriate generalization of the Dirac dual charge quantization
condition [☞ Section 5.2.3 and relation (5.108)].

This conclusion is so far the strictest known formulation of fundamental limitations on models in
the string theoretical system, and so far has the status of a very strong conjecture: in spite of very
strong indications, there is no rigorous proof (as yet)☞ [☞ also the discussion in the Polchinski–
Smolin debate [429, 435]].

The early twenty-first century understanding of the so-called string theory – and especially
with its M- and F-theory extensions – is by far not “just a theory.” Just as classical and statistical
mechanics are (axiomatic) theoretical systems that provide a conceptual and technical framework
for addressing large classes of respective phenomena, so is “string theory” also a theoretical system
and not a (single) theory. In fact, “string theory” includes three major theories: quantum theory,
gauge theory and the theory of relativity, and is moreover the one known framework that unifies
them in a coherent, cohesive and logically consistent fashion.

While all these considerations in no way oblige Nature to be describable within the string
theoretical system, they do make it our best candidate, ever.

Discrete spacetime
The whole basis of the Democritean atomistic worldview relies on the idea that – everyday sensory
experiences to the contrary – matter is not continuous, but consists of an immense number of
very teeny elementary particles. The fundamental physics of the twentieth century, and foremost
quantum physics, convinces us that all existent matter, including also the interaction fields, may
be described in this same atomistic fashion:
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Conclusion 11.9 All “ingredients” of the Standard Model [☞ Section 7.3.3] and including
the gravitational field [☞ Chapter 9] are represented by quantum fields, i.e., elementary
particles [☞ the lexicon entry, in Appendix B.1, entries for field (physical) and quantum ,
as well as Footnote 17 on p. 196].

Thus, there is no logical obstruction for spacetime to also be discrete. For example, from the
worldsheet perspective of the string theoretical system, target spacetime is simply the space of
values spanned (dynamically generated) by the coordinate fields such as Xμ(ξ) in the Polyakov
action (11.10).

The idea that spacetime is (at least in some directions) not in fact a continuous, commuta-
tive topological space is not new [☞ e.g., [130, 92, 361] and references therein]. One of many
and various possibilities is very close to the computational method that is used in so-called “lattice
QCD” [☞ description on p. 230]. The results of recent experiments in the LHC installation at CERN
seem to lend support to a variant of this idea [374, 14, 13]. Here, in the simplest model, spacetime
literally has the lattice structure of a crystal, in the sense that it consists of discrete points through
which all material objects pass as if those points are ordered at constant distances and in uniform
directions, just like atoms in crystalline lattices. Note that this is a very radical idea where the aux-
iliary space (the one throughout which the points of the true spacetime are distributed in regularly
periodic and uniform fashion as a crystalline lattice) is a purely fictitious structure. If we further
assume that the points in this “crystalline” spacetime are ordered akin to Cartesian directions and
that the distances between the points in different directions are significantly different,

Lz 
 Ly 
 Lx 
 Lct, (11.76)

then, denoting λdB the de Broglie wavelength, we have that:

1. to probes with λdB > Lz; spacetime appears continuous and 3+1 dimensional;
2. to probes with Lz > λdB > Ly the whole spacetime appears to be a vertical stack (uniform

sequence) of horizontal and continuous (2 + 1)-dimensional (surface) spacetimes;
3. to probes with Ly > λdB > Lx the whole spacetime appears to be a two-directional stack of

horizontal and continuous (1 + 1)-dimensional (linear) spacetimes;
4. to probes with Lx > λdB > Lct the whole spacetime appears to be a three-directional stack

of (0 + 1)-dimensional space-like arrangement of points with (still) a continuous passage of
time;

5. to probes with Lct > λdB the whole spacetime appears to be a four-directional stack of
spacetime points, i.e., disconnected events.

Amusingly, such a discrete structure of spacetime is implied by the assumption that the space
of conjugate momenta is compact. This concrete Cartesian “crystalline” structure is simply ob-
tained, e.g., in the momentum representation of quantum mechanics where one imposes periodic
conditions to the linear momenta,36 which gives to the momentum space the geometry of a 3-
dimensional torus, the radii proportional to the reciprocals of the distances L−1

x , L−1
y and L−1

z .
Evidently, more complicated (and for now ad hoc imposed) compact geometry of the 4-momentum
space then implies a more complicated structure of the discrete spacetime.

11.4.3 Lessons of fundamental physics as a model of nature
The duality between different – and even different-dimensional – models reminds us that the
picturesque formulation imagery at the foundation of a given model is merely a mental caricature
and image – a crutch – just as the hydrogen atom is merely represented/imagined as a point-like

36 Within non-relativistic quantum mechanics at least, it seems essentially contradictory to require periodicity of energy.
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electron orbiting a point-like proton. The real atom is not two point-like charges orbiting each
other, nor is the atom a charged standing wave undulating along a circle around an oppositely
charged point-particle, nor is the atom a negatively charged cloud centered on a positively charged
proton. . . Of course, such picturesque formulation imagery is very useful in describing the atom,
in that it dictates the construction of a corresponding mathematical model, which is then used to
“produce” predictions of the model – intending to compare those predictions with Nature.

The connection between the picturesque formulation imagery and the ultimate authority,
Nature, is very indirect, and so then is the justification of the formulation imagery, however impres-
sively picturesque it may be. It should thus come as no surprise that even very different formulation
images may turn out to produce models that agree equally with Nature [☞ Definition 11.3 on
p. 437, and the discussion after this definition; see also the recent work [222]].

The caution that “the map is not the territory” (Alfred Korzybsky) is perfectly in agreement
with this lesson, and omits the cultural–historical and perhaps even religious connotations of the
ancient Tao principle “The way you can go is not the real way. The name you can say is not the
real name” [527].

11.4.4 Exercises for Section 11.4

✎ 11.4.1 Verify the results (11.69).

✎ 11.4.2 Using the definitions (11.72), generalize the flux definitions (11.63a) and (11.64a)
for a rank-r antisymmetric gauge potential. Show the conditions (11.73a) and (11.73b) to
reproduce the same quantization condition for the product q(r)

e q(n−r−2)
m .

11.5 Instead of an epilogue: unified theory of everything
The fluffiness of clouds and the babbling of a brook are examples of emergent phenomena, which
is not within the domain of fundamental physics, but of the physics of collectives – and that is a
relatively new and emerging discipline in physics. The subject matter here is precisely the regularity
and circumstances wherein relatively simple basic rules and their theoretical systems may produce
(by means of nonlinear and/or self-interactive coupling) very complex phenomena.

For example, the basic laws of chemical bonds are relatively simple and stem from elemen-
tary quantum mechanics [☞ Schrödinger’s quotation on p. 13 and its discussion], but nevertheless
produce a fantastically diverse palette of an uncounted number of chemical compounds, as well
as different materials. These compounds and materials then, through their dynamics and interac-
tions, produce complex structures and behaviors that can in no particular sense or case be simply
and completely reduced to elementary quantum mechanics, although in a completely literal sense
they stem – draw roots – from it.

This reminds us of the fact that the stability, functionality and beauty of a palace are not
properties of its bricks, shingles and other materials of which the palace is built [☞ also the discus-
sion in Section 1.1.4]. Similarly, neither is the evolutionary role, nor the mimicry function or the
beauty of the complicated patterns on butterfly wings simply the “diffraction and coherent scatter-
ing of light,” although this is the basic mechanism for the appearance of most colors in the often
stunningly exquisite wings.

In a sense, akin to the term “epiphenomenon,” this new discipline could be called epiphysics.
On one hand, this new discipline would be concerned with phenomena that are beyond currently
familiar physics, and on the other, the subject matter of this new discipline would still be the Nature
(φύσις ≈ physis, Greek) of this next level of natural phenomena. However, it is important to keep
in mind that the demarcation between fundamental physics and this epiphysics must be hazy; in
the end, Nature is one [☞ Conclusion 11.2 on p. 409].
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The helix of learning has thus come full circle, and hopefully one floor higher: Bohr’s thought,
quoted in the Preface, on p. xi, resonates through the entire development of the fundamental
physics of elementary particles, appears explicitly also in the discussion around Digression 1.1 on
p. 9, then again in Section 8.3, and completely permeates Chapter 11 and especially Section 11.4.
At any rate, during the twentieth century, the fundamental physics of elementary particles has been
developing from a discipline in which one believed to have almost everything solved to a discipline
that is bound to separate into at least two or three separate disciplines within physics [☞ Sec-
tion 11.2], and possibly also into a discipline the subject matter of which is the structure of
(theoretical) physics itself. Evidently, within this development, a theoretical system has been dis-
covered within which there is hope of finding a description of the fundamentals of Nature, but this
has, en route, instructed us very pointedly about the very nature of our understanding of Nature.





Part IV

Appendices





A
Groups: structure and notation
In high energy theory one has plenty of opportunity to use results from group theory, for which
Ref. [488] is one of the most often used sources. We will be interested in linear representa-
tions of groups, i.e., the applications of abstract groups in the form of linear transformations
of a vector space, V. By specifying this vector space together with a basis, the group repre-
sentation is specified in the form of matrices that map vectors from V linearly into vectors
that are also in V. A telegraphically brief and cursory review of some of the useful re-
sults in group theory provided here cannot possibly compete with the serious sources such as
Refs. [565, 258, 287, 581, 201, 80, 333, 260, 334, 256, 447].

A.1 Groups: definitions and applications
This cluster of appendices describes the general algebraic structure of groups and in particular of
Lie groups, and then discusses the general properties of the application of groups in physics. This
is important for understanding the content of scientific models and their relation with Nature, for
the description of which these models were invented.

A.1.1 Axioms and a rough classification
We will need several group-theoretical and algebraic structures and their concrete applications,
and they are briefly described here.

Groups
A group G consists of a set of elements {a, b, c, . . . } equipped with a binary operation ∗ that satisfies
the following axioms (given here with a textual “translation” of the formal symbolism):

1. ∀a, b ∈ G, a ∗ b ∈ G; (A.1a)
For each ( ∀ ) two elements a, b from the group G, the result of the binary operation a ∗ b is also in
(∈ ) the group G, making the operation ∗ closed;

2. ∀a, b, c ∈ G, a ∗ (b ∗ c) = (a ∗ b) ∗ c; (A.1b)
The binary operation ∗ is associative, i.e., the result of a repeated application of the binary
operation ∗ is independent from the order in which the two operations are computed;

3. ∃e ∈ G, ∀a ∈ G : a ∗ e = e ∗ a = a; (A.1c)
There exists ( ∃ ) a neutral element ( e) of the group G, such that the results of the binary operations
a ∗ e and e ∗ a equal the original element a, for each ( ∀) a of the group G.
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4. ∀a ∈ G, ∃a−1 ∈ G : a ∗ a−1 = a−1 ∗ a = e. (A.1d)
For each ( ∀) element a of the group G, there exists ( ∀) an inverse element a−1 in the group, such
that the results of the binary operations a ∗ a−1 and a−1 ∗ a equal the neutral element, e.

Pedantically, it is not necessary to require that the neutral and the inverse elements are both-sided:
it suffices to require that there exist, say, the left-neutral element (1L ∗ a = a) and the left-inverse
element (a−1

L ∗ a = 1); the existence of the right-neutral element (a ∗ 1D = a) and the right-inverse
element (a ∗ a−1

D ), as well as the equalities (1L = 1D and a−1
L = a−1

D ) then follow [331, 332].
A group is called abelian (commutative) if the binary operation commutes: (a ∗ b) = (b ∗ a),

for each two a, b ∈ G; otherwise, the group is called non-abelian (non-commutative). A group G is
called additive if ∗ is an addition, and multiplicative if ∗ is a multiplication.

According to the number of their elements, groups are classified as:

1. Finite, with a finite number of elements. For example, Z2 = {1,−1; ·} is the multiplicative
group that consists of two elements, 1 and −1.

2. Countably infinite, with countably infinitely many elements. For example, {Z; +} is the
additive group of all (countably many) integers.

3. Continuous, with a continuum of elements, which are further subdivided as:
(a) Finite-dimensional. For example, U(1) is the multiplicative group of (complex) unitary

numbers,1 i.e., numbers of the form eiϕ, where ϕ " ϕ + 2π. The number of group
elements is continuously infinite, since there is one element for each of the continuously
many angles ϕ ∈ [0, 2π]. These angles evidently form a subset of the 1-dimensional real
axis, R1, and U(1) is a 1-dimensional group.

(b) Infinite-dimensional.2 For example, Diff(S1) is the multiplicative group of all diffeomor-
phisms (continuous reparametrizations) of the circle, which is a concrete example of
the group of general coordinate transformations [☞ Definition 9.1 on p. 319], useful
within the theoretical system of strings.

Coset
Besides groups, we also need the concept of a coset: For any group G and its subgroup H, the
(right) coset G/H consists of the elements

coset : G/H :=
{

g " g ∗ h : g ∈ G, h ∈ H
}

, (A.2)

where ∗ is the binary operation in the group G and in the subgroup H ⊂ G. In other words, the
coset elements are defined as equivalence classes “up to right ‘multiplication’ by elements from
H.” The left coset is defined similarly, and if the group G is abelian, the left and the right coset are
identical, of course.

This formal definition describes some very familiar examples:

Days of the week Consider the additive group of integers Z+ (which is abelian, i.e., commutative),
and its subgroup 7Z+, the additive group of integers that are divisible by 7. The coset Z7 :=
Z+/7Z+ is then defined as the additive group of equivalence classes of integers Z+, where
numbers n ∈ Z and n + k (for each k ∈ 7Z) are regarded as equivalent ("). The coset Z7
therefore consists of elements

[0 " 7 " 14 " . . . ], [1 " 8 " 15 " . . . ], [2 " 9 " 16 " . . . ], . . . (A.3)

which may be represented: {
[0], [1], [2], [3], [4], [5], [6]

}
= Z7, (A.4)

1 It follows that their modulus, i.e., absolute value is 1: z−1 = z∗ ⇒ 1 = z∗ z = |z|2 ⇒ |z| = 1, as |z| � 0.
2 These are further subdivided into several classes, but this will not concern us here.
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and where the classes [n] may be identified with the days of the week, [0]=Sunday,
[1]=Monday, etc. Indeed, seven days from Monday is again Monday, twenty-one days before
Saturday was again Saturday, 7n days from Tuesday is again Tuesday, etc.

Circle Consider the additive group of real numbers R+ and its subgroup of additive numbers
2πZ+, the elements of which are integral multiples of 2π. The coset R+/2πZ+ then may
be identified with the circle S1, as the coset R+/2πZ+ is parametrized by the equiva-
lence classes of real number [φ " φ + 2nπ], for each n ∈ Z, known as angles. Thus,
R+/2πZ+ ∼= S1.

It is useful to know that all n-dimensional spheres may be identified with the coset

Sn :=

{
x ∈ Rn+1 :

n

∑
i=0

x 2
i = r2

}
∼= SO(n+1)/ SO(n), (A.5)

where SO(n) is the group of real and orthogonal n×n matrices of determinant +1. For the details
of the isomorphism (∼=), the Reader is directed to the literature on Lie groups [565, 258, 581, 256,
80, 260, 333, 447].

Quotient space
The following generalization of the coset turns out to be very useful. Let V be a vector space over
the field k, and μ : V → V some mapping of that vector space into itself. One then says that

V/μ :=
{
[�v " μ(�v)] : v ∈ V

}
(A.6)

is a quotient space of the vector space V by the action of the mapping μ. The coset is then the
special case of the quotient space, where V is regarded as an additive group,3 and μ is a mapping
that preserves this structure, e.g.:

1. Adding integral linear combinations of a specified collection of vectors �wi ∈ V, i =
1, 2, 3, . . . ; indeed, the subset {n�v0 : n ∈ Z} evidently forms a subgroup of the additive
group V.
Example: The 2-dimensional torus T2 = R2/Λ, where Λ = {nL1ê1 + mL2ê2} is a Cartesian
lattice with spacings L1 and L2, which are then the circumferences of one and the other
circle in the torus.

2. (An)isotropic homothety: rescaling of the (basis) vectors

μ : (ê1, ê2, . . . ) → (λa1 ê1,λa2 ê2, . . . ) ∈ V (A.7)

where 0 �= λ ∈ k, and since�a = aiêi is an invariantly defined vector, the definition (A.7) is
in fact independent of the choice of a basis {ê1, ê2, . . . } ∈ V.
Example: The n-dimensional sphere Sn may be identified also with the quotient space
Rn+1/R∗

>0, where R∗
>0 is the multiplicative group of positive real numbers and the particular

action on Rn+1 is isotropic:

μ : (x0, x1, . . . ) �→ (λx0,λx1, . . . ), λ > 0. (A.8)

Every element Rn+1/R∗
>0 then looks like a ray in the (n+1)-dimensional space, starting

at the coordinate origin (not including the origin itself) to infinity (not including infinity).
Taking one point to represent each ray, e.g., at a same, fixed distance from the coordinate
origin, then gives the familiar image of the n-dimensional sphere.

3 The sum of any two vectors is again a vector; adding vectors is associative; �0 is the neutral element with respect to
addition; −�v is the “inverse” vector with respect to addition.
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Besides, the physical degrees of freedom in all gauge fields and potentials (including also
gravitation) always have the structure of a quotient space [☞ Examples 11.1–11.4, p. 416–417]:
the number of physical polarizations of a gauge particle is always smaller than the number of
components of the mathematical object (gauge 4-vector, metric tensor, etc.) that must be used to
represent the particle.

A.1.2 Lie groups
Of the finite-dimensional continuous groups, of special interest are the so-called Lie groups, G, the
elements of which may be written as g(a) := exp{i aj T j}, where summing over j is understood,
a := (a1, . . . , an) is an n-tuple of parameters, n the dimension of the group, and T j are the group
generators. Conversely, the group generators, T j, are obtained by linearizing:

T j := −i
∂g(a)
∂aj

∣∣∣
ak=0

. (A.9)

This means that the space of elements of every Lie group has a well-defined tangent plane in every
point, whereupon this group space is a smooth manifold, which locally looks like a Euclidean
n-dimensional space. The non-abelian structure of a group G reflects in the difference

1 − g(a) g(b) g(a)−1 g(b)−1 = aibj[Ti, T j] + · · · (A.10)

where “ . . . ” denotes contributions of higher order in parameters a, b.4 Since a product of group
elements must again be a group element, the product g(a) g(b) g(a)−1 g(b)−1 must be expressible
as g(c) = 1 + icjT j + · · · for some c, from which it follows that the generators Ti must satisfy the
relations [

T j , Tk
]

= i f jk
m Tm, (A.11a)

where the coefficients fij
k = − f ji

k are the group structure constants, and the binary operation [ , ]
is called the commutator, or the Lie bracket.

Definition A.1 Formally, the n-dimensional vector space A, the elements of which are of the
form ajT j, and for which the multiplicative operation

(ajT j) ∗ (bkTk) := ajbk[T j, Tk] = (i ajbk fjk
m)Tm ∈ A (A.11b)

is defined is called the algebra of the group G.

Comment A.1 Since both the Lie groups and the Lie algebras have continuously many ele-
ments, omitting (the action of) finitely many elements does not change the formal relation
between a group and its algebra, but it is important to account for such elements.

Example A.1 For example, the Pauli matrices

σ1 =
[

0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
(A.12)

may be used as generators of the group SU(2), the elements of which are of the form
exp

{
i ajσ

j}, and also as a basis for the su(2) algebra, the elements of which are of the

4 Recall that, in this book, n-vectors as a whole are denoted by upright letters, so a and b are n-vectors with components
ai and bi, i = 1, 2, . . . , n.
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form ajσ
j.5 On the other hand, the SU(2) group elements are defined (in its funda-

mental representation) as 2×2 unitary matrices with unit determinant. That certainly
includes both the 2×2 identity matrix 1 = exp{i O} that corresponds to the coordinate
origin in the a-space, a = (0, 0, 0). However, the SU(2) group also includes the element
−1 = exp{iπ1}, which is omitted in the relation between the SU(2) group and the
su(2) algebra, since π1 �= ajσσσσ

j, and π1 �⊂ su(2). Thus, although exp{i ajσ
j} differs from

SU(2) by continuously infinitely many elements of the form −1 exp{i ajσ
j}, all the omit-

ted elements may be recovered by multiplying (from left or from right) exp{i ajσ
j} by

−1, the action of which then is the one (and so finite) difference between SU(2) and
exp{i ajσ

j}.
Together, 1 ⊂ exp{i ajσ

j} and this omitted element, −1, form a multiplicative finite
subgroup of SU(2), denoted Z2 = {1,−1} ⊂ SU(2). The representations of the group
SU(2) that are eigenspaces of the exp{iπ1} element of this subgroup Z2 ⊂ SU(2) and
have the eigenvalue +1 are called tensorial, while the ones with the eigenspace −1 are
spinors. Notice that the choice a = (0, 0, φ) represents the rotation about the third axis;
by writing the standard generator as 1

2 σ3, we find this to represent a rotation by the angle
1
2φ – as befits, e.g., a 2-component spin- 1

2 wave-function, and which is why it changes sign
upon a 2π-rotation.

Whereas every algebra A gives rise to a group G by means of “exponentiating,” i.e., by
defining that g := exp{a} ∈ G for every a ∈ A, not infrequently the algebra A also contains a
multiplicative group A× with the algebra “multiplication” as the binary operation in A×. We thus
have the formal relation of these three structures A× ⊂ A

exp−−→ G.

Example A.2 Note that the {1, i,−1,−i}-multiples of the 2 × 2 identity matrix and the
Pauli matrices also form a multiplicative group of 16 elements:{

1, σ1, σ2, σ3, i1, iσ1, iσ2, iσ3,

− 1, −σ1, −σ2,−σ3, −i1, −iσ1, −iσ2, −iσ3}. (A.13)

Indeed, the Pauli matrices satisfy two relations:[
σ j , σk ] = 2i εjk

� σ�, as well as
{

σ j , σk } = 2 δjk 1, (A.14)

where {A, B} := A B + B A is the anticommutator. Thus, the formula

σ j σk = δjk 1 + iεjk
� σ� (A.15)

has, for each j, k = 1, 2, 3, precisely one element on the right-hand side. Thus, multiplying
Pauli matrices, one produces the identity matrix and i-multiples of the Pauli matrices, and
these must be added to the list of elements of the group. Multiplying in that extended
collection, one obtains the (−1)- and (−i)-multiples of the Pauli matrices as well as

5 The standard choice of using the halves of the Pauli matrices makes the structure constants equal to i-fold multiples
of the Levi-Civita symbol, the same algebra as the rotation generators, Lx := i(y ∂

∂z − z ∂
∂y ), etc. cyclically, so that

[L j, Lk ] = iεjk
�L�. Using the Pauli matrices instead, we have that [σ j, σk ] = 2i εjk

� σ�.
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(−1) and (i1), which also must be added to the list of elements. Multiplication within
that again-extended collection also yields the (−i1), and this completes the procedure
of closing the set: The 16 elements (A.13) form a group with respect to the familiar
matrix-multiplication.

For all semisimple Lie algebras,6 the Killing form

gjl := − f jk
m flm

k (A.16)

is positive-definite, and serves as a metric tensor, and defines

f jkl := f jk
m gml , (A.17)

which may be shown to be a totally antisymmetric tensor.

Digression A.1 It is worth noting that the relation (A.11a) determines only the antisym-
metric product of the generators. The symmetric product, the so-called anticommutator,
remains free to be specified separately:{

T j , Tk
}

= N δjk1 + 1
2 djk

m Tm, if the set
{

1, T1, . . . , Tn
}

is complete. (A.18a)

In any given representation, the vector space (representation) V of dimension r :=
dim(V) is given, upon which the operators T j act as r × r matrices, and the normalization
constant N depends on r. Also, these r × r matrices that play the role of the generators T j
typically satisfy certain additional conditions: they may be symmetric, Hermitian, trace-
less, etc. If the collection of matrix representatives {1, T1, . . . , Tn} is complete for the
specified type of matrices, the relation (A.18a) follows automatically. Otherwise, one ex-
pects that the anticommutators {T j, Tk} include matrices that cannot be represented as
the linear combination 1 and T j. Thus, both the existence of the relation (A.18a) and
then also the constants djk

m strongly depend on the representation of the generators T j.
If the additional relation (A.18a) exists, its combination with the relation (A.11a)

reduces
T j Tk = N δjk1 + (i f jk

m + 1
2 djk

m) Tm (A.18b)
to a linear combination of the identity 1 and algebra generators T j – which provides more
information than the abstract defining requirement of the Lie algebra (A.11a). Thus,
abstract Lie algebras include less structure than what their applications in physics not
infrequently have [☞ Section A.1.4].

A.1.3 Groups in (fundamental) physics
Every model of every physical system uses some collection of variables7 that quantify the system,
and imposes relations between those variables in the form of systems of equations and conditions
for those variables, appropriate for the physical system being described. That system of equa-
tions, together with all conditions on the domain of variables and the operators used to write

6 A Lie algebra A is semisimple if it has no abelian (commutative) direct summand, i.e., no abelian subalgebra that
commutes with the whole algebra A; for the precise statement, see Refs. [581, 256].

7 In this general description, “variables” includes every mathematical symbol that may have a value, thus, variables
include both arguments of some functions, as well as those functions, and various additional parameters.
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out the specified equations forms the mathematical model, M, of the physical system. In lieu of
experimental results against the model, one regards the model as adequately representing the
considered physical system, and one often identifies experimental results in routine conversation.
However, it is very important not to confuse in principle the components in this description of the
physical system [☞ Figure A.1].

( )

Mathematical model
of the physical system

Physical
system

observables

Physical system

Solution space of the
mathematical model

Figure A.1 Relations between the physical system and its observables, as well as the mathematical
model and its space of solutions. The smoothness of the mathematical side of this image indicates the
fundamental idealizations.

Symmetries of physics systems and symmetry breaking
The situation is actually more complicated than shown in Figure A.1. Namely, the observables in
realistic physical systems are usually not specified “once and for all,” and their improved definition
is an iterative process. In turn, in realistic cases, only some of the theoretically definable observ-
ables can be measured in practice, and this subset must be marked. Besides, real physical systems
often contain details that are either included in the mathematical model or neglected from it in
an iterative or layered fashion. The situation in realistic cases then looks more like the diagram in
Figure A.2.

( )
Solution space of the
mathematical model

Mathematical model
of the physical system

Measurable
results of the

model
M

Physical
system

observables

Physical system

E

Ma
of th

MMMM

tem

Figure A.2 Relations between the physical system and its observables, as well as the mathematical
model, its space of solutions, and their comparisons via experiments.

The collection and domain of variables and operators needed for the description of the
physical system usually permits certain changes of those variables and operators, without such
re-definitions affecting any concrete, measurable result for the physical system, and obtained by
means of this model. Alternatively, the model may be viewed as a mathematical system of equations
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and conditions, which defines the space of solutions of the system, i.e., the space of solutions of
the model, X (M) – regardless whether those solutions can be computed.

The procedure of changing those variables in a way that changes no measurable aspect of the
model is called a symmetry transformation of the model of the physical system, and the property
of the system that permits such a change is called a symmetry of the model, i.e., of the system
represented by the model. Similarly, instead of the physical system one may consider any system
of equations where the “aspect of measurability” need not have a specific meaning. A symmetry
is then by definition a transformation that does not change the space of solutions of the specified
mathematical model, i.e., the system of equations that represents a physical system. It is impor-
tant to conceptually distinguish the physical criterion for symmetries (the non-changing of the
collection of all measurable results) from the mathematical one (the non-changing of the space of
solutions to the given system). It is also important to note that both criteria are hard:

1. One cannot a priori know which physically measurable results may possibly exist in a
given model, even when these “observables” are “well defined” in general; for example,
in classical physics these are “all real Ck-functions over the phase space.”8

2. Most mathematical systems are insoluble. Indeed, for a randomly chosen system of (dif-
ferential and algebraic equation) one knows neither how to find or determine the exact
solution (“in closed form”), nor of an algorithm of an iterative method for obtaining such
a solution, and sometimes even all the known approximations do not suffice for a concrete
application. Moreover, it may well be the case that many mathematical systems are not
soluble even in principle.

In spite of that – in practice, and so in models that have so far been considered – it is not infre-
quently possible to definitively determine if a particular transformation is a symmetry of the system
or not. In addition, the models used in practice of course form an “infinitesimally” teeny subset of
all possible models, and they are chosen precisely so that – besides adequately representing the
interesting physical systems – they are “sufficiently soluble” so as to be of practical use.

Comment A.2 In addition, note that the concrete solutions often do not possess all the sym-
metries of the system that they solve. In that case, however, the symmetry of the system
transforms one concrete solution into another.

Symmetry transformations evidently satisfy the group axioms (A.1) when the binary opera-
tion of two transformations implies their successive application, and one thus speaks of symmetry
groups, in this mathematical sense. Also, because of this nature of application of group theory,
groups are always regarded as groups of concrete transformations within a concrete model, and
not as an abstract structure.

That also implies that by the “symmetry of a physical system” one in fact understands the sym-
metry of the model of that system, conditioned also by the approximations that have been applied
in the model by way of neglecting details of the physical system, and mathematical idealizations
in the model. As improvements to the model often add details that lessen the number and domain
of symmetries, improvements to the model reduce the symmetry group to a subgroup G1 of the
original group G0. One says that the additional details break the original group into its subgroup,
G1 ⊂ G0. Although only G1 is then the “real” symmetry group, the extended structure G1 ⊂ G0
provides useful additional information about the model. Not infrequently, the improvements to the

8 The choice of k and the type of functions (C0-functions are continuous, C1-functions are smooth, etc.) depends on the
requirements in a concrete application. In classical physics, one usually restricts to C2-functions, as the equations of
motion are differential equations of second order, and at least the second derivatives need to be well defined. However,
more detailed requirements in the analysis of deformations require higher derivatives, so the required function type
must be adapted.
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model may be organized iteratively, corresponding to a chain G2 ⊂ G1 ⊂ G0 of subgroups, which
may have an alternative G2 ⊂ G′

1 ⊂ G0. The entire web of such chains of subgroups provides a
hierarchy of model improvements, which corresponds to a hierarchy of physical phenomena and
corresponding corrections to measurable results of the model, such as energy.

A simple example
As an illustration of the ideas and concepts depicted in Figure A.2 on p. 457, consider the very
familiar example:

F = m a = m
d2x
dt2 , with the conditions x|t=t0 = x0,

dx
dt

∣∣∣
t=t0

= v0. (A.19)

In the familiar application of these equations, F and m are parameters in the problem; respectively,
the force that acts upon a given body and the mass (measure of inertia) of that body. The function
of time, x = x(t), is the position of the body, and x0, v0 are boundary (initial) conditions.

The physical system of all bodies of mass m under the action of a force F is thus represented by
the model M, which is the abstraction and simplification of the physical system and which consists
of the differential equation (A.19) together with the conditions x0, v0 that specify the concrete
conditions of a concrete body in a concrete situation to which the model may be applied.9

The mathematical solution of this model (assuming that F and m are independent of time) is
the function

x = x(t) = x0 + v0 (t−t0) +
F

2m
(t−t0)2, (A.20)

so the space of mathematical solutions is the abstract space X (M ), of the four-parameter family of
functions x = x(t; F, m, x0, v0). Since the t-dependence is determined by the equation (A.20), this
space of mathematical solutions has four dimensions, with the coordinates F, m, x0, v0. The phase
diagram is the partitioning of this 4-dimensional space into regions where the model behaves
uniformly, and where the passage from one region into another – through some interface region –
represents a phase transition in the system.

Similarly named, but something entirely different, is the phase space, Φ. For this system,
this is the 2-dimensional space parametrized by the values of the pair of functions

(
x(t), p(t)

)
,

where p(t) := m dx
dt . The motion of the body sweeps a path in Φ, parametrized by time. The space

of physical observables is then the infinite-dimensional space of all (continuous, and if desired
perhaps also analytic and/or square-integrable, etc.) real functions M (Φ) over the 2-dimensional
phase space Φ.

Finally, the space of measurable model results, R(M ), is – in principle – a subspace of the
space M (Φ); see Figure A.3. In this simple model, however, every element of the space M (Φ)
in fact may be represented as a model result, the question is only whether it is experimentally
possible to directly measure that result: Namely, it may be that the result must be “factored” into
factors and/or summands, which one measures directly and which are then “put together” into
the indirectly “measured” complex result – but our goal here is not to delve into the details of
experimental methods.10 For the model (A.19), in fact, R(M ) = M (Φ), i.e., every observable
of this physical system may in fact be represented by an (in principle measurable) result of the
model (A.19).
Some symmetries: Assuming that the mass of the body is an absolute constant, the differential
equation (A.19) has (among others, also) two independent symmetries:

P :
{x

F
→
→

−x,
−F; (A.21a)

9 Model (A.19) neglects whatever friction may exist, the resistance of the medium through which the body may be
moving, etc.

