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ABSTRACT  

   

Deep learning is a sub-field of machine learning in which models are developed to 

imitate the workings of the human brain in processing data and creating patterns for 

decision making. This dissertation is focused on developing deep learning models for 

medical imaging analysis of different modalities for different tasks including detection, 

segmentation and classification. Imaging modalities including digital mammography 

(DM), magnetic resonance imaging (MRI), positron emission tomography (PET) and 

computed tomography (CT) are studied in the dissertation for various medical applications. 

The first phase of the research is to develop a novel shallow-deep convolutional neural 

network (SD-CNN) model for improved breast cancer diagnosis. This model takes one 

type of medical image as input and synthesizes different modalities for additional feature 

sources; both original image and synthetic image are used for feature generation. This 

proposed architecture is validated in the application of breast cancer diagnosis and proved 

to be outperforming the competing models. Motivated by the success from the first phase, 

the second phase focuses on improving medical imaging synthesis performance with 

advanced deep learning architecture. A new architecture named deep residual inception 

encoder-decoder network (RIED-Net) is proposed. RIED-Net has the advantages of 

preserving pixel-level information and cross-modality feature transferring. The 

applicability of RIED-Net is validated in breast cancer diagnosis and Alzheimer’s disease 

(AD) staging. Recognizing medical imaging research often has multiples inter-related 

tasks, namely, detection, segmentation and classification, my third phase of the research 

is to develop a multi-task deep learning model. Specifically, a feature transfer enabled 

multi-task deep learning model (FT-MTL-Net) is proposed to transfer high-resolution 
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features from segmentation task to low-resolution feature-based classification task. The 

application of FT-MTL-Net on breast cancer detection, segmentation and classification 

using DM images is studied. As a continuing effort on exploring the transfer learning in 

deep models for medical application, the last phase is to develop a deep learning model 

for both feature transfer and knowledge from pre-training age prediction task to new 

domain of Mild cognitive impairment (MCI) to AD conversion prediction task. It is 

validated in the application of predicting MCI patients’ conversion to AD with 3D MRI 

images.   
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CHAPTER 1 

INTRODUCTION 

1.1. Background 

Over the past few decades, various medical imaging modalities including computed 

tomography (CT), magnetic resonance imaging (MRI), positron emission tomography 

(PET) and digital mammography (DM) are invented and introduced into clinical 

applications for disease diagnosis, prognosis and treatment assessment. These images need 

domain experts such as radiologists and physicians for interpretation and clinical decisions. 

With the technological advancements in image processing and analytic modeling, 

automatic models and systems are proposed. For example, different imaging processing 

models are applied to extract imaging features to quantify the characteristics of the raw 

image or region of interests (ROIs). These features are used to train machine learning 

models for specific tasks such as tumor detection, segmentation and classification, image 

synthesis and automatic diagnosis.  

In recent years, deep learning models, especially the convolutional neural network 

(CNN), as a class in machine learning models which uses a cascade of convolutional layers 

and non-linear processing units for feature extraction and transformation, has attracted 

great attentions. The success of CNNs is mainly due to their powerful learning capability 

behind large set of parameters and the ability to derive ‘optimal’ hierarchical features from 

raw images to serve different tasks. Motivated by the success of deep learning in various 

application domains (e.g., computer vision), this dissertation research focuses on the 

applications on medical images. Different imaging modalities such as digital 

mammography (DM), magnetic resonance imaging (MRI), positron emission tomography 
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(PET) and computed tomography (CT) are studied for various applications including tumor 

segmentation, detection and classification, cross-modality synthesis and automatic 

diagnosis.     

 

1.2. State of the Art 

The tasks of deep CNNs in medical image analysis generally fall into four major 

categories: classification, detection, segmentation and synthesis. Classification for medical 

images mainly focuses on the discrimination of malignant lesions from benign or the 

identification of certain disease. To address this task, raw images or extracted patches with 

assigned labels are fed into the CNNs, features from different levels of the convolutional 

layers are updated based on the prediction results of each training iteration. After training, 

the model will obtain the capability of mapping the input image into a binary (classification) 

variable or multiple binary variables (multiclass classification). As one of the earliest CNN 

applications, Sahiner et al. (1996) propose a deep CNN to make predictions on benign or 

malignant for mammography patches containing ROIs. Arevalo et al. (2017) address the 

breast lesion classification problem through a deep learning model combining imaging 

features defined by domain experts. In Huynh, Li and Giger (2016), a pre-trained CNN on 

natural image patches is studied to address the lesion classification task. Gao et al. (2016) 

use a deep CNN to make holistic classification patches from CT images of lung into six 

classes (normal, emphysema, ground glass, fibrosis, micronodules and consolidation). 

The task of detection aims at localizing the abnormal structures from the provided 

images. This task is addressed through the prediction of the centers, boundary or bounding 

box that contains the abnormal region. Ciresan et al. (2013) use a deep CNN to detect 



  3 

mitosis in breast cancer histology images. Sirinukunwattana et al. (2016) implement a 

spatially constrained CNN (SC-CNN) to detect nuclei in histopathology images. Roth et al. 

(2015) train a deep network with 2D CT images to detect five different parts of the body 

such as neck, liver, pelvis, lungs and legs.    

In the task of segmentation, a probability map is generated for each pixel in 2D or 

voxel in 3D within input image to quantify the probability it belongs to the associated 

object. For instance, Pereira et al. (2016) implement a deep CNN with small-sized kernel 

for brain tumor segmentation in MRI images. Ronneberger, Fischer and Brox (2015) study 

the breast and fibroglandular tissue segmentation task through a deep CNN architecture 

named U-Net. Kleesiek et al. (2016) implement a 3D CNN architecture for the skull 

segmentation and extraction from T1-weighted MR images. 

In image synthesis, a deep model (e.g., CNN) is launched to capture the non-linear 

mapping between the input images and the output images. The trained model can be used 

to generate a virtual image in scenarios where the desired image modality is not accessible. 

The very first published literature may be from Li et al. (2014) where a 4-layer shallow 

network, is developed to map the Positron Emission Tomography (PET) images from MRI. 

Improved diagnosis accuracy is observed after using the combination of MRI and synthetic 

PET for Alzheimer’s disease. Yang et al. (2017) design a 4-layer CNN to reconstruct dual-

energy subtraction soft-tissue chest image from a multi-scale gradient imaging of the 

original chest radiograph image. Han (2017) borrows the ‘copy and crop’ idea from U-Net 

and implements a 27-layer sCT-DCNN to generate virtual CT images from co-registered 

MRI images. 
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Multi-task learning (MTL) (Caruana, 1997) which attempts to handle multiple tasks 

at the same time emerges and has shown great promises in natural language processing 

(Collobert & Weston, 2008), speech recognition (Deng, Hinton, & Kingsbury., 2013), and 

computer vision (Girshick, 2015; He, Gkioxari, Dollar, & Girshick, 2017). The advantage 

of MTL in reducing risk of overfitting (Baxter, 1997; Ruder, 2017) and improving learning 

efficiency and prediction accuracy makes it an ideal solution for medical applications. For 

example, Akselrod-ballin et al. (2016) propose a faster R-CNN for mass detection and 

classification simultaneously. Samala, Chan, Hadjiiski, Helvie, and Cha (2018) take mass 

classification from digital mammograms and digitalized screen-film mammograms as two 

separate tasks and tackle the two tasks using a single framework based on the Visual 

Geometry Group (VGG) model (Noh, Hong, & Han, 2015). The study from Liu, Zhang, 

Adeli, and Shen (2018) focuses on AD using neuroimaging to conduct classification and 

predict clinical scores. Feng, Nie, Wang, and Shen (2018) propose a multi-task residual 

fully convolutional network (FCN) to segment organs (e.g. bladder, prostate and rectum) 

and estimate the intensities. 

MTL is to take advantage of the joint power from multiple tasks on the limited data 

available in medical applications, to some extent. To directly address the data limitation 

issue, transfer learning is extensively investigated. In transfer learning, the deep model is 

first pre-trained on large size of labelled dataset (e.g., natural images) to capture the 

features, and is then fine-tuned on the target dataset. For example, Hon et al. (2017) use 

the VGG16 and Google Inception v4 CNN model to pre-train images from the ImageNet 

Challenge dataset and fine-tune the last fully connected layer on the MRI images for the 

final AD diagnosis. Similarly, Hosseini-Asl et al. (2018) pre-train a 3D Convolutional 
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Auto-Encoder (CAE) to feature extractions and fine-tune on fully connected layers with a 

Softmax layer for AD diagnosis. 

The success of deep learning in medical applications motivates this dissertation. 

We identify five major research challenges and issues as the focus of this research.    

• Challenge I: requiring domain knowledge for network architecture design, 

parameters tuning and human-defined feature selection. Existing deep 

learning models in medical image analysis usually need to be trained from raw 

images. Various architecture options (e.g. pooling layers, activation function, 

shortcut connections) and hyper-parameters (e.g. learning rate, batch size) need 

to be set before the training, and the settings have significant impacts on the 

model’s performance. In order to obtain the relatively ‘optimal’ settings, 

multiple training trails are conducted which is computationally costly. 

Incorporating domain knowledge into the deep learning model is highly 

desirable.  In addition, as reviewed above, some CNNs are combined with 

human-defined features for improved performance; and the selection of features 

for specific task requires prior knowledge on both the task and the features. 

However, these two important prerequisites are not always available for 

researchers in medical area.    

• Challenge II: lack of consideration for the missing modality. Different 

imaging modalities (e.g., MRI, PET) provide complementary information for 

the disease diagnosis and staging. However, not all imaging modalities readily 

available for the patients. We note most existing methods focus on developing 
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deep learning models on the modality of images available only. There is a need 

to address the “missing” modality for improved disease diagnosis.  

• Challenge III: lack of innovation and pertinence on architectures for 

emerging applications such as image synthesis. Developing deep learning 

models for image synthesis is an emerging field. The existing models directly 

take the network architectures used in image segmentation for image synthesis 

task. While there are some similarities in these two different tasks, image 

synthesis is more complicated as the prediction for each pixel (voxel) is the 

actual intensity value instead of a label (e.g., 1 indicates within the object, 0 

indicates outside the object). As a result, more information is needed for image 

synthesis, and a new model to tackle imaging synthesis is needed and is 

currently lacking. 

• Challenge IV: lack of consideration for the joint power from different tasks 

in the training procedure. We contend that detection, segmentation and 

classification for the same image or ROI shall share some common 

information/knowledge. However, most existing research is to design and train 

different models for different tasks, separately, failed to recognize the 

complementary nature of the task and potential joint forces from each task for 

improved performances.    

• Challenge V: lack of considering the usage of knowledge captured from 

pre-training procedure in transfer learning. Transfer learning methods 

usually include two separate procedures: pre-training and fine-tuning. Research 

thus far mainly focuses on transferring the features from the pre-training into 
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the fine-tuning and ignores the knowledge captured in the pre-training stage. 

This research is to address this challenge.  

 

1.3. Expected Original Contribution 

The overall objective of this dissertation is to develop innovative deep learning 

methods that overcome the aforementioned limitations and demonstrate their utility in the 

medical imaging applications, including detection, segmentation, classification and image 

synthesis. The expected original contributions include: 

• Development of a deep learning system integrated with free feature 

generator and synthetic image provider for improved diagnosis 

performance: A deep learning system is proposed that adopts a deep CNN 

architecture (ResNet) pre-trained with natural images as a feature generator. 

The system is integrated with a shallow CNN to generate virtual advanced 

modality image as additional feature source and a gradient boosting model as 

classifier. The proposed system, shallow-deep convolutional neural network 

(SD-CNN), shows significant improvement on breast cancer diagnosis. Details 

are discussed in Chapter 2. 

• Development of an advanced deep learning architecture for improved 

image synthesis performance: A new deep CNN architecture for image 

synthesis is proposed. The new architecture addresses the potential issues of 

losing pixel information and gradient vanishing problem faced with other state-

of-art models. The goal is achieved through the novel design of encoder-

decoder architecture and residual inception blocks. The proposed model is 
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validated using two datasets: digital mammography (for breast cancer) and MRI 

(for AD diagnosis). Details are discussed in Chapter 3. 

• Development of a multi-task CNN model to save training efforts and 

improve performance of individual task through combing features from 

parallel task: A feature transfer enabled multi-task deep learning model (FT-

MTL-Net) is developed which combines features from segmentation task to 

further improve classification accuracy. Three contributions come out of the 

FT-MTL-Net. First, to our best knowledge, it may be one of the first fully 

automatic deep learning systems in medical imaging that can be trained end-to-

end through a unified cost function and solve the tasks of tumor detection, 

segmentation, and classification simultaneously. Second, it enables feature 

transfer from a segmentation task to a classification task. The features from both 

high resolution (transferred from segmentation) and low resolution (existing 

features) are adopted to help improve the classification accuracy. Third, the 

features transferred are re-weighted based on the prior knowledge from the 

segmentation probability map; As a result, information from irrelevant regions 

is excluded, and the feature map is representative of the tumor regions only 

Details are discussed in Chapter 4. 

• Development of a CNN model which trained through transfer learning and 

utilizes pre-training task result as additional biomarker for improved 

classification performance:  An age-adjust neural network (AD-Net) is 

proposed. In the AD-NET, we revisit the transfer learning to make the pre-

trained model serves dual purpose: (1) feature transferring: similar to existing 
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research from literature, the pre-trained model without the last layer is used as 

feature extractor; (2) knowledge transferring: the whole pre-trained model is 

kept into the fine-tuning stage to transfer the knowledge captured in the age 

prediction process. Details are discussed in Chapter 5. 

 

1.4. Dissertation Organization 

The proposed dissertation research will be presented in the following four chapters. 

Specifically, Chapter 2 presents the development of topic (I): SD-CNN: a Shallow-Deep 

CNN for Improved Breast Cancer. Chapter 3 presents the development of topic (II): Deep 

Residual Inception Encoder-Decoder Network for Medical Imaging Synthesis. Chapter 4 

presents the development of topic (III): A Feature Transfer Enabled Multi-Task Deep 

Learning Model on Medical Imaging. Chapter 5 presents the development of topic (IV): 

AD-NET: Age-adjust neural network for improved MCI to AD conversion prediction.  
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CHAPTER 2 

SD-CNN: A SHALLOW-DEEP CNN FOR IMPROVED BREAST CANCER 

DIAGNOSIS 

2.1. Introduction 

    Although about 1 in 8 U.S. women (~12%) will develop invasive breast cancer 

over the course of her lifetime (U.S. Breast Cancer Statistics, 2018), breast cancer death 

rates have been steadily and/or significantly decreasing since the implementation of the 

population-based breast cancer screening program in late 1970s due to the early cancer 

detection and the improved cancer treatment methods (Rosenquist & Lindfors, 1998). 

Among the existing imaging modalities, full field digital mammography (FFDM) is the 

only clinically acceptable imaging modality for the population-based breast cancer 

screening, while Ultrasound (US) and Magnetic Resonance Imaging (MRI) are also used 

as adjunct imaging modalities to mammography for certain special subgroups of women 

(Lehrer et al., 2012). However, using FFDM is not an optimal approach in breast cancer 

screening due to its relatively low detection sensitivity in many subgroups of women. For 

example, although FFDM screening has an overall cancer detection accuracy of 0.75 to 

0.85 in the general population, its accuracy in several subgroups of the high-risk women 

including those with positive BRCA (BReast CAncer) mutation or dense breasts decreases 

to 0.30 to 0.50 (Elmore, Armstrong, Lehman, & Fletcher, 2005). On the other hand, using 

dynamic contrast enhanced breast MRI can yield significantly higher cancer detection 

performance due to its ability to detect tumor angiogenesis through contrast enhancement 

and exclude suspicious dense tissues (Warner et al., 2004). Yet, its substantially higher 

cost, lower accessibility and longer imaging scanning time forbids breast MRI being used 
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as a primary imaging modality in breast cancer screening and detection. In addition, lower 

image resolution of breast MRI is a disadvantage as comparing to FFDM.    

In order to combine the advantages of both FFDM and MRI, a new novel imaging 

modality namely, contrast-enhanced digital mammography (CEDM) emerges and starts to 

attract broad research and clinical application interest. CEDM is a recent development of 

digital mammography using the intra-venous injection of an iodinated contrast agent in 

conjunction with a mammography examination. Two techniques have been developed to 

perform CEDM examinations: the temporal subtraction technique with acquisition of high-

energy images before and after contrast medium injection and the dual energy technique 

with acquisition of a pair of low and high-energy images only after contrast medium 

injection. During the exam, a pair of low and high-energy images is obtained after the 

administration of a contrast medium agent. The two images are combined to enhance 

contrast uptake areas and the recombined image is then generated (Fallenberg et al., 2014). 

In CEMD, it has low energy (LE) imaging, which is comparable to routine FFDM and 

recombined imaging similar to breast MRI. Comparing to breast MRI, CEDM exam is 

about 4 times faster with only about 1/6 the cost (Patel et al., 2017). In addition, CEDM 

imaging has 10 times the spatial resolution of breast MRI. Therefore, CEDM can be used 

to more sensitively detect small residual foci of tumor, including calcified Ductal 

Carcinoma in Situ (DCIS), than using MRI (Patel et al., 2017). Several studies including 

prospective clinical trials conducted at Mayo Clinic have indicated that CEDM is a 

promising imaging modality that overcomes tissue overlapping (“masking”) occurred in 

FFDM, provides tumor neovascularity related functional information similar to MRI, while 

maintaining high image resolution of FFDM (Cheung et al., 2014; Fallenberg et al., 2014; 
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Gillman, Toth, & Moy, 2014; Luczyńska et al., 2014). Unfortunately, CEDM as a new 

modality is yet widely available in many other medical centers or breast cancer screening 

facilities in the U.S. and/or across the world limiting its broad clinical impacts.  

In clinical breast imaging (US, MRI, FFDM and CEDM), reading and interpreting 

the images remains a difficult task for radiologists. Currently, breast cancer screening has 

high false positive recall rate (i.e., ≥ 10%). Computer-aided detection (CADe) and 

diagnosis (CADx) schemes (Tan et al., 2014; Carneiro et al., 2017; Gao et al., 2016; 

Muramatsu et al., 2016) have been developed and demonstrated the clinical potentials to 

be used as “the second reader” to help improve radiologists’ performance in the diagnosis. 

In order to overcome the limitation of lower accessibility to CEDM systems and help 

radiologists more accurately conduct the diagnosis, this research proposes the development 

and validation of a new CADx scheme, termed Shallow-Deep Convolutional Neural 

Network (SD-CNN). SD-CNN combines image processing and machine learning 

techniques to improve the malignancy diagnosis using FFDM by taking advantages of 

information available from the CEDM.   

CNN is a feed-forward artificial neural network that has been successfully 

implemented in the broad computer vision areas for decades (Lecun, Bengio, & Hinton, 

2015; LeCun, Bottou, Bengio, & Haffner, 1998). As it evolves, different CNN models have 

been developed and implemented. The computational resource and devices available in 

recent years make the training of CNN with large number of layers (namely, the deep CNN) 

possible. Applying deep CNNs in image recognition was probably first demonstrated in 

ImageNet competition (Russakovsky et al., 2015) back in 2012. Since then, it has become 

a popular model for various applications ranging from natural language processing, image 
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segmentation to medical imaging analysis (Cha et al., 2016; Tajbakhsh et al., 2016, Wang 

et al., 2017). The main power of a deep CNN lies in the tremendous trainable parameters 

in different layers (Eigen, Rolfe, Fergus, & LeCun, 2013; Zeiler & Fergus, 2014). These 

are used to extract discriminative features at different level of abstraction (Tajbakhsh et al., 

2016). However, training a deep CNN often requires a large volume of labeled training 

data, which may not be easily available in medical applications. Secondly, training a deep 

CNN requires massive computational resources, as well as rigorous research in architecture 

design and hyper-parameters tuning. To address these challenges, a promising solution is 

transfer learning (Banerjee et al. 2017), that is, a deep CNN model is trained followed by 

a task-specific parameter fine-tuning process. The trained models are established by 

experienced researchers using publicly labeled image datasets. For a specific task, the 

model is often treated as a feature generator to extract features describing the images from 

abstract level to detailed levels. One can then develop classification models (SVMs, ANNs, 

etc.) using the derived features. Promising results have been reported in several medical 

applications, such as chest pathology identification (Bar, Diamant, Wolf, & Greenspan, 

2015), breast mass detection and classification (Samala et al., 2016), just to name a few. 

While exciting, earlier CNN models such as AlexNet (Krizhevsky, Sutskever, & Hinton, 

2012), GoogLeNet (Simonyan & Zisserman, 2014) and VGGNet (Szegedy et al., 2014) are 

known to suffer from gradient vanishing when the number of layers increases significantly. 

A newer model, ResNet (Kaiming He, Zhang, Ren, & Sun, 2014) with a “short-cut” 

architecture is recently proposed to address the issue. The imaging competition results 

show the ResNet outperforms other CNN models by at least 44% in classification accuracy.  
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The potentials CNN brings to medical imaging research are not limited to deep 

CNN for imaging feature extraction. A second area that medical research can benefit is 

indeed using CNN for synthetic image rendering. Here an image is divided into a number 

of smaller patches fed into a CNN (e.g., 4-layer CNN in this research) as the input and the 

output is a synthetic image. The CNN is trained to learn the non-linear mapping between 

the input and output images. Several successful applications have been reported, such as 

synthesizing positron emission tomography (PET) imaging (Li et al., 2014) or CT image 

(Han, 2017; Nie et al., 2016) from MRI image, and from regular X-ray to bone-suppressed 

recombined X-ray (Yang et al., 2017).  

Motivated by this two-fold applicability of CNN, this research proposes a Shallow-

Deep CNN (SD-CNN) as a new CAD scheme to tackle the unique problem stemmed from 

the novel imaging modality, CEDM, for breast cancer diagnosis. My first hypothesis is that 

applying a deep CNN to CEDM is capable of taking advantage of recombined imaging for 

improved breast lesion classification due to the contribution from the tumor functional 

image features. Second, in order to expand the advantages of CEDM imaging modality to 

the regular FFDM modality, we hypothesize that a shallow CNN is capable to discover the 

nonlinear mapping between LE and recombined images to synthesize the “virtual” 

recombined images. As a result, traditional FFDM can be enriched with the “virtual” 

recombined images. The objective of this study is to validate these two hypotheses by using 

a unique study procedure and two imaging datasets of both CEDM and FFDM images. The 

details of the study procedures and experimental results are reported in the following 

section of this chapter. 
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2.2. Materials 

In this research, two separate datasets are used, which include a dataset acquired 

from tertiary medical center (Mayo Clinic Arizona), and a public dataset from INbreast 

(Moreira et al., 2012).  

