1,387 research outputs found

    Computer Generated Holograms of 3D Points Cloud

    Get PDF
    Computer generated holography is a method of using numerical methods to simulate the physical processes underlying a real hologram’s optical recording and reconstruction i.e. the method of digitally generating holographic interference patterns. As such, it represents substantial progress compared to classical holography. A major disadvantage of this approach is the absence of specialized software tools for computer generated holograms and extremely high computer resource consumption, resulting in an excessive computing time. The goal of this paper is to create a physically plausible computer model for generating holograms, with a large potential for calculation optimization and acceleration, as well as the integration of this model into simple hologram creation software. We made software that simulates wave optics using previously known physical model to generate a hologram with the possibility of connection with commercial 3D tools via .obj documents. Considering that there is a problem of high computing resources consumption and time we have incorporated in our software the possibility of a parallel calculation for the purpose of testing, further software development and customization to optimize the computer generation of holograms

    Man-made Surface Structures from Triangulated Point Clouds

    Get PDF
    Photogrammetry aims at reconstructing shape and dimensions of objects captured with cameras, 3D laser scanners or other spatial acquisition systems. While many acquisition techniques deliver triangulated point clouds with millions of vertices within seconds, the interpretation is usually left to the user. Especially when reconstructing man-made objects, one is interested in the underlying surface structure, which is not inherently present in the data. This includes the geometric shape of the object, e.g. cubical or cylindrical, as well as corresponding surface parameters, e.g. width, height and radius. Applications are manifold and range from industrial production control to architectural on-site measurements to large-scale city models. The goal of this thesis is to automatically derive such surface structures from triangulated 3D point clouds of man-made objects. They are defined as a compound of planar or curved geometric primitives. Model knowledge about typical primitives and relations between adjacent pairs of them should affect the reconstruction positively. After formulating a parametrized model for man-made surface structures, we develop a reconstruction framework with three processing steps: During a fast pre-segmentation exploiting local surface properties we divide the given surface mesh into planar regions. Making use of a model selection scheme based on minimizing the description length, this surface segmentation is free of control parameters and automatically yields an optimal number of segments. A subsequent refinement introduces a set of planar or curved geometric primitives and hierarchically merges adjacent regions based on their joint description length. A global classification and constraint parameter estimation combines the data-driven segmentation with high-level model knowledge. Therefore, we represent the surface structure with a graphical model and formulate factors based on likelihood as well as prior knowledge about parameter distributions and class probabilities. We infer the most probable setting of surface and relation classes with belief propagation and estimate an optimal surface parametrization with constraints induced by inter-regional relations. The process is specifically designed to work on noisy data with outliers and a few exceptional freeform regions not describable with geometric primitives. It yields full 3D surface structures with watertightly connected surface primitives of different types. The performance of the proposed framework is experimentally evaluated on various data sets. On small synthetically