10 For example, even a relatively simple observable such as speed is usually not measured directly, but one measures
independently the observables of “traversed distance” and “elapsed time,” and speed is then computed as their ratio.
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( )

( )

( )
F

E

Physical system

Figure A.3 Relations between the physical system (a body of mass m under the influence of the force F)
and its observables, its mathematical model, the space of solutions thereof and the measurable results
of this model, as well as their comparisons via experiments. The reason for the relation R(M ) �M (Φ)
is evident: there exist real functions over the phase space Φ = {x, px} which are therefore observables
in the formal sense, but for which no one knows how such a function in fact might be measured,
whereupon they do not belong to R(M ).

Tτ : t → t + τ, τ ∈ R. (A.21b)

The operation P is the mirror reflection of one of the spatial coordinates, which is in 3-dimensional
space equivalent to the reflection of all three coordinates through the coordinate original. Its phys-
ical meaning is that one is free to pick the direction of measuring the position x either to the right
or to the left, from some initially specified point identified as the coordinate origin. Of course, a
change of this convention requires the sign of the force to also be changed simultaneously and cor-
respondingly. The other symmetry, Tτ, is the time-translation. The solution (A.20) is also invariant
with respect to the first of these two symmetries if the parameters (the integration constants) x0, v0
simultaneously satisfy

P :
{ x0 → −x0,

v0 → −v0,
(A.22)

which is in agreement with the definition x0, v0 as the position and speed in the t = t0 moment:
if the convention of measuring positions is changed from right-ward to left-ward, all quantities
x(t), x0, v0, F evidently change signs. With respect to the simultaneous action of the operation P,
specified by the relations (A.21)–(A.22), both the system (A.19) and its solutions (A.20) – each a
solution by itself! – are invariant with respect to P, i.e., this transformation is a symmetry in the
most direct sense.

On the other hand, the physical interpretation of the time-translation is that the behavior
of the system does not depend on when we begin to measure time, and this is a symmetry in a
slightly indirect sense. Namely, from the fact that the function (A.20) remains a solution of the
system (A.19) although it is not invariant under the action of T,11 it follows that the solutions of a

11 The constant t0 does not change under the action of the operation T – indeed, t0 is chosen so as to be an absolute
constant that specifies the beginning of time measurements for the purposes of the applications of the model to a
concrete physical model.
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system need not possess all the symmetries of the system [☞ Comment A.2 on p. 458]. However,
with t0 as a fixed constant, we have

Tτ : t0 → t′0 := t0 + τ, (A.23)

x(t; t0) = x0 + v0(t−t0) +
F

2m
(t−t0)2

→ x(t; t′0) =
(

x0−v0τ+
F

2m
τ2︸ ︷︷ ︸

x′0

)
+

(
v0− F

m
τ︸ ︷︷ ︸

v′0

)
(t−t0) +

F
2m

(t−t0)2. (A.24)

Indeed, the symmetry transformation of the system (A.19) changes the integration constants and
turns the solution where the time measurement began at t0, into the solution where the time
measurement began at t′0. Thereby, the symmetry Tτ of the system (A.19) is not a symmetry of
a concrete solution (A.20), but transforms one concrete solution into another concrete solution.
Thus, the transformation (A.19) is a symmetry of the entire space of solutions, X (M ).

Symmetries and conservation laws In classical physics, the implications of such symmetries are the
content of the (Amalie Emmy) Noether theorem, whereby in classical physics and briefly:

Theorem A.1 (Amalie Emmy Noether) Every continuous symmetry has a corresponding cur-
rent 4-vector, jμ, which satisfies the continuity equation, ∂μ jμ = 0, and

∫
d3�r j0 is the

corresponding “charge,” conserved in time.

Generally, additive symmetries (such as Tτ) have additive conserved charges, and for Tτ, this is the
total energy of the system:

dx
dt

·(A.19) ⇒ m
dx
dt

d2x
dt2 − dx

dt
F = 0, (A.25)

⇒ dE
dt

= 0, where E :=
m
2

(dx
dt

)2 − xF. (A.26)

The energy E therefore does not change in time, and the Noether theorem connects this property to
the symmetry Tτ : t → t + τ of the differential equation (A.19), owing to the fact that d

d(t+τ) = d
dt .

The additivity of energy means that the energy of a combined system is the sum of energies of the
individual sub-systems.

Similarly, the multiplicative symmetries (such as P ), have multiplicative conserved “charges”;
for P, this is the parity of the system.12 P : f (x) = f (−x) = p f (x), p = ±1. The multiplicativity of
parity means that the parity of a combined system is the product of the parities of the individual
sub-systems.

— ❦ —

In quantum physics, the relation between symmetries and conserved quantities is even more direct:

Conclusion A.1 Let P and Q be two canonically conjugate variables in the sense of the
classical description of a system, and P and Q the respectively corresponding operators so
[P, Q] = ih̄. Then the operator 1

h̄ P generates translations of the eigenvalues of the operator
Q and vice versa:

eiq0P/h̄ Q e−iq0P/h̄ = Q + q0. (A.27)

12 Of course, the eigenvalue of parity may be written eiπp̃, with p̃ = 0 or 1, and this p̃ would then be a conserved mod-2
additive quantity. The “multiplicative” practice followed herein is, however, the generally accepted one.
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If the translation of eigenvalues of Q is a symmetry of the system and H the Hamil-
tonian of the quantum description of this system, then P is a conserved quantity, and vice
versa . More precisely, if Q " Q + q0 then

dP

dt
=

1
ih̄

[
H , P

]
+
∂P

∂t
= 0, (A.28)

and conversely: if [H, P ] = 0 and P does not explicitly depend on time, the eigenvalues of P
are conserved quantities and Q → Q + q0 is a symmetry of the system; the unitary operators
Uq0 := exp{ i

h̄ q0P} realize this symmetry.

For a proof and a detailed discussion, see standard textbooks of quantum mechanics, such as [407,
471, 328, 480, 472, 242, 360, 29, 339, 324].

The best known example of this relation is provided by the canonically conjugate pair (posi-
tion, momentum). In coordinate representation, the operator 1

h̄ px = −i d
dx is indeed the generator

of translation in the x-coordinate:

eiapx/h̄ f (x) = e a d
dx f (x) =

∞

∑
k=0

ak

k!
dk

dxk f (x) =
∞

∑
k=0

ak

k!
f (k)(x) = f (x + a). (A.29)

Since p does not explicitly depend on time, the condition that p is a conserved quantity reduces
to the condition that p commutes with the Hamiltonian. Since evidently [p, 1

2m p2] = 0 this con-
dition becomes [p, V(x)] = 0 = h̄

i [
d
dx , V(x)], i.e., that the potential is a constant. Indeed, for

a constant potential, x → x + x0 is a manifest symmetry. Table A.1 lists several examples of
often used symmetries and the corresponding conserved quantities. Absolutely essential is the
fact that conserved quantities are eigenvalues of operators that generate corresponding transfor-
mations. So, for example, the unitary operator U�a = exp{i�a·�p } produces translation in space
�r → �r +�a, and the operator U�ξ = exp{i�ξ·�r } produces translation in the momentum space:

�p → �p +�ξ.

Table A.1 Some examples of continuous symmetries and corresponding conserved quantities. For
various transformations, “charge” denotes various physical quantities; for translation of the phase of
complex wave-functions, “charge” is indeed the electric charge.

Symmetry Conserved quantity

Time translation t → t + t0 ↔ Energy E
Space translation �r →�r +�r0 ↔ Linear momentum �p
Rotation (about the z-axis) φ→ φ+ φ0 ↔ Angular momentum Lz
Gauge transformation (general) Phase shift ↔ Charge (general) q

Reflection (through coordinate origin) �r → −�r ↔ Parity P

A.1.4 Matrix groups and bilinear invariants
Application of group theory in physics always implies concrete action of the group elements upon
concrete physical objects, i.e., upon the mathematical variables that represent those objects in the
particular model of the physical system. The linear group action is then always in the form of a
linear transformation of a vector space that those mathematical variables span, so these are always
matrix groups.
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The most often used matrix groups for n, p, q ∈ N are defined as follows [581, 260]:

GL(n;k) is the group of invertible n×n matrices with k-elements, where k = Q, R, C, H denotes
the base field of rational, real, complex and quaternion numbers, respectively.

SL(n;k) is the subgroup of GL(n;k), the elements, A, of which have unit determinant, and so
preserve the volume element: dn(A x) = dnx for x ∈ kn.

O(p, q;k) is the subgroup GL(p+q;k) the elements of which are η(p,q)-orthogonal,

LLLLT η(p,q) LLLL = η(p,q), η(p,q) := diag(1, . . . , 1︸ ︷︷ ︸
p times

,−1, . . . ,−1︸ ︷︷ ︸
q times

) (A.30)

and preserve the pseudo-Riemannian scalar product:

(x, y)(p,q) := xμ ημν yν =
p

∑
μ=1

xμ yμ −
p+q

∑
μ=p+1

xμ yμ, x, y ∈ kp,q. (A.31)

SO(p, q;k) is the subgroup of O(p, q;k), the elements of which have unit determinant.
Sp(2n;k), for k = R or C, is the subgroup of SL(2n;k), the elements of which preserve the

symplectic quadratic form

x∧y := 2
2n

∑
μ=1

xμ∧xμ+n = xμ Ωμν xν, [Ωμν] =
[

O 1

−1 O

]
, (A.32)

and where the 2n×2n matrix [Ωμν] is called the “symplectic identity.”
U(p, q) is the subgroup of GL(p+q; C), the elements of which are unitary and preserve the

Hermitian scalar product

〈x|y〉(p,q) :=
p

∑
μ=1

(xμ)∗ yμ −
p+q

∑
μ=p+1

(xμ)∗ yμ, x, y ∈ Cp,q. (A.33)

Sp(p, q) = U(p, q; H) is the subgroup of GL(2p+2q; H), the elements of which are quaternion-
unitary and preserve the quaternion–Hermitian scalar product

〈z|w〉(p,q) := zμ ημν wν =
p

∑
i=μ

zμ wμ −
p+q

∑
μ=p+1

zμ wμ, z, w ∈ Hp,q, (A.34)

where xμ denotes the quaternion-conjugate of xμ. This group in fact is not symplectic, in
the sense that it does not preserve any symplectic quadratic form. Because of this, for the
previous group, Sp(2n;k), the base field is always denoted, and for Sp(p, q) never, and by
convention Sp(n) ≡ Sp(n, 0).

SU(p, q) is the subgroup of U(p, q), the elements of which have unit determinant.

Quaternion (also known as hyper-complex) numbers and algebra were invented by William
Rowan Hamilton, in 1843. Quaternion numbers may be defined as the formal sum q = x0 + ix1 +
jx2 + kx3, where i,j,k are the formal quaternion units that satisfy i2 = j2 = k2 = ik = −1. The
quaternion-conjugate number is then equal to z = z0 − iz1 − jz2 − kz3. Quaternions do not com-
mute, and ij = k but ji = −k, etc. Quaternion “units” may be represented by the complex matrices

1 → [
1 0
0 1

]
, i → [ i 0

0 −i

]
, j → [ 0 1

−1 0
]

, k → [
0 i
i 0

]
, (A.35)

so the definitions that use quaternions may be rewritten as complex-matrix definitions.
Owing to frequent use, the base field R is not written for orthogonal groups so that “SO(1, 3)”

means SO(1, 3; R), the base field C is not written for unitary groups so that “SU(3)” means
SU(3; C).
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A.1.5 Exercises for Section A.1

✎ A.1.1 Prove relation (A.10) by explicit expansion of exponential functions.

✎ A.1.2 Prove that the collection {1, (iσσσσ1), (iσσσσ2), (iσσσσ3),−1, (−iσσσσ1), (−iσσσσ2), (−iσσσσ3)} forms a
group, which is a subgroup of the group (A.13).

✎ A.1.3 Show that scaling operations {Rρ : x → ρx, ρ ∈ (−∞, +∞)} form a group if the
binary operation is consecutive application. For Rρ to be a symmetry of the system (A.19),
one must require that simultaneously Rρ : F → ρF. Determine the action that is con-
sistent with (a) the group structure, and (b) physical meaning of all symbols in the
expressions (A.19)–(A.20).

✎ A.1.4 Show that {1, P} forms a subgroup of {Rρ : x → ρx, ρ ∈ (−∞, +∞)}.

✎ A.1.5 Show that {1, T : t → −t} forms a group.

✎ A.1.6 Show that {1, T, P, (PT)} forms a group. Show that [T, P ] = 0.

A.2 The U(1) group

The multiplicative group of unitary complex numbers, U(1) = {eiϕ, ·} where ϕ ∈ R1 and ϕ "
ϕ + 2π, is one of the best known in theoretical physics. Representations of the group U(1) are
complex functions upon which the group acts by phase transformation: f → eiq f ϕ f , f ∈ C. In the
general case, the real number q f is called the “charge” of the particle represented by the function
f , and the representation is unambiguously specified by the charge. In the case of the application
in electromagnetism, the charge is the electric charge. The U(1) charges are simply additive:

U(1) : f → eiq f ϕ f , g → eiqgϕg, ⇒ ( f g) → ei(q f +qg)ϕ( f g). (A.36)

It is possible – although it is rarely so denoted – to define the U(1) group elements as

U(1) =
{

eiϕQ , ϕ " ϕ+ 2π
}

, (A.37)

where the operator Q is the generator of the group, and q f the eigenvalue of the eigenfunction:
Q f = q f f . Thus, eiϕQ f = eiϕ q f f = eiq f ϕ f . In complex analysis, q f is called the winding number of
the complex function f , and in the physical application of complex analysis the product (q f ϕ) is
called the phase of the function f . This relationship between complex analysis and its application
in gauge models is of special importance in string models from the worldsheet perspective [☞ Sec-
tion 11.2.3], where one easily switches to the complex coordinate system (τ, σ) → z = σ+ iτ, and
so also to complex analysis.

A.2.1 Exercises for Section A.2

✎ A.2.1 Given two mutually commuting U(1) groups, generated respectively by the mutually
commuting Hermitian operators A and B, show that the two-parameter family of elements
ga,b := exp{i(aA + bB)} form the abelian group U(1)A × U(1)B for a, b ∈ R with respect to
the usual multiplication.
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✎ A.2.2 Show that any two linearly independent linear combinations of A and B from the
previous exercise can serve as generators for the group U(1)A × U(1)B. The particular
choice C+ := A+B generates the diagonal subgroup U(1)+ ⊂ U(1)A × U(1)B, while the
combination C− := A−B generates the complementary U(1)− ⊂ U(1)A × U(1)B.

✎ A.2.3 Show that U(1)+ and U(1)− as defined in the previous problem commute with each
other and that, as groups, U(1)+ × U(1)− = U(1)A × U(1)B.

A.3 The SU(2) group
This group is familiar from the quantum-mechanical formalism of spin and orbital angular
momentum. The group is generated by any three operators that satisfy the relations[

J j , J k
]

= i ε jkl δ
lm J m := i ε jk

m J m. (A.38a)

The SU(2) group elements are then operators of the form U�a := exp{iajJ j}. Conversely, the
generators may be formally defined by the relation

J k :=
1
i

[∂g(�a )
∂ ak

]
�a=�0

. (A.38b)

It follows that the quadratic J 2 operator commutes with all three J j:[
J 2 , J j

]
= 0, j = 1, 2, 3, where J 2 := J 2

1 + J 2
2 + J 2

3 , (A.38c)

so the operators13 J 2 and J 3 have a simultaneous (common) basis of eigenfunctions |j, m〉:
J 2|j, m〉 = j(j+1)|j, m〉, J 3|j, m〉 = m|j, m〉, (A.38d)

where
�m ∈ Z, j := max(m) ⇒ −j � m � +j. (A.38e)

It follows that j and m are both either integral (tensorial) or half-integral (spinorial), and that

J± := (J 1 ± iJ 2), J±|j, m〉 =
√

j(j+1) − m(m±1) |j, m±1〉. (A.38f)

Note that
J+|j, j〉 ≡ 0, as well as J−|j,−j〉 ≡ 0 (A.39)

by virtue of relations (A.38f), as derived in Digression A.2.

Digression A.2 (Proof of equation (A.38), following Ref. [18]) As no two operators from
the collection {J1, J 2, J 3} commute, there is no subsystem of mutually commuting oper-
ators that would have a simultaneous eigenbasis. One thus chooses one, usually J 3, to
find its eigenstates. Then, one proves by direct computation that

[J i, J 2] = 0, J 2 := J 2
1 + J 2

2 + J 2
3 , i = 1, 2, 3. (A.40a)

13 The choice of J 3 is arbitrary, and is called the quantization axis choice for angular momentum in quantum mechanics.
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Since J 3 and J 2 commute, they have a simultaneous (common) eigenbasis:

J 2|λ, m〉 = λ|λ, m〉, J 3|λ, m〉 = m|λ, m〉, (A.40b)

which may always be ortho-normalized via the Gram–Schmidt procedure:

〈λ′, m′|λ, m〉 = δλ′,λ δm′,m. (A.40c)

Using the remaining two operators, J 1, J 2, we define

J± := J 1 ± iJ 2, (J±)† = J∓, (A.40d)

so that
J±J∓ = J 2

1 + J 2
2 ± J 3, J 2 = J+J− + J−J+ + J 2

3 , (A.40e)

[J 3, J±] = ±J± and [J±, J∓] = ±2J 3. (A.40f)

Next, check how J± act upon |λ, m〉:
J 3

(
J±|λ, m〉) =

(
J±J 3 ± J±

)|λ, m〉 = (m ± 1)
(
J±|λ, m〉), (A.40g)

so it must be that
J±|λ, m〉 = N±(m) |λ, m±1〉. (A.40h)

Thus, the operators J± raise/lower the second eigenvalue, m, but do not change the
first, λ.

Since J 3 and J 2 are Hermitian operators, λ, m must be real numbers. Also,

λ = 〈J 2〉 = 〈J+J−〉 + 〈J−J+〉 + 〈J 2
3 〉

=
∥∥J−|λ, m〉∥∥2 +

∥∥J+|λ, m〉∥∥2 + m2 � m2. (A.40i)

Thus m2, and so also m, has a maximum; let j := max(m). Then J+|λ, +j〉 would have to
be proportional to |λ, j+1〉. However, since (j+1) > j = max(m), |λ, j+1〉 cannot exist.
It follows that

J+|λ, j〉 = 0. (A.40j)
Applying 〈λ, m|J− to this result, we have that

0 = 〈λ, j|J−J+|λ, j〉 = 〈λ, j|(J 2
1 + J 2

2 − J 3)|λ, j〉 = 〈λ, j|(J 2 − J 2
3 − J 3)|λ, j〉

= λ− j(j+1), ⇒ λ = j(j+1). (A.40k)

Following the analogous reasoning for J+ ↔ J−, we obtain that

min(m) = −j, J−|λ,−j〉 = 0. (A.40l)

Renaming the basis |λ, m〉 �→ |j, m〉, we have that

J 2|j, m〉 = j(j+1)|j, m〉, J 3|j, m〉 = m|j, m〉. (A.40m)

In addition, the operators J i, J 2, J± can change m only in unit increments. It follows that

�m ∈ Z, |m| � j := max(m), ⇒
{ j ∈ Z�0, tensors;

j ∈ Z�0 + 1
2 , spinors.

(A.40n)
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Similarly, we have that

|N±(m)|2 = 〈j, m|J±J∓|j, m〉 = j(j+1) − m(m±1), (A.40o)

so
N±(m) =

√
j(j+1) − m(m±1). (A.40p)

A.3.1 Representations of SU(2)
The relations (A.38d)–(A.38f) imply that

U�ϕ|j, m〉 = eiϕkJ k |j, m〉 = exp
{

i
(
ϕ+J+ + ϕ−J− + ϕ3J 3

)}|j, m〉
= ∑

|m′ |�j

cm,m′ |j, m′〉. (A.41)

That is, the action of the unitary operator U�ϕ does not change j in |j, m〉 upon which it acts, but –
for a general choice of �ϕ – transforms any one |j, m〉 into a linear combination of all |j, m′〉 with all
the permitted values of m′. The abstract vector space

Vj :=

⎧⎨⎩ ∑
|m|�j

cm|j, m〉, (c−j, . . . , cj) ∈ k2j+1 and equation (A.41)

⎫⎬⎭ ∼= k2j+1, (A.42a)

U�ϕ : Vj → Vj, Vj is a
{ tensorial

spinorial
}

representation if j
{ integral

half-integral
}

(A.42b)

is a (2j+1)-dimensional (unitary) representation of the SU(2) group, i.e., the SU(2) group maps
the vector space Vj into itself, and SU(2) is a group of symmetries of the vector space Vj, for every
2j ∈ Z�0. Correspondingly, the same partitioning of representations into these two subclasses is
also obtained by partitioning into the eigen-representations of the element exp{iπ1} ∈ Z2 ⊂
SU(2) [☞ Example A.1 on p. 454].

Table A.2 on p. 469 lists the first several such representations. It is important to keep in mind
that the spaces Vj are not simply copies of k2j+1 (where k = Q, R, C or H, as required), but imply
the SU(2) action (A.41). It follows that no SU(2) representation Vj contains a strictly smaller
representation Vj′ , with j′ < j. One says that every representation Vj is irreducible.

Digression A.3 The results (A.40m)–(A.40n) give a complete list of irreducible represen-
tations of the SU(2) group and its algebra (A.38a):

1. tensorial representations, of which the most familiar are:
(a) scalars, i.e., invariants, represented by |0, 0〉;
(b) 3-vectors, represented by the basis {|1,−1〉, |1, 0〉, |1, +1〉};
(c) (spin-2) quadrupoles, represented by {|2,−2〉, |2,−1〉, |2, 0〉, |2, +1〉, |2, +2〉};

etc.
2. spinorial representations, of which the most familiar are:

(a) spin- 1
2 systems, represented by the basis {| 1

2 ,− 1
2 〉, | 1

2 , + 1
2 〉};

(b) spin- 3
2 systems, represented by the basis {| 3

2 ,− 3
2 〉, | 3

2 ,− 1
2 〉, | 3

2 , + 1
2 〉, | 3

2 , + 3
2 〉};

etc.
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Note that the bases of formal vectors {|j, m〉, |m| � j} are just a formal notation for bases
of spherical harmonics {Ym

j (θ, φ), |m| � j}, which are the coordinate representation of
the formal |j, m〉. For example,

|1, +1〉 ↔ Y+1
1 (θ, φ) = −

√
3

8π
sin θ e+iφ, (A.43a)

|1, 0〉 ↔ Y0
1 (θ, φ) = +

√
3

4π
cos θ, (A.43b)

|1,−1〉 ↔ Y−1
1 (θ, φ) = −

√
3

8π
sin θ e−iφ, (A.43c)

from which it follows that Cartesian coordinates may be expressed as

x = r sin θ cos φ = −r

√
2π
3

(
Y1

1 (θ, φ) + Y−1
1 (θ, φ)

)
↔ |1, +1〉 + |1,−1〉, (A.43d)

y = r sin θ sin φ = i r

√
2π
3

(
Y1

1 (θ, φ) − Y−1
1 (θ, φ)

)
↔ |1, +1〉 − |1,−1〉, (A.43e)

z = r sin φ = r

√
4π
3

Y0
1 (θ, φ) ↔ |1, 0〉. (A.43f)

Similar relations exist for all bases {|j, m〉, |m| � j} for j ∈ Z. The other half of
representations, the spinors {|j, m〉, |m| � j} for (j+ 1

2 ) ∈ Z also have an analogous
representation in terms of spherical and Cartesian coordinates, but are less well known,
and are double-valued and so are not determined unambiguously.

Table A.2 lists several well-known irreducible representations of the SU(2) group, denoted
in several alternative and oft-used forms, and Table A.3 on p. 470 lists the first few spherical
harmonics Ym

j (θ, φ), which are the functional representation14 (in spherical coordinates) of the
abstract elements |j, m〉. Of course, the abstract operators J±, J 3 and J 2 also have a corresponding
functional representation:

J± = ±e±iφ
[ ∂
∂θ

± i cot(θ)
∂

∂φ

]
, (A.44a)

J 3 = −i
∂

∂φ
, (A.44b)

J 2 = −
[ 1

sin(θ)
∂

∂θ

(
sin(θ)

∂

∂θ

)
+

1
sin2(θ)

∂2

∂φ2

]
. (A.44c)

Evidently and except for J 3, computations with the abstract operators and eigenstates of the SU(2)
group are simpler than with the functional representation of these.

— ❦ —

Other than the formal (|j, m〉) and the functional (Ym
j (θ, φ)) notation, the matrix notation is also

widely used. It is well known that halves of the Pauli matrices (A.147)

J
(1/2)
1 = 1

2

[
0 1
1 0

]
, J

(1/2)
2 = 1

2

[ 0 −i
i 0

]
, J

(1/2)
3 = 1

2

[ 1 0
0 −1

]
, (A.45a)

14 Unfortunately, the word “representation” is used in two slightly different senses: here, it is in the sense of “realization,”
in distinction from the technical sense of an “SU(2) group representation,” according to the definition (A.42).
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Table A.2 Several smallest representations of the SU(2) group; formal ket-notation precisely corre-
sponds to spherical harmonics |j, m〉 ↔ Ym

j (θ, φ) when j ∈ Z.

Dim. Formal ket-notation Indexa Matrix

V0 1
{|0, 0〉} t [x]

V1
2

2
{
| 1

2 ,− 1
2 〉, | 1

2 , + 1
2 〉
}

ta
[

x1

x2

]

V1 3
{|1,−1〉, |1, 0〉, |1, +1〉} t(ab)

⎡⎣x = t(11)

y = t(12)

z = t(22)

⎤⎦

V3
2

4
{
| 3

2 ,− 3
2 〉, | 3

2 ,− 1
2 〉, | 3

2 , + 1
2 〉, | 3

2 , + 3
2 〉
}

t(abc)

⎡⎢⎣x1 = t(111)

...
x4 = t(222)

⎤⎥⎦

V2 5
{|2,−2〉, |2,−1〉, |2, 0〉, |2, +1〉, |2, +2〉} t(abcd)

⎡⎢⎣x1 = t(1111)

...
x5 = t(2222)

⎤⎥⎦
...

...
...

...

Vj 2j+1
{|j,−j〉, |j, 1−j〉 · · · , |j, j−1〉, |j, +j〉} t(a1···a2j)

⎡⎢⎣ x1 = t(1···1)

...
x2j+1 = t(2···2)

⎤⎥⎦
a The indices are a, b, c . . . ∈ {1, 2}; round parentheses denote symmetrization: t(ab) = +t(ba).

satisfy the relations (A.38a), which identifies the eigenvectors of the J
(1/2)
3 -matrix with the

eigenvectors of the abstract operator J 3:[
1
0

] ↔ | 1
2 , + 1

2 〉 and
[

0
1

] ↔ | 1
2 ,− 1

2 〉. (A.45b)

In a fully identical fashion, the matrices

J
(1)
1 = 1√

2

[ 0 1 0
1 0 1
0 1 0

]
, J

(1)
2 = 1√

2

[
0 −i 0
i 0 −i
0 i 0

]
, J

(1)
3 =

[ 1 0 0
0 0 0
0 0 −1

]
, (A.46a)

also satisfy the relations (A.38a), which identifies the eigenvectors of the J
(1)
3 -matrix with the

eigenvectors of the abstract operator J 3:[ 1
0
0

]
↔ |1, +1〉,

[ 0
1
0

]
↔ |1, 0〉 and

[ 0
0
1

]
↔ |1,−1〉, (A.46b)

and,

J
(3/2)
1 = 1

2

⎡⎣ 0
√

3 0 0√
3 0 2 0

0 2 0
√

3
0 0

√
3 0

⎤⎦ , J
(3/2)
2 = 1

2

⎡⎣ 0 −√
3i 0 0√

3i 0 −2i 0
0 2i 0 −√

3i
0 0

√
3i 0

⎤⎦ , J
(3/2)
3 = 1

2

[
3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3

]
, (A.46c)
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Table A.3 The first few spherical harmonics

Y0
0 = 1√

4π
= 1√

4π

Y1
1 =−

√
3

8π sin θ eiφ =−
√

3
8π

x+iy
r

Y0
1 = +

√
3

4π cos θ =
√

3
4π

z
r

Y2
2 =

√
15

32π sin2 θ e2iφ =
√

3
8π

(x+iy)2

r

Y1
2 =

√
15
8π sin θ cos θ eiφ =

√
3

4π
(x+iy)z

r

Y0
2 =

√
15

16π (3 cos2 θ−1) =
√

5
16π

3z2−r2

r2

Y3
3 =−

√
35

64π sin3 θ e3iφ =−
√

35
64π

(x+iy)3

r3

Y2
3 =

√
105
32π sin2 θ cos θ e2iφ =

√
105
32π

(x+iy)2z
r3

Y1
3 =

√
21

64π sin θ(1−5 cos2 θ)eiφ =−
√

21
64π

(x+iy)(5z2−r2)
r3

Y0
3 =

√
7

16π (5 cos2 θ − 3) cos θ =
√

7
16π

z(5z2−3r2)
r3

similarly provide a 4-dimensional realization for spin- 3
2 systems. An analogous matrix realization

of the operators �J and eigenvectors |j, m〉 is of course possible for all j.
Finally, in the tensor notation, we have

t1 ↔ | 1
2 , + 1

2 〉 and t2 ↔ | 1
2 ,− 1

2 〉, (A.47a)

which, with the definition (u, v) := (t1, t2), implies the definitions

J
(1/2)
1 := 1

2

(
v
∂

∂u
+ u

∂

∂v

)
, J

(1/2)
2 := i

2

(
v
∂

∂u
− u

∂

∂v

)
, J

(1/2)
3 := 1

2

(
u
∂

∂u
− v

∂

∂v

)
. (A.47b)

For j = 1, one typically identifies the formal tensor variables t(11), t(12), t(22) with the Cartesian
x, y, z, respectively, and we have the well-known

J
(1)
1 := i

(
x
∂

∂y
− y

∂

∂x

)
, J

(1)
2 := i

(
y
∂

∂z
− z

∂

∂y

)
, J

(1)
3 := i

(
z
∂

∂x
− x

∂

∂z

)
. (A.47c)

As each of these notations and representations is convenient in some but not all computa-
tions, it behooves the Reader to practice “translating” from any one of these representations into
any other one.

It is useful to note that the Levi-Civita symbol,

εab : ε12 = 1 = −ε21, ε11 = 0 = ε22 , (A.48)

is invariant with respect to SU(2) transformations, since, using relations (B.38) and after the
computation (B.37), it follows that the change of basis ta → τa produces

d2t := 1
2 εab dtadtb = det

[
∂(t1,t2)
∂(τ1,τ2)

]
1
2 εab dτadτb = d2τ, (A.49)

since the determinant of SU(2) transformations equals det
[ ∂(t1,t2)
∂(τ1,τ2)

]
= 1 by definition. The anal-

ogous situation holds by definition for all SU(n) groups, but for SU(2), exceptionally, εab is a
rank-2 tensor, and so may also serve as an (antisymmetric!) metric tensor, which is appropriate for
anticommuting variables that are used in supersymmetry [☞ Chapter 10].

A.3.2 The SU (2) and SO (3) groups
Rotations in real, 3-dimensional space may be represented as real, orthogonal 3×3 matrices with
unit determinant. Their successive application may be identified with matrix multiplication, which
does not commute, and this multiplicative group is denoted SO(3). Its algebra, so(3), is identical
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to the su(2) algebra. However, although so(3) = su(2), the groups SO(3) and SU(2) differ: the
SU(2) action upon all representations Vj = {|j, m〉, |m| � j} is single-valued.

In distinction, the group SO(3) action is single-valued upon integral (tensorial) represen-
tations Vj = {|j, m〉, |m| � j ∈ Z}, but not upon half-integral (spinorial) representations,
Vj = {|j, m〉, |m| � j, (j+ 1

2 ) ∈ Z}. Since a ϕ-rotation about the x3-axis acts by exp{i ϕ J 3}
and eigenvalues of J 3 on elements of spinorial representations Vj are half-integral, spinors are
“double-valued functions” under SO(3) rotations. By an appropriate change of basis, it is easy to
show that the eigenvalues of any one component �J, in any direction, are equal to their J 3 eigen-
values. Thus, the conclusion about double-valuedness of the elements of spinorial representations
Vj holds for rotations about any axis. Thus, spinors change their sign upon any 360◦-rotation; only
720◦-rotations act upon them as the identity.

