26 research outputs found

    Bayesian adaptive algorithm for fast coding unit decision in the High Efficiency Video Coding (HEVC) standard

    Get PDF
    The latest High Efficiency Video Coding standard (HEVC) provides a set of new coding tools to achieve a significantly higher coding efficiency than previous standards. In this standard, the pixels are first grouped into Coding Units (CU), then Prediction Units (PU), and finally Transform Units (TU). All these coding levels are organized into a quadtree-shaped arrangement that allows highly flexible data representation; however, they involve a very high computational complexity. In this paper, we propose an effective early CU depth decision algorithm to reduce the encoder complexity. Our proposal is based on a hierarchical approach, in which a hypothesis test is designed to make a decision at every CU depth, where the algorithm either produces an early termination or decides to evaluate the subsequent depth level. Moreover, the proposed method is able to adaptively estimate the parameters that define each hypothesis test, so that it adapts its behavior to the variable contents of the video sequences. The proposed method has been extensively tested, and the experimental results show that our proposal outperforms several state-of-the-art methods, achieving a significant reduction of the computational complexity (36.5% and 38.2% average reductions in coding time for two different encoder configurations) in exchange for very slight losses in coding performance (1.7% and 0.8% average bit rate increments).This work has been partially supported by the National Grant TEC2014-53390-P of the Spanish Ministry of Economy and Competitiveness

    Towards visualization and searching :a dual-purpose video coding approach

    Get PDF
    In modern video applications, the role of the decoded video is much more than filling a screen for visualization. To offer powerful video-enabled applications, it is increasingly critical not only to visualize the decoded video but also to provide efficient searching capabilities for similar content. Video surveillance and personal communication applications are critical examples of these dual visualization and searching requirements. However, current video coding solutions are strongly biased towards the visualization needs. In this context, the goal of this work is to propose a dual-purpose video coding solution targeting both visualization and searching needs by adopting a hybrid coding framework where the usual pixel-based coding approach is combined with a novel feature-based coding approach. In this novel dual-purpose video coding solution, some frames are coded using a set of keypoint matches, which not only allow decoding for visualization, but also provide the decoder valuable feature-related information, extracted at the encoder from the original frames, instrumental for efficient searching. The proposed solution is based on a flexible joint Lagrangian optimization framework where pixel-based and feature-based processing are combined to find the most appropriate trade-off between the visualization and searching performances. Extensive experimental results for the assessment of the proposed dual-purpose video coding solution under meaningful test conditions are presented. The results show the flexibility of the proposed coding solution to achieve different optimization trade-offs, notably competitive performance regarding the state-of-the-art HEVC standard both in terms of visualization and searching performance.Em modernas aplicaçÔes de vĂ­deo, o papel do vĂ­deo decodificado Ă© muito mais que simplesmente preencher uma tela para visualização. Para oferecer aplicaçÔes mais poderosas por meio de sinais de vĂ­deo,Ă© cada vez mais crĂ­tico nĂŁo apenas considerar a qualidade do conteĂșdo objetivando sua visualização, mas tambĂ©m possibilitar meios de realizar busca por conteĂșdos semelhantes. Requisitos de visualização e de busca sĂŁo considerados, por exemplo, em modernas aplicaçÔes de vĂ­deo vigilĂąncia e comunicaçÔes pessoais. No entanto, as atuais soluçÔes de codificação de vĂ­deo sĂŁo fortemente voltadas aos requisitos de visualização. Nesse contexto, o objetivo deste trabalho Ă© propor uma solução de codificação de vĂ­deo de propĂłsito duplo, objetivando tanto requisitos de visualização quanto de busca. Para isso, Ă© proposto um arcabouço de codificação em que a abordagem usual de codificação de pixels Ă© combinada com uma nova abordagem de codificação baseada em features visuais. Nessa solução, alguns quadros sĂŁo codificados usando um conjunto de pares de keypoints casados, possibilitando nĂŁo apenas visualização, mas tambĂ©m provendo ao decodificador valiosas informaçÔes de features visuais, extraĂ­das no codificador a partir do conteĂșdo original, que sĂŁo instrumentais em aplicaçÔes de busca. A solução proposta emprega um esquema flexĂ­vel de otimização Lagrangiana onde o processamento baseado em pixel Ă© combinado com o processamento baseado em features visuais objetivando encontrar um compromisso adequado entre os desempenhos de visualização e de busca. Os resultados experimentais mostram a flexibilidade da solução proposta em alcançar diferentes compromissos de otimização, nomeadamente desempenho competitivo em relação ao padrĂŁo HEVC tanto em termos de visualização quanto de busca

    Algorithms and methods for video transcoding.

