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Abstract
We give alternative definitions for maximum matching width, e.g. a graph G has mmw(G) ≤ k if
and only if it is a subgraph of a chordal graph H and for every maximal clique X of H there exists
A,B,C ⊆ X with A∪B∪C = X and |A|, |B|, |C| ≤ k such that any subset of X that is a minimal
separator of H is a subset of either A,B or C. Treewidth and branchwidth have alternative
definitions through intersections of subtrees, where treewidth focuses on nodes and branchwidth
focuses on edges. We show that mm-width combines both aspects, focusing on nodes and on
edges. Based on this we prove that given a graph G and a branch decomposition of mm-width
k we can solve Dominating Set in time O∗(8k), thereby beating O∗(3tw(G)) whenever tw(G) >
log3 8×k ≈ 1.893k. Note that mmw(G) ≤ tw(G)+1 ≤ 3 mmw(G) and these inequalities are tight.
Given only the graph G and using the best known algorithms to find decompositions, maximum
matching width will be better for solving Dominating Set whenever tw(G) > 1.549×mmw(G).
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1 Introduction

The treewidth tw(G) and branchwidth bw(G) of a graph G are connectivity parameters
of importance in algorithm design. By dynamic programming along the associated tree
decomposition or branch decomposition one can solve many graph optimization problems
in time linear in the graph size and exponential in the parameter. For any graph G, its
treewidth and branchwidth are related by bw(G) ≤ tw(G) + 1 ≤ 3

2 bw(G) [15]. The two
parameters are thus equivalent with respect to fixed parameter tractability (FPT), with a
problem being FPT parameterized by treewidth if and only if it is FPT parameterized by
branchwidth. For some of these problems the best known FPT algorithms are optimal, up to
some complexity theoretic assumption. For example, Minimum Dominating Set Problem can
be solved in time O∗(3tw(G)) when given a decomposition of treewidth tw(G) [17] but not in
time O∗((3− ε)tw(G)) for any ε > 0 unless the Strong Exponential Time Hypothesis (SETH)
fails [12].
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Recently, a graph parameter equivalent to treewidth and branchwidth was introduced,
the maximum matching width (or mm-width) mmw(G), defined by a branch decomposition
over the vertex set of the graph, using the symmetric submodular cut function obtained
by taking the size of a maximum matching of the bipartite graph crossing the cut (by
König’s Theorem equivalent to minimum vertex cover) [18]. For any graph G we have
mmw(G) ≤ bw(G) ≤ tw(G) + 1 ≤ 3 mmw(G) and these inequalities are tight, for example
any balanced decomposition tree will show that mmw(Kn) = dn

3 e.
In this paper we show that given a branch decomposition over the vertex set of mm-width

k we can solve Dominating Set in time O∗(8k). This runtime beats the O∗(3tw(G)) algorithm
for treewidth [17] whenever tw(G) > log3 8 × k ≈ 1.893k. If we assume only G as input,
then since mm-width has a submodular cut function [16] we can approximate mm-width
to within a factor 3 mmw(G) + 1 in O∗(23 mmw(G)) time using the generic algorithm of [13],
giving a total runtime for solving dominating set of O∗(29 mmw(G)). For treewidth we can in
O∗(23.7 tw(G)) time [1] get an approximation to within a factor (3 + 2/3) tw(G) giving a total
runtime for solving dominating set of O∗(33.666 tw(G)).1 This implies that on input G, using
maximum matching width gives better exponential factors whenever tw(G) > 1.549 mmw(G).

Our results are based on a new characterization of graphs of mm-width at most k, as
intersection graphs of subtrees of a tree. It can be formulated as follows, encompassing ana-
logous formulations for all three parameters mm-width (respectively treewidth, respectively
branchwidth):

For any k ≥ 2 a graph G on vertices v1, v2, ..., vn has mmw(G) ≤ k (resp. tw(G) ≤ k − 1,
resp. bw(G) ≤ k) if and only if there exist a tree T of max degree at most 3 with nontrivial
subtrees T1, T2, ..., Tn such that if vivj ∈ E(G) then subtrees Ti and Tj have at least one
node (resp. node, resp. edge) of T in common and for each edge (resp. node, resp. edge) of
T there are at most k subtrees using it.

Thus, while treewidth has a focus on nodes and branchwidth a focus on edges, mm-width
combines the aspects of both. We also arrive at the following alternative characterization: a
graph G has mmw(G) ≤ k if and only if it is a subgraph of a chordal graph H and for every
maximal clique X of H there exists A,B,C ⊆ X with A ∪B ∪ C = X and |A|, |B|, |C| ≤ k
such that any subset of X that is a minimal separator of H is a subset of either A,B or C.
In fact, using techniques introduced by Bodlaender and Kloks [4] these new characterizations
will also allow us to compute a branch decomposition of optimal mm-width in FPT time [9].
In Section 2 we give definitions. In Section 3 we define unique minimum vertex covers for
any bipartite graph, show some monotonicity properties of these, and use this properties to
give the new characterizations of mm-width. In Section 4 we give the dynamic programming
algorithm for dominating set. We end in Section 5 with some discussions.

