
Clemson University
TigerPrints

All Dissertations Dissertations

5-2017

Towards Real-time Remote Processing of
Laparoscopic Video
Zahra Ronaghi
Clemson University, zronagh@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by
an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Ronaghi, Zahra, "Towards Real-time Remote Processing of Laparoscopic Video" (2017). All Dissertations. 1939.
https://tigerprints.clemson.edu/all_dissertations/1939

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1939&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1939&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1939&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1939&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/1939?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F1939&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

TOWARDS REAL-TIME REMOTE PROCESSING OF

 LAPAROSCOPIC VIDEO

A Dissertation

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Bioengineering

by

Zahra Ronaghi

December 2016

Accepted by

Dr. David Kwartowitz, Committee Chair

Dr. Delphine Dean

Dr. J. Barr von Oehsen

Dr. S. Duke Herrell

 ii

ABSTRACT

Laparoscopic surgery is a minimally invasive technique where surgeons insert a

small video camera into the patient’s body to visualize internal organs and use small tools

to perform these procedures. However, the benefit of small incisions has a disadvantage of

limited visualization of subsurface tissues. Image-guided surgery (IGS) uses pre-operative

and intra-operative images to map subsurface structures and can reduce the limitations of

laparoscopic surgery. One particular laparoscopic system is the daVinci-si robotic surgical

vision system. The video streams generate approximately 360 megabytes of data per

second, demonstrating a trend toward increased data sizes in medicine, primarily due to

higher-resolution video cameras and imaging equipment. Real-time processing this large

stream of data on a bedside PC, single or dual node setup, may be challenging and a high-

performance computing (HPC) environment is not typically available at the point of care.

To process this data on remote HPC clusters at the typical 30 frames per second rate (fps),

it is required that each 11.9 MB (1080p) video frame be processed by a server and returned

within the time this frame is displayed or 1/30th of a second. The ability to acquire, process,

and visualize data in real time is essential for the performance of complex tasks as well as

minimizing risk to the patient.

We have implemented and compared performance of compression, segmentation

and registration algorithms on Clemson’s Palmetto supercomputer using dual Nvidia

graphics processing units (GPUs) per node and compute unified device architecture

(CUDA) programming model. We developed three separate applications that run

 iii

simultaneously: video acquisition, image processing, and video display. The image

processing application allows several algorithms to run simultaneously on different cluster

nodes and transfer images through message passing interface (MPI). Our segmentation and

registration algorithms resulted in an acceleration factor of around 2 and 8 times

respectively. To achieve a higher frame rate, we also resized images and reduced the overall

processing time. As a result, using high-speed network to access computing clusters with

GPUs to implement these algorithms in parallel will improve surgical procedures by

providing real-time medical image processing and laparoscopic data.

 iv

DEDICATION

I dedicate this work to my family. My parents Majid and Manijeh, my sister Maryam and

my brother Mohammad who have always provided me with their unconditional love,

support and guidance. Words cannot express how much you all mean to me, thank you!

 v

ACKNOWLEDGEMENTS

 I would like to sincerely thank my advisor Dr. David Kwartowitz for his support,

guidance and encouragement throughout my PhD. I will be forever grateful for the

opportunity to pursue this degree, attend conferences and mentor undergraduate students.

Thank you Dr. Edward Duffy for your guidance, helpful discussions and invaluable

assistance in different parts of my research. I would also like to thank my dissertation

committee members, Dr. Delphine Dean, Dr. Barr von Oehsen, Dr. Duke Herrell and also

Dr. Bruce Gao for their time, feedback and guidance.

Thank you Dr. Melissa Smith and Karan Sapra for providing your knowledge on

high performance computing and Ryan Izard on computer networks. I am also thankful to

Dr. Kuang-Ching Wang, Clemson Computing and Information Technology group: Mr. Jim

Bottum, Ms. Kathryn Mace, Mr. Christopher A. Konger, Mr. Brian Parker, Mr. Joseph

Bernard, and Mr. Randall Martin for their help with the network infrastructure and the

financial support received from the National Science Foundation (NSF) grant ACI-

1245936.

I appreciate the support of Dr. Martine LaBerge and all the members of the

Department of Bioengineering, especially Ms. Maria Torres and Ms. Melissa McCullough,

for always being available to answer questions. Finally, I would like to thank my family

and all of my friends at Clemson University who have supported me during my time here.

Thank you dad, for always guiding and encouraging me to pursue further knowledge in

engineering and science and mom, for being a great inspiration and role model in pursing

engineering.

 vi

TABLE OF CONTENTS

 Page

TITLE PAGE ... i

ABSTRACT .. ii

DEDICATION ... iv

ACKNOWLEDGEMENTS .. v

LIST OF FIGURES ... viii

CHAPTERS

1 INTRODUCTION AND MOTIVATION .. 1

1.1 Significance and Innovation .. 1

1.2 Motivation and Approach.. 5

1.3 Dissertation Outline... 6

2 BACKGROUND AND LITERATURE REVIEW .. 8

2.1 Laparoscopic surgery and image guided surgery .. 8

2.2 Medical image processing on GPUs ... 12

3 DATA TRANSFER FOR REMOTE PROCESSING OF MEDICAL IMAGES 17

3.1 Introduction ... 17

3.2 Methods ... 18

3.3 Results ... 29

3.4 Discussion and Conclusions .. 36

 vii

Table of Contents (Continued) Page

4 MEDICAL IMAGE REGISTRATION AND SEGMENTATION FOR

LAPAROSCOPIC SURGERY ... 40

4.1 Introduction ... 40

4.2 Segmentation methods and results .. 42

4.3 Registration methods and results .. 47

4.4 Discussion and Conclusions .. 55

5 HIGH PERFORMANCE COMPUTING ENABLE REAL-TIME PROCESSING OF

LAPAROSCOPIC SURGERY ... 57

5.1 Introduction ... 57

5.2 Methods ... 58

5.3 Results and Discussion .. 66

5.4 Conclusions ... 79

6 MPI-CUDA IMPLEMENTATION FOR REAL-TIME MEDICAL IMAGE

PROCESSING .. 81

6.1 Introduction ... 81

6.2 Methods ... 82

6.3 Results and Discussion .. 84

7 CONCLUSIONS AND FUTURE WORK ... 88

BIBLIOGRAPHY ... 91

 viii

LIST OF FIGURES

Figure Page

1.1 - System overview of laparoscopic cameras, network and cluster 4

2.1 - Laparoscopic procedure .. 8

2.2 – daVinci surgical robot [16] .. 10

2.3 – Kidney image registration [20] .. 12

2.4 - Registration solver [14] .. 13

3.1 – OSI and TCP/IP model .. 19

3.2- Client Server connection with N routers ... 22

3.3- Uni-directional UDP Connection .. 22

3.4- Bi-directional TCP Connection ... 23

3.5 - Workflow for network tests, demonstrating the connectivity between the local

laparoscopy computer (left) and the HPC Palmetto Cluster (right). 25

3.6 - Software Defined Network Architecture [69] .. 27

3.7 – SOS network setup ... 29

3.8 – Cutters to Palmetto’s user node connection ... 29

3.9– Round-trip time for SFTP using 1Gbps .. 30

3.10– Round-trip time for SFTP using 10Gbps .. 31

3.11– Cutters to Palmetto's compute node connection ... 31

3.12–Round-trip time for SFTP through compute node using 10Gbps 32

 3.13– Round-trip time for UDP using 10Gbps .. 33

3.14– Round-trip time for MPI using 10Gbps .. 34

 ix

List of Figures (Continued) Page

3.15– Round-trip time for MPI using 10Gbps for 6MB files ... 35

3.16– SOS parameter sweep ... 36

4.1– (a) Original head phantom and (b) segmented images ... 45

4.2– Original aorta laparo video and (left) segmented aorta from laparo video (right) ... 46

4.3– Original aorta laparo video and (left) segmented threshold aorta (right) 46

4.4– Brain MRI images with affine and non-rigid registrations 53

4.5– - Abdominal CT scans with affine and non-rigid registration 54

4.6– - Aorta with affine and non-rigid registration ... 55

5.1– CPU vs. GPU Arithmetic Logic Units [57] .. 60

5.2 – CUDA execution model [56] ... 61

5.3 – CUDA Grid/block hierarchy [56] .. 62

5.4 – CUDA memory model [58] ... 63

5.5 –OpenCL memory model [61] .. 65

5.6 –Compute node structure .. 67

5.7 –Matrix multiplication time using CPU and GPU .. 68

5.8 –GPU speed up compared to CPU .. 68

5.9 –Nvidia visual profiler .. 71

5.10 –Brain MRI registration .. 73

5.11 –Abdominal CT registration ... 74

5.12 – Hysteresis thresholding [11] .. 76

5.13 – GPU run-time of image processing algorithms ... 77

 x

List of Figures (Continued) Page

5.14 – Image compression .. 78

5.15 – GPU Run-time for varying image sizes ... 79

6.1 – MPI/CUDA block size 2 .. 84

6.2 – MPI/CUDA block size 16 .. 85

6.3 – MPI and CUDA on Palmetto ... 86

 1

Chapter 1

INTRODUCTION AND MOTIVATION

1.1 Significance and Innovation

Minimally invasive surgery (MIS) reduces patient trauma, hospital stay, and

recovery time through reducing incision sizes to small “keyholes”. In laparoscopic

procedures a camera is used for real-time visualization of the surgical field and guidance

of the procedures. However, small field of view of the laparoscope as well as small incision

size will result in a small overall visual field of the underlying tissues of interest. The

reduced visual field along with organ motion due to natural and surgical affect can limit

the surgeon’s ability to target specific subsurface locations with high accuracy and

precision; therefore, requiring external information such as medical imaging to

complement laparoscopic video [1,2].

Pre-operative and intra-operative images can be processed to offer more visual

details of a surgical area of interest. Pre-operative images are necessary to understand the

patient’s anatomy and plan a surgical process. Some of the most common pre-operative

imaging methods include Computed Tomography (CT), Magnetic Resonance Imaging

(MRI) and Nuclear Medicine combined with CT or MRI. Intra-operative imaging can be

used for real-time observation of the surgical field especially for applications that the

position of internal organs is unpredictable. X-ray fluoroscopy, ultrasound and hand assist

laparoscopy are techniques that have been used for intra-operative medical imaging [3, 4].

 2

Radical nephrectomy, resection of entire kidney as well as surrounding fat,

lymphatic and the adrenal gland, was the traditional treatment for patients. Recently, partial

nephrectomy has become common. This involves partial resection of the kidney, removal

of diseased segment of renal tissue and leaving normal functioning kidney tissue.

Identifying clear margin can reduce procedure time and limit disturbance of healthy tissue,

thus shorter recovery time for the patient [5]. Improving intraoperative visualization such

as image-guided surgery (IGS) techniques during the procedure will improve surgeon’s

view of the margin and surgical outcome.

IGS uses pre-operative and intra-operative images to map a surgical region of

interest (ROI), thus providing surgeons with visualization of subsurface structures and

accurate positional information during a surgical procedure [6, 7]. The accurate co-

registration of an IGS system with laparoscopic video can reduce the impact of limited

surgical access and allow for a resection with higher specificity and tighter margins, thus

sparing more healthy tissues. As a result, augmentation and mapping imaging data to the

operative field of view can improve accuracy and efficiency of surgical procedures [8-11].

After the introduction of the Computer Motion AESOP and the Intuitive Surgical

daVinci both in 1998, the use of robotics in medicine has continued to grow. Some of the

clinical benefits of medical robotics are improvement in dexterity and accuracy of

manipulation compared to traditional laparoscopy [11]. Currently the primary robotic

surgery devices on the market are the daVinci-si and daVinci-xi systems. For this work we

will look at the daVinci-si robot, with a HD vision cart, which uses two parallel 1080p

(1920x1080x3) High Definition video cameras to generate stereoscopic vision. These two

 3

views are then displayed using a pair of high definition monitors set up in a stereopticon-

like device thus allowing the clinician the ability to perceive depth [12, 13]. If captured

raw, these video streams generate approximately 360 megabytes of data per second.

Processing of the volume of data generated by the stereo video feeds would be

demanding for a local system, and thus high-performance computing (HPC) hardware is

needed [14-16], which can be both expensive (cost of power, cooling, system

administration) and large in size. Even though the price of computing hardware continues

to fall, the price of HPC hardware can limit systems to only hospitals with large financial

resources, while physical size considerations can make hardware difficult to place in any

operating room. As the size of data generated by surgery increases from enhanced video

resolutions and new instrumentation in the operating room. The need to process and store

this data is increasingly becoming a problem requiring efficient connectivity to HPC

systems at remote locations.

I have developed image processing algorithms for augmentation of laparoscopic

video with pre-operative and intra-operative medical images on HPC clusters. Computing

clusters are often not available in hospital environments, and thus data will need to be

transported from the point of care to be processed, and results will need to be returned in

real-time. To realize the goal of rapid processing of laparoscopic data, we propose the

development of a protocol where data is captured, transmitted, processed, returned, and

displayed within 1/30th of a second for the left and right eye synchronization of the daVinci.

At the 30 fps rate of the video, each frame will take 1/30th of a second (or 33ms). The two

video streams will be synchronized if the overall time is less than one frame (33ms).