 

2.2.1 Institutional Dataset from Mayo Clinic Arizona:  

Based on Institutional Review Board (IRB) approved study and data collection 

protocol, we reviewed CEDM examinations performed using the Hologic Imaging system 

(Bedford, MA, USA) between August 2014 and December 2015. All patients undertaken 

CEDM had a BI-RADS (Breast Imaging Reporting and Data Systems) (Liberman, L. and 

Menell, J.H., 2002) rating of 4 and 5 in their original FFDM screening images. Due to the 

detection of highly suspicious breast lesions, CEDM was offered as an adjunct test to 

biopsy in a clinical trial environment. All CEDM tests were performed prior to the biopsies. 

In summary, the patient cohort in this clinical trial had the following criteria: 1) the 

diagnostic mammogram was rated BI-RADS 4 or 5, and 2) histopathology test result was 

available from surgical or image-guided biopsy. We limited the cohort to BIRADS 4 and 

5 lesions because the analysis required the gold standard of lesion pathology. 49 cases were 

identified that met the above inclusion criteria, which include 23 benign and 26 cancer 

biopsy-proven lesions. We analyzed one lesion per patient. If a patient had multiple 

enhancing lesions, the annotating radiologist used the largest lesion to ensure best feature 

selection. In CEDM, there are cranial-caudal (CC) and mediolateral-oblique (MLO) views 

for both LE and recombined images. Figure 1 illustrates the example views on the LE and 

recombined images, respectively. 
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Figure 1 Example of breast images (Cancer and Benign) for LE and recombined (Rec) 

images with 2 views (CC and MLO) (Lesions are highlighted with green circle). 

 

 

For the 49 cases, all CEDM images with DICOM format were de-identified and 

transferred from the clinical PACS to a research database and loaded into the open source 

image processing tool OsiriX (OsiriX foundation, Geneva, Switzerland) (Rosset, Spadola, 

& Ratib, 2004). DICOM images were anonymized and prepared for blinded reading by a 

radiologist. A fellowship trained breast radiologist with over 8 years of imaging experience 

interpreted the mammogram independently and used the OsiriX tool to outline lesion 

contours. Contours were drawn on recombined images (both CC and MLO views) for each 

patient on recombined images. These contours were then cloned onto LE images. All 

lesions were visible on both view CC and MLO views. This information is further used in 

the imaging pre-processing (see details in methodology section). Some examples LE and 

recombined images are shown in Figure 1. As observed, LE images are not as easy as 

recombined images to visualize the lesions for both cancerous and benign cases.  



  17 

2.2.2 INbreast Public Dataset: 

This dataset was obtained from INbreast, an online accessible full-field digital 

mammographic database (Moreira et al., 2012). INbreast was established by the 

researchers from the Breast Center in CHJKS, Porto, under the permission of both the 

Hospital’s Ethics Committee and the National Committee of Data Protection. The FFDM 

images were acquired from the MammoNovation Siemens system with pixel size of 70 mm 

(microns), and 14-bit contrast resolution. For each subject, both CC and MLO view were 

available. For each image, the annotations of region of interests (ROIs) were made by a 

specialist in the field, and validated by a second specialist. The masks of ROIs were also 

made available. In this research, a dataset of 89 subjects was extracted by including 

subjects that have BI-RADS scores of 1, 2, 5 and 6. Subjects with BI-RADS 1 and 2 are 

regarded as benign tumor, and subjects with BI-RADS 5 and 6 are regarded as cancer. For 

each subject, images of CC and MLO view are used for feature extraction.  

 

Figure 2 Example of breast images for FFDM images from INbrease dataset with 2 views 

(CC on left and MLO on right) (Lesions are highlighted with green circle). 
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2.3. Methodology 

To fully explore the advantages of CNNs and CEDM in breast cancer research, a 

Shallow-Deep CNN (SD-CNN) is proposed (Figure 3). First, we develop a Shallow-CNN 

from CEDM to discover the relationships between LE images and recombined images. 

This Shallow-CNN is then applied to FFDM to render “virtual” recombined images. 

Together with FFDM, a trained Deep-CNN is introduced for feature extraction followed 

by classification models for diagnosis. Note for CEDM, we can start the workflow with the 

Deep-CNN directly. 

 

Figure 3 Architecture of Shallow-Deep CNN. 

 

 

2.3.1 Image Pre-processing 

Before the Deep-CNN and Shallow-CNN are employed, a four-step imaging pre-

processing procedure is launched. First, for each image we identify a minimum-area 

bounding box that contains the tumor region. Specifically, for each tumor, we have a list 

of boundary points with coordinates in pair (x,y) available. The bounding box is decided 

using the (xmin , ymin) and (xmax , ymax) as the two diagonal corner points to ensure the box 

covers the whole tumor area. Note we have CC and MLO views for FFDM and we have 
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CC and MLO views for both LE and recombined images for CEDM. As a result, there are 

two images from FFDM and four images from CEDM. The bounding box size varies case 

by case due to different sizes of tumors (ranging from 65×79 to 1490×2137 in this study).  

Next, an enlarged rectangle that is 1.44 times (1.2 times in width and 1.2 times in height) 

the size of bounding box is obtained. The enlarged bounding box approach is to include 

sufficient neighborhood information proved to increase the classification accuracy (Lévy 

& Jain, 2016). In the second step, this ‘enlarged’ rectangle is extracted and saved as one 

image. The third step is to normalize the image intensity to be between 0 and 1 using the 

max-min normalization. In the last step, the normalized images are resized to 224×224 to 

fully take advantage of trained ResNet model. Here we take the patches that contain tumor 

instead of the whole image as input. This is because the focus of the study is on tumor 

diagnosis and we believe the features generated by the deep-CNN from the tumor region 

shall better characterize the tumor, especially for the cases where the tumor region is small. 

 

2.3.2 Shallow-CNN: Virtual Image Rendering   

Inspired by the biological processes (Elmore et al., 2005), CNNs use a variation of 

multilayer perceptions designed to require minimal preprocessing. Individual neurons 

respond to stimuli only in a restricted region of the visual field known as the receptive field. 

This process is simulated through different layers (convolutional, pooling, fully connected). 

A CNN’s capability is hidden behind the large amount trainable parameters which can be 

learned iteratively through gradient descent algorithms. In this research, a 4-layer CNN is 

implemented to model the latent relationship between the LE images (patches) and 
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recombined images (patches). The model is then used to render “virtual” recombined 

images (patches) from FFDM images (patches).  

 

 

Figure 4 Architecture of 4-layer shallow-CNN for “virtual” recombined image rendering. 

 

2.3.3 Deep-CNN: Feature Generation 

 

Figure 5 Building blocks for traditional CNNs (left) and ResNet (right) (He et al., 2014) 

 

ResNet is a trained deep CNN developed in 2015 with a revolutionary architecture 

using the “short-cut” concept in the building block. As seen in Figure 5, the output of 

building blocks takes both final classification results and the initial inputs (the short-cut) 

when updating the parameters. As a result, it outperforms traditional deep-CNNs which are 
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known to suffer from higher testing error since gradient tends to vanish as the number of 

layers increases (Kaiming He et al., 2014). ResNet has different versions with 50, 101 and 

152 layers but all based on the same building blocks. In the ImageNet competition, ResNet-

50, ResNet-101 and ResNet-152 have comparable performances (top 5 error: 5.25% vs. 

4.60% vs. 4.49%), but with quite different numbers of parameter (0.85M vs. 1.7M vs. 

25.5M). For the consideration of balance between computation efficiency and accuracy, 

especially for the limited computation resources, we adopt ResNet-50 in this research.  

 

Figure 6 Architecture of ResNet (K He, Zhang, & Ren, 2016) (Red star are placed in layers 

where features are extracted; Dotted shortcuts increase feature dimensions by zero-

padding; based on the output dimension of building blocks, the ResNet is divided into 4 

different building blocks (BBs), they are shown with different colors in the figure (BB_1: 

blue, BB_2: orange, BB_3: purple, BB_4: green). Different version of ResNets vary in the 

number of BBs, for instance, the 50-layer version ResNet has 3 BB_1s, 4 BB_2s, 6 BB_3s 

and 3 BB_4s). 

 

In general, ResNet consists of four types of buildings blocks. The CNN structures 

and the number of features for each block are shown in Figure 6. We mark them with 

different colors. For simplicity, let blue for block type 1, orange for block type 2, purple 

for block type 3 and green for block type 4. ResNet-50 is defined as [3, 4, 6, 3] meaning 

that it has 3 type 1 blocks, 4 type 2 blocks, 6 type 3 blocks and 3 type 4 blocks. The output 

features are extracted from the final layer of each block type, that is, layer 10, 22, 40 and 
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49. Since we have no prior knowledge about the feature performance, we decide to take 

the features from all four layers (10, 22, 40 and 49) for the classification model 

development. For each feature map, the mean value is calculated and used to represent the 

whole feature map. The number of features extracted from each layer is listed in Table 1. 

For each view, we have 3840 (256+512+1024+2048) total features.   

 

Table 1 Number of features from each layer for one image. 

Layer # 10 22 40 49 

# of features 256 512 1024 2048 

 

2.3.4 Classification 

Boosting is a machine learning ensemble meta-algorithm aiming to reduce bias and 

variance (Bauer, Kohavi, Chan, Stolfo, & Wolpert, 1999). It converts weak learners to 

strong ones by weighing each training sample inversely correlated to the performance of 

previous weak learners. Gradient boosting trees (GBT) is one of the most powerful 

boosting ensemble decision trees used in regression and classification tasks (Yang et al., 

2017). It builds the model in a stage-wise fashion, and it generalizes them by allowing 

optimization of an arbitrary differentiable loss function. The nature of GBT makes it robust 

to overfitting by measuring the criterion it used when splitting the tree nodes. In addition, 

it provides the importance of each feature in the regression/classification for the ease of 

interpretation which is desirable in the medical applications. In GBT, the feature 

importance is related to the concept of Gini impurity (Rokach et akk., 2008). To compute 
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Gini impurity (IG(𝑝)) for a set of items with J classes, suppose 𝑖 ∈ {1,2,… , 𝐽}, and let 𝑝𝑖 

be the fraction of items labeled with i class in the set, we have:  

IG(𝑝) = 1 − ∑ 𝑝𝑖
2J

i=1                                                (2.1) 

When constructing each decision tree in the boosting classifier, a feature is used to 

divide the parent node into two children nodes based on a threshold. Since the decision tree 

is constructed with the goal being to minimize the overall Gini impurity, the post-splitting 

Gini impurity shall be smaller than the pre-splitting Gini impurity. The reduced Gini 

impurity thus can be used to as a measure of the contribution from the feature in the process 

of splitting the tree. The training procedure is to identify the optimal splitting features that 

offer the maximum impurity reduction (Yang et al., 2017) among the whole feature set. 

The process of building trees serves as feature selection and classification.  

 

2.4. Experiments and Results 

The overall objective of this research is to demonstrate the clinical utility of our 

novel SD-CNN approach for breast cancer diagnosis. Therefore, we conduct two sets of 

experiments. The first experiment is to validate the values from recombined images for 

improved breast cancer diagnosis. Deep CNN, ResNet is applied. The second experiment 

is to investigate the feasibility of applying SD-CNN to enrich the traditional FFDM for 

improved diagnosis. A public FFDM dataset from INbreast is used and the results are 

compared with six state-of-the-art algorithms. 

 



  24 

2.4.1 Experiment I: Validating the Improved Accuracy in Breast Cancer Diagnosis on 

CEDM using Deep-CNN 

The workflow of our first experiment is shown in Figure 7. Using 49 CEDM cases 

collected from Mayo Clinic Arizona, we first conduct the experiments using LE from 

CEDM images. For each subject in the dataset, LE images (both CC and MLO views) are 

processed through pre-processing procedure described in Section 3.3.1, after which 2 

patches (224×224) are extracted. They are fed into the trained ResNet. As features from 

different layers of ResNet describe the image from different scales and aspects, in this 

research, we have all the features fed into the GBT to classify the case as cancer vs. benign. 

The procedures are implemented with a python library named “sklearn”. Different settings 

to prevent the model from overfitting are used. For example, we set maximum depth of 

individual tree to be 3, use early stopping strategy by setting number of decision tree to be 

21, max number of features to be searched for each split is √𝑁 (N is the number of features), 

the minimal number of samples falling in each leaf node is 2. Other settings are set to be 

default.  

 

Figure 7 Workflow of Experiment I. 
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Next, we study the added values from recombined images for improved diagnosis. 

Specifically, CC and MLO view from recombined images are fed into the same pre-

processing and feature generating procedure. The combination of LE and recombined 

image features are used in the classification model. Performance is measured based on 

leave-one-out cross validation to fully use the training dataset which is limited in size. 

Performance metrics are accuracy, sensitivity and specificity, and area under receiver 

operating characteristic curve (AUC) (see Table 2). The ROC curves for two models are 

shown in Figure 8. By using all the LE features generated by ResNet, we obtain the 

accuracy of 0.85 (Sensitivity=0.89 Specificity=0.80) and 0.84 for AUC. With additional 

features from recombined image, the model accuracy is improved to 0.89 (Sensitivity=0.93 

Specificity=0.86) and AUC to 0.91. 

 

Figure 8 Receiver operating characteristic curve for the model using FFDM image only vs. 

FFDM and recombined image. 
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Table 2 Classification Performance of Experiment Using LE Images vs. LE and 

Recombined Images. 

 

Metric LE 
LE and Recombined 

images 

Accuracy 0.85 0.89 

Sensitivity 0.89 0.93 

Specificity 0.80 0.86 

AUC 0.84 0.91 

   

To explore the features contributing to the classification model, we calculated the 

contribution of each feature, and track the source image for each feature. The feature’s 

importance score is measured through calculating the total impurity reduction when 

building the ensemble trees. (Note that the feature importance is calculated inside each 

leave-one-out loop, and the final result is the average for each feature among the loop). 

Table 3 summarizes the importance scores for the features from different sources (LE vs. 

Recombined Image). Here the scores are normalized by dividing individual score with 

summation of all scores. From Table 3, we observe among all the 99 features used in the 

model, 56 are from LE images which contribute 76.84% of the impurity reduction, 43 

features are from recombined images which contribute to 23.16% in the modeling. The 

features from the recombined images help improve the accuracy of breast cancer diagnosis 

from 0.85 to 0.89.  
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Table 3 Contribution of features from different image sources. 

Image Source Number of features 
Contribution of impurity 

reduction 

LE image 56 76.84% 

Recombined 

image 
43 23.16% 

 

2.4.2 Experiment II: Validating the Value of “Virtual” Recombined Imaging in Breast 

Cancer Diagnosis on FFDM Using SD-CNN 

The improved performance by adding the features from recombined images 

motivates us to study the validity of constructing and using the “virtual” recombined 

images from FFDM images for breast cancer diagnosis.  

Here we first develop a 4-layer shallow CNN that learns the nonlinear mapping 

between the LE and recombined images using the same 49 CEDM dataset. CC and MLO 

view images are regarded as separate training data, so a total of 98 images are used, in 

which 5 subjects (10 images) are selected as validation material, and the rest 44 subjects 

(88 images) are sued as training material. By randomly extracting 2500 pair of training 

samples within masked tumor from each LE (input) and recombined image (output), a 

training dataset of 220000 (88×2500) samples is generated. The input samples for the CNN 

are 15×15 patches from LE images, the same input size as in (Li et al., 2016). Considering 

the relatively small receptive field and complexity of a shallow CNN, we set the output 

samples size as 3×3, it is our intention to explore the impact of the different output patch 

size for the breast cancer diagnosis as one of our future tasks. The output patches from 

recombined image are centered in the same position as input patches from the LE image. 

The input and output samples are fed into the CNN framework implemented with package 
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of “Keras”. The CNN has 2 hidden layers, with 10 7*7 filters in each layer. There are 5K 

trainable parameters through backpropagation with mini-batch gradient decent algorithm 

to increase learning speed. Batch size is set to be 128. The learning rate is set to be 0.01, 

ReLu activation function is used in all layers except the output layer, where activation 

function is not used. Other parameters are set to be default by “Keras” package. Finally, 

with the trained CNN and patches extracted from available modality, we can construct a 

“virtual” recombined image by assembling predicted patches into a whole image.  

We use mean squared error (MSE) to evaluate the similarity between the “virtual” 

recombined image and the true recombined image for the 10 images in validation dataset. 

MSE measures the pairwise squared difference in intensity as:  

𝑀𝑆𝐸 =
1

𝑁
∑ |𝑇𝑅𝑒𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑(𝑖) − 𝑉𝑅𝑒𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑(𝑖)|2𝑁
𝑖=1                  (2.2) 

Where N is total number of pixel in the selected patches, TRecombined(i) and 

VRecombined (i) are the intensity values for the same position in patches from the true 

recombined image and corresponding virtual recombined image.  

For the 10 validation images, the MSE is 0.031 (standard deviation is 0.021). For 

illustration purpose, we choose four samples to demonstrate the resulting “virtual” 

recombined images vs. the true recombined images (Figure 9). As seen, the abstract 

features (e.g., shape) and some details of the tumor from true recombined images are 

restored by the “virtual” recombined images.  



  29 

 

Figure 9 Sample images of LE image, true recombined image and its corresponding 

virtual recombined in dataset I. (from left to right: benign, cancer, cancer, cancer). 

 

 

With this trained shallow-CNN, we used the 89 FFDM cases from INbreast dataset 

to render the “virtual” recombined images. Specifically, for each subject, we slide the 

15×15 window from left to right, top to bottom (step size = 1) in FFDM image, to get the 

input patches. The input patches are fed into the trained 4-layer CNN, from which we get 

the predicted virtual recombined image patches (3×3) as outputs. The small patches are 

placed at the same position as their corresponding input patches in the “virtual” recombined 

images. For the position with overlapping pixels, the values are replaced with mean value 

for all overlapping pixels. At last, the “virtual” recombined images are rendered. Figure 10 

illustrates some example FFDM images and their corresponding “virtual” recombined 

images. One clinical advantage of recombined image is it filters out dense tissues which 

often lead to false positive diagnosis. As seen from Figure 10, the “virtual” recombined 

images preserve this advantage. Specifically, dense tissues surrounding tumors are 



  30 

excluded in “virtual” recombined images, making the core region easier to be identified 

(left two cases in Figure 10). For the benign cases on the right, as the suspicious mass is 

mostly filtered out, it is mainly composed of dense tissues.  

 

Figure 10 Sample images of FFDM in dataset II and its corresponding “virtual” recombined 

(Two cases on left are cancerous with BI-RADS = 5, two cases on right are benign with 

BI-RADS=2). 

 

 

Next, following the same procedure as the first experiment, we apply the ResNet 

on the FFDM alone, and on both FFDM and “virtual” recombined images together. ResNet 

is used for feature extraction followed by the GBT ensemble classifiers. The parameter for 

GBT settings is further tuned since the training dataset is slightly imbalanced (benign: 

cancer = 30: 59). The training weights for benign and cancer are set to be 1 and 0.5. 

Numbers of trees set to be 31. Other parameter settings remain the same as the first 

experiment and 10-fold cross validation is used. Figure 11 shows the mean ROC curves 

for the model on FFDM alone vs. the model on FFDM and the “virtual” recombined image. 

The mean AUC for the classifier using FFDM features is 0.87 ± 0.12, while after adding 

the features from virtual recombined image, the AUC is increased to 0.92 ± 0.14. It is 

interesting to observe from Figure 11 that sensitivities (true positive rate) of the two models 
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have similar performance, the specificities (1 – false positive rate) vary greatly. We want 

to highlight the importance of specificity as breast cancer screening has high false positive 

recall rate (i.e., ≥ 10%). One known fact is that the probability that a woman will have at 

least one false positive diagnosis at 10 years screening program is 61.3% with annual and 

41.6% with biennial screening (Michaelson et al., 2016). This will lead to additional MR 

exams (extra cost) and even biopsy. Another side effect is the negative psychological 

impacts. In this research, the use of recombined images (“virtual” recombined images) 

shows the great potential to address these challenges by improving the specificity. In Table 

4, we summarize the model performances in terms of accuracy, sensitivity and specificity 

(threshold is set to be 0.75). While we observe that the model on FFDM vs. the model on 

FFDM and “virtual” recombined image show no significant differences on accuracy, 

sensitivity and even AUC, the performance on specificity shows significant improvements 

(p<0.05).  
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Figure 11 Receiver operating characteristic curve for the model using FFDM image only 

verse FFDM and virtual recombined. 

 

Table 4 Classification Performance of Experiment Using FFDM Imaging vs. FFDM + 

Recombined imaging. 

 

Metric FFDM 
FFDM 

+ Virtual Recombined 
P value 

Accuracy 0.84 ± 0.09 0.90 ± 0.06 0.14 

Sensitivity 0.81 ± 0.16 0.83 ± 0.16 0.91 

Specificity 0.85 ± 0.12 0.94 ± 0.04 < 0.05 

AUC 0.87 ± 0.12 0.92 ± 0.14 0.28 

 

In looking into the contributions from the features (Figure 5), the use of “virtual” 

recombined imaging features improves the performances in terms of both accuracy and 

AUC. Calculation of contribution follows the same procedure as experiment I and is 

conducted inside each cross-validation loop. Among all the 154 features used in this 

experiment, 87 are from the “virtual” recombined image, which contribute 77.67% of the 
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total impurity reduction. The rest 67 features are from LE images, and they contributed the 

rest 22.33% impurity reduction. It is interesting to observe from this experiment that the 

contributions from “virtual” recombined images are higher than the contributions from the 

true recombined images from the first experiment. One reason may be the second dataset 

has denser tissue cases and it is believed recombined images shall be more useful in 

diagnosing the dense breast cases. This is yet to be confirmed with the radiologists which 

is our immediate next step.  

 

Table 5 Contribution of features from different image sources. 

Image Source Number of features 
Contribution of impurity 

reduction 

LE image 67 22.33% 

Virtual 

Recombined image 
87 77.67% 

 

We further explore the state-of-the-art algorithms using the same INbreast dataset 

and compare our methods against the eight methods from the literature (see Table 6). As 

seen, our approach using “virtual” recombined image outperforms six algorithms in terms 

of both accuracy and AUC. We want to highlight that one of papers by Dhungel et al. (2017) 

proposes four approaches. Among the four, the best performer has a 0.95 in accuracy and 

0.91 in AUC, and the second performer has a 0.91 in accuracy and 0.87 in AUC. We 

conclude our approach has better AUC (0.92) comparing to both while inferior in accuracy 

(0.90). We contend that indeed, AUC is a more robust metric in the medical research and 

it is considered to be more consistent and have better discriminatory power comparing to 

accuracy (Huang et al. 2005). 
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Table 6 Classification performance for using FFDM feature alone and using features 

from FFDM and “virtual” recombined and other state-of-the-art methods using INbreast 

dataset. 

