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ABSTRACT 
 

Laparoscopic surgery is a minimally invasive technique where surgeons insert a 

small video camera into the patient’s body to visualize internal organs and use small tools 

to perform these procedures. However, the benefit of small incisions has a disadvantage of 

limited visualization of subsurface tissues. Image-guided surgery (IGS) uses pre-operative 

and intra-operative images to map subsurface structures and can reduce the limitations of 

laparoscopic surgery. One particular laparoscopic system is the daVinci-si robotic surgical 

vision system. The video streams generate approximately 360 megabytes of data per 

second, demonstrating a trend toward increased data sizes in medicine, primarily due to 

higher-resolution video cameras and imaging equipment. Real-time processing this large 

stream of data on a bedside PC, single or dual node setup, may be challenging and a high-

performance computing (HPC) environment is not typically available at the point of care. 

To process this data on remote HPC clusters at the typical 30 frames per second rate (fps), 

it is required that each 11.9 MB (1080p) video frame be processed by a server and returned 

within the time this frame is displayed or 1/30th of a second. The ability to acquire, process, 

and visualize data in real time is essential for the performance of complex tasks as well as 

minimizing risk to the patient. 

We have implemented and compared performance of compression, segmentation 

and registration algorithms on Clemson’s Palmetto supercomputer using dual Nvidia 

graphics processing units (GPUs) per node and compute unified device architecture 

(CUDA) programming model. We developed three separate applications that run 
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simultaneously: video acquisition, image processing, and video display. The image 

processing application allows several algorithms to run simultaneously on different cluster 

nodes and transfer images through message passing interface (MPI). Our segmentation and 

registration algorithms resulted in an acceleration factor of around 2 and 8 times 

respectively. To achieve a higher frame rate, we also resized images and reduced the overall 

processing time. As a result, using high-speed network to access computing clusters with 

GPUs to implement these algorithms in parallel will improve surgical procedures by 

providing real-time medical image processing and laparoscopic data. 
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Chapter 1 

INTRODUCTION AND MOTIVATION 
 

1.1 Significance and Innovation 
 

Minimally invasive surgery (MIS) reduces patient trauma, hospital stay, and 

recovery time through reducing incision sizes to small “keyholes”. In laparoscopic 

procedures a camera is used for real-time visualization of the surgical field and guidance 

of the procedures. However, small field of view of the laparoscope as well as small incision 

size will result in a small overall visual field of the underlying tissues of interest. The 

reduced visual field along with organ motion due to natural and surgical affect can limit 

the surgeon’s ability to target specific subsurface locations with high accuracy and 

precision; therefore, requiring external information such as medical imaging to 

complement laparoscopic video [1,2]. 

Pre-operative and intra-operative images can be processed to offer more visual 

details of a surgical area of interest. Pre-operative images are necessary to understand the 

patient’s anatomy and plan a surgical process. Some of the most common pre-operative 

imaging methods include Computed Tomography (CT), Magnetic Resonance Imaging 

(MRI) and Nuclear Medicine combined with CT or MRI. Intra-operative imaging can be 

used for real-time observation of the surgical field especially for applications that the 

position of internal organs is unpredictable. X-ray fluoroscopy, ultrasound and hand assist 

laparoscopy are techniques that have been used for intra-operative medical imaging [3, 4].  
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Radical nephrectomy, resection of entire kidney as well as surrounding fat, 

lymphatic and the adrenal gland, was the traditional treatment for patients. Recently, partial 

nephrectomy has become common. This involves partial resection of the kidney, removal 

of diseased segment of renal tissue and leaving normal functioning kidney tissue. 

Identifying clear margin can reduce procedure time and limit disturbance of healthy tissue, 

thus shorter recovery time for the patient [5]. Improving intraoperative visualization such 

as image-guided surgery (IGS) techniques during the procedure will improve surgeon’s 

view of the margin and surgical outcome. 

IGS uses pre-operative and intra-operative images to map a surgical region of 

interest (ROI), thus providing surgeons with visualization of subsurface structures and 

accurate positional information during a surgical procedure [6, 7]. The accurate co-

registration of an IGS system with laparoscopic video can reduce the impact of limited 

surgical access and allow for a resection with higher specificity and tighter margins, thus 

sparing more healthy tissues. As a result, augmentation and mapping imaging data to the 

operative field of view can improve accuracy and efficiency of surgical procedures [8-11]. 

After the introduction of the Computer Motion AESOP and the Intuitive Surgical 

daVinci both in 1998, the use of robotics in medicine has continued to grow. Some of the 

clinical benefits of medical robotics are improvement in dexterity and accuracy of 

manipulation compared to traditional laparoscopy [11]. Currently the primary robotic 

surgery devices on the market are the daVinci-si and daVinci-xi systems. For this work we 

will look at the daVinci-si robot, with a HD vision cart, which uses two parallel 1080p 

(1920x1080x3) High Definition video cameras to generate stereoscopic vision. These two 
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views are then displayed using a pair of high definition monitors set up in a stereopticon-

like device thus allowing the clinician the ability to perceive depth [12, 13].  If captured 

raw, these video streams generate approximately 360 megabytes of data per second. 

Processing of the volume of data generated by the stereo video feeds would be 

demanding for a local system, and thus high-performance computing (HPC) hardware is 

needed [14-16], which can be both expensive (cost of power, cooling, system 

administration) and large in size. Even though the price of computing hardware continues 

to fall, the price of HPC hardware can limit systems to only hospitals with large financial 

resources, while physical size considerations can make hardware difficult to place in any 

operating room. As the size of data generated by surgery increases from enhanced video 

resolutions and new instrumentation in the operating room. The need to process and store 

this data is increasingly becoming a problem requiring efficient connectivity to HPC 

systems at remote locations. 

I have developed image processing algorithms for augmentation of laparoscopic 

video with pre-operative and intra-operative medical images on HPC clusters. Computing 

clusters are often not available in hospital environments, and thus data will need to be 

transported from the point of care to be processed, and results will need to be returned in 

real-time. To realize the goal of rapid processing of laparoscopic data, we propose the 

development of a protocol where data is captured, transmitted, processed, returned, and 

displayed within 1/30th of a second for the left and right eye synchronization of the daVinci. 

At the 30 fps rate of the video, each frame will take 1/30th of a second (or 33ms). The two 

video streams will be synchronized if the overall time is less than one frame (33ms). 
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Figure 1.1 - System overview of laparoscopic cameras, network and cluster 

 

Clemson University has recently deployed the OpenFlow software defined network 

(SDN) communication protocol on its network and is in the process of leveraging the new 

protocol and its connection to the Internet2 Innovation Platform [18]. SDN enables 

programmable network control for high-bandwidth and dynamic applications [17]. The 

new network will assist researchers in overcoming the network limitation to flexibly 

establish 10 gigabit or higher end-to-end connectivity, within a scientific demilitarized 

zone (DMZ), thus creating a frictionless connection between machines. DMZ ensures 

publicly accessible servers are placed on an isolated network segment [18]. As a result, 

using high-speed network to access computing clusters will lead to real-time or near real-

time medical image processing with great flexibility. 

The augmentation of live high definition stereo laparoscopic data with pre-

operative or intra-operative medical images requires more computational capability than is 

possible on a single workstation. More advanced visualizations may require rendering 

techniques more suited to a high-performance computing environment. Therefore, 

flexibility in the transmission of data to multiple sites is important. Furthermore, the ability 

to optimize the data transmission to take advantage of the specialized processing and 



 5 

rendering techniques at multiple endpoints is the key to allowing for rendering and 

processing as a service and also providing optimal data. 

1.2 Motivation and Approach 
 

A laparoscopic camera of interest is the vision system of daVinci-Si robotic surgical 

system. The vision system generates two parallel video streams one representing the left 

eye and one representing the right eye; totaling approximately 360 megabytes of data per 

second. The burden of processing this data on a bedside PC has become overwhelming and 

availability of a point of care high-performance computing (HPC) environment is rare. To 

process this data on remote HPC clusters at the typical 30 frames per second (fps) rate, 

each 11.9 MB video frame must be processed by a server and returned within 1/30th of a 

second. The ability to acquire, process and visualize data in real-time is essential for 

performance of complex tasks as well as minimizing risk to the patient. We hypothesize 

that by using high-speed networks to access computing clusters will lead to near real-time 

medical image processing and improve surgical outcomes by providing real-time enhanced 

laparoscopic data. I therefore propose the following goals: 

Processing of the data generated by the stereo video feeds would be demanding for 

a local system, and thus high-performance computing (HPC) hardware is needed, which 

can be both expensive and large in size. Computing clusters are often not available in 

operating rooms (OR) or hospital environments, and thus data will need to be transported 

from the point of care to be processed, and results will need to be returned in real-time. For 

this work we will look at the daVinci-si robot, with a HD vision cart, which uses two 
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parallel 1080p (1920x1080x3) High Definition video cameras at 30fps rate to generate 

stereoscopic vision. It is required that each 11.9 MB video frame be processed by a server 

and returned within 1/30th of a second (~33ms). We propose the development of a protocol 

where data is captured, transmitted, processed, returned, and displayed within 33ms for the 

left and right eye synchronization of the daVinci. 

Through the use of high-speed access to a high-performance computing resource, 

we believe that it will be possible to update models based on current surgical data.  These 

methods will allow for real-time modification of the previously generated object map, 

based on current data. Object map is segmentation of volumetric images into multiple 

object regions, which stores the object information of every voxel in the image. For spatial 

volume registration, object maps allow structures segmented from different modalities to 

be combined with proper spatial relationships). We plan to take the augmented data 

previously generated and send it to the cluster for adaption and deformation. We will 

compare the developed algorithms on central processing unit (CPU) and graphics 

processing units (GPUs) 

1.3 Dissertation Outline 
 

Chapter 2 provides a background on laparoscopic surgery and image guided surgery 

as well as literature review of relevant work in the field of medical image processing and 

high performance computing. Chapter 3 provides background, method and results on our 

network infrastructure. Chapter 4 focuses on the medical image processing algorithms such 

as segmentation and registration. Chapter 5 details the experiment setup on Clemson’s 
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supercomputer with dual Nvidia GPUs and evaluation of the medical image processing 

parallelization. Chapter 6 discusses an MPI-CUDA implementation of our framework. 

Finally the dissertation is concluded in chapter 7 with directions for future research.  
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Chapter 2 

BACKGROUND AND LITERATURE REVIEW 

 

2.1 Laparoscopic surgery and image guided surgery 
 

 Minimally invasive surgery (MIS) reduces patient trauma and recovery time by 

using small “keyholes” instead of traditional open surgery. Surgeons insert a small video 

camera into the patient’s body for visualization and guidance and use small tools to perform 

surgical procedures. MIS reduces size of incisions, patient recovery time, trauma and post-

operative pain.  However, small field of view will result in small visual field for surgeons, 

which could prolong procedures and does not provide information about subsurface 

structures [7].  

 

Figure 2.1 - Laparoscopic procedure 
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Image guided surgery (IGS) uses pre-operative (for example magnetic resonance 

imaging (MRI) or Computed topography (CT)) or intra-operative (such as ultrasound (US) 

or fluoroscopy) medical images to map a surgical region of interest, providing surgeons 

with information regarding internal structures and their geometric relationships [7]. IGS 

systems relate measurements in one coordinate system to measurements in another. 