 4

Figure 1.1 - System overview of laparoscopic cameras, network and cluster

Clemson University has recently deployed the OpenFlow software defined network

(SDN) communication protocol on its network and is in the process of leveraging the new

protocol and its connection to the Internet2 Innovation Platform [18]. SDN enables

programmable network control for high-bandwidth and dynamic applications [17]. The

new network will assist researchers in overcoming the network limitation to flexibly

establish 10 gigabit or higher end-to-end connectivity, within a scientific demilitarized

zone (DMZ), thus creating a frictionless connection between machines. DMZ ensures

publicly accessible servers are placed on an isolated network segment [18]. As a result,

using high-speed network to access computing clusters will lead to real-time or near real-

time medical image processing with great flexibility.

The augmentation of live high definition stereo laparoscopic data with pre-

operative or intra-operative medical images requires more computational capability than is

possible on a single workstation. More advanced visualizations may require rendering

techniques more suited to a high-performance computing environment. Therefore,

flexibility in the transmission of data to multiple sites is important. Furthermore, the ability

to optimize the data transmission to take advantage of the specialized processing and

 5

rendering techniques at multiple endpoints is the key to allowing for rendering and

processing as a service and also providing optimal data.

1.2 Motivation and Approach

A laparoscopic camera of interest is the vision system of daVinci-Si robotic surgical

system. The vision system generates two parallel video streams one representing the left

eye and one representing the right eye; totaling approximately 360 megabytes of data per

second. The burden of processing this data on a bedside PC has become overwhelming and

availability of a point of care high-performance computing (HPC) environment is rare. To

process this data on remote HPC clusters at the typical 30 frames per second (fps) rate,

each 11.9 MB video frame must be processed by a server and returned within 1/30th of a

second. The ability to acquire, process and visualize data in real-time is essential for

performance of complex tasks as well as minimizing risk to the patient. We hypothesize

that by using high-speed networks to access computing clusters will lead to near real-time

medical image processing and improve surgical outcomes by providing real-time enhanced

laparoscopic data. I therefore propose the following goals:

Processing of the data generated by the stereo video feeds would be demanding for

a local system, and thus high-performance computing (HPC) hardware is needed, which

can be both expensive and large in size. Computing clusters are often not available in

operating rooms (OR) or hospital environments, and thus data will need to be transported

from the point of care to be processed, and results will need to be returned in real-time. For

this work we will look at the daVinci-si robot, with a HD vision cart, which uses two

 6

parallel 1080p (1920x1080x3) High Definition video cameras at 30fps rate to generate

stereoscopic vision. It is required that each 11.9 MB video frame be processed by a server

and returned within 1/30th of a second (~33ms). We propose the development of a protocol

where data is captured, transmitted, processed, returned, and displayed within 33ms for the

left and right eye synchronization of the daVinci.

Through the use of high-speed access to a high-performance computing resource,

we believe that it will be possible to update models based on current surgical data. These

methods will allow for real-time modification of the previously generated object map,

based on current data. Object map is segmentation of volumetric images into multiple

object regions, which stores the object information of every voxel in the image. For spatial

volume registration, object maps allow structures segmented from different modalities to

be combined with proper spatial relationships). We plan to take the augmented data

previously generated and send it to the cluster for adaption and deformation. We will

compare the developed algorithms on central processing unit (CPU) and graphics

processing units (GPUs)

1.3 Dissertation Outline

Chapter 2 provides a background on laparoscopic surgery and image guided surgery

as well as literature review of relevant work in the field of medical image processing and

high performance computing. Chapter 3 provides background, method and results on our

network infrastructure. Chapter 4 focuses on the medical image processing algorithms such

as segmentation and registration. Chapter 5 details the experiment setup on Clemson’s

 7

supercomputer with dual Nvidia GPUs and evaluation of the medical image processing

parallelization. Chapter 6 discusses an MPI-CUDA implementation of our framework.

Finally the dissertation is concluded in chapter 7 with directions for future research.

 8

Chapter 2

BACKGROUND AND LITERATURE REVIEW

2.1 Laparoscopic surgery and image guided surgery

 Minimally invasive surgery (MIS) reduces patient trauma and recovery time by

using small “keyholes” instead of traditional open surgery. Surgeons insert a small video

camera into the patient’s body for visualization and guidance and use small tools to perform

surgical procedures. MIS reduces size of incisions, patient recovery time, trauma and post-

operative pain. However, small field of view will result in small visual field for surgeons,

which could prolong procedures and does not provide information about subsurface

structures [7].

Figure 2.1 - Laparoscopic procedure

 9

Image guided surgery (IGS) uses pre-operative (for example magnetic resonance

imaging (MRI) or Computed topography (CT)) or intra-operative (such as ultrasound (US)

or fluoroscopy) medical images to map a surgical region of interest, providing surgeons

with information regarding internal structures and their geometric relationships [7]. IGS

systems relate measurements in one coordinate system to measurements in another.

Determining mathematical relationship between objects in images with their physical

location in the operating room can be done based on points, surfaces or volumes. This

process is called registration and the images or instruments can be overlaid on other images,

laparoscopic video or the patient. High-speed computing hardware will enable interactive

registration and real-time surgical image guidance during procedures.

2.1.1 Robotic surgery

 After the introduction of the Computer Motion AESOP and the Intuitive Surgical

daVinci, both in 1998, the use of robotics in medicine has continued to grow. They play an

important role in minimally invasive procedures by enhancing precision and dexterity.

Currently, the primary robotic surgery devices on the market are the daVinci-si and

daVinci-xi systems (Intuitive Surgical, Sunnyvale, CA, USA). The daVinci-si robot

consists of the surgeon’s console and patient side cart [16]. The high definition (HD) vision

cart uses two parallel 1080p (1920x1080x3) high-definition video cameras to generate

stereoscopic vision and allows clinicians to perceive depth. An example of a daVinci-si

surgical system with added second surgeon console is shown in Figure 2.2.

 10

Figure 2.2 – daVinci surgical robot [16]

Robotic assisted surgery also relies on laparoscopic cameras for vision and does

not allow information of subsurface structures. Image guided surgery (IGS) allows

visualization and evaluation of critical structures. Registration of tomographic medical

images can be done using intrinsic (kinematic chain of the robot and robotic cart), extrinsic

(optical or magnetic tracking systems) or hybrid localization in the operating room [12].

2.1.2 Image guided abdominal surgery

 IGS has become the standard of care in neurosurgery that allows more specific

resection with higher specificity and minimizes damage to healthy tissue. Image guided

surgery for abdominal organs deals with challenging registration and segmentation

methods that are caused by organ motion and soft tissue deformation. Real-time

registration and remodeling of data are necessary during these surgical procedures. Pre-

operative images can be used to understand the patient’s anatomy and plan a surgical

process. Intra-operative images can be used for real-time observation of the surgical field,

as the position of internal organs is dynamic [19].

 11

2.1.3 Augmented reality partial nephrectomy

 Partial resection of the kidney or removal of diseased segment is called partial

nephrectomy. Partial nephrectomy for renal cell carcinoma has become more common as

it leaves a clear margin for the normal functioning part of the kidney and preserves renal

function. Identifying clear margins can reduce procedure time and result in a resection with

higher specify and tighter margins. Some of the advantages of laparoscopic partial

nephrectomy compared to open partial nephrectomy are reduced blood loss, recovery time

and hospital stay [20, 21].

 daVinci robotic surgical systems provide advantages over traditional laparoscopic

surgery such as improved dexterity, precision and high-quality 3D operative view.

Augmented reality (AR) can be used with da Vinci robots to provide the surgeon with

additional information and enhance the surgical procedure. AR systems enable overlay and

alignment of pre-operative or intra-operative medical images onto the surgical field of view

and improve surgeon’s visualization, view of the margin and surgical outcome. However,

intra-abdominal organs such as kidney change size and shape during procedures. Surgical

tools and conditions, retractors and physiological changes may cause kidney deformation.

Examples of image registration techniques for kidney include: manual registration using

surgeon’s knowledge of human anatomy, surface based registration that aligns surface

anatomy with medical images, and stereoscopic registration using disparity between two

cameras to triangulate placement of an object within a camera frame [20]. Some of these

examples are presented in Figure 2.3.

 12

Figure 2.3 – Kidney image registration [20]

2.2 Medical image processing on GPUs

 Medical image registration is the process of aligning medical images into a

common coordinate space. Registration can be done using intrinsic or extrinsic registration.

During intrinsic registration, features are based on the patient and extracted visually or

computationally from input images. These features such as anatomical landmarks or image

segmentation are used for matching and registration of images. Extrinsic registration uses

artificial markers such as foreign objects and fiducial markers [22]. Figure 2.4 shows a

 13

general registration solver. The main components include preprocessor, transformer,

optimizer and similarity measure [14].

Figure 2.4 - Registration solver [14]

Image registration is computationally expensive and with increasing resolution and

size of medical images or videos, real-time processing on a bedside or local PC has become

more challenging. As a result, recent research on image processing using cell broadband

engine (Cell/BE), field programmable gate arrays (FPGAs) and GPUs have increased.

Image segmentation divides elements of an image into a set of groups. Medical

image segmentation can be used to segment brain structures, organs, tumors, etc. for

diagnostics and intraoperative guidance. Segmentation algorithms are usually specific to

an application and allow visualization of region of interest without unnecessary

information [23].

 14

2.2.1 Medical image registration on GPUs

One of the main goals of recent image registration research is performing real-time

or near real-time calculation to provide more accurate information during surgical

procedures and intraoperative applications. Depending on the application, these algorithms

may be high throughput computing or require additional work and modification to transfer

from CPU to GPU for faster processing. Several groups have reported faster linear

interpolation on GPUs compared to CPU implementation. Shams et al. investigated real-

time registration of 3D CT scans on a GPU using mutual information [24]; the CPU

implementation took 45 seconds while the total time reduced to 3.7 seconds using a GPU.

Brounstein et al. performed registration between CT and ultrasound on a GPU in 2 seconds

[25]. The work reported by Ruijters discussed non-rigid registration between pre-operative

and intra-operative 3D cone-beam CT volumes [26]; volumes of the size 256 x 256 x 256

voxels were registered in 329 seconds on CPU, 31.2 seconds using multi-thread and 7.4

seconds on a GPU. Using several GPUs instead of one could also reduce the total

registration time further. The work reported by Plishker et al. compared CT image

registration using one and four GPUs [27]; using a single GPU the registration was

performed in 7.9 seconds and four GPUs reduced the time to 2.5 seconds. Optimization of

naïve GPU implementations that are compute or memory-bound can also result in further

speedup. Efficient GPU implementations can also reduce overall time by minimizing CPU-

GPU communications. For example, Hwang et al. optimized a GPU implementation that

resulted in a speedup of a factor 6 [28].

 15

2.2.2 Medical image segmentation on GPUs

 Image segmentation is also a computationally demanding procedure especially for

large medical image datasets. GPUs can be used to compare multiple segmentation

algorithms or perform interactive segmentation and visualization. Some of the common

segmentation algorithms that have been executed in parallel include: thresholding, level-

set, active contours, region growing and watershed transform [29]. Active contours

segmentation uses moving contours and focuses on minimizing their energy. Perrot et al.

focused on segmentation by active contours of large images (15-150 megapixels) and

reduced the processing on GPU by a factor of 7 [30]. Level-set segmentation is similar to

active contours, which propagates a contour in the image; however, it has the advantage of

splitting and merging these contours without additional processing. In [33], the authors

implemented a parallel interactive level-set segmentation and achieved 10x to 15x speedup.

Watershed segmentation uses intensity value of pixels as their height to find watershed

lines. Korbes et al. reported a parallel implementation of watershed segmentation that is

six times faster than the serial version [32]. Real-time processing of dynamic images

requires streaming this data directly to GPUs. Novontny et al. performed real-time

instrument detection and tracking in ultrasound volume in 31 ms on a GPU [31].

 Most of the work has focused on developing medical image processing algorithms

for local CPUs. Several groups that have worked on using a network link for transfer of

medical data and images: NifTK, PLUS, MITK-OpenIGTLink.

 16

OpenIGTLink is a TCP based network protocol for medical data transfer. It has been

mostly used for connecting devices and software within an operating room (OR) or

computers on the same network [34]. NifTK uses NiftyIGI as the image guided

intervention applications and NiftyLink for transfer of data. NiftyIGI provides

visualization platform as well as receiving video and tracking data. NiftyLink sends

OpenIGTLink messages using a client and server model [35]. Public software library for

ultrasound (PLUS) has been developed for ultrasound guided intervention systems. It also

uses OpenIGTLink protocol for receiving and streaming live data [36]. Medical imaging

interaction toolkit (MITK) uses OpenIGTLink as the network interface to allow cross-

application within computer-assisted intervention systems [37].

 17

Chapter 3

DATA TRANSFER FOR REMOTE PROCESSING

OF MEDICAL IMAGES

3.1 Introduction

In laparoscopic procedures, a camera is used for real-time visualization of the

surgical field and guidance of the procedures; however, the small field-of-view of the

laparoscope will result in a small overall visual field of the underlying tissues of interest.

The reduced visual field along with organ motion can limit the surgeon’s ability to target

specific subsurface locations with high accuracy and precision, therefore, requiring

external information such as medical imaging to complement laparoscopic video [1,2].

For this work, we will look at the daVinci-si robot, which uses two parallel 1080p

(1920 × 1080 × 3) high-definition video cameras to generate stereoscopic vision. We will

develop image processing algorithms for laparoscopic video with medical images on HPC

clusters. Computing clusters are often not available in hospital environments, thus data will

need to be transported from the point of care to be processed and the results will need to

be returned in real time. To realize the goal of rapid processing of laparoscopic data, we

propose the development of a protocol where data is captured, transmitted, processed,

returned, and displayed within 1/30th of a second for the left and right eye synchronizations

of the daVinci. This chapter includes comparison of different network protocols for

transferring medical images and video to Clemson’s Palmetto cluster.