    Get PDF
    Video transcoding is the process of dynamic video adaptation. Dynamic video adaptation can be defined as the process of converting video from one format to another, changing the bit rate, frame rate or resolution of the encoded video, which is mainly necessitated by the end user requirements. H.264 has been the predominantly used video compression standard for the last 15 years. HEVC (High Efficiency Video Coding) is the latest video compression standard finalised in 2013, which is an improvement over H.264 video compression standard. HEVC performs significantly better than H.264 in terms of the Rate-Distortion performance. As H.264 has been widely used in the last decade, a large amount of video content exists in H.264 format. There is a need to convert H.264 video content to HEVC format to achieve better Rate-Distortion performance and to support legacy video formats on newer devices. However, the computational complexity of HEVC encoder is 2-10 times higher than that of H.264 encoder. This makes it necessary to develop low complexity video transcoding algorithms to transcode from H.264 to HEVC format. This research work proposes low complexity algorithms for H.264 to HEVC video transcoding. The proposed algorithms reduce the computational complexity of H.264 to HEVC video transcoding significantly, with negligible loss in Rate-Distortion performance. This work proposes three different video transcoding algorithms. The MV-based mode merge algorithm uses the block mode and MV variances to estimate the split/non-split decision as part of the HEVC block prediction process. The conditional probability-based mode mapping algorithm models HEVC blocks of sizes 16×16 and lower as a function of H.264 block modes, H.264 and HEVC Quantisation Parameters (QP). The motion-compensated MB residual-based mode mapping algorithm makes the split/non-split decision based on content-adaptive classification models. With a combination of the proposed set of algorithms, the computational complexity of the HEVC encoder is reduced by around 60%, with negligible loss in Rate-Distortion performance, outperforming existing state-of-art algorithms by 20-25% in terms of computational complexity. The proposed algorithms can be used in computation-constrained video transcoding applications, to support video format conversion in smart devices, migration of large-scale H.264 video content from host servers to HEVC, cloud computing-based transcoding applications, and also to support high quality videos over bandwidth-constrained networks

    Efficient Coding of Transform Coefficient Levels in Hybrid Video Coding

    Get PDF
    All video coding standards of practical importance, such as Advanced Video Coding (AVC), its successor High Efficiency Video Coding (HEVC), and the state-of-the-art Versatile Video Coding (VVC), follow the basic principle of block-based hybrid video coding. In such an architecture, the video pictures are partitioned into blocks. Each block is first predicted by either intra-picture or motion-compensated prediction, and the resulting prediction errors, referred to as residuals, are compressed using transform coding. This thesis deals with the entropy coding of quantization indices for transform coefficients, also referred to as transform coefficient levels, as well as the entropy coding of directly quantized residual samples. The entropy coding of quantization indices is referred to as level coding in this thesis. The presented developments focus on both improving the coding efficiency and reducing the complexity of the level coding for HEVC and VVC. These goals were achieved by modifying the context modeling and the binarization of the level coding. The first development presented in this thesis is a transform coefficient level coding for variable transform block sizes, which was introduced in HEVC. It exploits the fact that non-zero levels are typically concentrated in certain parts of the transform block by partitioning blocks larger than \square{4} samples into \square{4} sub-blocks. Each \square{4} sub-block is then coded similarly to the level coding specified in AVC for \square{4} transform blocks. This sub-block processing improves coding efficiency and has the advantage that the number of required context models is independent of the set of supported transform block sizes. The maximum number of context-coded bins for a transform coefficient level is one indicator for the complexity of the entropy coding. An adaptive binarization of absolute transform coefficient levels using Rice codes is presented that reduces the maximum number of context-coded bins from 15 (as used in AVC) to three for HEVC. Based on the developed selection of an appropriate Rice code for each scanning position, this adaptive binarization achieves virtually the same coding efficiency as the binarization specified in AVC for bit-rate operation points typically used in consumer applications. The coding efficiency is improved for high bit-rate operation points, which are used in more advanced and professional applications. In order to further improve the coding efficiency for HEVC and VVC, the statistical dependencies among the transform coefficient levels of a transform block are exploited by a template-based context modeling developed in this thesis. Instead of selecting the context model for a current scanning position primarily based on its location inside a transform block, already coded neighboring locations inside a local template are utilized. To further increase the coding efficiency achieved by the template-based context modeling, the different coding phases of the initially developed level coding are merged into a single coding phase. As a consequence, the template-based context modeling can utilize the absolute levels of the neighboring frequency locations, which provides better conditional probability estimates and further improves coding efficiency. This template-based context modeling with a single coding phase is also suitable for trellis-coded quantization (TCQ), since TCQ is state-driven and derives the next state from the current state and the parity of the current level. TCQ introduces different context model sets for coding the significance flag depending on the current state. Based on statistical analyses, an extension of the state-dependent context modeling of TCQ is presented, which further improves the coding efficiency in VVC. After that, a method to reduce the complexity of the level coding at the decoder is presented. This method separates the level coding into a coding phase exclusively consisting of context-coded bins and another one consisting of bypass-coded bins only. For retaining the state-dependent context selection, which significantly contributes to the coding efficiency of TCQ, a dedicated parity flag is introduced and coded with context models in the first coding phase. An adaptive approach is then presented that further reduces the worst-case complexity, effectively lowering the maximum number of context-coded bins per transform coefficient to 1.75 without negatively affecting the coding efficiency. In the last development presented in this thesis, a dedicated level coding for transform skip blocks, which often occur in screen content applications, is introduced for VVC. This dedicated level coding better exploits the statistical properties of directly quantized residual samples for screen content. Various modifications to the level coding improve the coding efficiency for this type of content. Examples for these modifications are a binarization with additional context-coded flags and the coding of the sign information with adaptive context models