2 Definitions

For a simple and loopless graph G = (V,E) and its vertex v, let N(v) be the set of all vertices
adjacent to v in G, and N [v] = N(v)∪{v}. For a subset S of V (G), let N(S) be the set of all
vertices that are not in S but are adjacent to some vertex of S in G, and N [S] = N(S) ∪ S.

A tree decomposition of a graph G is a pair (T, {Xt}t∈V (T )) consisting of a tree T and
a family {Xt}t∈V (T ) of vertex sets Xt ⊆ V (G), called bags, satisfying the following three

1 Note that there is also an O∗(ctw(G)) time 3-approximation of treewidth [3], but the c is so large that
the approximation alone has a bigger exponential part than the entire Dominating Set algorithm when
using the 3.666-approximation.
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214 Maximum Matching Width

conditions:
1. each vertex of G is in at least one bag,
2. for each edge uv of G, there exists a bag that contains both u and v, and
3. for vertices u, v, w of T , if v is on the path from u to w, then Xu ∩Xw ⊆ Xv.
The width of a tree decomposition (T, {Xt}t∈V (T )) is maxt∈V (T )|Xt| − 1. The treewidth of
G, denoted by tw(G), is the minimum width over all possible tree decompositions of G.

A branch decomposition over X, for some set of elements X, is a pair (T, δ), where T
is a tree over vertices of degree at most 3, and δ is a bijection from the leaves of T to the
elements in X. Any edge ab disconnects T into two subtrees Ta and Tb. Likewise, any edge
ab partitions the elements of X into two parts A and B, namely the elements mapped by
δ from the leaves of Ta, and of Tb, respectively. An edge ab ∈ E(T ) is said to induce the
partition (A,B).

A rooted branch decomposition is a branch decomposition (T, δ) where we subdivide an
edge of T and make the new vertex the root r. In a rooted branch decomposition, for an
internal vertex v ∈ V (T ), we denote by δ(v) the union of δ(l) for all leaves of l having v as
its ancestor.

Given a symmetric (f(A) = f(A)) function f : 2X → R, using branch decompositions
over X, we get a nice way of defining width parameters: For a branch decomposition (T, δ)
and edge e ∈ T , we define the f-value of the edge e to be the value f(A) = f(B) where A
and B are the two parts of the partition induced by e in (T, δ), denoted f(e). We define
the f-width of branch decomposition (T, δ) to be the maximum f -value over all edges of
T , denoted f(T, δ): maxe∈T {f -value of e}. For set X of elements, we define the f-width of
X to be the minimum f -width over all branch decompositions over X. If |X| ≤ 1, then X
admits no branch decomposition and we define its f -width to be f(∅).

For a graph G and a subset S ⊆ E(G), the branchwidth bw(G) of G is the f -width of
E(G) where f : 2E(G) → R is a function such that f(S) is the number of vertices that are
incident with an edge in S as well as an edge in E(G) \ S.

The Maximum Matching-width of a graph G, mm-width in short, is a width parameter
defined through branch decompositions over V (G) and the cardinality of matchings. For
a subset S ⊆ V (G), the Maximum Matching-value is defined to be the size of a maximum
matching in G[S, V (G)\S], denoted mm(S). The mm-width of a graph G, denoted mmw(G),
is the f -width of V (G) for f = mm.

3 Subtrees of a tree representation for mm-width

3.1 König covers
In this subsection, we will define canonical minimum vertex covers for any bipartite graph.
Our starting point is a well-known result in graph theory.

I Theorem 1 (König’s Theorem [10]). Given a bipartite graph G, for any maximum matching
M and minimum vertex cover C of G, the number of edges in M is the same as the number
of vertices in C; |M | = |C|.

Let (A,B) be the vertex partition of G. This statement can be proved in multiple ways.
The harder direction, that a maximum matching is never smaller than a minimum vertex
cover, does not hold for general graphs, and is usually proven by taking a maximum matching
M and constructing a vertex cover C having size exactly |M |, as follows:

For each edge ab ∈M (where a ∈ A, and b ∈ B), if ab is part of an alternating path
starting in an unsaturated vertex of A, then put b into C, otherwise put a into C.



J. Jeong, S. H. Sæther, and J. A. Telle 215

A

B

A

B

Figure 1 A-König cover and B-König cover.

For a proof that C indeed is a minimum vertex cover of G, see e.g. [7]. We will call the
vertex cover C constructed by the above procedure the A-König cover of G. A B-König
cover of G is constructed similarly by changing the roles of A and B (see Figure 1).

Lemma 2 below shows that the A-König cover will, on the A-side consist of the A-vertices
in the union over all minimum vertex covers, and on the B-side will consist of the B-vertices
in the intersection over all minimum vertex covers.

I Lemma 2. For a bipartite graph G = (A ∪B,E) and minimum vertex cover C of G, the
set C is the A-König cover of G if and only if for any minimum vertex cover C ′ of G we
have A ∩ C ′ ⊆ A ∩ C, and B ∩ C ′ ⊇ B ∩ C.