 18

3.2 Methods

3.2.1 Network model and protocols

 Network designers use a layered architecture to design a network and protocols to

specify services. Each layer can be implemented using software, hardware or a

combination of both. Defining protocols by layers has many advantages. For example, each

layer has a specific function and receives services from other layers. In TCP/IP model,

Internet protocols are specified in five layers: Application, Transport, Network, Data link

and Physical Layer as shown in Figure 3.1. Application and transport layers are

implemented in software, Data link and physical layers are implemented in a Network

Interface Card (NIC) such as Ethernet or WIFI, and Network layer is often a mix of

software and hardware implementations [38].

 The reference model, OSI model is defined in seven layers: Application,

presentation, Session, Transport, Network, Data link and physical layer. Two layers of

presentation and session that are not in Internet model are defined in application layer based

on application specification. OSI and TCP/IP models are shown in figure 3.1.

 19

Figure 3.1 – TCP/IP (left) and OSI (right) model

Network applications are in application Layer. Protocols available for this layer are:

HTTP (Web request and Transfer), SMTP (transferring email) and SFTP (for transferring

files between computers). Transport layer transports application layer’s messages between

systems. Two transport protocols are: Transmission Control Protocol (TCP) and User

Datagram Protocol (UDP). The main function of the Link Layer is to check transmission

error and manage data flow (Ethernet and WIFI). Physical layer is the transmission medium

of the link (wired or wireless); fiber optic cable is an example of wired network and RF

transceiver for wireless network.

3.2.2 Network delay and packet loss

In a packet switched network, data in the application layer is divided into groups of

bits that are called packets. Ideally packets are transferred from source to destination

without loss and delay. However, packets are passed through different routes and routers

that will cause delays or errors. Four types of delays are: Processing, queuing, transmission,

and propagation.

Application

Transport

Network

Data Link

Physical

Application

Presentation
Session

Transport
Network

Data Link
Physical

 20

Processing delay is the time required to check a packet’s header to specify route

and direction. It also includes time for checking bit error in the packet. Processing delay in

routers is usually in order of microseconds. After processing, packet is directed to the queue

of the next link.

Queuing delay is the time that packet waits in queue to be transmitted onto the next

hop link. If there is no packet in the queue, the queuing delay is zero and packet is

transmitted to the next hop. If there are some packets in the queue, the queuing delay

depends on the number of packets in the queue. It could be in the order of microsecond or

milliseconds. The service policy is usually first come first served.

Transmission delay is the time to send a packet of L bits to the next node. If the

link transmission rate is R bits per second, the transmission delay is L/R. The rate could be

Mbps up to Gbps. For example, if the packet length is 1500 bits and the transmission rate

is 100 Mbps, the transmission delay is

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑑𝑒𝑙𝑎𝑦 =
𝐿

𝑅
=

1500

100𝑥106
= 15𝜇𝑠𝑒𝑐

Propagation delay is the time required to send a packet from one router to the next.

This time depends on the distance between two routers and speed of the link. Therefore,

propagation delay is equal to:

𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝐷𝑒𝑙𝑎𝑦 =
𝑑

𝑠
=

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑅𝑜𝑢𝑡𝑒𝑟𝑠

𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝑠𝑝𝑒𝑒𝑑

 21

Propagation delay is negligible if two routers are close or on a campus of a

university. However, if two routers are not close to each other, propagation delay should

be considered.

Queuing delay is difficult to predict. Several research groups are working on

calculating probability of having more than specified delay and also average queuing delay.

It is usually assumed that the buffer is infinite and all of the packets can be stored in the

buffer. However, an actual buffer is finite and if a packet arrives and the buffer is full, the

router will drop the packet and results in packet loss. A packet loss will be detected and

lost packet is retransmitted if TCP is used for the transport layer.

The sum of all of the types of delays is called total nodal delay. Total nodal delay

is defined as:

dnodal = dproc + dqueue+dtrans + dprop

If there are N routers from source to destination, End-to-End delay (the total delay)

from source to destination and is equal to:

𝑑𝐸𝑛𝑑−𝑡𝑜−𝐸𝑛𝑑 = 𝑁(𝑑𝑝𝑟𝑜𝑐 + 𝑑𝑞𝑢𝑒𝑢𝑒+𝑑𝑡𝑟𝑎𝑛𝑠 + 𝑑𝑝𝑟𝑜𝑝)

Figure 3.2 shows the connection between source (client) and destination (server) with N

routers in between.

 22

Server R1 Rn client

Figure 3.2- Client Server connection with N routers

3.2.3 TCP and UDP

User Datagram Protocol (UDP) is a connectionless transport layer protocol. There

is no handshaking between source and destination before transmitting the packet so it is

connectionless and no acknowledgement is sent from receiver to transmitter for received

correct packets. Therefore, there is a unidirectional data flow in UDP connection. If a

packet is lost, there is no retransmission of the packet. There is an error checking field bit

that is added in the header field of the packet, which is used at the receiver to detect bit

error. UDP is usually used for multimedia applications, since there is no delay for

connection establishment. There is no connection state for sender and receiver, which

makes handling many active clients at the same time easier. However, this protocol is not

reliable and cannot be used for loss sensitive data i.e. real-time surgery.

Figure 3.3- Unidirectional UDP Connection

 23

Transmission Control Protocol (TCP) is a reliable and point-to-point connection

between the source and destination. Before transferring data, there is a 3-way handshaking

between source and destination, which adds overhead. TCP provides full duplex data

transfer, meaning there is bi-directional data flow. An acknowledgement is sent from

receiver to transmitter if the packet is received without error. If there is a bit error in the

packet or packet is lost due to a full buffer in routers, the packet is retransmitted. A timer

is set at the transmitter for each packet. If the acknowledgement of a packet is not received

during the specified time, packet is retransmitted. In TCP, packets are numbered using

segment number and are delivered in order. If a packet is received out of order, depending

on the version of TCP, it can be buffered until previous packets are received.

Figure 3.4- Bi-directional TCP Connection

3.2.4 Network infrastructure

Prior to the design of our overall system, network latency, bandwidth and speed

were tested in a series of time-of-flight experiments. For our study we developed three

separate applications that run simultaneously which serve the purposes of video acquisition

(video client), video display (video server), and image processing (video server palmetto).

 24

Currently a single PC is used for the acquisition and display of images (video client

and video server), this machine is outfitted with a Piccolo Alert (Euresys Inc., San Juan

Capistrano, CA, USA) SD frame grabber board, connectivity is provided over a 10 gigabit

per second (Gbps) Ethernet connection. Our video processing module (video server

palmetto) is running on the Palmetto compute cluster; rated number 4 amongst academic

research clusters. Palmetto contains 1,978 compute nodes (20,728 cores) and 598 NVIDIA

Tesla GPU accelerators [39]

The distance between the client (our local computer) and server (Palmetto Cluster)

is 9 miles. Our local computer is placed in Clemson, SC and the cluster is located in

Pendleton, SC. The connectivity from the outside to the Palmetto cluster is 10 Gbps. The

communication within the Palmetto cluster (between nodes) is provided over InfiniBand

or Myrinet. There is a 100 Gbps connection from the cluster to the Internet2 innovation

platform, which provides rapid connectivity for learning and research between more than

100 U.S. universities. We have tested our transfers using our local area network and plan

on connecting to multiple institutions through Internet2. Preliminary network tests were

conducted using the workflow shown in Figure 3.5.

 25

Figure 3.5 - Workflow for network tests, demonstrating the connectivity between the local laparoscopy computer (left)
and the HPC Palmetto Cluster (right).

In our workflow we currently have tested different protocols and methods such as

the secure file transfer protocol (SFTP), UDP and message passing interface (MPI) for the

transfer of captured frames from the client machine (our local computer) to the HPC server

(Palmetto cluster). We have measured the round-trip time for captured images of 57KB

and have compared our results using the 1Gbps and updated 10Gbps network connections.

We are trying to minimize network overhead and latency so we can use the HPC resources

to improve the visualization and accuracy of laparoscopic video and provide surgeons with

real-time augmented laparoscopic data during surgical procedures.

Clemson University has also recently deployed the OpenFlow software-defined

network (SDN) communication protocol on its network and is in the process of leveraging

the new protocol and its connection to the Internet2 Innovation Platform. SDN enables

programmable network control for high-bandwidth and dynamic applications [17]. The

 26

new network will assist researchers in overcoming the network limitation to flexibly

establish 10 GBPS or higher end-to-end connectivity, within a scientific demilitarized zone

(DMZ), thus creating a frictionless connection between machines [18].

SDN provides the ability to deploy and manage networks dynamically. Software

defined networking started in 2010 and changed the network industry in 2011. SDN

separates data plane from control plane and facilitates network monitoring and

management. For Internet routers and Ethernet switches, control is implemented and

coupled in the devices. In SDN, a logically centralized controller has a global view of the

network and collects information from network resources. Routing algorithms are placed

in a central section called controller. Controller receives policies and instructions and

network information from network resources. Controller uses this information to find the

best routes and makes the forwarding table. The forwarding rules are installed on the flow

table of data plane switches that forward traffic based on the forwarding rules. Switches

are responsible for forwarding the data according to the flow table rules which are made

by the controller [40].

Routing is implemented for each flow. When a flow enters a switch, the switch

compares flow fields with the flow table. If it matches the entry of the table, the

corresponding action will be done; otherwise the switch uses OpenFlow protocol to send

the flow to the controller. OpenFlow (OF) is one of the most common standards for SDN

architecture. It contains many features for network monitoring and reconfiguration and

allows network providers as well as researchers to add functionality to this protocol. The

 27

controller calculates the route for this flow and adds an entry with flow fields and suitable

action to the flow table.

The separation of control and data plane together with programmable nature of

SDN, allows using it as an underlying technology for delivering online video and images

in an efficient manner. SDN has some advantages such as intelligence and controllable

architecture, less dependency on hardware technology, simple and flexible management,

no dependency to a specific company’s products, faster innovation implementation and

testing. Policies can be applied easily using the flow tables[40, 41].

 SDN architecture is shown in Figure 3.6:

Figure 3.6 - Software Defined Network Architecture [69]

Steroid OpenFlow Service (SOS) is an OpenFlow-based network service that can

seamlessly increase the performance of large data transfers over long-distance and high

bandwidth networks (i.e. large delay-bandwidth- product networks) [42]. SOS takes

advantage of the fact that TCP is typically unable to consume the available network

bandwidth over large networks. TCP's algorithm only permits the connection source to

send its window-size number of packets before receiving an acknowledgement. In a large

 28

network, this can result in the sender waiting idly for the acknowledgement before being

permitted to send additional packets.

SOS works by redirecting the TCP connection to a local SOS agent using an

OpenFlow switch in the network path. The local SOS agent transparently acknowledges

the packets from the source of the data transfer acting as if it is the intended destination.

Because the local SOS agent is installed on the source’s local network, the

acknowledgement delay is small compared to the real destination, and the source can

continuously transfer data to the local agent.

As the source SOS agent (surgeon console) accumulates a buffer of data from the

data transfer source, a destination SOS (HPC cluster) agent is located in close proximity to

the intended destination. The source and destination SOS agents communicate and agree

to use a number of parallel TCP connections in order to rapidly transfer the data from the

source SOS agent to the destination SOS agent. The destination SOS agent collects data

from the parallel TCP connections and presents it to the intended destination as if it

originated from the source across the large network. Figure 3.7 indicates the SOS network

setup:

 29

Figure 3.7 – SOS network setup

3.3 Results

The connection from our lab (cutters) to the cluster and back to cutters is shown in

the figure below. We connect from cutters to Palmetto’s user node though a 1Gb/s or

10Gb/s connection. The user node directs our job submission to a compute node for

processing:

Figure 3.8 – Cutters to Palmetto’s user node connection

Data from the time-of-flight tests for video frames using the SFTP file transmission

protocol showed an increase in transmission time as the frame number increased, for both

1Gbps and 10Gbps networks, except for when the protocol had completed sending of

 30

previous data which appears as valleys in the graphs. However, the round-trip time

decreased by a factor of five to seven when using the 10Gbps network instead of 1Gbps.

Figure 3.9 shows the file transfer using 1Gbps connection. The round-trip time is around

5seconds for the first file and 35seconds for the last. Figure 3.10 indicates the transmission

using 10Gbps network. The round-trip time starts at 1s for the first frame and 5seconds for

the 100th frame (note the difference in y-axis scales between the graphs).

Figure 3.9– Round-trip time for SFTP using 1Gbps

 31

Figure 3.10– Round-trip time for SFTP using 10Gbps

The graphs show an increase in time as the number of frames increase and this could be

caused by the user node of the cluster and que time. As a result, we also tested a direct

connection from Cutters to a compute node on Palmetto.

Figure 3.11– Cutters to Palmetto's compute node connection

After connecting directly to the compute node, the round-trip time decreased to 4ms

and remained around the same value for all the frames. Figure 3.12 indicates the round-trip

time in seconds between our local computer (client) and the Palmetto cluster (server).

 32

Figure 3.12–Round-trip time for SFTP through compute node using 10Gbps

SFTP runs over TCP, which offers end-to-end connection and ordered data

transmission. However, the connection-oriented communication causes delays during data

transmission. On the other hand, UDP creates a connectionless communication that will

decrease the transfer time. This could result in packet loss depending on the network

bandwidth and connectivity. We transferred the files using UDP and the overall

transmission time decreased to 0.7ms with no packet loss using the 10Gbps network. Figure

3.13 indicates the round-trip time using UDP.

