69 research outputs found

    Optimized monomodal image registration using cuckoo search algorithm

    Get PDF
    Medical image registration, which is employed in analyzing the similarity merits in helping the diagnosis is an important part of the medical image analysis. The process involves combining two or more images in order to provide more information. Therefore, there is a need for a method that can produce an image as a registration result that can produce more information without any loss of the input information and without any redundancy. The accuracy and computation time of the existing picture registration approach are now in question, although they could be improved if an optimization methodology is applied. Hence, this research proposed an enhancement of the image registration process focusing on monomodal registration by incorporating an optimization method called Cuckoo Search (CS) algorithm with Levy flight generation. This method was used to find the optimum parameter value (Gradient Magnitude Tolerance, Minimum Step Length, Maximum Step Length) and it was tested to brain, breast and kidney cancer that are captured on Magnetic Resonance Imaging (MRI) image. The performance of the proposed method was then compared with standard monomodal registration. For all the cases investigated, the experimental results were validated by measuring the following: Mutual Information (MI), Normalized Mutual Information (NMI), Mean Square Error (MSE), Coefficient Correlation (CC) and Central Processing Unit run-time. The results of the study illustrated that the proposed method achieved the best 2% improvement in MI, NMI, MSE, CC results. In addition, the proposed method reduced about 40% in Central Processing Unit run-time as compared to the benchmarks methods. This indicates that the proposed method has the potential to provide faster and better medical image registration results

    Multimodal and multicontrast image fusion via deep generative models

    Full text link
    Recently, it has become progressively more evident that classic diagnostic labels are unable to reliably describe the complexity and variability of several clinical phenotypes. This is particularly true for a broad range of neuropsychiatric illnesses (e.g., depression, anxiety disorders, behavioral phenotypes). Patient heterogeneity can be better described by grouping individuals into novel categories based on empirically derived sections of intersecting continua that span across and beyond traditional categorical borders. In this context, neuroimaging data carry a wealth of spatiotemporally resolved information about each patient's brain. However, they are usually heavily collapsed a priori through procedures which are not learned as part of model training, and consequently not optimized for the downstream prediction task. This is because every individual participant usually comes with multiple whole-brain 3D imaging modalities often accompanied by a deep genotypic and phenotypic characterization, hence posing formidable computational challenges. In this paper we design a deep learning architecture based on generative models rooted in a modular approach and separable convolutional blocks to a) fuse multiple 3D neuroimaging modalities on a voxel-wise level, b) convert them into informative latent embeddings through heavy dimensionality reduction, c) maintain good generalizability and minimal information loss. As proof of concept, we test our architecture on the well characterized Human Connectome Project database demonstrating that our latent embeddings can be clustered into easily separable subject strata which, in turn, map to different phenotypical information which was not included in the embedding creation process. This may be of aid in predicting disease evolution as well as drug response, hence supporting mechanistic disease understanding and empowering clinical trials

    Cross-cohort generalizability of deep and conventional machine learning for MRI-based diagnosis and prediction of Alzheimer's disease

    Get PDF
    This work validates the generalizability of MRI-based classification of Alzheimer’s disease (AD) patients and controls (CN) to an external data set and to the task of prediction of conversion to AD in individuals with mild cognitive impairment (MCI).We used a conventional support vector machine (SVM) and a deep convolutional neural network (CNN) approach based on structural MRI scans that underwent either minimal pre-processing or more extensive pre-processing into modulated gray matter (GM) maps. Classifiers were optimized and evaluated using cross-validation in the Alzheimer’s Disease Neuroimaging Initiative (ADNI; 334 AD, 520 CN). Trained classifiers were subsequently applied to predict conversion to AD in ADNI MCI patients (231 converters, 628 non-converters) and in the independent Health-RI Parelsnoer Neurodegenerative Diseases Biobank data set. From this multi-center study representing a tertiary memory clinic population, we included 199 AD patients, 139 participants with subjective cognitive decline, 48 MCI patients converting to dementia, and 91 MCI patients who did not convert to dementia.AD-CN classification based on modulated GM maps resulted in a similar area-under-the-curve (AUC) for SVM (0.940; 95%CI: 0.924–0.955) and CNN (0.933; 95%CI: 0.918–0.948). Application to conversion prediction in MCI yielded significantly higher performance for SVM (AUC = 0.756; 95%CI: 0.720-0.788) than for CNN (AUC = 0.742; 95%CI: 0.709-0.776) (p<0.01 for McNemar’s test). In external validation, performance was slightly decreased. For AD-CN, it again gave similar AUCs for SVM (0.896; 95%CI: 0.855–0.932) and CNN (0.876; 95%CI: 0.836–0.913). For prediction in MCI, performances decreased for both SVM (AUC = 0.665; 95%CI: 0.576-0.760) and CNN (AUC = 0.702; 95%CI: 0.624-0.786). Both with SVM and CNN, classification based on modulated GM maps significantly outperformed classification based on minimally processed images (p=0.01).Deep and conventional classifiers performed equally well for AD classification and their performance decreased only slightly when applied to the external cohort. We expect that this work on external validation contributes towards translation of machine learning to clinical practice

