570 research outputs found

    Automatic detection of pulmonary nodules: Evaluation of performance using two different MDCT scanners

    Get PDF
    The purpose of this study was to evaluate the diagnostic performance of a computer-aided diagnosis (CAD) system, on the detection of pulmonary nodules in multidetector row computed tomography (MDCT) images, by using two different MDCT scanners. The computerized scheme was based on the iris filter. We have collected CT cases of patients with pulmonary nodules. We have included in the study one hundred and thirty-two calcified and noncalcified nodules, measuring 4-30 mm in diameter. CT examinations were performed by using two different equipments: a CT scanner (SOMATOM Emotion 6), and a dual-source computed tomography system (SOMATOM Definition) (Siemens Medical System, Forchheim, Germany), with the following parameters: collimation, 6x1.0mm (Emotion 6); and 64×0.6mm (Definition); 100-130 kV; 70-110 mAs. Data were reconstructed with a slice thickness of 1.25mm (Emotion 6) and 1mm (Definition). True positive cases were determined by an independent interpretation of the study by three experienced chest radiologists, the panel decision being used as the reference standard. Free-response Receiver Operating Characteristic curves, sensitivity and number of false-positive per scan, were calculated. Our CAD scheme, for the test set of the study, yielded a sensitivity of 80%, with an average of 5.2 FPs per examination. At an average false positive rate of 9 per scan, our CAD scheme achieved sensitivities of 94% for all nodules, 94.5% for solid, 80% for non-solid, 84% for spiculated, and 97% for non-spiculated nodules. These encouraging results suggest that our CAD system, advocated as a second reader, may help radiologists in the detection of lung nodules in MDCTThis work has been partially supported by the Xunta de Galicia (expte. nº PGIDIT06BTF20802PR), and by the FIS (expte. nº PI060058) and (expte. nº PI080072)S

    Automatic 3D pulmonary nodule detection in CT images: a survey

    Get PDF
    This work presents a systematic review of techniques for the 3D automatic detection of pulmonary nodules in computerized-tomography (CT) images. Its main goals are to analyze the latest technology being used for the development of computational diagnostic tools to assist in the acquisition, storage and, mainly, processing and analysis of the biomedical data. Also, this work identifies the progress made, so far, evaluates the challenges to be overcome and provides an analysis of future prospects. As far as the authors know, this is the first time that a review is devoted exclusively to automated 3D techniques for the detection of pulmonary nodules from lung CT images, which makes this work of noteworthy value. The research covered the published works in the Web of Science, PubMed, Science Direct and IEEEXplore up to December 2014. Each work found that referred to automated 3D segmentation of the lungs was individually analyzed to identify its objective, methodology and results. Based on the analysis of the selected works, several studies were seen to be useful for the construction of medical diagnostic aid tools. However, there are certain aspects that still require attention such as increasing algorithm sensitivity, reducing the number of false positives, improving and optimizing the algorithm detection of different kinds of nodules with different sizes and shapes and, finally, the ability to integrate with the Electronic Medical Record Systems and Picture Archiving and Communication Systems. Based on this analysis, we can say that further research is needed to develop current techniques and that new algorithms are needed to overcome the identified drawbacks

    Computed tomography reading strategies in lung cancer screening

    Get PDF

    Multicenter Study on COVID-19 Lung Computed Tomography Segmentation with varying Glass Ground Opacities using Unseen Deep Learning Artificial Intelligence Paradigms: COVLIAS 1.0 Validation

    Get PDF
    Variations in COVID-19 lesions such as glass ground opacities (GGO), consolidations, and crazy paving can compromise the ability of solo-deep learning (SDL) or hybrid-deep learning (HDL) artificial intelligence (AI) models in predicting automated COVID-19 lung segmentation in Computed Tomography (CT) from unseen data leading to poor clinical manifestations. As the first study of its kind, "COVLIAS 1.0-Unseen" proves two hypotheses, (i) contrast adjustment is vital for AI, and (ii) HDL is superior to SDL. In a multicenter study, 10,000 CT slices were collected from 72 Italian (ITA) patients with low-GGO, and 80 Croatian (CRO) patients with high-GGO. Hounsfield Units (HU) were automatically adjusted to train the AI models and predict from test data, leading to four combinations-two Unseen sets: (i) train-CRO:test-ITA, (ii) train-ITA:test-CRO, and two Seen sets: (iii) train-CRO:test-CRO, (iv) train-ITA:test-ITA. COVILAS used three SDL models: PSPNet, SegNet, UNet and six HDL models: VGG-PSPNet, VGG-SegNet, VGG-UNet, ResNet-PSPNet, ResNet-SegNet, and ResNet-UNet. Two trained, blinded senior radiologists conducted ground truth annotations. Five types of performance metrics were used to validate COVLIAS 1.0-Unseen which was further benchmarked against MedSeg, an open-source web-based system. After HU adjustment for DS and JI, HDL (Unseen AI) > SDL (Unseen AI) by 4% and 5%, respectively. For CC, HDL (Unseen AI) > SDL (Unseen AI) by 6%. The COVLIAS-MedSeg difference was < 5%, meeting regulatory guidelines.Unseen AI was successfully demonstrated using automated HU adjustment. HDL was found to be superior to SDL

    Classification performance for covid patient prognosis from automatic ai segmentation—a single-center study

    Get PDF
    Background: COVID assessment can be performed using the recently developed individual risk score (prediction of severe respiratory failure in hospitalized patients with SARS-COV2 infection, PREDI-CO score) based on High Resolution Computed Tomography. In this study, we evaluated the possibility of automatizing this estimation using semi-supervised AI-based Radiomics, leveraging the possibility of performing non-supervised segmentation of ground-glass areas. Methods: We collected 92 from patients treated in the IRCCS Sant’Orsola-Malpighi Policlinic and public databases; each lung was segmented using a pre-trained AI method; ground-glass opacity was identified using a novel, non-supervised approach; radiomic measurements were collected and used to predict clinically relevant scores, with particular focus on mortality and the PREDI-CO score. We compared the prediction obtained through different machine learning approaches. Results: All the methods obtained a well-balanced accuracy (70%) on the PREDI-CO score but did not obtain satisfying results on other clinical characteristics due to unbalance between the classes. Conclusions: Semi-supervised segmentation, implemented using a combination of non-supervised segmentation and feature extraction, seems to be a viable approach for patient stratification and could be leveraged to train more complex models. This would be useful in a high-demand situation similar to the current pandemic to support gold-standard segmentation for AI training
    corecore