Proof. Let M be a maximum matching of G, and C∗ the A-König cover of G constructed
from M . Since both C∗ and C are minimum vertex covers, by showing that for any minimum
vertex cover C ′ of G we have A ∩ C ′ ⊆ A ∩ C∗, and B ∩ C ′ ⊇ B ∩ C∗, as a consequence
will also show that C ′ = C∗ if and only if for all minimum vertex covers C ′ of G we have
A ∩ C ′ ⊆ A ∩ C and B ∩ C ′ ⊇ B ∩ C. So this is precisely what we will do.

Let C ′ be any minimum vertex cover, and b any vertex in C∗ ∩ B. We will show that
b ∈ C ′, and from that conclude B ∩C ′ ⊇ B ∩C∗. As b ∈ C∗ there must be some alternating
path from b to an unsaturated vertex u ∈ A. The vertices b and u are on different sides of
the bipartite graph, so the alternating path P between u and b must be of some odd length
2k + 1. From Theorem 1, we deduce that one and only one endpoint of each edge in M must
be in C ′. As each vertex in V (P ) is incident with at most two edges of P , and all edges of P
must be covered by C ′, we need at least d(2k + 1)/2e = k + 1 of the vertices in V (P ) to be
in C ′. However, the vertices of V (P )− b are incident with only k edges of M . Therefore at
most k of the vertices V (P )− b can be in C ′. In order to have at least k + 1 vertices from
V (P ) in C ′ we thus must have b ∈ C ′.

We now show that C ′ ∩A ⊆ C∗ ∩A by showing that a ∈ C∗ if a ∈ A∩C ′. Let E∗ and E′
be the edges of G not covered by C∗ ∩B and C ′ ∩B, respectively. Since C∗ ∩B ⊆ C ′ ∩B,
the set E∗ must contain all the edges of E′. As C ′ is a minimum vertex cover, and all edges
other than E′ are covered by C ′ ∩B, a vertex a of A is in C ′ only if it covers an edge e ∈ E′.
As E′ ⊆ E∗, we have e ∈ E∗, and hence C∗ must also cover e by a vertex in A. As G is
bipartite, the only vertex from A that covers e is a, and we can conclude that a ∈ C∗. J

The following lemma establishes an important monotonicity property for A-König covers.
For a set S of vertices and a vertex v, denote S + v = S ∪ {v}.

I Lemma 3. Given a graph G and tripartition (A,B,X) of the vertices V (G), the following
two properties holds for the A-König cover CA of G[A,B∪X] and any minimum vertex cover
C of G[A ∪X,B].
1. A ∩ C ⊆ A ∩ CA

2. B ∩ C ⊇ B ∩ CA.

IPEC’15



216 Maximum Matching Width

Proof. To prove this, we will show that it holds for X = {x}, and then by transitivity of the
subset relation and that a König cover is also a minimum vertex cover, it must hold also
when X is any subset of V (G).

Let A′ = A+ x and B′ = B + x, and let C ′ be the A-König cover of the graph G[A,B]
(be aware that this graph has one less vertex than G). We will break the proof into four
parts, namely A ∩ C ⊆ A ∩ C ′, A ∩ C ′ ⊆ A ∩ CA, B ∩ CA ⊆ B ∩ C ′, and B ∩ C ′ ⊆ B ∩ C.
Again, by transitivity of the subset relation, this will be sufficient for our proof. We now
look at each part separately.

A ∩ C ⊆ A ∩ C ′: Two cases: |C| = |C ′| and |C| > |C ′|. We do the latter first. This
means that C ′ ∪ {x} must be a minimum vertex cover of G[A′, B]. Therefore the A′-König
cover C∗ of G[A′, B′] must contain (C ′ ∪{x})∩A′. This means that C∗ is a minimum vertex
cover of G[A,B], and by C ′ being the A-König cover of G[A,B], we have from Lemma 2 that
C ′ ∩ A ⊇ C∗ ∩ A. And since C∗ is a A′-König cover of G[A′, B] we have C ′ ∩ A′ ⊇ C ∩ A′
and can conclude that C ′ ∩A ⊇ A ∩ C. Now assume that the two vertex covers are of equal
size. Clearly x 6∈ C, as then C − x is a smaller vertex cover of G[A,B] than C ′, so x is not in
C. This means that C is a minimum vertex cover of G[A,B], so all vertices in A ∩ C must
be in C ′ by Lemma 2.

A ∩ C ′ ⊆ A ∩ CA: Suppose C ′ is smaller than CA. This means C ′ + x is a minimum
vertex cover of G[A,B′], and hence (C ′+x)∩A ⊆ CA∩A by Lemma 2. On the other hand, if
C ′ is of the same size as CA. Then CA is a minimum vertex cover of G[A,B], and so x 6∈ CA.
This means CA ∩N(x) ∩A ⊆ CA ∩A. And as CA is a minimum vertex cover of G[A,B], we
know from Lemma 2 that CA ∩N(x) ∩A ⊆ C ′. In particular, this means C ′ covers all the
edges of G[A,B′] not in G[A,B], which means that C ′ is also a minimum vertex cover of
G[A,B′]. This latter observation means that C ′ ∩A ⊆ CA ∩A from Lemma 2.