 33

Figure 3.13– Round-trip time for UDP using 10Gbps

UDP and TCP are both in the transport layer of computer networks and have a

package size limit of 64 KB. Consequently, larger files have to get reassembled before

processing. As a result, we focused on the application layer and protocols that use UDP or

a TCP connection, but handle the reassembly of large files. We tested our transfers using

MPI. MPI is a message passing system and communications protocol that can be used for

parallel programming [43]. We transferred the files using this method, and the results

indicate that the transmission time is around 1.2 ms. Figure 3.14 shows the round-trip time

using MPI.

 34

Figure 3.14– Round-trip time for MPI using 10Gbps

We also tested our transfers using MPI for larger files (6 MB) to measure and

compare the transmission time for HD videos. The results indicate that the transmission is

around 53 ms. Figure 3.15 shows the round-trip time using MPI for 6 MB files.

 35

Figure 3.15– Round-trip time for MPI using 10Gbps for 6MB files

In our next step we used SOS to transfer files. SOS can be performance tuned to

the environment in which it is deployed. Parameters such as the quantity of parallel

connections to utilize, agent buffer sizes, and queuing for lost/out of order data can be

customized. Figure 3.16 shows the performance implication of the number of parallel

connections and the agent buffer size. As shown, for a 10Gbps link that can only achieve

130Mbps with a single TCP connection, SOS can increase the performance of this single

connection up to 5.08Gbps. Note that the bottleneck in Figure 3.16 is the CPU of the agents.

With better hardware, higher performance could be achieved. However, the daVinci only

generates 2.88Gbps of raw video data. Thus, SOS can improve the network performance

to support video stream transfer over TCP, which ensure reliability.

 36

Figure 3.16– SOS parameter sweep

3.4 Discussion and Conclusions

In the field of computer assisted-surgery, particularly in image-guided surgery the

ability to acquire, process, render, and visualize data in real-time is essential for

performance of complex tasks, minimizing risk to the patient [29]. While complex

surgeries have been performed for hundreds if not thousands of years, the advent of new

computer based technologies has allowed for new levels of accuracy and precision, thus

reducing postoperative complications, allowing faster recovery times, and causing less

collateral damage to otherwise healthy tissues. The contextual validity of data degrades

quickly as tools within the body move, patient organs move, and resections are performed.

It is critical that data be acquired, processed, and returned in a timely manner [44].

 37

Initial results from the use of SFTP ruled out its use due to high latency in time of

flight measurements as well as noticeable increase in latency over the course of the test.

During our tests we realized that access to the underlying file system and the fact that we

must connect to each computing node over SSH through a head node, which is accessed

by a large number of users, is causing significant latency issues. We were able to reduce

the latency through direct connection to the compute note. However, SFTP runs over TCP,

which uses acknowledgements and retransmission to prevent packet loss and causes delays.

The encryption step of SFTP is also a limiting factor in reducing the round-trip time.

UDP is faster since there is no error recovery and acknowledgment mechanism;

therefore, it is used for time-sensitive and real-time applications. The UDP tests resulted in

a lower round-trip time and reliable connection with no packet loss due to availability of

high bandwidth. However, UDP and TCP are both in the transport layer and have a packet

size limit of 64 KB; hence, larger files have to get reassembled before processing. As a

result, we focused on the application layer and protocols that use UDP or TCP connection,

but handle the reassembly of large files. We tested our transfers using MPI, which is based

on a TCP connection and is used for parallel programming, larger files, and HD video

frames. Despite MPI using TCP connection, the round-trip time is 1.2 ms comparable with

large files. In addition, the round-trip time for MPI is in the order of milliseconds compared

with seconds for SFTP. The total transfer for HD video frames is around 53 ms using MPI.

We will optimize and parallelize our algorithms to reduce the time. Through the

development of a direct connection, we can achieve more direct control over of the

 38

transmission of data as well as develop a communication system between clients and

computing nodes to perform real-time medical image processing.

Security of medical data transfer (images and video) is also an important factor.

Data security refers to technology or tools used to protect the data from unauthorized access

and help professionals to keep patient’s information in confidence. Data encryption

algorithms are used to secure the data before transmission. Encryption can be implemented

in software or hardware. There are several encryption algorithms that can be used for

different applications. Depending on time constraint of the application and time of

implementation of the algorithm, one of them is selected. Hardware implementation of the

algorithm using Digital Signal Processing (DSP) or Field-Programmable Gate Array

(FPGA) will reduce the time of encryption [45]. This will be investigated further before

transferring real-time surgery and imaging data.

The augmentation of live high definition stereo laparoscopic data with pre-

operative or intra-operative medical images requires more computational and storage

capability than is possible on a single workstation. More advanced visualizations and

processing may require new or improved rendering techniques more suited to a high-

performance computing environment. Therefore, flexibility in the transmission of data to

multiple sites is important. Furthermore, the ability to optimize the data transmission to

take advantage of the specialized processing and rendering techniques at multiple

endpoints is the key to allowing for rendering and processing as a service and also

providing optimal data.

 39

Through the use of high-speed access to an HPC resource, we believe that it will

be possible to update models and allow for real-time modification of the previously

generated object map, based on current surgical data. Success in this portion would lead to

the ability of performing surgery at one site (origin), receiving an object map from another

site (segmentation/rendering), forwarding this data along with relevant force data to a third

site for deformation (model update), and returning this data to the origin for display.

 40

Chapter 4

MEDICAL IMAGE REGISTRATION AND

SEGMENTATION FOR LAPAROSCOPIC

SURGERY

4.1 Introduction

Minimally invasive surgery reduces patient trauma, hospital stay, and recovery time

through reducing incision size; however, the small field-of-view of the laparoscope as well

as small incision size will result in a small overall visual field of the underlying tissues of

interest. The reduced visual field along with organ motion due to natural and surgical

effects can limit the surgeon’s ability to target specific subsurface locations with high

accuracy and precision; therefore, requiring external information such as medical imaging

to complement laparoscopic video [1,2]. Image-guided surgery (IGS) uses preoperative

and intraoperative images to map a surgical region of interest, thus providing surgeons with

visualization of subsurface structures and accurate positional information during a surgical

procedure [6, 7]. The accurate co-registration of an IGS system with laparoscopic video

can reduce the impact of limited surgical access and allow for a resection with higher

specificity and tighter margins, thus sparing more healthy tissues [8–11].

After the introduction of the Computer Motion AESOP and the Intuitive Surgical

daVinci, both in 1998, the use of robotics in medicine has continued to grow. Some of the

clinical benefits of medical robotics are improvement in dexterity and accuracy of

 41

manipulation compared with traditional laparoscopy [11]. Currently, the primary robotic

surgery devices on the market are the daVinci-si and daVinci-xi systems. The daVinci-si

robot has a high-definition (HD) vision cart, which uses two parallel 1080p (1920x1080x3)

high-definition video cameras to generate stereoscopic vision. These two views are then

displayed using a pair of high-definition monitors set up in a stereopticon-like device [12,

13].

Processing of the volume of data generated by the stereo video feeds would be

demanding for a local system, thus high-performance computing (HPC) hardware is

needed [14–16], which can be both expensive and large in size. Even though the price of

computing hardware continues to fall, the price of HPC hardware can limit it to only

hospitals with adequate financial resources, while size considerations can make hardware

difficult to place in any operating room. This section includes the serial segmentation and

registration algorithms tested on CPUs. The next chapter contains the parallel version of

these algorithms that were tested on a HPC cluster with GPUs.

 42

4.2 Segmentation methods and results

4.2.1 Medical image segmentation

 Image segmentation divides elements of an image into one or more regions of

interest (ROIs) [46]. Some of the most common categories of image segmentation include:

thresholding (histogram or slicing techniques), edge detection (detects edges that represent

object boundaries) and region growing (starts from seed points and grows until meets

desired segmentation result).

4.2.2 Thresholding

 Thresholding is a gray value remapping operation:

where v is gray value and t is threshold value. Gray-valued image will be mapped to a

binary image. Image will be segmented in two parts with pixel values of zero or one.

Several threshold values can be used to segment an image into more than two segments. If

n thresholds are used, the image can be segmented into n+1 segments.

Thresholding is mostly used for images containing bright objects on dark backgrounds.

The difference between gray value of an object with the background will result in

 43

segmented image using thresholding. Different methods of determining pixel value or

range of pixel values for a specific application include: 1. interactive selection of threshold

by user,

2. using intensity histogram of an object and background to compare distribution values.

The values from different histograms may overlap and maxima (peak) of histograms can

be used to define a segmentation threshold. This value can be calculated using average of

two peaks with gray values p1 and p2 :
𝑝1+𝑝2

2
 or gray value at minimum of two peaks: arg

min H(v), where H(v) calculates the histogram value at gray value v.

3. using mean and standard deviation of user defined test points for semi-automatic

segmentation, and

4. Otsu’s method that iteratively tries different values for automatic selection of threshold

value. The variance is calculated using weight factors (ω) for probability of correct

selection of threshold (t) and mean value of μ [47].

4.2.3 Canny edge detection

 Segmentation of an image into separate objects can be accomplished through

detecting edges of objects within the image. Edge detection can be used for ROIs that have

strong edges compared to their surroundings. Most of these methods use first or second

derivative to find areas that brightness or color changes relative to neighboring areas.

 44

Typically edge detection will also detect partial edges that are not closed boundaries. Edge

linking will be used to connect these partial edges that will result in an object boundary.

Canny edge detection is based on a step-edge model that detects high quality edges

in images that represent object boundaries [48]. It consists of four steps:

1. Smoothing the input image (filter out noise) for example Gaussian filtering,

2. Finding intensity gradient of image (apply convolution masks in x and y directions):

Convolving input image f (x , y) with Gaussian function 𝑒
−

𝑥2+𝑦2

2𝜎2 will result in a smoothed

image. The magnitude (G) of an edge and gradient direction (angle,) of each pixel can be

calculated using: (G and 𝜃 are arrays with the same size as the image)

3. Applying non-maximum suppression to the gradient magnitude (remove pixels that are

not part of an edge), maximum values along each edge are calculated. First find the

direction dk that is closest to 𝛼(x,y). Second if the value of M(x,y) is less than one if its

neighbors along dk, suppress (gN(x,y) = 0) otherwise gN(x,y) = M(x,y), where gN(x,y) is the

nonmaxima suppressed image. The resulting image can have edges with single pixel width

using an edge-thinning algorithm.

4. Hysteresis thresholding (upper and lower thresholds). Using double thresholding (two

threshold values) will partition the ridge pixels to edges and non-edges. If two values for

the threshold are t1 and t2 where t1>t2: pixels with gradient value above t1 are definite edges,

 45

between t1 and t2 are potential edges and less than t2 are non-edges. Connectivity analysis

will detect and link edges. The potential edges that are connected to a definite edge using

a neighboring potential edge will be considered definite edges.

4.2.4 Segmentation results

The following tests were implemented on Clemson’s Palmetto supercomputer with Intel

Xeon-E5 CPUs:

4.2.4.1 Canny edge detection

Figure 4.1(a) shows an original image of a HD phantom video and the 4.1(b) the

segmented image using canny edge detection.

 (a) (b)

Figure 4.1– (a) Original head phantom and (b) segmented images

The same algorithm was also applied to a 640 x 480 laparoscopic aorta video:

 46

Figure 4.2– Original aorta laparo video and (left) segmented aorta from laparo video (right)

4.2.4.2 Thresholding

 Thresholding was applied to the above aorta video:

Figure 4.3– Original aorta laparo video and (left) segmented threshold aorta (right)

 47

4.3 Registration methods and results

4.3.1 Medical image registration

 “Registration is the determination of a geometrical transformation that aligns points

in one view of an object with corresponding points in another view of that object or another

object.” [68]. Medical image registration spatially aligns groups of images that can be

acquired using different or same imaging modalities. For example: magnetic resonance

imaging (MRI), computed tomography (CT) positron emission tomography (PET) or ultra-

sound (US). Multi-modal imaging is challenging since the images may not have a lot of

commonalities. Image registration can be defined as:

where IF and IM represent the moving and fixed images, μ vector of parameters that model

the transformation. The cost function (C) consists of a comparison that defines quality of

alignment. Optimization is usually gradient descent:

 Merging these images allows physicians to visualize and compare structural and

functional information. During surgery, organs may change shape or shift and pre-

operative processing must be updated. This can be done using real-time image guidance

and accurate registration of medical images. There is no unique registration algorithm that

is suitable for all applications, thus the algorithms are tuned and adjusted tor specific

 48

applications [49]. For a specific application, a balance between accuracy and computation

time will lead to a suitable registration. For example, pre-operative processing and

registration may take hours, while image guided surgery requires real-time or near real-

time image registration. This intra-patient registration must provide reasonable alignment.

Examples of different image registration methods include: Rigid (point based (Procrustes),

surface based (Iterative Closest Point ICP), intensity based (Normalized Mutual

Information NMI) and non-rigid (surface based, volume based and shape based) [46].

During non-rigid registration, images are spatially deformed to match each other.

The steps of registration include: image will be transformed to match or become

more similar to another image, the similarity will be assessed, and finally the

transformation will be optimized through iterations. Starting registration with lower

complexity images will increase chances of successful registration. This can be done

through smoothing or downsampling (resampling or shrinking) images. For example

Gaussian filter:
1

𝜎√2𝜋
 𝑒

−
𝑥2

2𝜎2 will smooth an image in direction x. The same method can be

used for y direction as well as x to achieve full smoothing.

Resampling can be done by looping over all pixels of the fixed image to calculate the

mapped position, after that using interpolation to find the intensity of the moving image

and copy to the output image. Several methods of interpolation include: nearest neighbor,

linear and B-spline that differ in quality and speed.

