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1. Introduction 
 

Computer-aided diagnosis (CAD) (Giger and Suzuki 2007) has been an active area of study 
in medical image analysis, because evidence suggests that CAD can help improve the 
diagnostic performance of radiologists in their image interpretations (Li, Aoyama et al. 2004; 
Li, Arimura et al. 2005; Dean and Ilvento 2006). Many investigators have participated in and 
developed CAD schemes for detection/diagnosis of lesions in medical images, such as 
detection of lung nodules in chest radiographs (Giger, Doi et al. 1988; van Ginneken, ter 
Haar Romeny et al. 2001; Suzuki, Shiraishi et al. 2005) and in thoracic CT (Armato, Giger et 
al. 1999; Armato, Li et al. 2002; Suzuki, Armato et al. 2003; Arimura, Katsuragawa et al. 
2004), detection of microcalcifications/masses in mammography (Chan, Doi et al. 1987), 
breast MRI (Gilhuijs, Giger et al. 1998), breast US (Horsch, Giger et al. 2004; Drukker, Giger 
et al. 2005), and detection of polyps in CT colonography (Yoshida and Nappi 2001; Suzuki, 
Yoshida et al. 2006; Suzuki, Yoshida et al. 2008). Some advanced CAD schemes employ a 
filter for enhancement of lesions as a preprocessing step for improving sensitivity and 
specificity. The filter enhances objects similar to a model employed in the filter; e.g., a blob 
enhancement filter based on the Hessian matrix enhances sphere-like objects (Frangi, 
Niessen et al. 1999). Actual lesions, however, often differ from a simple model, e.g., a lung 
nodule is generally modeled as a solid sphere, but there are nodules of various shapes and 
inhomogeneous nodules such as a spiculated nodule and a ground-glass opacity. A 
colorectal polyp is often modeled as a cap structure by using a shape index filter, but a 
sessile polyp or a flat polyp cannot be characterized well as a cap structure of the shape 
index. Thus, conventional filters often fail to enhance actual lesions such as lung nodules 
with ground-glass opacity and sessile/flat polyps.  
To address this issue, we developed a supervised filter for enhancement of actual lesions by 
use of a massive-training artificial neural network (MTANN) (Suzuki, Armato et al. 2003) 
filter in a CAD scheme. In this chapter, we introduce MTANN-based CAD schemes for 
detection of lung nodules in CT and for detection of polyps in CT colonography.  To 
summerize, by extension of “neural filters” (Suzuki, Horiba et al. 2002) and “neural edge 
enhancers” (Suzuki, Horiba et al. 2003; Suzuki, Horiba et al. 2004), which are ANN-based 
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(Rumelhart, Hinton et al. 1986) supervised nonlinear image-processing techniques, 
MTANNs (Suzuki, Armato et al. 2003) have been developed for accommodating the task of 
distinguishing a specific opacity from other opacities in medical images. MTANNs have 
been applied to the reduction of false positives (FPs) in the computerized detection of lung 
nodules in low-dose CT (Suzuki, Armato et al. 2003; Arimura, Katsuragawa et al. 2004) and 
chest radiography (Suzuki, Shiraishi et al. 2005), for distinction between benign and 
malignant lung nodules in CT (Suzuki, Li et al. 2005), for suppression of ribs in chest 
radiographs (Suzuki, Abe et al. 2006), and for reduction of FPs in computerized detection of 
polyps in CT colonography (Suzuki, Yoshida et al. 2006; Suzuki, Yoshida et al. 2008). The 
MTANN filter is trained with actual lesions in CT images to enhance the actual patterns of 
the lesions. We evaluated the performance of our CAD schemes incorporating the MTANNs 
for detection of lung nodules in CT and for detection of polyps in CT colonography. 

 
2. A MTANN Filter for Lesion Enhancement 
 

2.1. An Architecture of an MTANN Filter 
To enhance actual lesions in medical images, we developed an MTANN supervised filter. 
The architecture of an MTANN supervised filter is shown in Fig. 1. An MTANN filter 
consists of a linear-output regression artificial neural network (LOR-ANN) model (Suzuki, 
Horiba et al. 2003), which is a regression-type ANN capable of operating on pixel/volel data 
directly. The MTANN filter is trained with input CT images and the corresponding 
“teaching” images that contain a map for the “likelihood of being lesions.” The pixel values 
of the input images are linearly scaled such that –1,000 Hounsfield units (HU) corresponds 
to 0 and 1,000 HU corresponds to 1. The input to the MTANN filter consists of pixel values 
in a sub-region, RS, extracted from an input image. The output of the MTANN filter is a 
continuous scalar value, which is associated with the center pixel in the sub-region, and is 
represented by 

 SRjijyixILORANNyxO  ),(|),(),( ,  (1) 

where x and y are the coordinate indices, LORANN (·) is the output of the LOR-ANN model, 
and I(x,y) is a pixel value in the input image. The LOR-ANN employs a linear function, 