B ∩ CA ⊆ B ∩ C ′: Suppose C ′ is smaller than CA. This means C ′+x is a minimum vertex
cover of G[A,B′], and thus B′ ∩ (C ′ + x) ⊇ B′ ∩ CA. Which implies that B ∩ C ′ ⊇ B ∩ CA.
Now assume that C ′ is of the same size as CA. This means CA is a minimum vertex cover of
G[A,B] and x 6∈ CA. Furthermore, this means N(x) ∩ A ⊆ CA ∩ A ⊆ C ′ ∩ A by Lemma 2
and we conclude that C ′ is a minimum vertex cover of G[A,B′]. By Lemma 2, this means
B′ ∩ CA ⊆ B′ ∩ C ′ and in particular B ∩ CA ⊆ B ∩ C ′.

B ∩ C ′ ⊇ B ∩ C: Suppose C ′ is smaller than C. This means C ′ + x is a minimum vertex
cover of G[A,B′], and hence by Lemma 2 we have B′ ∩ (C ′ + x) ⊆ B′ ∩ C2, which implies
B ∩C ′ ⊆ B ∩C2. Now suppose C ′ is of the same size as C. This means that C is a minimum
vertex cover of G[A,B], and hence we immediately get C ∩B ⊇ C ′ ∩B by Lemma 2.

This completes the proof, as we by transitivity of the subset relation have that CA ∩B ⊆
C ∩B, and C ∩A ⊆ CA ∩A. J

We are now ready to prove an important connectedness property of König covers that
arise from cuts of a given branch decomposition.

I Lemma 4. Given a connected graph G and rooted branch decomposition (T, δ) over V (G),
for any node v in T , where C are the descendants of v and Cu means the δ(u)-König cover
of G[δ(u), δ(u)], we have that ⋃

x∈V (T )\C

Cx

 ∩(⋃
x∈C

Cx

)
⊆ Cv .

Proof. For all x ∈ C, since Cx is a δ(x)-König cover and Cv is a minimum vertex cover,
from Lemma 3, we have that Cx ∩ δ(x) ⊆ Cv ∩ δ(x). In particular, since δ(x) ⊆ δ(v), we
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have that Cx \ δ(v) ⊆ Cv \ δ(v) ⊆ Cv. Since each vertex of V (G) is either in δ(v) or not in
δ(v), by showing that also for all x ∈ (V (T ) \ C) we have Cx ∩ δ(v) ⊆ Cv we can conclude
that the lemma holds: For all x ∈ V (T ) \ C either δ(v) ⊆ δ(x) (when x is an ancestor of v)
or δ(v) ⊆ δ(x) (when x is neither a descendant of v nor an ancestor of v), in either case,
we can apply the δ(v)-König cover Cv of G[δ(v), δ(v)] and the minimum vertex cover Cx of
G[δ(x), δ(x)] to Lemma 3 and see that Cx ∩ δ(v) ⊆ Cv ∩ δ(v) ⊆ Cv. J

3.2 The new characterization of mmw
We say a graph is nontrivial if it has an edge.

I Theorem 5. A nontrivial graph G = (V,E) has mmw(G) ≤ k if and only if there exist a
tree T of max degree at most 3 and for each vertex u ∈ V a nontrivial subtree Tu of T such
that (i) if uv ∈ E then the subtrees Tu and Tv have at least one vertex of T in common, and
(ii) for every edge of T there are at most k subtrees using this edge.

Proof. Forward direction: Let (T, δ) be a rooted branch decomposition over V having mm-
width at most k, and assume G has no isolated vertices. For each edge e = uv of T , with u
a child of v, assign the δ(u)-König cover Cu of G[δ(u), V \ δ(u)] to the edge uv. For each
vertex x of G, define the set of edges of T whose König cover contains x and let Tx be the
sub-forest of T induced by these edges. Using Lemma 4 we first show that Tx is a connected
forest and thus a subtree of T . Consider two vertices u and v such that x ∈ Cu ∩ Cv. Let p
be the lowest common ancestor of u and v. For every vertex w on the path from p to u and
on the path from p to v, except p, we know that exactly one of u, v is a descendant of w. By
Lemma 4, (Cu ∩ Cv) ⊆ Cw. It means that if a vertex x of G is in both Cu and Cv then it is
also in Cw, which implies that Tx is connected.

Now, since the branch decomposition has mm-width at most k part (ii) in the statement
of the Theorem holds. For an arbitrary edge ab of G, consider any edge e of T on the path
from δ−1(a) to δ−1(b) and the partition (A,B) induced by e where a ∈ A, b ∈ B. Then
the König cover of e must contain one of a and b, and thus, (i) holds as well. Finally, Tx

is nontrivial because the edge of T incident with a leaf δ−1(x) assigns the König cover {x}.
If G has isolated isolated vertices, Tx is not nontrivial for isolated vertex x. We fix this by
setting Tx to consist exactly of the edge incident with δ−1(x), for any isolated vertex x of G.

