1,095 research outputs found

    Fast catheter segmentation from echocardiographic sequences based on segmentation from corresponding X-ray fluoroscopy for cardiac catheterization interventions

    Get PDF
    © 2014 IEEE. Echocardiography is a potential alternative to X-ray fluoroscopy in cardiac catheterization given its richness in soft tissue information and its lack of ionizing radiation. However, its small field of view and acoustic artifacts make direct automatic segmentation of the catheters very challenging. In this study, a fast catheter segmentation framework for echocardiographic imaging guided by the segmentation of corresponding X-ray fluoroscopic imaging is proposed. The complete framework consists of: 1) catheter initialization in the first X-ray frame; 2) catheter tracking in the rest of the X-ray sequence; 3) fast registration of corresponding X-ray and ultrasound frames; and 4) catheter segmentation in ultrasound images guided by the results of both X-ray tracking and fast registration. The main contributions include: 1) a Kalman filter-based growing strategy with more clinical data evalution; 2) a SURF detector applied in a constrained search space for catheter segmentation in ultrasound images; 3) a two layer hierarchical graph model to integrate and smooth catheter fragments into a complete catheter; and 4) the integration of these components into a system for clinical applications. This framework is evaluated on five sequences of porcine data and four sequences of patient data comprising more than 3000 X-ray frames and more than 1000 ultrasound frames. The results show that our algorithm is able to track the catheter in ultrasound images at 1.3 s per frame, with an error of less than 2 mm. However, although this may satisfy the accuracy for visualization purposes and is also fast, the algorithm still needs to be further accelerated for real-time clinical applications

    Fast catheter segmentation and tracking based on x-ray fluoroscopic and echocardiographic modalities for catheter-based cardiac minimally invasive interventions

    Get PDF
    X-ray fluoroscopy and echocardiography imaging (ultrasound, US) are two imaging modalities that are widely used in cardiac catheterization. For these modalities, a fast, accurate and stable algorithm for the detection and tracking of catheters is required to allow clinicians to observe the catheter location in real-time. Currently X-ray fluoroscopy is routinely used as the standard modality in catheter ablation interventions. However, it lacks the ability to visualize soft tissue and uses harmful radiation. US does not have these limitations but often contains acoustic artifacts and has a small field of view. These make the detection and tracking of the catheter in US very challenging. The first contribution in this thesis is a framework which combines Kalman filter and discrete optimization for multiple catheter segmentation and tracking in X-ray images. Kalman filter is used to identify the whole catheter from a single point detected on the catheter in the first frame of a sequence of x-ray images. An energy-based formulation is developed that can be used to track the catheters in the following frames. We also propose a discrete optimization for minimizing the energy function in each frame of the X-ray image sequence. Our approach is robust to tangential motion of the catheter and combines the tubular and salient feature measurements into a single robust and efficient framework. The second contribution is an algorithm for catheter extraction in 3D ultrasound images based on (a) the registration between the X-ray and ultrasound images and (b) the segmentation of the catheter in X-ray images. The search space for the catheter extraction in the ultrasound images is constrained to lie on or close to a curved surface in the ultrasound volume. The curved surface corresponds to the back-projection of the extracted catheter from the X-ray image to the ultrasound volume. Blob-like features are detected in the US images and organized in a graphical model. The extracted catheter is modelled as the optimal path in this graphical model. Both contributions allow the use of ultrasound imaging for the improved visualization of soft tissue. However, X-ray imaging is still required for each ultrasound frame and the amount of X-ray exposure has not been reduced. The final contribution in this thesis is a system that can track the catheter in ultrasound volumes automatically without the need for X-ray imaging during the tracking. Instead X-ray imaging is only required for the system initialization and for recovery from tracking failures. This allows a significant reduction in the amount of X-ray exposure for patient and clinicians.Open Acces

    Fully Automatic and Real-Time Catheter Segmentation in X-Ray Fluoroscopy

    Full text link
    Augmenting X-ray imaging with 3D roadmap to improve guidance is a common strategy. Such approaches benefit from automated analysis of the X-ray images, such as the automatic detection and tracking of instruments. In this paper, we propose a real-time method to segment the catheter and guidewire in 2D X-ray fluoroscopic sequences. The method is based on deep convolutional neural networks. The network takes as input the current image and the three previous ones, and segments the catheter and guidewire in the current image. Subsequently, a centerline model of the catheter is constructed from the segmented image. A small set of annotated data combined with data augmentation is used to train the network. We trained the method on images from 182 X-ray sequences from 23 different interventions. On a testing set with images of 55 X-ray sequences from 5 other interventions, a median centerline distance error of 0.2 mm and a median tip distance error of 0.9 mm was obtained. The segmentation of the instruments in 2D X-ray sequences is performed in a real-time fully-automatic manner.Comment: Accepted to MICCAI 201

    Hemodynamic mechanisms of experimental and clinical heart failure: a translational perspective