Determining mathematical relationship between objects in images with their physical 

location in the operating room can be done based on points, surfaces or volumes. This 

process is called registration and the images or instruments can be overlaid on other images, 

laparoscopic video or the patient. High-speed computing hardware will enable interactive 

registration and real-time surgical image guidance during procedures.  

2.1.1 Robotic surgery 

 After the introduction of the Computer Motion AESOP and the Intuitive Surgical 

daVinci, both in 1998, the use of robotics in medicine has continued to grow. They play an 

important role in minimally invasive procedures by enhancing precision and dexterity. 

Currently, the primary robotic surgery devices on the market are the daVinci-si and 

daVinci-xi systems (Intuitive Surgical, Sunnyvale, CA, USA). The daVinci-si robot 

consists of the surgeon’s console and patient side cart [16]. The high definition (HD) vision 

cart uses two parallel 1080p (1920x1080x3) high-definition video cameras to generate 

stereoscopic vision and allows clinicians to perceive depth. An example of a daVinci-si 

surgical system with added second surgeon console is shown in Figure 2.2.   
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Figure 2.2 – daVinci surgical robot [16] 

Robotic assisted surgery also relies on laparoscopic cameras for vision and does 

not allow information of subsurface structures. Image guided surgery (IGS) allows 

visualization and evaluation of critical structures. Registration of tomographic medical 

images can be done using intrinsic (kinematic chain of the robot and robotic cart), extrinsic 

(optical or magnetic tracking systems) or hybrid localization in the operating room [12]. 

2.1.2 Image guided abdominal surgery 

 IGS has become the standard of care in neurosurgery that allows more specific 

resection with higher specificity and minimizes damage to healthy tissue. Image guided 

surgery for abdominal organs deals with challenging registration and segmentation 

methods that are caused by organ motion and soft tissue deformation. Real-time 

registration and remodeling of data are necessary during these surgical procedures. Pre-

operative images can be used to understand the patient’s anatomy and plan a surgical 

process. Intra-operative images can be used for real-time observation of the surgical field, 

as the position of internal organs is dynamic [19]. 
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2.1.3 Augmented reality partial nephrectomy 

 Partial resection of the kidney or removal of diseased segment is called partial 

nephrectomy. Partial nephrectomy for renal cell carcinoma has become more common as 

it leaves a clear margin for the normal functioning part of the kidney and preserves renal 

function. Identifying clear margins can reduce procedure time and result in a resection with 

higher specify and tighter margins. Some of the advantages of laparoscopic partial 

nephrectomy compared to open partial nephrectomy are reduced blood loss, recovery time 

and hospital stay [20, 21].  

 daVinci robotic surgical systems provide advantages over traditional laparoscopic 

surgery such as improved dexterity, precision and high-quality 3D operative view. 

Augmented reality (AR) can be used with da Vinci robots to provide the surgeon with 

additional information and enhance the surgical procedure. AR systems enable overlay and 

alignment of pre-operative or intra-operative medical images onto the surgical field of view 

and improve surgeon’s visualization, view of the margin and surgical outcome. However, 

intra-abdominal organs such as kidney change size and shape during procedures. Surgical 

tools and conditions, retractors and physiological changes may cause kidney deformation. 

Examples of image registration techniques for kidney include: manual registration using 

surgeon’s knowledge of human anatomy, surface based registration that aligns surface 

anatomy with medical images, and stereoscopic registration using disparity between two 

cameras to triangulate placement of an object within a camera frame [20]. Some of these 

examples are presented in Figure 2.3.  
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Figure 2.3 – Kidney image registration [20] 

 

2.2 Medical image processing on GPUs 
 

 Medical image registration is the process of aligning medical images into a 

common coordinate space. Registration can be done using intrinsic or extrinsic registration. 

During intrinsic registration, features are based on the patient and extracted visually or 

computationally from input images. These features such as anatomical landmarks or image 

segmentation are used for matching and registration of images. Extrinsic registration uses 

artificial markers such as foreign objects and fiducial markers [22]. Figure 2.4 shows a 
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general registration solver. The main components include preprocessor, transformer, 

optimizer and similarity measure [14]. 

 

Figure 2.4 - Registration solver [14] 

Image registration is computationally expensive and with increasing resolution and 

size of medical images or videos, real-time processing on a bedside or local PC has become 

more challenging. As a result, recent research on image processing using cell broadband 

engine (Cell/BE), field programmable gate arrays (FPGAs) and GPUs have increased.  

Image segmentation divides elements of an image into a set of groups. Medical 

image segmentation can be used to segment brain structures, organs, tumors, etc. for 

diagnostics and intraoperative guidance. Segmentation algorithms are usually specific to 

an application and allow visualization of region of interest without unnecessary 

information [23].  
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2.2.1 Medical image registration on GPUs 

One of the main goals of recent image registration research is performing real-time 

or near real-time calculation to provide more accurate information during surgical 

procedures and intraoperative applications. Depending on the application, these algorithms 

may be high throughput computing or require additional work and modification to transfer 

from CPU to GPU for faster processing. Several groups have reported faster linear 

interpolation on GPUs compared to CPU implementation. Shams et al. investigated real-

time registration of 3D CT scans on a GPU using mutual information [24]; the CPU 

implementation took 45 seconds while the total time reduced to 3.7 seconds using a GPU. 

Brounstein et al. performed registration between CT and ultrasound on a GPU in 2 seconds 

[25]. The work reported by Ruijters discussed non-rigid registration between pre-operative 

and intra-operative 3D cone-beam CT volumes [26]; volumes of the size 256 x 256 x 256 

voxels were registered in 329 seconds on CPU, 31.2 seconds using multi-thread and 7.4 

seconds on a GPU. Using several GPUs instead of one could also reduce the total 

registration time further. The work reported by Plishker et al. compared CT image 

registration using one and four GPUs [27]; using a single GPU the registration was 

performed in 7.9 seconds and four GPUs reduced the time to 2.5 seconds. Optimization of 

naïve GPU implementations that are compute or memory-bound can also result in further 

speedup. Efficient GPU implementations can also reduce overall time by minimizing CPU-

GPU communications. For example, Hwang et al. optimized a GPU implementation that 

resulted in a speedup of a factor 6 [28].  
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2.2.2 Medical image segmentation on GPUs 

 Image segmentation is also a computationally demanding procedure especially for 

large medical image datasets. GPUs can be used to compare multiple segmentation 

algorithms or perform interactive segmentation and visualization. Some of the common 

segmentation algorithms that have been executed in parallel include: thresholding, level-

set, active contours, region growing and watershed transform [29]. Active contours 

segmentation uses moving contours and focuses on minimizing their energy. Perrot et al. 

focused on segmentation by active contours of large images (15-150 megapixels) and 

reduced the processing on GPU by a factor of 7 [30]. Level-set segmentation is similar to 

active contours, which propagates a contour in the image; however, it has the advantage of 

splitting and merging these contours without additional processing. In [33], the authors 

implemented a parallel interactive level-set segmentation and achieved 10x to 15x speedup.  

Watershed segmentation uses intensity value of pixels as their height to find watershed 

lines. Korbes et al. reported a parallel implementation of watershed segmentation that is 

six times faster than the serial version [32]. Real-time processing of dynamic images 

requires streaming this data directly to GPUs. Novontny et al. performed real-time 

instrument detection and tracking in ultrasound volume in 31 ms on a GPU [31].  

 Most of the work has focused on developing medical image processing algorithms 

for local CPUs. Several groups that have worked on using a network link for transfer of 

medical data and images: NifTK, PLUS, MITK-OpenIGTLink. 
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OpenIGTLink is a TCP based network protocol for medical data transfer. It has been 

mostly used for connecting devices and software within an operating room (OR) or 

computers on the same network [34]. NifTK uses NiftyIGI as the image guided 

intervention applications and NiftyLink for transfer of data. NiftyIGI provides 

visualization platform as well as receiving video and tracking data. NiftyLink sends 

OpenIGTLink messages using a client and server model [35]. Public software library for 

ultrasound (PLUS) has been developed for ultrasound guided intervention systems. It also 

uses OpenIGTLink protocol for receiving and streaming live data [36]. Medical imaging 

interaction toolkit (MITK) uses OpenIGTLink as the network interface to allow cross-

application within computer-assisted intervention systems [37]. 
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Chapter 3 

DATA TRANSFER FOR REMOTE PROCESSING 

OF MEDICAL IMAGES  

 

3.1 Introduction  
 

In laparoscopic procedures, a camera is used for real-time visualization of the 

surgical field and guidance of the procedures; however, the small field-of-view of the 

laparoscope will result in a small overall visual field of the underlying tissues of interest. 

The reduced visual field along with organ motion can limit the surgeon’s ability to target 

specific subsurface locations with high accuracy and precision, therefore, requiring 

external information such as medical imaging to complement laparoscopic video [1,2]. 

For this work, we will look at the daVinci-si robot, which uses two parallel 1080p 

(1920 × 1080 × 3) high-definition video cameras to generate stereoscopic vision. We will 

develop image processing algorithms for laparoscopic video with medical images on HPC 

clusters. Computing clusters are often not available in hospital environments, thus data will 

need to be transported from the point of care to be processed and the results will need to 

be returned in real time. To realize the goal of rapid processing of laparoscopic data, we 

propose the development of a protocol where data is captured, transmitted, processed, 

returned, and displayed within 1/30th of a second for the left and right eye synchronizations 

of the daVinci. This chapter includes comparison of different network protocols for 

transferring medical images and video to Clemson’s Palmetto cluster. 
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3.2 Methods 
 

3.2.1 Network model and protocols 

 Network designers use a layered architecture to design a network and protocols to 

specify services. Each layer can be implemented using software, hardware or a 

combination of both. Defining protocols by layers has many advantages. For example, each 

layer has a specific function and receives services from other layers. In TCP/IP model, 

Internet protocols are specified in five layers: Application, Transport, Network, Data link 

and Physical Layer as shown in Figure 3.1. Application and transport layers are 

implemented in software, Data link and physical layers are implemented in a Network 

Interface Card (NIC) such as Ethernet or WIFI, and Network layer is often a mix of 

software and hardware implementations [38]. 

 The reference model, OSI model is defined in seven layers: Application, 

presentation, Session, Transport, Network, Data link and physical layer. Two layers of 

presentation and session that are not in Internet model are defined in application layer based 

on application specification. OSI and TCP/IP models are shown in figure 3.1. 
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Figure 3.1 – TCP/IP (left) and OSI (right) model 

Network applications are in application Layer. Protocols available for this layer are: 

HTTP (Web request and Transfer), SMTP (transferring email) and SFTP (for transferring 

files between computers). Transport layer transports application layer’s messages between 

systems. Two transport protocols are: Transmission Control Protocol (TCP) and User 

Datagram Protocol (UDP). The main function of the Link Layer is to check transmission 

error and manage data flow (Ethernet and WIFI). Physical layer is the transmission medium 

of the link (wired or wireless); fiber optic cable is an example of wired network and RF 

transceiver for wireless network. 