Since the algebras are identical, so(3) = su(2), the elements of both algebras – and so also
both the SU(2) and the SO(3) generators – are rightfully called angular momenta. Understanding
this 2–1 relationship between these groups, SU(2) is the two-fold covering of the SO(3) group, and
the elements of the SU(2) group are also frequently called rotations. Pedantically, the SU(2) group
is the double covering of the SO(3) group of rotations.

A.3.3 Addition of angular momenta
In the concrete application of the SU(2) group in elementary particle physics, it is important to
keep in mind that angular momentum is not a directly measurable quantity.

This is partly true also in classical physics of macroscopic bodies: for an ice-skater in a pirou-
ette or a spinning top, the angular momentum cannot be measured directly. Instead, usually, one
identifies a “marking” on the spinning object (the ice-skater’s face or a pattern on the top), and the
angular velocity is determined by following the motion of this marking. Independently, one deter-
mines the moment of inertia for the same object in some way,15 and then computes the angular
momentum from the so-obtained values of the moment of inertia and the angular velocity. That is,
there’s no such thing as an “angularmomentumometer.”

With elementary particles, the situation is even more indirect: by definition, elementary par-
ticles cannot have a “marking” the motion of which one could follow even in principle, so as to
measure the angular velocity, compute the moment of inertia, etc. Instead, the angular momentum
is even defined indirectly. For example, the intrinsic angular moment of an electron – the so-called
spin – is in fact a fictive rotation [☞ Digression 4.1 on p. 132] which one computes, by way of
relation (4.24a), from the measured magnetic dipole momentum.

In the situation when we have several magnetic fields, it is perfectly logical to compute their
vectorial sum. Conversely, since the dipole momenta of these magnetic fields define spins and
orbital angular momenta,16 to the sum of magnetic fields then corresponds a sum of angular
momenta, both intrinsic (“spins”) and relative (“orbital”).

— ❦ —

The technique of adding angular momenta in quantum theory differs from “ordinary vectorial
addition” which is expected in classical physics, and this is discussed in great detail in standard
textbooks of quantum mechanics. We recall here the basic relations.

15 In principle, this is possible by approximating the geometry of the object and its mass distribution, whereupon one
computes the moment of inertia by integrating, or by physically applying a force, and the moment of inertia is computed
as the ratio of the applied torque and the produced change in its angular velocity.

16 Although Bohr’s model of the atom depicts the electron as a point-particle that rotates about a point-like proton, so that
the rotation of the electron’s charge forms a current that produces an “orbiting magnetic field,” experiments actually
only measure this magnetic field, from which then – in turn – one concludes about the rotating of the mental image of
the point-like electron in Bohr’s atom.
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Let {L1, L2, L3} and {S1, S2, S3} be two triples of operators, of which each independently
satisfies the relations (A.38a) – regardless of their physical meaning – and let

[L j, Sk] = 0 for every pair of indices j, k = 1, 2, 3. (A.50)

These two triples then generate two separate copies of the SU(2) group, where elements of one
commute with the elements of the other, and we have SU(2)L × SU(2)S. One then defines

J j := L j + S j ⇒ [J j, J k] = iε jk
mJ m, (A.51)

and the triple J i generates the diagonal subgroup SU(2)J ⊂ SU(2)L × SU(2)S. For each triple, one
defines operators such as J 2 and J±, yielding results akin to (A.38), repeating the computations in
Digression A.2 on p. 465:

L2|�, m�〉 = �(�+1)|�, m�〉, L3|�, m�〉 = m�|�, m�〉; (A.52a)

S2|s, ms〉 = s(s+1)|s, ms〉, S3|s, ms〉 = ms|s, ms〉; (A.52b)

J 2|j, mj〉 = j(j+1)|j, mj〉, J 3|j, mj〉 = mj|j, mj〉. (A.52c)

The relation (A.50) implies that L2, L3, S2, S3 all mutually commute, so that the tensor
product of the eigenbases (A.52a) and (A.52b),

|�, s; m�, ms〉 := |�, m�〉 ⊗ |s, ms〉, (A.53a)

is a simultaneous eigenbasis of all four operators:

L2|�, s; m�, ms〉 = �(�+1)|�, s; m�, ms〉, S2|�, s; m�, ms〉 = s(s+1)|�, s; m�, ms〉, (A.53b)

L3|�, s; m�, ms〉 = m�|�, s; m�, ms〉, S3|�, s; m�, ms〉 = ms|�, s; m�, ms〉. (A.53c)

The operator J 3 commutes with L2, L3, S2, S3, but is of course not linearly independent since
equation (A.51) implies that J 3 = L3 + S3. We thus also have that

J 3|�, s; m�, ms〉 = (m�+ms)|�, s; m�, ms〉. (A.53d)

In turn,
[J 2, L3] = 2i εjk

3L jSk = 2i(L1S2 − L2S1) = −[J 2, S3], (A.54)

and J 2 does not commute with every operator from the collection {L2, L3, S2, S3}. Thus, the 4-plet
{L2, L3, S2, S3} is a maximal collection of linearly independent mutually commuting operators.

In turn, the operators {J 2, L2, S2, J 3} also all mutually commute, and since L3 and S3 do not
commute with J 2, this second operator quartet is also a maximal collection of linearly independent
mutually commuting operators. Thus, they too have a simultaneous eigenbasis:

J 2|j, �, s; mj〉 = j(j+1)|j, �, s; mj〉, L2|j, �, s; mj〉 = �(�+1)|j, �, s; mj〉, (A.55a)

J 3|j, �, s; mj〉 = mj|j, �, s; mj〉, S2|j, �, s; mj〉 = s(s+1)|j, �, s; mj〉. (A.55b)

In textbooks of quantum mechanics, L are identified with the orbital angular momentum, S
with the spin and J with the “total” angular momentum, (e.g., of an electron in a hydrogen atom).
Ignoring the fact that J does not include the nuclear spin, and so in reality is not the total angular
momentum, there exist many situations where there are more than two triples of operators each
of which satisfies the relations such as do L and S, and where at least some of such operators have
no relation with rotations, even if fictitious. For example, there is no obstruction to add – akin to
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equations (A.51) – the angular momentum of a nucleon in one nucleus, say, with the isospin of
that or any other nucleon.

Thus, L and S as well as their eigenbasis (A.53a) will be referred to as “constituent,” and J
and the eigenbasis (A.55) will be referred to as “composite.”

Of course, since both bases are complete, it follows that every element of one may be
expressed in terms of the elements of the other:

|�, s; m�, ms〉 =
�+s

∑
j=|�−s|

C
j,mj
�,s;m�,ms

|j, �, s; mj〉, (A.56a)

|j, �, s; mj〉 =
�

∑
m�=−�

|ms |=|mj−m� |�s

(
C

j,mj
�,s;m�,ms

)∗|�, s; m�, ms〉, (A.56b)

where

C
j,mj
�,s;m�,ms

:= 〈j, �, s; mj|�, s; m�, ms〉 ≡ 〈j, mj|�, s; m�, ms〉 (A.56c)

are the Clebsch–Gordan coefficients, which by standard convention all have real values. In
addition, we have:

Theorem A.2 For the sum of two triples of operators, Li + Si = J i, each of which satisfies
relations (A.38) and (A.50), the relations (A.52) follow, as well as:

|� − s| � j � (� + s), |j − �| � s � (j + �), |j − s| � � � (j + s), (A.57)

mj = m� + ms, |mj| � j, |m�| � �, |ms| � s, (A.58)

where j, � and s assume precisely once all the integrally separated values within the
indicated limits.

Thus, using the notation from the left-most two columns of Table A.2 on p. 469, we have that

V� ⊗ Vs = ⊕(�+s)
j=|�−s|Vj ⇔ (2�+1)⊗ (2s+1) = ⊕(�+s)

j=|�−s|(2j+1). (A.59)

For example:

V� ⊗ Vs = Vj ⇔ (2�+1)⊗ (2s+1) = (2j+1)

V1/2 ⊗V1/2 = V1 ⊕ V0 ⇔ 2 ⊗ 2 = 3 ⊕ 1
V1 ⊗V1/2 = V3/2 ⊕ V1/2 ⇔ 3 ⊗ 2 = 4 ⊕ 2
V1 ⊗ V1 = V2 ⊕ V1 ⊕ V0 ⇔ 3 ⊗ 3 = 5 ⊕ 3 ⊕ 1
V2 ⊗ V1 = V3 ⊕ V2 ⊕ V2 ⇔ 5 ⊗ 3 = 7 ⊕ 5 ⊕ 3

(A.60)

and so on. The first row here corresponds to the detailed relations

V1/2 =
{

c+| 1
2 , + 1

2 〉 + c−| 1
2 ,− 1

2 〉
}

, (A.61){
c+| 1

2 , + 1
2 〉 + c−| 1

2 ,− 1
2 〉
}⊗ {

c′+| 1
2 , + 1

2 〉′ + c′−| 1
2 ,− 1

2 〉′
}

=
{

c1|1, +1〉 + c0|1, 0〉 + c−1|1,−1〉}⊕ {
c′0|0, 0〉} (A.62)

where {c+, c−}, {c′+c′−} and {c1, c0, c−1; c′0} are coefficients in the linear combinations appropriate
for the vector spaces V1/2, V′

1/2, V1 and V0, and where

|1, +1〉 = | 1
2 , + 1

2 〉| 1
2 , + 1

2 〉′, (A.63a)

V1 :

⎧⎪⎪⎨⎪⎪⎩ |1, 0〉 = 1√
2

(
| 1

2 , + 1
2 〉| 1

2 ,− 1
2 〉′ + | 1

2 ,− 1
2 〉| 1

2 , + 1
2 〉′

)
, (A.63b)

|1,−1〉 = | 1
2 ,− 1

2 〉| 1
2 ,− 1

2 〉′, (A.63c)
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V0 : |0, 0〉 = 1√
2

(
| 1

2 , + 1
2 〉| 1

2 ,− 1
2 〉′ − | 1

2 ,− 1
2 〉| 1

2 , + 1
2 〉′

)
. (A.63d)

For bigger groups this detailed representation is also possible, but the notation becomes more
complicated, so statements expressed in the “dimensional” notation, in the right-hand side of
tabulation (A.60), are more often found in the physics literature.

Corollary A.1 Every representation Vj may be assigned a parity, π(Vj) := 2j (mod 2), so
π(Vj) = 0 for tensors, and π(Vj) = 1 for spinors [☞ definition (A.42)]. Then it follows that
parity is mod-2 additive: π(V�⊗Vs) ≡ 2(�+s) mod 2.

Finally, the tensor/index-notation is also used, especially for larger groups, and in that
notation the relations (A.63) become

2 ⊗ 2 = 3 ⊕ 1 ↔ tα ⊗ uβ = v(αβ)︸︷︷︸
3 comps.

⊕
(

v[αβ] = v εαβ
)

︸ ︷︷ ︸
1 component

, (A.64)

where

V0 =
{

c0|0, 0〉} =
{

b0 t
}

, (A.65a)

V1/2 =
{

c+| 1
2 , + 1

2 〉 + c−| 1
2 ,− 1

2 〉
}

=
{

b1 t1 + b2 t2}, (A.65b)

V1 =
{

c1|1, +1〉 + c0|1, 0〉 + c−1|1,−1〉} =
{

b11 t(11) + b12 t(12) + b22 t(22)}, (A.65c)

and so on. The formal variables t for V0, {t1, t2} for V1/2, {t(11), t(12), t(22)} for V1, etc., play the
role of basis vectors in the tensor notation. Also, the Levi-Civita symbol εαβ is an SU(2)-invariant
antisymmetric 2-form, so the antisymmetric rank-2 tensor may be identified with the invariant:
v[αβ] �→ v = ( 1

2 εαβv[αβ]). Similarly, we have the projections

V1 ⊗ V1/2 ⊃ V1/2 ⇔ t(αβ)uγ �→ vα := (εβγt(αβ)uγ), (A.66a)

V3/2 ⊗ V1/2 ⊃ V1 ⇔ t(αβγ)uδ �→ v(αβ) := (εγδt(αβγ)uδ), (A.66b)

V1 ⊗ V1 ⊃ V1 ⇔ t(αβ)u(γδ) �→ v(αγ) := (εβδt(αβ)u(γδ)), (A.66c)

V1 ⊗ V1 ⊃ V0 ⇔ t(αβ)u(γδ) �→ v := (εαγεβδt(αβ)u(γδ)), (A.66d)

and so on.

A.3.4 SU(2)-covariant operators and the Wigner–Eckart theorem
Relations (A.38d) and (A.38f) have a very simple generalization from eigen-vectors to cova-
riant/eigen-operators: If a (2r+1)-tuple of operators {T

(r)
ρ , |ρ| � r} satisfies the relations

[
J 2 , T

(r)
ρ

]
= r(r+1)T

(r)
ρ ,

[
J 3 , T

(r)
ρ

]
= ρT

(r)
ρ , (A.67a)

then also [
J± , T

(r)
ρ

]
=

√
r(r+1) − ρ(ρ+1)T

(r)
ρ±1, (A.67b)

and the formal vector space {∑r
ρ=−r cρT

(r)
ρ , cρ ∈ R} ∼= R2r+1 is also an SU(2) group representation.

Then we have [362, 363, 471, 328, 480, 134, 391, 407, 472, 360, 29, 339, 242, 3, 110, 324, for
example]:
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Theorem A.3 (Wigner–Eckart) For the (2r+1)-tuple of operators {T
(r)
ρ , |ρ| � r} that sat-

isfy relations (A.67), for vectors |j, mj; α〉 that satisfy relations (A.38d) and if α represents
additional eigenvalues of operators independent of J , we have

〈j′m′
j; α

′|T(r)
ρ |j, mj; α〉 = 〈j′, m′

j|r, j; ρ, mj〉 〈j′; α′‖T(r)‖j; α〉, (A.68)

where 〈j′; α′‖T(r)‖j; α〉 is the so-called reduced matrix element (amplitude) that does not
depend on mj, ρ, m′

j, and 〈j′, m′
j|r, j; ρ, mj〉 is a Clebsch–Gordan coefficient.

This theorem is most often used when ratios of matrix elements are needed where the reduced
matrix elements are equal and cancel in the ratio.

— ❦ —

For a practical use of relations (A.56) and the Wigner–Eckart theorem A.3, one needs the nu-
merical values of the Clebsch–Gordan coefficients. To this end one most often uses tables [242,
105] [☞ also [294]], although there is a “closed formula” [328]:

C
j,mj
�,s;m�,ms

= δmj ,m�+ms Aj
�,s B

j,mj
�,s;m�,ms

D
j,mj
�,s;m�,ms

, (A.69a)

δmj,m�+ms =
{

1 if mj = m� + ms,
0 if mj �= m� + ms;

(A.69b)

Aj
�,s :=

√
(�+s−j)! (j+�−s)! (s+j−�)! (2j+1)

(�+s+j+1)!
, (A.69c)

B
j,mj
�,s;m�,ms

:=
√

(j+mj)! (j−mj)! (�+m�)! (�−m�)! (s+ms)! (s−ms)! , (A.69d)

D
j,mj
�,s;m�,ms

:= ∑
r

(−1)r

(�−m�−r)! (s+ms−r)! (j−s+m�+r)! (j−�−ms+r)! (�+s−j−r)! r!
, (A.69e)

where the sum over r is limited by the facts that division by factors in the denominator produces a
zero when

r > (�−m�), (s+ms), (�+s−j), r < 0, (s−j−m�), (�+ms−j), (A.69f)

which makes the sum finite. Evidently, formula (A.69) is not best suited for quick computations
“by heart,” but is appropriate for machine computation.

— ❦ —

In view of these well-known results for the SU(2) group and its algebra, we have:

Conclusion A.2 For applications of any group in physics, it is desired to have, in order of
importance (and technical demand):

1. the complete list of finite-dimensional unitary representations, such as (A.42),
2. the complete list of decompositions of products, such as (A.59),
3. the complete list of Clebsch–Gordan coefficients, such as (A.69), or at least a

method/algorithm for their computation.

It is fascinating that for off-shell representations of supersymmetry not even the first task is solved ☞ ,
not even in N-extended supersymmetric quantum mechanics [☞ Section 10.4].
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A.3.5 Exercises for Section A.3

✎ A.3.1 Using the differential representation (A.44) of J 2, J 3 and J± as well as the func-
tional representations (A.43a)–(A.43c), verify the general results (A.40m), and (A.40h)
with (A.40p) for the cases j = 1, m = ±1, 0.

✎ A.3.2 Verify by explicit computation that the matrices (A.46a) satisfy the su(2) algebra
relations (A.38a). Construct the 3× 3 matrix representative of (

(1)
)2.

✎ A.3.3 Given two separate triples of Hermitian operators, �L and �S, satisfying the su(2) alge-
bra (A.38a) and commuting mutually (A.50), prove that equation (A.51) defines the one
and only nontrivial linear combination that also satisfies the su(2) algebra (A.38a).

A.4 The SU (3) group
The SU(3) group is defined as the group of 3 × 3 unitary matrices with unit determinant.

Digression A.4 Corollary A.1 on p. 474 defines parity for representations of the SU(2)
group, which is additive for products of representations. Similarly, the SU(3) group has
a triality: representations are either real with triality 0, or a conjugate pair of complex
representations with triality 1 and −1∼= 2. The triality of a product of two representations
with trialities t1 and t2, respectively, is (t1+t2) (mod 3). Similarly, one defines a mod-n
additive “n-ality” of representations of the SU(n) group for every n.

A.4.1 The su (3) algebra
As a generalization of the relations (A.38a) for the SU(2) group generators and a special case of
the general relation for all Lie algebras (A.11a), the SU(3) group is generated by eight operators
Qa that satisfy the relations [

Qa , Qb
]

= i fab
c Qc. (A.70)

It is useful to note the SU(3) analogue of the generator matrices (A.45a), i.e., the standard
choice among the matrix realizations (of the doubles17) of the SU(3) generators in the smallest,
3-dimensional and fundamental representation are the so-called Gell-Mann matrices:

λλλλ1 =
[ 0 1 0

1 0 0
0 0 0

]
, λλλλ2 =

[ 0 −i 0
i 0 0
0 0 0

]
, λλλλ3 =

[ 1 0 0
0 −1 0
0 0 0

]
, λλλλ4 =

[ 0 0 1
0 0 0
1 0 0

]
, (A.71a)

λλλλ5 =
[ 0 0 −i

0 0 0
i 0 0

]
, λλλλ6 =

[ 0 0 0
0 0 1
0 1 0

]
, λλλλ7 =

[ 0 0 0
0 0 −i
0 i 0

]
, λλλλ8 = 1√

3

[ 1 0 0
0 1 0
0 0 −2

]
. (A.71b)

The first three matrices evidently generate one of continuously many SU(2) ⊂ SU(3) sub-
groups. This choice of matrix representations of generators shows that the structure constants
fabc = fab

d gdc are totally antisymmetric, fabc = − fbac = − facb = − fcba, and we have

f123 = 1, f458 = f678 =
√

3
2 , f147 = − f156 = f246 = f257 = f345 = − f367 = 1

2 . (A.71c)

It is useful to know that
Tr(λλλλaλλλλb) = 2δab. (A.72)

17 Just as halves of Pauli matrices close the su(2) algebra, halves of the Gell-Mann matrices close the su(3) algebra.
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A.4.2 Representations of SU(3)
One may define the ket-notation as well as the matrix notation for every Lie group, but only the
dimensional and the tensor/index notation are shown here:

1 " t, 3 " tα, 3∗ " tα = 1
2 εαβγt[βγ], α, β,γ, . . . = 1, 2, 3, (A.73)

6 " t(αβ), 6∗ " t(αβ), 8 " tαβ, tαα ≡ 0, 10 " t(αβγ), etc. (A.74)

Here, e.g., t(αβ) is the symmetric 3×3 matrix, t[αβ] is the antisymmetric 3×3 matrix, tαβ is the
Hermitian 3×3 matrix the trace of which vanishes, etc. It is important to recall the identities:

εαβγε
δεφ = δδαδ

ε
βδ
φ
γ − δδαδ

φ
βδ
ε
γ + δ

φ
α δ
δ
βδ
ε
γ − δ

φ
α δ
ε
βδ
δ
γ + δεαδ

φ
βδ
δ
γ − δεαδ

δ
βδ
φ
γ , (A.75a)

⇒ εαβγε
δεγ = δδαδ

ε
β − δεαδ

δ
β, εαβγε

δβγ = 2δδα, εαβγε
αβγ = 6. (A.75b)

Then,

3 ⊗ 3 = 6S ⊕ 3∗A ⇔ tα sβ = t(αsβ) + t[αsβ],
{

t(αsβ) := 1
2

(
tαsβ + tβsα

)
,

t[αsβ] := 1
2

(
tαsβ − tβsα

)
;

(A.76a)

where subscripts S and A, respectively, denote the symmetric and antisymmetric parts of a product.
Next,

6 ⊗ 3 = 10 ⊕ 8 ⇔ t(αβ) sγ = t(αβsγ) + 4
3 t(α[b)sγ],

t(αβsγ) := 1
3

(
t(αβ)sγ + t(βγ)sα + t(γα)sβ

)
,

t(α[β)sγ] := 1
4

(
(t(αβ)sγ − t(αγ)sβ) + (t(βα)sγ − t(βγ)sα)

)
= 1

4

(
2t(αβ)sγ − t(αγ)sβ − t(βγ)sα

) (A.76b)

where it follows that t(α[β)sγ] εαβγ ≡ 0;

3∗ ⊗ 3 = 8 ⊕ 1 ⇔ tα sβ =
(

tαsβ − 1
3δ
β
α (tγsγ)

)
+ 1

3δ
β
α (tγsγ). (A.76c)

Besides, we also have that

4
3 t(α[β)sγ] εβγδ = t(αβ)sγ εβγδ =: (t(··)s·)αδ : δα

δ (t(··)s·)αδ ≡ 0, (A.76d)

so that (t(··)s·)αδ is a Hermitian matrix with vanishing trace. Since εβγδεεφδ = δ
β
ε δ
γ
φ−δγε δβφ, we have

also the “converse” relations:

(t(··)s·)αδ εβγδ = t(αβ)sγ − t(αγ)sβ, 2
3 (t(··)s·)(α

δ ε
β)γδ = 4

3 t(α[β)sγ]. (A.76e)

Finally, we also need the combination (A.76a), (A.76b) and (A.76c):

3 ⊗ 3 ⊗ 3 =
(
6S ⊕ 3∗A

)⊗ 3 =
(
10S ⊕ 8

)⊕ (
8 ⊕ 1A

)
, (A.76f)

where the subscripts S and A, respectively, denote the totally symmetric and totally antisymmetric
product, and two 8-plets have a mixed symmetry:

(3 ⊗ 3 ⊗ 3)S ↔ t(αuβvγ), (3 ⊗ 3 ⊗ 3)A ↔ t[αuβvγ]. (A.76g)
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For the cubic expressions with mixed symmetry, there exist many possible choices, one of which
follows from the iterative procedure (A.76f):

(3 ⊗ 3 ⊗ 3)8(1) =
(

(3 ⊗ 3)S︸ ︷︷ ︸
6

⊗3
)

8(1)

↔ (t(αuβ))vγεβγδ, (A.76h)

(3 ⊗ 3 ⊗ 3)8(2) =
(

(3 ⊗ 3)A︸ ︷︷ ︸
3∗

⊗3
)

8(2)

↔ (tαuβεαβδ)vγ
(
δδεδ

φ
γ − 1

3δ
δ
γδ
φ
ε

)
. (A.76i)

These two expressions provide two linearly independent 3× 3 Hermitian matrices with a vanishing
trace.

These results indicate that the answer to Exercises A.3.1 and A.3.2 on 476, is given by Weyl’s
general construction:

Construction A.1 (Weyl) All finitely dimensional unitary representations of every Lie group
may be constructed projecting n-fold tensor products of the fundamental (spinorial for
Spin groups) representation, V⊗n, by means of the so-called Young symmetrizer.

The computations (A.76a)–(A.76f) provide concrete examples of this construction:

0. For the SU(3) group, the fundamental (defining) representation is the complex
3-dimensional, denoted 3, also denoted in the tensor representation as 3 = {tα, α = 1, 2, 3}.

1. The product 3 ⊗ 3 may be projected to:
(a) the symmetric part of the product, 6: t(αuβ) = +t(βuα), and
(b) the antisymmetric part of the product, 3∗: t[αuβ] = −t[βuα], which is isomorphic to the

conjugate 3-dimensional representation: t[αuβ]εαβγ = (t.u.)γ.
2. The product 6 ⊗ 3 may be projected to:

(a) the totally symmetric part of the product, 10: t(αβuγ) = +t(βαuγ) = +t(γβuα) =
+t(αγuβ), and

(b) the part of the product with mixed symmetry, 8: t(α[β)uγ] = +t(β[α)uγ], but the β ↔ γ

antisymmetrization in t(α[β)uγ] is broken by imposing the α↔ β symmetrization.

Projecting may be understood also as a linear mapping of vector spaces:

Sym : 3 ⊗ 3 → 6 and 3∗ = ker
(
Sym(3 ⊗ 3)

)
, (A.77)

that is, 3∗ is the part of the product 3 ⊗ 3 that is annihilated by symmetrization. A consistent and
iterative application of this procedure is called “Young symmetrization.”

To decompose the triple tensor product, we may use the table of coefficients:

αβγ αγβ γαβ γβα βγα βαγ

10 t(αβγ) +1 +1 +1 +1 +1 +1
8 t(α[β)γ] +2 −1 −1 −1 −1 +2
8 t[α(β]γ) +2 +1 −1 +1 −1 −2
1 t[αβγ] +1 −1 +1 −1 +1 −1

(A.78)

so that, e.g.:

t(α[β)γ] ∝ (+2tαβγ − tαγβ − tγαβ − tγβα − tβγα + 2tβαγ) ∝ (2t(αβ)γ − t(αγ)β − t(γβ)α)

∝
[(

t(αβ)γ − t(αγ)β) +
(
t(αβ)γ − t(βγ)α)] ∝

(
tα[βγ] + tβ[αγ]), (A.79)
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which agrees with the result (A.76b). However, table (A.78) also provides the identity

tαβγ = t(αβγ) + t(α[β)γ] + t[α(β]γ) + t[αβγ], (A.80)

which reproduces the decomposition (A.76f).
To simplify decompositions such as (A.76), we use (Alfred) Young tableaux, which provide

yet another alternative notation for representations of Lie groups [581, 168] and for the Young
symmetrization mentioned in Construction A.1.

Construction A.2 (Young) The fundamental, complex n-dimensional SU(n) group represen-
tation is depicted by a box, 
. A symmetric product Sym(n ⊗ n) is depicted by placing two
boxes next to each other: 

. An antisymmetric product ker(Sym (n ⊗ n)) is depicted by
placing two boxes one under the other: 

. Therefore,


⊗
 = 

⊕

. (A.81)

A Young tableau is no more than n vertically stacked horizontal series of boxes, where:

1. all horizontal series being from the same position on the left,
2. no horizontal series has more boxes than the one above it;
3. a column of n boxes depicts the SU(n)-invariant tensor εα1···αn ,

and may be deleted from the tableau.

Example A.3 Decomposition (A.76f), i.e., (A.80) is then depicted as


⊗
⊗
 =
(


⊕



)
⊗
 =

(



⊕




)
⊕

(



 ⊕




)
, (A.82)

where multiplication and decomposition are performed iteratively, by attaching the right-
hand box to the left-hand tableau in all possible and permitted ways.

For complete rules for multiplying arbitrary tableaux – and for all Lie groups – the interested
Reader is directed to the literature [581, 168].

Example A.4 May it suffice here to list the following four examples:




⊗
 = 



⊕



 , 


 ⊗
 = 



 ⊕



⊕



 , (A.83a)




⊗
 =




 ⊕






, 



⊗
 = 




 ⊕




 , (A.83b)

where it is understood that tableaux that have more than n vertically stacked boxes are
discarded for the SU(n) group. Thus, in the third example, only the first tableau remains
for SU(3), but both summands remain for SU(n), n > 3.
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When the SU(3) group structure is applied to the “flavor” of hadrons, the 3-dimensional
representation, 3, which is spanned by u-, d- and s-quarks, in the Young tableau notation, the
quarks are depicted by a box and antiquarks with a column of two boxes. Then, it is clear that:

1. Mesons (bound states of a quark and an antiquark) are depicted by Young tableaux from the
product 

⊗
, i.e., 3∗ ⊗ 3 = 1 ⊕ 8.

2. Baryons (bound states of tri quarks) are depicted by Young tableaux (A.82).
3. Other SU(3) f group representations can appear only in “exotic” bound states such as di-

mesons (q q q q), di-baryons (q q q q q q), etc.

There exist two useful combinatorial formulae, for which we first need a function that asso-
ciates to every box one more than the total number of boxes to the right and below a given box.
Because of the geometric shape of the union of the counted boxes, this function is called the “hook
number.” In Young tableaux (A.84) the values of the “hook numbers” are inscribed into the boxes:

(A.84)

Then, the representation depicted by the tableau YT appears

nYT :=
N!

product of “hook numbers”
(A.85)

times in the tensor product V⊗N.

Example A.5 For the examples in the series (A.84) this formula yields:

3!
1·3·1 = 2,

4!
1·2·4·1 = 3,

6!
1·3·5·1·3·1 = 16. (A.86)

This number is also the dimension of the representation of the permutation group SN repre-
sented by this Young tableau, so that N! = ∑(nYT)2, with the sum extending over all the tableaux
with N boxes.

Example A.6 For baryons represented as 3-quark bound states, we cited the fact that
3⊗ 3⊗ 3 = 1 ⊕ 8 ⊕ 8 ⊕ 10; see the discussion around equation (2.40) and also in
Section 4.4. The formula (A.85) then proves that there are two separately counted,
2-dimensional representations of permutation symmetries S3:

(A.87a)

3! =
( 3!

3·2·1 = 1
)2 +

( 3!
3·1·1 = 2

)2 +
( 3!

3·2·1 = 1
)2 = 1 + 4 + 1, (A.87b)

where the “hook numbers” are inserted into the respective boxes on the right, to aid the
computation. These two separately counted identical representations in the middle of the

expansion, depicted as , have mixed symmetry and correspond to the baryon octets,
8. In turn, the totally antisymmetric and the totally symmetric representations occur at
the beginning and the end of the expansion, respectively; these are both 1-dimensional
(unique) and occur once in the expansion.
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For the second formula, for the SU(n) group, inscribe into every row of boxes the ascending
series of integers, starting with n in the top row, with (n−1) in the second row and so on; these
are called the “box numbers.” The dimension of the SU(n) representation depicted by the tableau
YT is then given by the formula

dYT =
product of “box numbers”

product of “hook numbers”
. (A.88)

Example A.7 For the examples (A.84) and the SU(4) group, we have the dimensions

(4·5)(3)
1·3·1 = 20,

(4·5·6)(3)
1·2·4·1 = 45,

(4·5·6)(3·4)(2)
1·3·5·1·3·1 = 64, (A.89)

while for the SU(3) group, the same tableaux have the dimensions

(3·4)(2)
1·3·1 = 8,

(3·4·5)(2)
1·2·4·1 = 15,

(3·4·5)(2·3)(1)
1·3·5·1·3·1 = 8. (A.90)

Note that the formula for dimensions of SU(n) tableaux (A.88) automatically returns
zero if the tableau contains a column of more than n boxes: for SU(2), the third tableau
in the sequence (A.84) yields (2·3·4)(1·2)(0)

1·3·5·1·3·1 = 0.

— ❦ —

The notational systems presented have their advantages but also their shortcomings:

1. The dimensional notation is unambiguous only for the SU(2) group, and one must use addi-
tional “decorations” to distinguish the distinct representations that happen to have the same
dimension.

2. The ket-notation is unambiguous, but requires specifying some complete collection of
mutually commuting (Casimir) operators – such as J 2 and J 3 for SU(2) – and their
eigenvalues [☞ [488] for a list of Casimir operators].

3. The tensor/index notation is unambiguous, but the specification of the various symmetriza-
tion patterns using round parentheses and square brackets quickly becomes unwieldy and
confusing.