    Get PDF
    Main focus of this dissertation is the investigation and further characterization of invasive and non-invasive indices of LV function and cardiovascular hemodynamics both in preclinical (Sus scrofa) as well as clinical HF. Following topics were addressed in the current work: 1. The correlation between LV CPO, as clinically relevant index of external LV work, and the conductance catheter-derived LV SW over a wide range of contractility states in experimental acute heart failure in Landrace pigs. 2. The reproducibility and reference values of global LV strain indices assessed via a novel CMR-FT analysis under various inotropic states in Landrace pigs. 3. The impact of indexing CMR-derived LV strain parameters for indirect measures of afterload on their correlation with invasive hemodynamic indices in experimental acute heart failure in Landrace pigs. 4. The impact on LV contractility of a novel, inhalable, cardiac-specific nanocarrier delivering a LTCC-modulating peptide in experimental CHF in mice and Landrace pigs. 5. The assessment of LV hemodynamics with non-invasive and invasive techniques for a structured weaning of CS patients undergoing MVS with the Impella device

    Continuous roadmapping in liver TACE procedures using 2D–3D catheter-based registration

    Get PDF
    PURPOSE: Fusion of pre/perioperative images and intra-operative images may add relevant information during image-guided procedures. In abdominal procedures, respiratory motion changes the position of organs, and thus accurate image guidance requires a continuous update of the spatial alignment of the (pre/perioperative) information with the organ position during the intervention. METHODS: In this paper, we propose a method to register in real time perioperative 3D rotational angiography images (3DRA) to intra-operative single-plane 2D fluoroscopic images for improved guidance in TACE interventions. The method uses the shape of 3D vessels extracted from the 3DRA and the 2D catheter shape extracted from fluoroscopy. First, the appropriate 3D vessel is selected from the complete vascular tree using a shape similarity metric. Subsequently, the catheter is registered to this vessel, and the 3DRA is visualized based on the registration results. The method is evaluated on simulated data and clinical data. RESULTS: The first selected vessel, ranked with the shape similarity metric, is used more than 39 % in the final registration and the second more than 21 %. The median of the closest corresponding points distance between 2D angiography vessels and projected 3D vessels is 4.7–5.4 mm when using the brute force optimizer and 5.2–6.6 mm when using the Powell optimizer. CONCLUSION: We present a catheter-based registration method to continuously fuse a 3DRA roadmap arterial tree onto 2D fluoroscopic images with an efficient shape similarity

    Assessment and management of structural heart disease in an ageing population.

    Full text link
    Structural heart disease interventions represent a rapidly evolving branch of percutaneous treatments to correct valvular lesions that were previously treated surgically, or simply not addressed. In the past decade, the therapeutic landscape for patients with degenerative aortic valve stenosis (AS) and secondary mitral regurgitation (MR) has changed dramatically. As transcatheter innovations continue to develop, cardiac physiologists and clinicians alike are challenged by the need to more accurately discriminate between those who will benefit from intervention, and those who will not. Interpreting valvular function in the setting of impaired contractile performance and/or poor arterial compliance is especially difficult. Hemodynamic loading conditions in these settings are often unique, and not adequately accounted for using traditional cardiac imaging techniques. Load independent assessment of contractile function requires the simultaneous measurement of left ventricular (LV) pressure, volume and flow in order to determine the relationship between these parameters at various points in the cardiac cycle. Our work incorporates advances in cardiac magnetic resonance and echocardiography imaging techniques to allow better non-invasive assessment of ventricular mechanics and ventricular-vascular interactions in response to structural aortic and mitral valve interventions. We have devised precise and accurate non-invasive tools to quantify LV and aortic pressure, LV volume and aortic flow, and have coalesced this data to determine the LV pressure-volume and aortic pressure-flow relationships in patients with degenerative AS and secondary MR. It is our intention that the development of high-quality non-invasive data on ventricular contractility and ventricular-vascular coupling, will provide a better platform to evaluate cardiovascular performance in those with valvular heart disease

    Indications for cardiovascular magnetic resonance in children with congenital and acquired heart disease: an expert consensus paper of the Imaging Working Group of the AEPC and the Cardiovascular Magnetic Resonance Section of the EACVI

    Get PDF
    This article provides expert opinion on the use of cardiovascular magnetic resonance (CMR) in young patients with congenital heart disease (CHD) and in specific clinical situations. As peculiar challenges apply to imaging children, paediatric aspects are repeatedly discussed. The first section of the paper addresses settings and techniques, including the basic sequences used in paediatric CMR, safety, and sedation. In the second section, the indication, application, and clinical relevance of CMR in the most frequent CHD are discussed in detail. In the current era of multimodality imaging, the strengths of CMR are compared with other imaging modalities. At the end of each chapter, a brief summary with expert consensus key points is provided. The recommendations provided are strongly clinically oriented. The paper addresses not only imagers performing CMR, but also clinical cardiologists who want to know which information can be obtained by CMR and how to integrate it in clinical decision-makin
    • …
    corecore