generated meshes we analyze the accuracy of the estimated surface parameters, the sensitivity w.r.t. various properties of the input data and w.r.t. model assumptions as well as the computational complexity. Additionally we demonstrate the flexibility w.r.t. different acquisition techniques on real data sets. The proposed method turns out to be accurate, reasonably fast and little sensitive to defects in the data or imprecise model assumptions.Künstliche Oberflächenstrukturen aus triangulierten Punktwolken Ein Ziel der Photogrammetrie ist die Rekonstruktion der Form und Größe von Objekten, die mit Kameras, 3D-Laserscannern und anderern räumlichen Erfassungssystemen aufgenommen wurden. Während viele Aufnahmetechniken innerhalb von Sekunden triangulierte Punktwolken mit Millionen von Punkten liefern, ist deren Interpretation gewöhnlicherweise dem Nutzer überlassen. Besonders bei der Rekonstruktion künstlicher Objekte (i.S.v. engl. man-made = „von Menschenhand gemacht“ ist man an der zugrunde liegenden Oberflächenstruktur interessiert, welche nicht inhärent in den Daten enthalten ist. Diese umfasst die geometrische Form des Objekts, z.B. quaderförmig oder zylindrisch, als auch die zugehörigen Oberflächenparameter, z.B. Breite, Höhe oder Radius. Die Anwendungen sind vielfältig und reichen von industriellen Fertigungskontrollen über architektonische Raumaufmaße bis hin zu großmaßstäbigen Stadtmodellen. Das Ziel dieser Arbeit ist es, solche Oberflächenstrukturen automatisch aus triangulierten Punktwolken von künstlichen Objekten abzuleiten. Sie sind definiert als ein Verbund ebener und gekrümmter geometrischer Primitive. Modellwissen über typische Primitive und Relationen zwischen Paaren von ihnen soll die Rekonstruktion positiv beeinflussen. Nachdem wir ein parametrisiertes Modell für künstliche Oberflächenstrukturen formuliert haben, entwickeln wir ein Rekonstruktionsverfahren mit drei Verarbeitungsschritten: Im Rahmen einer schnellen Vorsegmentierung, die lokale Oberflächeneigenschaften berücksichtigt, teilen wir die gegebene vermaschte Oberfläche in ebene Regionen. Unter Verwendung eines Schemas zur Modellauswahl, das auf der Minimierung der Beschreibungslänge beruht, ist diese Oberflächensegmentierung unabhängig von Kontrollparametern und liefert automatisch eine optimale Anzahl an Regionen. Eine anschließende Verbesserung führt eine Menge von ebenen und gekrümmten geometrischen Primitiven ein und fusioniert benachbarte Regionen hierarchisch basierend auf ihrer gemeinsamen Beschreibungslänge. Eine globale Klassifikation und bedingte Parameterschätzung verbindet die datengetriebene Segmentierung mit hochrangigem Modellwissen. Dazu stellen wir die Oberflächenstruktur in Form eines graphischen Modells dar und formulieren Faktoren basierend auf der Likelihood sowie auf apriori Wissen über die Parameterverteilungen und Klassenwahrscheinlichkeiten. Wir leiten die wahrscheinlichste Konfiguration von Flächen- und Relationsklassen mit Hilfe von Belief-Propagation ab und schätzen eine optimale Oberflächenparametrisierung mit Bedingungen, die durch die Relationen zwischen benachbarten Primitiven induziert werden. Der Prozess ist eigens für verrauschte Daten mit Ausreißern und wenigen Ausnahmeregionen konzipiert, die nicht durch geometrische Primitive beschreibbar sind. Er liefert wasserdichte 3D-Oberflächenstrukturen mit Oberflächenprimitiven verschiedener Art. Die Leistungsfähigkeit des vorgestellten Verfahrens wird an verschiedenen Datensätzen experimentell evaluiert. Auf kleinen, synthetisch generierten Oberflächen untersuchen wir die Genauigkeit der geschätzten Oberflächenparameter, die Sensitivität bzgl. verschiedener Eigenschaften der Eingangsdaten und bzgl. Modellannahmen sowie die Rechenkomplexität. Außerdem demonstrieren wir die Flexibilität bzgl. verschiedener Aufnahmetechniken anhand realer Datensätze. Das vorgestellte Rekonstruktionsverfahren erweist sich als genau, hinreichend schnell und wenig anfällig für Defekte in den Daten oder falsche Modellannahmen