Method ACC. AUC 

Random Forest on features from CNN with 

pre-training 

(Dhungel, Carneiro, & Bradley, 2017) 

0.95±0.05 0.91±0.12 

CNN + hand crafted features pre-training 

(Dhungel et al., 2017) 

0.91±0.06 0.87±0.06 

Random Forest + hand crafted features pre-

training (Dhungel, Carneiro, & Bradley, 

2015) 

0.90±0.02 0.80±0.15 

CNN without hand crafted features pre-

training (Dhungel et al., 2017)(Dhungel et 

al., 2017) 

0.72±0.16 0.82±0.07 

Multilayer perceptron (Sasikala, 2016) 
0.88 0.89 

Lib SVM (Diz, Marreiros, & Freitas, 2016) 
0.89 0.90 

Multi-kernel classifier (Augusto, 2014) 
NA 0.87 

Linear Discriminant analysis (Domingues et 

al., 2012) 

0.89 NA 

Our proposed approach on FFDM only 
0.84±0.09 0.87±0.12 

Our proposed approach on both FFDM and 

“virtual” Recombined Image 

0.90±0.06 0.92±0.14 

 

 

2.5 Discussion and Conclusion 

Differentiating benign cases from malignant lesions is one of the remaining 

challenges of breast cancer diagnosis. In this study, we propose a SD-CNN (Shallow-Deep 

CNN) to study the two-fold applicability of CNN to improve the breast cancer diagnosis. 

One contribution of this study is to investigate the advantages of recombined images from 

CEDM in helping the diagnosis of breast lesions using a Deep-CNN method. CEDM is a 
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promising imaging modality providing information from standard FFDM combined with 

enhancement characteristics related to neoangiogenesis (similar to MRI). Based on our 

review of literature, no existing study has investigated the extent of CEDM imaging 

potentials using the deep-CNN. Using the state-of-art trained ResNet as a feature generator 

for classification modeling, our experiment shows the features from LE images can achieve 

accuracy of 0.85 and AUC of 0.84, adding the recombined imaging features, model 

performance improves to accuracy of 0.89 with AUC of 0.91. 

Our second contribution lies in addressing the limited accessibility of CEDM and 

developing SD-CNN to improve the breast cancer diagnosis using FFDM in general. This 

the first study to develop a 4-layer shallow CNN to discover the nonlinear association 

between LE and recombined images from CEDM. The 4-layer shallow-CNN can be 

applied to render “virtual” recombined images from FFDM images to fully take advantage 

of the CEDM in improved breast cancer diagnosis. Our experiment on 89 FFDM dataset 

using the same trained ResNet achieves accuracy of 0.84 with AUC of 0.87. With the 

“virtual” recombined imaging features, the model performance is improved to accuracy of 

0.90 with AUC of 0.92. 

While promising, there is room for future work. First of all, the trained ResNet is a 

black-box feature generator and the features extracted may not be easy to be interpreted by 

the physicians. It is our intention to discover possible clinical interpretations from the 

features as one of our future tasks. For example, as the ResNet goes deeper, initial layers 

may represent the raw imaging characteristics as the first order statistics, the deeper layer 

of the features may represent the morphological characteristics (e.g., shape). This is yet to 

be explored. A second future work is related to the patch sizes. We plan to assess impacts 
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of the different sized patches for both input and output images on the breast cancer 

diagnosis. 
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CHAPTER 3 

DEEP RESIDUAL INCEPTION ENCODER-DECODER NETWORK FOR IMAGE 

SYNTHESIS 

3.1. Introduction 

During the last decade, precision medicine as an approach considering individual 

variability in the diagnosis and treatment has emerged as a novel paradigm for healthcare. 

One cornerstone for precision medicine is medical imaging. Tremendous efforts have been 

dedicated to medical imaging research which in general can be categorized in four areas: 

imaging-based classification, imaging object detection, imaging segmentation and imaging 

synthesizing. The emerging Convolutional Neural Network (CNN) has been successfully 

introduced into all these areas with different focuses (Greenspan, Ginneken, & Summers, 

2016). Imaging classification and detection work on the object of interest (e.g., tumor). 

Specifically, classification is to categorize the object, for example, to be benign vs. 

malignant, in which the entire image or the extracted region of interest (ROI) is fed into a 

CNN, with one or more probabilities or class labels as the outputs. As early as 1996, a 4-

layer CNN is implemented to classify regions of interest (ROIs) from mammogram as 

either biopsy-proven masses or normal tissues (Sahiner et al., 1996). Since then different 

CNNs have been introduced for various classification tasks including breast lesion (Araujo 

et al., 2017; Huynh, Li, & Giger, 2016a), lung pattern (Microbiana et al., 2016), skin lesion 

(Yap, Yolland, & Tschandl, 2018) or pulmonary peri-fissural nodules (Ciompi et al., 2015), 

just name a few. The task of detection is to derive an envelope box to enclose the object. 

In the area of detection, bounding boxes or patches centered on the candidate objects are 

identified and CNN-based detectors are trained to find boxes that truly contain desired 
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objects. Applications include colonic polyps in CT images (Roth et al., 2016), cerebral 

microbleeds from MRI scans (Dou et al., 2016), and nuclei in histopathological images 

(Sirinukunwattana et al., 2016). Please note both classification and detection are interested 

in the objects thus the requirement on the pixel level details could be much relaxed.  

There is another category of problems known as dense prediction. It requires the 

pixel-level specifics and that is the research focus from imaging segmentation and 

synthesis. In segmentation, a probability map that quantifies the likelihood of each pixel 

being within the imaging object (e.g., tumor) is generated. Successful implementations 

have been reported in brain tumor/structures segmentation (Havaei et al., 2017; Zhang et 

al., 2015; Zhao et al., 2018), epithelial tissue in prostatectomy (Bulten, Litjens, Hulsbergen-

van de Kaa, & van der Laak, 2018), etc. In another application (Zhang et al., 2015), a four 

layer CNN is designed to take T1, T2 Magnetic Resonance images (MRI) and Fractional 

Anisotropy (FA) image as inputs and the outputs are the segmentation maps for three types 

of tissues, namely white matter, gray matter and cerebrospinal fluid. To do so, a local 

response normalization layer is implemented between the convolutional layer and the final 

fully connected layer to enforce competitions between features at the same spatial location 

across different feature maps and thus improve the segmentation results. A fully 

convolutional neural network (FCNN) collaborated with random fields in a unified 

framework is proposed to segment brain tumor regions in MRI images(Zhao et al., 2018). 

The same FCNN is introduced in another task of epithelial tissue segmentation  (Bulten et 

al., 2018). In another application (Havaei et al., 2017), a two-pathway CNN architecture is 

proposed to harvest both local features and global contextual features simultaneously and 

improve the brain tumor segmentation result. As research on exploring CNN on 
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segmentation progresses, a notable new architecture, U-Net (Ronneberger, Fischer, & Brox, 

2015) emerges. One application of U-Net is to segment neuronal structures in electron 

microscopic stacks. The novel design of a contracting path to capture context and a 

symmetric expanding path to enable precise localization improve the segmentation 

performance significantly (Ronneberger et al., 2015). Following the success, U-Net and its 

variants are studied in a number of medical imaging segmentation problems. For instance, 

it is implemented for joint craniomaxillofacial bone segmentation and landmark 

digitization (Shen, Tang, Chen, J.Xia, & Shen, 2018). A 3D U-Net is proposed in 

volumetric imaging segmentation for Xenopus kidney (Liu, Li, Luo, Loy, & Tang, 2016). 

V-Net (Milletari, Navab, & Ahmadi, 2016), an extension of U-Nets with added shortcut 

connections between different layers, is introduced to segment prostate from 3D volumetric 

images.  

Imaging systhtesis tackles a different dense prediction problem. It is to discover the 

pixel-wise nonlinear associations between the input images and the output images. Imaging 

synthesis has great potentials in medical applications, especially in the scenarios where 

some imaging modalities may be of limited access or missing due to various reasons such 

as cost (Litjens et al., 2017). As a new field, to the best of our knowledge, the very first 

published literature may be from Li (Li et al., 2014). To test the innovative idea, a 4-layer 

shallow network, is developed to map the Positron Emission Tomography (PET) images 

from MRI. Improved diagnosis accuracy is observed after using the combination of MRI 

and synthetic PET for Alzheimer’s disease. In another research (Yang et al., 2017), a 4-

layer CNN is designed to reconstruct dual-energy subtraction soft-tissue chest image from 

a multi-scale gradient imaging of the original chest radiograph image. Another interesting 
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effort is related to breast cancer research. Full Field Digital Mammography (FFDM) is the 

mainstay in breast cancer screening program but is known to suffer from diagnosis 

accuracy. Contrast Enhanced Digital Mammography (CEDM) is a recent development 

mammography which has a low energy imaging comparable to FFDM and recombined 

imaging taking advantage of high-energy images (Patel et al., 2017). While promising, as 

a new modality, CEDM has not been widely available in many medical centers in the U.S. 

and worldwide. To tackle this accessibility issue, a SD-CNN (Gao et al., 2018) is proposed 

to render synthetic recombined images from FFDM thus significantly improve the breast 

cancer diagnosis using FFDM. Similarly, a 4-layer CNN is implemented to map the low 

energy (FFDM) images to the recombined images (Gao et al., 2018). The research 

reviewed above is taking the proof-of-the-concept approach exploring the applicability of 

4-layer network in imaging synthesis. The aforementioned 4-layer network is shallow and 

simpler compared to deep networks used in imaging classification, detection and 

segmentation. Therefore, most research only handles the images by taking small patches 

from the ROIs extracted through the images. For example, in  the experiments of some 

research (Gao et al., 2018; Li et al., 2014), most ROIs are smaller than 400×600 pixels and 

the size of training patches is 15×15 pixels. We contend this approach may work well for 

smaller images or under the condition where ROI is provided. For the later cases, the 

involvement from domain experts (e.g. radiologist) is required. An ideal solution for 

synthetic imaging is a CNN capable to handle the whole image. A shallow network with 

limited learning power may suffer while a deep network may be the promising network to 

be explored. This is because a deep network has much more layers and trainable parameters, 

thus is better equipped to learn the complicated associations between input and output 
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image at the whole image scale. 

Given imaging segmentation and synthesis share the common interest on the pixel 

level details, the satisfying performance of U-Net in segmentation makes it a potential 

approach for the synthetic imaging research. There is an initial attempt in this direction. 

For instance, a 27-layer sCT-DCNN (Han, 2017a) borrowing the ‘copy and crop’ idea from 

U-Net is implemented to generate virtual CT images from MRI images of same subjects. 

Significantly improved synthetic results are achieved compared with the traditional atlas-

based method. It is worth mentioning that in this research, 128×128×160 CT images are 

rendered from 256×256×256 MR images. The lowered synthetic imaging resolution makes 

the max pooling a viable approach. In the max pooling, each grid (e.g., a group of 4 

neighboring pixels) is represented by a single value (maximum value) in its subsequent 

feature map. This maximization operation may keep the pixel-level specifics to some extent. 

In the application where the input images and output images are of similar resolutions, the 

performance of approach in (Han, 2017a) may not be guaranteed.  

In this research, we propose a new deep CNN, named Residual Inception Encoder-

Decoder Net (RIED-Net). Noting the max pooling generates one pixel (the max) from 

neighborhood pixels (e.g., 4) during the encoding process, we introduce convolutional 

layers to learn the “optimal” contributions from each pixel within the neighborhood in 

generating the next layer pixel. Similarly, during the decoding process, respective 

deconvolution layers are added to learn the “optimal” weights aligned from the pixel into 

the pixel neighbors in the next layers. By doing so, pixel-level information is preserved 

precisely by the learnable filters. While the convolution and deconvolution add the value 

in synthetic imaging, the added layers may lead to the issues of gradient vanishing or 
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degradation, which is long being criticized from very deep networks (K He et al., 2016; 

Kaiming He, 2015; Srivastava, Greff, & Schmidhuber, 2015). Res-Net has been proposed 

to show promising results in building deep CNNs to avoid the aforementioned problems 

by its short-cut connection (K He et al., 2016). Motivated by this, a residual inception block 

is introduced to our deep network resulting RIED-Net. Two separate datasets are used to 

evaluate our proposed method, which include a CEDM dataset acquired from tertiary 

medical center (Mayo Clinic Arizona), and a public dataset from Alzheimer’s Disease 

Neuroimaging Initiative (ADNI). We compare our proposed RIED-Net against two 

benchmark methods: shallow-CNN (Gao et al., 2018) and sCT-DCNN (Han, 2017a). Three 

metrics from the literature are adopted for the comparison: Structural Similarity Index 

(SSIM), Mean Absolute Error (MAE) and Peak Signal-To-Noise Ratio (PSNR).  

Experimental results show that RIED-Net outperforms the two competitors on both 

datasets.  

 

3.2. Background 

3.2.1. U-Net and Dense Prediction Problem 

 

CNNs have been successfully implemented to tackle different machine learning and 

computer vision problems. Improved performance has been achieved in imaging 

classification and object detection tasks (Kaiming He et al., 2014; Simonyan & Zisserman, 

2014; Szegedy et al., 2014). Researchers further extend this success to imaging 

segmentation, a dense prediction problem, and U-Net (Ronneberger et al., 2015) is a 

representative model. U-Net and its variants have been applied to various segmentation 

problems such as joint craniomaxillofacial bone segmentation and landmark 
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digitization(Shen et al., 2018), volumetric imaging segmentation for Xenopus kidney (Liu 

et al., 2016) and segment prostate from 3D volumetric images (Milletari et al., 2016). Most 

recently, U-Net is introduced to the synthetic imaging (Han, 2017a). One example is sCT-

DCNN (see Figure 12). It consists of an encoding path (left side) and a decoding path (right 

side), the contracting path (represented with black arrow from left pointing right) is added 

to transfer additional input features from encoding layer to corresponding decoding layers 

by copying and pasting the entire feature maps. During the encoding and decoding process, 

max pooling and unpooling are applied. Max pooling is a common approach to reduce the 

spatial resolution and increase the receptive fields in the CNN models. During the max 

pooling operation, the input representation’s dimensionality is reduced by replacing each 

n ×n matrix (n is the pooling size) with one single value (e.g., maximum value) in the 

output representation maps. After several iterations of pooling operations, the high 

dimensional input image is represented by a set of feature maps of reduced spatial 

resolution. Taking Figure 12 as an example, after the 4th max poling layer (the 4th red box 

from left), the original image (256×256×1) is compressed to a 16×16×512 feature maps, 

each pixel within the feature map representing a region of 16×16 (256/16) within the input 

image.  
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Figure 12 Architecture of sCT DCNN proposed in (Han, 2017a) (Each blue box represents 

a (3×3) convolutional operation (with a rectified linear unit (ReLu) as the activation 

function). Each red box denotes a max-pooling operation, and each purple box denotes an 

unpooling operation. Each white box denotes a copying layer. The sizes 

(width×height×number of channels) of the feature map (blue boxes) at each level are 

provided at the top of blue box in each level. The green box denotes the final 1×1 

convolution operation that generates the output sCT prediction). 

 

Max pooling may be desirable for imaging classification and detection problems 

where the outcome is a prediction on the interested object as a whole. As we discussed 

earlier, dense prediction problem differs as it requires preserving the pixel-level details 

(Chen et al., 2017). As a result, max pooling used in a dense prediction problem may face 

the challenges of losing pixel information. Recognizing this problem, fully convolutional 

networks (FCNs) (Long, Shelhamer, & Darrell, 2015) is proposed to enrage the feature 

maps through bilinear interpolation, and in (Noh, Hong, & Han, 2015) , unpooling layer is 

introduced. Specifically, when doing the max pooling operation within a grid, the location 

of pixel with maximum intensity is recorded. In the corresponding unpooling layer, output 

feature map is enlarged from the input map, the recorded position within output feature 
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map is filled with corresponding values from input map, and the rest positions are placed 

with zeros (zero padding). As pointed out by (Chen et al., 2017; Liu et al., 2016), unpooling 

suffers from the loss of information due to the excessive use of dimension reduction and 

zero paddings. We want to highlight another potential issue of the max pooling and 

unpooling approach. That is, the max pooling operation keeps the location of the pixels 

with maximum contrast compared with its neighbors and the position the pixel back to the 

same location in the corresponding unpooling operation. The underlying assumption is that 

the pixels from the input image with high contrast remain at the same positions throughout 

different layered feature maps thus the output image. This may not be true in image 

synthesis where the input image and output image are from two different modalities, same 

region in location from two images may show different appearances (Morris, 2016). One 

possible solution is the use of convolutional and deconvolutional layers with the learnable 

filters to better record the compression information during the encoding process and de-

compression information during the decoding process. This is reviewed in the next 

subsection. 

 

3.2.2. Convolutional and Deconvolutional Layers 

The convolutional layer is the core building block of a CNN. A set of learnable 

filters are included in the convolutional layer to compute the convolved value as the filters 

slide through all the pixels. Often, the filters slide a single pixel per step (stride = 1) to keep 

spatial resolution of input and output feature maps the same (Krizhevsky et al., 2012; 

Szegedy et al., 2014). By setting different strides, the filter can jump several pixels and 

thus result an output feature map of reduced spatial resolution such as the networks 
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proposed in (Milletari et al., 2016; Sermanet et al., 2013). In parallel, as in (Noh et al., 

2015), the deconvolution layer associates one single input with multiple outputs and is used 

as the reserve operation of convolution layer to enlarge and densify the outputs.  

For illustration purpose, an example of convolution and deconvolution is shown in 

Figure 13. As seen, using convolution operation, the value of each pixel (e.g. C4’) in the 

output map equals to the convolve result of its corresponding area (C) in input map and a 

learnable filter (W). As a result, the value of each pixel in the output map is a weighted 

summation of all corresponding input pixels. In deconvolution operation, the values of an 

output region equal to the pairwise multiplication of its corresponding pixel (D3’) in input 

map with the filter (W’). By learning the optimal filters (W and W’) in training the network 

model, the pixel-information shall be better preserved in encoding and decoding process. 

However, as the network is getting deeper with added convolution and 

deconvolution layers, potential issues such as gradient vanishing or degradation may 

emerges. We will review short-cut idea from Res-Net to address these problems in the next 

section. 

 
Figure 13 Illustration of convolution and deconvolution operations. 
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3.2.3. Residual Inception Short-cut Block  

Deep networks integrate features from multiple levels and classifiers in an end-to-

end multilayer fashion, and the levels of features are enriched by the number of stacked 

layers (depth). The stacked convolutional layers (e.g. 56-layer) tend to underperform its 

shallower counterparts (e.g. 20-layer) due to the gradient vanishing/exploding issue, as 

millions of parameters in deep networks are updated based on a single value of error 

gradient (K He et al., 2016). The error gradient, calculated based on the prediction result 

from the last layer and the earlier layers tends to be less sensitive to the error gradient, as 

the it gets smaller and less accurate when being referred backwards through the layers 

(Chollet, 2017; Szegedy, Ioffe, Vanhoucke, & Alemi, 2016a).  

One interesting idea to preserve gradient over a deep network is residual shortcut 

connection (K He et al., 2016). Let x be the input image/feature map, in residual shortcut 

block, let H(x) denotes the desired non-linear mapping between the input and output of the 

residual block, instead of directly estimating H, the residual mapping F(x) is estimated by 

the learnable filters within the 2 convolutional layers, and the original mapping can be 

recast into F(x)+ x. Different experiments have been conducted to justify the advantages 

of this residual mapping in imaging classification problems (Chen et al., 2017; Xie, 

Girshick, Dollár, Tu, & He, 2016). Residual shortcut design also achieves extended success 

in segmentation (Fakhry, Zeng, & Ji, 2016; Milletari et al., 2016). But, the shortcut design 

requires the input (x) and output (H(x)) are of the same size for pixel-wise summation. The 

strict requirement limits its applications, especially for architecture such as U-Net and sCT-

DCNN. In looking into deep learning models handling input and output with varied sizes, 

another interesting idea emerges, that is, inception (Szegedy et al., 2014, 2016a). Indeed, 
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the primary goal of inception is to reduce the computational burden and improve 

classification accuracy. In the inception structure, different inception paths (the number of 

convolutional layers is different in each path) spread out from the same input, and then 

combined together to approximate a sparse CNN with normal dense construction. In its 

variants (Chollet, 2017; Szegedy et al., 2016a), the inception layer is combined with the 

residual short cut to improve performance. Realizing the potential from Inception in 

handling input-output with varied sizes, we propose to incorporate Inception to the residual 

shortcut model for imaging synthesis in this research.  

In summary, U-Net and its variants have shown great performances in imaging 

segmentation and synthesis and thus having been the dominating network models. 

However, we argue the max pooling and unpooling layers leave it the risk of losing pixel 

information and impaired prediction accuracy. Additional layers such as convolutional and 

deconvolution layers to preserve the pixel specifics are needed. As the network gets deeper, 

it comes with challenges such as decreased accuracy because of gradient vanishing or 

degradation. A generalized shortcut model is of necessary. In this research, we propose an 

integrated deep model termed Residual Inception Encoder-Decoder Neural Network 

(RIED-Net) to serve the purpose. 

 

3.3. RIED-Net 

In our proposed Residual Inception Encoder-Decoder Neural Network (RIED-Net), 

the ‘copy and crop’ idea and a symmetric expanding path are added to capture the context 

features. Convolutional layers and deconvolutional layers are created as learnable filters so 

the pixel information can be traced in both the encoding and decoding procedure. In 
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addition, the inception residual block is proposed to address issues raised from networks 

getting deeper. 

 

Figure 14 Architecture of RIED-Net. 

 

As seen in Figure 14, each brown arrow represents a 3×3 convolutional operation 

(with a rectified linear unit (ReLu) as the activation function (Conv 3×3, ReLu)). Each red 

arrow denotes a 3×3 convolutional operation (stride = 2, with a ReLu as the activation 

function), each orange arrow denotes a 1×1 convolutional operation (with a ReLu as the 

activation function) and each green arrow denotes a 3×3 deconvolution operation (stride = 

2, with a ReLu as the activation function). Each black dotted arrow denotes a copying 

operation. The final purple arrow denotes the final 1×1 convolution operation that 

generates the output of synthetic images. The depth (number of channels) of the feature 

map from each convolution layer is provided at the bottom of each blue box. Examples of 

feature maps from different levels are also displayed. There are 9 residual inception blocks 



  50 

(block 1- 9) in RIED-Net. The residual inception blocks take a new architecture (see Figure 

15). It consists of one traditional convolutional path with two 3×3 convolutional layers as 

sCT-DCNN or U-Net, and a unique residual inception short-cut path with a 1×1 

convolutional layer. The 1×1 convolutional layer is implemented to increase (during 

encoding) or decrease (during decoding) the filter depth and project the input feature map 

into the same space as output to ensure the pixel-wise summation. In the traditional 2-layer 

convolution block, given the input image/feature map x, assume the desired mapping fitted 

by stacked nonlinear layers fitting is H(x). After introducing a residual inception shortcut 

with one single convolution layer, H(x) can be estimated as F(x) + G(x) in the proposed 

residual inception block. In this way, H(x) is estimated simultaneously using features from 

2 different levels, which will improve the accuracy as more features are introduced 

(Szegedy et al., 2014). Besides, G(x) can be regarded as a projection/estimation of x 

(Chollet, 2017), following the same hypothesis that has been proven in (K He et al., 2016; 

Szegedy, Ioffe, Vanhoucke, & Alemi, 2016b), the residual mapping F(x) and projecting 

mapping G(x) are much easier to optimize and resulting in a more accurate results than the 

original mapping H(x). Compared with traditional residual shortcut block, our proposed 

residual inception block deals with the problem that input feature map has different channel 

from the output feature maps. It is simpler and easier to deploy than other state-of-art 

residual inception designs. 
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Figure 15 Schema for original convolution block and proposed residual inception (Note 

that in traditional convolution block, the input x and output H(x) has different number of 

channels which makes the directly residual shortcut inapplicable). 

