A local algorithm is a distributed algorithm that completes after a constant
number of synchronous communication rounds. We present local approximation
algorithms for the minimum dominating set problem and the maximum matching
problem in 2-coloured and weakly 2-coloured graphs. In a weakly 2-coloured
graph, both problems admit a local algorithm with the approximation factor
(Δ+1)/2, where Δ is the maximum degree of the graph. We also give
a matching lower bound proving that there is no local algorithm with a better
approximation factor for either of these problems. Furthermore, we show that
the stronger assumption of a 2-colouring does not help in the case of the
dominating set problem, but there is a local approximation scheme for the
maximum matching problem in 2-coloured graphs.Comment: 14 pages, 3 figure