    Application of a Bi-Geometric Transparent Composite Model to HEVC: Residual Data Modelling and Rate Control

    Get PDF
    Among various transforms, the discrete cosine transform (DCT) is the most widely used one in multimedia compression technologies for different image or video coding standards. During the development of image or video compression, a lot of interest has been attracted to understand the statistical distribution of DCT coefficients, which would be useful to design compression techniques, such as quantization, entropy coding and rate control. Recently, a bi-geometric transparent composite model (BGTCM) has been developed to provide modelling of distribution of DCT coefficients with both simplicity and accuracy. It has been reported that for DCT coefficients obtained from original images, which is applied in image coding, a transparent composite model (TCM) can provide better modelling than Laplacian. In video compression, such as H.264/AVC, DCT is performed on residual images obtained after prediction with different transform sizes. What's more, in high efficiency video coding(HEVC) which is the newest video coding standard, besides DCT as the main transform tool, discrete sine transform (DST) and transform skip (TS) techniques are possibly performed on residual data in small blocks. As such, the distribution of transformed residual data differs from that of transformed original image data. In this thesis, the distribution of coefficients, including those from all DCT, DST and TS blocks, is analysed based on BGTCM. To be specific, firstly, the distribution of all the coefficients from the whole frame is examined. Secondly, in HEVC, the entropy coding is implemented based on the new encoding concept, coefficient group (CG) with size 4*4, where quantized coefficients are encoded with context models based on their scan indices in each CG. To simulate the encoding process, coefficients at the same scan indices among different CGs are grouped together to form a set. Distribution of coefficients in each set is analysed. Based on our result, BGTCM is better than other widely used distributions, such as Laplacian and Cauchy distributions, in both x^2 and KL-divergence testing. Furthermore, unlike the way based on Laplacian and Cauchy distribution, the BGTCM can be used to model rate-quantization (R-Q) and distortion-quantization (D-Q) models without approximation expressions. R-Q and D-Q models based on BGTCM can reflect the distribution of coefficients, which are important in rate control. In video coding, rate control involves these two models to generate a suitable quantization parameter without multi-passes encoding in order to maintain the coding efficiency and to generate required rate to satisfy rate requirement. In this thesis, based on BGTCM, rate control in HEVC is revised with much increase in coding efficiency and decrease in rate fluctuation in terms of rate variance among frames for constant bit rate requirement.1 yea

