13,480 research outputs found

    Distributed Symmetry Breaking in Hypergraphs

    Full text link
    Fundamental local symmetry breaking problems such as Maximal Independent Set (MIS) and coloring have been recognized as important by the community, and studied extensively in (standard) graphs. In particular, fast (i.e., logarithmic run time) randomized algorithms are well-established for MIS and Δ+1\Delta +1-coloring in both the LOCAL and CONGEST distributed computing models. On the other hand, comparatively much less is known on the complexity of distributed symmetry breaking in {\em hypergraphs}. In particular, a key question is whether a fast (randomized) algorithm for MIS exists for hypergraphs. In this paper, we study the distributed complexity of symmetry breaking in hypergraphs by presenting distributed randomized algorithms for a variety of fundamental problems under a natural distributed computing model for hypergraphs. We first show that MIS in hypergraphs (of arbitrary dimension) can be solved in O(log2n)O(\log^2 n) rounds (nn is the number of nodes of the hypergraph) in the LOCAL model. We then present a key result of this paper --- an O(Δϵpolylog(n))O(\Delta^{\epsilon}\text{polylog}(n))-round hypergraph MIS algorithm in the CONGEST model where Δ\Delta is the maximum node degree of the hypergraph and ϵ>0\epsilon > 0 is any arbitrarily small constant. To demonstrate the usefulness of hypergraph MIS, we present applications of our hypergraph algorithm to solving problems in (standard) graphs. In particular, the hypergraph MIS yields fast distributed algorithms for the {\em balanced minimal dominating set} problem (left open in Harris et al. [ICALP 2013]) and the {\em minimal connected dominating set problem}. We also present distributed algorithms for coloring, maximal matching, and maximal clique in hypergraphs.Comment: Changes from the previous version: More references adde

    Local algorithms in (weakly) coloured graphs

    Full text link
    A local algorithm is a distributed algorithm that completes after a constant number of synchronous communication rounds. We present local approximation algorithms for the minimum dominating set problem and the maximum matching problem in 2-coloured and weakly 2-coloured graphs. In a weakly 2-coloured graph, both problems admit a local algorithm with the approximation factor (Δ+1)/2(\Delta+1)/2, where Δ\Delta is the maximum degree of the graph. We also give a matching lower bound proving that there is no local algorithm with a better approximation factor for either of these problems. Furthermore, we show that the stronger assumption of a 2-colouring does not help in the case of the dominating set problem, but there is a local approximation scheme for the maximum matching problem in 2-coloured graphs.Comment: 14 pages, 3 figure

    More Applications of the d-Neighbor Equivalence: Connectivity and Acyclicity Constraints

    Get PDF
    In this paper, we design a framework to obtain efficient algorithms for several problems with a global constraint (acyclicity or connectivity) such as Connected Dominating Set, Node Weighted Steiner Tree, Maximum Induced Tree, Longest Induced Path, and Feedback Vertex Set. For all these problems, we obtain 2^O(k)* n^O(1), 2^O(k log(k))* n^O(1), 2^O(k^2) * n^O(1) and n^O(k) time algorithms parameterized respectively by clique-width, Q-rank-width, rank-width and maximum induced matching width. Our approach simplifies and unifies the known algorithms for each of the parameters and match asymptotically also the running time of the best algorithms for basic NP-hard problems such as Vertex Cover and Dominating Set. Our framework is based on the d-neighbor equivalence defined in [Bui-Xuan, Telle and Vatshelle, TCS 2013]. The results we obtain highlight the importance and the generalizing power of this equivalence relation on width measures. We also prove that this equivalence relation could be useful for Max Cut: a W[1]-hard problem parameterized by clique-width. For this latter problem, we obtain n^O(k), n^O(k) and n^(2^O(k)) time algorithm parameterized by clique-width, Q-rank-width and rank-width

    Maximum matching width: new characterizations and a fast algorithm for dominating set