Transformation methods consist of rigid (moving or rotating object without

changing shape), affine (same as rigid with additional scaling and shearing), non-rigid

(more than 6 degrees of freedom and localized transformation). Measure of similarity can

 49

be assessed using feature-based or intensity-based methods. Finally, optimizer will change

the transformation model to obtain maximum similarity.

4.3.2 Rigid registration

 Rigid registration moves an image in space (translate or rotate) but does not change

the original shape. For three dimensional images, rigid transformation will have 6 degrees

of freedom: 3 degrees of rotation and 3 degrees of translation. For example a 2-D rigid

transformation with rotation 𝜃and translation parameters t1 and t2 will result in:

y1 = cos 𝜃 .x1 – sin 𝜃.x2 + t1

y2 = sin 𝜃 .x1 + cos 𝜃.x2 + t2

A rotation along the z axis is equal to:

x
1

t
2

x
2

y
1

t1

y
2

x

y

𝜃

 50

3.1.2 Affine registration

 Affine registration consist of translation and rotation but also includes scaling and

shearing parameters. An affine map is alignment of linear transformations with

translations. Rigid and affine transformations are linear registration methods that can be

described using a transformation matrix. The input image can be obtained by applying the

reverse transform to the output image [14]. A 2-D affine transformation can be denoted by:

T(x) = Dx + S, where D is a 2x2 matrix demonstrating rotation, scaling and shearing, S is

2x1 vector demonstrating translation or shift.

4.3.3 Non-rigid registration

 Non-rigid registrations modify input images that will result in distortion in one or

more dimensions. During non-rigid registration, one or several images are locally spatially

deformed to match another image. The transformation model can be parametric or non-

parametric. Parametric models use other transformation models to generate a deformation

field. For non-parametric models each voxel has three degrees of freedom and

regularization is used to smoothen deformation:
/

x

 = u (x

) (u is the deformation field).

Similarity measures can be feature-based (landmarks such as points, lines or surfaces) or

intensity-based. Intensity-based does not require pre-processing and it can be the sum of

squared difference or absolute differences. For example the sum of squared difference

between a reference image (R) and a deformed floating image F (T) is calculated using:

 51

Two of the most common optimization methods are gradient descent and Gauss-Newton.

During non-rigid registration the first and/or second derivatives of the objective function

are necessary, since a large number of parameters require optimization [50].

4.3.4 Free-Form Deformation algorithm

One of the algorithms that we investigated is called Free-Form Deformation (FFD)

[50]. The image domain consists of control points that translating these points will induce

local deformations. The algorithm consists of three parts: transformation using cubic B-

spline and an interpolation function, evaluation an objective function and optimization. The

cubic B-spline guarantees a continuous deformation but it is the computationally expensive

part of the algorithm. The equation to compute new coordinate of a point in one dimension

is:

where μ is the first control point position, δ is the distance between two control points, and

B functions are approximated three-order spline polynomials. In three dimensions the Free-

Form Deformation can be written as 3-D tensor product of the 1-D cubic B-spline equation:

where u, v and w are relative positions of the index point along axis x, u and z. i, j and k

 52

are the indices of the first control point and as a result the new coordinates are calculated

from 4 × 4 × 4 (64) surrounding control points. These 64 control points are used to compute

one coordinate. For a 3-D image, each voxel has three coordinates so 192 degrees of

freedom have to be checked. The higher number of control points results in better

registration quality but also increases the processing time. As a result, an arbitrary cubic

B-spline deformation can be used to refine a deformation by adding new control points at

each half-spacing length [51]. As a result, the spacing will be divided by two for each axis.

This will increase the control points by a factor of eight and closer to their optimal position

with less iterations.

The three parts of the FFD algorithm can be processed independently. FPGA-based

and supercomputer with 64 CPUs have been used to speed up this computation 3.2 and 50

times respectively [52, 53]. More recently, GPU based implementation of the NiftyReg

package [54] has reduced the processing time and led to the speed up of 10 to 20 versus

single-thread CPU implementation [55]. We have tested registration of brain MRI and

abdominal (kidney) CT scans. The results are presented and discussed in the next two

sections. We will discuss the GPU implementation in the next chapter.

 53

4.3.5 Registration results

4.3.5.1 Brain MRI registration

Affine and non-rigid transformations were first tested on brain MRIs using

NiftyReg. Figure 4.4 illustrates brain scans taken a year apart from a patient with

Alzheimer’s disease and the difference of these images prior to registration. The data set

was downloaded from: https://www.ucl.ac.uk/drc/research/methods/miriad-scan-database

Figure 4.4– Brain MRI images with affine and non-rigid registrations

Image 1 Image 2 Difference

 Follow-up

Affine registration Difference of images

Non-rigid registration Difference of images

https://www.ucl.ac.uk/drc/research/methods/miriad-scan-database

 54

4.3.5.2 Abdominal registration for kidney

The transformations were then performed on abdominal CTs. Figure 4.5 illustrates

CT scans taken 16 months apart from a patient with prostate cancer to examine his kidney.

The data set was obtained from: http://www.cancerimagingarchive.net

Figure 4.5– - Abdominal CT scans with affine and non-rigid registration

Image 1 Image 2 Difference

 Follow-up

Affine registration Difference of images

Non-rigid registration Difference of images

http://www.cancerimagingarchive.net/

 55

3.2.3 Laparoscopic video registration

Figure 4.6– - Aorta with affine and non-rigid registration

4.4 Discussion and Conclusions

In the field of computer assisted-surgery, particularly in IGS, the ability to acquire,

process, render, and visualize data in real time is essential for the performance of complex

tasks, thus minimizing risk to the patient [29]. The contextual validity of data degrades

quickly as tools within the body move, patient organs move, and resections are performed.

It is critical that the data be acquired, processed, and returned in a timely manner [44].

Image 1 Image 2 Difference

 Follow-up

Non-rigid registration Difference of images

 56

 Processing of live high-definition stereo laparoscopic data with preoperative or

intraoperative medical images requires more computational and storage capability than is

possible on a single workstation. More advanced visualizations and processing may require

new or improved rendering techniques more suited to an HPC environment. Therefore,

flexibility in the transmission of data to multiple sites is important. Furthermore, the ability

to optimize the data transmission to take advantage of the specialized processing and

rendering techniques at multiple endpoints is the key to allowing for rendering and

processing as a service and also for providing optimal data.

Through the use of HPC resource, we believe that it will be possible to update

models and allow for real-time modification of the previously generated object map, based

on current surgical data. Optimization and parallelization of these algorithms will reduce

the total processing time. We also plan to develop segmentation and registration

algorithms, and send previously generated data to the cluster for adaption and deformation.

Success in this portion would lead to the ability of performing surgery at one site (origin),

receiving an object map from another site (segmentation/rendering), forwarding this data

along with relevant force data to a third site for deformation (model update), and returning

this data to the origin for display.

 57

Chapter 5

HIGH PERFORMANCE COMPUTING ENABLED

REAL-TIME PROCESSING OF LAPAROSCOPIC

SURGERY

Published as: Ronaghi, Z., Sapra, K., Izard, R., Duffy, E., Smith, M. C., Wang, K. C., &

Kwartowitz, D. M. (2016, March). HPC enabled real-time remote processing of

laparoscopic surgery. In SPIE Medical Imaging (pp. 97861U-97861U). International

Society for Optics and Photonics.

5.1 Introduction

Minimally invasive surgery (MIS) reduces patient trauma, hospitalization stay and

recovery time through reducing incisions to small keyholes. Laparoscopic procedures use

a camera for real-time visualization of the surgical field and guidance of the procedures.

However, small field of view of the laparoscope as well as small incision size will result in

a small overall visual field of the underlying tissues of interest. Image-guided surgery (IGS)

uses images to map a surgical region of interest, thus providing surgeons with visualization

of subsurface structures and accurate positional information during a surgical procedure

[7]. The accurate co-registration of an IGS system with laparoscopic video can reduce the

impact of limited surgical access and allow for a resection with higher specificity and

tighter margins, thus sparing more healthy tissues [10].

 58

Currently the primary robotic surgery devices on the market are the daVinci-si and

daVinci-xi systems. The daVinci-si robot uses two parallel 1080p (1920x1080x3) High

Definition video cameras to generate stereoscopic vision [12]. Robotic surgery uses stereo

laparoscopy (one feed for left eye and one for right eye), thus the volume of data collected

and required throughput is twice that of traditional laparoscopy. If captured raw, these

video streams generate approximately 360 megabytes of data per second demonstrating a

trend towards increased data sizes in medicine. Real-time processing this large stream of

data on a bedside PC, single or dual node setup, has become challenging and a high-

performance computing (HPC) environment may not always be available at the point of

care. Processing of the volume of data generated by the stereo video feeds would be

demanding for a local system, and thus HPC hardware is needed [14].

We have implemented and compared performance of compression, segmentation

and registration algorithms on Clemson's Palmetto supercomputer using dual NVIDIA K40

GPUs per node. We implemented our algorithms on CPU and GPU to analyze execution

time. Different size and resolution of images were used to compare run-time and overall

performance.

5.2 Methods

5.2.1 Medical image processing on GPUs

Medical image processing, specifically medical image registration is a

computationally expensive task. The computation of parallel friendly algorithms

 59

(processing of blocks of data are performed in parallel) can be distributed over processors.

Thus, multicore architectures could increase processing speed of these algorithms and

process large amount of data in shorter time. For example, Graphic processors were

designed for visual rendering of games and their computational power to cost ratio has

made them popular for various computational tasks and applications. Graphic Processing

Units (GPUs) have a large number of cores that can be used to reduce time and increase

speed of image processing algorithms [16]. Algorithms that are data parallel can take

advantage of the data parallel architecture of GPUs and task parallel algorithms are more

suitable for CPUs. Until early 2000s GPUs were mainly used for programming graphics

applications. Since 2003 codes for general-purpose applications such as molecular

dynamics, data mining and signal processing have started taking advantage of GPUs.

One of the differences of CPUs and GPUs is the number of Arithmetic Logic Units

(ALUs). The figure below from Nvidia’s website [58] shows a higher number of ALUs for

GPUs compared to CPUs for processors with the same size. As a result, GPUs are able to

execute thousands of operations concurrently while multi-core CPUs can handle 2 to 16

simultaneously. For example, Nvidia’s Tesla K40 provides 1.43 Tflops. However, GPUs

may not follow the same accuracy standards of CPUs. This could results in accumulation

of errors, thus verification of results using CPUs is recommended [56].

 60

Figure 5.1– CPU vs. GPU Arithmetic Logic Units [57]

 Compute Unified Device Architecture (CUDA) and Open Computing Language

(OpenCL) are two of the programming interfaces that allow parallel programming on

GPUs, which are described in the following sections:

5.2.1.1 CUDA

Compute Unified Device Architecture (CUDA) [58], was introduced by Nvidia in

late 2006 and is specific to Nvidia hardware. It is an extension of C language that integrates

CPU and GPU code. GPU acts as a coprocessor but with its own memory. CUDA enables

communication and data transfer between CPU and GPU, which are called host and device.

The function running on a device is called a kernel and consists of threads that can run

simultaneously. The figure below indicates how a cuda program is executed.

 61

Figure 5.2 – CUDA execution model [56]

CUDA’s architecture includes grids and blocks. This architecture allows CUDA

code to be scalable and run on compatible hardware without recompilation. Grids (one,

two or three dimensions) contain blocks and blocks (one, two or three dimensions) contain

threads. Threads are also grouped in wraps that can be executed in unpredictable order.

The size of each block (number of threads in the block) and grid (number of blocks in a

grid) are defined using blockDim and gridDim and are set by the programmer. The position

of thread within a block and block within a grid are indexed using threadIdx and blockIdx

respectively. For example a thread’s x position within grid of data can be calculated as: x

= threadIdx.x + blockIdx.x * blockDim.x

The sizes of blocks and grids are determined by the device specifications and can

be discovered by running “deviceQuery”. Figure 5.3 indicates a 4x3x2 grid made of 3x2

blocks.

 62

Figure 5.3 – CUDA Grid/block hierarchy [56]

GPU and host memory are typically disjoint and passing data through pointer to

array in host memory is not possible. The GPU implementation of an algorithm can be

optimized through memory access within a thread. Data will be transferred from host to

device and copied back from device to host after kernel execution and computation. This

data transfer is costly and should be minimized to maximize efficiency. CPU can only

access global, constant and texture memory. Other memory types of the GPU include

shared, registers and local memory. These memory types can be effectively incorporated

in kernel structures to extract more performance from GPUs. The following figure shows

CUDA memory model.

 63

Figure 5.4 – CUDA memory model [58]

Registers are fast and individual threads have access to them. However, they are

limited and usually automatic variables are registers. Shared memory is slower than

registers but is accessible to all threads in thread block. They are commonly used for thread

collaboration and synchronization. Constant memory is often used to provide input values

to the kernel and is read-only. Texture memory is also read-only and often used to provide

input values to the kernel and store textures. Local memory is local to a thread and resides

in global memory. Global memory has a large reservoir but is very slow. It is visible to all

threads in a grid and often used to pass information from one kernel to another.

 64

We implemented our framework on Palmetto Supercomputer at Clemson

University using two NVIDIA Tesla K40 GPUs per node, CUDA7.5 enabled with Intel

Xeon-E5 CPUs and 32GB of Memory. Some of the specifications of K40 GPUs are 4.29

TF peak single precision, 1.43 TF peak double precision, 12 GB memory, 288 GB/s

memory bandwidth and 2880 cores. Additional details on Palmetto cluster can be found in

[39].