4. The matrix notation requires ever bigger matrices.
5. Young tableaux are unambiguous and very compact, but products of arbitrary representations

for some of the Lie groups may well require very complex rules [168].

Thus, in practice, one typically uses a combination of at least two notational systems, and so it is
very important to know all the notational systems and how to successfully “translate” from any
one into any other one of them.

A.4.3 Exercises for Section A.4

✎ A.4.1 Using the formula (A.88), compute the dimensions of the representations depicted by
all the Young tableaux in the decomposition (A.81) and verify agreement for n = 3, 4, 5.
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✎ A.4.2 Using the formula (A.88), compute the dimensions of the representations depicted by
all the Young tableaux in the decomposition (A.82) and verify agreement for n = 3, 4, 5.

✎ A.4.3 Using the formula (A.88), compute the dimensions of the representations depicted by
all the Young tableaux in the decomposition (A.83) and verify agreement for n = 3, 4, 5.

A.5 Orthogonal and Spin groups
We have already encountered the rotation group SO(3), and the Lorentz group SO(1, 3). In the
general case, the group SO(p, q) is the group of linear transformations of real (p+q)-dimensional
vectors (x1, . . . , xp+q), which preserve the bilinear scalar product [581, 260, 334]:

(x · y)p,q := x1y1 + · · · xpyp − xp+1yp+1 − · · · xp+qyp+q. (A.91)

This definition is equivalent to the statement that elements of the SO(p, q) group may be repre-
sented as (p+q)×(p+q) matrices LLLL, which satisfy the requirement of the generalized orthogonality

LLLLT ηηηη(p,q) LLLL != ηηηη(p,q) ⇔ ηηηη(p,q) LLLLT ηηηη(p,q)
!= LLLL−1, (A.92)

where ηηηη(p,q) is the diagonal matrix with the first p diagonal elements equal to +1, and the remaining
q elements equal to −1. In the usual case (p, q) = (1, 3) and ηηηη := ηηηη(1,3).

A.5.1 Spinors
Just as Dirac constructed the spinorial representation {êaΨa}, starting from the 4-vector p = êμpμ
of the Lorentz group SO(1, 3), this can also be done for every SO(p, q), and the SO(p, q) trans-
formation of those spinors is just as two-valued. Analogously to the double covering of the
SO(3) group one also defines the double covering of every SO(p, q) group, denoted Spin(p, q).
As representations of the Spin(p, q) group, both tensors and spinors are single-valued func-
tions. The algebra of the Spin(p, q) group is denoted spin(p, q), and it is worth knowing that
spin(p, q) = spin(p+q, 0) = spin(p+q). In other words, for a fixed p+q, different Spin(p, q)
groups differ only in the “finite part” [☞ Definition A.1 on p. 454, and Comment A.1 on
p. 454] and their algebras are identical. For p+q � 6, there exist additional identities among
algebras:

spin(3) = su(2), spin(4) = su(2) ⊕ su(2), spin(5) = sp(4), spin(6) = su(4), (A.93)

Table A.4 Some low-dimensional (p+q � 6) spin groups; Spin(p, q) = Spin(q, p) [☞ Section A.1.4]

Spin(1) ∼= O(1) ∼= Z2 Spin(2, 2) ∼= SU(1, 1)× SU(1, 1)
Spin(2) ∼= U(1) ∼= SO(2) Spin(5) ∼= Sp(2)
Spin(1, 1) ∼= GL(1; R) Spin(1, 4) ∼= Sp(1, 1)
Spin(3) ∼= SU(2) ∼= Sp(1) ∼= SL(1; H) Spin(2, 3) ∼= Sp(2; R)
Spin(1, 2) ∼= SU(1, 1) Spin(6) ∼= SU(4)
Spin(4) ∼= SU(2)× SU(2) Spin(1, 5) ∼= SL(2; H)
Spin(1, 3) ∼= SL(2; C) ∼= Spin(3; C) Spin(2, 4) ∼= SU(2, 2)
SO↑(1, 3) ∼= SO(3; C) Spin(3, 3) ∼= SL(4; R)

Spin(p, q) groups for p+q > 6 are not isomorphic to other Lie groups.
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which imply identities between the corresponding groups. Spin groups are defined as double
coverings of orthogonal groups, i.e., the general relation

SO(p, q) = Spin(p, q)/Z2. (A.94)

For physics applications, the practical meaning of this relation is that the multiplicative group
Z2 = {1,−1} is a subgroup of Spin(p, q). Tensorial representations do not transform under this
Z2-action, while spinorial ones change their sign under the action of −1 ∈ Z2. This sign equals
(−1)F, where F is the so-called “fermion number” defined in the text leading to equations (10.44):
F = 0 for bosons and F = 1 for fermions. Thus, spinorial representations of the Spin(p, q) group
are double-valued with respect to the SO(p, q)-action, and are not “true” functions; tensorial repre-
sentations are single-valued under both the Spin(p, q)- as well as the SO(p, q)-action. May it suffice
here to quote without proof [565, 258, 581, 256, 80, 260, 333, 447]:

Theorem A.4 If for two groups, G1 and G2, it is true that G1 = G2/H, then H ⊂ G2 is a
subgroup of G2, and elements of G1 are obtained by identifying those elements from G2 that
differ only by the action of the subgroup H ⊂ G2. Besides, the representations of G1 are
H-invariant representations of G2.

The relation SO(p, q) = Spin(p, q)/Z2 then implies that the SO(p, q) representations are Z2-
invariant Spin(p, q) representations – and those are the tensors, the fermion number of which is
F = 0.

Spinors are, however, the Spin(p, q) representations that are not invariant with respect to the
action of the subgroup Z2 ⊂ Spin(p, q) – the spinors’ fermion number is F = 1 and they change
their sign pod under the action of the nontrivial Z2 element. Let g+, g− ∈ Spin(p, q) be group
elements that differ only by the Z2-action, so g+ does not change its sign while g− does. Since the
relation SO(p, q) = Spin(p, q)/Z2 implies that the group elements g ∈ SO(p, q) are obtained by
identifying g := [g+ " g−], it is clear that the SO(p, q)-action upon spinors is double-valued.

A.5.2 Spin(1, 3)
In relativistic physics, what is physically relevant is not the Euclidean length in spacetime, but the
interval, of the form

√
(x0)2 − (x1)2 − · · · . Thus, for relativistic physics purposes, we are most

often interested in Lorentz groups SO(1, n) and their double coverings, Spin(1, n), where n is the
number of spatial dimensions. The algebras of these groups are the same as for their Euclidean
counterparts, so the identities (A.93) may be used, but it is important to keep in mind that the
group Spin(1, n) differ from Spin(1+n); see Table A.4 on p. 482.

From Table A.4 on p. 482, we have that

Spin(1, 3) = SL(2, C), (A.95)

where SL(2, C) denotes the group of complex 2×2 matrices of unit determinant. This group is
generated by

ττττ j := 1
2σσσσ

j and τ̃τττ j := i
2σσσσ

j, j = 1, 2, 3, (A.96)

the nonzero commutation relations of which are

[ττττ j,ττττk] = iε jk
m ττττm, [ττττ j, τ̃τττk] = iε jk

m τ̃τττm, [τ̃τττ j, τ̃τττk] = −iε jk
m ττττm. (A.97)

On the other hand, starting from relation (5.45):[
γγγγμν , γγγγρσ

]
= ημργγγγνσ − ημσγγγγνρ + ηνσγγγγμρ − ηνργγγγμσ. (A.98)
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This shows that J j := 1
2i ε jklγγγγ

kl with j, k, l = 1, 2, 3 satisfy the su(2) = so(3) subalgebra:[
J 1 , J 2

]
=

[
(−iγγγγ23) , (−iγγγγ31)

]
= −η23γγγγ31 + η21γγγγ33 − η31γγγγ23 + η33γγγγ21 = (−1)(−iJ3)

= iJ 3, (A.99)

and so forth, for the remaining two permutations, [J 2, J 3] and [J 3, J 1]. Denote the remaining
elements K j := iγγγγ0j, and find[

K1 , K2
]

=
[

iγγγγ01 , iγγγγ02 ] = −η00γγγγ12 + η02γγγγ10 − η12γγγγ00 + η10γγγγ02 = −(+1)(+iJ3)
= −iJ 3, (A.100)

and so forth, for the remaining two permutations, [K2, K3] and [K3, K1]. Finally, the mixed
commutators yield[

J 1 , K1
]

=
[
(−iγγγγ23) , iγγγγ01 ] = η20γγγγ31 − η21γγγγ30 + η31γγγγ20 − η30γγγγ21 = 0, (A.101)[

J 1 , K2
]

=
[
(−iγγγγ23) , iγγγγ02 ] = +η20γγγγ32 − η22γγγγ30 + η32γγγγ20 − η30γγγγ22 = −(−1)(iK3)

= iK3, (A.102)

and so forth, for the remaining two permutations, [K2, K3] and [K3, K1]. We thus have the general
structure of commutators:[

J j , J k
]

= iε jk
mJ m,

[
J j , Kk

]
= iε jk

mKm,
[

K j , Kk
]

= −iε jk
mJ m, (A.103)

which are identical in form to the relations (A.97). This shows that the groups SL(2, C) and
Spin(1, 3), and thus also SO(1, 3) ∼= Spin(1, 3)/Z2, have identical algebras.

Finally, define
M j := 1

2 J j + i
2 K j and M j := 1

2 J j − i
2 K j, (A.104)

and find [
M j , Mk

]
= iε jk

mMm,
[

M j , Mk
]

= iε jk
mMm,

[
M j , Mk

]
= 0, (A.105)

which demonstrates that

alg
(

SL(2; C)
)

= alg
(

Spin(1, 3)
)

= alg
(

Spin(3; C)
)

= alg
(

SO(1, 3)
)

= su(2)L ⊕ su(2)R. (A.106)

In the physics literature one sometimes comes across the statement that the Lorentz group is iso-
morphic (or even equals) the product SU(2)L × SU(2)R, which is false. Luckily, the precise details
of the Lorentz group Spin(1, 3) and its precise relationship with the groups SU(2)L and SU(2)R

generated by the operators M j and M j are usually not relevant, and the relation (A.5.2) for the
corresponding algebras suffices.

Note that the discrete operations P and T generate the “finite part” of the O(1, 3) group,
the group of real 4×4-matrix transformations of spacetime 4-vectors that preserve the relativistic
interval. The action of the P and T transformations may then also be represented in the form of
4×4-matrices:18

P =

[ 1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

]
and T =

[ −1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

]
, so PT = −1. (A.107)

18 Caution: the matrix representation of the operations P and T evidently describes linear operations. However, in quantum
theory the operation T is anti-linear and its action cannot be represented this way.
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The definition of the O(1, 3) group does not include the requirement of a unit determinant,
but orthogonality implies that the determinant of O(1, 3)-matrices equals ±1. Elements with
the determinant −1 do not form a group, as they exclude the identity element, while the
elements with determinant +1 do form the SO(1, 3) group, which then is evidently a subgroup
of O(1, 3).

The physical meaning of Lorentz transformations requires that the direction of the flow of
time remains unchanged. Such transformations form a subgroup of SO(1, 3), which is called the
orthochronous Lorentz group,19 denoted L↑ ≡ SO↑(1, 3). It may be shown that this is a connected
group, i.e., every element of the orthochronous Lorentz group may be continuously “shrunk” to
the identity element: Every Lorentz transformation may be factorized into the product of three
rotations and three Lorentz boosts, akin to the well-known factorization of every rotation into
three Euler angle rotations. Each of those six parameters, three angles and three components of
velocity, may be continuously shrunk to 0, whereby every orthochronous Lorentz transformation
may be continuously shrunk to 1.

Denote by TL↑ the collection of all products of elements from L↑ with the element T; since
L↑ is continuously connected, so is TL↑. The analogy holds for PL↑ and for PTL↑. It should be
evident that the TL↑, PL↑ and PTL↑ components cannot be continuously turned into 1, nor can
an element of one of these three components be continuously turned into an element of another
component. It then follows that the O(1, 3) group is a disconnected union of four components:
L↑, TL↑, PL↑ and PTL↑, and that the disconnected unions L↑ and PTL↑ form a subgroup SO(1, 3)
⊂ O(1, 3).

A.5.3 The Poincaré algebra and group in 1+3-dimensional spacetime
Transformations of the tangent space of 1+3-dimensional spacetime are linear transformations of
the space R1,3, of the form

xμ → yμ = Lμν xν + ξμ, (A.108)

where the matrix LLLL = [Lμν] provides the Lorentz transformations of 4-vectors in (flat) spacetime,
and the 4-vector ξμ parametrizes translations in spacetime. These transformations have an induced
action of functions of spacetime, by means of the differential operators

xμ → xμ + ξμ ⇒ f (x) → f (x + ξ) = exp
{
ξμ∂μ

}
f (x); (A.109)

xμ → Lμν xν ⇒ f (x) → f (LLLLx) = exp
{
λμ

νLμν
}

f (x). (A.110)

The translation generators are then differential operators ∂μ, and the Lorentz transformation
generators are

Lμν = xμ∂ν − ημρηνσxσ∂ρ, (A.111a)

so that:

boost L0
i = x0∂i − η00ηijx

j∂0 = ct ∂
∂xi + δijx

j 1
c
∂
∂t , (A.111b)

Li
0 = xi∂0 − ηijη00x0∂j = xi 1

c
∂
∂t + δij ct ∂

∂xj = δij(ct ∂
∂xj + δjkxk 1

c
∂
∂t

)
= δij L0

j, (A.111c)

rot. Li
j = xi∂j − ηikηj�x�∂k = ηik(ηknxn ∂

∂xj − ηjnxn ∂
∂xk

)
i = εi jk ε

k�
n xn ∂

∂x� . (A.111d)

19 The nomenclature here is not quite standard: some Authors call the full O(1, 3) group the Lorentz group while others
reserve this name only for the orthochronous component, SO↑(1, 3), of the SO(1, 3) group.
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For example,

exp
{
ξμ∂μ

}
f (x) =

∞

∑
k=0

1
k!

([ k

∏
i=1

ξμi
∂

∂yμi

]
f (y)

)
y→x

=
1
0!

f (x) +
1
1!
ξμ

(∂ f (y)
∂yμ

)
y→x

+
1
2!
ξμξν

( ∂2 f (y)
∂yμ∂yν

)
y→x

+ · · ·
= f (x + ξ). (A.112)

Translations in 1+3-dimensional space R1,3 commute and are parametrized by the 4-vector
ξμ ∈ R1,3. As the operators ∂

∂xμ also span the vector space R1,3, we may write that tr(R
1,3
x ) ∼= R

1,3
∂ ,

where tr(X ) denotes “the algebra of translations in space X .” It is not hard to verify that[
λ·L , λ′·L ]

= λ′′·L,
[
λ·L , ξ·∂ ] = ξ ′·∂,

[
ξ·∂ , ξ ′·∂ ] = 0, (A.113a)

λ·L := λμ
νLμν, ξ·∂ := ξμ∂μ, (A.113b)

so that the Poincaré algebra is po(1, 3) = spin(1, 3) :+ tr(R1,3), and the Poincaré group is Po(1, 3) =
Spin(1, 3)�R1,3, where the asymmetric binary symbol :+ (�) denotes the semidirect sum (product)
and recalls the fact that the left-hand summand (factor) acts upon the right-hand one [☞ the
lexicon entry, in Appendix B.1].

A.5.4 Exercises for Section A.5

✎ A.5.1 Verify equations (A.103) by explicit computation, using however only the defini-
tions (5.45).

✎ A.5.2 Verify equations (A.105), using the definitions (A.104) and the previous results.

✎ A.5.3 Verify equations (A.113) by explicit computation, using however only the defini-
tions (A.111).

✎ A.5.4 Using the definitions (A.111) and your results in the above problems, reconstruct the
differential operator representation of the operators M j and Mk.

A.6 Spinors and Dirac γγγγ-matrices
SO(p, q) denotes the group of homogeneous and linear transformations of (p, q)-vectors �v that
preserve the bilinear product

�v·�u :=
p

∑
i=1

viui −
p+q

∑
i=p+1

viui
!=

p+q

∑
i=1

(
Mi

kuk
)·ηij(Mj

�u�

)
, (A.114)

where the (p+q)×(p+q) matrices M have a unit determinant and where

[ηij] = ηηηη(p,q) = diag
(
+1, . . . , +1︸ ︷︷ ︸

p

,−1, . . . ,−1︸ ︷︷ ︸
q

)
. (A.115)

The vectors �v form the defining vector space Vv. One also writes SO(p, q) = SO(Vv;ηηηη(p,q)), where
the latter notation quite literally stands for “the group of unimodular orthogonal transformations
of the vector space Vv that preserve the bilinear product obtained using the matrix ηηηη(p,q).”
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Every (unimodular orthogonal) group SO(p, q) has a double covering (that is also a group),
denoted Spin(p, q) [333], the single-valued spinorial representations of which are double-valued
representations of the SO(p, q) group. Every Spin(p, q) group has the (Dirac) spinor representation
VΨ as well as its formally dual representation (VΨ)∗ = VΨ, for which the relation

VΨ ⊗ VΨ ⊃ Vv, (A.116)

holds, where Vv (p, q) is the defining vector representation of SO(p, q). For any chosen bases,

êA ∈ VΨ, êA ∈ VΨ, and êμ ∈ Vv, (A.117)

and the Dirac γγγγ-matrices are arrays of the coefficients in the projection (A.116):

êA(γγγγμ)A
B êB = êμ. (A.118)

A.6.1 Dirac matrices in (3+1) dimensional spacetime
The elements γγγγμ, μ = 0, 1, 2, 3, which satisfy{

γγγγμ , γγγγν
}

= 2ημν, with [ημν] = diag(+1,−1,−1,−1), (A.119)

form the Clifford algebra Cl(1, 3). Following Feynman, one defines

/p := γγγγμpμ for each 4-vector p. (A.120)

This implies the following definitions and results:

γ̂γγγ := iγγγγ0γγγγ1γγγγ2γγγγ3 := i
4! εμνρσγγγγ

μγγγγνγγγγργγγγσ,
{
γ̂γγγ , γγγγμ

}
= 0, (γ̂γγγ)2 = 1; (A.121a)

γγγγ± := 1
2 [1 ± γ̂γγγ],

[
γγγγ+ , γγγγ−

]
= 0, γγγγ+ + γγγγ− = 1, (γγγγ±)2 = γγγγ±, (A.121b)

γγγγμν :=
i
4
[γγγγμ,γγγγν],

[
γγγγμν , γγγγρσ

]
= ημργγγγνσ − ημσγγγγνρ + ηνσγγγγμρ − ηνργγγγμσ. (A.121c)

γγγγμγγγγμ = 4 1, γγγγμγγγγνγγγγργγγγμ = 4γγγγνγγγγρ, (A.122a)

γγγγμγγγγνγγγγμ = −2γγγγν, γγγγμγγγγνγγγγργγγγσγγγγμ = −2γγγγνγγγγργγγγσ, (A.122b)

γγγγμγγγγνγγγγρ = ημνγγγγρ − ημργγγγν + ηνργγγγμ + iεμνρσγγγγσγ̂γγγ . (A.122c)

Theorem A.5 Owing to the relations (A.119), (A.121a) and (A.122c), it follows that every
γγγγ-matrix polynomial may be reduced to the quadratic polynomial

C01 + Cμγγγγμ + 1
2 Cμνγγγγμν + Ĉμγγγγμγ̂γγγ+ Ĉ0γ̂γγγ. (A.123)

That is, the basis
1, γγγγμ, γγγγμν, γγγγμγ̂γγγ, γ̂γγγ (A.124)

for the Dirac algebra (A.119) is complete.

We also have

Tr[γγγγμ] = 0, Tr[γγγγμγγγγνγγγγρ] = 0, Tr[γγγγμγγγγνγγγγργγγγσγγγγλ] = 0, etc. (A.125a)

Tr[γγγγμγγγγν] = 4ημν, Tr[γγγγμγγγγνγγγγργγγγσ] = 4(ημνηρσ − ημρηνσ + ημσηνρ), (A.125b)

Tr[γ̂γγγ] = 0, Tr[γγγγμγγγγνγ̂γγγ] = 0, Tr[γγγγμγγγγμγγγγργγγγσγ̂γγγ] = −4iεμνρσ. (A.125c)
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These relations imply

/p/p = p2 1, /p/q = (p·q − 2ipμγμνqν)1; (A.126a)

/p/q + /q/p = 2(p·q) 1, /p/q − /q/p = −4i(pμγμνqν)1; (A.126b)

Tr[/p/q] = 4p·q 1, Tr[/p/q/r /s ] = 4[(p·q)(r·s) − (p·r)(q·s) + (p·s)(q·r)]; (A.126c)

Tr[/p] = 0 = Tr[/p/q/r ], Tr[γ̂γγγ/p/q/r /s ] = 4iεμνρσpμ qν rρ sσ; (A.126d)

γγγγμ /p/qγγγγμ = 4p·q 1, γγγγμ /pγγγγμ = −2 /p, γγγγμ /p/q/rγγγγμ = −2 /r/q/p. (A.126e)

In physics applications, besides the relations (A.119) that define the Clifford algebra, one
additionally requires the matrices γγγγμ to satisfy

(γγγγ0)† = γγγγ0, and (γγγγi)† = −γγγγi, i = 1, 2, 3, ⇔ (γγγγμ)† = γγγγ0γγγγμγγγγ0. (A.127)

This requirement is not an integral part of the definition and structure of Clifford algebras, which
one must keep in mind when using mathematical results about Clifford algebras. The use of the
algebra (A.119) in the physics literature always assumes the additional conditions (A.127) – as
well as their consequences.

Corresponding to Dirac conjugation of spin- 1
2 fermions (5.49), we have

Ψ := Ψ†γγγγ0 ⇔ γγγγμ := γγγγ0(γγγγμ)†γγγγ0 (A.127)= γγγγμ. (A.128)

Therefore,

γ̂γγγ := γγγγ0(iγγγγ0γγγγ1γγγγ2γγγγ3)†γγγγ0 = −iγγγγ0(γγγγ3)†γγγγ0γγγγ0(γγγγ2)†γγγγ0γγγγ0(γγγγ1)†γγγγ0γγγγ0(γγγγ0)†γγγγ0 = −iγγγγ3 γγγγ2 γγγγ1 γγγγ0

(A.127)= −iγγγγ3γγγγ2γγγγ1γγγγ0 (A.119)= −iγγγγ0γγγγ1γγγγ2γγγγ3 = −γ̂γγγ, (A.129)

and so
γγγγ± = γγγγ∓, whereby Ψ± = Ψ∓. (A.130)

Besides the Dirac basis:

γγγγ0 =
[

1 O
O −1

]
, γγγγi =

[
O σσσσi

−σσσσi O

]
, γ̂γγγ =

[
O 1

1 O

]
, (A.131)

the most often used choices are the Weyl basis:

γγγγ0 =
[

O −1

−1 O

]
, γγγγi =

[
O σσσσi

−σσσσi O

]
, γ̂γγγ =

[
1 O
O −1

]
, ΨDirac =

[
Ψ+
Ψ−

]
; (A.132)

and the Majorana basis:

γγγγ0 =
[

O σσσσ2

σσσσ2 O

]
, γγγγ1 =

[
iσσσσ3 O
O iσσσσ3

]
, γγγγ2 =

[
O −σσσσ2

σσσσ2 O

]
, γγγγ3 =

[−iσσσσ1 O
O −iσσσσ1

]
,

γ̂γγγ =
[
σσσσ2 O
O σσσσ2

]
, (A.133)

in which all components of the Dirac spinor Ψ are real, while the Dirac matrices themselves are all
imaginary in the Majorana basis.
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A.6.2 Weyl’s notation for spinors
The literature about supersymmetry [☞ [189, 562, 560, 129, 76, 308], to list only textbooks] is
unfortunately replete with differences in notation and conventions. For consistency, the conven-
tions of Ref. [76] are adopted herein, and the Reader is left to compare with other sources and
correctly translate the notation and conventions.

Left and right spinors
The result (5.58) indicates the fact that the Dirac 4-component spinor may, in a Lorentz-invariant
way, be separated into a pair of two-component spinors, Ψ = (Ψ+, Ψ−), where Ψ± are de-
fined by the projections γγγγ± (5.57). This separation reflects the fact that the Lorentz group
in 1+3-dimensional spacetime is Spin(1, 3) ∼= Spin(3; C) ∼= SL(2; C), and that the Lorentz
algebra is

spin(1, 3) = su(2)L ⊕ su(2)R. (A.134)

That is, Ψ+ transforms under the su(2)L-action and is invariant under the su(2)R-action, while Ψ−
transforms the other way around:

Ψ+ ∼ ( 1
2 , 0), Ψ− ∼ (0, 1

2 ) with respect to spin(1, 3) = su(2)L ⊕ su(2)R. (A.135)

In physics literature one often encounters the statement “Spin(1, 3) ∼= SU(2)L × SU(2)R,” which
does not hold for the group. For most all of physics purposes, however, the relation (A.135) suffices,
which is true of the algebra; the Reader is directed to the literature [565, 258, 581, 256, 80, 260,
333, 447] for the precise details about these groups, their representations and differences.

For the Weyl spinors (5.58), one uses the 2-component notation:

Ψ+ := γγγγ+Ψ �→ ψα, ψα → ψ′
a = Mα

β ψβ, (A.136a)

Ψ− := γγγγ−Ψ �→ χ.
α, χ.

α → χ′.α = χ .
β
(M−1)

.
β.
α. (A.136b)

Here, Mα
β and M

.
β.
α are matrix elements of SL(2; C)-matrices M = exp{mL} with mL ∈ su(2)L

and M = exp{mR} with mR ∈ su(2)R; the matrices M and M are independent, and one refers to
independent “left” and “right” action.

The spin- 1
2 wave-functions ψ and χ are used to represent fermionic wave-functions, so that

the components ψα and χ.
α are anticommuting functions.20 Thus the Levi-Civita symbols εαβ and

ε
.
α
.
β serve as (antisymmetric!) metric tensors for “left” and “right” Weyl spinors, ψ,χ and ψ,χ:

(ψ·χ) := ψαε
αβχβ = ψ1χ2 − ψ2χ1 = −χβεαβψα = χβε

βαψα = (χ·ψ), (A.137)

(ψ·χ) := ψ.
αε

.
α
.
βχ .

β
= ψ1χ2 − ψ2χ1 = −χ .

β
ε
.
α
.
βψ.

α = χ .
β
ε
.
β
.
αψ.

α = (χ·ψ), (A.138)

where we must pay attention to detail:

εαγεβγ = δαβ, but εαγεγβ = −δαβ; ε
.
α
.
γε .
β
.
γ

= δ
.
α.
β
, but ε

.
α
.
γε .
γ
.
β

= −δ
.
α.
β
. (A.139)

By convention, we set ε12 = 1 = ε
.
α
.
β.

20 To be precise, every component of the field ψα and χα may be identified with a spacetime-dependent linear combination
of anticommuting operators, such as b and b† in Section 10.1, where creation operators act upon a vacuum state and
create states with appropriate fermionic excitations.
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Products of 2-component Weyl spinors satisfy the following identities:

ψαχβ = 1
2 εαβ(ψ·χ) − 1

2σ
μν
αβ (ψσσσσμν χ), (A.140)

ψ.
αχ

.
β

= 1
2 ε.α .β(ψ·χ) − 1

2σ
μν.
α
.
β
(ψσσσσμν χ), (A.141)

ψ2 := 1
2 ε
αβψαψβ, ψaχ.

α = − 1
2σ
μ

α
.
α
(ψσσσσμ χ), (A.142)

(ψ1·ψ2)(ψ3·ψ4) = −(ψ1·ψ3)(ψ2·ψ4) − (ψ1·ψ4)(ψ2·ψ3), (A.143)

(ψ1·ψ2)(ψ3·ψ4) = − 1
2 (ψ1σσσσ

μψ4)(ψ2σσσσμψ3). (A.144)

Comment A.3 Since fermionic wave-functions are anticommuting, they must also be nilpo-
tent: {

ψα(x) , ψβ(x)
}

= 0 ⇒ (
ψα(x)

)2 ≡ 0. (A.145)

The notation “ψ2” is then free for the definition:

ψ2(x) := ψ1(x)ψ2(x) = 1
2 ε
αβψα(x)ψβ(x). (A.146)

4-Vectors and Pauli’s matrices
4-vectors such as the spacetime 4-vector x transform as the ( 1

2 , 1
2 ) representation of the spin(1, 3) =

su(2)L ⊕ su(2)R algebra, i.e., of the Spin(1, 3) ∼= SL(2; C) group. The SL(2; C) group action on the
4-vector xμ is easiest represented using Pauli matrices:

[σσσσμ]α.α : σσσσ0 :=
[

1 0
0 1

]
, σσσσ1 :=

[
0 1
1 0

]
, σσσσ2 :=

[ 0 −i
i 0

]
, σσσσ3 :=

[ 1 0
0 −1

]
, (A.147)

which are identified with the index notation σμ
α
.
α

so that, e.g., σ2
12 = −i. Using εαβ and ε

.
α
.
β to “raise”

spinor indices and ημν to “lower” the vector index, we have

σ
.
αα
μ := ε

.
α
.
βεαβημνσ

ν

β
.
β

: [σσσσμ] =
(
[1], [σσσσ1], [σσσσ2], [σσσσ3]

)
= [σσσσμ]. (A.148)

That is, the matrices σσσσμ and σσσσμ look alike. However, the matrices

σσσσμ := ημνσσσσ
ν and σσσσμ := ημνσσσσν (A.149)

have a differing sign: [σσσσ1] = −[σσσσ1], [σσσσ2] = −[σσσσ2], [σσσσ3] = −[σσσσ3], as well as [σσσσ1] = −[σσσσ1], [σσσσ2] =
−[σσσσ2], [σσσσ3] = −[σσσσ3].

One therefore writes

xxxx := xμσσσσμ, xxxx → xxxx′ = M xxxx M−1, M, M ∈ SL(2; C), (A.150)

where the matrices M = exp{iωμσσσσμ} and M = exp{iπμσσσσμ} are independent, and represent the
independent “left” and “right” action, so that

(χ′·xxxx′·ψ′) = (χM−1 ·M xxxx M−1 ·Mψ) = (χ·xxxx·ψ) (A.151)

is an SL(2; C)-invariant. In the index notation,

(χ.
α x

.
αα ψα) → (χ′.α x′

.
αα ψ′

α) = χ .
β
(M

−1)
.
β.
α M

.
α .
γ x

.
γγ (M−1)γα Mα

β ψβ

= (χ.
α x

.
αα ψα). (A.152)
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Finally, notice that

det[ xxxx ] = (x0)2 − (x1)2 − (x2)2 − (x3)2 = xμ ημν xν (3.17)= x2, (A.153)

which is also an SL(2; C)-invariant:

det[ xxxx ] → det[ xxxx′ ] = det[ M xxxx M−1 ] = det[M] det[ xxxx ] det[M−1] = det[ xxxx ], (A.154)

since the SL(2; C) elements are unimodular, det[M] = 1 = det[M].
The Pauli matrices (A.147) and (A.148) satisfy the following useful identities:

(σσσσμσσσσν + σσσσνσσσσμ)αβ = 2ημν δ
β
α , (σσσσμσσσσν + σσσσνσσσσμ)

.
α .
β

= 2ημν δ
.
α.
β
; (A.155)

Tr
[
σσσσμσσσσν

]
= Tr

[
σσσσμσσσσν

]
= 2ημν, σ

μ

α
.
α
σ

.
ββ
μ = 2δβα δ

.
β.
α

, (A.156)

and are suitable for the conversion of Spin(1, 3)-tensors into (bi)spinor expressions:

Vα.α := σ
μ

α
.
α
Vμ ⇔ Vμ = 1

2σ
.
αα
μ Vα.α. (A.157)

It is convenient to also define the matrices

(σσσσμν)αβ := 1
4

(
σμ α.ασν

.
αβ − σν α.ασμ

.
αβ
)
, (σσσσμν)

.
α .
β

:= 1
4

(
σμ

.
αασν α

.
β − σν

.
αασμ α

.
β

)
, (A.158a)

which, σσσσμν and σσσσμν independently, close the spin(1, 3) algebra (A.121c), and for which

(σσσσμν)αβ := (σσσσμν)αγεβγ and (σσσσμν)αβ := εαγ(σσσσμν)γβ, (A.158b)

(σσσσμν)
.
α
.
β := (σσσσμν)

.
α .
γε

.
β
.
γ and (σσσσμν).α .β := ε.α .γ(σσσσμν)

.
γ .
β
. (A.158c)

For these matrices (with ε0123 = 1), it is true that

(σσσσμν)αβ(σσσσρσ)βα = 1
2 (ημρηνσ − ημσηνρ) + i

2 εμνρσ, (A.159)

(σσσσμν)
.
α .
β
(σσσσρσ)

.
β.
α = 1

2 (ημρηνσ − ημσηνρ) − i
2 εμνρσ. (A.160)

Super-derivatives
In supersymmetry research, the so-called “super-derivatives”

Dα := ∂α − iσμ
α
.
α
θ
.
α∂μ and D.