    Get PDF
    We give alternative definitions for maximum matching width, e.g. a graph GG has mmw(G)k\operatorname{mmw}(G) \leq k if and only if it is a subgraph of a chordal graph HH and for every maximal clique XX of HH there exists A,B,CXA,B,C \subseteq X with ABC=XA \cup B \cup C=X and A,B,Ck|A|,|B|,|C| \leq k such that any subset of XX that is a minimal separator of HH is a subset of either A,BA, B or CC. Treewidth and branchwidth have alternative definitions through intersections of subtrees, where treewidth focuses on nodes and branchwidth focuses on edges. We show that mm-width combines both aspects, focusing on nodes and on edges. Based on this we prove that given a graph GG and a branch decomposition of mm-width kk we can solve Dominating Set in time O(8k)O^*({8^k}), thereby beating O(3tw(G))O^*(3^{\operatorname{tw}(G)}) whenever tw(G)>log38×k1.893k\operatorname{tw}(G) > \log_3{8} \times k \approx 1.893 k. Note that mmw(G)tw(G)+13mmw(G)\operatorname{mmw}(G) \leq \operatorname{tw}(G)+1 \leq 3 \operatorname{mmw}(G) and these inequalities are tight. Given only the graph GG and using the best known algorithms to find decompositions, maximum matching width will be better for solving Dominating Set whenever tw(G)>1.549×mmw(G)\operatorname{tw}(G) > 1.549 \times \operatorname{mmw}(G)

    Streaming Kernelization

    Full text link
    Kernelization is a formalization of preprocessing for combinatorially hard problems. We modify the standard definition for kernelization, which allows any polynomial-time algorithm for the preprocessing, by requiring instead that the preprocessing runs in a streaming setting and uses O(poly(k)logx)\mathcal{O}(poly(k)\log|x|) bits of memory on instances (x,k)(x,k). We obtain several results in this new setting, depending on the number of passes over the input that such a streaming kernelization is allowed to make. Edge Dominating Set turns out as an interesting example because it has no single-pass kernelization but two passes over the input suffice to match the bounds of the best standard kernelization

    More applications of the d-neighbor equivalence: acyclicity and connectivity constraints

    Full text link
    In this paper, we design a framework to obtain efficient algorithms for several problems with a global constraint (acyclicity or connectivity) such as Connected Dominating Set, Node Weighted Steiner Tree, Maximum Induced Tree, Longest Induced Path, and Feedback Vertex Set. We design a meta-algorithm that solves all these problems and whose running time is upper bounded by 2O(k)nO(1)2^{O(k)}\cdot n^{O(1)}, 2O(klog(k))nO(1)2^{O(k \log(k))}\cdot n^{O(1)}, 2O(k2)nO(1)2^{O(k^2)}\cdot n^{O(1)} and nO(k)n^{O(k)} where kk is respectively the clique-width, Q\mathbb{Q}-rank-width, rank-width and maximum induced matching width of a given decomposition. Our meta-algorithm simplifies and unifies the known algorithms for each of the parameters and its running time matches asymptotically also the running times of the best known algorithms for basic NP-hard problems such as Vertex Cover and Dominating Set. Our framework is based on the dd-neighbor equivalence defined in [Bui-Xuan, Telle and Vatshelle, TCS 2013]. The results we obtain highlight the importance of this equivalence relation on the algorithmic applications of width measures. We also prove that our framework could be useful for W[1]W[1]-hard problems parameterized by clique-width such as Max Cut and Maximum Minimal Cut. For these latter problems, we obtain nO(k)n^{O(k)}, nO(k)n^{O(k)} and n2O(k)n^{2^{O(k)}} time algorithms where kk is respectively the clique-width, the Q\mathbb{Q}-rank-width and the rank-width of the input graph

    On Derandomizing Local Distributed Algorithms

    Full text link
    The gap between the known randomized and deterministic local distributed algorithms underlies arguably the most fundamental and central open question in distributed graph algorithms. In this paper, we develop a generic and clean recipe for derandomizing LOCAL algorithms. We also exhibit how this simple recipe leads to significant improvements on a number of problem. Two main results are: - An improved distributed hypergraph maximal matching algorithm, improving on Fischer, Ghaffari, and Kuhn [FOCS'17], and giving improved algorithms for edge-coloring, maximum matching approximation, and low out-degree edge orientation. The first gives an improved algorithm for Open Problem 11.4 of the book of Barenboim and Elkin, and the last gives the first positive resolution of their Open Problem 11.10. - An improved distributed algorithm for the Lov\'{a}sz Local Lemma, which gets closer to a conjecture of Chang and Pettie [FOCS'17], and moreover leads to improved distributed algorithms for problems such as defective coloring and kk-SAT.Comment: 37 page
    corecore