5.2.1.2 OpenCL

Open Computing Language (OpenCL) was introduced at the end of 2008 [59],

developed by the Khronos group and is vendor independent. OpenCL is a general-purpose

programming standard in heterogeneous systems that can run on different architectures,

such as CPUs, GPUs and FPGAs. One of the main advantages of OpenCL is its portability.

This enables connection of different devices to a host that run different parts of the code.

It also allows efficient use of both CPU and GPUs and can be used for applications that

compute parallel sections on GPU and sequential on CPUs. However, depending on the

application it may not perform as well as CUDA on Nvidia’s GPUs [60]. The device

executes a kernel, which consists of points that execute an instance of the kernel. The

instance is called a work-item (threads in CUDA) and is defined by points in the index

space, also known as global IDs. Work-items are combined into work-groups. The index

space that work-items operate is called NDRange, which is an N-dimensional index space

(one, two or three).

 65

As shown in figure 5.5, the memory model of OpenCL consists of global, local,

constant and private memory. Global memory can be accessed by every work-item but it

is the slowest to access. Local memory is faster but is only accessible for work-items within

the same work-group. Constant memory is read-only but has low latency and can be

accessed by all work-items. Private memory is the fastest memory but is accessed by a

specific work-item.

Figure 5.5 –OpenCL memory model [61]

OpenCL can be programmed through data parallel or task parallel models or a

combination of both approaches. In data parallel programming model, each work-item is

mapped to a data element to ensure aligned memory access. In task parallel, a compute

unit creates one work-group with a work-item. This method is usually used to que multiple

kernels or to efficiently implement vector data types. Most image processing algorithms

 66

use the data parallel approach since it is difficult to take advantage of parallelism using the

task parallel model.

5.3 Results and Discussion

Pre-surgery, our setup allows for transfer of per-operative images from a remote

location to compute nodes and GPU memory. OpenCV, ITK and Elastix provide a GPU

module for basid image processing algorithms. We perform warm-up of the networking

protocol, followed by verification of compute nodes capabilities and devices.

The compute nodes are broken into three layers: Main Compute Layer (ML) and

the two Duplication Compute Layer (DL). Each layer contains a node that performs

duplicate computation. This computation is then verified with a quick checksum followed

by verification using NVIDIA GPU Direct with compute nodes in the two DL. If the ML

matches any one of DL calculation, the ML overlay information is sent back to surgeon. In

case of a failure of GPU, the computation between the two DL are verified and sent to the

surgeon and an idle node in the same layer overtakes the computation task of the failed

compute node. This method enables reliability using replication of computation.

 67

Figure 5.6 –Compute node structure

The following graphs compare CPU and GPU matrix multiplication using CUDA.

Graph 1 indicates that the execution time for both CPU and GPU increase as the matrix

dimensions increase. Adding more elements to the matrix requires more processing time.

Graph 1 shows the results using different scales for CPU and GPU to observe the values

and compare the graphs. Graph 2, indicates the speed up using GPU compared to serial

implementation. Matrix sizes for testing include W = 8, 16, 32, 64, 128, 256, 512, 1024,

2048, and 4096. The benefit of using parallel implementation is more noticeable as the

dimensions increase. For lower values (W=8, 16, 32) the GPU time is more than CPU. This

is due to the communication time between host to device and device to host. As the matrix

dimensions increase (W = 64, 128, 256, 512, 1024, 2048, 4096), the GPU version requires

less time compared to serial. The calculation time on CPU is more than communication

between host and device; as a result the overall GPU time is less than CPU.

 68

Figure 5.7 –Matrix multiplication time using CPU and GPU

Figure 5.8 –GPU speed up compared to CPU

For larger matrices, i.e. W= 4096, kernel parameters (block and grid size) influence

the overall performance. Matrix size = WxW; Block size = AxB; Grid size = CxD; where

 69

C = W/A and D=W/B. The values do not show a significant difference for small

dimensions. These values can change as the matrix sizes increase. Using more threads

within a block will lower the occupancy. However, the number of threads is limited and

dependent on the GPU model. If the input is more than the thread value, it can be divided

into blocks. Table 1 shows matrix multiplication time for W = 4096:

Table 5.1 - Matrix multiplication time for W=4096

5.3.1 Image Processing using GPUs

5.3.1.1 GPU based registration

As discussed in chapter 4, image registration consists of reading and setting up

images, pyramid construction, iterative computation to update parameter vector and

resampling. Pyramid construction and iterative computation dominate the performance

(profiled using valgrind) and were transferred to GPUs for parallel computation using

Elastix and ITK [62].

 70

During pyramid construction, images are smoothed and down sampled (resampling

or shrinking) to reduce image complexity. The Gaussian pyramid is most commonly used

for image registration and smooths images in a single direction. Gaussian filer in 1-D: (σ

is standard deviation of the distribution): G1D (𝒳, σ) =
2

2
2

1

2

x

e

 [46]. Gaussian filter

operates row-by-row for x direction or column-by-column for y. Each row can be assigned

to a different thread for parallel computation. However, the column kernel will be queued

and processed after row kernel since columns can be processed after rows.

Resampling is usually done using the fixed image domain. Mapped position of y =

T(x) is calculated using voxels inside the fixed image domain (x). Moving image intensity

is calculated using interpolation and copied to the output image [46].

We have tested affine and non-rigid transformation and the GPU implementation

for non-rigid. Transformation and interpolation are performed in separate kernels and

sequentially scheduled on the GPU.

We compared the run-time for image size of 1920x1080 and 640x360:

Table 5.2 - Affine and non-rigid registration

 640x480 1920x1080

Affine 21ms 129ms

Non-rigid 49ms 338ms

Non-rigid GPU 21ms 38ms

 71

We have also investigated NiftyReg library and its CUDA implementation. Using

the Nvidia visual profiler we observed the following results and compute percentages:

Figure 5.9 –Nvidia visual profiler

It can be observed that B-spline is the most computationally expensive part of this

algorithm (as mentioned in chapter 4). The CUDA implementation was based on

independent voxel displacement and intensity interpolation of the algorithm [53].

Optimization can be made by adjusting the kernels to use thread level parallelism

(TLP) and instruction level parallelism (ILP). TLP can be achieved by selecting the

appropriate block size for a specific application. ILP is parallelism among independent

instructions and is dependent on the application or problem being solved. The optimization

methods that we used include: static branch precalculation, loop unrolling and instruction

reordering. For example the ApplyConvolution function includes a loop that was optimized

 72

by precalculating and presetting windows sizes. Loop unrolling was applied to the main

loop and the speed up was around 1.3 compared to the original implementation.

Another step of the optimization includes setting fixed image sizes, since these

values are predetermined and stay fixed throughout a surgery or pre-operative image

processing. Another limiting factor is the communication between CPU and GPU.

Reducing data fetching and number of communications between CPU and GPU can speed

up the algorithm. Uploading the pre-operative images to GPU memory prior to

computation can reduce the communication time.

 73

The following images show registration of Brian MRI scans using free form

deformation with and without GPU.

Figure 5.10 –Brain MRI registration

Image 1 Image 2 Difference

 Follow-up

Non-rigid registration Difference of images

Non-rigid registration with GPU Difference of images

 74

The images below indicate registration of abdominal CT scans using free form

deformation with and without GPU.

Figure 5.11 –Abdominal CT registration

Image 1 Image 2 Difference

Follow-up

Non-rigid registration Difference of images

Non-rigid registration with GPU Difference of images

 75

5.3.1.2 GPU based segmentation

 Thresholding and canny edge segmentations were transferred to the GPU for

parallel computation using Open Source Computer Vision (OpenCV) [70]. The image

mask was also constructed during this step. Thresholding is embarrassingly parallel since

each pixel can be processed independently of others and there is no need for

synchronization [23]. The number of threads is equal to the number of pixels and memory

is only needed to store the segmentation result. For example, for single threshold T, the

algorithm for kernel:

if image (threadIdx, threadIdy) ≥ T then

 result (threadIdx, threadIdy) ← 1

else

 result (threadIdx, threadIdy) ← 0

end if

For canny edge detection, Gaussian filtering, non-maximum suppression and

hysteresis thresholding are performed in parallel for individual pixels. During Gaussian

filtering the image is divided into subimages and after parallel computation the final

gradient strength and direction are stored in memory. Non-maximum suppression uses

these values to find the pixels (threads) that are local maximum and are stored in memory

to be used as edge pixels. For hysteresis thresholding, each pixel in a subimage is processed

to check whether a pixel is a strong edge pixel. If not, the thread pushes them to a stack

 76

and the same operation is performed on each pixel. This step will continue until the stack

becomes empty [63]. This process is shown in figure:

Figure 5.12 – Hysteresis thresholding [11]

The table below indicates segmentation time on CPU and GPU for different image sizes:

Table 5.3- Segmentation on CPU vs GPU

Segmentation 640x480 1920x1080

CPU 3ms 22ms

GPU 3ms 14ms

 77

Figure 5.13 shows run-time for HD images time of various algorithm of interest to

the surgeon in CUDA. As shown in the figure some algorithms have slower frame rates.

To achieve a higher frame rate, we can enable GPU compression or image resizing to

reduce image resolution prior to the operation.

Figure 5.13 – GPU run-time of image processing algorithms

Different applications that benefit from image compression include: medical

imaging, remote sensing, televideo conferencing, flash memory and disk storage [23]. For

example the amount of data in a 30 frame per second (fps) HD movie (1920 x 1080 x 3byte)

is equal to:

30
𝑓𝑟𝑎𝑚𝑒𝑠

𝑠𝑒𝑐𝑜𝑛𝑑
 x (1920 x 1080)

𝑝𝑖𝑥𝑒𝑙𝑠

𝑓𝑟𝑎𝑚𝑒
 x (3 x 8)

𝑏𝑖𝑡𝑠

𝑝𝑖𝑥𝑒𝑙
 = 1492992000

𝑏𝑖𝑡𝑠

𝑠𝑒𝑐𝑜𝑛𝑑
 = 1.49 Gb/s (

𝑔𝑖𝑔𝑎𝑏𝑖𝑡𝑠

𝑠𝑒𝑐𝑜𝑛𝑑
)

 78

Three types of data redundancies for two dimensional intensity arrays include: coding

redundancy, spatial and temporal redundancy, and irrelevant information. Reducing or

eliminating one or more redundancy factors will compress images. The image compression

steps include:

Figure 5.14 – Image compression

In [64] authors discuss parallel processing of image compression. This method can be used

to reduce compression time and as a result speed up transmission and image processing.

We measured the time that is required time to compress images. In order to reduce and

resize to original resolution using GPUs took only 0.8msec. Furthermore if required, we

can also enable compression of images, allowing 1.3msec to perform compression and

decompression to achieve a higher frame rate. Figure 5.15 shows the performance of these

algorithms. As seen in the figure certain algorithms such as bilateral filtering, mean-shift

segmentation can achieve strong-scaling gain. However other operations require reduction

in image size does not improve the performance.

 79

Figure 5.15 – GPU Run-time for varying image sizes

5.4 Conclusions

Processing of live high definition laparoscopic data with medical images requires

more computational and storage capability than is possible on a single workstation. More

advanced visualizations and processing may require new or improved rendering techniques

more suited to a high-performance computing environment. Therefore, the ability to

optimize the data transmission to take advantage of the specialized processing and

rendering techniques at multiple endpoints is the key to allowing for rendering and

processing as a service and also providing optimal data. Through the use of high-speed

access to a high-performance computing resource, we believe that it will be possible to

update models and allow for real-time modification of the previously generated object map,

based on current surgical data.

 80

We present a framework that enables reliable and secure processing of terabytes of

information to aid in laparoscopic surgery using GPUs. The output of our framework is an

overlay that can be enabled or disabled by the surgeon at the surgical console. Furthermore,

our framework enables replication to prevent failure and allow for scalability for additional

operations/algorithms. We plan to perform our segmentation algorithm for the laparoscopy

video on the local multicore processors computer and compare the results with the

algorithm running on HPC cluster. Through the development of a direct connection we

hope to achieve more direct control over of the transmission of data as well as be able to

develop a communication system between clients and computing nodes to perform real-

time medical image processing.

 81

Chapter 6

MPI-CUDA IMPLEMENTATION FOR REAL-

TIME MEDICAL IMAGE PROCESSING

6.1 Introduction

Image-guided surgery (IGS) can provide surgeons with additional information

during minimally invasive surgical procedures. The benefit of small incisions has a

disadvantage of limited visualization of subsurface tissues. Accurate and real-time

segmentation of pre-operative or intra-operative medical images as well as registration with

laparoscopic video can provide surgeons with visualization of subsurface structures. Real-

time processing of images using different algorithms will enable development of individual

methods for specific surgeries and medical images.

I developed three separate applications that run simultaneously. These parts include

video acquisition (video client), video display (video server), and image processing (video

server palmetto). We used a high performance-computing (HPC) environment (Clemson’s

Palmetto cluster) to develop and run our applications in parallel. The image processing

application runs on Palmetto’s nodes for parallel processing, which contain dual Nvidia

Tesla K40 graphics processing units (GPUs). Our setup allows nodes to communicate and

transfer images through message passing interface (MPI). This will allow several image

processing algorithms to run faster and simultaneously. We tested different setup and

number of nodes to compared performance of our framework. Our computing framework

 82

will also enable reliability using replication of computation. Utilizing high-speed network

to access computing clusters with GPUs will improve surgical procedures by providing

real-time medical image processing and laparoscopic data.