α := ∂.α − iσμ
α
.
α
θα∂μ (10.68′)

are of special importance. They anticommute with the generators of supersymmetry, Qα, Q.
α, and

so commute with the operator of the supersymmetry transformation:

DαUε,ε = Uε,εDα and D.
αUε,ε = Uε,εD.

α, Uε,ε := exp{−i(εαQα + ε
.
αQ.

α) }. (A.161)

The operators Dα, D.
α are then, in fact, literally invariant with respect to the supersymmetry action,

but their name, “(super)covariant,” stuck in the literature; herein, the shorter and more precise
term “super-derivative” is used.

The basic property of the super-derivatives,{
Dα , D.

α

}
= 2 h̄−1σ

μ

α
.
α
Pμ = −2i σμ

α
.
α
∂μ, (10.69′)

is sometimes called super-commutativity and permits simplifying higher-order super-derivatives:

DαDβ = 1
2εαβD2, D.

αD .
β

= 1
2ε.α .βD2; (A.162)

DαDβDγ = 0, D.
αD .

β
D .
γ = 0; (A.163)

[D2, D.
α] = 4iσμ

α
.
α
εαβ∂μDβ, [D2, Dα] = 4iσμ

α
.
α
ε
.
α
.
β∂μD .

β
; (A.164)

D2D2 + D2D2 − 2ε
.
α
.
βD.

αD2D .
β

= −16
, 
 := ημν∂μ∂ν. (A.165)
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A.6.3 Exercises for Section A.6

✎ A.6.1 Prove the relations (A.121) using only the anticommutation relations (A.119).

✎ A.6.2 Prove the relations (A.122) using only the anticommutation relations (A.119).

✎ A.6.3 Prove Theorem A.5 using only the anticommutation relations (A.119).

✎ A.6.4 Prove Theorem A.5 using the Cayley–Hamilton theorem.

✎ A.6.5 Prove the relations (A.125) using only the anticommutation relations (A.119).

✎ A.6.6 Prove the relations (A.126) using only the anticommutation relations (A.119).

✎ A.6.7 Prove the relations (A.162)–(A.165) using only the relations (10.69).



B
A lexicon

When describing previously uncharted territories, discoverers and inventors are forced to adopt
and adapt previously known terms, concepts and techniques for the new phenomena, or invent
wholly new ones. This appendix collects a listing of perhaps less familiar but oft-used terms in our
field, then turns to the vector/tensor and even functional extension to the hopefully well-familiar
rules of multivariate calculus, and closes with a brief on Gödel’s incompleteness theorem.

B.1 The jargon
The jargon of theoretical and mathematical physics is very much in development and in some
cases not yet standardized. With the aim of using compact but precise terms to name very spe-
cific ideas, many scientists begin using an otherwise rarely used word and, at times, their choice
“catches on” and becomes standardized. At other times, different terms are used by competing
(or non-communicating) research groups for the same or closely related concepts, whereupon
one of the two “competing” terms may turn into a standard but only after a long period dur-
ing which both terms are used. As the fundamental physics of elementary particles is still
very much in development, consistency and expediency required me to make certain choices
in terminology, which I have, to the best of my knowledge, indicated together with possible
alternatives.

The subsequent lexicon offers brief explanations for some of the perhaps less familiar tech-
nical terms and expressions, most of which are fairly standard, but in a field other than particle
physics.

Abelian (commutative, symmetric) A binary operation � is abelian if a � b = b � a. By extension,
structures defined using an abelian binary operation are also called abelian. Operations that
are not abelian are called non-abelian (= non-commutative, = asymmetric), as are structures
defined using them.

Algebra A vector space A over a field k, equipped with a binary operation ∗, which satisfies the
distribution law over addition: a ∗ (b + c) = (a ∗ b) + (a ∗ c), for all elements a, b, c ⊂ A, and
for which it is true that α(a ∗ b) = (αa) ∗ b = a ∗ (αb), for each α ∈ k and a, b ∈ A. The
operation ∗ is typically a type of multiplication; it is often commutative, i.e., symmetric, but
in Lie algebras it is antisymmetric: a ∗ b = −b ∗ a.
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Amplitude In the context of field theory and so also in (high energy) elementary particle physics,
this is the matrix element Mi→ f := 〈 f |Hint|i〉 where |i〉 and | f 〉 are the initial and final states
and Hint is the (algebraic sum of all) interaction operator(s) that can bring about the process
|i〉 → | f 〉. The probability for this process is then proportional to |Mi→ f |2 [☞ display (3.85)
and Section 3.3.3 on p. 113].

Analytic function A function f (x) is analytic in a domain D if it has a (convergent) Taylor
expansion f (x) = ∑∞

n=0 an(x−x0)n for every x0, (x−x0) ∈ D .
Anomaly Structural changes in relations between observables caused by passing from classical to

quantum theory. If those relations represent the algebra of symmetry transformations and
anomalies obstruct the closure or change the structure of that algebra, then anomalies de-
stroy or change the symmetry that was built into the system originally – which points to an
inconsistency. Models with an anomaly in a gauge symmetry are simply inconsistent [☞ Sec-
tion 7.2.3], whereupon all gauge anomaly ought to cancel. [☛ geometric quantization;
canonical quantization] In turn, anomalies in global and approximate symmetries need not
cancel, but are characteristic quantities that cannot be altered by field redefinitions, and
so must remain conserved throughout the evolution of a system, including phase transi-
tions. This is a direct consequence of the underlying principle in Dirac quantization. [☛ Dirac
quantization]

Auxiliary field A field that has a non-differential equation of motion, which determines the field
point-by-point. If this equation of motion can be solved, the solution can be reinserted in
the Lagrangian density, which is classically equivalent to the original Lagrangian density but
involves fewer fields. The equivalence need not hold between the quantum models defined
from the two Lagrangian densities.

Baryon Since the acceptance of the quark model in 1973, a bound state of three quarks. Originally,
a particle that interacts by means of the strong nuclear force (at ∼10−23 s), can be detected
as an isolated particle, and has a mass that is not smaller than that of the proton, such as a
neutron.

Bijection A mapping f : X → Y that is both (1) an injection (i.e., “1–1”), so for every x ∈ X there
is precisely one y = f (x) ∈ Y, and (2) a surjection, so for every y ∈ Y there is an x ∈ X
so that f (x) = y. Bijection = surjective injection, i.e., injective surjection. [☛ injection,
surjection]

BFV-quantization A contemporary version (by Igor Batalin, Efim S. Fradkin and Grigori Vilkovisky)
of canonical quantization in the Hamiltonian formalism, which generalizes the evolution
of the canonical–Dirac–BRST quantization to the general case when the constraints do not
close the structure of an algebra [174, 39, 172, 36, 37, 345, 38, and references therein];
see also the texts [268, 555, 484, 496, 589, 590] and [509]. [☛ BRST quantization; Dirac
quantization; canonical quantization]

Bose condensation The state of a system where infinitely many particles (bosons) are in the same
quantum state. The Coulomb static potential may be understood as a Bose condensation of
infinitely many photons.

Boson By definition, a particle (as well as its mathematical representatives: wave-functions, cre-
ation and annihilation operators or fields) that obeys the Bose–Einstein statistics; Pauli’s
exclusion principle does not apply to bosons and bosons may condense [☛ Bose conden-
sate]. By the spin-statistics theorem (in Lorentz-covariant models), physical particles whose
mathematical representatives transform as tensor representations of the Lorentz group are
bosons. The possible values of bosonic wave-functions and fields are (ordinary) commuting
numbers (“c-numbers”).

BRST quantization A procedure (by Carlo M. Becchi, Alain Rouet and Raymond Stora, and sep-
arately by Igor V. Tyutin) of constructing a quantum theory from an originally classical
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field theory with a gauge symmetry, in which the gauge symmetry reduces to a BRST sym-
metry and counterterms are added to the Lagrangian density that are invariant with respect
to the BRST symmetry, although not with respect to the original (classical) gauge sym-
metry. As a gauge symmetry is realized in quantum theory by imposing constraints (that
the physical states are invariant under the action of the symmetry) and these constraints
close an algebra, BRST quantization is a canonical generalization of the Dirac quantiza-
tion with constraints of the first class in Dirac’s classification [445, 425, 345]; see also the
texts [555, 484, 496, 589, 590]. [☛ Dirac quantization; canonical quantization]

BRST symmetry A reduction of a gauge symmetry where the parameters in a gauge transformation
are replaced by ghost fields: functions of spacetime that have the opposite statistics from the
original parameters but transform identically as the original parameters under the action
of both the gauge and the Lorentz transformations. For example, Yang–Mills gauge theories
have ordinary (commutative) scalar functions as gauge parameters. In the corresponding
BRST symmetry, to the system is added a pair of canonically conjugate anticommutative scalar
fields that otherwise, in every other aspect, transform identically as the original parameters
of the given gauge transformation. Interactions of these ghost fields with other fields are
determined precisely so that they cancel the contributions of the unphysical components in
the gauge fields [44]; see also the texts [268, 555, 484, 496, 589, 590]. [☛ ghost fields;
nonphysical components]

Bundle [☞ vector bundle]
BV-quantization A contemporary version of canonical quantization (by Jean Zinn–Justin, then by

Igor Batalin and Grigori Vilkovisky) in the Lagrangian formalism, which generalizes the evo-
lution of the canonical–Dirac–BRST quantization to the general case when the constraints
do not close the structure of an algebra [41, 345]; see also the texts [555, 484]. [☛ BRST
quantization; Dirac quantization; canonical quantization]

Canonical quantization Also known as the second quantization; the adjective “canonical” stems
from using the canonical Hamiltonian formalism of classical physics and its quantum reinter-
pretation, where the relations between observables in a given model are preserved as well as
possible, and with a formal replacement of the Poisson brackets by commutators. Changes in
these relations, e.g., if the Poisson bracket {A,B} = C upon canonical quantization becomes
[A, B] = C + Δ, the additional term Δ is one of the measures of this anomaly. [☛ anomaly]

Cartesian product Also known as the direct product: for two sets X and Y, the Cartesian product is
the set of all ordered pairs:

X × Y :=
{
(x, y) : x ∈ X, y ∈ Y

}
. (B.1)

Cauchy sequence Given a metric space (a set of points xi with a well-defined distance function
d(xi, xj) between any two points), this is a sequence of points x1, x2, . . . , where

d(xi, xj) < ε, ∀i, j > N, (B.2)

for some predefined integer N and positive real number (tolerance) ε. That is, all points
sufficiently far up the sequence are closer than ε to each other.

Chirality The eigenvalue of the operator γ̂γγγ. A particle is said to have a well-defined chirality if its
wave-function is an eigenfunction of this operator. The operators 1

2 [1 ± γ̂γγγ], with the γ̂γγγ-matrix
defined in Appendix A.6.1, project to spin- 1

2 particles of chirality ± 1
2 . By construction, chi-

rality is Lorentz-invariant. However, as γ̂γγγ anticommutes with the Dirac operator γγγγμ∂μ and
commutes with the mass,

[ih̄γγγγμ∂μ − mc1] 1
2 [1 ± γ̂γγγ] �∝ 1

2 [1 ± γ̂γγγ] [ih̄γγγγμ∂μ − mc1], (B.3)

and the chirality of a massive particle is not a constant.
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CM system For a system of particles located at the positions �ri and having the masses mi, the
position and velocity of the center of mass are, by definition,

�rCM := ∑i mi�ri

∑i mi
, �vCM := ∑i mi�vi

∑i mi
. (B.4)

A coordinate system where �vCM = 0 is called the center of momentum frame, where�rCM need
not vanish; a coordinate system where additionally also�rCM = 0 is called the center of mass
system, or “CM-system” for short.

Codimension For a subspace X ⊂ Y, cod(X ⊂ Y) := dim(Y)−dim(X). If the subspace X is
defined by means of a system of algebraic equations, near every point x ∈ X, that system
must have cod(X ⊂ Y) independent equations.

Codomain For a mapping f : X → Y, the collection of elements Y wherein the map points, and
wherein the values of f and its image lie; f (x) = y ∈ Y for all x ∈ X.

Cokernel For a linear mapping f : X → Y of a vector space X into Y, the cokernel of f consists of
the equivalence classes cok( f ) := {[y " y + f (x)] : x ∈ X, y ∈ Y}.

Color In the context of elementary particles, the 3-dimensional SU(3)c charges of quarks, such
that baryons consist of three quarks with one of the three linearly independent colors (“red,”
“yellow,” “blue”) each, so that the baryon is “colorless,” or more precisely, SU(3)c-invariant.
Owing to the ubiquity of computer graphics, the so-called subtractive color system is ever
more familiar, but we adopt the familiar additive color system. Here, red and yellow produces
orange, and its mix with blue produces colorless, i.e., black. The opposite (anti-)colors of
primary colors are: anti-red = green, anti-yellow = purple, anti-blue = orange; the mixture
of any color and its anti-color produces colorless. Because of this regularity the name color is
convenient as a mnemonic crutch for adding SU(3)c vectors [☞ Appendix A.4].

Compact space A topological space [☛ topological space] X where every open neighborhood
(and so also the whole X) may be covered by a finite number of open neighborhoods
is called quasi-compact. A topological space where every two distinct points have some
non-intersecting neighborhoods,

∀x �= x′ ∈ X, ∃U, U′ ⊂ X : U ( x, U′ ( x′, U ∩ U′ = ∅ (B.5)

is called Hausdorff. A Hausdorff space that is also quasi-compact is compact. In practice in
theoretical physics, it is crucial that compact spaces have a well-defined size, so that compact
spaces may be chosen to be smaller (or larger) than a given size/length.

Compactification The procedure where a non-compact topological space X is added to a topolog-
ical space Y of strictly lesser dimension, so that Xc := (X ∪ Y) is compact. The simplest
example is S1 = R1 ∪ {point}, where a point “at infinity” was added to the open line (R1),
so as to obtain the circle (S1).

Concrete applications of this procedure within the present subject stem from the proposal
originally made by Gunnar Nordstrøm, in 1914, whereby the spatial dimension of the form
of an open and infinitely large line, R1, is replaced by a closed, compact and small circle,
S1. The proposal was rediscovered by Theodor F. E. Kałuża in 1919 (published in 1921)
and also Oscar Klein in 1921. The latter two publications being generally known, this is
typically called “Kałuża–Klein compactification.” Symmetries of the compactified space result
in Yang–Mills gauge symmetries in the non-compact spacetime. The special case when the
compact space is a Calabi–Yau manifold is called “Calabi–Yau compactification.” As Calabi–
Yau spaces of more than one complex dimension do not have continuous symmetries, Calabi–
Yau compactification does not give rise to any gauge symmetry, and in fact typically reduces
what gauge symmetry there was prior to compactification; see Section 11.3.1.
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Complex structure [☛ conjugation]
Commutative [☛ abelian]
Conjugation is a mapping of one (generalized) complex structure into its equivalent partner. Most

generally, a complex structure is specified by an operation Î , the two-fold repetition of which
results in a sign change: Î ◦ Î = −1. Therefore, −Î is always also a complex structure,
distinct from I but equivalent to it for all purposes, and all complex structures always occur
in such equivalent pairs.

Complex conjugation Every rule by which a pair of real numbers (x, y) is assigned a com-
plex number z has a conjugate rule. For example, relative to the definition z := (x + iy),
z∗ := (x − iy) is the complex conjugation of the complex number z. Operatively, complex
conjugation changes i → −i. The analogous situation holds also for matrices, functions,
operators, etc.

Hermitian conjugation of matrices is the combination of complex conjugation (of every
element) of the matrix with its transposition: (aij)† := a∗ji. [☛ Digression 10.2 on p. 360]

Dirac conjugation of a Dirac spinor Ψ is the Hermitian conjugation combined with right-
multiplication by the γγγγ0 matrix: Ψ := Ψ†γγγγ0. Correspondingly, the Dirac conjugate of
the operator R is R := (γγγγ0)−1R γγγγ0. For a Cartesian basis of γγγγ-matrices with the met-
ric tensor (3.19), it follows that (γγγγ0)−1 = γγγγ0 so R = γγγγ0R γγγγ0, which agrees with the
definition (5.132).

Contact interaction Interaction that requires that all participants in the interaction are localized in
the same spacetime point – akin to the collision of two marbles. All elementary processes in
the Standard Model are contact interactions. For example, the emission and the absorption of
a (virtual) photon by an electron requires that the “incoming” electron in a spacetime point
turn into the “outgoing” electron and that the photon in this interaction is emitted from or ab-
sorbed at that same point. The Yukawa interaction is analogous, except that a scalar particle
is emitted or absorbed instead of a photon. The Fermi interaction is also analogous, except
that here two fermions collide in a spacetime point from which then two other fermions
emerge, or one fermion decays into three fermions, all emitted from the same spacetime
point.

Contravariant vector A vector the components of which, Aμ(x), are transformed as

Aμ(x) =
(∂xμ

∂yν

)
Aν(y) (3.11c)

by the coordinate system transformation x → y.
Coset [☛ Appendix A.1.1.]
Cotangent bundle The vector bundle T ∗

X := E(X ; T∗
x (X );π) where T∗

x (X ) is the cotangent
space of the space X at the point x ∈ X . If xμ are local coordinates in the space X
at the given point, then T∗

x (X ) may be represented as the formal vector space of linear
combinations ωμdxμ.

Coulomb field, potential A stationary electric charge is surrounded by the constant Coulomb elec-
trostatic field, �E; q0�E is the force that acts upon the probing particle of charge q0. For the
same situation, �E = −�∇Φ, where Φ is the Coulomb potential; q0Φ is the potential energy
of the probing charge q0 in the field �E. It follows from Gauss’s law that the Coulomb field of
a point-like charge is �E ∝ 1/rd−1, where d is the dimension of the space and r the distance
between the source of the field and the place where the field is measured; also, Φ ∝ 1/rd−2.

Covariant derivative A measure of the amount of change in the “overall value” of a generalized
function F owing to a change of one of the arguments of F in the limiting case when
the change in the argument is infinitesimal and tends to zero. For a real scalar (invariant)
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function, the “overall value” is simply the “value” or intensity, and the covariant derivative
of such a function is the same as the partial derivative. However, for more general functions
F that take values in a multi-dimensional space, such as spacetime itself or some abstract
space, the covariant derivative also takes into account that the space of values of F may well
change over the space of arguments. This then additionally changes the “overall value” (both
the intensity and the “direction”) of F at an infinitesimally close neighboring value of the
argument. The covariant derivatives therefore have the general form D := ∂+ Γ, where Γ is
the gauge potential and encodes the variation in the space of values of F. [☛ gauge potential,
gauge field]

Covariant vector A vector the components of which, Bμ(x), are transformed as

Bμ(x) =
( ∂yν

∂xμ
)

Bν(y) (3.11d)

by the coordinate system transformation x → y.
Covering For a given (topologial) space X, the n-fold (finite) cover Y is a space for which there

exists an n–1 mapping π : Y → X such that for every point x ∈ U ⊂ X, where U is any open
neighborhood in X, there exist exactly n points and non-intersecting open neighborhoods
yi ∈ Vi ⊂ Y, such that π(yi) = x and π(Vi) = U. That is, π is a continuous surjection. The
points yi are called the π-inverse images of x, i.e., π−1(x) = {y1, y2, . . .}.

Curvature Given a space X over which the functions f (xμ) are defined locally, i.e., in sufficiently
small open neighborhoods, f (xμ) is unambiguously defined. Let Dμ be local derivatives that
(in sufficiently small open neighborhoods) correctly compute the difference dxμ(Dμ f ) =
f (xμ+dxμ) − f (xμ). Then, in general, the relations[

Dμ , Dν
]

= TμνρDρ + Rμν (B.6)

define the torsion Tμνρ and the curvature Rμν of the space X . These two (local) structures
specify the (local) geometry of the space X and a class of functions f (xμ) over this space.

In examples where X is spacetime and f (xμ) a complex wave-function representing a
lepton or a quark, the torsion vanishes, and Rμν is the Yang–Mills gauge field (denoted
Fμν [☞ Chapters 5 and 6]). The torsion vanishes also when f (xμ) represents a tensor over
spacetime X , in which case is Rμν the Riemann tensor [☞ Chapter 9]. In turn, when Dα, D.

α
are super-derivatives (10.68), so the commutator in the relation (B.6) is replaced by an an-
ticommutator, the curvature vanishes and the torsion does not [☞ relation (10.69), which
holds for the extended basis of super-spacetime derivatives {Dα, D.

α, ∂μ}]. Finally, in the the-
ory of Lie groups, the Lie group itself is a differentiable space where the derivatives are
closely related to the generators Q, and their commutator, akin to (A.70), defines the structure
constants of the Lie group as the torsion and where the curvature vanishes.

Dirac quantization The development of general canonical quantization for systems in which there
exist constraints, and the specification how to treat these constraints in quantum theory so
they remain satisfied throughout the evolution of the system in time; see Digression 11.7 on
p. 420, the texts [64, 445, 425], as well as Dirac’s book [134]. Dirac’s procedure proves the
fundamental equivalence between Heisenberg’s “matrix mechanics” and Schrödinger’s “wave
mechanics” and connects the ideas from both approaches. [☛ canonical quantization]

Direct product [☛ Cartesian product]
Domain For a map f : X → Y, this is X, the collection of elements that are being mapped by f ;

X := {x : f (x) is well defined}.
Einstein–Rosen bridge A wormhole that connects the inside of the event horizon of one of two

Schwarzschild black holes with the inside of the event horizon of another black hole of the
same type. [☛ wormhole]
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Energy–momentum (4-momentum) transfer In collisions A + B → A′ + · · · , where B is initially a
target at rest and A and A′ the incoming and outgoing probe,1 q := (pA−pA′) is the 4-
momentum that the probe transfers to the target. In elastic collisions, A + B → A′ + B′, we
have that q = (pB′−pB).

Equivalence A binary relation ∼ between elements of a set A is an equivalence if and only if it
is (1) reflexive (a ∼ a), (2) symmetric (if a ∼ b then b ∼ a), (3) transitive (if a ∼ b and
b ∼ c then a ∼ c). An equivalence class is a subset of A consisting of elements that are all
equivalent to each other; different equivalence classes are disjoint subsets of A, and their
union equals A.

Euler characteristic Denoted χE(X ), the Euler (or the Euler–Poincaré) characteristic is the topo-
logical invariant of the topological space X . If X is a real 2-dimensional surface that
has a triangulation (an approximation by a network of finitely many triangles), χE(X ) =
k0 − k1 + k2, where k0 is the number of vertices (corners), k1 the number of edges and k2 the
number of triangles. A generalization exists also to higher-dimensional spaces (using a gen-
eralization of triangles): χE(X ) = ∑dim X

i=0 (−1)iki, where k0, k1, k2 are defined as for surfaces,
k3 the number of (exclusively tetrahedral) 3-dimensional elements, etc.

Extremal black hole A nontrivial solution of the Einstein equations, such as the Reissner–Nord-
strøm solutions (9.61) where the two horizons coincide, 2rq = rS, and which is marginal
between the solutions where the singularity is screened by the event horizon and the
solutions where it is not, i.e., solutions with a naked singularity.

Fermion By definition, a particle (as well as its mathematical representatives: wave-functions,
creation and annihilation operators, or fields) that obeys Pauli’s exclusion principle (two
fermions cannot be in the same quantum state) and therefore also the Fermi–Dirac statis-
tics. Owing to the spin-statistics theorem (in Lorentz-covariant models), physical particles
whose mathematical representatives transform as spinorial representations of the Lorentz
group are fermions. Fermionic wave-functions and fields have values that are anticommuting
“numbers” (“a-numbers”).

Fibration The space obtained by generalizing the tensor product of two spaces, where one of
the factors in the product changes “along” the other factor. The type of that change (con-
tinuous, smooth, analytic, complex-analytic, . . . ) distinguishes the various fibrations. Even
the topology, i.e., homotopy of the variable factor may change, i.e., this factor may change
discontinuously. [☛ homotopy class, Figure 11.7 on p. 427]

Field (mathematics) A collection of elements, k, for which two operations, # and ∗, are defined so
that:

1. (k, #) is an abelian (commutative) group, with e ∈ k the neutral element;
2. (k	{e}, ∗) is an abelian (commutative) group;
3. the distribution rules a ∗ (b # c) = (a ∗ b) # (a ∗ c) and (a # b) ∗ c = (a ∗ c) # (b ∗ c) hold.

Field (physics) A function over spacetime. A scalar field is a function the values of which are
scalars, a vector field is a function the values of which are vectors, etc. By a “gauge field,”
however, one means the concrete fields such as the electric and magnetic fields, and their
generalizations to other gauge models. [☛ gauge field] Variations/perturbations in a field
are quantized in quantum physics. [☛ quantum]

Flavor The type of quark – distinguished by their masses and various charges, see the tabula-
tion (2.44a). These are eigenstate of the free (propagation) Hamiltonian, and flavor ranges
over up, down, strange, charm, beauty and top.

Gauge fields In the most familiar example, electromagnetism, these are the electric and the mag-
netic fields, which jointly form Maxwell’s tensor Fμν [☞ relations (5.73)]. More generally,

1 A and A′ are one and the same particle, with changed kinematical parameters: energy, linear momentum and angular
momentum, including spin.
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Yang–Mills gauge fields are the components of the matrix-valued tensor Fμν [☞ defini-
tion (6.15)], and for gravity these are the components of the Riemann tensor (9.30). In
the most general case, gauge fields are defined, up to multiplicative constants, as the re-
sult of computing [Dμ, Dν], where Dμ are the correspondingly gauge-covariant derivatives,
so [Dμ, Dν] is a measure of the non-commutativity of the changes of the considered general-
ized (complex-, vector-, tensor-, spinor-, matrix-, Lie-algebra-, . . . valued) functions, i.e., the
curvature of the space of such generalized functions. [☛ covariant derivative]

Gauge potential In the most familiar example, electromagnetism, these are the scalar and the
vector potentials that jointly form the 4-vector Aμ [☞ relations (5.73)] and represent the
difference between the covariant and the partial derivative [☞ definition (5.13)]. More gen-
erally, Yang–Mills gauge potentials form a matrix-valued 4-vector Aμ [☞ definition (6.6a)],
and for gravity these are the Christoffel symbols (9.17). In the most general case, the gauge
potential is the difference between the gauge-covariant and the partial derivative: Γ = D − ∂.
[☛ covariant derivative, potential]

Geodesic completeness The property of a given coordinate system with the given metric tensor
that the limiting points of all geodesic lines (9.48) are within the range of those coordinates.
A typical nontrivial example is the surface of a torus, for which we choose the coordinates
(x, y), where x parametrizes the “little circle” so x " x + 2πR1, and y parametrizes the
“big circle” so y " y + 2πR2, with R2 � R1. The coordinate system (x, y) is thus geodesi-
cally complete. As a counter-example, consider the “northern” stereographic projection of a
sphere to the (x, y)-plane, so that the south pole corresponds to the coordinate origin and
the equator to the circle of unit radius centered at the coordinate origin. Then geodesic lines
on the sphere that contain the north pole correspond to geodesic lines in the plane that con-
tain the point at infinity – which is not within the range of the coordinates. Such geodesic
lines are thus incomplete or even disconnected, so that the coordinate system (x, y) with any
Euclidean metric is geodesically incomplete as a description of a sphere.

Geometric quantization The process of constructing a quantum theory from the original classical
theory, which uses the symplectic structure ω of the phase space Φ of the classical the-
ory [288, 173, 579, 56]. Observables in classical theory are simply real functions A,B, C, . . .
over Φ. Geometric quantization is based on the introduction of a ω-compatible polarization
π(Φ). In physics practice, π denotes the concrete choice of the half of the coordinates in
the phase space Φ, which are the canonical coordinates, qi, for which the ω-complementary
half of the coordinates over Φ play the role of canonically conjugate momenta, pi. With
that standard notation, the symplectic structure is simply given by the Poisson brackets
ω(A,B) := ∂A

∂qi
∂B
∂pi

− ∂A
∂pi

∂B
∂qi . That same polarization produces the quantum observables

A = π(A), B = π(B), etc. The difference

Δ := [π(A),π(B)]− π
(
ω(A,B)

)
(B.7)

is one of the measures of anomaly. [☛ anomaly]
Geometrization of physics The process by which physics is increasingly described in terms of geom-

etry. At its simplest, this is the dual interpretation of the geodesic equation either as a bending
of trajectories owing to spacetime curvature (9.48) or owing to the action of a gravitational
force (9.49). At a rather more comprehensive level, in string theory models compactified
on a space Y , many of the physical properties of the effective particle physics model are
derived as geometrical and topological characteristics of Y ; see discussion on p. 402 and in
Section 11.3.1.

Ghost field Of the four components of the gauge 4-vector potential Aμ, only two correspond to
degrees of freedom with a physical meaning. It turns out that it is possible to introduce two
(anticommuting scalar) “ghost fields,” the detailed kinematics and dynamics of which are
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chosen precisely so as to cancel the extraneous contributions of the two unphysical degrees
of freedom in the 4-vector Aμ [441, 425, 555, 484, 496, 589, 590]. The gauge symmetry is
thereby reduced to the nilpotent BRST symmetry.

Gluon The particle (quantum) that mediates the strong interaction. Gluons interact with each
other as well as with quarks and antiquarks, which they bind into hadrons. The interac-
tion between hadrons is then a residual interaction, just as the molecular forces between
electrically neutral atoms are modeled as dipole–dipole and higher order electromagnetic
interactions [☞ Section 6.1.1].

Gödel’s incompleteness theorem This theorem proves that no axiomatic system that is sufficiently
complex to contain arithmetics can be both complete and self-consistent. Gödel’s proof is
constructive, and shows that within all such self-consistent axiomatic systems it is explicitly
possible to construct a statement that can neither be proven nor disproven within the given
axiomatic system. Therefore, either that statement or its logical negation may always be
added to the axiomatic system as a new axiom, and this extensibility never stops [211, 376].
Although Gödel constructed a particular undecidable statement in his proof, and expressly
for the purpose of proving the theorem, it does follow that there exist infinitely many such
undecidable statements – and some of those, within physics as a formal axiomatic system,
are bound to be of interest. [☛ Appendix B.3]

Gram–Schmidt procedure In a vector space V, equipped with a finite scalar product, i.e., where
〈a|b〉 < ∞ for every a, b ∈ V, the Gram–Schmidt procedure produces an orthonormal basis:

1. Pick an element a ∈ V and define α1 := a/
√〈a|a〉 and set k = 1.

2. If there is some b ∈ V that is linearly independent from αi ∈ BV := {α1, . . . , αk},
(a) Define αk+1 := ∑k

i=1 ciαi + ck+1b.
(b) Determine {c1, . . . , ck+1} so that

i. 〈αk+1|αi〉 = 0, for all i = 1, . . . , k,
ii. and 〈αk+1|αk+1〉 = 1.

(c) Increase k by one (k �→ k+1), and return to step 2.
3. The basis for the vector space V is BV = {α1, . . . , αk} and dim(V) = k.

Group A collection of elements G equipped with a binary operation � that satisfies the four axioms
[☛ Appendix A.1.1]:
closure ∀a, b ∈ G, (a � b) ∈ G;
associativity ∀a, b, c ∈ G, (a � b) � c = a � (b � c);
neutral element ∃e ∈ G such that ∀a ∈ G, a � e = a = e � a;
inverse element ∀a ∈ G, ∃a−1 ∈ G such that a−1 � a = e = a � a−1.
That is, a group is an invertible monoid.