3.2.2 Network delay and packet loss 

In a packet switched network, data in the application layer is divided into groups of 

bits that are called packets.  Ideally packets are transferred from source to destination 

without loss and delay. However, packets are passed through different routes and routers 

that will cause delays or errors. Four types of delays are: Processing, queuing, transmission, 

and propagation.  
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Processing delay is the time required to check a packet’s header to specify route 

and direction. It also includes time for checking bit error in the packet. Processing delay in 

routers is usually in order of microseconds. After processing, packet is directed to the queue 

of the next link.  

Queuing delay is the time that packet waits in queue to be transmitted onto the next 

hop link. If there is no packet in the queue, the queuing delay is zero and packet is 

transmitted to the next hop. If there are some packets in the queue, the queuing delay 

depends on the number of packets in the queue. It could be in the order of microsecond or 

milliseconds. The service policy is usually first come first served. 

Transmission delay is the time to send a packet of L bits to the next node. If the 

link transmission rate is R bits per second, the transmission delay is L/R. The rate could be 

Mbps up to Gbps. For example, if the packet length is 1500 bits and the transmission rate 

is 100 Mbps, the transmission delay is 

𝑇𝑟𝑎𝑛𝑠𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑑𝑒𝑙𝑎𝑦 =
𝐿

𝑅
=

1500

100𝑥106
= 15𝜇𝑠𝑒𝑐 

 

Propagation delay is the time required to send a packet from one router to the next. 

This time depends on the distance between two routers and speed of the link.  Therefore, 

propagation delay is equal to: 

𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝐷𝑒𝑙𝑎𝑦 =
𝑑

𝑠
=

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑅𝑜𝑢𝑡𝑒𝑟𝑠

𝑃𝑟𝑜𝑝𝑎𝑔𝑎𝑡𝑖𝑜𝑛 𝑠𝑝𝑒𝑒𝑑
 

 



 21 

Propagation delay is negligible if two routers are close or on a campus of a 

university. However, if two routers are not close to each other, propagation delay should 

be considered. 

Queuing delay is difficult to predict. Several research groups are working on 

calculating probability of having more than specified delay and also average queuing delay. 

It is usually assumed that the buffer is infinite and all of the packets can be stored in the 

buffer. However, an actual buffer is finite and if a packet arrives and the buffer is full, the 

router will drop the packet and results in packet loss. A packet loss will be detected and 

lost packet is retransmitted if TCP is used for the transport layer.  

The sum of all of the types of delays is called total nodal delay. Total nodal delay 

is defined as:  

dnodal = dproc + dqueue+dtrans + dprop 

If there are N routers from source to destination, End-to-End delay (the total delay) 

from source to destination and is equal to: 

𝑑𝐸𝑛𝑑−𝑡𝑜−𝐸𝑛𝑑 = 𝑁(𝑑𝑝𝑟𝑜𝑐 + 𝑑𝑞𝑢𝑒𝑢𝑒+𝑑𝑡𝑟𝑎𝑛𝑠 + 𝑑𝑝𝑟𝑜𝑝) 

 

Figure 3.2 shows the connection between source (client) and destination (server) with N 

routers in between. 
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Server    R1         Rn               client 

Figure 3.2- Client Server connection with N routers 

 

3.2.3 TCP and UDP 

User Datagram Protocol (UDP) is a connectionless transport layer protocol. There 

is no handshaking between source and destination before transmitting the packet so it is 

connectionless and no acknowledgement is sent from receiver to transmitter for received 

correct packets. Therefore, there is a unidirectional data flow in UDP connection. If a 

packet is lost, there is no retransmission of the packet. There is an error checking field bit 

that is added in the header field of the packet, which is used at the receiver to detect bit 

error. UDP is usually used for multimedia applications, since there is no delay for 

connection establishment. There is no connection state for sender and receiver, which 

makes handling many active clients at the same time easier. However, this protocol is not 

reliable and cannot be used for loss sensitive data i.e. real-time surgery.   

                                                            
Figure 3.3- Unidirectional UDP Connection 
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Transmission Control Protocol (TCP) is a reliable and point-to-point connection 

between the source and destination. Before transferring data, there is a 3-way handshaking 

between source and destination, which adds overhead. TCP provides full duplex data 

transfer, meaning there is bi-directional data flow. An acknowledgement is sent from 

receiver to transmitter if the packet is received without error. If there is a bit error in the 

packet or packet is lost due to a full buffer in routers, the packet is retransmitted. A timer 

is set at the transmitter for each packet. If the acknowledgement of a packet is not received 

during the specified time, packet is retransmitted. In TCP, packets are numbered using 

segment number and are delivered in order. If a packet is received out of order, depending 

on the version of TCP, it can be buffered until previous packets are received.  

 

                                                            
Figure 3.4- Bi-directional TCP Connection 

3.2.4 Network infrastructure 

Prior to the design of our overall system, network latency, bandwidth and speed 

were tested in a series of time-of-flight experiments. For our study we developed three 

separate applications that run simultaneously which serve the purposes of video acquisition 

(video client), video display (video server), and image processing (video server palmetto). 
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Currently a single PC is used for the acquisition and display of images (video client 

and video server), this machine is outfitted with a Piccolo Alert (Euresys Inc., San Juan 

Capistrano, CA, USA) SD frame grabber board, connectivity is provided over a 10 gigabit 

per second (Gbps) Ethernet connection. Our video processing module (video server 

palmetto) is running on the Palmetto compute cluster; rated number 4 amongst academic 

research clusters. Palmetto contains 1,978 compute nodes (20,728 cores) and 598 NVIDIA 

Tesla GPU accelerators [39]  

The distance between the client (our local computer) and server (Palmetto Cluster) 

is 9 miles. Our local computer is placed in Clemson, SC and the cluster is located in 

Pendleton, SC. The connectivity from the outside to the Palmetto cluster is 10 Gbps. The 

communication within the Palmetto cluster (between nodes) is provided over InfiniBand 

or Myrinet. There is a 100 Gbps connection from the cluster to the Internet2 innovation 

platform, which provides rapid connectivity for learning and research between more than 

100 U.S. universities. We have tested our transfers using our local area network and plan 

on connecting to multiple institutions through Internet2. Preliminary network tests were 

conducted using the workflow shown in Figure 3.5. 
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Figure 3.5 - Workflow for network tests, demonstrating the connectivity between the local laparoscopy computer (left) 
and the HPC Palmetto Cluster (right). 

In our workflow we currently have tested different protocols and methods such as 

the secure file transfer protocol (SFTP), UDP and message passing interface (MPI) for the 

transfer of captured frames from the client machine (our local computer) to the HPC server 

(Palmetto cluster). We have measured the round-trip time for captured images of 57KB 

and have compared our results using the 1Gbps and updated 10Gbps network connections. 

We are trying to minimize network overhead and latency so we can use the HPC resources 

to improve the visualization and accuracy of laparoscopic video and provide surgeons with 

real-time augmented laparoscopic data during surgical procedures. 

Clemson University has also recently deployed the OpenFlow software-defined 

network (SDN) communication protocol on its network and is in the process of leveraging 

the new protocol and its connection to the Internet2 Innovation Platform. SDN enables 

programmable network control for high-bandwidth and dynamic applications [17]. The 
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new network will assist researchers in overcoming the network limitation to flexibly 

establish 10 GBPS or higher end-to-end connectivity, within a scientific demilitarized zone 

(DMZ), thus creating a frictionless connection between machines [18].  

SDN provides the ability to deploy and manage networks dynamically. Software 

defined networking started in 2010 and changed the network industry in 2011. SDN 

separates data plane from control plane and facilitates network monitoring and 

management. For Internet routers and Ethernet switches, control is implemented and 

coupled in the devices. In SDN, a logically centralized controller has a global view of the 

network and collects information from network resources. Routing algorithms are placed 

in a central section called controller. Controller receives policies and instructions and 

network information from network resources.  Controller uses this information to find the 

best routes and makes the forwarding table. The forwarding rules are installed on the flow 

table of data plane switches that forward traffic based on the forwarding rules. Switches 

are responsible for forwarding the data according to the flow table rules which are made 

by the controller [40].  

Routing is implemented for each flow. When a flow enters a switch, the switch 

compares flow fields with the flow table. If it matches the entry of the table, the 

corresponding action will be done; otherwise the switch uses OpenFlow protocol to send 

the flow to the controller. OpenFlow (OF) is one of the most common standards for SDN 

architecture. It contains many features for network monitoring and reconfiguration and 

allows network providers as well as researchers to add functionality to this protocol. The 
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controller calculates the route for this flow and adds an entry with flow fields and suitable 

action to the flow table.  

The separation of control and data plane together with programmable nature of 

SDN, allows using it as an underlying technology for delivering online video and images 

in an efficient manner. SDN has some advantages such as intelligence and controllable 

architecture, less dependency on hardware technology, simple and flexible management, 

no dependency to a specific company’s products, faster innovation implementation and 

testing. Policies can be applied easily using the flow tables[40, 41]. 

 SDN architecture is shown in Figure 3.6: 

 

Figure 3.6 - Software Defined Network Architecture [69] 

Steroid OpenFlow Service (SOS) is an OpenFlow-based network service that can 

seamlessly increase the performance of large data transfers over long-distance and high 

bandwidth networks (i.e. large delay-bandwidth- product networks) [42]. SOS takes 

advantage of the fact that TCP is typically unable to consume the available network 

bandwidth over large networks. TCP's algorithm only permits the connection source to 

send its window-size number of packets before receiving an acknowledgement. In a large 
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network, this can result in the sender waiting idly for the acknowledgement before being 

permitted to send additional packets. 

SOS works by redirecting the TCP connection to a local SOS agent using an 

OpenFlow switch in the network path. The local SOS agent transparently acknowledges 

the packets from the source of the data transfer acting as if it is the intended destination. 

Because the local SOS agent is installed on the source’s local network, the 

acknowledgement delay is small compared to the real destination, and the source can 

continuously transfer data to the local agent. 

As the source SOS agent (surgeon console) accumulates a buffer of data from the 

data transfer source, a destination SOS (HPC cluster) agent is located in close proximity to 

the intended destination. The source and destination SOS agents communicate and agree 

to use a number of parallel TCP connections in order to rapidly transfer the data from the 

source SOS agent to the destination SOS agent. The destination SOS agent collects data 

from the parallel TCP connections and presents it to the intended destination as if it 

originated from the source across the large network. Figure 3.7 indicates the SOS network 

setup: 
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Figure 3.7 – SOS network setup 

3.3 Results  
 

The connection from our lab (cutters) to the cluster and back to cutters is shown in 

the figure below. We connect from cutters to Palmetto’s user node though a 1Gb/s or 

10Gb/s connection. The user node directs our job submission to a compute node for 

processing: 

 

Figure 3.8 – Cutters to Palmetto’s user node connection 

Data from the time-of-flight tests for video frames using the SFTP file transmission 

protocol showed an increase in transmission time as the frame number increased, for both 

1Gbps and 10Gbps networks, except for when the protocol had completed sending of 
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previous data which appears as valleys in the graphs. However, the round-trip time 

decreased by a factor of five to seven when using the 10Gbps network instead of 1Gbps. 

Figure 3.9 shows the file transfer using 1Gbps connection. The round-trip time is around 

5seconds for the first file and 35seconds for the last. Figure 3.10 indicates the transmission 

using 10Gbps network. The round-trip time starts at 1s for the first frame and 5seconds for 

the 100th frame (note the difference in y-axis scales between the graphs). 