6.2 Methods

6.2.1 Message Passing Interface

Message passing Interface (MPI) is a language independent communications

library that allows message exchange between processes and can be used for a variety of

languages or compilers. MPI enables high performance, scalability and portability for

different applications. It can be implemented on parallel computers, clusters and

heterogeneous systems. MPI execution is achieved through process identification, message

routing, message buffering and data marshaling [56]. MPI transfers data from sender to

receiver through synchronization. MPI provides a selection of send and receive primitives

to select based on the programmer’s application. For example the syntax of MPI_Send is:

int MPI_Send(void *buf, //Address of the send buffer

 int count, //Number of items in message

 MPI_Datatype datatype, //Type of data being

communicated

 int dest, //Destination process rank

 int tag, //Type of message

 MPI_Comm comm //Communicator context of

‘dest’

)

On the receiving side, MPI_Recv is used that mirrors the syntax of MPI_Send but also

includes MPI_Status structure pointer. The syntax of MPI_Recv:

 83

int MPI_Recv(void *buf, //Address of the receive buffer

 int count, //Buffer capacity in items

 MPI_Datatype datatype, //Type of data being

communicated

 int source, //Rank of sending process

 int tag, //Type of message

 MPI_Comm comm //Communicator context of

‘source’

 MPI_Status *status //Pointer to structure holding

 //message parameters

)

 MPI_Send and MPI_Recv are point-to-point and use blocking communication, they

block operations until message is delivered. MPI_Send does not return until buffer is empty

and available for reuse, and MPI_Recv does not return until buffer is full and available for

use. Blocking communication is simple to use but is prone to deadlocks. However,

MPI_Isend and MPI_Irecv use non-blocking communication that return immediately and

allow overlapping computation and communication. MPI also allows collective

communication for operations that involve more than two nodes. For example MPI_Bcast

or MPI_Scatter can be used to send messages to a subset of processes and on the receiving

side an operation such as MPI_Gather or MPI_Reduce is used to collect data from all the

processes. They can also be used to send or receive a message to a subset of processes by

creating a custom communicator [56]. We have tested MPI_Send and MPI_Isend in our

application. MPI_Bcast will be tested in future applications based on the number of

algorithms and available nodes.

 84

6.2.2 MPI and CUDA

 We investigated a MPI approach with CUDA on a HPC GPU cluster (Palmetto).

MPI and CUDA can be used to control multiple hosts and more GPUs. MPI can transfer

data between host buffers using two different approaches. If MPI is not CUDA-aware, data

will be transferred from device to host before the MPI call. For MPI CUDA-aware, device

buffers can be accessed directly through pointers to device memory in MPI calls [56]. This

can be done through GPUDirect to reduce dependence on CPU for managing transfers.

6.3 Results and Discussion

6.3.1 MPI and CUDA

The following graphs show matrix vector multiplication using MPI. Matrix sizes

for our testing include: 128, 256, 2048 and 4096. Graph 1 indicates

Figure 6.1 – MPI/CUDA block size 2

 85

Graph 1 uses block size of 2 for GPU implementation. The results indicate that the

total time for 128, 256 and 2048 stays flat and around the same number, therefore is

scalable and with increasing the number of nodes results will stay the same. Graph 2 uses

block size of 16 for the GPU implementation. The total time for different size matrices are

less than Graph 1 and faster processing time.

Figure 6.2 – MPI/CUDA block size 16

In order to determine the optimal way to process our images we needed to

determine programming and hardware architecture. The algorithms that were used have

different computation and memory utilization characteristics. The complete execution time

was profiled using Nvidia’s visual profiler (“nvvp”). The varying communication and

computation time were measured to determine the optimal configuration of the algorithms.

Based on this configuration, the most efficient architecture and node configuration can be

determined.

 86

We implemented our image processing algorithms using CUDA/MPI on Palmetto

cluster. We performed video segmentation as well as registration of the pre-operative

images to the video. The algorithms were executed simultaneously on varying amounts of

nodes to process the images received from the laparoscopic camera. The following graph

shows MPI ranks and connections:

Figure 6.3 – MPI and CUDA on Palmetto

We have tested one or two MPI ranks per node. For two ranks, two algorithms were

performed with each applied on an individual GPU. The table below indicates total run-

time depending on the number of nodes:

 87

Table 6.1-MPI/CUDA

of Nodes 1 2

Time (CPU) 3ms 4ms

Time (CPU) HD 23ms 29ms

Time (GPU) 3ms 4ms

Time (GPU) HD 11ms 16ms

 88

Chapter 7

CONCLUSIONS AND FUTURE WORK

We have implemented and compared performance of compression, segmentation

and registration algorithms on Clemson’s Palmetto supercomputer using dual Nvidia Tesla

K40 GPUs per node and CUDA 7.5 enabled with Intel Xeon-E5 CPUs. We developed three

separate applications that run simultaneously: video acquisition (video client), video

display (video server), and image processing (video server palmetto).

We transferred and compared transmission time of medical images and video using

different network protocols. These protocols include SFTP, UDP, TCP and SOS. SFTP

runs over TCP, which uses acknowledgements and retransmission to prevent packet loss

and causes delays, the encryption step is also a limiting factor. UDP is faster than TCP,

since there is no acknowledgment mechanism. The UDP tests resulted in a lower round-

trip time and no packet loss due to availability of high bandwidth. However, UDP and TCP

have a packet size limit of 64 KB and HD or larger files have to get reassembled before

processing. SOS runs on TCP and enabled transfer of larger files. The performance can be

tuned to the environment and the quantity of parallel connections to utilize, agent buffer

sizes, and queuing for lost/out of order data can be customized.

The image processing application was tested on the cluster to compare

segmentation, rigid and non-rigid registration on CPU and GPU for different size images:

640 x 480 and 1920 x 1080. The segmentation algorithms resulted in an acceleration factor

 89

of ~ 2 times compared to the CPU implementation. Registration is computationally more

expensive than the segmentation algorithms, therefore higher performance and speed up

was observed. Non-rigid registration was performed ~2 times faster for 640 x 480 images

and ~ 9 times for HD images. To achieve a higher frame rate, we also resized images and

reduced the overall processing time. We observed that algorithms such as bilateral filtering

and mean-shift segmentation can achieve strong-scaling gain and for operations such as

canny edge detection the improvement was not significant.

We also implemented and executed the algorithms mentioned above to run

simultaneously on different cluster nodes instead of sequential on a single node. The nodes

communicate and transfer images through message passing interface (MPI) and CUDA

was used for parallel implementation on GPUs. As a result, MPI-CUDA was used to

control multiple hosts and perform GPU algorithms and it enabled reliability using

replication of computation.

In conclusion, previously generated images and videos were transferred to the

cluster and processed for adaption and deformation. This could lead to the ability of

performing surgery at one site (origin), receive an object map from another site

(segmentation/rendering), forward this data to a third site for deformation (model update),

and returning this data to the origin for display. As a result, utilizing high-speed network

to access computing clusters with GPUs will improve surgical procedures by providing

real-time medical image processing and laparoscopic data.

 90

 Future research can investigate and perform the image processing tests using

GPUDirect peer-to-peer for the GPUs on the same node and GPUDirect-RDMA for the

GPUs on different nodes. This will enable CUDA-aware MPI for further optimization. The

tests can also be performed using CloudLab [65] to transfer the files between Clemson and

Wisconsin and enable SDN to measure the overall time of the framework. The video feed

can be augmented at the remote site (Wisconsin) with the inclusion of an overlay and

rendered in a “real-time” manor. SOS can securely transfer the files to remote HPC clusters

utilizing an OpenFlow-based network service and increase performance of large data

transfers over long-distance and high bandwidth networks.

The system accuracy can be tested using phantoms and mock surgical experiments.

These phantoms can be constructed using plastics, rubbers or natural materials. A tissue

analog will have some or all properties of the specified tissue such as compressibility,

strength, imaging properties and diffusion characteristics. Polyvinyl alcohol (PVA) gels

have been used as phantoms for MR and ultrasound imaging [66] and a sharp object,

scalpel, can apply a high strain force to cut the tissue [67]. Measurement of the resection

ratio can be used as a metric for quality of resection. The location, size and depth of the

cavity can be calculated by subtracting the difference between image intensities of pre-

operative and post-operative images. These tests could indicate whether the clinician can

resect the tumor region with equal or better accuracy when compared to augmented video

without high performance computing cluster.

 91

APPENDICES

A: Example for UDP socket testing

 /* connect to viewer */

 if((sock_view = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP)) == -1)

 die("socket()");

 struct hostent *view_host = gethostbyname(argv[1]);

 struct in_addr view_addr;

 view_addr.s_addr = *(unsigned long *)view_host->h_addr_list[0];

 memset((char *)&si_view, 0, sizeof(si_view));

 si_view.sin_family = AF_INET;

 si_view.sin_port = htons(atoi(argv[2]));

 if(inet_aton(inet_ntoa(view_addr), &si_view.sin_addr) == 0)

 die("inet_aton\n");

/* listen to camera */

 if((sock_camera = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP)) == -1) {

 die("socket()");

 }

 memset((char *)&si_me, 0, sizeof(si_me));

 si_me.sin_family = AF_INET;

 si_me.sin_port = htons(PORT);

 si_me.sin_addr.s_addr = htonl(INADDR_ANY);

 bind(sock_camera, &si_me, sizeof(si_me));

 printf("augmenter listening on %s:%d\n", self, PORT);

 for(;;) {

 if(recvfrom(sock_camera, f, fsz, 0, &si_camera, &slen) == -1)

 die("recv()");

 fsz = frame_size(f); /* get actual frame size */

 if(f->frameNo % 1000 == 0) {

 printf("recieved from %s:%d; frame %05lu (%lu bytes)\n",

 inet_ntoa(si_camera.sin_addr),

ntohs(si_camera.sin_port),

 f->frameNo, fsz);

 }

 if(sendto(sock_view, f, fsz, 0, &si_view, slen) == -1)

 die("send()\n");

 }

 92

 B: Thresholding

 split(img.mat, planes); // Partition image into three channel planes

 blue = planes[0];

 green = planes[1];

 red = planes[2];

 threshold(red, dst, threshold_value, max_BINARY_value, threshold_type);

 findContours(dst, contours, hierarchy,CV_RETR_CCOMP,

CV_CHAIN_APPROX_SIMPLE);

 int largest_area = 0;

 int largest_contour_index = 0;

 for (size_t i = 0; i< contours.size(); i++) // iterate through each contour.

 {

 double a = contourArea(contours[i], false); // Find the area of contour

 if (a>largest_area){

 largest_area = a;

 largest_contour_index = i; //Store the index of largest contour

Scalar color(rand() & 255, rand() & 255, rand() & 255);

 Scalar colorcode = Scalar(0, 0, 0);

 Mat dsts(dst.rows, dst.cols, CV_8UC1, colorcode);

 drawContours(dsts, contours, largest_contour_index, color, CV_FILLED, 8,

hierarchy);

 Mat imageROI;

 img.mat.copyTo(imageROI, dsts); contours

 frame overlay;

 beta = (1.0 - alpha);

 addWeighted(img.mat, alpha, imageROI, beta, 0.0, overlay.mat);

 frame overlays;

 cvtColor(img.mat, gray, CV_BGR2GRAY);

 Canny(gray, edge, 50, 150, 3);

 edge.convertTo(overlays.mat, CV_8U);

 frame adds;

 overlay.mat.copyTo(adds.mat, overlays.mat);

 frame finals;

 finals.timestamp = img.timestamp;

 add(overlay.mat, adds.mat, finals.mat);

 93

BIBLIOGRAPHY

[1] Vitiello, V., Lee, S. L., Cundy, T. P., & Yang, G. Z. (2013). Emerging robotic platforms

for minimally invasive surgery. IEEE reviews in biomedical engineering, 6, 111-126.

[2] Mirota, D. J., Ishii, M., & Hager, G. D. (2011). Vision-based navigation in image-

guided interventions. Annual review of biomedical engineering, 13, 297-319.

[3] Linte, C. A., White, J., Eagleson, R., Guiraudon, G. M., & Peters, T. M. (2010). Virtual

and augmented medical imaging environments: Enabling technology for minimally

invasive cardiac interventional guidance. Biomedical Engineering, IEEE Reviews in, 3,

25-47.

[4] Krempien, R., Hoppe, H., Kahrs, L., Daeuber, S., Schorr, O., Eggers, G., ... & Harms,

W. (2008). Projector-based augmented reality for intuitive intraoperative guidance in

image-guided 3d interstitial brachytherapy. International Journal of Radiation Oncology*

Biology* Physics, 70(3), 944-952.

[5] Graham, S. D., Keane, T. E., & Glenn, J. F. (Eds.). (2010). Glenn's urologic surgery.

Lippincott Williams & Wilkins.

[6] Grimson, W. E. L., Kikinis, R. J. F. A., Jolesz, F. A., & Black, P. M. (1999). Image-

guided surgery. Scientific American, 280(6), 54-61.

[7] Peters, T. M. (2006). Image-guidance for surgical procedures. Physics in medicine and

biology, 51(14), R505.

[8] Fuchs, H., Livingston, M. A., Raskar, R., Keller, K., Crawford, J. R., Rademacher, P.,

... & Meyer, A. A. (1998, October). Augmented reality visualization for laparoscopic

surgery. In International Conference on Medical Image Computing and Computer-Assisted

Intervention (pp. 934-943). Springer Berlin Heidelberg.

[9] Baumhauer, M., Feuerstein, M., Meinzer, H. P., & Rassweiler, J. (2008). Navigation in

endoscopic soft tissue surgery: perspectives and limitations. Journal of

Endourology, 22(4), 751-766.