 

 

3.4. Experimental Validation 

In this section, we conduct two experiments to validate the performance of RIED-

Net using digital mammography dataset from Mayo Clinic and a public neuroimaging 

dataset from Alzheimer’s disease Neuroimaging Initiative (ADNI)(Weiner et al., 2016) 

 

3.4.1. Evaluation Metrics 

Given the ground truth image 𝐼1
𝒎×𝑛 and its synthetic image  𝐼2

𝒎×𝑛 produced by a 

model, three commonly used metrics from literature (Chen et al., 2017; Han, 2017a) that 

quantify the similarity between the ground truth image and synthetic image are employed 

to evaluate the synthesis performance. These three metrics, i.e., mean absolute error (MAE), 

structural similarity index (SSIM), and peak signal-to-noise ratio (PSNR). 
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3.4.1.1. Mean absolute error 

Mean absolute error (MAE) is to measure pixel-wise intensity absolute difference 

between ground truth image and predicted image. It is also widely used as cost function for 

various regression models. The MAE between image I_1 and image I_2 is calculated 

through the following formula, 

𝑀𝐴𝐸 =
1

𝑚𝑛
∑ ∑ |𝐼1(𝑖, 𝑗) − 𝐼2(𝑖, 𝑗)|

𝑛−1
𝑗=0

𝑚−1
𝑖=0                                    (3.1) 

with 

𝑰𝟏(𝒊, 𝒋) the intensity value at position (i, j) of image I1;  

𝑰𝟐(𝒊, 𝒋) the intensity value at position (i, j) of image I2; 

m/n the width/height of image I1 and I2. 

 

3.4.1.2. Structural similarity index 

SSIM (Wang, Bovik, Sheikh, & Simoncelli, 2004) is a metric used for measuring 

the similarity between two images (ground truth image and predicted image). It 

compares the local patterns of pixels’ intensity that have been normalized for 

luminance and contrast. A higher value means the higher similarity of the 

reconstruction. The SSIM between image I1 and image I2 can be calculated through 

the following formula: 

𝑆𝑆𝐼𝑀 =
(2𝜇𝐼1𝜇𝐼2+𝑐1 )(2𝜎𝐼1𝐼2+𝑐2)

(𝜇𝐼1
2 +𝜇𝐼2

2 +𝑐1)(𝜎𝐼1
2 +𝜎𝐼2

2 +𝑐2)
                                               (3.2) 

with  

𝜇𝐼1: the average intensity of image I1; 
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𝜇𝐼2: the average intensity of image I2; 

𝜎𝐼1
2 : the intensity variance of image I1; 

𝜎𝐼2
2 : the intensity variance of image I2; 

𝜎𝐼1𝐼2: the covariance between all intensity values in image I1 and image I2; 

𝑐1 = (𝑘1𝐿)
2, 𝑐2 = (𝑘2𝐿)

2 : two variables to stabilize the division with weak denominator; 

L is the dynamic range of the pixel-value (typically this is 2#bits per pixel − 1 , in 

experiment I and II, we set L equals to 4095 and 255 respectively); k1=0.01, k2=0.03 are 

default values. 

 

3.4.1.3. Peak signal-to-noise ratio 

PSNR is a metric to assess image quality and distortion. It is the ratio between the 

maximum possible power of a signal and the power of corrupting noise that affects the 

fidelity of its representation. Because many signals have a wide dynamic range, PSNR is 

usually expressed in terms of the logarithmic decibel scale. A higher value usually indicates 

a better reconstruction. The PSNR between image I1 and image I2 is be calculated through 

the following formula: 

𝑃𝑆𝑁𝑅 = 20 𝑙𝑜𝑔10(𝑀𝐴𝑋𝐼) − 10 𝑙𝑜𝑔10(𝑀𝑆𝐸)                            (3.3) 

where 

𝑀𝑆𝐸 =
1

𝑚𝑛
∑ ∑ [𝐼1(𝑖, 𝑗) − 𝐼2(𝑖, 𝑗)]

2𝑛−1
𝑗=0

𝑚−1
𝑖=0                             (3.4) 

𝑀𝐴𝑋𝐼: the maximum possible pixel value of image I1 and image I2. 



  54 

We conduct two sets of experiments to compare against the methods from the 

literature in terms of these three metrics. The first experiment is on breast cancer diagnosis 

and the second is on Alzheimer Disease Staging. 

 

3.4.2. Experiment I: Case Study on Breast Cancer 

 

Breast cancer is a worldwide leading type of cancer in women accounting for 25% 

of all cancer cases. In 2012, it resulted in 1.68 million new cases and over 0.52 million 

deaths. According to the U.S. Breast Cancer Statistics 2018, about 1 in 8 U.S. women 

(~12%) will develop invasive breast cancer over the course of her lifetime. Full field digital 

mammography (FFDM) is the only clinically acceptable imaging modality for the 

population-based breast cancer screening among existing imaging modalities (Lehrer et al., 

2012). However, using FFDM is not an optimal approach in breast cancer screening due to 

its relatively low detection sensitivity in many subgroups of women (Elmore et al., 2005). 

Using dynamic contrast enhanced breast MRI may yield significantly higher cancer 

detection sensitivity, but its substantially higher cost, lower accessibility and longer 

imaging scanning time forbids breast MRI being used as a primary imaging modality in 

breast cancer screening and detection (Warner et al., 2004). In addition, lower image 

resolution of breast MRI is a disadvantage as comparing to FFDM.  

To combine the advantages of both FFDM and MRI, a new novel imaging modality 

namely, contrast-enhanced digital mammography (CEDM) emerges which uses the intra-

venous injection of an iodinated contrast agent in conjunction with a mammography 

examination. CEDM includes low energy (LE) imaging, which is comparable to routine 

FFDM (Francescone et al., 2014) and recombined imaging similar to breast MRI. 
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Comparing to breast MRI, CEDM exam is about 4 times faster with only about 1/6 the cost 

(Patel et al., 2017), and has 10 times the spatial resolution of breast MRI. Several studies 

including prospective clinical trials conducted at Mayo Clinic have indicated that CEDM 

is a promising imaging modality that overcomes tissue overlapping (“masking”) occurred 

in FFDM, provides tumor neovascularity related functional information similar to MRI, 

while maintaining high image resolution of FFDM (Cheung et al., 2014; Fallenberg et al., 

2014; Gillman et al., 2014; Luczyńska et al., 2014).  

In this experiment, we evaluate the performance of REID-Net in mapping the LE 

images to the recombined images. Its performance is compared with other two state-of-art 

methods in medical image synthesis. 

 

3.4.2.1. Dataset 

 

 

Table 7 Detailed imaging features for the CEDM dataset. 

Feature Name Value (Pixels) 

Width 2560 

Height 3328 

Intensity Range 0-4095 

 

 

Based on Institutional Review Board (IRB) approved study and data collection 

protocol, we review CEDM examinations performed using the Hologic Imaging system 

(Bedford, MA, USA) between August 2014 and December 2015. A total of 139 subjects 

are collected. In CEDM dataset for each subject, there are cranial-caudal (CC) and 

mediolateral-oblique (MLO) views for both LE and recombined images. Examples for the 

images are shown in Figure 16. More details about the images can be found in Table 7. 

Among the dataset, 112 (80%) subjects are randomly selected as training dataset, the rest 
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27 (20%) subjects are used for blind test. For each subject, CC view and MLO view images 

are treated as two separate training images, which results in a dataset of 224 (112×2) 

training images and 54 testing images (27×2).  

 

 

Figure 16 Examples of images in CEDM dataset. 

 

3.4.2.2. Image processing 

It is a common approach to extract patches from images as training samples to 

address the shortage of training dataset (Gao et al., 2018; Han, 2017a). However, the size 

of patches varies case by case. Larger patches require more memory for calculation, while 

small patches allow the network to see only little context. In the experiment, we want to 

make the training patches as large as possible in the range of GPU memory, and the largest 

patches we afford is 128×128, in alignment with dataset size. After patches size is set, 

training samples are extracted from the images in the step size of 8 in each dimension, and 

patches outside the breast boundary are excluded. As a result, a dataset of 65800 patches 

are obtained from the 112 training subjects. Among these 65800 patches, 59220 (90%) are 

used as training samples, and the rest 6580 (10%) are used as validation samples to tune 

the parameters. An ‘optimal’ parameter setting is decided based on the best validation 
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result. Specifically, the overall architecture is implemented with programming language 

Python, and libraries including Keras and Tensorflow. Mean absolute error (MSE) is used 

as loss function and Adam (Kingma & Ba, 2014) is used as the optimizer.  Learning rate is 

set to be 0.002 with learning rate decay equals to 0.005. Training batch size is set to be 64 

and training iteration is set to be 80. We use the default settings of Keras for all the other 

parameters. For the two comparing models, the optimal parameters reported in the 

proposing articles are used. 

 

3.4.2.3. Experimental Results and Comparison 

The comparison of performance for different models is conducted on the reserved 

testing dataset of 54 images (27 subjects). For each image, we slide the 128×128 window 

from left to right, top to bottom (step size = 2) in LE image, to get the input patches. The 

input patches are fed into the trained model, from which we get the predicted virtual 

recombined image patches (128×128) as outputs. The output patches are placed at the same 

position as their corresponding input patches in the “virtual” recombined images. For the 

position with overlapping pixels, the values are replaced with mean value for all 

overlapping pixels. At last, the “virtual” recombined images are rendered. Our ultimate 

goal is synthesizing the whole image, so it is more desirable to evaluate metrics based on 

the predicted complete image and its corresponding ground truth image instead of 

individual testing patch. As a result, to quantify the synthesis performance for our proposed 

model, a set of 54 synthetic recombined images are generated for each LE image in the 

testing dataset with the trained model. Each individual synthetic recombined image is then 

compared with its corresponding ground truth image, and 3 evaluation metrics (MAE, 
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SSIM, PSNR) introduced in section 4.4.1 are calculated to measure the similarity between 

the synthetic image and ground truth image. 

In terms of each evaluation metric, the mean value and standard deviation across 

the 54 pairs of synthetic-ground truth image are reported in  

Table 8, where the results of the 2 state-of-the-art models (Shallow CNN (Gao et 

al., 2018) and sCT-DCNN (Han, 2017a)) implemented exactly the same procedure are 

added for comparison. In order to further explore the robustness of the results, t-tests are 

performed for each metric between any pair of the three methods. The details are shown in 

Table 9. 

Table 8 Performance of different models on the CEDM testing dataset. 

Method MAE SSIM PSNR 

Shallow CNN 

(Gao et al., 2018) 

219.753(±21.563) 0.793(±0.023) 29.224(±1.462) 

sCT-DCNN 

(Han, 2017a) 

11.502 (±2.187) 0.958(±0.013) 43.346 (±1.462) 

RIED-Net 11.277 (±2.112) 0.962(±0.012) 43.450(±1.423) 
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Table 9 P-values of t-tests on pairwise comparison: (a) MAE, (b) SSIM, (c) PSNR. 

(a) Shallow CNN sCT-DCNN RIED-Net 

Shallow CNN - <0.001 <0.001 

sCT-DCNN <0.001 - 0.003 

RIED-Net <0.001 0.003 - 

    

(b) Shallow CNN sCT-DCNN RIED-Net 

Shallow CNN - <0.001 <0.001 

sCT-DCNN <0.001 - 0.015 

RIED-Net <0.001 0.015 - 

    

(c) Shallow CNN sCT-DCNN RIED-Net 

Shallow CNN - <0.001 <0.001 

sCT-DCNN <0.001 - 0.004 

RIED-Net <0.001 0.004 - 

 

From Table 8 and Table 9, we have two conclusions. First, shallow CNN 

significantly underperforms both sCT-DCNN and our proposed RIED-Net on all three 

metrics. This confirms our argument that deep models with more trainable parameters may 

outperform shallow network in imaging synthesis problem.  Comparing to sCT-DCNN, 

RIED-Net shows the marginal performance advantages (11.277 vs. 11.502 in MAE, 0.962 

vs. 0.958 in SSIM, 43.450 vs. 43.346 in PSNR). RIED-Net has small standard deviation 

indicating it is a deep model with robust performance. To justify the marginal 

outperformance, we delve in details on the case by case bases. As seen in Figure 17, among 

all the 54 images, our proposed RIED-Net has higher SSIMs (the higher the better) on 38 

images (70.4%), higher PSNRs (the higher the better) on 36 images (66.7%), smaller MAE 

(the smaller the better) on 39 images (72.2%). In looking at all three metrics together, 

RIED-Net outperforms sCT-DCNN on 36 cases (>66.7%). 
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Figure 17 Distribution of outperforming cases for MAE, SSIM, PSNR on CEDM testing 

dataset. 

 

For illustration purpose, we include one image from each model (see Figure 18). 

Figure 18A is ground truth recombined image. Figure 18B, C and D are predicted images 

of Shallow CNN, sCT-DCNN and RIED-Net respectively. The error maps of each output 

image are shown in Figure 19. Within the error map, the value of a pixel is the absolute 

value of difference between the intensities of two pixels at the same location in ground 

truth image and synthetic image. Each value is then divided by the same normalizer 

(normalizer value =15). The values greater than 1 are assigned with 1s. The aim of this 

procedure is to normalize the range of difference map into between 0 and 1, while 

excluding the effects of outlier pixels.  

First, as expected, limited by the learning capability, there is a very significant gap 

between the output of the 4-layer shallow CNN and ground truth image (high MAE values). 

We can focus on the comparison between sCT-DCNN and our proposed model. Comparing 

output images C and D in Figure 18, we can observe that Figure 18C is coarser within the 

breast region, especially in the region close to boundary, while in Figure 18D, these regions 
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are sharper and clearer. This is because, in these regions, the dense tissue is interlaced with 

other parts such vessels or fat, the differences among pixels from different parts are large. 

sCT-DCNN with max pooling loses the pixel information and the unpooling layers fail to 

restore such information, as a result, these pixels cannot be differentiated well and tend to 

give the similar predictions. The advantages of RIED-Net in this scenario clearly show. In 

looking at the error maps in Figure 19 (B and C), the red bounding boxes in Figure 19B 

has larger high-error regions comparing to Figure 19C. This may be because in sCT-DCNN, 

during the prediction, if a single pixel is estimated with high error, it will first affect its 3 

neighboring pixels after unpooling layers, and this effect tends to expand to more pixels 

after more unpooling layers. In RIED-Net, the succeeding pixels after deconvolutional 

layers depend not only on that specific preceding pixel, but also the trainable parameters 

within the deconvolutional layers. In this way, even if a pixel is estimated with high error, 

the resu1lts of its following neighboring pixels can be relieved through the deconvolutional 

layer, thus the region of high-error in Figure 19C tends to be small and isolated regions. 

We conclude RIED-Net has satisfying performance on this imaging synthesis problem for 

breast cancer research on Digital Mammography (DM) Modality. Next, we will explore its 

applicability to an Alzheimer disease dataset across two imaging modalities: PET and MRI. 
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Figure 18 Sample of one ground truth recombined image (A), output 'virtual' re-combined 

images of Shallow-CNN (B), SCT-DCNN(C), our proposed model (D). 

 

 

 

Figure 19 Error maps of output images for Shallow-CNN (A), sCT-DCNN(B), our 

proposed model (C). 

 

3.4.3. Experiment II: Case Study on Alzheimer Disease 

Alzheimer’s disease (AD) is a progressively neurodegenerative disease which is 

the most frequent type among elderly dementia patients. In the U.S., approximately 5.2 

million people over 60 are afflicted by AD (Alzheimer’s Association, 2008). This drives a 

great amount of research investigating ways to slow down the AD progression and detect 

AD at early stage for better treatment or even prevent the disease. Mild cognitive 
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impairment (MCI) is a syndrome defined as cognitive decline greater than expected for 

individuals during the course of aging but that does not interfere notably with activities of 

daily life (Gauthier et al., 2006). It is an intermediate stage between normal aging with mild 

cognitive decline and dementia where cognitive impairment is more severe even impacting 

daily function. Though it is distinct from dementia, MCI patients with memory complaints 

and deficits (amnestic mild cognitive impairment) have high risks of progression to AD 

(Castro & Smith, 2015; Gauthier et al., 2006). The early diagnosis of MCI stage is 

becoming essential when the interventional strategies may be more effective.  

For the early diagnosis and prognosis of AD, the use of imaging has been 

highlighted by multiple expert consensus groups nationally and internationally, such as the 

working group convened by National Institute of Aging (NIA) and the Alzheimer’s 

Association (AA) (Carrillo et al., 2013) and the International Working Group (Dubois et 

al., 2014). It has been widely-recognized that imaging of different modalities, including 

but not limited to structural MRI, FDG-PET, and amyloid-PET, play important and often 

complementary roles. However, it is difficult for a single modality to serve all the purposes 

as each modality has unique strength and weakness. Combining different imaging 

modalities is vitally important to make accurate and early diagnosis and prognosis, a 

prerequisite to develop effective disease-modifying therapies. But, patients may not have 

all imaging modalities available due to various reasons. In this experiment, the proposed 

architecture is to learn the non-linear mapping between PET images and MRI images. It 

will be trained to render ‘virtual’ PET images given MRI images as input. Its performance 

is compared with the same two methods mentioned in experiment I. 
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3.4.3.1. Dataset 

The ADNI is launched aiming at finding the relationship between progression of 

mild cognitive impairment (MCI) and early Alzheimer's disease (AD) and biomarkers, 

MRI, PET or clinical and neuropsychological assessments. ADNI enrolls a large cohort 

(>800) of participants (Weiner et al., 2016), for each subject, PET, MRI images, as well as 

clinical information are available. In this experiment, 14 subjects are downloaded and used 

in the experiment. The size of raw MRI images is 256×256×170, while the PET images are 

of the size 128×128×90. Among these 14 subjects, 10 subjects are used as training data; 

the rest 4 subjects are kept as dataset for blind testing. Other detailed information for ADNI 

dataset is shown in Table 10. Three sample images from different slices are shown in Figure 

20.  

 

Table 10 Detailed imaging features for the ADNI dataset. 

Modality Feature Name 

Before 

Co-registration 

After 

Co-registration 

Value (Pixels) Value (Pixels) 

MRI 

Width 256 79 

Height 256 79 

Slice 170 91 

Intensity Range 0-255 0-255 

PET 

Width 128 79 

Height 128 79 

Slice 90 91 

Intensity Range 0-255 0-255 
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Figure 20 Examples of MRI images (A/C/E) in ADNI dataset and their corresponding 

PET images (B/D/F) (The images are extracted from different slices). 

 

 

3.4.3.2. Image processing 

The MRI and PET images are firstly spatially normalized into a same template 

space to make them rigidly aligned with each other. This process is known as image co-

registration, which is conducted through a Matlab based library named Statistical 

Parametric Mapping (SPM 12 https://www.fil.ion.ucl.ac.uk/spm/software/spm12/). After 

co-registration, the size of PET and MRI become 79×79×91 (limited by the resolution of 

atlas used in SPM 12). In this experiment, we set the input and output patches to be 64×64. 

Training samples are extracted from each slice of the 3D image of each subject, in order to 

exclude slices with poor quality and limited region of brain, slice 1-10 and slice 82-91 are 

excluded. Patches are extracted at step size of 4 in each dimension. As a result, a dataset of 

34790 (10 × (91-20) × 7 × 7) patches are obtained from the 10 training subjects. The 

parameter settings for the 3 models are the same as experiment I. 
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3.4.3.3. Experimental Results and Comparison 

The comparison of performance for different models is conducted on the reserved 

validation dataset of 284 images (4×71). In this experiment, the input and output patch 

sizes are set to be 64×64; all the other settings and procedure are the same as experiment I. 

The performances of 3 different models are reported in Table 11 and pair t-test results are 

summarized in Table 12. 

 

Table 11 Performance of different models on the ANDI testing dataset. 

Method MAE SSIM PSNR 

Shallow CNN (Gao 

et al., 2018) 
24.018 (±3.051) 

0.860 

(±0.031) 

17.852 

(±0.886) 

sCT-DCNN (Han, 

2017a) 
14.466 (±3.452) 

0.945 

(±0.022) 

22.087 

(±2.039) 

Proposed RIED-Net 13.412 (±3.278) 
0.957 

(±0.019) 

22.813 

(±2.125) 

 

 
   

Table 12 P-values of t-tests on pairwise comparison: (a) MAE, (b) SSIM, (c) PSNR. 

(a) Shallow CNN sCT-DCNN RIED-Net 

Shallow CNN - <0.001 <0.001 

sCT-DCNN <0.001 - 0.013 

RIED-Net <0.001 0.013 - 

    

(b) Shallow CNN sCT-DCNN RIED-Net 

Shallow CNN - <0.001 <0.001 

sCT-DCNN <0.001 - 0.004 

RIED-Net <0.001 0.004 - 

    

(c) Shallow CNN sCT-DCNN RIED-Net 

Shallow CNN - <0.001 <0.001 

sCT-DCNN <0.001 - 0.008 

RIED-Net <0.001 0.008 - 
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Similar to the first experiment, from Table 11 and Table 12., we conclude shallow 

CNN underperforms sCT-DCNN and RIED-Net and RIED-Net significantly outperforms 

sCT-DCNN in terms of all the three metrics. Again, we compare the two deep network 

models on the case by case bases (Figure 21). Among the 284 test cases, RIED-Net has 

higher SSIMs and PSNR on 226 (79.6%) and 229 (80.6%) testing images respectively, 

lower MAEs on 232 images (81.7%). 

 

 
 

Figure 21 Distribution of outperforming cases for MAE, SSIM, PSNR on ADNI testing 

dataset. 