Backward direction: For each given subtree {Tu}u∈V of T , choose an edge in Tu (it is
also in T ) and append in the tree T a leaf `u, and extend Tu to contain `u and set δ(`u) = u.
Exhaustively remove leaves (from both T and the subtrees) that are not mapped by δ. Call
the resulting tree T ′ and subtrees {T ′u}u∈V . Note that subtrees {T ′u}u∈V and T ′ still satisfy
(i) and (ii). We claim that (T ′, δ) is a branch decomposition of mm-width at most k. It is
clearly a branch decomposition over V , and for any edge e of T ′, if we choose S ⊆ V to be
those u with Tu using this edge e, then this will be a vertex cover of the bipartite graph H
given by this edge e, and of size at most k because for an edge xy in H, one of Tx and Ty

must contain e. J

In the Introduction we mentioned analogous characterizations of treewidth and branch-
width, for these see e.g. [14]. Another alternative characterization is the following.

I Corollary 6. A graph G has mmw(G) ≤ k if and only if it is a subgraph of a chordal graph
H and for every maximal clique X of H there exists A,B,C ⊆ X with A ∪B ∪ C = X and
|A|, |B|, |C| ≤ k such that any subset of X that is a minimal separator of H is a subset of
either A,B or C.
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218 Maximum Matching Width

We only sketch the proof, which is similar to an alternative characterization of branchwidth
given in [14]. We say a tree is ternary if it has maximum degree at most 3. Note that a graph
is chordal if and only if it is an intersection graph of subtrees of a tree [8]. In the forward
direction, take the chordal graph resulting from the subtrees of ternary tree representation.
In the backward direction, take a clique tree of H and make a ternary tree decomposition
(which is easily made into a subtrees of ternary tree representation) by for each maximal
clique X of degree larger than three making a bag X with three neighboring bags A,B,C.
If minimal separators S1, ..., Sq ⊆ X are contained in A make a path extending from bag A
of q new bags also containing A, with a single bag containing Si, 1 ≤ i ≤ q, attached to each
of them. These ternary subtrees, one for each maximal clique, is then connected together in
a tree by the structure of the clique tree, adding an edge between bags of identical minimal
separators.

4 Fast DP for Dominating Set parameterized by mm-width

For graph G = (V,E) a subset of vertices S ⊆ V is said to dominate the vertices in N [S],
and it is a dominating set if N [S] = V . Given a rooted branch decomposition (T, δ) of G of
mm-width k, we will in this section give an O∗(8k) algorithm for computing the size of a
Minimum Dominating Set of G. This is an algorithm doing dynamic programming along a
rooted tree decomposition (T ′, {Xt}t∈V (T ′)) of G that we compute from (T, δ) as follows.

Given a rooted branch decomposition (T, δ) of G having mm-width k the proof of
Theorem 5 yields a polynomial-time algorithm (using an algorithm for maximum matching
in bipartite graphs) finding a family {Tu}u∈V (G) of nontrivial subtrees of T (note we can
assume T is a rooted tree with root of degree two and all other internal vertices of degree
three) such that (i) if uv ∈ E(G) then the subtrees Tu and Tv have at least one vertex of T
in common, and (ii) for every edge of T there are at most k subtrees using this edge. From
this it is easy to construct a rooted tree decomposition (T ′, {Xt}t∈V (T ′)) of G, having the
properties described in Figure 2. Let T ′ be a tree with vertex set A ∪B ∪ {r} where A is
the set of edges of T , B is the set of non-root vertices (all of degree-3) of T , and r is the root
of T and also the root of T ′. Two vertices e, v of T ′ are adjacent if and only if e ∈ A and
v ∈ B ∪ {r} are incident in T . For a vertex e ∈ A, let Xe be the set of vertices in G such
that if a subtree Tw uses edge e of T , then w ∈ Xe. For a vertex v ∈ B, let Xv be the set of
vertices in G such that for the three incident edges e1, e2, e3 of v in T , Xv = Xe1 ∪Xe2 ∪Xe3 .
Let Xr = Xe1 ∪Xe2 if e1 and e2 are incident with r in T . Then (T ′, {Xt}t∈V (T ′)) is a tree
decomposition of G with a root r, having the properties described in Figure 2, which we will
use in the dynamic programming.

Let us now define the relevant subproblems for the dynamic programming over this tree
decomposition. For node t of the tree we denote by Gt the graph induced by the union of
Xu where u is a descendant of t. A coloring of a bag Xt is a mapping f : Xt → {1, 0, ∗} with
the meaning that: all vertices with color 1 are contained in the dominating set of this partial
solution in Gt, all vertices with color 0 are dominated, while vertices with color * might be
dominated, not dominated, or in the dominating set. Thus the only restriction is that a
vertex with color 1 must be a dominator, and a vertex with color 0 must be dominated. Thus,
for any S ⊆ V (G) there is a set c(S) of 3|S|2|N(S)| colorings f : V (G)→ {1, 0, ∗} compatible
with taking S as set of dominators, with vertices of S colored 1, 0 or ∗, vertices of N(S)
colored 0 or ∗, and the remaining vertices colored ∗.