 

Figure 3.9– Round-trip time for SFTP using 1Gbps 
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Figure 3.10– Round-trip time for SFTP using 10Gbps 

 

 

The graphs show an increase in time as the number of frames increase and this could be 

caused by the user node of the cluster and que time. As a result, we also tested a direct 

connection from Cutters to a compute node on Palmetto.  

 

 
Figure 3.11– Cutters to Palmetto's compute node connection 

 

After connecting directly to the compute node, the round-trip time decreased to 4ms 

and remained around the same value for all the frames. Figure 3.12 indicates the round-trip 

time in seconds between our local computer (client) and the Palmetto cluster (server). 
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Figure 3.12–Round-trip time for SFTP through compute node using 10Gbps 

 

SFTP runs over TCP, which offers end-to-end connection and ordered data 

transmission. However, the connection-oriented communication causes delays during data 

transmission. On the other hand, UDP creates a connectionless communication that will 

decrease the transfer time. This could result in packet loss depending on the network 

bandwidth and connectivity. We transferred the files using UDP and the overall 

transmission time decreased to 0.7ms with no packet loss using the 10Gbps network. Figure 

3.13 indicates the round-trip time using UDP. 
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Figure 3.13– Round-trip time for UDP using 10Gbps 

 

UDP and TCP are both in the transport layer of computer networks and have a 

package size limit of 64 KB. Consequently, larger files have to get reassembled before 

processing. As a result, we focused on the application layer and protocols that use UDP or 

a TCP connection, but handle the reassembly of large files. We tested our transfers using 

MPI. MPI is a message passing system and communications protocol that can be used for 

parallel programming [43]. We transferred the files using this method, and the results 

indicate that the transmission time is around 1.2 ms. Figure 3.14 shows the round-trip time 

using MPI. 
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Figure 3.14– Round-trip time for MPI using 10Gbps 

 

We also tested our transfers using MPI for larger files (6 MB) to measure and 

compare the transmission time for HD videos. The results indicate that the transmission is 

around 53 ms. Figure 3.15 shows the round-trip time using MPI for 6 MB files. 
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Figure 3.15– Round-trip time for MPI using 10Gbps for 6MB files 

 

In our next step we used SOS to transfer files. SOS can be performance tuned to 

the environment in which it is deployed. Parameters such as the quantity of parallel 

connections to utilize, agent buffer sizes, and queuing for lost/out of order data can be 

customized. Figure 3.16 shows the performance implication of the number of parallel 

connections and the agent buffer size. As shown, for a 10Gbps link that can only achieve 

130Mbps with a single TCP connection, SOS can increase the performance of this single 

connection up to 5.08Gbps. Note that the bottleneck in Figure 3.16 is the CPU of the agents. 

With better hardware, higher performance could be achieved. However, the daVinci only 

generates 2.88Gbps of raw video data. Thus, SOS can improve the network performance 

to support video stream transfer over TCP, which ensure reliability. 
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Figure 3.16– SOS parameter sweep 

 

3.4 Discussion and Conclusions 
 

In the field of computer assisted-surgery, particularly in image-guided surgery the 

ability to acquire, process, render, and visualize data in real-time is essential for 

performance of complex tasks, minimizing risk to the patient [29]. While complex 

surgeries have been performed for hundreds if not thousands of years, the advent of new 

computer based technologies has allowed for new levels of accuracy and precision, thus 

reducing postoperative complications, allowing faster recovery times, and causing less 

collateral damage to otherwise healthy tissues. The contextual validity of data degrades 

quickly as tools within the body move, patient organs move, and resections are performed. 

It is critical that data be acquired, processed, and returned in a timely manner [44]. 
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Initial results from the use of SFTP ruled out its use due to high latency in time of 

flight measurements as well as noticeable increase in latency over the course of the test. 

During our tests we realized that access to the underlying file system and the fact that we 

must connect to each computing node over SSH through a head node, which is accessed 

by a large number of users, is causing significant latency issues. We were able to reduce 

the latency through direct connection to the compute note. However, SFTP runs over TCP, 

which uses acknowledgements and retransmission to prevent packet loss and causes delays. 

The encryption step of SFTP is also a limiting factor in reducing the round-trip time. 

UDP is faster since there is no error recovery and acknowledgment mechanism; 

therefore, it is used for time-sensitive and real-time applications. The UDP tests resulted in 

a lower round-trip time and reliable connection with no packet loss due to availability of 

high bandwidth. However, UDP and TCP are both in the transport layer and have a packet 

size limit of 64 KB; hence, larger files have to get reassembled before processing. As a 

result, we focused on the application layer and protocols that use UDP or TCP connection, 

but handle the reassembly of large files. We tested our transfers using MPI, which is based 

on a TCP connection and is used for parallel programming, larger files, and HD video 

frames. Despite MPI using TCP connection, the round-trip time is 1.2 ms comparable with 

large files. In addition, the round-trip time for MPI is in the order of milliseconds compared 

with seconds for SFTP. The total transfer for HD video frames is around 53 ms using MPI. 

We will optimize and parallelize our algorithms to reduce the time. Through the 

development of a direct connection, we can achieve more direct control over of the 
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transmission of data as well as develop a communication system between clients and 

computing nodes to perform real-time medical image processing. 

Security of medical data transfer (images and video) is also an important factor. 

Data security refers to technology or tools used to protect the data from unauthorized access 

and help professionals to keep patient’s information in confidence. Data encryption 

algorithms are used to secure the data before transmission. Encryption can be implemented 

in software or hardware. There are several encryption algorithms that can be used for 

different applications. Depending on time constraint of the application and time of 

implementation of the algorithm, one of them is selected. Hardware implementation of the 

algorithm using Digital Signal Processing (DSP) or Field-Programmable Gate Array 

(FPGA) will reduce the time of encryption [45]. This will be investigated further before 

transferring real-time surgery and imaging data. 

The augmentation of live high definition stereo laparoscopic data with pre-

operative or intra-operative medical images requires more computational and storage 

capability than is possible on a single workstation. More advanced visualizations and 

processing may require new or improved rendering techniques more suited to a high-

performance computing environment. Therefore, flexibility in the transmission of data to 

multiple sites is important. Furthermore, the ability to optimize the data transmission to 

take advantage of the specialized processing and rendering techniques at multiple 

endpoints is the key to allowing for rendering and processing as a service and also 

providing optimal data. 



 39 

Through the use of high-speed access to an HPC resource, we believe that it will 

be possible to update models and allow for real-time modification of the previously 

generated object map, based on current surgical data. Success in this portion would lead to 

the ability of performing surgery at one site (origin), receiving an object map from another 

site (segmentation/rendering), forwarding this data along with relevant force data to a third 

site for deformation (model update), and returning this data to the origin for display. 
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Chapter 4 

MEDICAL IMAGE REGISTRATION AND 

SEGMENTATION FOR LAPAROSCOPIC 

SURGERY 
 

4.1 Introduction  
 

Minimally invasive surgery reduces patient trauma, hospital stay, and recovery time 

through reducing incision size; however, the small field-of-view of the laparoscope as well 

as small incision size will result in a small overall visual field of the underlying tissues of 

interest. The reduced visual field along with organ motion due to natural and surgical 

effects can limit the surgeon’s ability to target specific subsurface locations with high 

accuracy and precision; therefore, requiring external information such as medical imaging 

to complement laparoscopic video [1,2]. Image-guided surgery (IGS) uses preoperative 

and intraoperative images to map a surgical region of interest, thus providing surgeons with 

visualization of subsurface structures and accurate positional information during a surgical 

procedure [6, 7]. The accurate co-registration of an IGS system with laparoscopic video 

can reduce the impact of limited surgical access and allow for a resection with higher 

specificity and tighter margins, thus sparing more healthy tissues [8–11]. 

After the introduction of the Computer Motion AESOP and the Intuitive Surgical 

daVinci, both in 1998, the use of robotics in medicine has continued to grow. Some of the 

clinical benefits of medical robotics are improvement in dexterity and accuracy of 
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manipulation compared with traditional laparoscopy [11]. Currently, the primary robotic 

surgery devices on the market are the daVinci-si and daVinci-xi systems. The daVinci-si 

robot has a high-definition (HD) vision cart, which uses two parallel 1080p (1920x1080x3) 

high-definition video cameras to generate stereoscopic vision. These two views are then 

displayed using a pair of high-definition monitors set up in a stereopticon-like device [12, 

13].  

Processing of the volume of data generated by the stereo video feeds would be 

demanding for a local system, thus high-performance computing (HPC) hardware is 

needed [14–16], which can be both expensive and large in size. Even though the price of 

computing hardware continues to fall, the price of HPC hardware can limit it to only 

hospitals with adequate financial resources, while size considerations can make hardware 

difficult to place in any operating room. This section includes the serial segmentation and 

registration algorithms tested on CPUs. The next chapter contains the parallel version of 

these algorithms that were tested on a HPC cluster with GPUs.  
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4.2 Segmentation methods and results 

   
4.2.1 Medical image segmentation 

 Image segmentation divides elements of an image into one or more regions of 

interest (ROIs) [46]. Some of the most common categories of image segmentation include: 

thresholding (histogram or slicing techniques), edge detection (detects edges that represent 

object boundaries) and region growing (starts from seed points and grows until meets 

desired segmentation result). 

4.2.2 Thresholding 

 Thresholding is a gray value remapping operation: 

 

where v is gray value and t is threshold value. Gray-valued image will be mapped to a 

binary image. Image will be segmented in two parts with pixel values of zero or one. 

Several threshold values can be used to segment an image into more than two segments. If 

n thresholds are used, the image can be segmented into n+1 segments.  

 

Thresholding is mostly used for images containing bright objects on dark backgrounds. 

The difference between gray value of an object with the background will result in 
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segmented image using thresholding. Different methods of determining pixel value or 

range of pixel values for a specific application include: 1. interactive selection of threshold 

by user,  

2. using intensity histogram of an object and background to compare distribution values. 

The values from different histograms may overlap and maxima (peak) of histograms can 

be used to define a segmentation threshold. This value can be calculated using average of 

two peaks with gray values p1 and p2  :  
𝑝1+𝑝2

2
 or gray value at minimum of two peaks: arg 

min H(v), where H(v) calculates the histogram value at gray value v.  

3. using mean and standard deviation of user defined test points for semi-automatic 

segmentation, and  

4. Otsu’s method that iteratively tries different values for automatic selection of threshold 

value. The variance is calculated using weight factors (ω) for probability of correct 

selection of threshold (t) and mean value of μ [47].  

 

4.2.3 Canny edge detection 

 Segmentation of an image into separate objects can be accomplished through 

detecting edges of objects within the image. Edge detection can be used for ROIs that have 

strong edges compared to their surroundings.  Most of these methods use first or second 

derivative to find areas that brightness or color changes relative to neighboring areas. 
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Typically edge detection will also detect partial edges that are not closed boundaries. Edge 

linking will be used to connect these partial edges that will result in an object boundary. 