    CaSPR: Learning Canonical Spatiotemporal Point Cloud Representations

    Full text link
    We propose CaSPR, a method to learn object-centric Canonical Spatiotemporal Point Cloud Representations of dynamically moving or evolving objects. Our goal is to enable information aggregation over time and the interrogation of object state at any spatiotemporal neighborhood in the past, observed or not. Different from previous work, CaSPR learns representations that support spacetime continuity, are robust to variable and irregularly spacetime-sampled point clouds, and generalize to unseen object instances. Our approach divides the problem into two subtasks. First, we explicitly encode time by mapping an input point cloud sequence to a spatiotemporally-canonicalized object space. We then leverage this canonicalization to learn a spatiotemporal latent representation using neural ordinary differential equations and a generative model of dynamically evolving shapes using continuous normalizing flows. We demonstrate the effectiveness of our method on several applications including shape reconstruction, camera pose estimation, continuous spatiotemporal sequence reconstruction, and correspondence estimation from irregularly or intermittently sampled observations.Comment: NeurIPS 202

    Geometric Structure Extraction and Reconstruction

    Get PDF
    Geometric structure extraction and reconstruction is a long-standing problem in research communities including computer graphics, computer vision, and machine learning. Within different communities, it can be interpreted as different subproblems such as skeleton extraction from the point cloud, surface reconstruction from multi-view images, or manifold learning from high dimensional data. All these subproblems are building blocks of many modern applications, such as scene reconstruction for AR/VR, object recognition for robotic vision and structural analysis for big data. Despite its importance, the extraction and reconstruction of a geometric structure from real-world data are ill-posed, where the main challenges lie in the incompleteness, noise, and inconsistency of the raw input data. To address these challenges, three studies are conducted in this thesis: i) a new point set representation for shape completion, ii) a structure-aware data consolidation method, and iii) a data-driven deep learning technique for multi-view consistency. In addition to theoretical contributions, the algorithms we proposed significantly improve the performance of several state-of-the-art geometric structure extraction and reconstruction approaches, validated by extensive experimental results

    Heliospheric Evolution of Magnetic Clouds

    Full text link
    Interplanetary evolution of eleven magnetic clouds (MCs) recorded by at least two radially aligned spacecraft is studied. The in situ magnetic field measurements are fitted to a cylindrically symmetric Gold-Hoyle force-free uniform-twist flux-rope configuration. The analysis reveals that in a statistical sense the expansion of studied MCs is compatible with self-similar behavior. However, individual events expose a large scatter of expansion rates, ranging from very weak to very strong expansion. Individually, only four events show an expansion rate compatible with the isotropic self-similar expansion. The results indicate that the expansion has to be much stronger when MCs are still close to the Sun than in the studied 0.47 - 4.8 AU distance range. The evolution of the magnetic field strength shows a large deviation from the behavior expected for the case of an isotropic self-similar expansion. In the statistical sense, as well as in most of the individual events, the inferred magnetic field decreases much slower than expected. Only three events show a behavior compatible with a self-similar expansion. There is also a discrepancy between the magnetic field decrease and the increase of the MC size, indicating that magnetic reconnection and geometrical deformations play a significant role in the MC evolution. About half of the events show a decay of the electric current as expected for the self-similar expansion. Statistically, the inferred axial magnetic flux is broadly consistent with it remaining constant. However, events characterized by large magnetic flux show a clear tendency of decreasing flux.Comment: 64 pages, 10 figure