[10] Van Krevelen, D. W. F., & Poelman, R. (2010). A survey of augmented reality

technologies, applications and limitations. International Journal of Virtual Reality, 9(2), 1.

[11] Lee, S. L., Lerotic, M., Vitiello, V., Giannarou, S., Kwok, K. W., Visentini-

Scarzanella, M., & Yang, G. Z. (2010). From medical images to minimally invasive

intervention: computer assistance for robotic surgery. Computerized Medical Imaging and

Graphics, 34(1), 33-45.

[12] Kwartowitz, D. M., Miga, M. I., Herrell, S. D., & Galloway, R. L. (2009). Towards

 94

image guided robotic surgery: multi-arm tracking through hybrid

localization. International journal of computer assisted radiology and surgery, 4(3), 281-

286.

[13] Kwartowitz, D. M., Herrell, S. D., & Galloway, R. L. (2006). Toward image-guided

robotic surgery: determining intrinsic accuracy of the da Vinci robot. International Journal

of Computer Assisted Radiology and Surgery, 1(3), 157-165.

[14] Shams, R., Sadeghi, P., Kennedy, R. A., & Hartley, R. I. (2010). A survey of medical

image registration on multicore and the GPU. IEEE Signal Processing Magazine, 27(2),

50-60.

[15] Samant, S. S., Xia, J., Muyan-Özçelik, P., & Owens, J. D. (2008). High performance

computing for deformable image registration: Towards a new paradigm in adaptive

radiotherapy. Medical physics, 35(8), 3546-3553.

[16] Fluck, O., Vetter, C., Wein, W., Kamen, A., Preim, B., & Westermann, R. (2011). A

survey of medical image registration on graphics hardware. Computer methods and

programs in biomedicine, 104(3), e45-e57.

[17] Open Networking Foundation, “Software defined networking (sdn) definition,”

https://www. opennetworking.org/sdn-resources/sdn-definition (2015).

[18] Brocade, “100 gigabit ethernet: The way forward for research networks,”

http://info.brocade.com/rs/brocade/images/CDE14%20100GbE%20BRIEF%20Brocade.P

DF (2014).

[19] Galloway, Robert, S. Herrell, and Michael Miga. "Image-guided abdominal surgery

and therapy delivery." Journal of healthcare engineering 3.2 (2012): 203-228.

[20] Hughes-Hallett, A., Mayer, E. K., Marcus, H. J., Cundy, T. P., Pratt, P. J., Darzi, A.

W., & Vale, J. A. (2014). Augmented reality partial nephrectomy: examining the current

status and future perspectives. Urology, 83(2), 266-273.

[21] Su, L. M., Vagvolgyi, B. P., Agarwal, R., Reiley, C. E., Taylor, R. H., & Hager, G. D.

(2009). Augmented reality during robot-assisted laparoscopic partial nephrectomy: toward

real-time 3D-CT to stereoscopic video registration. Urology, 73(4), 896-900.

[22] Oliveira, Francisco PM, and João Manuel RS Tavares. "Medical image registration: a

review." Computer methods in biomechanics and biomedical engineering 17.2 (2014): 73-

93.

[23] Smistad, E., Falch, T. L., Bozorgi, M., Elster, A. C., & Lindseth, F. (2015). Medical

image segmentation on GPUs–A comprehensive review. Medical image analysis, 20(1), 1-

18.

https://www/
http://info.brocade.com/

 95

[24] Shams, R., Sadeghi, P., Kennedy, R., & Hartley, R. (2010). Parallel computation of

mutual information on the GPU with application to real-time registration of 3D medical

images. Computer methods and programs in biomedicine, 99(2), 133-146.

[25] Brounstein, A., Hacihaliloglu, I., Guy, P., Hodgson, A., & Abugharbieh, R. (2011,

September). Towards real-time 3D US to CT bone image registration using phase and

curvature feature based GMM matching. In International Conference on Medical Image

Computing and Computer-Assisted Intervention

[26] Ruijters, Daniel, Bart M. ter Haar Romeny, and Paul Suetens. "GPU-accelerated

elastic 3D image registration for intra-surgical applications." Computer methods and

programs in biomedicine 103.2 (2011): 104-112.

[27] Plishker, W., Dandekar, O., Bhattacharyya, S. S., & Shekhar, R. (2010). Utilizing

hierarchical multiprocessing for medical image registration. IEEE Signal Processing

Magazine, 27(2), 61-68.

[28] Hwang, Kyung Hoon, Haejun Lee, and Duckjoo Choi. "Medical image retrieval: past

and present." Healthcare informatics research 18.1 (2012): 3-9.

[29] Eklund, A., Dufort, P., Forsberg, D., & LaConte, S. M. (2013). Medical image

processing on the GPU–Past, present and future. Medical image analysis, 17(8), 1073-

1094.

[30] Perrot, G., Domas, S., Couturier, R., & Bertaux, N. (2011, August). GPU

implementation of a region based algorithm for large images segmentation. In Computer

and information technology (CIT), 2011 IEEE 11th international conference on (pp. 291-

298). IEEE.

[31] Novotny, P. M., Stoll, J. A., Vasilyev, N. V., Pedro, J., Dupont, P. E., Zickler, T. E.,

& Howe, R. D. (2007). GPU based real-time instrument tracking with three-dimensional

ultrasound. Medical image analysis, 11(5), 458-464.

[32] Körbes, A., Vitor, G. B., de Alencar Lotufo, R., & Ferreira, J. V. (2011, July).

Advances on watershed processing on GPU architecture. In International Symposium on

Mathematical Morphology and Its Applications to Signal and Image Processing (pp. 260-

271). Springer Berlin Heidelberg.

[33] Lefohn, A. E., Cates, J. E., & Whitaker, R. T. (2003, November). Interactive, GPU-

based level sets for 3D segmentation. In International Conference on Medical Image

Computing and Computer-Assisted Intervention (pp. 564-572). Springer Berlin

Heidelberg.

[34] Tokuda, J., Fischer, G. S., Papademetris, X., Yaniv, Z., Ibanez, L., Cheng, P., ... &

Kapur, T. (2009). OpenIGTLink: an open network protocol for image‐guided therapy

 96

environment. The International Journal of Medical Robotics and Computer Assisted

Surgery, 5(4), 423-434.

[35] Clarkson, M. J., Zombori, G., Thompson, S., Totz, J., Song, Y., Espak, M., ... &

Ourselin, S. (2015). The NifTK software platform for image-guided interventions:

platform overview and NiftyLink messaging. International journal of computer assisted

radiology and surgery, 10(3), 301-316.

[36] Lasso, A., Heffter, T., Rankin, A., Pinter, C., Ungi, T., & Fichtinger, G. (2014). PLUS:

open-source toolkit for ultrasound-guided intervention systems. IEEE Transactions on

Biomedical Engineering, 61(10), 2527-2537.

[37] Klemm, M., Kirchner, T., Gröhl, J., Cheray, D., Nolden, M., Seitel, A., ... & Franz, A.

M. (2016). MITK-OpenIGTLink for combining open-source toolkits in real-time

computer-assisted interventions. International Journal of Computer Assisted Radiology

and Surgery, 1-11.

[38] Kurose, James F. Computer Networking: A Top-Down Approach Featuring the

Internet, 3/E. Pearson Education India, 2005.

[39] Cyberinfrastructure Technology Integration (CITI) group at Clemson University,

“Palmetto User’s Guide,” 2016,

https://www.palmetto.clemson.edu/palmetto/pages/userguide.html

[40] Rowshanrad, S., Namvarasl, S., Abdi, V., Hajizadeh, M., & Keshtgary, M. (2014). A

survey on SDN, the future of networking. Journal of Advanced Computer Science &

Technology, 3(2), 232.

[41] Nunes, B. A. A., Mendonca, M., Nguyen, X. N., Obraczka, K., & Turletti, T. (2014).

A survey of software-defined networking: Past, present, and future of programmable

networks. IEEE Communications Surveys & Tutorials, 16(3), 1617-1634.

[42] Rosen, A. and Wang, K.-C., Steroid OpenFlow Service: Seamless Network Service

Delivery in Software Defined Networksg," (2012).

[43] Gropp, W., Lusk, E., & Skjellum, A. (1999). Using MPI: portable parallel

programming with the message-passing interface (Vol. 1). MIT press.

[44] Kawasaki, Y., Ino, F., Mizutani, Y., Fujimoto, N., Sasama, T., Sato, Y., ... & Hagihara,

K. (2004). High-performance computing service over the Internet for intraoperative image

processing. IEEE transactions on information technology in biomedicine, 8(1), 36-46.

[45] Ali, S., & Cherif, A. (2015). Performances analysis of image encryption for medical

applications. Journal of Information Sciences and Computing Technologies, 1(1), 78-87.

 97

[46] Gonzalez, Rafael C., and Richard E. Woods. "Digital image processing." (2002).

[47] Huang, Deng-Yuan, and Chia-Hung Wang. "Optimal multi-level thresholding using a

two-stage Otsu optimization approach." Pattern Recognition Letters 30.3 (2009): 275-284.

[48] Luo, Y., & Duraiswami, R. (2008, June). Canny edge detection on NVIDIA CUDA.

In Computer Vision and Pattern Recognition Workshops, 2008. CVPRW'08. IEEE

Computer Society Conference on (pp. 1-8). IEEE.Chicago

[49] Fischer, Bernd, and Jan Modersitzki. "Ill-posed medicine—an introduction to image

registration." Inverse Problems 24.3 (2008): 034008.

[50] Rueckert, D., Sonoda, L. I., Hayes, C., Hill, D. L., Leach, M. O., & Hawkes, D. J.

(1999). Nonrigid registration using free-form deformations: application to breast MR

images. IEEE transactions on medical imaging, 18(8), 712-721.

[51] Lee, Seungyong, George Wolberg, and Sung Yong Shin. "Scattered data interpolation

with multilevel B-splines." IEEE transactions on visualization and computer graphics 3.3

(1997): 228-244.

[52] Jiang, Jun, Wayne Luk, and Daniel Rueckert. "FPGA-based computation of free-form

deformations in medical image registration." Field-Programmable Technology (FPT),

2003. Proceedings. 2003 IEEE International Conference on. IEEE, 2003.

[53] Modat, M., Ridgway, G. R., Taylor, Z. A., Lehmann, M., Barnes, J., Hawkes, D. J., ...

& Ourselin, S. (2010). Fast free-form deformation using graphics processing units.

Computer methods and programs in biomedicine, 98(3), 278-284.

[54] https://sourceforge.net/projects/niftyreg/

[55] Rohlfing, T., Maurer, C. R., Bluemke, D. A., & Jacobs, M. A. (2003). Volume-

preserving nonrigid registration of MR breast images using free-form deformation with an

incompressibility constraint. IEEE transactions on medical imaging, 22(6), 730-741.

[56] Barlas, Gerassimos. Multicore and GPU Programming: An integrated approach.

Elsevier, 2014.

[57] https://docs.nvidia.com/cuda/cuda-c-programming-guide/#introduction

[58] https://developer.nvidia.com/cuda-zone

[59] https://www.khronos.org/opencl/

[60] Du, P., Weber, R., Luszczek, P., Tomov, S., Peterson, G., & Dongarra, J. (2012). From

CUDA to OpenCL: Towards a performance-portable solution for multi-platform GPU

programming. Parallel Computing, 38(8), 391-407.

https://developer.nvidia.com/cuda-zone
https://www.khronos.org/opencl/

 98

[61] Munshi, A., Gaster, B., Mattson, T. G., & Ginsburg, D. (2011). OpenCL programming

guide. Pearson Education.

[62] Shamonin, D. P., Bron, E. E., Lelieveldt, B. P., Smits, M., Klein, S., & Staring, M.

(2014). Fast parallel image registration on CPU and GPU for diagnostic classification of

Alzheimer's disease. Frontiers in neuroinformatics, 7, 50.

[63] Ogawa, K., Ito, Y., & Nakano, K. (2010, November). Efficient Canny edge detection

using a GPU. In Networking and Computing (ICNC), 2010 First International Conference

on (pp. 279-280). IEEE.

[64] Holub, P., Šrom, M., Pulec, M., Matela, J., & Jirman, M. (2013). GPU-accelerated

DXT and JPEG compression schemes for low-latency network transmissions of HD, 2K,

and 4K video. Future Generation Computer Systems, 29(8), 1991-2006.

[65] https://www.cloudlab.us

[66] Surry, K. J. M., Austin, H. J. B., Fenster, A., & Peters, T. M. (2004). Poly (vinyl

alcohol) cryogel phantoms for use in ultrasound and MR imaging. Physics in medicine and

biology, 49(24), 5529.

[67] Chanthasopeephan, T., Desai, J. P., & Lau, A. C. (2007). Modeling soft-tissue

deformation prior to cutting for surgical simulation: finite element analysis and study of

cutting parameters. Biomedical Engineering, IEEE Transactions on, 54(3), 349-359.

[68] Fitzpatrick, J. M., Hill, D. L., & Maurer Jr, C. R. (2000). Image registration. Handbook

of medical imaging, 2, 447-513. Chicago

[69] http://globalconfig.net/software-defined-networking-vs-traditional/

[70] http://opencv.org/

http://globalconfig.net/software-defined-networking-vs-traditional/

	Clemson University
	TigerPrints
	5-2017

	Towards Real-time Remote Processing of Laparoscopic Video
	Zahra Ronaghi
	Recommended Citation

	tmp.1497625926.pdf.iz6r3