 

Figure 22 is the illustrative figure showing one image from each of the three models 

with Figure 22A is ground truth PET image, B, C and D are output images of shallow CNN, 

sCT-DCNN and RIED-Net. In Figure 23, A, B and C are the error maps for the outputs 

from 3 models. The error maps are generated through the same procedure as experiment I.  

As seen in Figure 22, the output of shallow CNN (Figure 22 B) roughly restores the 

layout of ground true PET image (Figure 22 A) while with significant errors in details 

(Figure 23A). In the error maps in Figure 23, we can locate several regions where sCT-
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DCNN have higher errors in prediction, for examples, the two regions highlighted with red 

bounding box in Figure 23B, while RIED-Net shows lower errors in the same locations. 

We conclude RIED-Net has satisfying performance on synthesizing images across 

modalities. 

 

Figure 22 Sample of one ground truth PET image (A), output 'virtual' PET images of 

Shallow-CNN (B), sCT-DCNN(C), our proposed model (D). 

 

 

Figure 23 Error maps of output images for Shallow-CNN (A), sCT-DCNN (B), our 

proposed model (C). 

 

 

3.5. Discussion and Conclusion 

Image synthesis is becoming an important field in medical images research, 

especially for the scenario where some image modalities maybe missing. These days, 

CNNs has shown its promises in medical imaging research mostly in imaging classification, 

detection and segmentation. In this study, we propose a novel residual inception encoding-

decoding network (RIED-Net) to tackle this image synthesis problem. There are two main 
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contributions. First, the convolutional layers are introduced to reserve pixel information 

during the encoding process when the feature map size is reduced to increase receptive 

field size; and deconvolutional layers are implemented to restore pixel information within 

the decoding process. Second, residual inception shortcut block is designed to handle the 

gradient vanishing issues. The performance of our proposed architecture is evaluated using 

two datasets. Comparison experiments confirm the outperformances of the proposed 

network mode.  

While promising, there is room for future work. For example, as we may observe 

in Figure 18 and Figure 19 from the breast cancer study, all the models perform poorly on 

small region of interest (e.g. suspicious tumor), this is because the ROI region is relatively 

small compared with the whole breast, and the models fail to pay more attention to such 

regions during the training. It is our plan to investigate strategies to this type of problems. 
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CHAPTER 4 

A FEATURE TRANSFER ENABLED MULTI-TASK DEEP LEARNING MODEL ON 

MEDICAL IMAGING 

 
4.1.Introduction  

 

During the last decade, precision medicine - an approach that considers individual 

variability in diagnosis and treatment - has emerged as a novel paradigm for healthcare. 

One cornerstone for precision medicine is medical imaging. Tremendous resources and 

manpower have been directed towards research in medical imaging, and this domain of 

study can be broadly divided into three categories: object detection, image segmentation, 

and imaging-based classification. Object detection aims to derive an envelope encircling 

the object of interest or the center points of those objects of interest. Segmentation 

generates a probability map that quantifies the likelihood that each pixel/voxel is within 

the region of interest (e.g., tumor). Imaging-based classification primarily identifies the 

object of interest to be malignant or benign. Most recently, deep learning (Lecun, Bengio, 

& Hinton, 2015) has gained great success in performing all three tasks (Affonso Carlos, 

Renato, & Marques, 2015; He et al, 2016; Khatami et al., 2018; Szegedy et al., 2015).  

Deep learning owes its success largely to the fact that its models are capable of 

learning and reproducing an extensive range of parameters from the layers. These 

parameters are utilized to extract features from images to achieve good performance with 

respect to the tasks (Litjens et al., 2017). As one of the first deep learning techniques, 

convolutional neural networks (CNNs) have been extensively investigated (Greenspan, 

Ginneken, & Summers, 2016). For object detection, CNN-based detectors are trained to 

find “bounding boxes” on the desired object(s). Example applications are colonic polyps 
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in computed tomography (CT) images (Roth et al., 2016), cerebral microbleeds in 

Magnetic Resonance Imaging (MRI) (Dou et al., 2016), and breast and lung cancers in 

Ultrasound images (Lee & Chen, 2015). For segmentation, successful implementations of 

CNN have been reported in segmenting brain tumors (Havaei et al., 2017; Zhang et al., 

2015; Zhao et al., 2018), joint craniomaxillofacial bone and landmark digitization (Zhang 

et al., 2018) and epithelial tissue in prostatectomy (Bulten, Hulsbergen-van de Kaa, van 

der Laak & Litjens, 2018), just to name a few. For classification, CNN often takes an 

extracted region of interest (ROI) as the input, and the outputs are different class labels on 

the ROIs. The first application can be traced back to 1996, when a four-layer CNN was 

employed to classify the ROIs into biopsy-proven masses and normal tissues from 

mammogram images (Sahiner et al., 1996). Since then, different CNNs have been 

introduced for various medical classification applications including breast lesions (Araujo 

et al., 2017; Huynh, Li, & Giger, 2016), lung nodules (Shen, Han, Aberle, Bui, & Hsu, 

2019), skin lesions (Yap, Yolland, & Tschandl, 2018) and pulmonary peri-fissural nodules 

(Ciompi et al., 2015), etc. Though commendable classification results have been reported, 

they are limited to scenarios where manually labeled tumors (ROIs) are provided.  

The research reviewed above separately focuses on each individual task, namely 

detection, segmentation, or classification. Recognizing the inter-dependencies of these 

tasks, researchers have started to explore utilizing the joint powers from multiple tasks. 

The first attempt is to integrate multiple serially conducted tasks together as a pipeline-

based approach (Al-antari et al., 2018; Al-Masni et al., 2017). Most recently, an emerging 

field from CNN is developing new deep learning models to conduct tasks in parallel, a 

method termed Multi-Task Learning (MTL) (Ruder, 2017). The core of existing MTL 



  72 

models is separate deep models for each individual task, ending with one joint cost function 

(He et al., 2017; Redmon et al., 2016; Ren et al., 2017). We contend that the features from 

different tasks may benefit other tasks in the training process. Therefore, we propose a new 

MTL architecture, feature transfer MTL neural network (FT-MTL-Net), to utilize the 

features from parallel tasks.    

As the initial step to validate the idea of feature transfer in MTL architecture, we 

explore transferring features from a segmentation task to a classification task. This is 

because: 1) the goal of most medical imaging applications is to accurately diagnose/stage 

the disease - a classification problem; 2) though segmentation and detection are both 

closely tied to classification, the features used in segmentation, detection, and classification 

differ. Specifically, classification and detection require features of low resolution for the 

abstracted representation (Szegedy et al., 2015; Wu, Zhong, & Liu, 2017), while 

segmentation needs high resolution features for the pixel/voxel-wise prediction 

(Badrinarayanan, Kendall, & Cipolla, 2017; Shelhamer, Long, & Darrell, 2017). Moreover, 

given that the segmentation task has already delineated the candidate areas through the 

output masks, these areas can be taken as prior knowledge to guide the feature generation 

procedure focusing on the candidate areas. Motivated by these two aspects, our proposed 

FT-MTL-Net is designed to transfer segmentation features from candidate regions to the 

classification task. Three contributions come out of this novel design. First, to our best 

knowledge, it may be one of the first fully-automatic deep learning systems in medical 

imaging that can be trained end-to-end through a unified cost function and solve the tasks 

of tumor detection, segmentation, and classification simultaneously. Second, it enables 

feature transfer from a segmentation task to a classification task. The features from both 
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high resolution (transferred from segmentation) and low resolution (existing features) are 

adopted to help improve the classification accuracy. Third, the features transferred are re-

weighted based on the prior knowledge from the segmentation probability map. As a result, 

information from irrelevant regions is excluded, and the feature map is representative of 

the tumor regions only. Such design only requires ~700 added parameters which is 

negligible compared to ~2M parameters from Mask-RCNN (He, Gkioxari, Dollar, & 

Girshick, 2017) and thus is at a comparable scale of computational complexity to existing 

MTL models.   

We evaluate the proposed FT-MTL-Net in the Full Filed Digital Mammogram 

(FFDM), a publicly available dataset published in INbreast (Moreira et al., 2012). The 

performance is measured based on five-fold cross validation. For the classification task, 

FT-MTL-Net is compared with eight methods (four are manual and four are automated) 

using the performance metric area under curve (AUC). Experimental results indicate FT-

MTL-Net outperforms all eight competing methods with an AUC of 0.92 (± 0.02). For the 

detection task, FT-MTL-Net outperforms four competing methods with a true positive rate 

of 0.91 (± 0.05) at an average of 3.67 false positives per image. For the segmentation task, 

FT-MTL-Net is compared with three existing methods and achieves a comparable result of 

average dice index of 0.76 ± 0.03.  

 

4.2.Related Work 

4.2.1 Integration of Multiple Tasks as Pipeline Systems 

Recognizing the inter-dependences of detection, segmentation, and classification 

tasks in medical applications, researchers often develop pipeline systems to tackle each 
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task one at a time and connect the tasks as a whole system. In such systems, automatic 

detection and segmentation are often the first steps before classification. For instance, Al-

Masni et al. (2017) propose a regional convolutional neural network (R-CNN) for mass 

detection, followed by a fully-connected CNN-based classifier for “benign versus 

malignant” prediction. Dhungel, Carneiro, and Bradley (2017a) develop a three-step 

pipeline for mass detection, segmentation, and classification. In this research, raw images 

are fed into a CNN model for mass detection, which is refined through a random forest 

classifier on hand-crafted features. The refined boxes containing candidates are then 

segmented through a Conditional Random Fields (CRF) model (Lafferty, McCallum & 

Pereira, 2001) followed by an active contour model (Jorstad & Fua, 2015). A mixture 

model combining a CNN model and random forest is trained with bounding boxes 

extracted from the detection step. The classification results are further finetuned through 

hand-crafted features extracted from both bounding boxes and segmentation outputs from 

detection. ‘User intervention’ is introduced where the false positive detections are 

manually excluded, to get an accurate training dataset for the following segmentation and 

classification tasks. In the research proposed by Al-antari et al. (2018), a fully automatic 

system is designed for detection, segmentation, and classification - all deploying deep 

learning models. You-Only-Look-Once (YOLO) (Redmon, Divvala, Girshick, & Farhadi, 

2016) is implemented for mass detection, followed by a Full resolution Convolutional 

Network (FrCN) for segmentation, and finally a traditional CNN for classification.  

Although these approaches are more advanced in terms of automation/semi-

automation with satisfying results on diagnosis, serial-type pipeline systems come with a 

set of disadvantages. First, the design and implementation of a deep learning model for 
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each task is complicated and time-consuming; a large amount of effort and computing 

resources are needed for model design, training, testing, and tuning. Second, the relatively 

limited medical imaging dataset for training could potentially lead to overfitting (Litjens et 

al., 2017). To address these issues, multi-task learning (MTL) (Caruana, 1997) has emerged 

and shown great potential in natural language processing (Collobert & Weston, 2008), 

speech recognition (Deng, Hinton, & Kingsbury, 2013), and computer vision (Girshick, 

2015; He et al., 2017). One advantage of MTL is saving computational resources by sharing 

convolutional layers (features maps) amongst separate tasks. MTL also may reduce the risk 

of overfitting through learning a more generalized feature map for each task (Baxter, 1997; 

Ruder, 2017). In addition, MTL improves learning efficiency and prediction accuracy for 

the task-specific models (Caruana, 1997). Different deep multi-task learning methods in 

medical applications are reviewed in the following section.  

 

4.2.2 Deep Multi-Task Learning  

Deep Multi-Task Learning develops deep learning architectures to conduct 

multiple tasks in a parallel fashion. Current deep MTL research is dominated by the direct 

parameters sharing approach (Ruder, 2017). The models employ “1-m-1” structure. The 

first “1” is a main shared deep CNN architecture (a.k.a. backbone). The “m” refers to 

multiple separate subnetworks (a.k.a. head architecture) for different tasks (He et al., 2017). 

These “m” head architectures share the feature maps from the backbone and make 

predictions individually. The second “1” is a cost function. During the training, the 

parameters from the backbone and the heads are updated simultaneously based on this 

single cost function in the form of a linear combination of each individual task’s cost. 
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Following this “1-m-1” structure, several methods have been proposed for natural image 

analysis (Redmon et al., 2016; Ren et al., 2017). The success of MTL on natural images is 

naturally extended to the medical imaging applications. For instance, in the search 

conducted by Akselrod-ballin et al. (2016), a faster R-CNN is introduced for detection and 

classification of mass regions simultaneously. In this architecture, a single ResNet model 

(He et al., 2016) is implemented to provide mass candidates and feature maps which are 

shared by the tasks of localization and classification. Samala, Chan, Hadjiiski, Helvie, and 

Cha (2018) take mass classification from digital mammograms and digitalized screen-film 

mammograms as two separate tasks and address these two tasks by a single framework 

based on the Visual Geometry Group (VGG) model (Noh, Hong, & Han, 2015). The study 

from Liu, Zhang, Adeli, and Shen (2018) focuses on neuroimaging for Alzheimer’s disease 

to diagnose classification and predict clinical scores. Feng, Nie, Wang, and Shen (2018) 

propose a multi-task residual fully convolutional network (FCN) to segment organs (e.g. 

bladder, prostate, and rectum) and estimate the intensities. While “1-m-1” approaches aim 

to handle multiple tasks from one model, the backbone needs to be carefully designed to 

include most if not all the features, which must be shared. Moreover, “1-m-1” models fail 

to consider the potential contributions from the head-features to the tasks, individually and 

jointly. As medical applications have unique challenges of potential overfitting due to 

limited training dataset size, sharing head-features may help address this issue.  

When first proposed, transfer learning was interested in the problems from different 

data sources. Here the data source is known as the domain. Transfer learning integrates 

knowledge gained from source domains with the data in target domains to help overcome 

data shortages in the target domain. The existing transfer learning methods fall into three 



  77 

major categories: instance transfer, parameter transfer, and feature transfer (Pan & Yang, 

2010). Instance transfer reuses data from the source domains to augment the data in the 

target domains. Although it is intuitive, instance transfer may be questioned for its validity 

when source and target domains differ greatly. Parameter transfer assumes that closely 

related tasks should have similar parameters in their respective models and encourages 

source and target domains to share some model parameters. Yet, it is challenging to 

appropriately utilize parameters from source domains and tune hyperparameters for the 

target domain. Feature transfer aims to identify a joint feature map shared by the source 

and target domains. Because multiple sources and target domains have shared knowledge 

and representations, features transferred from the source domains may enhance the 

generalizability of the model with reduced risk of overfitting. However, both parameter 

and feature transfer face the major obstacle of negative transfer (Pan & Yang, 2010; Yoon 

& Li, 2019). That is, when domain discrepancy exists, the transferred knowledge may 

damage instead of helping the predictive power of the models. Fortunately, this research is 

interested in multiple tasks from the same domain. Considering the feature map from each 

task is one view of the domain, and the domain discrepancy from the cross-domain 

transferring is not of concern, so the performance of an individual task shall be improved 

by cross-view feature transferring. Therefore, we propose FT-MTL-Net, an MTL with 

cross-view feature transferring. It is novel especially for applications in medicine. This is 

because object detection, segmentation, and classification are three essential and inter-

related tasks in medical imaging analysis. Represented joint feature maps from the cross-

view feature transferring will take advantage of the complementary power of the features 

from different tasks without having a domain discrepancy issue. As a result, the 
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generalizability of the target task is enhanced on the medical dataset even with limited 

samples.  

 

4.3.Proposed FT-MTL-Net 

The architecture of our proposed FT-MTL-Net is shown in Figure 24. The first part 

of FT-MTL-Net is the backbone architecture. Similar to Mask-RCNN, the backbone 

consists of shared convolution layers (Conv layer) for feature map generation and a region 

proposal network (RPN) (Ren et al., 2017) for candidate region detection. Raw images are 

fed into the shared convolution layers to generate feature representations for all subsequent 

tasks (e.g., detection, segmentation, and classification). RPN uses bounding boxes with 

pre-defined sizes to search entire raw images and outputs a set of rectangular candidate 

regions. Each candidate region is treated as an ROI candidate with a corresponding area 

within the feature map to describe it. Feature maps for ROI candidates are resized to be the 

same through a bilinear interpolation (ROI-align (He et al., 2017)) to be fed into the head 

structures. Following the backbone, three head architectures are proposed to focus on these 

ROI candidates and make ROI-oriented predictions. Specifically, the detection head refines 

the ROI candidates for an accurate bounding box. The segmentation head generates masks 

for each ROI candidate. The classification head predicts whether the ROI candidates are 

benign or malignant. 
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Figure 24 Architecture of proposed FT-MTL-Net. 

 

4.3.1 Backbone Architecture   

4.3.1.1. Shared Convolution layers for Feature Generation 

The first part of the backbone is sharing convolution layers to render feature maps. 

Note we use 2D images (pixel) in the following discussions for simplicity, and the same 

methodology applies to 3D images (voxel). Given the grayscale input image 𝐼 ∈ ℝ𝑊×𝐻×1, 

a feature map 𝜃0 = 𝐵(𝐼)  is generated by mapping 𝐵(·) conducted by the shared 

convolution layers. In this research, ResNet (He, Zhang, Ren, & Sun, 2015) is adopted to 

serve this purpose. ResNet is a well-known deep CNN architecture with the novel design 

of a ‘short cut’ connection in the building block. Compared to traditional deep-CNNs, this 

design helps improve the performance in avoiding the problem of gradient vanishing 

(Drozdzal, Vorontsov, Chartrand, Kadoury, & Pal, 2017; He et al., 2016). Since inception, 

ResNet has been implemented in various computer vision tasks including medical 

applications (Fakhry, Zeng, & Ji, 2016; Gao et al., 2018). For the consideration of the 

balance between computation efficiency and accuracy with the limited computation 

resources, we use ResNet-50. The last fully-connected layer originally designed for 
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classification is removed. Note that ResNet has 4 max-pooling layers. Let the original input 

image be 𝑊 ×𝐻 × 1  (width ×  height ×  channel; the following notations of feature 

map/image size follow this same format, if the channel number equals to 1, it will be 

omitted), the output of ResNet-50 is a feature map of 𝑤 × ℎ × 1024 (𝑤 = 𝑊/16 and ℎ =

𝐻/16). In this study, the image resolution is 512 × 512. As a result, the feature map 𝜃0 is 

32 × 32 × 1024.   

 

4.3.2.1 Region Proposal Network for ROI Proposal Detection 

Taking feature map 𝜃0 from ResNet-50 and raw image I as inputs, RPN (Ren et al., 

2017) predicts object bounds and objectness at each position. The objectness score is a 

probability measure of an object within this specific patch. The outputs are a set of 

indicators for rectangular candidates (a.k.a. ROI proposals), denoted as Φ =

{𝛷1, 𝛷2, … , 𝛷𝑛}. Since the targeting object in the raw image can be at any location with 

arbitrary sizes, searching the whole raw images for regions of all possible sizes and 

locations is computationally prohibitive. In RPN, the candidates in P are searched on the 

feature map using a sliding window. A sliding window runs spatially on the feature map at 

a pre-defined step size s. For each pixel in the center, ROI candidates with pre-defined 

sizes are generated and mapped back to raw images. For candidate i, let  𝛷𝑖 =

(𝑎𝑖𝑤 , 𝑎𝑖ℎ , 𝑎𝑖𝑥 , 𝑎𝑖𝑦), where 𝑎𝑖𝑤  denotes the width, 𝑎𝑖ℎ  denotes the height, and (𝑎𝑖𝑥 , 𝑎𝑖𝑦) 

denotes the center’s coordinate. If 𝛷𝑖 has an overlap with the ground truth mask that is 

greater than a pre-defined threshold, it is taken as a positive ROI candidate. Otherwise, it 

is negative. Each 𝛷𝑖 is represented by a 1-dimensional array of features, which is the mean 

value of each channel on the feature map (𝜃0). These features are used to predict the 
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objectness for each 𝛷𝑖. After training, the RPN outputs a set Φ containing ROI candidates 

with higher objectness scores than a predefined threshold (e.g., 0.5).  

  

Figure 25 Illustration of bounding boxes being resized to same size through ROI-Align. 

 

For 𝛷𝑖 ∈ Φ , the associated bounding boxes on the feature map vary in sizes. 

Therefore, the candidates are resized to the same size (7×7 in this study) through ROI align 

layer (He et al., 2017), a linear interpolation procedure. Next, the ROI candidates within Φ 

are represented with its associated feature map 𝜃1 of the same size (as shown in Figure 25), 

and shared by the head architectures (see section 4.3.2).  

 

4.3.2 Multi-Task Head Architecture  

4.3.2.1. Head Architecture for Detection Task 

The detection subnetwork follows the same design by Ren et al. (2017) where a 

mean pooling layer is implemented to reduce the feature map resolution to one dimension. 

It is fully connected to the output layer of bounding box regression. The output value is 

associated with the corresponding ROI candidate 𝛷𝑖 = (𝑎𝑖𝑤 , 𝑎𝑖ℎ , 𝑎𝑖𝑥 , 𝑎𝑖𝑦)  before the 

resizing procedure. Let 𝑇 = (𝑎𝑡𝑤 , 𝑎𝑡ℎ , 𝑎𝑡𝑥 , 𝑎𝑡𝑦)  be the target candidate, in which 
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(𝑎𝑡𝑥 , 𝑎𝑡𝑦) denotes the predicted center coordinate and 𝑎𝑡𝑤 and 𝑎𝑡ℎ   denote the predicted 

width and height, respectively. Assume the targeting outputs for ground truth bounding 

box is Υ = (𝑎𝜐𝑤 , 𝑎𝜐ℎ , 𝑎𝜐𝑥 , 𝑎𝜐𝑦), where (𝑎𝜐𝑥 , 𝑎𝜐𝑦) denotes the ground truth bounding box’s 

center coordinate, 𝑎𝜐𝑤  and 𝑎𝜐ℎ  denote the width and height, respectively. The cost 

function for regression task is as follows:    

 𝐿𝑟𝑒𝑔(𝑇, 𝛶) = 𝑆𝑚𝑜𝑜𝑡ℎ𝐿1(𝑓(𝑇,𝛷𝑖) − 𝑓(𝛶,𝛷𝑖)) (4.1) 

where, 

𝑆𝑚𝑜𝑜𝑡ℎL1(𝑥) = {
0.5𝑥2            𝑖𝑓 |𝑥| < 1
|𝑥| − 0.5        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
        

(4.2) 

 

𝑓(𝑇,Φ𝑖) = (log(
𝑎𝑡𝑤
𝑎𝑖𝑤

) , log (
𝑎𝑡ℎ
𝑎𝑖ℎ

) ,
𝑎𝑡𝑥 − 𝑎𝑖𝑥

𝑎𝑖𝑤
,
𝑎𝑡𝑦 − 𝑎𝑖𝑥

𝑎𝑖ℎ
) 

(4.3) 

 

𝑓(𝛶, Φ𝑖) = (log(
𝑎𝑣𝑤
𝑎𝑖𝑤

) , log (
𝑎𝑣ℎ
𝑎𝑖ℎ

) ,
𝑎𝑣𝑥 − 𝑎𝑖𝑥

𝑎𝑖𝑤
,
𝑎𝑣𝑦 − 𝑎𝑖𝑥

𝑎𝑖ℎ
) 

(4.4) 

 

The detection head will refine the sizes and locations of ROI candidates and output 

the final predictions on the bounding boxes.   