Groupoid [☛ magma]
Hadron A particle that interacts by means of the strong nuclear force (at ∼10−23 s) and can be

detected as an isolated particle; e.g., a proton or a pion.
Hausdorff space A topological space in which distinct points have disjoint neighborhoods. Most

variables typically considered in physics models span/form Hausdorff spaces. Examples of
non-Hausdorff spaces include bifurcating (Y-shaped) 1-dimensional lines such as the Feyn-
man diagrams (3.130)–(3.131) and the left-hand side of Figures 11.3 on p. 411 and 11.4 on
p. 412. [☛ topological space]

Helicity The eigenvalue of the operator p̂·�S/h̄, i.e., the projection of spin in the direction of motion
of the particle, in units of h̄. As massless particles move at the speed of light in vacuum, their
helicity is Lorentz-invariant and equals their chirality.

Hermitian conjugation [☛ Digression 10.2 on p. 360]
Homotopy class Geometric objects that can be continuously transformed one into another form a

homotopy class of such objects; different objects in the same homotopy class are homotopy
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equivalents of each other. Continuous interpolation between two homotopy equivalent ob-
jects is called the homotopy (between those two objects). Thus is the surface of a sphere a
homotopy equivalent of the surface of a cube and a tetrahedron for example, but not of a
torus or a pretzel.

Hypersurface The subspace X ⊂ Y is a hypersurface if the codimension cod(X ⊂ Y) = 1; near
every point x ∈ X, the subspace X ⊂ Y is specified by a single constraint.

Image For a mapping f : X → Y, the f -image of the space X is the collection of points in Y
obtained by mapping the points of X: im( f ) = f (X) = { f (x) = y ∈ Y : x ∈ X}.

Injection A “1–1” (one-to-one) mapping f : X ↪→ Y, such that for every a ∈ A there is precisely
one y = f (x) ∈ Y.

Isometry A symmetry of a space X that leaves the metric on X unchanged.
Isomorphism Bijective homomorphism, i.e., a bijection f : X → Y for which both f and f−1

preserve the algebraic structure of the objects X and Y, and so are homomorphisms. For
example, if X and Y are groups, the f -image of every group axiom in X results in the
corresponding group axiom in Y, and vice versa. We write X ∼= Y.

KamiokaNDE The Kamioka Nucleon Decay Experiment, run at the Kamioka Observatory, Institute
for Cosmic Ray Research, near the Kamioka section of the city of Hida, Japan. KamiokaNDE
was initially designed to detect proton decay, but was successfully used to detect solar and
atmospheric neutrinos, through upgrades known as KamiokaNDE-II, Super-KamiokaNDE,
Super-KamiokaNDE-II and -III.

Kernel Elements of a vector space X that a linear mapping f : X → Y maps to 0 ∈ Y form the
kernel of the linear mapping f , denoted ker( f ) := {x ∈ X, f (y) = 0 ∈ Y}. In other words,
ker( f ) consists of the elements of the vector space X annihilated by the mapping f .

Kronecker product The special case of the tensor product for matrices of arbitrary size, so including
also column-matrices and row-matrices. The result of the Kronecker product is the block-
matrix:

A =
[

a b c
d e f

]
, B =

[
α
β

]
, then A ⊗ B =

[
a
[ α
β

]
b
[ α
β

]
c
[ α
β

]
d
[ α
β

]
e
[ α
β

]
f
[ α
β

]
]

=

⎡⎣ aα bα cα
aβ bβ cβ
dα eα f α
dβ eβ f β

⎤⎦ . (B.8)

Note that B ⊗ A �= A ⊗ B:

B ⊗ A =

⎡⎢⎣ α

[
a b c
d e f

]
β

[
a b c
d e f

]
⎤⎥⎦ =

⎡⎣ αa αb αc
αd αe α f
βa βb βc
βd βe β f

⎤⎦ =

⎡⎣ aα bα cα
dα eα f α
aβ bβ cβ
dβ eβ f β

⎤⎦ �=
⎡⎣ aα bα cα

aβ bβ cβ
dα eα f α
dβ eβ f β

⎤⎦ = A ⊗ B. (B.9)

Kronecker symbol The index representation of the identity matrix

δi
j :=

{
1, if i = j,
0, if i �= j,

(B.10)

allows the generalizations after the pattern:

δ
i j

[k�] := 1
2

(
δi

kδ
j
� − δi

�δ
j
k

)
, δ

i j
(k�) := 1

2

(
δi

kδ
j
� + δi

�δ
j
k

)
, (B.11a)

δ
i j k

[�mn] := 1
3!

(
δi
�δ

j
mδ

k
n − δi

�δ
j
nδ

k
m + δi

nδ
j
�δ

k
m − δi

nδ
j
mδ

k
� + δi

mδ
j
nδ

k
� − δi

mδ
j
�δ

k
n
)
, (B.11b)

δ
i j k

(�mn) := 1
3!

(
δi
�δ

j
mδ

k
n + δi

�δ
j
nδ

k
m + δi

nδ
j
�δ

k
m + δi

nδ
j
mδ

k
� + δi

mδ
j
nδ

k
� + δi

mδ
j
�δ

k
n
)
, etc., (B.11c)

which are also called (anti-)symmetrized Kronecker symbols.
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Lepton A particle that does not interact by means of the strong nuclear force (at ∼10−23 s); e.g.,
the electron.

Levi-Civita symbol The index representation of the permutation symbol

εi1···in :=

⎧⎪⎨⎪⎩
+1, if the order i1, . . . , in is an even permutation of 1, 2, . . . , n,
−1, if the order i1, . . . , in is an odd permutation of 1, 2, . . . , n,

0, otherwise.
(B.12)

We also define εi1···in := εi1···in . (Some Authors prefer using a definition such that εi1···in :=
−εi1···in , for numerical convenience in some computations.) The key relation between the
Levi-Civita and the Kronecker symbols is

εi1···in ε j1···jn = δ i1···in
[j1···jn ], (B.13)

= 1
n!

(
δi1

j1
· · · δin−1

jn−1
δin

jn
− δi1

j1
· · · δin−1

jn
δin

jn−1
+ · · · (n! permutations, total)

)
.

Lie group [☛ Appendix A.1.1]
Luxon a particle that travels through vacuum at the speed of light in vacuum, c, and has no

mass. All mediators of gauge interactions that correspond to unbroken gauge symmetries are
luxons.

Magma (groupoid) A collection of elements M equipped with a closed binary operation �, i.e.,
∀a, b ∈ M, (a � b) ∈ M.

Manifold A space where every sufficiently small neighborhood of every point is isomorphic to the
flat space Rn, where n is the dimension of the manifold. A manifold is everywhere smooth
and the tangent space at every point is a copy of Rn.

Mass shell In the 4-dimensional space of 4-momentum, the “mass shell” for a particle of mass m
is the subspace defined by the relation E2 − �p2c2 = m2c4. For m2 > 0 (ordinary particles
and antiparticles), this is the two-component hyperboloid, where E = ±√

m2c4 + �p2c3 on
both “shells.” For m = 0 (photons, gluons and gravitons), this is the “light cone” the two
portions of which touch in the point (E/c,�p) = (0,�0). For m2 < 0 (tachyons), this is the
single-component hyperboloid.

Meson Since the acceptance of the quark model in 1973, a bound state of a quark and an anti-
quark. Originally, a particle that interacts by means of the strong nuclear force (at ∼10−23 s),
can be detected as an isolated particle, and has a mass that is between the electron mass and
the proton mass; e.g., π±,π0.

Minimal coupling The coupling between matter and interaction field that occurs by the interaction
field modifying the spacetime derivative of the matter field. The gauge principle introduces
only minimal coupling [☛ Chapters 5–7 and 9].

For example, let Ψ(x) represent the matter field and Aμ(x) the gauge potential of the
interaction field. They are minimally coupled through replacing ∂μΨ → (∂μ + igAμ)Ψ, where
g is a suitable (coupling) parameter; g = qΨ

h̄ c in electromagnetism, where qΨ is the electric
charge of the matter particle represented by Ψ(x).

Monoid A collection of elements M equipped with a binary operation � that satisfies the three
axioms [☛ Appendix A.1.1]:
closure ∀a, b ∈ M, (a � b) ∈ M;
associativity ∀a, b, c ∈ M, (a � b) � c = a � (b � c);
neutral element ∃e ∈ M such that ∀a ∈ M, a � e = a = e � a.
That is, a monoid is a semigroup with a neutral element.
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Multipole expansion The expansion of a function over 3-dimensional flat space, in which we use
spherical coordinates, over the complete system of spherical harmonics [☞ relations (4.2)–
(4.4)]:

F(r, θ, φ) = ∑
�,m

f m
� (r) Ym

� (θ, φ), (B.14)

where

f m
� (r) :=

∫ 2π

0
dφ

∫ π

0
sin θ dθ

(
Ym

� (θ, φ)
)∗ F(r, θ, φ), (B.15)

�∇2F(r, θ, φ) =
1
r

[ d2

dr2 r F(r, θ, φ)
]
− 1

r2

[
�L 2F(r, θ, φ)

]
, (B.16)

�L 2Ym
� (θ, φ) = �(�+1) Ym

� (θ, φ); �L 2 := −�∇2∣∣
r=1, � � 0. (B.17)

Notice that the coordinates θ, φ parametrize a 2-sphere, S2 = R3
∣∣
r=1. More generally, for

every compact Riemann space K , the Laplacian �∇2
K|r=1 has a non-positive spectrum (col-

lection of eigenvalues), and corresponding eigenfunctions, which generalize the spherical
harmonics.

Noether theorem To every continuous symmetry of a physical system in classical physics, there
corresponds an additive current density that satisfies the continuity equation, and produces
an additive conserved charge. In quantum theory, the conserved charges are eigenvalues of
generators of the corresponding symmetries, and these in turn are the momenta canonically
conjugate to the canonical variables the (eigen)values of which the symmetries change. For
example, the linear momentum �p is the eigenvalue of the operator of linear momentum �p,
and also the conserved “charge” of the corresponding translations in position �r, which is
generated by �p = h̄

i
�∇ and implemented by the unitary operator exp{i�a·�p/h̄} = exp{�a·�∇}.

Conserved “charges” of finite symmetries are multiplicative: a product of two parity eigen-
functions is also a parity eigenfunction, with the eigenvalue that is a product of eigenvalues
of the factors. Although Noether’s original theorem does not apply to finite symmetries, the
generalization is easy to derive. However, the operators that implement discrete symmetries
may be both linear (and so unitary), and anti-linear (and then anti-unitary), such as the
operator of charge conjugation: C(αA) = α∗C(A), for every operator A and constant α ∈ C.

Non-abelian [☛ abelian]
Non-commutative [☛ abelian]
Nonphysical components Within every Lorentz-covariant formalism, one uses only fields and op-

erators that form complete representations of the Lorentz group. Thus, for example, gauge
potentials in (3+1)-dimensional spacetime are always presented by 4-vectors, Aμ(x). How-
ever, only two components of this 4-vector are physically measurable, while two are not:
for example, for a freely propagating field in empty space, the temporal and the longitudi-
nal components are nonphysical. There exists no Lorentz-covariant method of isolating them
from the 4-tuple (A0, A1, A2, A3). For example, the Lorenz gauge, ημν∂μAν = 0 specifies
one differential relation between the 4-vector components A0(x), . . . , A3(x) in a Lorentz-
invariant way, which formally permits expressing one of the four components in terms of an
integral of the derivatives of the other three components. This effectively removes one degree
of freedom, but this relation is not local. However, for the removal of the other nonphysical
component, there does not even exist a Lorentz-invariant gauge condition – neither algebraic
nor differential. [☛ BRST quantization]

Normal subgroup A subgroup N ⊂ G is normal if

∀n ∈ N ⊂ G, ∀g ∈ G, gng−1 ∈ N. (B.18)



B.1 The jargon 505

Ockham’s principle Also known as Ockham’s razor, as well as the principle of parsimony, of economy
and of succinctness, whereby from among two competing possible explanations one must
choose the simpler. Although this principle is useful in research practice, one must recognize
that its application depends strongly on the cultural “background”: ideas and elements that
are well known within one culture (and are therefore regarded simpler) may well be alien
in another culture. Thus, there is a danger that the application of this principle is simply a
façade of a prejudice.

Pauli’s principle Two identical fermions cannot simultaneously be in the same quantum state, i.e.,
they cannot simultaneously occupy the same “place” in the Hilbert space.

Photon The particle (quantum) that mediates the electromagnetic interaction. Photons interact
directly with quarks, antiquarks, (electrically) charged leptons (e−, μ− and τ−) and also
with the charged weak gauge bosons W± [☞ Sections 2.3.4 and 5.2.2].

Physical components In practice, physical quantities are not infrequently represented by multi-
component mathematical objects such as vectors, tensors and spinors. Components that in
some way may be measured experimentally (such as the transversal polarizations of the
electromagnetic radiation, for example) are physical. [☛ nonphysical components]

Point-like The property of showing sign of neither internal structure nor spatial extension.
Potential Short for “gauge potential,” this term is used as a generalization of the electro-static

potential, where we have that if Φ(�r, t) is the potential, then:
1. g Φ(�r, t) is the potential energy of a particle with charge g when placed in the potential

Φ(�r, t) that interacts with this charge,
2. −�∇Φ(�r, t) is the (gauge) field corresponding to the potential,
3. −g �∇Φ(�r, t) is the force that the potential Φ(�r, t) exerts on a particle of charge g.

In the relativistic generalization, one speaks of the “4-vector potential,” (Φ,−c �A), for which
the fields are the components of the Fμν := (∂μAν−∂νAμ) tensor [☞ definitions (5.73)]; in
the non-abelian (non-commutative) generalization the fields are defined as the components
of the Fμν := [Dμ, Dν] tensor, where Dμ := ∂μ + iq

h̄ c Aμ [☞ definition (6.15)]. Finally, in
the general theory of relativity, Christoffel symbols and the connection 4-vector play the role
of the potential and the components of the Riemann tensor are the fields [☞ Sections 9.2.1
and 9.2.2]. [☛ gauge potential]

Quantum In quantum physics, all material entities (matter as well as interactions thereof) are sub-
ject to quantization of the Hamilton action, which cannot vary continuously, but as integral
multiples of the Planck constant, h̄. Note that the “background” (settled, static, infinitely
spread-out, classical, i.e., non-quantum) fields, such as the Coulomb field of a static charge
distribution, are but a convenient idealization, representable by averaging over an infinite
number of quanta. [☛ field (physics)]

Quotient space [☛ Appendix A.1.1]
Range (of a mapping) For a mapping f : X → Y, this can variously denote either the codomain or

the image of f ; this ambiguity and this term are avoided herein.
Rank (of a mapping) For a mapping f : X → Y, rank( f ) = dim

(
im( f )

)
= dim

(
f (X)

)
.

Rank (of a tensor density) [☛ definition on p. 511]
Ring A collection of elements, k, for which two operations, # and ∗, are defined so that:

1. (k, #) is an abelian (commutative) group, with e ∈ k the neutral element;
2. (k, ∗) is a monoid (like a group, but without invertibility);
3. the distribution rules: a ∗ (b # c) = (a ∗ b) # (a ∗ c) and (a # b) ∗ c = (a ∗ c) # (b ∗ c) hold.

Semidirect product Some groups have the structure G = H � N, where H ⊂ G is a subgroup,
and N ⊂ G is a normal subgroup [☛ normal subgroup]. This implies that the only common
element is N ∩ H = 1 ∈ G, and that every group element g ∈ G can be factorized as g =
h ◦ n = n′ ◦ h′, where n, n′ ∈ N and h, h′ ∈ H. The group G is said to be an N-extension of the
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group H; it is also true that H is isomorphic to the quotient group G/N [☞ definition (A.6)
for the quotient space, which here inherits the group structure].

A well-known example is the Poincaré group, Po(1, 3) = Spin(1, 3)�R1,3, which is the
extension of the Lorentz group Spin(1, 3) by translations R1,3 in spacetime, and where the
asymmetry of the symbol � reminds us that the elements of the subgroup Spin(1, 3) map
R1,3 → R1,3.

Semidirect sum Some algebras have the structure A = A1 :+ A2, where for every a, b ∈ A1 and
c, d ∈ A2 it is true that

a ∗ b ∈ A1, but c ∗ d, a ∗ c, c ∗ a ∈ A2, (B.19)

and where ∗ is a “multiplication” in the algebra A. Formally,

A1 ∗A1 ∈ A1, but A1 ∗A2, A2 ∗A1, A2 ∗A2 ∈ A2. (B.20)

The algebra A is said to be a A2-extension of the algebra A1. The asymmetry symbol “:+” here
reminds us that A1 maps A1 : A2

∗−→ A2, but it is not a standard notation in the literature,
where mostly the uninformative symmetrical symbols + and ⊕ are used, and it is left to the
Reader to figure out from the context the direction of the inherently asymmetrical relation,
i.e., whether A1 ∗A2 ∈ A2 or A2 ∗A1 ∈ A1.

Semigroup A collection of elements S equipped with a binary operation � that satisfies the two
axioms [☛ Appendix A.1.1]:
closure ∀a, b ∈ S, (a � b) ∈ S;
associativity ∀a, b, c ∈ S, (a � b) � c = a � (b � c).
That is, a semigroup is an associative magma.

Signature In every real n-dimensional vector space V (over the scalar field k) in which the scalar
product g(v1, v2) ∈ k is defined for every v1, v2 ∈ V, one may find a basis in which g( , ) is
a diagonal matrix. For real vector fields (where k= R) the number of positive, negative and
vanishing diagonal elements in the diagonalized g( , ) is called the signature. The metric ten-
sor (3.19), (ημν) = diag(1,−1,−1,−1), in (3+1)-dimensional spacetime has the signature
(1, 3). A group of linear transformations is also said to have signature (1, 3) if those transfor-
mations preserve the scalar product (3.17) defined by the metric tensor of signature (1, 3);
such transformations form the group O(1, 3); SO(1, 3) is the subgroup of transformations the
determinant of which equals +1.

Span A maximal collection of linearly independent elements êi, i = 1, 2, 3 . . . , is said to span the
vector space V := {vi êi, vi ∈ k} over a given field of scalars k.

Spin Intrinsic (albeit perhaps fictitious) angular momentum of an object (particle or physical sys-
tem) X, meaning that under rotations of the coordinate system the orientation of the object
X transforms as a representation of the rotation group with the given “angular momentum.”
For example, a photon has spin 1h̄, meaning that its orientation (i.e., polarization) trans-
forms as a spin-1h̄ (vector) representation of the rotation group, the electron as a spin- 1

2 h̄
(spinor) representation of the rotation group, and the graviton as a spin-2h̄ (rank-2 tensor)
representation. The spin of composite systems is the vector sum of all angular momenta of
its constituents,2 but the spin of an elementary particle is not the result of any rotation:
elementary particles are point-like.

Stückelberg–Feynman interpretation The antiparticle is identified with the particle moving back-
wards in time. This interpretation follows from the fact that if Ψ(x) is the wave-function of
the particle, then its Hermitian conjugate (and, for spin- 1

2 particles, also the right multiple

2 The spin of the hydrogen atom as a bound state of an electron and a proton is the vector sum of the orbital angular
momentum of the electron in its orbit around the proton, as well as the electron’s and the proton’s spin.
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by γγγγ0) produces the wave-function of the antiparticle. Expanding into a Fourier series we
have that Ψ(x) = ∑ω eiωtψω(�r), so the Hermitian conjugation is formally identical with the
reversal of time.

Surjection A mapping f : X � Y, such that for every y ∈ Y there is an x ∈ X such that f (x) = y.
Symmetry breaking vs. violation A particular process is said to violate a symmetry X if either (1) the

X-image of the process does not occur as frequently, i.e., with the same probability, as the
original process, or (2) the conserved quantity corresponding to symmetry X is not constant
(conserved) during the considered process.

In turn, the symmetry X is broken in a physical system if either (1) the symmetry does
not preserve some of the conditions (such as a boundary condition) required of the concrete
physical system, or (2) X does not commute with the full Hamiltonian of the system.

Tachyon A particle that propagates through vacuum faster than light, and has an imaginary mass;
the appearance of tachyons indicates that the vacuum is not stable [☞ Digression 7.1 on
p. 261].

Tangent bundle A vector bundle TX := E(X ; TX ;π) where Tx(X ) ∼= TX is the tangent space
of the space X at the point x ∈ X . If xμ are local coordinates in the space X at the given
point, then Tx(X ) may be represented as the vector space of linear combinations vμ ∂

∂xμ .
Tardion a particle that propagates through vacuum slower than light, and has a real mass; all

known matter (and anti-matter) is tardionic, whereupon this term is rarely used.
Tensor product The most general bilinear product of two algebraic structures of the same type,

such as vector spaces, algebras, etc. Let X and Y be two vector spaces over the same field, k.
The elements of the tensor product X ⊗Y are k-linear combinations of elements of the direct
product of the sets of elements X and Y, where additionally one requires that the pairs of
elements satisfy the relations

R :=
{

e(x+x′, y) ∼ e(x, y) + e(x′, y), e(x, y+y′) ∼ e(x, y) + e(x, y′),
c e(x, y) ∼ e(cx, y) ∼ e(x, cy).

(B.21)

Then formally,

X ⊗ Y =
{

∑
i

ci e(xi, yi) : ci ∈ k, (xi, yi) ∈ X × Y
}/

R, (B.22)

which is again a vector space. Similarly, the tensor product of two algebras is again an
algebra. In other words, the tensor product inherits the algebraic structure of its factors.
Alternatively, Definition B.6 on p. 514 also holds – given using the components with respect
to any chosen basis.

Topological space A set of elements (“points”) X with the topology τ, which consists of a
collection of subsets of the set X such that they satisfy the axioms:

1. The empty set and the whole set X belong to τ.
2. The union of an arbitrary number of sets in τ is also in τ.
3. The intersection of an arbitrary finite number of sets in τ is also in τ.

For this system of axioms, the sets in τ are called open subsets of the set X ; every point x ∈ X
is contained in at least one such open subset, which is then called the open neighborhood of
the point x. There also exists a complementary definition of topology, using closed subsets of
the set X ; the empty set and the set X itself here too belong to τ. [☛ also Hausdorff space]

Torsion [☛ curvature]
Vector bundle Let X be the “base” space, equipped with a copy of a vector space Vx at every point

x ∈ X of the base space, so that the vector spaces Vx transform homogeneously one into
another when the basis point x moves through the base space. The union

⋃
x∈X Vx is then

called the vector bundle over the base space X .



508 A lexicon

There is also a reverse definition: the total space E(X ; V;π) of a vector bundle with a
given vector space V over the base space X is such that π is the “vertical” projection with
the property that π(E) = X , and π−1(x) = Vx ∼= V for each x ∈ X .

Vector space A collection of elements (vectors) of which every linear combination with coefficients
from a field k is also an element of this collection is called a vector space V over the field k.

Warp, weft and woof are the mutually transversal strands of yarn in a simply woven fabric: warp
stretches lengthwise from beginning to end, and the strand that is woven left to right and
back, weaving through the strands of warp, is variably called weft or woof .

Figure B.1 The triple weave: leaving out any one of the strands dissolves the fabric.

In the theoretical fundamental physics as described herein, the three conceptual strands are
provided by (1) the Democritean idea of a smallest portion of matter that shows no further,
internal constituents, (2) the gauge principle of local symmetry, which provides a coherent
description of all known fundamental interactions, and (3) the idea that all of Nature is to be
understood within a unified, comprehensive and logically consistent framework. The (M- and
F-theory extended) superstring theoretical system is a framework that conceptually unifies all
matter, all of its interactions, as well as the spacetime in which they exist. [☛ Section 1.3.3;
Chapters 5–7 and 9]

Wormholes The region in spacetime shaped as a “tunnel,” Rr ×Kd−r for 1 � r < d, where d
denotes the total dimension of spacetime, and which either connects two otherwise distant
regions of one spacetime, or two otherwise separate spacetimes; Kd−r is some compact space
(e.g., the 2-sphere, S2) and represents the “cross-section” of the “tunnel.” In known exam-
ples, the size of the “cross-section” is typically very small, of the order of �P ∼ 10−35 m and
most often has a nonzero size only for a very short time, tP ∼ 10−43 s. The matter required
to keep the wormhole open for a material body or even light to pass through must have “ex-
otic” properties (negative energy density and/or pressure). [☛ Section 9.3.4, Einstein–Rosen
bridge]

Yang–Mills interaction, symmetry, theory A gauge interaction, model, symmetry and/or theory is
said to be of Yang–Mills type when the gauge 4-vector potential, Aμ ∝ (Dμ − ∂μ), is the
fundamental physical degree of freedom that describes such an interaction. This is the
case with electromagnetic, strong and weak nuclear interactions [☞ Chapters 5 and 6],
but not with gravity: there, the Christoffel symbol, Γ ∝ (Dμ − ∂μ), may be expressed as
an algebraic combination of the inverse metric tensor and the derivatives of the metric
tensor [☞ Chapter 9].

Yukawa field, potential (screened Coulomb field, potential) The Yukawa potential in d-dimensional
space is ΦY = e−r/r0 /rd−2 and the Yukawa field is −�∇ΦY; the negative sign is chosen so that
the r0 → ∞ limiting case of the Yukawa field coincides with the traditional definition of the
electrostatic field. Here, r0 is the range of the Yukawa potential and the field.

Yukawa interaction (Yukawa coupling) The coupling between matter field Ψ(x) and the Yukawa
potential Φ(x) produced by the Lagrangian density term hΨΨΦΨ, where hΨ is the Yukawa
coupling parameter [☛ contact interaction].

ZJBV-quantization [☛ BV-quantization]
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B.2 Tensor calculus basics
We start with 4-tuples of coordinates such as x = (x0, x1, x2, x3), two functions of such coordinates,
f and g, and the well-known derivative rules in multi-variate calculus:

product rule
∂

∂xμ
(

f (x) g(x)
)

=
(∂ f (x)
∂xμ

)
g(x) + f (x)

(∂g(x)
∂xμ

)
, (B.23)

chain rule
∂

∂xμ
(

yν
(
z(x)

))
=

(∂yν

∂zρ
)( ∂zρ

∂xμ
)

. (B.24)

Taking x = (x0, x1, x2, x3), y = (y0, y1, y2, y3) and z = (z0, z1, z2, z3) to provide general coordinate
systems, these 4-tuples need not span vector spaces in general: In general coordinate systems, lin-
ear combinations cμxμ with numerical (dimensionless) constants cμ need make no sense at all. At
the very least, the constants cμ could be equipped with appropriate physical units. For example, in
the familiar spherical coordinate system (r, θ, φ), a linear combination such as (π2 r −√

3θ) makes
no sense since the two summands have wholly different physical units. In turn, denoting by L some
suitable and constant length, the linear combination ( π2L r −√

3θ) does make sense in general, al-
though it does not seem to provide any physically reasonable quantity. Even so, and owing to the
generally curvilinear nature of general coordinates and their diverse behavior (e.g., θ " θ± 2π
while r � 0), linear combinations (even if adjusted for physical units) of general coordinates do
not, in general, represent a point in the space parametrized by these coordinates.

However, owing to the infinitesimal nature of the differentials dxμ and the operators ∂
∂xμ ,

the 4-tuples (dx0, dx1, dx2, dx3) and ( ∂
∂x0 , ∂

∂x1 , ∂
∂x2 , ∂

∂x3 ) do span two vector spaces – again with the
proviso that the constants in the respective linear combinations may have to be equipped with
adequate physical units. The application of the chain rule to these clearly distinguishes them and
permits the definition of two distinct types of 4-vectors:

contravariant vector (3.11c) dxμ = dyν
(∂xμ

∂yν

)
↔ Aμ(x)= Aν(y)

(∂xμ

∂yν

)
; (B.25)

covariant vector (3.11d)
∂

∂xμ
=

( ∂yν

∂xμ
) ∂

∂yν
↔ Bμ(x) =

( ∂yν

∂xμ
)

Bν(y), (B.26)

simply by observing that they transform with the opposite partial derivatives, as was already done
in Digression 3.2 on p. 88.

B.2.1 Basis elements
We then proceed as follows: Given any coordinate system x := (x0, x1, x2, x3) equipped with a
metric tensor, gμν(x), we specify:

1. The line element ds provides the invariant norm of the coordinate differentials:

ds :=
√

dx · dx, dx · dx := gμν(x) dxμdxν. (B.27)

2. The invariant Kronecker symbol

δ
μ
ν :=

∂xμ

∂xν
=

{ 1 if μ = ν,
0 if μ �= ν, (B.28)

is simply the statement that the coordinates xμ are mutually independent.
3. The invariant Levi-Civita symbol is defined implicitly by expanding the Jacobian of a

coordinate transformation x → y:∣∣∣∂x
∂y

∣∣∣ =: εμνρσ
∂x0

∂yμ
∂x1

∂yν
∂x2

∂yρ
∂x3

∂yσ
=: εμνρσ

∂xμ

∂y0
∂xν

∂y1
∂xρ

∂y2
∂xσ

∂y3 , (B.29)
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that is,

εμνρσ = εμνρσ :=

{ +1 if μ, ν, ρ, σ = even permutation of 0, 1, 2, 3;
−1 if μ, ν, ρ, σ = odd permutation of 0, 1, 2, 3;

0 otherwise.
(B.30)

4. It follows that
εαβγδε

μνρσ = 4! δ μνρσ[αβγδ], (B.31)

where
δ
μν

[αβ] := 1
2

(
δ
μ
α δ
ν
β − δ

μ
βδ
ν
α

)
, δ

μνρ

[αβγ] := 1
3

(
δ
μν

[αβ]δ
ρ
γ + δ

μν

[βγ]δ
ρ
α + δ

μν

[γα]δ
ρ
β

)
,

and so δ
μνρσ

[αβγδ] := 1
4

(
δ
μνρ

[αβγ]δ
σ
δ − δ

μνρ

[δαβ]δ
σ
γ + δ

μνρ

[γδα]δ
σ
β − δ

μνρ

[βγδ]δ
σ
α

)
.

(B.32)

5. Owing to the reciprocal transformation rules (3.11c)–(3.11d), the contractions

A(x)·B(x) = Aμ(x) Bμ(x), A(x)·∂ = Aμ(x)∂μ, dx·B(x) = dxμ Bμ(x), (3.12a′)

and d := dx·∂ := dxμ
∂

∂xμ
(B.33)

are all invariant under general coordinate transformations xμ �→ yμ(x), as specified in Def-
inition 9.1 on p. 319. Thus, the dxμ may be used as basis vectors for covariant components
Bμ(x), and the ∂μ may be used as basis vectors for contravariant components Aμ(x). This is
the typical choice in the mathematics literature as it connects tensor algebra and differential
geometry; see Comment B.1 on p. 512.

6. Let e(x) denote an event – a point in spacetime specified, with the coordinates x, and let
the displacement to an infinitesimally near event be de = ∂e

∂xμ dxμ, expressed in the xμ

coordinates. Then, we define:

covariant basis element eμ(x) :=
∂e
∂xμ

, (B.34)

contravariant basis element eμ(x) := gμνeν(x). (B.35)

The scalar product of these basis elements is defined so that

eμ(x)·eν(x) = gμν(x), eμ(x)·eν(x) = gμν(x) and eμ(x)·eν(x) = δνμ. (B.36)

7. Given the contravariant components of a 4-vector, Aμ(x), the 4-vector is invariantly specified
as A(x) = Aμ(x) eμ(x). Given the covariant components of a 4-vector, Bμ(x), the 4-vector is
invariantly specified as B(x) = Bμ(x) eμ(x).

Here, “invariant,” “covariant” and “contravariant” all refer to transformation properties with
respect to the general coordinate transformations specified in Definition 9.1 on p. 319.