    Towards accurate multi-person pose estimation in the wild

    Get PDF
    In this thesis we are concerned with the problem of articulated human pose estimation and pose tracking in images and video sequences. Human pose estimation is a task of localising major joints of a human skeleton in natural images and is one of the most important visual recognition tasks in the scenes containing humans with numerous applications in robotics, virtual and augmented reality, gaming and healthcare among others. Articulated human pose tracking requires tracking multiple persons in the video sequence while simultaneously estimating full body poses. This task is important for analysing surveillance footage, activity recognition, sports analytics, etc. Most of the prior work focused on the pose estimation of single pre-localised humans whereas here we address a case with multiple people in real world images which entails several challenges such as person-person overlaps in highly crowded scenes, unknown number of people or people entering and leaving video sequences. The first contribution is a multi-person pose estimation algorithm based on the bottom-up detection-by-grouping paradigm. Unlike the widespread top-down approaches our method detects body joints and pairwise relations between them in a single forward pass of a convolutional neural network. Multi-person parsing is performed by optimizing a joint objective based on a multicut graph partitioning framework. Secondly, we extend our pose estimation approach to articulated multi-person pose tracking in videos. Our approach performs multi-target tracking and pose estimation in a holistic manner by optimising a single objective. We further simplify and refine the formulation which allows us to reach close to the real-time performance. Thirdly, we propose a large scale dataset and a benchmark for articulated multi-person tracking. It is the first dataset of video sequences comprising complex multi-person scenes and fully annotated tracks with 2D keypoints. Our fourth contribution is a method for estimating 3D body pose using on-body wearable cameras. Our approach uses a pair of downward facing, head-mounted cameras and captures an entire body. This egocentric approach is free of limitations of traditional setups with external cameras and can estimate body poses in very crowded environments. Our final contribution goes beyond human pose estimation and is in the field of deep learning of 3D object shapes. In particular, we address the case of reconstructing 3D objects from weak supervision. Our approach represents objects as 3D point clouds and is able to learn them with 2D supervision only and without requiring camera pose information at training time. We design a differentiable renderer of point clouds as well as a novel loss formulation for dealing with camera pose ambiguity.In dieser Arbeit behandeln wir das Problem der Schätzung und Verfolgung artikulierter menschlicher Posen in Bildern und Video-Sequenzen. Die Schätzung menschlicher Posen besteht darin die Hauptgelenke des menschlichen Skeletts in natürlichen Bildern zu lokalisieren und ist eine der wichtigsten Aufgaben der visuellen Erkennung in Szenen, die Menschen beinhalten. Sie hat zahlreiche Anwendungen in der Robotik, virtueller und erweiterter Realität, in Videospielen, in der Medizin und weiteren Bereichen. Die Verfolgung artikulierter menschlicher Posen erfordert die Verfolgung mehrerer Personen in einer Videosequenz bei gleichzeitiger Schätzung vollständiger Körperhaltungen. Diese Aufgabe ist besonders wichtig für die Analyse von Video-Überwachungsaufnahmen, Aktivitätenerkennung, digitale Sportanalyse etc. Die meisten vorherigen Arbeiten sind auf die Schätzung einzelner Posen vorlokalisierter Menschen fokussiert, wohingegen wir den Fall mehrerer Personen in natürlichen Aufnahmen betrachten. Dies bringt einige Herausforderungen mit sich, wie die Überlappung verschiedener Personen in dicht gedrängten Szenen, eine unbekannte Anzahl an Personen oder Personen die das Sichtfeld der Video-Sequenz verlassen oder betreten. Der erste Beitrag ist ein Algorithmus zur Schätzung der Posen mehrerer Personen, welcher auf dem Paradigma der Erkennung durch Gruppierung aufbaut. Im Gegensatz zu den verbreiteten Verfeinerungs-Ansätzen erkennt unsere Methode Körpergelenke and paarweise Beziehungen zwischen ihnen in einer einzelnen Vorwärtsrechnung eines faltenden neuronalen Netzwerkes. Die Gliederung in mehrere Personen erfolgt durch Optimierung einer gemeinsamen Zielfunktion, die auf dem Mehrfachschnitt-Problem in der Graphenzerlegung basiert. Zweitens erweitern wir unseren Ansatz zur Posen-Bestimmung auf das Verfolgen mehrerer Personen und deren Artikulation in Videos. Unser Ansatz führt eine Verfolgung mehrerer Ziele und die Schätzung der zugehörigen Posen in ganzheitlicher Weise durch, indem eine einzelne Zielfunktion optimiert wird. Desweiteren vereinfachen und verfeinern wir die Formulierung, was unsere Methode nah an Echtzeit-Leistung bringt. Drittens schlagen wir einen großen Datensatz und einen Bewertungsmaßstab für die Verfolgung mehrerer artikulierter Personen vor. Dies ist der erste Datensatz der Video-Sequenzen von komplexen Szenen mit mehreren Personen beinhaltet und deren Spuren komplett mit zwei-dimensionalen Markierungen der Schlüsselpunkte versehen sind. Unser vierter Beitrag ist eine Methode zur Schätzung von drei-dimensionalen Körperhaltungen mittels am Körper tragbarer Kameras. Unser Ansatz verwendet ein Paar nach unten gerichteter, am Kopf befestigter Kameras und erfasst den gesamten Körper. Dieser egozentrische Ansatz ist frei von jeglichen Limitierungen traditioneller Konfigurationen mit externen Kameras und kann Körperhaltungen in sehr dicht gedrängten Umgebungen bestimmen. Unser letzter Beitrag geht über die Schätzung menschlicher Posen hinaus in den Bereich des tiefen Lernens der Gestalt von drei-dimensionalen Objekten. Insbesondere befassen wir uns mit dem Fall drei-dimensionale Objekte unter schwacher Überwachung zu rekonstruieren. Unser Ansatz repräsentiert Objekte als drei-dimensionale Punktwolken and ist im Stande diese nur mittels zwei-dimensionaler Überwachung und ohne Informationen über die Kamera-Ausrichtung zur Trainingszeit zu lernen. Wir entwerfen einen differenzierbaren Renderer für Punktwolken sowie eine neue Formulierung um mit uneindeutigen Kamera-Ausrichtungen umzugehen
    corecore