4.3.2.2. Head Architecture for Segmentation Task 

In the segmentation subnetwork, two deconvolutional layers are introduced to 

increase the resolution of the feature maps for segmentation and derive task-specific feature 

maps (𝜃3 and 𝜃4). Following the deconvolutional layers, one 1 × 1 convolutional layer is 

added for the final output. Per-pixel sigmoid function is applied to this final output to obtain 

two probability maps (𝑀𝑏  and 𝑀𝑚 ). Since the candidate 𝛷𝑖  from RPN has 7×7, the 

resolution is increased by 2x2 (two deconvolution layers) resulting in 𝑀𝑏 and 𝑀𝑚 sized 𝛽 
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×  𝛾 (𝛽  = 𝛾  = 28). 𝑀𝑏  and 𝑀𝑚  describe the probabilities that each pixel is within the 

benign and malignant tumors independently. 

The last feature map (𝜃4 ) before the final segmentation output provides high-

resolution information for each pixel along the 256 channels. The features (𝜃4) are different 

from those from the detection task (𝜃2) and classification task (𝜃5, discussed in Section 

3.2.3). Both 𝜃2 and 𝜃5  are abstracted features of lower resolution (He et al., 2017; 

Ronneberger, Fischer, & Brox, 2015; Shelhamer et al., 2017). We hypothesize that the 

high-resolution features from the segmentation shall help improve the classification 

(discussed in Section 3.2.3) greatly, thus they are transferred. Transferring high-resolution 

feature maps to low-resolution feature maps requires certain operations. One example is 

max pooling or average pooling (He et al., 2016; Szegedy et al., 2015) where the maximum 

or the mean values of the features are derived and transferred. Yet, such an approach treats 

all features inside and outside ROIs equally. Knowing medical imaging analysis mostly 

focuses on tumorous areas (such as in this study), we propose a prior knowledge guided 

feature generation method: feature values representing different regions are re-weighted 

based on the probability maps. A weight map 𝑀𝑤 of size 𝛽 ×  𝛾 is generated based on the 

outputs of segmentation masks 𝑀𝑏 and 𝑀𝑚: 

 𝑀𝑤𝑖,𝑗
= max (𝑀𝑏𝑖,𝑗

, 𝑀𝑚𝑖,𝑗
)   for 𝑖 ∈ [1, 𝛽], 𝑗 ∈ [1, 𝛾] (4.5) 

where 𝑀𝑤𝑖,𝑗
 is combined with the feature map 𝜃4 (of size 𝛽 ×  𝛾 ×  𝛿) to generate a prior 

knowledge guided feature map 𝜃4
 = 𝑃(𝜃4, 𝑀𝑤) of the same size: 

 𝜃4𝑖,𝑗,𝑘
 = 𝜃4𝑖,𝑗,𝑘 ×𝑀𝑤𝑖,𝑗

  for 𝑖 ∈ [1, 𝛽], 𝑗 ∈ [1, 𝛾], 𝑘 ∈ [1, 𝛿] (4.6) 
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In order to generate compressed features that can be directly used by the 

classification task, the resolution of the feature map  𝜃4
  is reduced from 28 × 28 to 1 × 1 

through a max pooling layer and a global mean pooling layer (similar procedure as in (Noh 

et al., 2015)).    

For the cost function of segmentation, assume the output prediction map is 𝑠𝛽 × 𝛾 

of resolution 𝛽 ×  𝛾, the cost function for segmentation is the average cross-entropy over 

all the pixels within 𝑠𝛽 × 𝛾 and ground truth mask 𝑚𝛽 × 𝛾 (resized to resolution 𝛽 ×  𝛾), 

which can be calculated as follows:  

 

𝐿𝑠𝑒𝑔(𝑠, 𝑚) = (
1

𝛽 × 𝛾
)∑∑𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑠𝑖𝑗 , 𝑚𝑖𝑗)

𝛾

𝑗=1

𝛽

𝑖=1

 

(4.7) 

in which 

𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑦 , 𝑦) = −𝑦 log(𝑦 ) − (1 − 𝑦)log (1 − 𝑦 ) (4.8) 

The segmentation head outputs two individual probability maps that measure the 

likelihood of each pixel being within benign and malignant tumor respectively. Following 

the same setting as Mask-RCNN (He et al., 2017) to solve the overlapping issue of different 

types of tumors, a final mask is selected based on the output of the classification task. 

 

4.3.2.3. Head Architecture for Classification Task 

In the classification subnetwork, the feature map 𝜃6 for the final classification layer 

is of size 1 × 1  × 1280. Among these 1280 feature channels, 1024 are obtained from a 

shared feature map 𝜃1 provided by the backbone through a global mean pooling; the rest 

256 channels come from 𝜃4
′ , which are used as an addition of pixel-wise information. The 

feature channels from two sources are combined and fully connected to the final 



  85 

classification layer with 3 outputs (background, benign and malignant), and a 

corresponding probability array P = (𝑝0, 𝑝1, 𝑝2)  is computed over the 3 outputs by a 

softmax activation function (Krizhevsky, Sutskever, & Hinton, 2012). The cost function 

for the classification task is the log loss function for its corresponding class u (u = 0, 1 or 

2) where 0 for background, 1 for benign and 2 for malignant. 

 𝐿𝑐𝑙𝑠(𝑝, 𝑢) = −𝑙𝑜𝑔(𝑝𝑢) (4.9) 

The ROIs with high probabilities of being benign or malignant tumors are 

investigated for final prediction using “malignant-veto” logic described in Section 4.3.3.  

 

4.3.3 Model Training and Inference  

Table 13 Training procedure details. 

Step 1. Initialize the ResNet-50 with the weights trained using natural images from the 

dataset of ImageNet, which is made available online by the developers of ResNet 

(He et al., 2016).  

Step 2. Initialize the weights of all other layers through a normal distribution with mean 

= 0 and standard deviation = 0.05.  

Step 3. Fine-tune end-to-end for the region candidate task using cost function 𝐿𝑝𝑟𝑜𝑝. 

Step 4. Keep the weights within shared layers and RPN layer fixed, tune the weights 

within subnetworks alone with cost function 𝐿𝑢𝑛𝑖.   
Step 5. Keep tuning the weights within shared layers and subnetworks together with 

cost function 𝐿𝑢𝑛𝑖.  
 

In the training procedure, all three tasks are trained simultaneously with one 

combined loss function: 

 𝐿𝑢𝑛𝑖 = 𝜆1𝐿𝑐𝑙𝑠 + 𝜆2𝐿𝑟𝑒𝑔 + 𝜆3𝐿𝑠𝑒𝑔 (4.10) 

where 𝜆1, 𝜆2, and 𝜆3 are weights for each individual cost function. In this study, 𝜆1, 𝜆2, and 

𝜆3 are all set to be 1 treating all three tasks equally important. A 5-step training procedure 

(see Table 13 Training procedure details) following the same logic in (Ren et al., 2017) is 
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adopted. Once the training process is completed, the model is ready to make inferences for 

testing images.  

There are two major differences between the inference workflow and the training 

procedure. The first difference is sequential execution vs. parallel training. That is, in 

inference, it follows (Step 1) ROI candidates are obtained from the backbone; (Step 2) the 

detection task is conducted to provide accurate bounding box predictions; (Step 3) the 

segmentation task is triggered to generate mask predictions and features based on the 

bounding boxes; (Step 4) features from segmentation are transferred and joined for 

classification. The second difference is an added “malignant-veto” logic motivated by the 

medical practices in the inference workflow. As expected, each medical case often may 

have multiple bounding boxes and thus ROIs to be investigated. We define the “malignant-

veto” logic as if one bounding box is predicted as malignant, this mass will be predicted as 

malignant with a score equaling the maximum score among all these boxes indicating 

malignancy; if none of the bounding boxes indicates malignancy, it gets a malignancy score 

[1 − 𝑆𝑏𝑚𝑎𝑥], where 𝑆𝑏𝑚𝑎𝑥  is the maximum score among all the bounding boxes assigned 

with a benign score. 

 

4.4.Experiment and Results 

4.4.1 Dataset  

The dataset used in this study is obtained from INbreast, an online accessible full-

field digital mammographic (FFDM) database (Moreira et al., 2012). INbreast was 

established by the researchers from the Breast Center in CHJKS, Porto, under the 

permission of both the Hospital’s Ethics Committee and the National Committee of Data 
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Protection. The FFDM images were acquired from the MammoNovation Siemens system 

with a pixel size of 70 mm (microns), and 14-bit contrast resolution. The resolution of each 

image is 2560 × 3328. For each subject, both CC and MLO views are available. For each 

image, the annotations of region of interests (ROIs) (ground truth masks) were made by a 

specialist in the field and were validated by a second specialist. The ROI masks were also 

made available through the attached XML file.  

In this research, 108 subjects with labeled masses are selected. Each mass is assigned 

with a Breast Imaging Reporting and Data System (BI-RADS) (Eberl, Fox, Edge, Carter, 

& Mahoney, 2015) score ranging from 2 to 6. Following the same definition in (Dhungel 

et al., 2017a), the masses with BI-RADS score=2, 3 are treated as benign and the remaining 

cases (BI-RADS=4, 5, 6) are labeled as malignant. There are 37 benign subjects and 71 

malignant subjects. 

 

4.4.2 Data pre-processing  

For cases with multiple masses in one image, each individual mass and its 

corresponding bounding mask is extracted and saved as a new data sample. As a result, the 

total number of cases in the dataset increases to 115 (41 benign vs. 74 malignant). For each 

mass, a bounding box is computed as the minimal rectangle in the image that contains the 

whole mass. In the second step, for each breast image, a rectangle that contains the entire 

breast is obtained, and the region outside of this bounding box is excluded. This step is to 

exclude the background region in each image and reduce search space and computational 

burden during the training process.  

Five-fold cross validation is adopted, and data augmentation is implemented to 
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enrich the training dataset. Specifically, within each fold, the training dataset (80%) is 

augmented by randomly selecting 2 to 5 options from the operations including rotating, 

flipping, zooming in/out, cropping, contrasting enhancement and Gaussian smoothing. The 

image, mask and bounding box will go through the same procedure. Considering the 

imbalance of benign cases vs. malignant cases, each benign sample is augmented 150 times, 

and each malignant sample is augmented 75 times, so the ratio of benign and malignant 

cases is roughly 1:1. The final training dataset has 9360 images (4920 benign vs 4440 

malignant). 

 

4.4.3 Experimental Setup 

The experiments are conducted on a Windows desktop with 32G RAM and an Intel 

16-core CPU. The model is trained using one single NVIDIA Titan XP GPU with 12G 

memory. Both the data processing procedure and the architecture are developed with 

Python and deep learning libraries (e.g., Keras and TensorFlow). The whole architecture is 

built upon the MASK RCNN package downloaded through the open-source website 

GitHub (https://github.com/matterport/Mask_ RCNN). Details of tuned parameters are: (1) 

training iterations for the 4 training steps are set to be 10; (2) the learning rate for each step 

is set to be 0.005 with a momentum equal to 0.9; (3) the training batch size is set to be 8 to 

satisfy the GPU memory; (4) other parameters are set with default values provided by 

Keras or the downloaded Mask RCNN package.  

 

 

 

https://github.com/matterport/%20Mask_RCNN)
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4.4.4 Experimental Results 

FT-MTL-Net is designed for three inter-related tasks in medical applications: 

classification, object detection, and segmentation. High-resolution features from the segmentation 

task are transferred to the classification task for improving performance. In the comparison study, 

we decide to compare the proposed FT-MTL-Net with methods in classification, object detection, 

and segmentation, respectively. These include some methods that only focus on one of the three 

tasks, e.g., classification, as well as methods handling multiple tasks. To the best of our knowledge, 

Mask-RCNN (He et al., 2017) may be the only method that addresses all three tasks jointly for 

medical applications. We include Mask-RCNN in the comparison on all three tasks with the 

competing methods. In addition, detailed comparison analysis between FT-MTL-Net and Mask-

RCNN is provided.  

 

4.4.4.1. Classification Task 

A response operating characteristic (ROC) curve is commonly used to evaluate the 

classification performance, especially in medical imaging applications. ROC is a function 

of true positive rate (TPR) with respect to 1- false positive rate (1-FPR). The area under 

the ROC curve (AUC) is used as a metric to evaluate the classification performance of a 

model.  

Table 14 summarizes the comparison results. The first three methods take manually 

delineated ROIs from domain experts as inputs and focus on the classification task only. 

The AUC ranges from 0.86 to 0.91. The following four pipelined systems are automated 

systems taking the whole images detecting the objects and classifying them. Here we take 

the classification results for comparison, and the AUC ranges from 0.76 to 0.86. It is not 

surprising the AUC performances from the pipelined system are not as good as that from 



  90 

the one-task approaches as the later heavily involves the domain experts to provide accurate 

segmentations. However, the delineation of the ROIs by experts is time-consuming and 

may not always be available. In looking at the multi-task category, we observe the 

approaches in the category outperform most one-task and pipelined systems. Though 

Mask-RCNN has an AUC of 0.89, lower than that from Random Forest on CNN (0.91), 

Mask-RCNN has a much smaller standard deviation, 0.02 compared to 0.12 from the 

Random Forest, indicating the robustness of the model.  

Table 14 Comparison between our proposed model and eight competing methods on 

mass classification on INBreast Dataset. 

Method Configuration AUC 
Transfer learning from deep CNNs + ensembled 

classifiers (Huynh et al., 2016) 
one task 0.86 ± 0.01 

Lib SVM (Diz, Marreiros, & Freitas, 2016) one task 0.90 

Random Forest on CNN with pre-

training (Dhungel et al., 2017a) 
one task 0.91 ± 0.12 

Random Forest on CNN with pre-

training (Dhungel et al., 2017a)  

pipelined 

system 
0.76 ± 0.23 

Multi-view Residual Network (Dhungel, 

Carneiro, & Bradley, 2017b) 

pipelined 

system  
0.80 ± 0.04 

Deep learning through unregistered views 

(Carneiro, Nascimento, & Bradley, 2017) 

pipelined 

system 
0.78 ± 0.09 

Pre-trained CNNs + multiple instance learning 

(Zhu, Lou, Vang, & Xie, 2017) 

pipelined 

system 
0.86 ± 0.03 

Mask-RCNN (He et al., 2017) multi-task 0.89 ± 0.02 

Proposed FT-MTL-Net multi-task 0.92 ± 0.01 

 

In comparing our proposed FT-MTL-Net with Mask-RCNN (see Figure 26), the 

ROC curve from FT-MTL-Net, in general, dominates that from Mask-RCNN. FT-MTL-

Net has AUC 0.92 ± 0.01 compared to Mask-RCNN with 0.89 ± 0.02. A paired t-test gives 

p<0.01 indicating FT-MTL-Net significantly outperforms Mask-RCNN on AUC value.  
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Figure 26 ROC curves for Mask-RCNN and our proposed FT-MTL-Net model on test 

dataset (vertical line denotes 2×TPR std across 5 folds). 

 

 

From this comparison, three conclusions are drawn: (1) the FT-MTL-Net 

outperforms both pipelined approaches and traditional one-task approaches in terms of 

AUC. This indicates joint advantages of multiple tasks; (2) One task approaches need time-

consuming manual processing, which requires expert knowledge and manual steps to find 

the suspicious regions, whilst the FT-MTL-Net is an automated end-to-end approach; (3) 

the FT-MTL-Net outperforms Mask-RCNN with statistical significance. 

Please note as the first attempt into MTL, our current design of FT-MTL-Net only 

transfers the segmentation features into the classification. Because MTL approaches like 

the one we propose can improve multiple tasks in general, we are still interested in 

exploring the performance of the detection and segmentation tasks with respect to the 

competing methods. This is discussed in the following two sections. 

 

4.4.4.2. Detection Tasks 

For the detection experiment, we first present the comparison results in mean true 

positive rate (TPR) across 5 folds and false positive rates per image (FPI) (see Table 15). 

Mask-RCNN
FT-MTL Net
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Since the literature reports the TPRs under different FPIs, for a comprehensive and fair 

comparison, we derive two sets of TPRs under different FPI settings: FPI = 3.67 and/or 5. 

Standard deviation across 5 folds is reported. As seen from Table 15, multi-task learning 

approaches (Mask-RCNN and FT-MTL-Net) have comparable detecting power as 

traditional one-task detection models and pipelined systems. It should be noted that the 

multi-view residual network (Dhungel et al., 2017b) achieves the best performance 

(0.96±0.03@0.8). This is because, after the detection module, a specifically designed 

cluster method is implemented to remove overlapping for both true positives and false 

positives. We intend to further improve the detection performance by adopting some new 

postprocessing methods such as those proposed by Dhungel et al. (2017b), as a future study. 

 

Table 15 Comparison between our proposed FT-MTL-Net model and other competing 

methods on mass detection on INBreast dataset. 

 

Method Configuration TPR@FPI 

Adaptive thresholding + machine learning 

(Kozegar, Soryani, Minaei, & Domingues, 

2013) 

one task 0.84@3.67 

Cascaded Deep Learning +Random Forests 

(Dhungel, Carneiro, & Bradley, 2015) 
one task 0.78@3.67 

Random Forest on CNN with pre-

training (Dhungel et al., 2017a)  
pipelined system 0.87@5 

Multi-view Residual Network (Dhungel et 

al., 2017b) 
pipelined system  0.96±0.03@0.8 

Deep learning through unregistered views 

(Carneiro et al., 2017) 
pipelined system N.A. 

Pre-trained CNNs + multiple instance 

learning (Zhu et al., 2017) 
pipelined system N.A. 

Mask-RCNN (He et al., 2017) multi-task 
0.85 ±0.07@3.67 

0.85 ± 0.07@5 

Proposed FT-MTL-Net multi-task 
0.91 ±0.05 @3.67 

0.91 ± 0.05@5 

 

 

mailto:0.78@3.67
mailto:0.87@5
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Next, we compare FT-MTL-Net with Mask-RCNN. We use the free response 

operating characteristic (FROC) curve to present its performance. FROC is a function of 

true positive rate (TPR) with respect to false positive rate per image (FPI). Following the 

same standard in experiment conducted by Dhungel et al. (2017a), we define: if the 

intersection of union (IoU) between predicted bounding boxes and ground truth is greater 

than 0.2, this bounding box is regarded as true positive, otherwise, it will be regarded as 

false negative. From Figure 27, we observe that FT-MTL-Net achieves a TPR of 0.91 with 

a standard deviation of 0.05 (TPR = 0.91 ± 0.05) at FPI = 3.67 on the testing dataset. In 

fact, this TPR (0.91) tends to be stable for FPIs that are greater than 1.5. The Mask-RCNN 

obtains a TPR = 0.85 ± 0.07 at FPI = 3.67. A t-test is conducted on the TPR values obtained 

among the 5 folds for Mask-RCNN and our proposed FT-MTL-Net. With a p-value < 0.05, 

we conclude FT-MTL-Net outperforms Mask-RCNN. One may be surprised to observe 

such performance as our FT-MTL-Net indeed takes the same architecture as proposed by 

Ren et al. (2017) for the detection task. This may be explained as follows: in the testing 

stage, each detected bounding box uses the probabilities (background vs. benign tumor vs. 

malignant tumor) from the classification task as its objectness score. FT-MTL-Net has a 

classification head architecture with enhanced capability that is not only better at 

differentiating benign tumors from malignant tumors, but also better at classifying tumors 

from background regions. This capability, in turn, helps improve the detection task 

indirectly. To measure the robustness of the detection results on different IoU thresholds, 

the average precision curve is shown in Figure 28. It is a function of true positive rate 

against the different IoUs. It is noted for values where IoU <= 0.4, the TPR remains stable 

and consistently is above 0.9. The TPR starts to decrease if IoU is greater than 0.4.  As a 
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result, we set IoU = 0.4 as our threshold to define whether a mass is detected by the 

predicted bounding box for the following two tasks. The performances for segmentation 

and classification are evaluated only on the detected mass which takes an average of 95% 

of the testing dataset according to the curve. In integrated systems such as the one proposed 

by Dhungel et al. (2017a), similar approaches are implemented by manually excluding all 

false positives.  

  

Figure 27 FROC curves for Mask-RCNN 

and our proposed FT-MTL-Net model 

(IoU > 0.2, vertical line denotes 2×TPR std 

across 5 folds). 

Figure 28 Average detection precisions 

under different IoU settings on the testing 

dataset for Mask-RCNN and our proposed 

FT-MTL-Net model (vertical line denotes 

2×TPR std across 5 folds). 

 

In summary, from this comparison experiment, we derive at two conclusions: (1) 

FT-MTL-Net outperforms most of the competing methods (see Table 15) except Multi-

view Residual Network (Dhungel et al., 2017b) which has 0.96±0.03@0.8. This is because 

Multi-view Residual Network has a post-process procedure to remove the overlapping for 

both true positives and false positives, which helps improve the performance of the 

detection task. (2) Compared to Mask-RCNN, FT-MTL-Net significantly outperforms. FT-

MTL-Net has a classification head architecture with enhanced capability from the 

classification task as its objectness score.  FT-MTL-Net is not only better at differentiating 

Mask-RCNN
FT-MTL Net

0.91@1.5
Mask-RCNN
FT-MTL Net
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benign tumors from malignant tumors, but also better at classifying tumors from 

background regions. This capability, in turn, helps significantly improve the detection task. 

 

4.4.4.3. Segmentation Tasks 

The segmentation performance is quantified with Dice similarity index (Dice, 

1945). Let A be the predicted mask, and B be the ground truth mask, Dice can be calculated 

through the following equation: 

 

 
𝐷𝑖𝑐𝑒(𝐴, 𝐵) =

2(𝐴⋂𝐵)

𝐴⋃𝐵
 

(4.11) 

Where 

 𝐴⋂𝐵 counts the number of pixels that are labeled with 1s in both masks A and B.  

𝐴⋃𝐵 counts the number of pixels that are labeled with 1s in either mask A or B.  