Canny edge detection is based on a step-edge model that detects high quality edges 

in images that represent object boundaries [48]. It consists of four steps:  

1. Smoothing the input image (filter out noise) for example Gaussian filtering,  

2. Finding intensity gradient of image (apply convolution masks in x and y directions): 

Convolving input image f (x , y) with Gaussian function 𝑒
− 

𝑥2+𝑦2

2𝜎2     will result in a smoothed 

image. The magnitude (G) of an edge and gradient direction (angle,) of each pixel can be 

calculated using: (G and 𝜃 are arrays with the same size as the image) 

 

3. Applying non-maximum suppression to the gradient magnitude (remove pixels that are 

not part of an edge), maximum values along each edge are calculated. First find the 

direction dk that is closest to 𝛼(x,y). Second if the value of M(x,y) is less than one if its 

neighbors along dk, suppress (gN(x,y) = 0) otherwise gN(x,y) = M(x,y), where gN(x,y) is the 

nonmaxima suppressed image. The resulting image can have edges with single pixel width 

using an edge-thinning algorithm. 

4. Hysteresis thresholding (upper and lower thresholds). Using double thresholding (two 

threshold values) will partition the ridge pixels to edges and non-edges. If two values for 

the threshold are t1 and t2 where t1>t2: pixels with gradient value above t1 are definite edges, 
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between t1 and t2 are potential edges and less than t2 are non-edges. Connectivity analysis 

will detect and link edges. The potential edges that are connected to a definite edge using 

a neighboring potential edge will be considered definite edges.  

4.2.4 Segmentation results 

The following tests were implemented on Clemson’s Palmetto supercomputer with Intel 

Xeon-E5 CPUs: 

4.2.4.1 Canny edge detection 

Figure 4.1(a) shows an original image of a HD phantom video and the 4.1(b) the 

segmented image using canny edge detection.  

 
   (a)      (b) 

Figure 4.1– (a) Original head phantom and (b) segmented images 

  

The same algorithm was also applied to a 640 x 480 laparoscopic aorta video: 
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Figure 4.2– Original aorta laparo video and (left) segmented aorta from laparo video (right) 

 

4.2.4.2 Thresholding 

 
 Thresholding was applied to the above aorta video: 

 

 

Figure 4.3– Original aorta laparo video and (left) segmented threshold aorta (right) 
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4.3 Registration methods and results 
 

4.3.1 Medical image registration 

 “Registration is the determination of a geometrical transformation that aligns points 

in one view of an object with corresponding points in another view of that object or another 

object.” [68]. Medical image registration spatially aligns groups of images that can be 

acquired using different or same imaging modalities. For example: magnetic resonance 

imaging (MRI), computed tomography (CT) positron emission tomography (PET) or ultra-

sound (US). Multi-modal imaging is challenging since the images may not have a lot of 

commonalities. Image registration can be defined as: 

 

 
where IF and IM represent the moving and fixed images, μ vector of parameters that model 

the transformation. The cost function (C) consists of a comparison that defines quality of 

alignment. Optimization is usually gradient descent: 

 
 

 Merging these images allows physicians to visualize and compare structural and 

functional information. During surgery, organs may change shape or shift and pre-

operative processing must be updated. This can be done using real-time image guidance 

and accurate registration of medical images. There is no unique registration algorithm that 

is suitable for all applications, thus the algorithms are tuned and adjusted tor specific 
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applications [49]. For a specific application, a balance between accuracy and computation 

time will lead to a suitable registration. For example, pre-operative processing and 

registration may take hours, while image guided surgery requires real-time or near real-

time image registration. This intra-patient registration must provide reasonable alignment. 

Examples of different image registration methods include: Rigid (point based (Procrustes), 

surface based (Iterative Closest Point ICP), intensity based (Normalized Mutual 

Information NMI) and non-rigid (surface based, volume based and shape based) [46]. 

During non-rigid registration, images are spatially deformed to match each other. 

The steps of registration include: image will be transformed to match or become 

more similar to another image, the similarity will be assessed, and finally the 

transformation will be optimized through iterations. Starting registration with lower 

complexity images will increase chances of successful registration. This can be done 

through smoothing or downsampling (resampling or shrinking) images. For example 

Gaussian filter: 
1

𝜎√2𝜋
 𝑒

− 
𝑥2

2𝜎2 will smooth an image in direction x. The same method can be 

used for y direction as well as x to achieve full smoothing. 

Resampling can be done by looping over all pixels of the fixed image to calculate the 

mapped position, after that using interpolation to find the intensity of the moving image 

and copy to the output image. Several methods of interpolation include: nearest neighbor, 

linear and B-spline that differ in quality and speed. 

Transformation methods consist of rigid (moving or rotating object without 

changing shape), affine (same as rigid with additional scaling and shearing), non-rigid 

(more than 6 degrees of freedom and localized transformation). Measure of similarity can 
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be assessed using feature-based or intensity-based methods. Finally, optimizer will change 

the transformation model to obtain maximum similarity.  

 

4.3.2 Rigid registration 

  
 Rigid registration moves an image in space (translate or rotate) but does not change 

the original shape. For three dimensional images, rigid transformation will have 6 degrees 

of freedom: 3 degrees of rotation and 3 degrees of translation. For example a 2-D rigid 

transformation with rotation 𝜃and translation parameters t1 and t2 will result in: 

y1 = cos 𝜃 .x1 – sin 𝜃.x2 + t1 

y2 = sin 𝜃 .x1 + cos 𝜃.x2 + t2 

 

 

 
 
A rotation along the z axis is equal to: 
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3.1.2 Affine registration  

 
 Affine registration consist of translation and rotation but also includes scaling and 

shearing parameters. An affine map is alignment of linear transformations with 

translations. Rigid and affine transformations are linear registration methods that can be 

described using a transformation matrix. The input image can be obtained by applying the 

reverse transform to the output image [14]. A 2-D affine transformation can be denoted by: 

T(x) = Dx + S, where D is a 2x2 matrix demonstrating rotation, scaling and shearing, S is 

2x1 vector demonstrating translation or shift.  

 

4.3.3 Non-rigid registration  

 

 Non-rigid registrations modify input images that will result in distortion in one or 

more dimensions. During non-rigid registration, one or several images are locally spatially 

deformed to match another image. The transformation model can be parametric or non-

parametric. Parametric models use other transformation models to generate a deformation 

field. For non-parametric models each voxel has three degrees of freedom and 

regularization is used to smoothen deformation: 
/

x


 = u ( x


) (u is the deformation field).  

Similarity measures can be feature-based (landmarks such as points, lines or surfaces) or 

intensity-based. Intensity-based does not require pre-processing and it can be the sum of 

squared difference or absolute differences. For example the sum of squared difference 

between a reference image (R) and a deformed floating image F (T) is calculated using: 
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Two of the most common optimization methods are gradient descent and Gauss-Newton. 

During non-rigid registration the first and/or second derivatives of the objective function 

are necessary, since a large number of parameters require optimization [50].  

 

 

4.3.4 Free-Form Deformation algorithm 

 
One of the algorithms that we investigated is called Free-Form Deformation (FFD) 

[50]. The image domain consists of control points that translating these points will induce 

local deformations. The algorithm consists of three parts: transformation using cubic B-

spline and an interpolation function, evaluation an objective function and optimization. The 

cubic B-spline guarantees a continuous deformation but it is the computationally expensive 

part of the algorithm. The equation to compute new coordinate of a point in one dimension 

is:  

 

 
 

where μ is the first control point position, δ is the distance between two control points, and 

B functions are approximated three-order spline polynomials. In three dimensions the Free-

Form Deformation can be written as 3-D tensor product of the 1-D cubic B-spline equation: 

 

 
 

where u, v and w are relative positions of the index point along axis x, u and z. i, j and k 
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are the indices of the first control point and as a result the new coordinates are calculated 

from 4 × 4 ×  4 (64) surrounding control points. These 64 control points are used to compute 

one coordinate. For a 3-D image, each voxel has three coordinates so 192 degrees of 

freedom have to be checked. The higher number of control points results in better 

registration quality but also increases the processing time. As a result, an arbitrary cubic 

B-spline deformation can be used to refine a deformation by adding new control points at 

each half-spacing length [51]. As a result, the spacing will be divided by two for each axis. 

This will increase the control points by a factor of eight and closer to their optimal position 

with less iterations.  

The three parts of the FFD algorithm can be processed independently. FPGA-based 

and supercomputer with 64 CPUs have been used to speed up this computation 3.2 and 50 

times respectively [52, 53]. More recently, GPU based implementation of the NiftyReg 

package [54] has reduced the processing time and led to the speed up of 10 to 20 versus 

single-thread CPU implementation [55]. We have tested registration of brain MRI and 

abdominal (kidney) CT scans. The results are presented and discussed in the next two 

sections. We will discuss the GPU implementation in the next chapter.  
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4.3.5 Registration results 

 

4.3.5.1 Brain MRI registration 
 

Affine and non-rigid transformations were first tested on brain MRIs using 

NiftyReg. Figure 4.4 illustrates brain scans taken a year apart from a patient with 

Alzheimer’s disease and the difference of these images prior to registration. The data set 

was downloaded from: https://www.ucl.ac.uk/drc/research/methods/miriad-scan-database 

 

 

 

 

 

 

 

Figure 4.4– Brain MRI images with affine and non-rigid registrations  

 

 

Image 1  Image 2   Difference            

   Follow-up  

Affine registration        Difference of images    

Non-rigid registration      Difference of images 

https://www.ucl.ac.uk/drc/research/methods/miriad-scan-database
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4.3.5.2 Abdominal registration for kidney 

 
The transformations were then performed on abdominal CTs. Figure 4.5 illustrates 

CT scans taken 16 months apart from a patient with prostate cancer to examine his kidney. 

The data set was obtained from: http://www.cancerimagingarchive.net  

 
 

 

 
 

 

 

 
Figure 4.5– - Abdominal CT scans with affine and non-rigid registration  

Image 1    Image 2    Difference            

     Follow-up  

Affine registration               Difference of images    

Non-rigid registration               Difference of images    

http://www.cancerimagingarchive.net/
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3.2.3 Laparoscopic video registration 

 
 

 

 

 

 

 
Figure 4.6– - Aorta with affine and non-rigid registration  

 

4.4 Discussion and Conclusions 
 

In the field of computer assisted-surgery, particularly in IGS, the ability to acquire, 

process, render, and visualize data in real time is essential for the performance of complex 

tasks, thus minimizing risk to the patient [29]. The contextual validity of data degrades 

quickly as tools within the body move, patient organs move, and resections are performed. 

It is critical that the data be acquired, processed, and returned in a timely manner [44].  

Image 1    Image 2    Difference            

     Follow-up  

Non-rigid registration               Difference of images    
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 Processing of live high-definition stereo laparoscopic data with preoperative or 

intraoperative medical images requires more computational and storage capability than is 

possible on a single workstation. More advanced visualizations and processing may require 

new or improved rendering techniques more suited to an HPC environment. Therefore, 

flexibility in the transmission of data to multiple sites is important. Furthermore, the ability 

to optimize the data transmission to take advantage of the specialized processing and 

rendering techniques at multiple endpoints is the key to allowing for rendering and 

processing as a service and also for providing optimal data. 

Through the use of HPC resource, we believe that it will be possible to update 

models and allow for real-time modification of the previously generated object map, based 

on current surgical data.  Optimization and parallelization of these algorithms will reduce 

the total processing time. We also plan to develop segmentation and registration 

algorithms, and send previously generated data to the cluster for adaption and deformation. 