For a coloring f of bag Xt we denote by T [t, f ] (and view this as a ‘Table’ of values)
the minimum |S| over all S ⊆ V (Gt) such that there exists f ′ ∈ c(S) with f ′|Xt

= f and
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Figure 2 Part of ternary tree used in the subtree representation of G on the left, with node x

having three incident edges a, b, c, with subtrees of vertices contained in A, B, C ⊆ V (G) using these
edges respectively, giving rise to the four bags in the tree decomposition shown in the middle, with
constraint |A|, |B|, |C| ≤ k.

f ′|V (Gt)\Xt
having everywhere the value 0. In other words, the minimum size of a set S of

vertices of Gt that dominate all vertices in V (Gt) \Xt, with a coloring f ′ compatible with
taking S as set of dominators, such that f ′ restricted to Xt gives f . If no such set S exists,
then T [t, f ] =∞. Note that the size of the minimum dominating set of G is the minimum
value over all T [r, f ] where f−1(∗) = ∅ at the root r. We initialize the table at a leaf `,
with X` = {v} as follows. Denote by fi the coloring from {v} to {1, 0, ∗} with fi(v) = i for
i ∈ {1, 0, ∗}. Then for a leaf bag X`, set T [`, f1] := 1, T [`, f0] :=∞, T [`, f∗] := 0.

For internal nodes of the tree, instead of separate ‘Join, Introduce and Forget’ operations
we will give a single update rule with several stages. We will be using an Extend-Table
subroutine which takes a partially filled table T [t, ·] and extends it to table T ′[t, ·] so the result
will adhere to the above definition, ensuring the monotonicity property that T ′[t, f ] ≤ T ′[t, f ′]
for any f we can get from f ′ by changing the color of a vertex from 1 to 0 or ∗, or from 0 to
∗. Extend-Table is implemented as follows:
(a) Initialize. For all f , if T [t, f ] is defined then T ′[t, f ] := T [t, f ], else T ′[t, f ] :=∞.
(b) Change from 1 to 0. For q = |Xt| down to 1: for any f in T ′[t, f ] where |{v : f(v) =

1}| = q, for any choice of a single vertex u ∈ {v : f(v) = 1} set fu(u) = 0 and set
fu(x) = f(x) for x 6= u, and update T ′[t, fu] := min{T ′[t, fu], T ′[t, f ]}.

(c) Change from 0 to ∗. Similarly as in step (b).
Note the transition from color 1 to ∗ will happen by transitivity. The time for Extend-Table

is proportional to the number of entries in the tables times |Xt|.
Assume we have the situation in Figure 2, corresponding to the bags surrounding any

degree-three node x of the tree decomposition. This arises from the branch decomposition
(and the subtrees of tree representation) having a node incident to three edges, creating three
bags a, b, c containing subsets of vertices A,B,C, respectively, each of size at most k, and
giving rise to the four bags a, b, c, x in Figure 2, with the latter containing subsets of vertices
X = A ∪B ∪ C. Let L = (A ∩B) ∪ (A ∩ C) ∪ (B ∩ C). Assume we have already computed
T [b, f ] and T [c, f ] for all 3|B| and 3|C| choices of f , respectively. We want to compute T [a, f ]
for all 3|A| choices of f , in time O∗(max{3|A|, 3|B|, 3|C|, 3|L|2|X\L|}). Note that we will not
compute the table T [x, ·], as it would have 3|X| entries, which is more than the allowed time
bound. Instead, we compute a series of tables:
(1) T 1

b [x, ·] (and T 1
c [x, ·]) of size 3|B|, by for each entry T [b, f ] extending the coloring f of B

to a unique coloring f ′ of X based on the neighborhood of the dominators in f
(2) T 2

b [x, ·] (and T 2
c [x, ·]) of size at most min(3|B|, 3|B∩L|2|X\(B∩L)|), by changing each

coloring f of X to a coloring f ′ of X where vertices in B \ L having color 1 instead are
given color 0 (note these vertices have no neighbors in V (G) \ V (Gx))
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(3) T 3
b [x, ·] (and T 3

c [x, ·]) of size exactly 3|B∩L|2|X\(B∩L)|, with f−1(1) ⊆ B ∩ L, by running
Extend-Table on T 2

b [x, ·]
(4) T 1

sc[x, ·] of size 3|L|2|X\L| by subset convolution over parts of T 3
b [x, ·] and T 3

c [x, ·]
(5) T 2

sc[x, ·] of size 3|L|2|X\L| by running Extend-Table on T 1
sc[x, ·]

(6) T [a, ·] of size 3|A| by going over all 3|A| colorings of A and minimizing over appropriate
entries of T 2

sc[x, ·]
Note that in step 4 we use the following:

I Theorem 7 (Fast Subset Convolution [2]). For two functions g, h : 2V → {−M, . . . ,M},
given all the 2|V | values of g and h in the input, all 2|V | values of the subset convolution of g
and h over the integer min-sum semiring, i.e. (g∗h)(Y ) = minQ∪R=Y and Q∩R=∅ g(Q)+h(R),
can be computed in time 2|V ||V |O(1) ·O(M logM log logM).

