research

Maximum matching width: new characterizations and a fast algorithm for dominating set

Abstract

We give alternative definitions for maximum matching width, e.g. a graph GG has mmw(G)k\operatorname{mmw}(G) \leq k if and only if it is a subgraph of a chordal graph HH and for every maximal clique XX of HH there exists A,B,CXA,B,C \subseteq X with ABC=XA \cup B \cup C=X and A,B,Ck|A|,|B|,|C| \leq k such that any subset of XX that is a minimal separator of HH is a subset of either A,BA, B or CC. Treewidth and branchwidth have alternative definitions through intersections of subtrees, where treewidth focuses on nodes and branchwidth focuses on edges. We show that mm-width combines both aspects, focusing on nodes and on edges. Based on this we prove that given a graph GG and a branch decomposition of mm-width kk we can solve Dominating Set in time O(8k)O^*({8^k}), thereby beating O(3tw(G))O^*(3^{\operatorname{tw}(G)}) whenever tw(G)>log38×k1.893k\operatorname{tw}(G) > \log_3{8} \times k \approx 1.893 k. Note that mmw(G)tw(G)+13mmw(G)\operatorname{mmw}(G) \leq \operatorname{tw}(G)+1 \leq 3 \operatorname{mmw}(G) and these inequalities are tight. Given only the graph GG and using the best known algorithms to find decompositions, maximum matching width will be better for solving Dominating Set whenever tw(G)>1.549×mmw(G)\operatorname{tw}(G) > 1.549 \times \operatorname{mmw}(G)

    Similar works