    Towards Real-time Remote Processing of Laparoscopic Video

    Get PDF
    Laparoscopic surgery is a minimally invasive technique where surgeons insert a small video camera into the patient\u27s body to visualize internal organs and use small tools to perform these procedures. However, the benefit of small incisions has a disadvantage of limited visualization of subsurface tissues. Image-guided surgery (IGS) uses pre-operative and intra-operative images to map subsurface structures and can reduce the limitations of laparoscopic surgery. One particular laparoscopic system is the daVinci-si robotic surgical vision system. The video streams generate approximately 360 megabytes of data per second, demonstrating a trend toward increased data sizes in medicine, primarily due to higher-resolution video cameras and imaging equipment. Real-time processing this large stream of data on a bedside PC, single or dual node setup, may be challenging and a high-performance computing (HPC) environment is not typically available at the point of care. To process this data on remote HPC clusters at the typical 30 frames per second rate (fps), it is required that each 11.9 MB (1080p) video frame be processed by a server and returned within the time this frame is displayed or 1/30th of a second. The ability to acquire, process, and visualize data in real time is essential for the performance of complex tasks as well as minimizing risk to the patient. We have implemented and compared performance of compression, segmentation and registration algorithms on Clemson\u27s Palmetto supercomputer using dual Nvidia graphics processing units (GPUs) per node and compute unified device architecture (CUDA) programming model. We developed three separate applications that run simultaneously: video acquisition, image processing, and video display. The image processing application allows several algorithms to run simultaneously on different cluster nodes and transfer images through message passing interface (MPI). Our segmentation and registration algorithms resulted in an acceleration factor of around 2 and 8 times respectively. To achieve a higher frame rate, we also resized images and reduced the overall processing time. As a result, using high-speed network to access computing clusters with GPUs to implement these algorithms in parallel will improve surgical procedures by providing real-time medical image processing and laparoscopic data

    GANHO DE DESEMPENHO DO FEMA UTILIZANDO PROGRAMAÇÃO PARALELA E ÁRVORES DE PARTICIONAMENTO ESPACIAL

    Get PDF
    This paper presents an application with data structures and GPU to get better performances in FEMa algorithm. At first, a binary partition Kd-Tree is constructed from a dataset, after his building, the search algorithm of the K nearest neighbours (K-NN) is applied in the Kd-Tree to all sample in the test dataset. After get the result of nearest samples search, the step of classification begin applying the Finite Element Method basis to get the result. Another approach is to utilize cuda codes in algorithm, so that it can be parallelized and run in GPU to obtain a gain of performance in the code runtime.O presente estudo apresenta a &nbsp;utilização de estruturas de dados e GPU como uma melhoria de desempenho do algoritmo de classificação FEMa. Primeiramente, à partir de um datasets &nbsp;é criada uma árvore de partição binária do tipo Kd-Tree e após sua construção, aplicado o algoritmo de busca dos K vizinhos mais próximos (K-NN) na Kd-Tree para cada amostra de teste apresentada na fase de classificação. Após ter o resultado da busca das amostras mais próximas, é feita a etapa de classificação do FEMa aplicando uma base dos Métodos dos Elementos Finitos (FEM), para trazer o resultado. Outra abordagem é utilizar códigos CUDA no algoritmo do FEMa, para que o mesmo seja paralelizado e executado em GPU’s, para obter um ganho de desempenho no tempo de execução