Success in this portion would lead to the ability of performing surgery at one site (origin), 

receiving an object map from another site (segmentation/rendering), forwarding this data 

along with relevant force data to a third site for deformation (model update), and returning 

this data to the origin for display. 
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Chapter 5 

HIGH PERFORMANCE COMPUTING ENABLED 

REAL-TIME PROCESSING OF LAPAROSCOPIC 

SURGERY   
 

Published as: Ronaghi, Z., Sapra, K., Izard, R., Duffy, E., Smith, M. C., Wang, K. C., & 

Kwartowitz, D. M. (2016, March). HPC enabled real-time remote processing of 

laparoscopic surgery. In SPIE Medical Imaging (pp. 97861U-97861U). International 

Society for Optics and Photonics. 

 

5.1 Introduction  
 

Minimally invasive surgery (MIS) reduces patient trauma, hospitalization stay and 

recovery time through reducing incisions to small keyholes. Laparoscopic procedures use 

a camera for real-time visualization of the surgical field and guidance of the procedures. 

However, small field of view of the laparoscope as well as small incision size will result in 

a small overall visual field of the underlying tissues of interest. Image-guided surgery (IGS) 

uses images to map a surgical region of interest, thus providing surgeons with visualization 

of subsurface structures and accurate positional information during a surgical procedure 

[7]. The accurate co-registration of an IGS system with laparoscopic video can reduce the 

impact of limited surgical access and allow for a resection with higher specificity and 

tighter margins, thus sparing more healthy tissues [10]. 
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Currently the primary robotic surgery devices on the market are the daVinci-si and 

daVinci-xi systems. The daVinci-si robot uses two parallel 1080p (1920x1080x3) High 

Definition video cameras to generate stereoscopic vision [12]. Robotic surgery uses stereo 

laparoscopy (one feed for left eye and one for right eye), thus the volume of data collected 

and required throughput is twice that of traditional laparoscopy. If captured raw, these 

video streams generate approximately 360 megabytes of data per second demonstrating a 

trend towards increased data sizes in medicine. Real-time processing this large stream of 

data on a bedside PC, single or dual node setup, has become challenging and a high-

performance computing (HPC) environment may not always be available at the point of 

care. Processing of the volume of data generated by the stereo video feeds would be 

demanding for a local system, and thus HPC hardware is needed [14].  

We have implemented and compared performance of compression, segmentation 

and registration algorithms on Clemson's Palmetto supercomputer using dual NVIDIA K40 

GPUs per node. We implemented our algorithms on CPU and GPU to analyze execution 

time. Different size and resolution of images were used to compare run-time and overall 

performance. 

 

5.2 Methods   
 

5.2.1 Medical image processing on GPUs 

Medical image processing, specifically medical image registration is a 

computationally expensive task. The computation of parallel friendly algorithms 
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(processing of blocks of data are performed in parallel) can be distributed over processors. 

Thus, multicore architectures could increase processing speed of these algorithms and 

process large amount of data in shorter time. For example, Graphic processors were 

designed for visual rendering of games and their computational power to cost ratio has 

made them popular for various computational tasks and applications. Graphic Processing 

Units (GPUs) have a large number of cores that can be used to reduce time and increase 

speed of image processing algorithms [16]. Algorithms that are data parallel can take 

advantage of the data parallel architecture of GPUs and task parallel algorithms are more 

suitable for CPUs. Until early 2000s GPUs were mainly used for programming graphics 

applications. Since 2003 codes for general-purpose applications such as molecular 

dynamics, data mining and signal processing have started taking advantage of GPUs. 

One of the differences of CPUs and GPUs is the number of Arithmetic Logic Units 

(ALUs). The figure below from Nvidia’s website [58] shows a higher number of ALUs for 

GPUs compared to CPUs for processors with the same size. As a result, GPUs are able to 

execute thousands of operations concurrently while multi-core CPUs can handle 2 to 16 

simultaneously. For example, Nvidia’s Tesla K40 provides 1.43 Tflops. However, GPUs 

may not follow the same accuracy standards of CPUs. This could results in accumulation 

of errors, thus verification of results using CPUs is recommended [56].  
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Figure 5.1– CPU vs. GPU Arithmetic Logic Units [57] 

 

 

 

 Compute Unified Device Architecture (CUDA) and Open Computing Language 

(OpenCL) are two of the programming interfaces that allow parallel programming on 

GPUs, which are described in the following sections: 
 

5.2.1.1 CUDA 

Compute Unified Device Architecture (CUDA) [58], was introduced by Nvidia in 

late 2006 and is specific to Nvidia hardware. It is an extension of C language that integrates 

CPU and GPU code. GPU acts as a coprocessor but with its own memory. CUDA enables 

communication and data transfer between CPU and GPU, which are called host and device. 

The function running on a device is called a kernel and consists of threads that can run 

simultaneously. The figure below indicates how a cuda program is executed.  
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Figure 5.2 – CUDA execution model [56] 

CUDA’s architecture includes grids and blocks. This architecture allows CUDA 

code to be scalable and run on compatible hardware without recompilation. Grids (one, 

two or three dimensions) contain blocks and blocks (one, two or three dimensions) contain 

threads. Threads are also grouped in wraps that can be executed in unpredictable order. 

The size of each block (number of threads in the block) and grid (number of blocks in a 

grid) are defined using blockDim and gridDim and are set by the programmer. The position 

of thread within a block and block within a grid are indexed using threadIdx and blockIdx 

respectively. For example a thread’s x position within grid of data can be calculated as: x 

= threadIdx.x + blockIdx.x * blockDim.x 

The sizes of blocks and grids are determined by the device specifications and can 

be discovered by running “deviceQuery”. Figure 5.3 indicates a 4x3x2 grid made of 3x2 

blocks. 
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Figure 5.3 – CUDA Grid/block hierarchy [56] 

GPU and host memory are typically disjoint and passing data through pointer to 

array in host memory is not possible. The GPU implementation of an algorithm can be 

optimized through memory access within a thread. Data will be transferred from host to 

device and copied back from device to host after kernel execution and computation. This 

data transfer is costly and should be minimized to maximize efficiency. CPU can only 

access global, constant and texture memory. Other memory types of the GPU include 

shared, registers and local memory. These memory types can be effectively incorporated 

in kernel structures to extract more performance from GPUs. The following figure shows 

CUDA memory model. 
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Figure 5.4 – CUDA memory model [58] 

Registers are fast and individual threads have access to them. However, they are 

limited and usually automatic variables are registers. Shared memory is slower than 

registers but is accessible to all threads in thread block. They are commonly used for thread 

collaboration and synchronization. Constant memory is often used to provide input values 

to the kernel and is read-only. Texture memory is also read-only and often used to provide 

input values to the kernel and store textures. Local memory is local to a thread and resides 

in global memory. Global memory has a large reservoir but is very slow. It is visible to all 

threads in a grid and often used to pass information from one kernel to another.  
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We implemented our framework on Palmetto Supercomputer at Clemson 

University using two NVIDIA Tesla K40 GPUs per node, CUDA7.5 enabled with Intel 

Xeon-E5 CPUs and 32GB of Memory. Some of the specifications of K40 GPUs are 4.29 

TF peak single precision, 1.43 TF peak double precision, 12 GB memory, 288 GB/s 

memory bandwidth and 2880 cores. Additional details on Palmetto cluster can be found in 

[39]. 

 

5.2.1.2 OpenCL 

Open Computing Language (OpenCL) was introduced at the end of 2008 [59], 

developed by the Khronos group and is vendor independent. OpenCL is a general-purpose 

programming standard in heterogeneous systems that can run on different architectures, 

such as CPUs, GPUs and FPGAs. One of the main advantages of OpenCL is its portability. 

This enables connection of different devices to a host that run different parts of the code. 

It also allows efficient use of both CPU and GPUs and can be used for applications that 

compute parallel sections on GPU and sequential on CPUs. However, depending on the 

application it may not perform as well as CUDA on Nvidia’s GPUs [60]. The device 

executes a kernel, which consists of points that execute an instance of the kernel. The 

instance is called a work-item (threads in CUDA) and is defined by points in the index 

space, also known as global IDs. Work-items are combined into work-groups. The index 

space that work-items operate is called NDRange, which is an N-dimensional index space 

(one, two or three). 
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As shown in figure 5.5, the memory model of OpenCL consists of global, local, 

constant and private memory. Global memory can be accessed by every work-item but it 

is the slowest to access. Local memory is faster but is only accessible for work-items within 

the same work-group. Constant memory is read-only but has low latency and can be 

accessed by all work-items. Private memory is the fastest memory but is accessed by a 

specific work-item. 

 

 
Figure 5.5 –OpenCL memory model [61] 

OpenCL can be programmed through data parallel or task parallel models or a 

combination of both approaches. In data parallel programming model, each work-item is 

mapped to a data element to ensure aligned memory access.  In task parallel, a compute 

unit creates one work-group with a work-item. This method is usually used to que multiple 

kernels or to efficiently implement vector data types. Most image processing algorithms 
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use the data parallel approach since it is difficult to take advantage of parallelism using the 

task parallel model.  

5.3 Results and Discussion 
 

Pre-surgery, our setup allows for transfer of per-operative images from a remote 

location to compute nodes and GPU memory. OpenCV, ITK and Elastix provide a GPU 

module for basid image processing algorithms. We perform warm-up of the networking 

protocol, followed by verification of compute nodes capabilities and devices. 

The compute nodes are broken into three layers: Main Compute Layer (ML) and 

the two Duplication Compute Layer (DL). Each layer contains a node that performs 

duplicate computation. This computation is then verified with a quick checksum followed 

by verification using NVIDIA GPU Direct with compute nodes in the two DL. If the ML 

matches any one of DL calculation, the ML overlay information is sent back to surgeon. In 

case of a failure of GPU, the computation between the two DL are verified and sent to the 

surgeon and an idle node in the same layer overtakes the computation task of the failed 

compute node. This method enables reliability using replication of computation. 
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Figure 5.6 –Compute node structure 

The following graphs compare CPU and GPU matrix multiplication using CUDA. 

Graph 1 indicates that the execution time for both CPU and GPU increase as the matrix 

dimensions increase. Adding more elements to the matrix requires more processing time. 