Given the definition of contravariant vectors (B.25), it is straightforward to compute the
transformation rule for the differential “volume” element:

d4x = dx0dx1dx2dx3 = 1
4! εμνρσ dxμdxνdxρdxσ (B.37a)

= 1
4! εμνρσ

(∂xμ

∂yα
dyα

)( ∂xν

∂yβ
dyβ

)( ∂xρ

∂yγ
dyγ

)(∂xσ

∂yδ
dyδ

)
= 1

4! εμνρσ
∂xμ

∂yα
∂xν

∂yβ
∂xρ

∂yγ
∂xσ

∂yδ
dyαdyβdyγdyδ

= 1
4! εμνρσ

∂xμ

∂yα
∂xν

∂yβ
∂xρ

∂yγ
∂xσ

∂yδ
δ
αβγδ

[εϕλκ] dyεdyϕdyλdyκ
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=
[

1
4! εμνρσ

∂xμ

∂yα
∂xν

∂yβ
∂xρ

∂yγ
∂xσ

∂yδ
εαβγδ

]
1
4! εεϕλκ dyεdyϕdyλdyκ

= det
[∂x
∂y

]
d4y, (B.37b)

where the key relation (B.31) between the Levi-Civita and the Kronecker symbols was used. We
have also used the general expressions for the determinants of n× n matrices representing rank-2
tensor densities:

type (1, 1) det[M] := 1
4! εμ1···μn Mμ1

ν1 · · · Mμn
νn ε

ν1···νn , (B.38a)

type (0, 2) det[N] := 1
4! ε

μ1···μn Nμ1 ν1 · · · Nμn νn ε
ν1···νn , (B.38b)

type (2, 0) det[P] := 1
4! εμ1···μn Pμ1 ν1 · · · Pμn νn εν1···νn . (B.38c)

Given the definitions of the “ingredients”:

1. a contravariant vector (3.11c),
2. a covariant vector (3.11d),
3. a scalar density (9.8),

we adapt Weyl’s Construction A.1 and generate representations of the group of general coordinate
transformations, by taking tensor products of the “ingredients” and symmetrizing like factors in all
possible ways. More precisely,

Definition B.1 Tensor densities may be formally constructed from a scalar density U, a
contravariant vector V = Vμeμ and a covariant vector W = Wμeμ:

U(y) =
(

det
[ ∂y
∂x

])
U(x), Vμ(y) =

∂yμ

∂xν
Vν(x), Wμ(y) =

∂xν

∂yμ
Wν(x). (B.39)

One constructs first the vector space of ordered products,

T(p, q; w) := Uw · V ⊗ · · · ⊗ V︸ ︷︷ ︸
p

⊗W ⊗ · · · ⊗ W︸ ︷︷ ︸
q

, (B.40)

on which the permutation group Sp × Sq acts, where Sp permutes the V-factors and Sq per-
mutes the W-factors. The vector space T(p, q; w) may then be decomposed, in a unique
fashion, into a direct sum of irreducible representations of the permutation group (in-
dex symmetrization). Finally, each summand in the so-obtained direct sum may be further
decomposed by contracting with invariant tensors δμν , εμνρσ and εμνρσ.

Focusing on the structure of the transformation properties, i.e., how a quantity transforms with
respect to general coordinate transformations, rather than how it may have been constructed,
produces the complementary general definition:

Definition B.2 (tensor density) A quantity that is in some coordinate system (with coordi-
nates xμ) specified by its components {T

μ1···μp
ν1···νq (x)} and the components of which in some

other coordinate system (with coordinates yμ) may be computed using the relations

T
ρ1···ρp
σ1···σq (y) =

(
det

[ ∂y
∂x

])w ∂yρ1

∂xμ1
· · · ∂yρp

∂xμp

∂xν1

∂yσ1
· · · ∂xνq

∂yσq
T
μ1···μp
ν1···νq (x) (B.41)

is called a tensor density of weight w, type (p, q) and rank p+q. Weight-0 tensor densi-
ties are called tensors; rank-1 tensors are called vectors , and rank-0 tensors are scalars ,
i.e., invariants . The symbol

[ ∂y
∂x

]
denotes the matrix of partial derivatives that appear in

equation (B.26).
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This special meaning of the word “density” – which in this special use always follows the adjective
“tensor,” “vector” or “scalar” – must not be confused with the familiar notion as in “per unit of
volume.” Thus, for example, “Lagrangian density” literally means “Lagrangian per unit of volume.”
On the other hand, in the sense of Definition B.2 and in the typical practice in theoretical and
mathematical physics, Lagrangian densities are – as well as the Lagrangians and Hamiltonians and
Hamiltonian densities – scalars, i.e., weight-0 scalar densities [☞ Conclusion 9.5 on p. 328].

Comment B.1 Specifying all components in any one concrete basis does specify the tensor
density abstractly, since the relations (B.41) provide the transformation rules from one ba-
sis into any other one. In the mathematical literature one typically uses the natural basis
{dxμ, ∂

∂xμ }, whereby a tensor density is specified invariantly as

T(x) : dxν1 ⊗ · · · ⊗ dxνp T
μ1···μp
ν1···νq (x)

∂

∂xμ1
⊗ · · · ⊗ ∂

∂xμq
. (B.42a)

Using the relations (B.25)–(B.26) and (B.41), it is then easy to show that

T(y) =
(

det
[ ∂y
∂x

])w
T(x). (B.42b)

In this book, I follow the physicists’ practice of specifying and manipulating components
(with respect to any one particular basis) as the representatives of the whole tensor density;
see Digression 3.3 on p. 88, as well as the discussion in Wald’s textbook [548].

B.2.2 Tensor algebra
Scalar functions (weight-0 scalar densities) over spacetime are, in the physics nomenclature, typi-
cally called scalar fields. These scalar fields (in the physics sense) form – at every spacetime point
separately – a field in the mathematical sense. That is, addition and multiplication of scalar fields –
taken at any particular spacetime point – follows the usual rules of addition and multiplication
of “ordinary” (real and complex) numbers. It is, however, important to note that this is not the
case when adding/multiplying scalar fields where the summands/factors are taken at different
spacetime points: f (x) g(y) is not a function of either just x or just y, but of both. Thus, scalar
functions (over the whole spacetime) do not form the usual algebraic structure of a field. However,
restricting the binary operations to the cases when both summands/factors are taken at the same
spacetime point produces an algebraic structure that minimally deviates from the standard defini-
tion of the (mathematical) field, i.e., extends this definition.3 The corresponding generalizations
of functions (and all the tensor densities as well) over general, curved spaces are called sections of
various bundles [☞ [563, 210, 379, 176], to begin with].

Similarly, tensor densities T
μ1···μp
ν1···νq (x) may be multiplied by scalar densities f (x) by simply

multiplying each component. Also, it should be clear that the tensor densities of the same type and
weight may be added, which permits defining point-by-point linear combinations such as

f (x) T
μ1···μp
ν1···νq (x) + h(x) U

μ1···μp
ν1···νq (x), (B.43)

as long as the sum of weights of f and T equals the sum of weights of h and U, and this generates
a structure that minimally generalizes the structure of a vector space:

3 The deviation pertains precisely to the general case, when the arguments of the two factors in a product are not the
same. For those cases, one may simply declare that multiplication is not defined – which is already a departure from the
standard definition of a field, or one may define such a product via some formal expansion into a series in powers of
the difference (x−y) – when such a power series is well defined, etc.
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Definition B.3 Tensor densities of the same type form a generalization of the vector space as
their linear combination is defined by specifying

f (x) T
μ1···μp
ν1···νq (x) + h(x) U

μ1···μp
ν1···νq (x), (B.44)

where the coefficients are scalar densities of complementary weights:

w
[

f (x) T
μ1···μp
ν1···νq (x)

]
= w

[
h(x) U

μ1···μp
ν1···νq (x)

]
. (B.45)

The linearity of the definition guarantees that the result (B.44) is again a tensor density of
the same rank, type and weight.

The structure of a vector space is recovered by restricting to constant coefficients and tensor
densities of the same weight.

The following two operations are also important:

Definition B.4 (Contraction) For any type-(p, q) tensor density, where p �= 0 �= q, one
constructs the contraction

δ
νi
μj : T

μ1···μp
ν1···νq (x) �→ T

μ1···μ̂j ···μp

ν1···ν̂i ···νq
(x) =

(
δ
νi
μj T

μ1···μj ···μp
ν1···νi ···νq (x)

)
, (B.46)

where μ̂i denotes that the index μi is omitted from the sequence. The result of contracting
is a type-(p−1, q−1) tensor density of the same weight as the original tensor density.

Definition B.5 For any two indices of the same type, one defines

T(μν)···
··· := 1

2

(
Tμν······ + Tνμ······

)
, and T[μν]···

··· := 1
2

(
Tμν······ − Tνμ······

)
, (B.47)

the so-called symmetric and antisymmetric part of the original tensor density. The linearity
of the definition guarantees that both parts retain the rank, type and weight of the original
tensor density.

With tensor densities of a rank higher than two, the combinatorial possibilities and wealth of
various (anti)symmetrization patterns grow very quickly; some simple examples are given in re-
lations (A.66) and (A.76). Technically more precisely, the various forms of (anti)symmetrization
provide various representations of the permutation group that acts by permuting the indices of the
same type (here, subscript vs. superscripts).

Comment B.2 Every tensor density with at least two indices of the same type may always
be decomposed:

Tμν······ ≡ 2· 1
2 Tμν······ + 1

2 Tνμ······ − 1
2 Tνμ······ = T(μν)···

··· + T[μν]···
··· , (B.48)

where T(μν)···
··· and T[μν]···

··· transform the same as the original tensor density, Tμν······ . More
generally, every tensor density may be decomposed into a sum of tensor densities, each
of which is an irreducible representation of the permutation group that acts by permuting
indices of the same type.

The operations provided by the definitions B.3, B.4 and B.5 generate a structure that is usually
called simply “linear algebra.”
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Finally, define also the multiplication of tensor densities:

Definition B.6 For any two tensor densities T
μ1···μp
ν1···νq (x) and U

ρ1···ρp′
σ1···σq′ (x), respectively of type

(p, q) and (p′q′) and weights w and w′, the tensor product may be specified by the relation

(T ⊗ U)
μ1···μp+p′
ν1···νq+q′ (x) := T

μ1···μp
ν1···νq (x) U

μp+1···μp+p′
νq+1···νq+q′ (x) (B.49)

the result of which is a type-(p+p′, q+q′) and weight-(w + w′) tensor density.

B.2.3 Tensor calculus
The rate of change of a vector such as A(x) = Aμ(x) eμ(x) over spacetime is then

∂A
∂xμ

=
∂

∂xμ
(

Aν(x) eν(x)
)

=
∂Aν

∂xμ
eν(x) + Aν(x)

∂eν
∂xμ

. (B.50)

Since eν form a complete set, the partial derivative in the second term must be expressible as a
linear combination in the same basis:

∂eν
∂xμ

=: Γρμν(x) eρ(x), (B.51)

where Γρμν(x) are, for each pair (μ, ν) and at each point x in spacetime, simply the 4-tuple of
coefficient functions in the linear combination of basis vectors eρ(x). Combining results (B.50)
and (B.51), we have

∂A
∂xμ

=
[∂Aρ

∂xμ
+ Aν Γρμν

]
eρ(x). (B.52)

It is straightforward that

∂

∂xμ
(

eν·eρ = δ
ρ
ν

)
= 0 ⇒ ∂eρ

∂xμ
= −Γρμν(x) eν(x), (B.53)

whereby
∂B
∂xμ

=
∂Bν
∂xμ

eν(x) + Bν(x)
∂eν

∂xμ
=

[∂Bν
∂xμ

− Bρ Γρμν
]
eν(x). (B.54)

The quantities in the square brackets in equations (B.52) and (B.54) are then defined as the
covariant derivatives of the components

DμAρ :=
[
∂μAρ + ΓρμνAν

]
and DμBν :=

[
∂μBν − ΓρμνBρ

]
. (B.55)

The formula (9.17) is then the straightforward iteration of these two definitions, as dictated by
Weyl’s Construction A.1 on p. 478, adapted here to provide Definition B.1 on p. 511.

The definition of Γρμν(x) in equation (B.51) and the relations (B.36) then imply several im-
portant properties of Γρμν(x). First,

Γρμν eρ =
∂ eν
∂xμ

=
∂2 e
∂xμ∂xν

=
∂2 e
∂xν∂xμ

= Γρνμ eρ ⇒ Γρμν = Γρνμ. (B.56)

Next, compute

∂gμν
∂xρ

=
∂

∂xρ
(eμ·eν) = Γσμρeσ·eν + eμ·Γσνρeσ = Γσμρgσν + gμσΓσνρ. (B.57)

Reusing this equality with permuted indices μ, ν, ρ, we obtain

∂gμσ
∂xν

+
∂gνσ
∂xμ

− ∂gμν
∂xσ

= 2gσρΓρμν, (B.58)
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which implies the standard formula [508, 62, 367, 548, 66, 96]

Γρμν = 1
2 gρσ

[∂gμσ
∂xν

+
∂gνσ
∂xμ

− ∂gμν
∂xσ

]
. (B.59)

It is then straightforward to show that

Dμgνρ = 0 = Dμgνρ. (B.60)

We close with a useful result and a comment. The Jacobi identity for derivatives of the
determinant g := det[g..] is

∂g
∂xμ

= g gνρ
∂gνρ
∂xμ

⇒ gνρ
∂gνρ
∂xμ

=
1
g
∂g
∂xμ

=
1

(−g)
∂(−g)
∂xμ

=
∂ ln(−g)
∂xμ

, (B.61)

where the sign-change was necessary as spacetime metrics have an odd number of negative
eigenvalues and so a negative determinant. Now contract the expression (B.59):

Γμμν = 1
2 gμσ

[∂gμσ
∂xν

+
∂gνσ
∂xμ

− ∂gμν
∂xσ

]
= 1

2 gμσ
∂gμσ
∂xν

, (B.62)

since gμσ ∂gνσ
∂xμ

μ:σ= gσμ ∂gνμ
∂xσ = gμσ ∂gμν

∂xσ and the last two terms cancel. Using then the identity (B.61)
yields

Γμμν = 1
2
∂ ln(g)
∂xμ

=
∂ ln

(√
g
)

∂xμ
=

1√
g
∂
√

g
∂xμ

. (B.63)

Therefore,

D·A = eμ· ∂A
∂xμ

= (DμAν) eμ·eν = (DμAμ) =
∂Aμ

∂xμ
+ ΓμμνAν,

=
∂Aν

∂xν
+

( 1√
g
∂
√

g
∂xν

)
Aν =

1√
g
∂(√gAν)
∂xν

=
1√
g
∂(√g gνρAρ)

∂xν
(B.64)

provides the definition of the spacetime gradient of a 4-vector, alternatively given for a vector spec-
ified in terms of contravariant and covariant components. The spacetime gradient of a type-(p, q)
tensor density of weight w is then obtained by iterating this result. For example, the spacetime
divergence of a type-(2, 0) tensor is

(D·T)ν =
∂Tμν

∂xμ
+ ΓμμσTσν + ΓνμσTμσ =

1√
g
∂
(√

gTσν
)

∂xσ
+ ΓνμσTμσ. (B.65)

The general result is(
D̃λ T(y)

)ρ1···ρp
σ1···σq

=
(

det
[ ∂y
∂x

∣∣∣)w ∂yρ1

∂xμ1
· · · ∂yρp

∂xμp

∂xν1

∂yσ1
· · · ∂xνq

∂yσq

∂xκ

∂yλ
(
Dκ T(x)

)μ1···μp
ν1···νq

. (B.66)

That is, the covariant derivative of a type-(p, q) tensor density of weight w is a type-(p, q+1) tensor
density of weight w.

Finally, we note that for every μ the vector eμ(x) is defined infinitesimally near the point x.
Using the 4-vector of partial derivatives ∂

∂xν , we may define

eμν(x) : eμ = eμν(x)
∂

∂xν
, (B.67)
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exhibiting that the basis elements eμ(x) span a linear vector space. This locally (infinitesimally)
defined (tangent) spacetime must then be isomorphic to R1,3, and we are free to choose Cartesian
coordinates in it, say ξm, for which gmn(ξ) = −ηmn, so that eμ(x) = eμm(x) ∂

∂ξm . In turn, comparing
the straightforward computation

eμ :=
∂e
∂xμ

=
∂ξm

∂xμ
∂e
∂ξm , (B.68)

with the definition of eμν(x) given in (B.67), we see that eμm(x) = ∂ξm

∂xμ , when the local tangent-
space derivatives ∂

∂ξm are used as covariant basis elements, instead of the curvilinear ∂e
∂xμ .

The so-defined 4× 4 matrix of coefficients eμm(x) is variously called a tetrad, a Fierbein (Ger-
man: fier = four, Bein = leg), a “moving frame,” or a “soldering form” [508, 62, 367, 548, 66, 96],
as it relates curvilinear derivatives to the local, tangent-space, ∂

∂xμ = eμm(x) ∂
∂ξm , at every point in

spacetime. Straightforwardly,

eμm(x) (−ηmn) eνn(x) = gμν(x), (B.69)

and eμm(x) may be regarded as a square-root of the metric tensor. By abuse of language, one
says that μ, ν, . . . are “curved indices,” meaning that they indicate curvilinear coordinates; in turn,
m, n, . . . are dubbed “flat indices,” meaning that they indicate Cartesian coordinates in the flat
tangent spacetime ∼= R1,3, which is defined locally (infinitesimally) at every point x of otherwise
arbitrarily curved but smooth spacetime.

Clearly, at any point where the local system of partial derivatives ∂ξm

∂xμ is ill-defined, this con-
struction in the specified coordinates breaks down, detecting a candidate (putative) singularity;
see the discussion in Section 9.3.1, starting on p. 334.

B.2.4 Functionals and functional derivatives
Without delving into technical details and a rigorous definition of functionals and functional
derivatives, we provide here a heuristic introduction and a few results that prove useful in
computations such as done in Digression 5.9 on p. 191 or Section 11.2.4.

Consider first a 4-vector x = (x0, x1, x2, x3). The value of the symbol “kμ” clearly depends on
the choice of the index, which indicates one of the four components. Note that there are only a
finite number of choices for μ, and thus a finite number of components of kμ. This is conceptually
similar to the notion of a function f (x), the value of which depends on the choice of the argument
x – except that x varies continuously over a range of values. For each of the permissible choices
of the argument x, f (x) returns a value and so the space of possible values may well also form a
continuously infinite set.

We frequently consider summation over the indices – which we will write explicitly in this
section, such as,

(x · η)ν :=
3

∑
μ=0

xμημν = x0η0ν + x1η1ν + x2η2ν + x3η3ν. (B.70)

In the 4-vector quantity so defined, the index ν appears on both sides of the equation and remains
free: it may be freely chosen and changed at will. By contrast, the index μ has been summed over,
does not even appear in the right-most, expanded version of the sum, and is not free to substitute
arbitrarily chosen values (from within 0, 1, 2, 3); it is a dummy summation variable. Conceptually,
this is identical to the fact that in the integral

F[ f ; y] :=
∫ b

a
dx f (x) H(x, y), (B.71)
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the argument y remains free and available for substitution with any of its allowed values, while
the variable x has been “used up” to compute the integral. Just as the sum (B.70) depends on the
4-vector x and its 4 components (x0, x1, x2, x3), so does the integral (B.71) depend on the choice
of the function f (x) and its values. Just as (x · η)ν no longer depends on the “used-up” index μ,
neither does the integral F[ f ; y] depend on the “used-up” variable x.

Both of these expressions depend on the summation (integration) limits, they also depend on
the additional rank-2 tensor (2-argument function) quantities, ημν (H(x, y)), but we focus here the
dependence on the 4-vector xμ vs. the function f (x). In particular, we easily compute the derivative
by xα of the first of these quantities:

∂

∂xα
(x · η)ν =

∂

∂xα
3

∑
μ=0

xμημν =
3

∑
μ=0

∂

∂xα
xμημν =

3

∑
μ=0

(∂xμ

∂xα
ημν + xμ

∂ημν

∂xα︸ ︷︷ ︸
assume =0

)

=
3

∑
μ=0

(∂xμ

∂xα
= δ

μ
α

)
ημν = ηαν. (B.72)

In the indicated assumption, we state that the rank-2 tensor ημν is defined independently of the
4-vector xμ. In perfect analogy with (B.72), we compute the functional (also called variational)
derivative of the integral (B.71):

δ

δ f (z)
F[ f ; y] =

δ

δ f (z)

∫ b

a
dx f (x) H(x, y) =

∫ b

a
dx

δ

δ f (z)
f (x) H(x, y)

=
∫ b

a
dx

(
δ f (x)
δ f (z)

H(x, y) + f (x)
δH(x, y)
δ f (z)︸ ︷︷ ︸

assume =0

)

=
∫ b

a
dx

(
δ f (x)
δ f (z)

= δ(x−z)
)

H(x, y) = H(z, y). (B.73)

In the indicated assumption, we state that the 2-argument function H(x, y) is defined indepen-
dently of the function f (x). Still more generally, consider a nonlinear functional of the function
f (x):

F [ f ] :=
∫ b

a
dx F

(
f (x)

)
, (B.74)

where F is an arbitrary functional expression involving f (x), such as ( f (x))2√
log( f (x)+1)

. Requiring the

basic chain rule to apply, we obtain

δ

δ f (z)
F [ f ] :=

∫ b

a
dx

δ

δ f (z)
F

(
f (x)

)
=

∫ b

a
dx δ(x − z)

[∂F (ξ)
∂ξ

]
ξ→ f (x)

, (B.75)

where the symbol f is used in the partial derivative within the square brackets as a formal argument
of the function F and the derivative is calculated in the standard way. Once the derivative is
computed, ξ → f (x) is substituted back in the resulting (derivative) functional expression. Note
that the Dirac δ-function, δ(x − z), quenches the integration to an evaluation at x → z.

There is, however, an aspect of functional derivatives that does not have a direct analogue
in the 4-vector calculus framework of (B.72), and it has to do with cases where the definition
of the functional such as (B.71) depends not only on the function, but also on its derivatives.
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This is actually a fairly typical case as most Lagrangians are functional expressions involving not
only fields, but also their time derivatives. The time-integral of any Lagrangian is then Hamilton’s
action, and it is a functional of the fields involved. For example,

S[φ; C] =
∫ T

0
dt L(φ, φ′, φ′′, . . . ). (B.76)

δ

δφ(τ)
S[φ; C] =

∫ T

0
dt

δ

δφ(τ)
L(φ, φ′, φ′′, . . . )

=
∫ T

0
dt

{
δφ(t)
δφ(τ)

[∂L
∂φ

]
+
δφ′(t)
δφ(τ)

[ ∂L
∂φ′

]
+
δφ′′(t)
δφ(τ)

[ ∂L
∂φ′′

]
+ · · ·

}
, (B.77)

where all the expressions in the square brackets treat φ, φ′, φ′′, . . . as independent variables to
perform the indicated partial derivatives, then re-submit φ → φ(t), φ′ → φ′(t), etc. Next, we use

without proof that δφ′(t)
δφ(τ) =

( d
dt
δφ(t)
δφ(τ)

)
:

=
∫ T

0
dt

{
δφ(t)
δφ(τ)

[∂L
∂φ

]
+

( d
dt
δφ(t)
δφ(τ)

)[ ∂L
∂φ′

]
+

( d2

dt2
δφ(t)
δφ(τ)

)[ ∂L
∂φ′′

]
+ · · ·

}
=

∫ T

0
dt

{
δ(t−τ)

[∂L
∂φ

]
+

( d
dt
δ(t−τ)

)[ ∂L
∂φ′

]
+

( d2

dt2 δ(t−τ)
)[ ∂L
∂φ′′

]
+ · · ·

}
.

Next, we integrate by parts; the second term once, the third term twice and so on:

=
∫ T

0
dt δ(t−τ)

{[ ∂L
∂φ

]
−

( d
dt

[ ∂L
∂φ′

])
+

( d2

dt2

[ ∂L
∂φ′′

])
+ · · ·

}
+ B.T., (B.78)

where “B.T.” denotes boundary terms stemming from the integrations by part. Finally,

δ

δφ(τ)
S[φ; C] =

∞

∑
k=0

(−1)k dk

dτk
∂ L(φ(τ), φ′(τ), φ′′(τ), . . . )

∂ φ(k)(τ)
+ B.T. (B.79)

A further generalization of this to n-tuples of fields, and to dependence on more than one variable
is straightforward:

δ

δφa(x)
S[φ.; C] =

∞

∑
k=0

(−1)k∂k ∂ L(φ.(x), ∂1φ.(x), ∂2φ.(x), . . . )
∂(∂kφ(k)

a (x))
+ B.T., (B.80a)

∂k := ∂μ∂ν · · · ∂ρ︸ ︷︷ ︸
k factors

, and a = 1, 2, . . . , n, (B.80b)

and where a summation is implied between each spacetime partial derivative occurring within the
two copies of ∂k – one acting on the partial derivative of the Lagrangian density and the other in the
specification of the derivative field with respect to which the partial derivative of the Lagrangian is
computed:

=
∂L

∂φa(x)
− ∂μ

∂L
∂(∂μφa(x))

− ∂μ∂ν
∂L

∂(∂μ∂νφa(x))
+ · · · + B.T. (B.80c)
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B.2.5 Exercises for Section B.2

✎ B.2.1 Using the results (9.4) and (3.11c), prove that the line element (B.27) is invariant
under general coordinate transformations.

✎ B.2.2 Using the standard rules of calculus (B.23)–(B.24), prove that (B.28) is invariant
under general coordinate transformations.

✎ B.2.3 Using the standard rules of calculus (B.23)–(B.24), prove that the Levi-Civita
symbol (B.29)–(B.30) is invariant under general coordinate transformations.

✎ B.2.4 Prove the relationship (B.31).

B.3 A telegraphic introduction to Gödelian incompleteness
This sketchy and perforce incomplete account of Kurt Gödel’s incompleteness theorem and its
corollary, as well as their implications for all sufficiently complex theoretical systems, is meant
to alleviate the fact that most physics students are not familiar with it. For a more complete and
precise introduction, see Refs. [211, 376].

With excellent prospects of hilariously oversimplifying the historical background and signifi-
cance of Gödel’s theorem, let me just mention as a backdrop the incredible Principia Mathematica
by A. N. Whitehead and B. Russell: This three-tome opus [571, 568, 569, ∼ 2,000 pages in total],
justifying even a 500-page abridged version of Vol. 1 [570], collects the best efforts to cast the
complete and rigorous foundation of all mathematics in Peano’s formal symbolic logic and Frege’s
set theory. The first edition of the Principia Mathematica was published in 1910, and was then
improved for the second edition in 1927.

The ultimate hope was that all of mathematics could be shown to be deducible from an ef-
fectively generable collection of axioms,4 and by means of perfectly rigorous logic. Whitehead and
Russell’s opus not only set formidable standards for the rigor of proof (hereafter to be pursued in
mathematics), but provided an indelible influence on a century of development in (mathematical)
logic and set theory, and metamathematics – the mathematics of how mathematics is to be practiced
and understood.

In 1931, Kurt Gödel published an announcement of his incompleteness theorem, its corollary
(often referred to as the second incompleteness theorem) and an elaborate sketch of proof, defer-
ring the complete proof (to the level of rigor as set by the Principia Mathematica). His results were,
however, accepted at once and Gödel never did get around to publishing the completely detailed
proof [211, 376].

Gödel’s incompleteness theorem and its corollary pertain to axiomatic systems that are suffi-
ciently complex to contain the axiomatic system of standard arithmetic. Recall that an axiomatic
system is a logical system that has, roughly:

1. a fixed list of symbols,
2. a fixed list of “syntactic/grammatical” rules specifying which strings of symbols represent

“well-formed” (meaningful) expressions and statements,
3. a fixed list of adopted logical rules of manipulating and combining statements, and
4. a fixed list of “axioms” (postulates) – statements that are adopted as the “primary statements

(truths)” of the given system.

4 A collection of objects is effectively generable if there exists an algorithm that will enumerate all the objects in the
collection without ever enumerating anything else.
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Every such axiomatic system then has statements that are spelled out with its symbols (1) and
which are well-formed (2); those that can be derived using the rules (3) from the axioms (4) are
called “theorems.”

Within this framework, it was the hope of the research culminating with Whitehead and Rus-
sell’s Principia Mathematica that a suitable system of axioms could be found for all of mathematics,
such that every well-formed mathematical statement could either be proven (by deriving it from
the axioms) or disproven (by deriving its logical negation instead).

Gödel’s incompleteness theorem states that no axiomatic system that is sufficiently complex
to contain arithmetics can both be complete and not be self-contradictory. That is, to avoid being
self-contradictory, every such axiomatic system must contain statements that can be neither proven
nor disproven within the axiomatic system as given. Gödel also drew an immediate corollary (oft-
cited as his second incompleteness theorem owing to its importance), which states that no such
axiomatic system can prove/demonstrate its own consistency [211].

Even more remarkably, Gödel’s proof is constructive! Within any such axiomatic system,
Gödel’s proof explicitly shows how to construct a very specific statement, which can neither be
proven nor disproven within the given axiomatic system. Although Gödel constructed this partic-
ular undecidable statement in his proof, and expressly for the purpose of proving the theorem,
it does follow that there exist infinitely many such undecidable statements – and some of those,
within physics as a formal axiomatic system, are bound to be of interest. Such undecidable state-
ments are then often called Gödelian, although strictly speaking this name should be reserved for
the specific statement constructed in Gödel’s proof for the given axiomatic system.

Conclusion B.1 To any axiomatic system (sufficiently complex so as to contain arithmetic),
either a Gödelian undecidable statement or its logical negation may be added as a new
axiom – and this extension may be repeated recursively forever [211, 376].

It is worth noticing that the Popperian notion of falsifiability (at least in an admittedy naive
understanding [☞ Digression 1.1 on p. 9]) presupposes all statements that one may spell out within
some theory (or theoretical system) necessarily to be either falsified or confirmed – so that there
must exist provable/derivable statements within that theory, which then Nature (experiment) could
falsify. In turn, a theory may well be undecided about any particular and otherwise perfectly self-
consistent statement being tested. Nature then may choose one of the options, so effectively decide
the statement – and extend the theory.

Example B.1 Within the standard theoretical system of Newtonian classical mechanics,
Bertrand’s theorem [☞ textbooks of classical mechanics such as [213]] guarantees that
stable circular orbits in (3 + 1)-dimensional spacetime are ensured only by two central
potentials:

1. the Kepler/Newton potential, −κ
r ,

2. the radial harmonic potential, 1
2 kr2.

However, there is nothing within this theoretical system that could decide which one
is the one that keeps the planets in stable and nearly circular orbits around the Sun. It
is the correlation between the orbital linear velocities of the planets and their distance
from the Sun – observed in Nature to be v ∝ r−1/2[ ✎derive]– that clearly picks the
Kepler/Newton potential over the v ∝ r3/2 [ ✎derive] of the harmonic potential.
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Example B.2 Within the standard theoretical system of Newtonian classical mechanics,
there exists no reason to impose Bohr’s ad hoc quantization of the angular momentum
for the electron orbiting the proton and so forming a hydrogen atom. However, neither
does there exist a reason against such a quantization: strictly speaking, the assumed con-
tinuous variability of the magnitude of angular momentum in various physical systems
is merely an implicit assumption, bolstered by no noticed exemption in the macro-
scopic world; see, however, the discussion in Section 8.3.1 and Footnote 11 on p. 310
in particular.

Therefore, from within the formal theoretical system of classical mechanics,
whether or not the angular momentum of an electron orbiting a proton is to be quan-
tized and in what units is in fact an undecidable statement in Gödel’s sense. Nature quite
clearly resolves the issue: Experiments show that the angular momentum of any physical
system can only change in integral multiples of h̄, and so must be either an integral or
a half-integral multiple of this unit. The quantum extension of classical mechanics is in
this sense precisely a Gödelian extension of the axiomatic theoretical system of classical
physics to the axiomatic theoretical system of quantum physics.

Example B.3 As discussed in Section 9.1.1 and Digression 8.1 on p. 295, attempting to
fuse Newtonian mechanics and Maxwell’s electrodynamics requires one to either mod-
ify electrodynamics so as to become Galilean-symmetric, or mechanics so as to become
Lorentz-symmetric. Since the Galilean group is the c → ∞ limit of the Lorentz group,
the former of these options is achievable only if we take the c → ∞ limit of the Maxwell
equations. Both resulting systems are consistent, so that a choice between them is not
decidable from within the theory alone. It is indeed Nature’s “choice” that light does
propagate at a finite speed, which then implies the latter option for the electrodynamics
of moving electric charges.

While one may wish for such a “resolution by Nature,” as described in the Examples B.1,
B.2 and B.3 above, there is in fact no guarantee that all “theoretical” dichotomies in our at-
tempts to describe Nature will be similarly resolvable by observation. Indeed, the discovery of
the ever-increasing list of ever more various dualities [☞ Section 11.4, to begin with] seems
to indicate that this “plurality” of description is an innate characteristic of our understanding
Nature.

Finally, the prospect of perpetual Gödelian extensions – in as much as it seems applicable to
physics – seems to agree with some of the historical lessons, seen with the benefit of hindsight.
Within the theoretical system of classical vector fields, the model described by the Maxwell equa-
tions is “well-formed,” but undecidable. There is nothing in classical field theory formalism that
could prove or disprove the Maxwell equations from any system of axioms, which does not in fact
include either the electrodynamics laws that those differential equations represent or the gauge
principle as introduced in Chapter 5.