    Receiver-Driven Video Adaptation

    Get PDF
    In the span of a single generation, video technology has made an incredible impact on daily life. Modern use cases for video are wildly diverse, including teleconferencing, live streaming, virtual reality, home entertainment, social networking, surveillance, body cameras, cloud gaming, and autonomous driving. As these applications continue to grow more sophisticated and heterogeneous, a single representation of video data can no longer satisfy all receivers. Instead, the initial encoding must be adapted to each receiver's unique needs. Existing adaptation strategies are fundamentally flawed, however, because they discard the video's initial representation and force the content to be re-encoded from scratch. This process is computationally expensive, does not scale well with the number of videos produced, and throws away important information embedded in the initial encoding. Therefore, a compelling need exists for the development of new strategies that can adapt video content without fully re-encoding it. To better support the unique needs of smart receivers, diverse displays, and advanced applications, general-use video systems should produce and offer receivers a more flexible compressed representation that supports top-down adaptation strategies from an original, compressed-domain ground truth. This dissertation proposes an alternate model for video adaptation that addresses these challenges. The key idea is to treat the initial compressed representation of a video as the ground truth, and allow receivers to drive adaptation by dynamically selecting which subsets of the captured data to receive. In support of this model, three strategies for top-down, receiver-driven adaptation are proposed. First, a novel, content-agnostic entropy coding technique is implemented in which symbols are selectively dropped from an input abstract symbol stream based on their estimated probability distributions to hit a target bit rate. Receivers are able to guide the symbol dropping process by supplying the encoder with an appropriate rate controller algorithm that fits their application needs and available bandwidths. Next, a domain-specific adaptation strategy is implemented for H.265/HEVC coded video in which the prediction data from the original source is reused directly in the adapted stream, but the residual data is recomputed as directed by the receiver. By tracking the changes made to the residual, the encoder can compensate for decoder drift to achieve near-optimal rate-distortion performance. Finally, a fully receiver-driven strategy is proposed in which the syntax elements of a pre-coded video are cataloged and exposed directly to clients through an HTTP API. Instead of requesting the entire stream at once, clients identify the exact syntax elements they wish to receive using a carefully designed query language. Although an implementation of this concept is not provided, an initial analysis shows that such a system could save bandwidth and computation when used by certain targeted applications.Doctor of Philosoph

    Compression vidéo basée sur l'exploitation d'un décodeur intelligent

    Get PDF
    This Ph.D. thesis studies the novel concept of Smart Decoder (SDec) where the decoder is given the ability to simulate the encoder and is able to conduct the R-D competition similarly as in the encoder. The proposed technique aims to reduce the signaling of competing coding modes and parameters. The general SDec coding scheme and several practical applications are proposed, followed by a long-term approach exploiting machine learning concept in video coding. The SDec coding scheme exploits a complex decoder able to reproduce the choice of the encoder based on causal references, eliminating thus the need to signal coding modes and associated parameters. Several practical applications of the general outline of the SDec scheme are tested, using different coding modes during the competition on the reference blocs. Despite the choice for the SDec reference block being still simple and limited, interesting gains are observed. The long-term research presents an innovative method that further makes use of the processing capacity of the decoder. Machine learning techniques are exploited in video coding with the purpose of reducing the signaling overhead. Practical applications are given, using a classifier based on support vector machine to predict coding modes of a block. The block classification uses causal descriptors which consist of different types of histograms. Significant bit rate savings are obtained, which confirms the potential of the approach.Cette thĂšse de doctorat Ă©tudie le nouveau concept de dĂ©codeur intelligent (SDec) dans lequel le dĂ©codeur est dotĂ© de la possibilitĂ© de simuler l’encodeur et est capable de mener la compĂ©tition R-D de la mĂȘme maniĂšre qu’au niveau de l’encodeur. Cette technique vise Ă  rĂ©duire la signalisation des modes et des paramĂštres de codage en compĂ©tition. Le schĂ©ma gĂ©nĂ©ral de codage SDec ainsi que plusieurs applications pratiques sont proposĂ©es, suivis d’une approche en amont qui exploite l’apprentissage automatique pour le codage vidĂ©o. Le schĂ©ma de codage SDec exploite un dĂ©codeur complexe capable de reproduire le choix de l’encodeur calculĂ© sur des blocs de rĂ©fĂ©rence causaux, Ă©liminant ainsi la nĂ©cessitĂ© de signaler les modes de codage et les paramĂštres associĂ©s. Plusieurs applications pratiques du schĂ©ma SDec sont testĂ©es, en utilisant diffĂ©rents modes de codage lors de la compĂ©tition sur les blocs de rĂ©fĂ©rence. MalgrĂ© un choix encore simple et limitĂ© des blocs de rĂ©fĂ©rence, les gains intĂ©ressants sont observĂ©s. La recherche en amont prĂ©sente une mĂ©thode innovante qui permet d’exploiter davantage la capacitĂ© de traitement d’un dĂ©codeur. Les techniques d’apprentissage automatique sont exploitĂ©es pour but de rĂ©duire la signalisation. Les applications pratiques sont donnĂ©es, utilisant un classificateur basĂ© sur les machines Ă  vecteurs de support pour prĂ©dire les modes de codage d’un bloc. La classification des blocs utilise des descripteurs causaux qui sont formĂ©s Ă  partir de diffĂ©rents types d’histogrammes. Des gains significatifs en dĂ©bit sont obtenus, confirmant ainsi le potentiel de l’approche

    Challenges and solutions in H.265/HEVC for integrating consumer electronics in professional video systems

    Get PDF
    corecore