Graph 1 shows the results using different scales for CPU and GPU to observe the values 

and compare the graphs. Graph 2, indicates the speed up using GPU compared to serial 

implementation. Matrix sizes for testing include W = 8, 16, 32, 64, 128, 256, 512, 1024, 

2048, and 4096. The benefit of using parallel implementation is more noticeable as the 

dimensions increase. For lower values (W=8, 16, 32) the GPU time is more than CPU. This 

is due to the communication time between host to device and device to host. As the matrix 

dimensions increase (W = 64, 128, 256, 512, 1024, 2048, 4096), the GPU version requires 

less time compared to serial. The calculation time on CPU is more than communication 

between host and device; as a result the overall GPU time is less than CPU. 
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Figure 5.7 –Matrix multiplication time using CPU and GPU 

 
Figure 5.8 –GPU speed up compared to CPU 

  

For larger matrices, i.e. W= 4096, kernel parameters (block and grid size) influence 

the overall performance. Matrix size = WxW; Block size = AxB; Grid size = CxD; where 
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C = W/A and D=W/B. The values do not show a significant difference for small 

dimensions. These values can change as the matrix sizes increase. Using more threads 

within a block will lower the occupancy. However, the number of threads is limited and 

dependent on the GPU model. If the input is more than the thread value, it can be divided 

into blocks. Table 1 shows matrix multiplication time for W = 4096: 

Table 5.1 -  Matrix multiplication time for W=4096 

 

 

5.3.1 Image Processing using GPUs 

5.3.1.1 GPU based registration  

As discussed in chapter 4, image registration consists of reading and setting up 

images, pyramid construction, iterative computation to update parameter vector and 

resampling. Pyramid construction and iterative computation dominate the performance 

(profiled using valgrind) and were transferred to GPUs for parallel computation using 

Elastix and ITK [62]. 
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During pyramid construction, images are smoothed and down sampled (resampling 

or shrinking) to reduce image complexity. The Gaussian pyramid is most commonly used 

for image registration and smooths images in a single direction. Gaussian filer in 1-D: (σ 

is standard deviation of the distribution): G1D (𝒳, σ) = 
2

2
2

1

2

x

e 
 

  [46]. Gaussian filter 

operates row-by-row for x direction or column-by-column for y. Each row can be assigned 

to a different thread for parallel computation. However, the column kernel will be queued 

and processed after row kernel since columns can be processed after rows.  

Resampling is usually done using the fixed image domain. Mapped position of y = 

T(x) is calculated using voxels inside the fixed image domain (x). Moving image intensity 

is calculated using interpolation and copied to the output image [46].  

We have tested affine and non-rigid transformation and the GPU implementation 

for non-rigid. Transformation and interpolation are performed in separate kernels and 

sequentially scheduled on the GPU. 

We compared the run-time for image size of 1920x1080 and 640x360: 

Table 5.2 -  Affine and non-rigid registration 

  640x480 1920x1080 

Affine 21ms 129ms 

Non-rigid 49ms 338ms 

Non-rigid GPU 21ms 38ms 
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We have also investigated NiftyReg library and its CUDA implementation. Using 

the Nvidia visual profiler we observed the following results and compute percentages: 

 

Figure 5.9 –Nvidia visual profiler 

It can be observed that B-spline is the most computationally expensive part of this 

algorithm (as mentioned in chapter 4). The CUDA implementation was based on 

independent voxel displacement and intensity interpolation of the algorithm [53].   

Optimization can be made by adjusting the kernels to use thread level parallelism 

(TLP) and instruction level parallelism (ILP). TLP can be achieved by selecting the 

appropriate block size for a specific application. ILP is parallelism among independent 

instructions and is dependent on the application or problem being solved. The optimization 

methods that we used include: static branch precalculation, loop unrolling and instruction 

reordering. For example the ApplyConvolution function includes a loop that was optimized 
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by precalculating and presetting windows sizes.  Loop unrolling was applied to the main 

loop and the speed up was around 1.3 compared to the original implementation.  

Another step of the optimization includes setting fixed image sizes, since these 

values are predetermined and stay fixed throughout a surgery or pre-operative image 

processing. Another limiting factor is the communication between CPU and GPU. 

Reducing data fetching and number of communications between CPU and GPU can speed 

up the algorithm. Uploading the pre-operative images to GPU memory prior to 

computation can reduce the communication time.    
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The following images show registration of Brian MRI scans using free form 

deformation with and without GPU.  

 

 

 

 

 

 

Figure 5.10 –Brain MRI registration 

Image 1   Image 2   Difference            

    Follow-up  

Non-rigid registration         Difference of images

    

Non-rigid registration with GPU         Difference of images 
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The images below indicate registration of abdominal CT scans using free form 

deformation with and without GPU.  

 

 

 

 

 

 

 

Figure 5.11 –Abdominal CT registration 

Image 1    Image 2    Difference 

Follow-up 

Non-rigid registration                                  Difference of images 

Non-rigid registration with GPU  Difference of images 
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5.3.1.2 GPU based segmentation 

 Thresholding and canny edge segmentations were transferred to the GPU for 

parallel computation using Open Source Computer Vision (OpenCV) [70]. The image 

mask was also constructed during this step. Thresholding is embarrassingly parallel since 

each pixel can be processed independently of others and there is no need for 

synchronization [23]. The number of threads is equal to the number of pixels and memory 

is only needed to store the segmentation result. For example, for single threshold T, the 

algorithm for kernel:  

if   image ( threadIdx, threadIdy) ≥ T then 

      result (threadIdx, threadIdy) ← 1 

else 

      result (threadIdx, threadIdy) ← 0 

end if 

For canny edge detection, Gaussian filtering, non-maximum suppression and 

hysteresis thresholding are performed in parallel for individual pixels. During Gaussian 

filtering the image is divided into subimages and after parallel computation the final 

gradient strength and direction are stored in memory. Non-maximum suppression uses 

these values to find the pixels (threads) that are local maximum and are stored in memory 

to be used as edge pixels. For hysteresis thresholding, each pixel in a subimage is processed 

to check whether a pixel is a strong edge pixel. If not, the thread pushes them to a stack 
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and the same operation is performed on each pixel. This step will continue until the stack 

becomes empty [63].  This process is shown in figure: 

 
Figure 5.12 – Hysteresis thresholding [11] 

The table below indicates segmentation time on CPU and GPU for different image sizes: 

Table 5.3-  Segmentation on CPU vs GPU 

 

 

 

 

 

 

 

Segmentation  640x480 1920x1080 

CPU  3ms 22ms 

GPU 3ms 14ms 
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Figure 5.13 shows run-time for HD images time of various algorithm of interest to 

the surgeon in CUDA. As shown in the figure some algorithms have slower frame rates. 

To achieve a higher frame rate, we can enable GPU compression or image resizing to 

reduce image resolution prior to the operation.  

 

 

 
Figure 5.13 – GPU run-time of image processing algorithms 

 

Different applications that benefit from image compression include: medical 

imaging, remote sensing, televideo conferencing, flash memory and disk storage [23]. For 

example the amount of data in a 30 frame per second (fps) HD movie (1920 x 1080 x 3byte) 

is equal to:  

 

30  
𝑓𝑟𝑎𝑚𝑒𝑠

𝑠𝑒𝑐𝑜𝑛𝑑
 x (1920 x 1080) 

𝑝𝑖𝑥𝑒𝑙𝑠

𝑓𝑟𝑎𝑚𝑒
 x ( 3 x 8)  

𝑏𝑖𝑡𝑠

𝑝𝑖𝑥𝑒𝑙
 = 1492992000 

𝑏𝑖𝑡𝑠

𝑠𝑒𝑐𝑜𝑛𝑑
 = 1.49 Gb/s (

𝑔𝑖𝑔𝑎𝑏𝑖𝑡𝑠

𝑠𝑒𝑐𝑜𝑛𝑑
) 
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Three types of data redundancies for two dimensional intensity arrays include: coding 

redundancy, spatial and temporal redundancy, and irrelevant information. Reducing or 

eliminating one or more redundancy factors will compress images. The image compression 

steps include:  

 

 
Figure 5.14 – Image compression 

 

In [64] authors discuss parallel processing of image compression. This method can be used 

to reduce compression time and as a result speed up transmission and image processing. 

We measured the time that is required time to compress images. In order to reduce and 

resize to original resolution using GPUs took only 0.8msec. Furthermore if required, we 

can also enable compression of images, allowing 1.3msec to perform compression and 

decompression to achieve a higher frame rate. Figure 5.15 shows the performance of these 

algorithms. As seen in the figure certain algorithms such as bilateral filtering, mean-shift 

segmentation can achieve strong-scaling gain. However other operations require reduction 

in image size does not improve the performance. 
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Figure 5.15 – GPU Run-time for varying image sizes 

5.4 Conclusions 
 

Processing of live high definition laparoscopic data with medical images requires 

more computational and storage capability than is possible on a single workstation. More 

advanced visualizations and processing may require new or improved rendering techniques 

more suited to a high-performance computing environment. Therefore, the ability to 

optimize the data transmission to take advantage of the specialized processing and 

rendering techniques at multiple endpoints is the key to allowing for rendering and 

processing as a service and also providing optimal data. Through the use of high-speed 

access to a high-performance computing resource, we believe that it will be possible to 

update models and allow for real-time modification of the previously generated object map, 

based on current surgical data. 
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We present a framework that enables reliable and secure processing of terabytes of 

information to aid in laparoscopic surgery using GPUs. The output of our framework is an 

overlay that can be enabled or disabled by the surgeon at the surgical console. Furthermore, 

our framework enables replication to prevent failure and allow for scalability for additional 

operations/algorithms. We plan to perform our segmentation algorithm for the laparoscopy 

video on the local multicore processors computer and compare the results with the 

algorithm running on HPC cluster. Through the development of a direct connection we 

hope to achieve more direct control over of the transmission of data as well as be able to 

develop a communication system between clients and computing nodes to perform real-

time medical image processing. 
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Chapter 6 

MPI-CUDA IMPLEMENTATION FOR REAL-

TIME MEDICAL IMAGE PROCESSING 
 

6.1 Introduction  
 

Image-guided surgery (IGS) can provide surgeons with additional information 

during minimally invasive surgical procedures. The benefit of small incisions has a 

disadvantage of limited visualization of subsurface tissues. Accurate and real-time 

segmentation of pre-operative or intra-operative medical images as well as registration with 

laparoscopic video can provide surgeons with visualization of subsurface structures. Real-

time processing of images using different algorithms will enable development of individual 

methods for specific surgeries and medical images. 

I developed three separate applications that run simultaneously. These parts include 

video acquisition (video client), video display (video server), and image processing (video 

server palmetto). We used a high performance-computing (HPC) environment (Clemson’s 

Palmetto cluster) to develop and run our applications in parallel. The image processing 

application runs on Palmetto’s nodes for parallel processing, which contain dual Nvidia 

Tesla K40 graphics processing units (GPUs). Our setup allows nodes to communicate and 

transfer images through message passing interface (MPI). This will allow several image 

processing algorithms to run faster and simultaneously. We tested different setup and 

number of nodes to compared performance of our framework. Our computing framework 
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will also enable reliability using replication of computation. Utilizing high-speed network 

to access computing clusters with GPUs will improve surgical procedures by providing 

real-time medical image processing and laparoscopic data. 