In this sense then, the gauge principle (or the electrodynamics laws represented by the
Maxwell equations) is a Gödelian undecidable statement within the theoretical system of classi-
cal fields. By including the gauge principle, we obtain the particular theoretical system of classical
fields that is called electrodynamics, in which the vector fields �E, �B, �A and the scalar field Φ acquire
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a specific meaning and application. The theoretical system at hand has at once both become more
specific and acquired a richer structure (less arbitrariness).

Gödel’s incompleteness theorem then implies that the axiomatic system of theoretical physics
definitely can be extended indefinitely, and in infinitely many ways. Which of those extensions will
turn out to be useful towards the intended purpose of theoretical physics, of course, remains an
open question – and may well remain so indefinitely☞ .



C
A few more details
C.1 Nobel Prizes
Success in science is, strictly speaking, measured only in ells of time: Democritus’ and Leucippus’
idea of elementary particles, even after two and a half millennia, serves successfully as a guiding
thought and Leitmotif, and Newton’s and Leibniz’s calculus still forms the basis of the mathemati-
cal formulation of the laws of Nature. The fact that more than a third of twentieth century Nobel
Prizes were awarded to discoveries relating to the physics of elementary particles and fundamen-
tal physics is probably foreordained by the selection effect: in a field where one knows less, the
probability of discovering something fundamentally new is higher. Nevertheless, I hope that this,
perhaps even pompous, review of major successes in the past century will serve as a convenient
reminder.

Table C.1 Nobel Prizes awarded for discoveries and contributions in fundamental physics

Year Awardee Award for [paraphrase; T.H.]

1901 Wilhelm C. Röntgen discovery of the remarkable rays subsequently named after
him, also known as X-rays

1903 A. Henri Becquerel ( 1
2 ) discovery of spontaneous radioactivity

Pierre Curie, Marie
Curie, née Sklodowska

their joint researches on radiation phenomena

1906 Joseph J. Thomson investigations on the conduction of electricity by gases
[i.e., discovery of the electron; T.H.]

1918 Max K. E. L. Planck advancement of physics by his discovery of energy quanta
[quantization of electromagnetic radiation emission; T.H.]

1921 Albert Einstein discovery of the law of the photoelectric effect
[not the discovery that electromagnetic radiation exists in quanta –
photons; T.H.]

1922 Niels H. D. Bohr investigation of the structure of atoms and of the radiation
emanating from them



524 A few more details

Year Awardee Award for [paraphrase; T.H.]

1923 Robert A. Millikan work on the elementary charge of electricity and on the
photoelectric effect

1925 James Franck,
Gustav L. Hertz

discovery of the laws governing the impact of an
electron upon an atom [confirming the quantization of
atomic states; T.H.]

1927 Arthur H. Compton discovery of the effect named after him
Charles T. R. Wilson method of making the paths of electrically charged

particles visible by condensation of vapor [invention of
the cloud chamber; T.H.]

1929 Prince Louis-Victor
P. R. de Broglie

discovery of the wave nature of electrons [and not the
universal wave–particle duality; T.H.]

1932 Werner K. Heisenberg creation of quantum mechanics
1933 Erwin Schrödinger,

Paul A. M. Dirac
discovery of new productive forms of atomic theory

1935 James Chadwick discovery of the neutron
1936 Victor F. Hess discovery of cosmic radiation

Carl D. Anderson discovery of the positron
1939 Ernest O. Lawrence invention and development of the cyclotron
1945 Wolfgang Pauli discovery of the exclusion principle
1949 Hideki Yukawa prediction of the existence of mesons
1950 Cecil F. Powell development of the photographic method of studying

nuclear processes and his discoveries regarding mesons
made with this method

1954 Max Born statistical interpretation of the wave-function
Walther W. G Bothe the coincidence method

1955 Willis E. Lamb discoveries concerning the fine structure of the hydrogen
spectrum

Polykarp Kusch precision determination of the magnetic moment of the
electron

1957 Chen-Ning Yang,
Tsung-Dao Lee

penetrating investigation of the so-called parity
laws [i.e., of C-, P- and CP-violation; T.H.]

1958 Pavel A. Cherenkov,
Il’ja M. Frank,
Igor Ye. Tamm

discovery and the interpretation of the Cherenkov effect

1959 Emilio G. Segrè,
Owen Chamberlain

discovery of the antiproton

1960 Donald A. Glaser invention of the bubble chamber
1963 Eugene P. Wigner ( 1

2 ) discovery and application of fundamental symmetry
principles [ 1

2 : Maria Goeppert-Meyer and J. Hans D. Jensen,
nuclear shell structure; T.H.]

1965 Shin-Ichiro Tomonaga,
Julian Schwinger,
Richard P. Feynman

fundamental work in quantum electrodynamics,
with deep-ploughing consequences for the physics of
elementary particles [renormalization in QED; Freeman
Dyson showed the equivalence of the methods of Tomonaga,
Schwinger and Feynman; T.H.]

1968 Luis W. Alvarez discovery of a large number of resonance states
(hadrons)
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Year Awardee Award for [paraphrase; T.H.]

1969 Murray Gell-Mann classification of elementary particles and their interactions
1976 Burton Richter,

Samuel Chao-Chung Ting
discovery of a heavy elementary particle of a new kind

1979 Sheldon L. Glashow,
Abdus Salam,
Steven Weinberg

theory of the unified weak and electromagnetic interaction
between elementary particles, including, inter alia, the
prediction of the weak neutral current

1980 James W. Cronin,
Val L. Fitch

discovery of violations of fundamental symmetry principles
in the decay of neutral K-mesons [CP-violation; T.H.]

1982 Kenneth Wilson theory for critical phenomena in connection with phase
transitions
[this theory contains the approach to renormalization that is built
into the foundations of contemporary field theory; T.H.]

1984 Carlo Rubia,
Simon van der Meer

decisive contributions to the large project that led to the
discovery of the field particles W and Z, communicators of
the weak interaction

1988 Leon M. Lederman,
Melvin Schwartz,
Jack Steinberger

neutrino beam method and the demonstration of νe �= νμ

1990 Jerome I. Friedman,
Henry W. Kendall,
Richard E. Taylor

pioneering investigations concerning deep inelastic scattering
of electrons on protons and bound neutrons, of essential
importance for the development of the quark model

1992 Georges Charpak invention and development of particle detectors, in particular
the multiwire proportional chamber

1995 Martin L. Perl discovery of the tau lepton
Frederick Reines detection of the neutrino [already in 1956 – 39 years earlier!

C. Cowan died in 1974, and was not awarded; T.H.]
1999 Gerardus ’t Hooft,

Martinus Veltman
elucidating the quantum structure of electroweak
interactions in physics [renormalization in models with Higgs
fields; T.H.]

2002 Raymond Davis Jr.,
Masatoshi Koshiba;
Riccardo Giacconi

pioneering contributions in astrophysics: detection of cosmic
neutrinos and the solar neutrino problem (the Homestake
Experiment) pioneering contributions in astrophysics: cosmic
X-rays

2004 David J. Gross,
H. David Politzer,
Frank Wilczek

discovery of asymptotic freedom in the theory of the strong
interaction

2006 John C. Mather,
George D. Smoot

discovery of the blackbody form and anisotropy of the cosmic
microwave background radiation

2008 Yoichiro Nambu ( 1
2 ) discovery of the mechanism of spontaneous broken symmetry

in subatomic physics
Makoto Kobayashi,
Toshihide Maskawa

discovery of the origin of the broken symmetry that predicts
the existence of at least three families of quarks in Nature

2011 Saul Perlmutter ( 1
2 ),

Brian P. Schmidt,
Adam G. Riess

discovery of the accelerating expansion of the universe
through observations of distant supernovae
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It is worth noting that several physicists with very important contributions to fundamental
physics were awarded for their contributions in other areas, instead of their main discoveries: For
example, Ernest Rutherford was awarded the 1908 prize in chemistry, while his work on classifying
radioactivity, identifying α-particles as helium ions, establishment of the exponential decay law
and its use as a clock, and – most importantly – the discovery of the atomic nuclei were not so
awarded. Similarly, Enrico Fermi was awarded in 1938 for “demonstrations of the existence of
new radioactive elements produced by neutron irradiation, and for his related discovery of nuclear
reactions brought about by slow neutrons,” while his theoretical model of β-decay and his other
contributions to fundamental physics remained not so awarded; Vitaly L. Ginzburg was awarded in
2003, together with Alexei A. Abrikosov and Anthony J. Legett, “for pioneering contributions to the
theory of superconductors and superfluids,” but not for the groundbreaking work with Lev Landau
on spontaneous magnetization, which eventually led to the general idea of spontaneous symmetry
breaking and the so-called Higgs mechanism [☞ Section 7.1]. Bohr’s principle of complementarity,
Pauli’s prediction of the neutrino, and even Einstein’s theory of relativity, among others, remained
similarly un-awarded by the Nobel committee. After all, Nobel Prizes are also a testament to the
socio-political milieu. Finally, it is important to keep in mind the defined limitations: “In no case
may a [Nobel] prize amount be divided between more than three persons.” Also, “a [Nobel] Prize
cannot be awarded posthumously, unless death has occurred after the announcement of the Nobel
Prize” [517].

C.2 Some numerical values and useful formulae
While following the narrative in this book, numerical values of various constants are mostly
unnecessary, but it is useful to have an idea about the relative numerical values of the vari-
ous results, so that the Reader is expected to work through the derivations and complete the
skipped steps, as well as to complete the exercises. Tables C.2, C.3 and C.4 should help in this
endeavor.

When including electromagnetic phenomena in a study, note that the electric charge (divided
by the natural constant

√
4πε0) may be measured in purely “mechanical” units, as shown in

equations (1.12). However, it is frequently useful to extend the unit system based on the mea-
surement of the physical quantities of mass, length and time (M, L, T) by adding, minimally, the
measurement of electric charge, C, and then consistently retaining all factors of

√
4πε0. Owing

to the identity c2 = 1/ε0μ0, the constant μ0 may always be expressed as μ0 = 1/ε0c2. How-
ever, in order to emphasize the electro-magnetic duality, Table C.4 on p. 527 retains both ε0 and
μ0 = 1/ε0c2 = 4π× 10−7 kg m/C2.

Table C.2 Natural constants and some useful characteristic values

h̄ 1.054 572× 10−34 J s 6.582 119× 10−16 eV s

c 299, 792, 458 m/s

ε0 8.854 187 817× 10−12 C2 s2

kg m2

e 1.602 176× 10−19 C

GN 6.674 2× 10−11 m3

kg s2 6.708 7× 10−39 h̄ c5

GeV2

NA 6.022 141 5× 1023/mol

kB 1.380 650 5× 10−23 J/K 8.617 343× 10−5 eV/K

θw (28.74 ± 0.01)◦ (“weak” mixing angle, θw)

δ13 (1.20 ± 0.08)◦ (the CKM matrix phase, δ13)

MP 2.176 45× 10−8 kg 1.220 90× 1019 GeV/c2

me 9.109 382× 10−31 kg 0.510 999 MeV/c2

mμ 1.883 531× 10−28 kg 105.658 MeV/c2

mτ 3.167 772× 10−27 kg 1.776 99 GeV/c2

mp 1.672 621× 10−27 kg 938.272 MeV/c2

mn 1.674 927× 10−27 kg 939.566 MeV/c2

mW 1.433 3× 10−25 kg 80.403 GeV/c2

mZ 1.625 57× 10−25 kg 91.187 6 GeV/c2

mH 2.244× 10−25 kg 125.9 GeV/c2
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Table C.3 Some useful abbreviations and numerical values

αe
e2

4πε0 h̄ c = g2
e

4π
1

137.035 999 fine structure constant

re
e2

4πε0me c2 2.817 940 325 × 10−15 m classical electron radius

Ry me e4

2(4πε0)2 h̄2 = αe
2 mec2 13.605 692 2 eV Rydberg, H-atom ion. energy

λ̄e
h̄

me c = re
αe

3.861 592 678 × 10−13 m Compton electron wavelength

μB
eh̄

2me
5.788 381 804 × 10−11 MeV/T Bohr magneton

a0
4πε0 h̄2

mee2 = h̄
αeme c = re

α2
e

5.291 772 108 × 10−11 m Bohr radius

Other electromagnetic units (farad, tesla, volt, ampere, etc.) are expressed in terms of N,
m, s, C. The unit C and the constants ε0 and μ0 may be eliminated by using the relation c =
1/

√
ε0μ0, and by redefining the electric charge q → q/

√
4πε0, which then is expressed in purely

“mechanical” units. In general, note that precisely three base units are required in any system of
units, and it is merely a tradition to choose units of mass, length and time.

Alternatively, as practiced in fundamental physics, one chooses a unit of speed (c), a unit of
the Hamilton action or angular momentum (h̄) and a unit of the gravitational force per product of
the gravitating masses times the square of the distance between them (GN). In addition to adopting
this choice, the first two of these units are not even written in high energy particle physics prac-
tice, which is often phrased by stating (somewhat confusingly) that “h̄ = 1 = c.” Every physical
quantity is now expressible in terms (and units) of, say, energy – which is convenient in particle
physics, since energy is in most cases the measured and controlled quantity [☞ Table 1.2 on p. 25];
Table C.5 could be helpful in this.

This practice is in fact no different than if one chose to adhere to a limited version of the
SI system of units where (1) all distances are expressed in meters and all masses in kilograms,
(2) no derivative units are ever used, and (3) one agrees to not even write the powers of ‘m’ and
‘kg.’ Every physical quantity would then be expressed in terms of time, and measured in units of
suitable powers of seconds. In this system, length, mass and volume-specific mass (density) would
have no written dimensions, speed and linear momentum would be measured in s−1 alike, while
s−2 would be the appropriate (written) unit for acceleration, force and energy.

The ultimately natural (and parsimonious) unit system is then the one attributed to Planck,
in which the natural constants c, h̄ and GN are implied but never written. This results, for example,

Table C.4 Comparative listing of primary (mechanical) SI units, minimally extended by the unit of
electric charge, coulomb (C), and the dimensions of some oft-used electromagnetic quantities

ε0 �E, Fμν Φ, Aμ ρe �je μ0 �B �A ρm �jm

Primary
SI units

s2 C2

kg m3
kg m
s2 C

kg m2

s2 C
C

m3
C

s m2
kg m
C2

kg
s C

kg m
s C

C
s2 m

C
s3

SI units
(kg→N s2/m)

C2

N m2
N
C

N m
C

C
m3

C
s m2

N s2

C2
N s
m C

N s
C

C
s2 m

C
s3

Dimensions
T2 C2

M L3
M L
T2 C

M L2

T2 C
C
L3

C
T L2

M L
C2

M
T C

M L
T C

C
T2 L

C
T3
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Table C.5 Dimensions of some oft-used physical quantities, in the general Mx LyTz format (first row),
and the power-of-energy (particle physics) convention where h̄ and c are implied and unwritten units
(second row); e.g., [L ] = 4 means [L ] = MeV4 up to powers of h̄ and c

Basic units In Lagrangian densities Feynman calculus

c h̄ GN L a φ Aμ Fμν Jμ (Ψ Ψ) (u u) M Γ σ

L
T

ML2

T
L3

MT2
M

L2T
M1/2

T1/2

ML2

T2
ML
T2

M
T2

T
L4

ML
T

—
1
T

L2

0 0 2 4 1 1 2 3 3 1 0 1 −2
a Relativistic Lagrangian densities L are normalized so that [

∫
d4x L ] = [h̄ ], with x0 = ct and

[d4x] = [L4]. Similarly, [
∫

d4x Ψmc2Ψ] = [h̄ ], and Feynman calculus uses u ∝
√

h̄ c3
∫

dt e−iωtΨ(x); see
also equation (5.53).

Table C.6 Natural (Planck) units and their SI equivalent value

Name Expression SI equivalent Practical equivalent

Length �P =
√

h̄GN
c3 1.616 25×10−35 m

Mass MP =
√

h̄ c
GN

2.176 44×10−8 kg 1.220 86×1019 GeV/c2

Time tP =
√

h̄GN
c5 5.391 24×10−44 s

Chargea qP =
√

4πε0 h̄ c 1.875 55×10−18 C e
√
αe ≈ 11.706 2 e

Temperature TP = 1
kB

MPc2 1.416 79×1032 K

aαe ≈ 1/137.035 999 679 in low-energy scattering experiments, but grows to about 1/127 near
∼200 GeV energies [☞ Section 5.3.3].

in the units for physical quantities that are listed in Table C.6 on p. 528, and the Reader is invited to
compute many more along the lines of the computations practiced in Section 1.2. Notice, however,
that once all physical quantities are expressed in units of h̄, c, GN – which are not written explicitly –
all physical quantities appear to have no (written) dimensions/units! Note that the Boltzmann
constant kB = 1.38× 10−23 J/K is clearly simply a unit conversion factor, from temperature to
energy, and need be written only if one wishes to emphasize the statistical nature of a certain
quoted energy (temperature).

Table C.7 lists a few symbols used in this book, many of which are fairly standard in formal
logic and set theory, but are not as frequently used in the physics literature. The symbols: ∝ (“pro-
portional”), ∼= (“isomorphic”), " (“equivalent”), ≈ (“approximate,” but “homomorphic” for groups
and algebras), ∼ (“asymptotic” for functions, but “of the order of” for numbers), × (Cartesian or
direct product, but “vector product” for 3-vectors and the usual product of a decimal number
and a power of ten), ⊗ (Kronecker, i.e., tensor product), � (semidirect product), ↪→ (injection),
� (surjection) and �→ (“maps/assigns to”) are probably more familiar, but are listed here for
completeness; see also the lexicon of jargon in Section B.1.

Finally, Table C.8 lists symbols that have been constructed for their specific indicated purpose
in this book, and which to the best of my knowledge do not appear elsewhere in the literature.
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Table C.7 Symbols borrowed from formal logic and set theory

Symbol Meaning of the symbol as used in this book

⊂ “subset”; e.g., “A ⊂ B” means “A is a subseta of B”
� “proper subset”; e.g., “A � B” means “A is a subseta of B and A �= B”
∪ “union”; an element belongs to A ∪ B if it belongs to A or B (inclusively)
∩ “intersection”; an element belongs to A ∩ B if it belongs to both A and B
	 “minus”; an element belongs to A	 B if it belongs to A but not to B
∈ “in” or “is an element of”; e.g., “x ∈ X” means “x is an element of X”
∅ “empty set”, i.e., the formal set that has no element at all
∀ “for all”; e.g., “∀x” means “for every x”
∃ “exists”; e.g., “∃x” means “there exists an x”
⇒ “implies”; e.g., “x ⇒ y” means “x implies y” (said of claims x, y)
⇔ “is equivalent”; e.g., “x ⇔ y” means “x is equivalent to y” (said of claims x, y)

a If B has a structure (of an algebra, a group, . . . ), A inherits this structure from B – unless noted otherwise.

Table C.8 The definition of some less frequently used or here constructed mathematical symbols

Symbol Meaning of the symbol as used in this book

:= the left-hand symbol is defined to equal the right-hand expression
=: the previously undefined right-hand symbol is defined so as to make the

equality hold for all values of the remaining symbols
:" the left-hand symbol is defined to be equivalent (by an implicit

equivalence, such as integration by parts) to the right-hand expression
\= need not be equal – in distinction to the “(certainly) not equal” symbol, �=
!= required to be equal

“· · · ”= equals, owing to (by use of) the relation/property “· · · ”
:+ semidirect sum of two algebras a :+ b, the first summand maps a : b → b;

e.g., for Lie algebras, [a, b] ∈ b, for a ∈ a and b ∈ b.
∧ antisymmetric product of two forms [☞ Digression 5.8 on p. 184]

C.3 Answers to some exercises
A successful solving of the end-of-section exercises should confirm the understanding of the mate-
rial of that section. For assistance and orientation, some partial and final results to these exercises
are listed here.

Ex. 1.2.1 and 1.2.3 Admittedly, these are trick exercises. Let a standing person’s horizontal linear
dimensions be scaled down by a factor of λh while the vertical measurements scale by λv,
and let W denote the person’s weight, A the cross-section area of the bones in the legs (femur,
tibia, fibula, etc.) and P = W

A the pressure of the person’s own weight on these bones. Then,

W ∝ λv·λ2
h, A ∝ λ2

h, P ∝ λv, (C.1)

so that the vertical pressure in the bones is, in this rough estimate, independent of the hor-
izontal scaling factor and only depends on the vertical scaling factor. Therefore, in part 1 of
this exercise, for this pressure to be about the same as in ordinary humans, λv ∼ 1 and not
λv = 40 as stated.
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This then implies that, in Lilliputians and small animals, the structure and even chemical
composition of bones may be proportionally weaker than in ordinary humans. In turn, in
animals larger than humans, bones must support greater pressures than in ordinary humans.
Since the structure and chemical composition of bones cannot vary too much, this provides
a strong limitation on the height of land-dwelling animals. Sorry: there can exist no 25-foot,
20-ton gorillas.

Ex. 1.2.6 The principal quantum number n becomes continuous.
Ex. 2.4.1 �y(�) = 1

2
q
m �2 B 2

0
E0

. �z = 0.
Ex. 3.2.4 T2 − T1 = (m1−m2)(1 − m1+m2

M )c2, so that T2 − T1 = m1
M (M−m1)c2 when m2 = 0.

Ex. 4.2.1 With only the orthonormal states |a〉 and |b〉 given, eigenstates must be of the form
α|a〉 + β|b〉. Then P

[
α|a〉 + β|b〉] = πP

[
α|a〉 + β|b〉], where πP is the eigenvalue, so that

πP

[
α|a〉 + β|b〉] = P

[
α|a〉 + β|b〉] =

[
α|b〉 + β|a〉]. (C.2)

Projecting with 〈a| and 〈b| yields

πP α = β, πP β = α, ⇒ π 2
P = 1, πP = ±1. (C.3)

From that,

πP = +1, |+〉 := 1√
2

(|a〉 + |b〉), P|+〉 = (+1)|+〉; (C.4)

πP = −1, |−〉 := 1√
2

(|a〉 − |b〉), P|−〉 = (−1)|−〉. (C.5)

Ex. 5.3.2 Using the relations from Digression 5.9 on p. 191, we have

∂α
∂LQED

∂(∂αAβ)
= ∂α

∂

∂(∂αAβ)

[
− 4πε0

4 (∂μAν−∂νAμ)ημρηνσ(∂ρAσ−∂σAρ)
]

= − 4πε0
4 ∂α

[
(δαβμν−δαβνμ)ημρηνσ(∂ρAσ−∂σAρ)

+ (∂μAν−∂νAμ)ημρηνσ(δ
αβ
ρσ−δαβσρ )

]
= − 4πε0

4 ∂α
[
(δαβμν−δαβνμ)(∂μAν−∂νAμ) + (∂ρAσ−∂σAρ)(δαβρσ−δαβσρ )

]
= − 4πε0

4 ∂α
[
(δαβμν−δαβνμ)Fμν + Fρσ(δαβρσ−δαβσρ )

]
= − 4πε0

4 ∂α
[

Fαβ − Fβα + Fαβ − Fβα
]

= −4πε0∂αFαβ. (C.6)

Similarly,
∂LQED

∂Aβ
=

∂

∂Aβ

[
− Ψ(x)

[
iγγγγμ

(
h̄ c∂μ − iqΨ Aμ

)−mc2
]

Ψ(x)
]

= −Ψ(x)
[
iγγγγμ

(− iqΨδ
β
μ

)]
Ψ(x) = −qΨΨ(x)γγγγβΨ(x). (C.7)

The relation (5.120f) follows upon equating these two results.
Ex. 5.4.4 Using definition mi := zi M, the property δ(ax) = δ(x)/a and that xi = x/zi yields

Wi
1 =

Q2
i

2(Mzi)
δ
( x

zi
−1

)
=

Q2
i

2M
δ
(

zi
x
zi
−zi

)
=

Q2
i

2M
δ(x−zi). (C.8)

Also, using that δ(x−1) = x2δ(x−1) yields

Wi
2 = −2mic2Q2

i
q2 x 2

i δ
( x

zi
−1

)
= −2(Mzi)c2Q2

i
q2 x 2

i zi δ(x−zi)

= −2Mc2Q2
i

q2 x2δ(x−zi). (C.9)
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Ex. 6.1.3 Write the equation ∂μFa μν = Ja ν
(c) in matrix notation, ∂μFμν = Jν(c), where we also have

equation (6.16), F′
μν = Uϕ Fμν U−1

ϕ . It then follows that

∂μF′μν = ∂m(Uϕ Fμν U−1
ϕ ) (C.10)

= (∂μUϕ)Fμν U−1
ϕ + Uϕ(∂μFμν)U−1

ϕ + Uϕ Fμν(∂μU−1
ϕ ). (C.11)

To simplify this result, use that 1 = UϕU−1
ϕ , the derivative of which gives

0 = (∂μUϕ)U−1
ϕ + Uϕ(∂μU−1

ϕ ) ⇒ (∂μU−1
ϕ ) = −U−1

ϕ (∂μUϕ)U−1
ϕ . (C.12)

Combining, we have

∂μF′μν = (∂μUϕ)Fμν U−1
ϕ + Uϕ(∂μFμν)U−1

ϕ − Uϕ FμνU−1
ϕ (∂μUϕ)U−1

ϕ

= (∂μUϕ)U−1
ϕ (U Fμν U−1

ϕ ) + (Uϕ Jν(c)U
−1
ϕ ) − (Uϕ FμνU−1

ϕ )(∂μUϕ)U−1
ϕ

= J′ ν(c) + (∂μUϕ)U−1
ϕ F′ μν − F′ μν(∂μUϕ)U−1

ϕ

= J′ ν(c) +
[
(∂μUϕ)U−1

ϕ , F′ μν ], (C.13)

the form of which could have been guessed from relations (6.39) and (6.6c).
Ex. 7.1.2 Motivated by the form of the result to be proven, use the polar coordinates φ1 = � cos θ,

φ2 = � sin θ, where the potential density in the Lagrangian density (7.21) becomes

V = − 1
2

(mc
h̄

)2
�2 + 1

4λ�
4, (C.14)

so that the stationary values of the variable � are given by

−(mc
h̄

)2
�+ λ�3 = 0 ⇒ ∂0 = 0, �± = ± mc

h̄
√
λ

. (C.15)

It is not hard to prove that �0 = 0 is a maximum, and �+ = mc
h̄
√
λ

a minimum; the third
solution, �− = − mc

h̄
√
λ

, is unreasonable as a value for the radial polar coordinate. The desired
result follows by transforming back into Cartesian parametrization, (φ1, φ2).

Ex. 9.1.4 In the extended equality (9.14) only the last one is not evident, and follows from the fact
that

gμν gμν = 4 δ=⇒ δ(gμν gμν) = 0 ⇒ (δgμν)gμν = −gμν(δgμν). (C.16)

With no extra effort, we also have the general result:

gμν gμσ = δσν
δ=⇒ δ(gμν gμσ) = 0 ⇒ (δgμν)gμσ = −gμν(δgμσ). (C.17)

Contracting this last equality with gρν yields [☞ also Digression 9.3 on p. 329]

δgρσ = −gρν(δgμν)gμσ. (C.18)

Ex. 10.3.1 Direct computation yields

Tr
[{Qi, Q† j}] = 1

2 ∑
i
{Qi, Q† i} + 1

2 ∑
i
{Q† i, Qi}

= 1
2 ∑

i
{Qi, Qi}︸ ︷︷ ︸

≡0

+ 1
2 ∑

i
{Qi, Q† i} + 1

2 ∑
i
{Q† i, Qi} + 1

2 ∑
i
{Q† i, Q† i}︸ ︷︷ ︸

≡0
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= 1
2 ∑

i
{Qi + Q† i, Qi + Q† i}] (10.32a)= 1

2 ∑
i
{Qi,Qi} = ∑

i
QiQi

= ∑
i
|Qi|2 � 0, (C.19)

where QiQi = |Qi|2 as the operators Qi are Hermitian.
Ex. 11.3.1 The Ricci tensor is

[Rmn] =

[ −2e−2k|y| [k sig2(y)−δ(y)] 0 0
0 2e−2k|y| [k sig2(y)−δ(y)] 0
0 2k[δ(y)−k sig2(y)]

]
, (C.20)

and the scalar curvature is R = 2 k[4 δ(y) − 3 k sig2(y)].
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[66] M. Blagojević, Gravitation and Gauge Symmetries, IOP Publishing, 2001.
[67] M. Blau and S. Theisen, String theory as a theory of quantum gravity: A status report, Gen. Rel. Grav. 41

(2009) 743–755.
[68] D. L. Block, Georges Lemaitre and Stiglers law of eponymy, in R. Holder and S. Mitton (eds.), Georges

Lemaitre: Life, Science and Legacy. Proceedings of the 80th Anniversary Conference held by the Faraday
Institute, St Edmund’s College, Cambridge, Royal Astronomical Society–Springer, 2012.

[69] D. Bohm, The Special Theory of Relativity, Routledge; New Edn, 2006 (original publ. W.A. Benjamin,
1965).

[70] N. Bohr, H. A. Kramers and J. C. Slater, The quantum theory of radiation, Zeitschrift für Physik 24 (1924)
69 (also in Philos. Mag. 47 (1924) 785–802).

[71] L. Borisov, Towards the mirror symmetry for Calabi–Yau complete intersections in Gorenstein toric Fano
varieties. http://arXiv.org/abs/alg-geom/9310001.
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[140] C. F. Doran, M. G. Faux, S. J. Gates, Jr., T. Hübsch, K. M. Iga and G. D. Landweber, Relating doubly-even
error-correcting codes, graphs, and irreducible representations of N-extended supersymmetry, in F. Liu
et al. (eds.), Discrete and Computational Mathematics, Nova Science, 2008.
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[350] G. Lüders, On the equivalence of invariance under time-reversal and under particle–antiparticle con-

jugation for relativistic field theories, Det. Kong. Danske Videnskabernes Selskab, Mat.-fys. Medd.
28 (5).

[351] J. D. Lykken, Introduction to supersymmetry, in C. Efthimiou and B. Greene (eds.), Fields, Strings and
Duality: TASI 1996 Lecture Notes, Boulder, CO, World Scientific, 1997, pp. 85–153.

[352] R. Maartens and K. Koyama, Brane-world gravity, Living Rev. Rel. 13 (2010) 5.
[353] Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor.

Phys. 28 (5) (1962) 870–880.

http://arxiv


544 References

[354] J. Maldacena, The large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys.
2 (1998) 231–252.

[355] B. Martin and G. Shaw, Particle Physics, 3rd edn., Wiley, 2008.
[356] S. P. Martin, A supersymmetry primer, in G. L. Kane (ed.), Perspectives on Supersymmetry, World

Scientific, 1998, pp. 1–98.
[357] R. D. Mattuck, A Guide to Feynman Diagrams in the Many-Body Problem, Dover Publications, 1992.
[358] D. McMahon, String Theory Demystified, McGraw-Hill, 2008.
[359] N. Mee, Higgs Force: The Symmetry-Breaking Force that Makes the World an Interesting Place,

Lutterworth Press, 2012.
[360] E. Merzbacher, Quantum Mechanics, 3rd edn., John Wiley & Sons, 1998.
[361] D. Meschini, M. Lehto and J. Piilonen, Geometry, pregeometry and beyond, Stud. Hist. Phil. Mod. Phys.

36 (2005) 435–464. http://dx.doi.org/doi:10.1016/j.shpsb.2005.01.002.
[362] A. Messiah, Quantum Mechanics, Vol. 1, John Wiley & Sons, 1958.
[363] A. Messiah, Quantum Mechanics, Vol. 2, John Wiley & Sons, 1958.
[364] A. Metz, J. Jolie, G. Graw, R. Hertenberger, J. Groger et al., Evidence for the existence of supersymmetry

in atomic nuclei, Phys. Rev. Lett. 83 (1999) 1542–1545.
[365] M. Mia and F. Chen, Non extremal geometries and holographic phase transitions, JHEP 1301 (2013) 083.
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Gödel, 344
Lanczos–Stockum, 346

wormholes, 508
Georgi, 67, 306
Georgi–Glashow, ☞ GUT, Georgi–Glashow
Gervais, 364, 400
ghost field, 500
GIM mechanism, 154, 267, 269
Ginzburg, 252, 402
Glashow, 61, 63, 67, 300, 306
glueball, 239
gluon, 127, 225, 229, 230, 232, 501
GNN formula, 57, 60, 75, 146

weak, 275, 276, 278
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