Let us now give the details of the first three steps:
(1) Compute T 1

b [x, ·]. In any order, go through all f : B → {1, 0, ∗} and compute f ′ :
B ∪A ∪ C → {1, 0, ∗} by

f ′(v) =


f(x) if v ∈ B
0 if v 6∈ B and ∃u ∈ B : f(u) = 1 ∧ uv ∈ E(G)
∗ otherwise

and set T 1
b [x, f ′] := T [b, f ].

(2) Compute T 2
b [x, ·]. First, initialize T 2

b [x, f ] =∞ for all f : B ∪A ∪ C → {1, 0, ∗} where
f−1(1) ⊆ B∩L. In any order, go through all f : B∪A∪C → {1, 0, ∗} such that T 1

b [x, f ]
was defined in the previous step, and compute f ′ : B ∪A ∪ C → {1, 0, ∗} by

f ′(v) =
{

0 if v ∈ B \ L and f(v) = 1
f ′(v) = f(v) otherwise

and set T 2
b [x, f ′] := min{T 2

b [x, f ′], T 1
b [x, f ]}. There will be no other entries in T 2

b [x, ·].
(3) Compute T 3

b [x, ·] by Extend-Table on T 2
b [x, ·].

The total time for the above three steps is bounded by O∗(max{3|B|, 3|B∩L|2|X\(B∩L)|}).
Note that T 3

b [x, f ] is defined for all f where vertices in B ∩ L take on values {1, 0, ∗} and
vertices in X \ (B ∩ L) take on values {0, ∗}. The value of T 3

b [x, f ] will be the minimum |S|
over all S ⊆ V (Gb) such that there exists f ′ ∈ c(S) with f ′|X = f and f ′|V (Gb)\X having
everywhere the value 0. Note the slight difference from the standard definition, namely that
even though the coloring f is defined on X, the dominators only come from V (Gb), and
not from V (Gx). The table T 3

c [x, ·] is computed in a similar way, with the colorings again
defined on X but with the dominators now coming from V (Gc).

When computing a Join of these two tables, we want dominators to come from V (Gb) ∪
V (Gc). Because of the monotonicity property that holds for these two tables, we can compute
their Join T 1

sc[x, f ] for any f where vertices in L take on values {1, 0, ∗} and vertices in X \L
take on values {0, ∗}, by combining colorings as follows:

T 1
sc[x, f ] = min

fb,fc

(T 3
b [x, fb] + T 3

c [x, fc])− |f−1(1) ∩B ∩ C|

where fb, fc satisfy:
f(v) = 0 if and only if (fb(v), fc(v)) ∈ {(0, ∗), (∗, 0)}
f(v) = ∗ if and only if fb(v) = fc(v) = ∗
f(v) = 1 if and only if v ∈ B∩C and fb(v) = fc(v) = 1, or v ∈ B \C and (fb(v), fc(v)) =
(1, ∗), or v ∈ C \B and (fb(v), fc(v)) = (∗, 1).
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This means that we can apply subset convolution to compute a table T 1
sc[x, f ] on 3|L|2|X\L|

entries based on T 3
b [x, f ] and T 3

c [x, f ]. Note that (B ∩ L) ∪ (C ∩ L) = L. For this step we
follow the description in [6, Section 11.1.2]. Fix a set D ⊆ L to be the dominating vertices.
Let FD denote the set of 2|X\D| functions f : X → {1, 0, ∗} such that f−1(1) = D, i.e. with
vertices in X \D mapping in all possible ways to {0, ∗}. For each D ⊆ L we will by subset
convolution compute the values of T 1

sc[x, f ] for all f ∈ FD.
We represent every f ∈ FD by the set S = f−1(0) and define bS : X → {1, 0, ∗} such

that bS(x) = 1 if x ∈ D ∩ B, bS(x) = 0 if x ∈ S, bS(x) = ∗ otherwise. Similarly, define
cS : X → {1, 0, ∗} such that cS(x) = 1 if x ∈ D ∩C, cS(x) = 0 if x ∈ S, cS(x) = ∗ otherwise.
Then, as explained previously, for every f ∈ FD we want to compute

T 1
sc[x, f ] = min

Q∪R=f−1(0) and Q∩R=∅
(T 3

b [x, bQ] + T 3
c [x, cR])− |f−1(1) ∩B ∩ C|.

Define functions Tb : 2X\D → N such that for every S ⊆ X \D we have Tb(S) = T 3
b [x, bS ].