6.2 Methods 
 

6.2.1 Message Passing Interface  

Message passing Interface (MPI) is a language independent communications 

library that allows message exchange between processes and can be used for a variety of 

languages or compilers. MPI enables high performance, scalability and portability for 

different applications. It can be implemented on parallel computers, clusters and 

heterogeneous systems. MPI execution is achieved through process identification, message 

routing, message buffering and data marshaling [56]. MPI transfers data from sender to 

receiver through synchronization. MPI provides a selection of send and receive primitives 

to select based on the programmer’s application. For example the syntax of MPI_Send is: 

 

int MPI_Send( void   *buf,   //Address of the send buffer 

 int   count,  //Number of items in message 

 MPI_Datatype datatype, //Type of data being 

communicated 

 int   dest,  //Destination process rank 

 int   tag,  //Type of message 

 MPI_Comm  comm  //Communicator context of 

‘dest’ 

) 

 

  

On the receiving side, MPI_Recv is used that mirrors the syntax of MPI_Send but also 

includes MPI_Status structure pointer. The syntax of MPI_Recv:  



 83 

 

int MPI_Recv( void   *buf,   //Address of the receive buffer 

 int   count,  //Buffer capacity in items 

 MPI_Datatype datatype, //Type of data being 

communicated 

 int   source,  //Rank of sending process 

 int   tag,  //Type of message 

 MPI_Comm  comm  //Communicator context of 

‘source’ 

 MPI_Status  *status  //Pointer to structure holding 

    //message parameters       

) 

 MPI_Send and MPI_Recv are point-to-point and use blocking communication, they 

block operations until message is delivered. MPI_Send does not return until buffer is empty 

and available for reuse, and MPI_Recv does not return until buffer is full and available for 

use. Blocking communication is simple to use but is prone to deadlocks. However, 

MPI_Isend and MPI_Irecv use non-blocking communication that return immediately and 

allow overlapping computation and communication. MPI also allows collective 

communication for operations that involve more than two nodes. For example MPI_Bcast 

or MPI_Scatter can be used to send messages to a subset of processes and on the receiving 

side an operation such as MPI_Gather or MPI_Reduce is used to collect data from all the 

processes. They can also be used to send or receive a message to a subset of processes by 

creating a custom communicator [56]. We have tested MPI_Send and MPI_Isend in our 

application. MPI_Bcast will be tested in future applications based on the number of 

algorithms and available nodes.  
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6.2.2 MPI and CUDA 

 We investigated a MPI approach with CUDA on a HPC GPU cluster (Palmetto). 

MPI and CUDA can be used to control multiple hosts and more GPUs. MPI can transfer 

data between host buffers using two different approaches. If MPI is not CUDA-aware, data 

will be transferred from device to host before the MPI call. For MPI CUDA-aware, device 

buffers can be accessed directly through pointers to device memory in MPI calls [56]. This 

can be done through GPUDirect to reduce dependence on CPU for managing transfers.  

6.3 Results and Discussion 
 

6.3.1 MPI and CUDA 
 

The following graphs show matrix vector multiplication using MPI. Matrix sizes 

for our testing include: 128, 256, 2048 and 4096. Graph 1 indicates  

 

 

 
Figure 6.1 – MPI/CUDA block size 2 
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Graph 1 uses block size of 2 for GPU implementation. The results indicate that the 

total time for 128, 256 and 2048 stays flat and around the same number, therefore is 

scalable and with increasing the number of nodes results will stay the same. Graph 2 uses 

block size of 16 for the GPU implementation. The total time for different size matrices are 

less than Graph 1 and faster processing time.  

 
Figure 6.2 – MPI/CUDA block size 16 

 

In order to determine the optimal way to process our images we needed to 

determine programming and hardware architecture. The algorithms that were used have 

different computation and memory utilization characteristics. The complete execution time 

was profiled using Nvidia’s visual profiler (“nvvp”). The varying communication and 

computation time were measured to determine the optimal configuration of the algorithms. 

Based on this configuration, the most efficient architecture and node configuration can be 

determined.  
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We implemented our image processing algorithms using CUDA/MPI on Palmetto 

cluster. We performed video segmentation as well as registration of the pre-operative 

images to the video. The algorithms were executed simultaneously on varying amounts of 

nodes to process the images received from the laparoscopic camera. The following graph 

shows MPI ranks and connections: 

 
Figure 6.3 – MPI and CUDA on Palmetto 

 

We have tested one or two MPI ranks per node. For two ranks, two algorithms were 

performed with each applied on an individual GPU. The table below indicates total run-

time depending on the number of nodes:  
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Table 6.1-MPI/CUDA 

# of Nodes 1 2 

Time (CPU) 3ms 4ms 

Time (CPU) HD 23ms 29ms 

Time (GPU) 3ms 4ms 

Time (GPU) HD 11ms 16ms 
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Chapter 7 

CONCLUSIONS AND FUTURE WORK 
 

We have implemented and compared performance of compression, segmentation 

and registration algorithms on Clemson’s Palmetto supercomputer using dual Nvidia Tesla 

K40 GPUs per node and CUDA 7.5 enabled with Intel Xeon-E5 CPUs. We developed three 

separate applications that run simultaneously: video acquisition (video client), video 

display (video server), and image processing (video server palmetto).   

We transferred and compared transmission time of medical images and video using 

different network protocols. These protocols include SFTP, UDP, TCP and SOS. SFTP 

runs over TCP, which uses acknowledgements and retransmission to prevent packet loss 

and causes delays, the encryption step is also a limiting factor. UDP is faster than TCP, 

since there is no acknowledgment mechanism. The UDP tests resulted in a lower round-

trip time and no packet loss due to availability of high bandwidth. However, UDP and TCP 

have a packet size limit of 64 KB and HD or larger files have to get reassembled before 

processing. SOS runs on TCP and enabled transfer of larger files. The performance can be 

tuned to the environment and the quantity of parallel connections to utilize, agent buffer 

sizes, and queuing for lost/out of order data can be customized. 

The image processing application was tested on the cluster to compare 

segmentation, rigid and non-rigid registration on CPU and GPU for different size images: 

640 x 480 and 1920 x 1080. The segmentation algorithms resulted in an acceleration factor 
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of ~ 2 times compared to the CPU implementation. Registration is computationally more 

expensive than the segmentation algorithms, therefore higher performance and speed up 

was observed. Non-rigid registration was performed ~2 times faster for 640 x 480 images 

and ~ 9 times for HD images. To achieve a higher frame rate, we also resized images and 

reduced the overall processing time. We observed that algorithms such as bilateral filtering 

and mean-shift segmentation can achieve strong-scaling gain and for operations such as 

canny edge detection the improvement was not significant.  

We also implemented and executed the algorithms mentioned above to run 

simultaneously on different cluster nodes instead of sequential on a single node. The nodes 

communicate and transfer images through message passing interface (MPI) and CUDA 

was used for parallel implementation on GPUs. As a result, MPI-CUDA was used to 

control multiple hosts and perform GPU algorithms and it enabled reliability using 

replication of computation. 

In conclusion, previously generated images and videos were transferred to the 

cluster and processed for adaption and deformation. This could lead to the ability of 

performing surgery at one site (origin), receive an object map from another site 

(segmentation/rendering), forward this data to a third site for deformation (model update), 

and returning this data to the origin for display. As a result, utilizing high-speed network 

to access computing clusters with GPUs will improve surgical procedures by providing 

real-time medical image processing and laparoscopic data. 
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 Future research can investigate and perform the image processing tests using 

GPUDirect peer-to-peer for the GPUs on the same node and GPUDirect-RDMA for the 

GPUs on different nodes. This will enable CUDA-aware MPI for further optimization. The 

tests can also be performed using CloudLab [65] to transfer the files between Clemson and 

Wisconsin and enable SDN to measure the overall time of the framework. The video feed 

can be augmented at the remote site (Wisconsin) with the inclusion of an overlay and 

rendered in a “real-time” manor.  SOS can securely transfer the files to remote HPC clusters 

utilizing an OpenFlow-based network service and increase performance of large data 

transfers over long-distance and high bandwidth networks.  

The system accuracy can be tested using phantoms and mock surgical experiments. 

These phantoms can be constructed using plastics, rubbers or natural materials. A tissue 

analog will have some or all properties of the specified tissue such as compressibility, 

strength, imaging properties and diffusion characteristics. Polyvinyl alcohol (PVA) gels 

have been used as phantoms for MR and ultrasound imaging [66] and a sharp object, 

scalpel, can apply a high strain force to cut the tissue [67]. Measurement of the resection 

ratio can be used as a metric for quality of resection. The location, size and depth of the 

cavity can be calculated by subtracting the difference between image intensities of pre-

operative and post-operative images. These tests could indicate whether the clinician can 

resect the tumor region with equal or better accuracy when compared to augmented video 

without high performance computing cluster.  
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APPENDICES 
 

A: Example for UDP socket testing 
  

 /* connect to viewer */ 

  if((sock_view = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP)) == -1) 

    die("socket()"); 

 

  struct hostent *view_host = gethostbyname(argv[1]); 

  struct in_addr  view_addr; 

  view_addr.s_addr = *(unsigned long *)view_host->h_addr_list[0]; 

  memset((char *)&si_view, 0, sizeof(si_view)); 

  si_view.sin_family = AF_INET; 

  si_view.sin_port = htons(atoi(argv[2])); 

  if(inet_aton(inet_ntoa(view_addr), &si_view.sin_addr) == 0) 

    die("inet_aton\n"); 
  

/* listen to camera */ 

  if((sock_camera = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP)) == -1) { 

    die("socket()"); 

  } 

  memset((char *)&si_me, 0, sizeof(si_me)); 

  si_me.sin_family = AF_INET; 

  si_me.sin_port = htons(PORT); 

  si_me.sin_addr.s_addr = htonl(INADDR_ANY); 

  bind(sock_camera, &si_me, sizeof(si_me)); 

 

  printf("augmenter listening on %s:%d\n", self, PORT); 

 

  for(;;) { 

    if(recvfrom(sock_camera, f, fsz, 0, &si_camera, &slen) == -1) 

      die("recv()"); 

      fsz = frame_size(f);  /* get actual frame size */ 

      if(f->frameNo % 1000 == 0) { 

        printf("recieved from %s:%d; frame %05lu (%lu bytes)\n", 

               inet_ntoa(si_camera.sin_addr), 

ntohs(si_camera.sin_port), 

               f->frameNo, fsz); 

      } 

      if(sendto(sock_view, f, fsz, 0, &si_view, slen) == -1) 

        die("send()\n"); 

  } 
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       B: Thresholding 
 

        split(img.mat, planes); // Partition image into three channel planes 

        blue = planes[0]; 

        green = planes[1]; 

        red = planes[2]; 

        threshold(red, dst, threshold_value, max_BINARY_value, threshold_type); 

        findContours(dst, contours, hierarchy,CV_RETR_CCOMP, 

CV_CHAIN_APPROX_SIMPLE); 

 

        int largest_area = 0; 

        int largest_contour_index = 0; 

        for (size_t i = 0; i< contours.size(); i++) // iterate through each contour.  

        { 

                double a = contourArea(contours[i], false);  //  Find the area of contour 

                if (a>largest_area){ 

                        largest_area = a; 

                        largest_contour_index = i;                //Store the index of largest contour 

Scalar color(rand() & 255, rand() & 255, rand() & 255); 

                Scalar colorcode = Scalar(0, 0, 0); 

                Mat dsts(dst.rows, dst.cols, CV_8UC1, colorcode); 

                drawContours(dsts, contours, largest_contour_index, color, CV_FILLED, 8, 

hierarchy); 

 

                Mat imageROI; 

                img.mat.copyTo(imageROI, dsts); contours 

                 

                frame overlay; 

                beta = (1.0 - alpha); 

                addWeighted(img.mat, alpha, imageROI, beta, 0.0, overlay.mat); 

 

       frame overlays; 

                cvtColor(img.mat, gray, CV_BGR2GRAY); 

 

                Canny(gray, edge, 50, 150, 3); 

                edge.convertTo(overlays.mat, CV_8U); 

 

                frame adds; 

                overlay.mat.copyTo(adds.mat, overlays.mat); 

                frame finals; 

                finals.timestamp = img.timestamp; 

                add(overlay.mat, adds.mat, finals.mat); 
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