We compare FT-MTL-Net with Mask-RCNN, 1 one-task method, and the same four 

pipelined systems. From Table 16, we observe these two MTL models underperform the 

other competing methods to a certain degree. The reason may be that, in the methods 

proposed by Dhungel et al. (2017a) and Al-antari et al. (2018), the input training images 

are outputs from a former detection procedure, there is a ‘manual intervention’ procedure 

that will exclude all the false positive detections and this helps improve the performance 

of segmentation results. The MTL models are fully automatic model without any user 

intervention. The segmentation network is trained with both true positive and false positive 

detections from the RPN, and the false positive detections have a negative influence on 

segmentation results. Another reason may come from an architecture aspect: the feature 
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maps used for segmentation are highly reduced in spatial resolution compared with the 

original masks. Before the segmentation network, 4 max-pooling layers are implemented 

within the shared convolutional layers, in which important pixel information for 

segmentation is lost (Chen et al., 2017). Such lost information is difficult (if not impossible 

at all) to retrieve through the subsequent layers. With limited pixel information, the 

segmentation network may suffer from low accuracy. Noting this, our plan for the next 

steps is to improve FT-MTL-Net with a focus on segmentation improvement. For example, 

we may add a connecting path from high-resolution features to enrich feature sets as those 

in U-Net (Gao et al., 2019; Ronneberger et al., 2015) and SegNet (Badrinarayanan et al., 

2017).  

 

Table 16 Comparison between our proposed FT-MTL-Net model and other competing 

methods on segmentation with INBreast Dataset. 

Method Configuration DICE index 
FrCNN (Al-antari et al., 2018) one task 92.67 

Random Forest on CNN with pre-

training (Dhungel et al., 2017a)  
pipelined system 0.85 ± 0.02 

Multi-view Residual Network (Dhungel et al., 

2017b) 
pipelined system  N.A. 

Deep learning through unregistered views 

(Carneiro et al., 2017) 
pipelined system N.A. 

Pre-trained CNNs + multiple instance learning 

(Zhu et al., 2017) 
pipelined system N.A. 

Mask-RCNN (He et al., 2017) multi-task 0.79 ± 0.02 

Proposed FT-MTL-Net multi-task 0.76 ± 0.03 

 

From Table 16, four conclusions can be drawn from this comparison experiment: 

(1) MTL models in the segmentation task underperform the other competing methods to a 

certain degree. It is not surprising that the performance on the segmentation task of the FT-

MTL-Net is not as good as those from one task and pipelined task approaches. This is 
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because in the experiments conducted by Dhungel et al. (2017a) and Al-antari et al. (2018), 

an extra procedure is introduced to manually exclude all the false positive detections, and 

this helps improve the performance of segmentation results; (2) the feature maps in MTL 

used for segmentation are highly reduced in spatial resolution compared with the original 

masks. With limited pixel information, the segmentation network may suffer from low 

accuracy in the MTL framework; (3) two competing methods require manual configuration, 

but the MTL approaches is an automated end-to-end approach; (4) compared to the multi-

task approaches, FT-MTL-Net shows inferior results (0.76±0.03) to that of Mask-RCNN 

(0.79±0.02). For conclusion #4, we conduct further investigation to understand the 

performance. We conclude FT-MTL-Net underperforms Mask-RCNN is because the 

reported segmentation results are based on the detection outcome (one of the reasons why 

multi-task frameworks are needed for medical applications). Among the 115 images, ROIs 

within 97 images are correctly detected by both methods. ROIs within 7 images are missed 

by both; ROIs from 3 images are detected by Mask-RCNN only, and ROIs from 8 images 

are detected by FT-MTL-Net only. This is supported by the detection metric (0.91 from 

FT-MTL-Net vs. 0.85 from Mask-RCNN). The DICE from Mask-RCNN is derived from 

the 100 cases (97+3) while the DICE from FT-MTL-Net is derived from the 105 cases 

(97+8). For illustrative purposes, we have the 3 images and the 8 images shown in Figure 

29 and Figure 30, respectively. By visually checking these images, the 8 cases handled by 

FT-MTL-Net show smaller ROIs, and some (e.g., the first case on the top left) have very 

irregular shapes. As a result, FT-MTL-Net has lower DICE than that from Mask-RCNN.  
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Figure 29 Three images with ROIs detected by Mask-RCNN only (red contour denotes 

boundary of ground true mask). 

 

 

Figure 30 Eight images with ROIs detected by FT-MTL-Net only (red contour denotes 

boundary of ground true mask). 

 

4.4.4.4. Illustration 

To demonstrate the functions of FT-MTL-Net, we present the prediction results 

from the two cases and their corresponding outputs after different steps in Figure 31. As 

shown, each raw image is fed into the trained model. After the backbone architecture, 

several candidates (marked with yellow dashed bounding box) of pre-defined size and with 
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objectness score (O score) greater than 0.5 are detected (the above case has two candidates 

and the bottom case has only one). These candidates are resized to the same size and fed 

into the head architecture. Through the head architecture, each candidate’s bounding box 

(dashed bounding boxes) are refined by the detection task; the mask (solid contour region) 

are predicted through the segmentation task; the classification task assigns each candidate 

a probability of being malignant or benign (M score/B score). These predicted results are 

finalized through the “malignant-veto” logic introduced above to reduce the overlapping 

detections. The illustration shows FT-MTL-Net accurately identifies suspicious regions 

within breast images, makes good predictions on the suspicious regions’ categories, and 

outputs segmentation masks with reasonable accuracy. 

 

Figure 31 Examples of two cases (malignant case on top and benign case on bottom) and 

their corresponding outputs from different steps.  

Raw image with human 
labeled mask

Outputs of backbone 
architecture

Inputs of head 
architecture

Outputs of head 
architecture

Combination of final 
outputs and raw images

Benign case (B)

Malignant case (M)

M score 0.91

B score 0.56

B score 0.87

Final Prediction : Malignant
Probability : 0.91

Final Prediction : Benign
Probability : 0.87

O score 0.77

O score 0.97

O score 0.91
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4.5.Conclusion and Discussion 

Most image analysis applications are related to one or more tasks in object detection, 

segmentation, and classification. Multi-task deep learning thus becomes a viable solution 

to tackle these tasks together, as it provides the advantages of both multi-task learning and 

deep neural networks. While the success from Mask-RCNN (He et al., 2017), a pioneering 

research in MTL field is acknowledged, we recognize the core of existing MTL models 

(including Mask-RCNN) is separate deep models for each individual task. Under the 

assumption that the features from one deep model (for one specific task) will be valuable 

to a different model (a different task), we propose a new MTL architecture, FT-MTL-Net, 

enabled by the features transferring in between the tasks.  

The advantages of our approach are four-fold: firstly, the FT-MTL-Net does not 

need manual configuration for each task. To the best of our knowledge, our proposed FT-

MTL-Net may be one of the first fully automatic systems that addresses detection, 

segmentation and classification of tumors in medical imaging, and FT-MTL-Net can 

simultaneously be trained end-to-end. Second, unlike most MTL models—which focus on 

the unified cost function at the end—FT-MTL-Net restructures the models by transferring 

the features from one task model to a different task model. Specifically, the FT-MTL-Net 

improves the classification task by utilizing the features from low pixel-wise prediction in 

the segmentation task. Third, the features transferred are from the same domain but 

different tasks. Considering each task is a different view of the same domain, this cross-

view feature domain is free from negative transfer issues. Lastly, the features transferred 

are re-weighted based on the targeted ROIs, resulting in ~700 parameters being added to 
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the new model. Compared to the ~2M parameters in Mask-RCNN, the added 

computational burden is negligible. 

As for the future direction, we plan to explore the features transferred across all 

three tasks to improve the performance of all three tasks together. The computing burden 

with the added parameters to enable the cross-task features shall be evaluated. Next, we 

plan to further validate our proposed FT-MTL-Net in other clinical applications (e.g., brain 

tumor), and with different imaging modalities (e.g., MR). 
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CHAPTER 5 

AD-NET: AGE-ADJUST NEURAL NETWORK FOR IMPROVED MCI TO AD 

CONVERSION PREDICTION 

5.1 Introduction 

Alzheimer’s disease (AD) is one of the most common progressive 

neurodegenerative diseases in elderly patients. Over 5.5 million Americans presently suffer 

from AD, and the number is expected to increase to 16 million by 2050 with projected 

healthcare cost reaching to $1.2 trillion (Gaugler, James, Johnson, Scholz, & Weuve, 2016). 

Early detection is critical for AD because that is when the intervention can be more 

effective before irreversible brain damage occurs. Thus, mild cognitive impairment (MCI), 

a pre-dementia stage, has been of great interest in both AD research and clinical practices. 

MCI is the stage when the individual has greater cognitive decline than expected from the 

normal aging but has not shown noticeably interruptions from the daily activities (Selkoe, 

1997). Studies show that MCI patients with memory complaints and deficits (amnestic 

mild cognitive impairment) have higher risk of progression to AD (Gauthier et al., 2006). 

This calls for a deeper investigation to classify the MCI patients to be a converter (who 

will progress to AD) vs. a non-converter (who will remain at a stable stage). This is a non-

trivial task. Fortunately, recent studies have demonstrated that medical images can more 

sensitively and consistently measure the disease progression than cognitive assessment (F. 

Li & Liu, 2018). Imaging biomarkers as the objective and quantitative criteria thus have 

been intensively studied as potential means for AD early detection.  

Most research on AD imaging biomarkers focuses on discovering the features 

directly measured from the images, structural images (e.g., MR) and functional images 
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(e.g., PET). Some structural imaging-based biomarkers show great promises as diagnostic 

criterions for AD. For instance, the atrophy rate per year (Fox, Cousens, Scahill, Harvey, 

& Rossor, 2003), hippocampal volume (Chupin et al., 2009), derived from the serial 

structural MRI are found to be able to differentiate AD patients vs. healthy individuals. 

The patterns of cortical thickness and cortical regions measured from structural MRI show 

the potential to discriminate the MCI converters vs. MCI non-converters (Eskildsen et al., 

2013), non-converters are the subjects who remain stable for three years). Alternatively, 

functional imaging has been explored for AD diagnosis and early detection. PET with 18F-

fluorodeoxyglucose (18F-FDG-PET) (Filippi et al., 2012) and PET with Pittsburgh 

compound B (PIB-PET) (Pike et al., 2007) are clinically mature functional imaging-based 

biomarkers to detect the early-stage of AD. They are becoming essential to monitor the 

progression of AD. Biomarkers from resting-state functional MRI (fMRI) has also be 

studied for the same purpose (H. J. Li et al., 2015; Yamada et al., 2017).  

Biomarker discovery requires joint efforts from predictive modeling and medicine 

domain knowledge. Earlier works on modeling have been mainly related to machine 

learning pipeline, where feature extraction and selection are usually the first steps. Hu et 

al. (2015) use wavelet transform method to extract multi-scale features from the 

preprocessed structural MRI followed by a Support Vector Machine (SVM) to differentiate 

MCI-converters and MCI non-converters. Hojjati et al. (2017) introduce graph theory to 

extract features from resting-state fMRI where features are treated as a graph by 

constructing a brain connectivity matrix. Multiple features selection methods (e.g. Chi-

square, Gini, Fisher, et al.) are employed to identify an optimal feature set as the input to 

SVM to classify MCI-converters vs. non-converters. Westman et al. ( 2012) extract 
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features from MRI images and cerebrospinal fluid (CSF), followed by a multivariate model 

on the combined features to differentiate AD vs. healthy control, MCI vs. healthy control, 

and MCI-converter vs. non-converter. Young et al.(2013) extract features from multi-

source data (MRI, FDG-PET, cerebrospinal fluid, and APOE genotype) and develop a 

Gaussian process classifier to predict MCI-converter. It is noted that combining data from 

multiple sources demonstrates improved discriminatory power than using imaging features 

alone. But, it may result in high-dimensional feature set which makes machine learning 

models prone to overfitting. A standard technique to prevent overfitting is regularization. 

Ye et al. (2012) employ a sparse regularized logistic regression model with a stability 

strategy to guarantee the model’s regularization ability. The model is then tested on 

features extracted from MRI, demographic, genetic and cognitive measurements for 

classifying MCI-converters and MCI non-converters.  

Most recently, deep learning is introduced to AD research. Deep Neural Network 

(DNN) model is an artificial neural network with multiple layers. It has been successfully 

implemented in the broad computer vision domains for decades (Lecun, Bengio, & Hinton, 

2015; LeCun, Bottou, Bengio, & Haffner, 1998). In related to AD, most efforts are to take 

the deep learning model as a feature extractor where generic (low-level) and/or problem 

specific (high-level) features are extracted from layer to layer. It is noted that the earlier 

layers of a deep model contain more generic features that could be used for many domains 

and the features from later layers are more domain specific (Nogueira, Penatti, & dos 

Santos, 2017). The features are then used in different machine learning models for AD 

diagnosis. One example is from Shen et al. (2013) in which the low-level features (e.g. 

gray matter tissue volume, mean intensity, et al.) from structural MRI and PET images and 
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CSF is first extracted. A Stacked Auto-Encoder (SAE) model is constructed as an 

unsupervised pre-training model to learn the latent or hidden representation (high-level 

features) from those low-level features. Upon features elected from a multi-task learning 

model, a multi-kernel SVM model is developed to classify AD vs. MCI patients. Motivated 

by the success from SAE model, Shi et al. (2018) design a Stacked Deep Polynomial 

Network (SDPN) model to learn the features from both structural MRI and PET images. 

To save the preprocessing step, Suk et al. (2014) develop a Deep Boltzmann Machine 

(DBM) model to capture the high-level features directly from the raw images and apply a 

weighted ensemble SVM classifier to differentiate AD vs. MCI patients. Other than 

implementing different machine learning models on the features extracted from a deep 

model, researchers append the deep model with one last layer as a classifier for AD 

diagnosis and staging. For example, Basaia et al (2019) build a simplified Convolutional 

Neural Network (CNN) without the need of activation layer for AD diagnosis. Spasov et 

al. (2019) design a parameters-efficient multi-task CNN model for increased 

generalizability to predict MCI-Converter. Lee et al. (2019) apply a Recurrent Neural 

Network (RNN), to learn from multi-source data (demographic information, neuroimaging 

phenotypes measured by MRI, cognitive performance, and CSF measurements) to identify 

the person with higher risk of developing AD.   

While deep learning opens great opportunities in medical research, its potential is 

compromised by the limited data available in the domain. Unlike natural images, medical 

images are rarely available in large quantities. As a result, overfitting is a major obstacle 

faced by deep learning research community (Lever, Krzywinski, & Altman, 2016; 

Srivastava, Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014). One solution is 
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transfer learning, that is, the deep model is first pre-trained on a large labelled dataset (e.g., 

natural images) to capture the features from images in general. The model is then fine-

tuned on the targeted image dataset to extract specific features related to medical images. 

Therefore, the earliest attempts take a network model as two parts: (1) the first N layers are 

for high-level feature extraction, and (2) the last layer is a classifier. We category them as 

“N+1” models. The whole network (N+1) is pre-trained on the source domain. In the fine-

tuning procedure, the last one layer is replaced with the appropriate classification structure 

tied to the target problem. For example, Hon et al.(2017) use the VGG16 and Google 

Inception v4 CNN model to pre-train images (>1 millions) from the ImageNet Challenge 

dataset and fine-tune the last fully connected layer with a Softmax layer (essentially a 

multiclass logistic classifier) on the MRI images for the final AD diagnosis. Similarly, 

Hosseini-Asl et al. (2018) pre-train a 3D Convolutional Auto-Encoder (CAE) and fine-tune 

the fully connected layers with a Softmax layer for AD diagnosis. This approach may work 

well if the data from the source domain and target domain have higher degree of similarity, 

e.g., all images are of same modality. In case they differ greatly, researchers decide to 

further divide the first N layers into (1) earlier layers for low-level feature exaction; (2) 

middle layers for high-level feature exaction. While the pre-training is still conducted on 

the whole network model, fine-tuning on the target domain would involve the middle and 

last layer of the network. Some example efforts in this direction include Cheng et al. (2017), 

Lu et al. (2018). The research reviewed above takes pre-training and fine-tuning as two 

independent procedures. Lately, researcher start to explore integrating not only the feature 

extracted from the pre-training, but additional features from different sources, into the fine-

tuning procedure for improved performance. For example, Liu et al. (2017) fuse the 
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features extracted from a pre-trained VGG model with several texture features into a 

feature pool. Zhang et al. (2018) combine the features extracted from pretrained CNN 

model with handcrafted visual features (e.g. Bag-of-Features, Local Binary Pattern et al.) 

to classify the type of different medical images (e.g. CT, MRI, Ultrasound). Song et al. 

(2017) generate Fisher Vector (FV) descriptors integrating the features from DBN model, 

CNN model in an unsupervised manner.  

Please note most existing efforts on transfer learning focus on extracting and 

transferring features from the pre-training procedure. The outcome (a.k.a. knowledge) from 

the pre-training process thus is ignored. Here we hypothesize that transferring knowledge 

from the pre-training to the fine-tuning may benefit the target problem solving. The 

knowledge of particular interest in this research is related to a new AD surrogate biomarker 

(Cole et al., 2017). The researchers train a deep learning model on MRI neuroimages from 

healthy subjects to predict each subject’s biological age (B-Age) (Cole et al., 2017). The 

trained model is then used to predict the BAs for the subjects with brain disease. Under the 

assumption that BA shall align well with chronological age (C-Age) for heathy subject and 

the BA and CA for unhealthy individuals shall present notable differences, the difference 

(termed Δage ) is used to detect group differences between diseased cohort vs. healthy 

cohort (Cole et al., 2017). Motivated by this knowledge related to B-Age vs. C-Age, we 

propose a new deep learning model named Age-adjust neural network (AD-NET) to predict 

MCI converter vs. non-converter on individual bases. In the AD-NET, we revisit the 

transfer learning and propose dual purposes from the pre-trained model: (1) feature 

transferring: similar to existing research from literature, the pre-trained model without the 

last layer is used as feature extractor; (2) knowledge transferring: the whole pre-trained 
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model is kept into the fine-tuning stage to transfer the knowledge captured in the age 

prediction process. Instead of simply appending the Δage as an additional feature to CNN 

model, we propose to adjust the prediction based on both Δage and the correlation between 

Δage  and MCI-converter. Experiments are conducted using two public brain imaging 

datasets (IXI (“IXI Dataset,” n.d.) and ADNI (F. Li & Liu, 2018)). We compare our 

proposed AD-NET with 8 existing methods including logistic regression, SVM and deep 

learning models, our AD-NET achieved the best AUC of 0.81 (±0.05) and comparable 

accuracy, sensitivity and specificity, which are 0.76 (±0.03), 0.77 (±0.07) and 0.76 (±0.09) 

respectively. 

 

5.2 Methodology 

5.2.1 Architecture and training strategy  

The schematic illustration of proposed AD-NET architecture is shown in Figure 32. 

It contains two separate parts: (1) a pre-trained network for feature extraction and age 

prediction; and (2) a fine-tuned network to transfer both features and knowledge in age 

prediction for MCI converter prediction.  

Figure 32a is the pre-trained network. It takes 3D MR images from healthy subjects 

as inputs and predicts age and extracts related features. The size of input 3D MRI is 

91×109×91. It contains repeated 3 blocks, within each block, there are two (3×3×3) 

convolutional layers and one max-pooling layer; each convolutional layer is followed by a 

rectified linear unit (ReLU) layer. The number of feature channels is set to be sixteen for 

the first block and is doubled for each subsequent block. The output of last block is 

flattened into one dimension (layer L1 colored with blue in Figure 32). This layer is fully 
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connected to one single output with linear activation function. A dropout layer with rate 

equals to 0.2 (as in (Gao et al., 2019; He, Zhang, Ren, & Sun, 2016)) is added to avoid 

potential overfitting. 

The overall architecture of the fine-tuned model is shown in Figure 32b. 

Specifically, the L1 layer is fully connected (with dropout rate = 0.2) to L2 layer, which is 

connected (with dropout rate = 0.2) the final single output with sigmoid activation function 

for MCI conversion prediction. L2 layer is added to make proper feature transformation 

from age prediction task and produce the initial output of MCI-Converter prediction task 

(P(MCIconv)). To serve the knowledge transfer purpose, the whole pre-trained model is 

kept (including L1) to predict the age (Δage) used to adjust MCI prediction P(MCIconv)′. 
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(a) Pre-trained Model 

 
(b) Fine-tuned Model 

Figure 32 Architecture of the proposed AD-Net. 3D boxes represent input and feature 

maps. The arrows represent network operations: black arrow indicates 3D convolutional 

operation followed by a rectified linear unit (ReLU) activation function; orange arrow 

represents max-pooling operations; red arrow represents the flatten operation; dotted red 

arrow represents fully connected layers; purple square represents the regression outputs for 

predicted brain age; blue square represents classification outputs for MCI-Converter 

probability; layers within dotted square forms a building block, and there are 3 repeating 

blocks (block×3) for feature extraction before flatten layer. 

 

For the AD-Net, in the pre-training procedure, the parameters within 3D blocks, 

layer L1 and age prediction are trained through the age prediction task. In this procedure, 

a dataset of 900 3D MRI images from health subjects are used. In the fine-tuning procedure, 

the parameters within pre-trained network are kept fixed, 200 MRI 3D images from MCI 

patients are used to tune only parameters within L2 layer to transfer features learned by age 

prediction task for the MCI-converter prediction task with. In addition,  Δage  is 

incorporated in the fine-tuning procedure.   
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5.2.2 Aging adjustment in fine-tuning procedure 

Given the 3D image Ii for a specific MCI patient i, AD-NET outputs the risk of the 

patient to be an MCI-converter or a non-converter, denoted as 𝑃(𝑀𝐶𝐼𝑐𝑜𝑛𝑣
𝑖 )  and 

𝑃(𝑀𝐶𝐼𝑛𝑜𝑛−𝑐𝑜𝑛𝑣
𝑖 ). We have 

𝑃(𝑀𝐶𝐼𝑐𝑜𝑛𝑣
𝑖 ) + 𝑃(𝑀𝐶𝐼𝑛𝑜𝑛−𝑐𝑜𝑛𝑣

𝑖 ) = 1 (5.1) 

For patient i, the chronological age (C-Age) 𝑦𝑎𝑔𝑒
𝑖  is available. One output from the 

AD-NET is biological age (B-Age) prediction, that is,  �̂�𝑎𝑔𝑒
𝑖 . The difference between 

predicted B-Age and C-Age is Δ𝑎𝑔𝑒: 

Δ𝑎𝑔𝑒
i = �̂�𝑎𝑔𝑒

𝑖 − 𝑦𝑎𝑔𝑒
𝑖            (5.2)  

Under the assumption that Δ𝑎𝑔𝑒  is strongly positively correlated to the risk of 

developing brain disease (Cole et al., 2017) , we adjust the probability of a MCI subject i 

converting to AD (𝑃(𝑀𝐶𝐼𝑐𝑜𝑛𝑣
𝑖 )) with 𝛥𝑎𝑔𝑒

𝑖 . The basic idea is, for any subject i, (1) if the 

predicted B-Age is greater than its C-Age, that is, Δ𝑎𝑔𝑒
i > 0, this subject has a higher risk 

to convert to AD. We will increase the MCI conversion probability (𝑃(𝑀𝐶𝐼𝑐𝑜𝑛𝑣
𝑖 )) with 

respect to the magnitude of 𝛥𝑎𝑔𝑒
𝑖 ; (2) If the predicted B-Age is less than its C-Age, that is, 

Δ𝑎𝑔𝑒
i < 0, this subject will has less risk to convert to an AD. We decrease 𝑃(𝑀𝐶𝐼𝑐𝑜𝑛𝑣

𝑖 ) 

accordingly. To model this idea, we have  

𝑃′(𝑀𝐶𝐼𝑐𝑜𝑛𝑣
𝑖 ) =

(0.5 + 𝑤𝑖𝑟)𝑃(𝑀𝐶𝐼𝑐𝑜𝑛𝑣
𝑖 )

(0.5 + 𝑤𝑖𝑟)𝑃(𝑀𝐶𝐼𝑐𝑜𝑛𝑣
𝑖 ) + (0.5 − 𝑤𝑖𝑟)𝑃(𝑀𝐶𝐼𝑛𝑜𝑛−𝑐𝑜𝑛𝑣

𝑖 )
 

(5.3) 

where, 

𝑤𝑖 =
1

2𝑚
𝑚𝑎𝑥 (−𝑚,𝑚𝑖𝑛 (𝛥𝑎𝑔𝑒

𝑖 ,𝑚) ) 

m: pre-defined normalizer to filter outlier impact 
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r: correlation between all Δ𝑎𝑔𝑒  and MCI-Converter labels.  