Likewise, define functions Tc : 2X\D → N such that for every S ⊆ X \D we have Tc(S) =
T 3

c [x, cS ]. Also, define aS : X → {1, 0, ∗} such that aS(x) = 1 if x ∈ D, aS(x) = 0 if x ∈ S,
aS(x) = ∗ otherwise. We then compute for every S ⊆ X \D,

T 1
sc[x, aS ] := (Tb ∗ Tc)(S)− |f−1(1) ∩B ∩ C|

where the subset convolution is over the mini-sum semiring.
(4) In step (4), by Fast Subset Convolution, Theorem 7, we compute T 1

sc[x, aS ], for all aS

defined by all f ∈ FD, in O∗(2|X\D|) time each. For all such subsets D ⊆ L we get the
time ∑

D⊆L

2|X\D| =
∑

D⊆L

2|X\L|2|L\D| = 2|X\L|
∑

D⊆L

2|L\D| = 2|X\L|3|L|.

(5) In step (5) we need to run Extend-Table on T 1
sc[x, ·] to get the table T 2

sc[x, ·]. This since
the subset convolution was computed for each fixed set of dominators so the monotonicity
property of the table may not hold. Note that the value of T 2

sc[x, f ] will be the minimum
|S| over all S ⊆ V (Gb) ∪ V (Gc) such that there exists f ′ ∈ c(S) with f ′|X = f and
f ′|(V (Gb)∪V (Gc))\X having everywhere the value 0.

(6) In step (6) we will for each f : A→ {1, 0, ∗} compute f ′ : B ∪A ∪ C → {1, 0, ∗} by

f ′(v) =


1 if v ∈ A ∩ L and f(v) = 1
0 if v ∈ A and f(v) = 0 and N(v) ∩ f−1(1) = ∅
0 if v 6∈ A and N(v) ∩ f−1(1) = ∅
∗ otherwise

and set T [a, f ] := T 2
sc[x, f ′] + |f−1(1) ∩ (A \ L)|.

Note that when we iterate over all choices of f : A→ {1, 0, ∗}, the vertices colored 0 (in
addition to all vertices of X \ A) must either be dominated by the vertices in f−1(1)
or by vertices in X \ Va. As we know precisely what vertices of f−1(0) are dominated
by f−1(1), we know the rest must be dominated from vertices of X \ Va, and therefore
we look in Tsc[x, f ′] at an index f ′ which colors the rest of f−1(0) by 0. We can also
observe that it is not important for us whether or not f−1(0) contains all neighbours of
f−1(1), since we are iterating over all choices of f - also those where f−1(0) contains all
neighbours of f−1(1).

The total runtime becomes O∗(max{3|A|, 3|B|, 3|C|, 3|L|2|(A∪B∪C)\L|}), with L = (A ∩
B) ∪ (A ∩ C) ∪ (B ∩ C) and with constraints |A|, |B|, |C| ≤ k. This runtime is maximum
when L = ∅, giving a runtime of O∗(23k). We thus have the following theorem.
I Theorem 8. Given a graph G and branch decomposition over its vertex set of mm-width
k we can solve Dominating Set in time O∗(8k).
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Figure 3 Three graphs of mm-width 2. Left, middle have treewidth 4, and right has treewidth 5.

5 Discussion

We have shown that the graph parameter mm-width will for some graphs be better than
treewidth for solving Minimum Dominating Set. The improvement holds whenever tw(G) >
1.549 ×mmw(G), if given only the graph as input. In Figure 3 we list some examples of
small graphs having treewidth at least twice as big as mm-width. It could be interesting
to explore the relation between treewidth and mm-width for various well-known classes of
graphs. The given algorithmic technique, using fast subset convolution, should extend to
any graph problem expressible as a maximization or minimization over (σ, ρ)-sets, using the
techniques introduced for treewidth in [17].

We may also compare with branchwidth. Let ω be the exponent of matrix multiplication,
which is less than 2.3728639 [11]. In 2010, Bodlaender, van Leeuwen, van Rooij, and
Vatshelle [5] gave an O∗(3 ω

2 k) time algorithm solving Minimum Dominating Set if an
input graph is given with its branch decomposition of width k. This means that given
decompositions of bw(G) and mmw(G) our algorithm based on mm-width is faster than the
algorithm in [5] whenever bw(G) > log3 8 · 2

ω ·mmw(G) > 2 log3 8
2.3728639 ·mmw(G) > 1.6 mmw(G).

Taking the subtrees of tree representation for treewidth, branchwidth and maximum
matching width mentioned in the Introduction as input, our algorithm for dominating set
can be seen as a generic one that works for any of treewidth, branchwidth or maximum
matching width of the given representation, and in case of both treewidth and mm-width it
will give the best runtime known.

We gave an alternative definition of mm-width using subtrees of a tree, similar to
alternative definitions of treewidth and branchwidth. We saw that in the subtrees of a tree
representation treewidth focuses on nodes, branchwidth focuses on edges, and mm-width
combines them both. There is also a fourth way of defining a parameter through these
intersections of subtrees representation; where subtrees Tu and Tv must share an edge if
uv ∈ E(G) (similar to branchwidth) and the width is defined by the maximum number of
subtrees sharing a single vertex (similar to treewidth). This parameter will be an upper
bound on all the other three parameters, but might it be that the structure this parameter
highlights can be used to improve the runtime of Dominating Set beyond O∗(3tw(G)) for even
more cases than those shown using mm-width and branchwidth?
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