    Automatic CT Angiography Lesion Segmentation Compared to CT Perfusion in Ischemic Stroke Detection: a Feasibility Study

    Get PDF
    In stroke imaging, CT angiography (CTA) is used for detecting arterial occlusions. These images could also provide information on the extent of ischemia. The study aim was to develop and evaluate a convolutional neural network (CNN)-based algorithm for detecting and segmenting acute ischemic lesions from CTA images of patients with suspected middle cerebral artery stroke. These results were compared to volumes reported by widely used CT perfusion-based RAPID software (IschemaView). A 42-layer-deep CNN was trained on 50 CTA volumes with manually delineated targets. The lower bound for predicted lesion size to reliably discern stroke from false positives was estimated. The severity of false positives and false negatives was reviewed visually to assess the clinical applicability and to further guide the method development. The CNN model corresponded to the manual segmentations with voxel-wise sensitivity 0.54 (95% confidence interval: 0.44-0.63), precision 0.69 (0.60-0.76), and Sorensen-Dice coefficient 0.61 (0.52-0.67). Stroke/nonstroke differentiation accuracy 0.88 (0.81-0.94) was achieved when only considering the predicted lesion size (i.e., regardless of location). By visual estimation, 46% of cases showed some false findings, such as CNN highlighting chronic periventricular white matter changes or beam hardening artifacts, but only in 9% the errors were severe, translating to 0.91 accuracy. The CNN model had a moderately strong correlation to RAPID-reported T-max > 10 s volumes (Pearson's r = 0.76 (0.58-0.86)). The results suggest that detecting anterior circulation ischemic strokes from CTA using a CNN-based algorithm can be feasible when accompanied with physiological knowledge to rule out false positives.Peer reviewe

    Novel Deep Learning Models for Medical Imaging Analysis

    Get PDF
    abstract: Deep learning is a sub-field of machine learning in which models are developed to imitate the workings of the human brain in processing data and creating patterns for decision making. This dissertation is focused on developing deep learning models for medical imaging analysis of different modalities for different tasks including detection, segmentation and classification. Imaging modalities including digital mammography (DM), magnetic resonance imaging (MRI), positron emission tomography (PET) and computed tomography (CT) are studied in the dissertation for various medical applications. The first phase of the research is to develop a novel shallow-deep convolutional neural network (SD-CNN) model for improved breast cancer diagnosis. This model takes one type of medical image as input and synthesizes different modalities for additional feature sources; both original image and synthetic image are used for feature generation. This proposed architecture is validated in the application of breast cancer diagnosis and proved to be outperforming the competing models. Motivated by the success from the first phase, the second phase focuses on improving medical imaging synthesis performance with advanced deep learning architecture. A new architecture named deep residual inception encoder-decoder network (RIED-Net) is proposed. RIED-Net has the advantages of preserving pixel-level information and cross-modality feature transferring. The applicability of RIED-Net is validated in breast cancer diagnosis and Alzheimer’s disease (AD) staging. Recognizing medical imaging research often has multiples inter-related tasks, namely, detection, segmentation and classification, my third phase of the research is to develop a multi-task deep learning model. Specifically, a feature transfer enabled multi-task deep learning model (FT-MTL-Net) is proposed to transfer high-resolution features from segmentation task to low-resolution feature-based classification task. The application of FT-MTL-Net on breast cancer detection, segmentation and classification using DM images is studied. As a continuing effort on exploring the transfer learning in deep models for medical application, the last phase is to develop a deep learning model for both feature transfer and knowledge from pre-training age prediction task to new domain of Mild cognitive impairment (MCI) to AD conversion prediction task. It is validated in the application of predicting MCI patients’ conversion to AD with 3D MRI images.Dissertation/ThesisDoctoral Dissertation Industrial Engineering 201
    corecore