In equation (3), each subject’s 𝑃′(𝑀𝐶𝐼𝑎𝑔𝑒
𝑖 )  is obtained by adjusting the 

𝑃(𝑀𝐶𝐼𝑐𝑜𝑛𝑣) with respect to two scalars: a global scalar r and a subject-dependent scalar 

𝑤𝑖. During the cross-validation process, for the training folds, we have the Δ𝑎𝑔𝑒  and patient 

status (MCI converter vs. non-converter). Global scalar r is derived as the correlation 

between the Δ𝑎𝑔𝑒  with the patient status, where r ∈ [−1, 1].  A total positive linear 

correlation exists for r being 1, and total negative linear correlations for r being -1, no 

correlation for r being 0. In this study, we would expect to have r being positive value to 

describe the general relationship between the Δ𝑎𝑔𝑒  and the patient status on the group bases. 

Scalar 𝑤𝑖 is to measure normalized deviation level of 𝛥𝑎𝑔𝑒
𝑖  for subject i. 𝑤𝑖 is proportional 

to 𝛥𝑎𝑔𝑒
𝑖 , and it is normalized to the range of -0.5 to 0.5 by a pre-defined normalizer m. We 

adopt m here to avoid potential issue from outliers with extreme large Δ𝑎𝑔𝑒 .  

To better illustrate the effects of 𝑤𝑖 and r in adjusting 𝑃′(𝑀𝐶𝐼𝑎𝑔𝑒
𝑖 )  in equation (3), 

we plot 4 curves for P(MCIconv)′ vs. P(MCIconv) under different settings of 𝑤𝑖 and r (see 

Figure 33). Here we only discuss the scenario where r is positive (same holds true when r 

is negative), and 𝑤𝑖 can be both negative and positive. From Figure 2, we observe three 

properties:  

(1) Under the same setting of r, for positive 𝑤𝑖(𝑤𝑖 > 0), 𝑃′(𝑀𝐶𝐼𝑐𝑜𝑛𝑣) increases as 𝑤𝑖 

increases. The larger the 𝑤𝑖(𝑤𝑖 > 0)  is, the greater adjustment made from 

𝑃(𝑀𝐶𝐼𝑐𝑜𝑛𝑣) to 𝑃′(𝑀𝐶𝐼𝑐𝑜𝑛𝑣). For negative 𝑤𝑖(𝑤𝑖 < 0), 𝑃′(𝑀𝐶𝐼𝑐𝑜𝑛𝑣) decreases as 𝑤𝑖 

decreases. The smaller the 𝑤𝑖  ( 𝑤𝑖 <0) is, the greater adjustment made from 
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𝑃(𝑀𝐶𝐼𝑐𝑜𝑛𝑣) to 𝑃′(𝑀𝐶𝐼𝑐𝑜𝑛𝑣). This is consistent with our earlier discussion, that is, 𝑤𝑖 

is proportional to 𝛥𝑎𝑔𝑒
𝑖  and  𝛥𝑎𝑔𝑒

𝑖  is positively correlated with the AD conversion risk. 

(2) Under the same setting of 𝑤𝑖 , larger the r is, the greater adjustment made from 

𝑃(𝑀𝐶𝐼𝑐𝑜𝑛𝑣)  to 𝑃′(𝑀𝐶𝐼𝑐𝑜𝑛𝑣) . This is a desirable property since r measures the 

correlations between Δ𝑎𝑔𝑒  and MCI conversion risk. The larger the r is, the higher risk 

one would convert to AD.  

(3) The adjustment has more effects for subjects with 𝑃(MCIconv) falling in the middle of 

the distribution (e.g., 0.4 - 0.6) than that at the two sides (e.g. 0-0.1 and 0.9-1.0). We 

believe this is a desirable property indicating the adjustments can strengthen the 

differentiation power for the subjects who were not certain on determining the 

conversion risks.  
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Figure 33 Curves for 𝑃(𝑀𝐶𝐼𝑐𝑜𝑛𝑣)′ vs. 𝑃(𝑀𝐶𝐼𝑐𝑜𝑛𝑣) under different settings of 𝑤𝑖 and r. 

 

In the fine-tuning model, the age-related information from the pre-training is 

transferred. Together with the features from the pre-training model, the risk of the subject 

converting to AD is predicted. A comprehensive comparison experiment is conducted and 

is discussed in the next section.  

 

5.3 Dataset and Image Pre-processing 

All neuroimaging data used in the study are T1-weighted MRI. The datasets used 

in pre-training and fine-tuning procedure are obtained from different cohorts, and we 

conducted pre-processing procedure to ensure consistency among images from different 

cohorts. 
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5.3.1 Data 

5.3.1.1 Dataset I for age prediction 

The dataset used in pre-training procedure for age prediction task includes 847 

subjects (male/female = 395/452, mean age = 56.86 ± 18.34, age range 18–94 years). 

Among the whole dataset, 253 are healthy controls obtained from Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) dataset (F. Li & Liu, 2018)), the ages range from 56-89. 

The ADNI is launched aiming at finding the relationship between progression of mild 

cognitive impairment (MCI) and early Alzheimer's disease (AD) and biomarkers, magnetic 

resonance imaging (MRI), positron emission tomography (PET) or clinical and 

neuropsychological assessments. ADNI enrolls a large cohort (>800) of 

participants (Weiner et al., 2015), for each subject, PET, MRI images, as well as clinical 

information (including age) are available. The selected 253 subjects include all healthy 

subject in ADNI dataset. 

In order to increase the size of training dataset and widen the age range to ensure a 

more accurate and robust age prediction model, we obtain additional 581 healthy subjects 

from Information eXtraction from Images (IXI) public dataset (“IXI Dataset,” n.d.). The 

subjects from IXI dataset are obtained from 3 different hospitals in London: Hammersmith 

Hospital (Philips 3T system), Guy’s Hospital (Philips 1.5T system) and Institute of 

Psychiatry (GE 1.5T system). For each subject, personal information such as sex, height, 

weight, occupation and age are included. 
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5.3.1.2 Dataset II for MCI-conversion prediction  

The dataset used in fine-tuning procedure for MCI conversion prediction task is 

obtained from ADNI dataset, we exclude some special MCI cases who returns to normal 

stage. As a result, all subject has the status as being either converter or non-converter. The 

dataset includes a total of 297 subjects (male/female = 121/172, mean age = 74.62±7.30, 

age range 55–88 years). These 297 subjects are diagnosed as MCI when their first image 

is obtained (baseline diagnosis). Among the 297 subjects, 168 are MCI-Converters and the 

rest 129 subjects are MCI non-converter. The MCI-converter and MCI non-converter 

subjects are labeled through the following logic: a subject is labeled as MCI-converter if 

the subject was diagnosed as MCI and converted to AD during a three-year follow-up; and 

a subject is labeled as MCI non-converter if the subject was diagnosis as MCI at both 

baseline and 36 months. Those subjects whose diagnosis was missing at 36 months were 

excluded in the dataset.  

 

5.3.2 Pre-processing 

We convert DICOM files to Nifti format and register the raw Nifti files to MNI152 

(VS Fonov, AC Evans, RC McKinstry, CR Almli, 2009) space to ensure consistency of 

position and orientation. The images were resampled using cubic spline interpolation, to 

transfer data acquired from different studies into the same voxel sizes and dimensions 

(1mm3, 182×218×182). Examples of the different data used in the study are shown in 

Figure 34. 
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Figure 34 Examples input T1-weighted MRI imaging after the minimal pre-processing 

procedure. A) healthy subject from IXI dataset. B) healthy subject from ADNI dataset. C) 

MCI Non-Converter subject from ADNI dataset. D) MCI-Converter subject from ADNI 

dataset. 

 

5.4 Experimental Results 

5.4.1 Experiment I: Pre-training and Age Prediction Task 

In this experiment, 84 (10%) subjects are randomly selected from dataset I as blind 

testing dataset, the remaining 763 subjects are used as training dataset. The proposed AD-

NET is trained using mean squared error (MSE) as loss function, Adam (Kingma & Ba, 

2014) is used as the optimizer to solve the problem. The parameter settings are: learning 

rate is 0.01; learning rate decay equals to 0.005; training batch is 16 and training iteration 

is 200. The model achieves MSE of 187.16 and mean absolute error (MAE) of 11.17 on 

the training dataset. The Pearson correlation (pc) between C-Age and predicted B-Age is 

0.75. On the testing dataset, we have MSE=196.42, MAE=12.28, pc=0.67. For illustration 

purpose, we include the plot of C-Age vs. predicted B-Age for both training dataset and 

testing dataset in Figure 35. From the result and figure, we conclude that after pre-training, 

the AD-NET for age prediction can learn the mapping between raw MRI image and C-Age 

with good accuracy among healthy subjects. 
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Figure 35 Plot of chronological age (C-Age) vs. predicted biological age (B-Age): A) 

training dataset B) testing dataset. Red lines are the fitted linear regression respectively. 

 

We do recognize that the model performance maybe not optimal compared with 

(Cole et al., 2017) and there is potential space for improvement. Given the focus of this 

study is to demonstrate the advantages of surrogate biomarker from age for MCI converter 

prediction, we decide to leave the age prediction model improvement as a future research 

effort. Here we feed all subjects in dataset II into the pre-trained model and obtained 

predicted age for each MCI subject. Figure 36 shows the plot of C-age vs. predicted B-Age 

for all subjects in dataset II.   
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Figure 36 Plot of chronological age (C-Age) vs. predicted biological age (B-Age for 

subjects in dataset II. 

 

The 𝛥𝑎𝑔𝑒 for each subject is derived using equation (2). We conduct t-test between 

the MCI-converter and MCI non-converter groups. The p-value is 0.021, indicating the 

significant difference on 𝛥𝑎𝑔𝑒  between MCI-converter group and MCI non-converter 

group. Next, we determine the hyper-parameters settings for equation (3). The distribution 

of different 𝛥𝑎𝑔𝑒 values is shown in Figure 37. It should be noted that the mean 𝛥𝑎𝑔𝑒 for 

all subjects in dataset II is -16.64, this is because of the bias from the pre-trained model on 

healthy subjects. Here we do observe the group difference in the distribution: the MCI-

Converter groups tend to have more subjects with larger 𝛥𝑎𝑔𝑒 values compared with MCI 

Non-Converter group. Ideally, we would like the mean 𝛥𝑎𝑔𝑒  close to zero, to utilize 

positive or negative symbol of 𝛥𝑎𝑔𝑒 value as direction to increase or decrease the value of 

𝑃(𝑀𝐶𝐼𝑐𝑜𝑛𝑣). Here we subtract average 𝛥𝑎𝑔𝑒 (-16.64) from 𝛥𝑎𝑔𝑒 of each individual subject 

to normalize. From Figure 37, we observe that the distribution of 𝛥𝑎𝑔𝑒  follows Gaussian 
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distribution, it is common practice to use n times standard deviation to exclude outliers 

(Ben-Gal, 2005). In this experiment, we follow the same practice, and set m is to be 17, 

which is 2 (n=2) times of normalized 𝛥𝑎𝑔𝑒 standard deviation. r is set to be 0.15, which is 

the Pearson correlation (Benesty, Chen, Huang, & Israel Cohen, 2009) between 𝛥𝑎𝑔𝑒 and 

MCI-Converter labels (p=0.04). 

  

Figure 37 Distribution normalized 𝛥𝑎𝑔𝑒 values for MCI-Convertor and MCI Non-

Converter groups 

 

In this experiment, the accuracy of AD-NET in age prediction task and the potential 

of biomarker Δage  in differentiating MCI-converter vs. MCI non-converter are both 

validated. Next, we conduct the second experiment on MCI conversion prediction.  

5.4.2 Experiment II: MCI-Converter Prediction Task 

In this experiment, 5-fold cross-validation is conducted to evaluate AD-NET’s 

performance on MCI-Converter prediction problem. The parameters obtained from pre-

training procedure are kept fixed, in order to get stable age prediction from AD-NET. 

Parameters within L2 layer are trained to make proper feature transformation from age 
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prediction to MCI converter prediction. In this experiment, the proposed AD-NET is fine-

tuned using cross-entropy as loss function and Adam optimizer (Kingma & Ba, 2014). 

Other parameters are selected based on the best performance: learning rate is 0.01; learning 

rate decay equals to 0.005; training batch is 16 and training iteration is 50. Area under 

receiver operating characteristic curve (AUC), accuracy (ACC.), sensitivity (SEN.) and 

specificity (SPE.) are calculated to measure the prediction power of our model from 

different aspects.  

For comparison purpose, we implement two competing methods, which are pre-

trained through the same procedure as AD-NET: Transfer learning CNN model (TL-CNN) 

and Transfer learning CNN model with Δage as additional features (TL-CNN-Δage). The 

architecture of TL-CNN is the same as our-proposed AD-NET, the only difference is that 

during the fine-tuning procedure, neither C-Age information nor predicted B-Age from 

pre-training procedure is included. This deep learning architecture is well-studied in a 

number of medical image applications such as age prediction (Cole et al., 2017), breast 

cancer classification (Gao et al., 2018) and medical imaging synthesis (R. Li et al., 2014). 

This competing method is selected to validate the novelty of AD-NET in adding Δage as a 

biomarker to provide additional information for improved classification performance. In 

TL-CNN-Δage, the Δage for each subject is calculated the after the pre-training procedure. 

During the fine-tuning procedure, it is added as one single input along with last layer (layer 

L2 in Figure 1). This competing method is selected to validate the novelty of AD-NET in 

adjusting P(MCIconv) with Δage. In addition, six existing methods from literature using the 

same ADNI dataset are chosen for comparison, both traditional machine leaning models 
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(e.g. logistic regression and SVM) and deep learning models are included. The detailed 

results of all eight methods are included in Table 17.  

 

Table 17 AUC values for AD-NET and competing methods. 

Methods Data AUC Acc. Sen. Spe. Cate. 

Logistic/Cox 

regression (Ewers et 

al., 2012) 

Structural 

MRI+CSF+ 

Neuropsychol

ogical testing 

N.A. 0.77 0.82 0.73 ML 

Orthogonal partial 

least squares 

(Westman et al., 2012) 

Structural 

MRI 

+ CSF 

0.76 0.69 0.74 0.63 ML 

Gaussian Process 

(Young et al., 2013) 

Structural 

MRI 

+ CSF + PET 

+ APOE 

0.80 0.74 0.79 0.66 ML 

SVM (F. Liu, Wee, 

Chen, & Shen, 2014) 

Structural 

MRI 

+ PET 

0.70 0.68 0.65 0.70 ML 

SAE + Logistic 

regression (S. Liu et 

al., 2015) 

Structural 

MRI 

+ PET 

N.A. 0.54 0.52 0.87 ML 

Deep polynomial 

network +SVM (Shi et 

al., 2018) 

Structural 

MRI 
0.80 0.79 0.68 0.87 DL 

TL-CNN (Cole et al., 

2017) 

Structural 

MRI 

0.76 

±0.06 

0.73 

±0.04 

0.68 

±0.09 

0.77 

±0.0

9 

DL 

TL-CNN-Δage 
Structural 

MRI 

+ Age 

0.77 

±0.05 

0.77 

±0.02 

0.80 

±0.04 

0.73 

±0.0

5 

DL 

AD-NET 

Structural 

MRI 

+ Age 

0.81 

±0.05 

0.76 

±0.03 

0.77 

±0.07 

0.76 

±0.0

9 

DL 
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From this table, we have four conclusions. First, traditional machine learning 

models usually require additional information (e.g. clinical testing scores, APOE) to 

achieve comparable performance as deep learning models which takes only images data. 

We conclude this demonstrates the advantage of deep learning models. Second, with  Δage 

added, the TL-CNN- Δage  marginally outperforms TL-CNN in terms of overall 

performance metrics (accuracy and AUC). This demonstrates the advantage of Δage as a 

surrogate marker for the MCI conversion prediction problem. However, TL-CNN-Δage 

underperforms the other two deep learning models which are specifically designed in 

architecture and enhanced with traditional models (logistic regression and SVM). Third, 

AD-NET and TL-CNN-Δage  achieve improved sensitivity compared with other deep 

leaning models, which is more desirable in clinical application since sensitivity is more 

important than specificity (in this study, early detect the converter for effective 

interventions). However, TL-CNN-Δage sacrifices specificity while the proposed AD-NET 

achieves a comparable specificity as TL-CNN. One reason may be, in dataset II, there are 

several MCI-Converter subjects with larger positive Δage (Higher B-Age than C-Age). The 

Δage  helps differentiate such subjects from MCI Non-Converter subjects (increase 

sensitivity). However, for both MCI-Converter and MCI Non-Converter subjects, they all 

unlikely to have younger C-Age than their C-Age, since they have already been diagnosed 

with cognitive impairment.  As result, the specificity is not improved.  Last and most 

importantly, our proposed AD-NET outperforms all competing methods in terms of AUC, 

which is a robust metric in the medical researches, and it is more consistent and have better 

discriminatory power comparing to accuracy. This can be explained through the meaning 
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of AUC and logic behind age adjustment procedure: since we are using Δage as a prior 

knowledge to gain more confidence on MCI-converter vs. MCI non-converter 

classification by increasing or decreasing the corresponding probabilities, thus improving 

the model’s discriminatory power, especially for the cases which the original model is 

uncertain with.  

 

5.5 Discussion and Conclusion 

Alzheimer’s disease (AD) is one of the most common progressive 

neurodegenerative diseases in elderly patients. It is critical for AD being detected early so 

that more effective intervention can be conducted. Mild cognitive impairment (MCI), a 

pre-dementia stage, has been of great interest in both AD research and clinical practices as 

MCI patients have higher risk of progression to AD. This calls deep investigation to 

classify the MCI patients to be a converter vs. a non-converter. To address this problem, 

different biomarkers are proposed by researchers from both predictive modeling and 

medicine domain, trying to quantify the disease from different aspects. Moreover, 

researchers have introduced deep learning to this area, with the hope to take the advantages 

of its powerful classification and feature extraction capability.   

In this study, to address challenging problem of MCI conversion prediction, we 

propose an AD-NET (Age-adjust neural network) to study the applicability of transfer 

learning and biomarker Δage  to improve the MCI-Converter prediction problem. One 

contribution of this study is to transfer learning the knowledge captured in the pre-training 

to the fine-tuning procedure. The knowledge-based transfer learning not only saves training 

resources but also improves prediction accuracy. Our second contribution lies in proposing 
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a novel age adjust procedure where Δage is introduced as a risk factor for MCI converter 

prediction. With these contributions, our proposed model AD-NET achieved the best AUC 

of 0.81 (±0.05) compared with all eight competing models. As for the future direction, we 

plan to further improve the age prediction results with more training dataset and different 

parameter settings. We expect these explorations will further improve the MCI conversion 

predictions. In addition, we plan to expand our proposed architecture to other clinical 

applications (e.g., migraine prediction), and with different imaging modalities (e.g., MR 

and PET). 

https://cn.bing.com/dict/search?q=migraine&FORM=BDVSP6&mkt=zh-cn
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CHAPTER 6 

CONCLUSIONS AND FUTUER WORK 

The overall objective of this research is to develop novel deep learning models for 

various medical imaging applications. In Chapter 2, I develop a Shallow-Deep 

Convolutional Neural Network (SD-CNN) with demonstrated performance improvement 

of mass classification for breast mammography by the combination of a pre-trained deep 

CNN architecture and synthetic advanced imaging modality (CEDM). Motivated by the 

success, I propose an advanced deep learning architecture named encoder-decoder residual 

inception network (REID-Net) to further extend the application of image synthesis on 

complete image instead of extracted patches in Chapter 3. Its capability of imaging 

synthesizing is demonstrated with digital mammography and neuro imaging datasets. In 

Chapter 4, I focus on addressing multiple tasks together through deep multi-task learning 

and improving the performance of individual task within an MTL architecture by referring 

features as additional information from parallel task. The proposed feature transferring 

multi-task learning network (FT-MTL-Net) is evaluated with digital mammography data 

on tasks of breast cancer detection, segmentation and classification. Transferred features 

from segmentation task help the proposed model obtain improved classification. Finally, 

in Chapter 5, I focus on applying transfer learning in the training procedure of deep learning 

models. The novity of my proposed age-adjustment neural network (AD-Net) lies in the 

transfer of both features and knowledge from pre-training task to the fine-tuning task 

aiming at reducing computation cost and improving the model’s performance in fine-tuning 

task. The advantage of this model is demonstrated in the task of MCI to AD conversion 

prediction task.  
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For the further work, I would like to consider an extension of FT-MTL-Net to 

enable feature transferring between different tasks. As in the initial study of Chapter 5, the 

current model obtained improved classification capability in the single task by taking 

segmentation features; its performance in segmentation or detection should also be 

improved if additional features are introduced. With feature transferring between multiple 

tasks, the model’s performance on multiple tasks should be improved simultaneously. 

Lastly, we introduced AD-Net in Chapter 6, in this model predicted age obtained from pre-

training task is introduced as addition knowledge to the fine-tuning MCI conversion 

prediction task through a proposed equation. The equation is proposed based on our prior 

knowledge about predicted age and MCI conversion, however such kind of prior 

knowledge is not always clear; we may dive deep into the methods which enable the model 

to learn such knowledge automatically. 
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