5.0)(  uaufL , instead of a sigmoid function,  )exp(11)( uuf S  , as the activation 
function of the output layer unit because the characteristics and performance of an ANN are 
improved significantly with a linear function when applied to the continuous mapping of 
values in image processing (Suzuki, Horiba et al. 2003). Note that the activation function in 
the hidden layers is still a sigmoid function. The input vector can be rewritten as 

 
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where m is an input unit number, and NI is the number of input units. The output of the n-th 
unit in the hidden layer is represented by 
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where WHmn is a weight between the m-th unit in the input layer and the n-th unit in the 
hidden layer, and WH0n is an offset of the n-th unit in the hidden layer. The output of the 
output layer unit is represented by 
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where WOm is a weight between the m-th unit in the hidden layer and the unit in the output 
layer, NH is the number of units in the hidden layer, and WO0 is an offset of the unit in the 
output layer. For processing of the entire image, the scanning of an input CT image with the 
MTANN is performed pixel by pixel, as illustrated in Fig. 2(b). 
 

 
Fig. 1. Architecture of an MTANN supervised filter consisting of a LOR-ANN model with 
sub-region input and single-pixel output. All pixel values in a sub-region extracted from an 
input CT image are entered as input to the LOR-ANN. The LOR-ANN outputs a single pixel 
value for each sub-region, the location of which corresponds to the center pixel in the sub-
region. Output pixel value is mapped back to the corresponding pixel in the output image. 

 
2.2. Training of an MTANN Filter 
For enhancement of lesions and suppression of non-lesions in CT images, the teaching 
image T(x,y) contains a map for the “likelihood of being lesions,” as illustrated in Fig. 2(a). 
To create the teaching image, we first segment lesions manually for obtaining a binary 
image with 1 being lesion pixels and 0 being non-lesion pixels. Then, Gaussian smoothing is 
applied to the binary image for smoothing down the edges of the segmented lesions, 
because the likelihood of being lesions should gradually be diminished as the distance from 
the boundary of the lesion decreases. Note that the ANN was not able to be trained when 
binary teaching images were used. 
The MTANN filter involves training with a large number of pairs of sub-regions and pixels; 
we call it a massive-sub-region training scheme. For enrichment of the training samples, a 
training image, RT, extracted from the input CT image is divided pixel by pixel into a large 
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(Rumelhart, Hinton et al. 1986) supervised nonlinear image-processing techniques, 
MTANNs (Suzuki, Armato et al. 2003) have been developed for accommodating the task of 
distinguishing a specific opacity from other opacities in medical images. MTANNs have 
been applied to the reduction of false positives (FPs) in the computerized detection of lung 
nodules in low-dose CT (Suzuki, Armato et al. 2003; Arimura, Katsuragawa et al. 2004) and 
chest radiography (Suzuki, Shiraishi et al. 2005), for distinction between benign and 
malignant lung nodules in CT (Suzuki, Li et al. 2005), for suppression of ribs in chest 
radiographs (Suzuki, Abe et al. 2006), and for reduction of FPs in computerized detection of 
polyps in CT colonography (Suzuki, Yoshida et al. 2006; Suzuki, Yoshida et al. 2008). The 
MTANN filter is trained with actual lesions in CT images to enhance the actual patterns of 
the lesions. We evaluated the performance of our CAD schemes incorporating the MTANNs 
for detection of lung nodules in CT and for detection of polyps in CT colonography. 

 
2. A MTANN Filter for Lesion Enhancement 
 

2.1. An Architecture of an MTANN Filter 
To enhance actual lesions in medical images, we developed an MTANN supervised filter. 
The architecture of an MTANN supervised filter is shown in Fig. 1. An MTANN filter 
consists of a linear-output regression artificial neural network (LOR-ANN) model (Suzuki, 
Horiba et al. 2003), which is a regression-type ANN capable of operating on pixel/volel data 
directly. The MTANN filter is trained with input CT images and the corresponding 
“teaching” images that contain a map for the “likelihood of being lesions.” The pixel values 
of the input images are linearly scaled such that –1,000 Hounsfield units (HU) corresponds 
to 0 and 1,000 HU corresponds to 1. The input to the MTANN filter consists of pixel values 
in a sub-region, RS, extracted from an input image. The output of the MTANN filter is a 
continuous scalar value, which is associated with the center pixel in the sub-region, and is 
represented by 

 SRjijyixILORANNyxO  ),(|),(),( ,  (1) 

where x and y are the coordinate indices, LORANN (·) is the output of the LOR-ANN model, 
and I(x,y) is a pixel value in the input image. The LOR-ANN employs a linear function, 

5.0)(  uaufL , instead of a sigmoid function,  )exp(11)( uuf S  , as the activation 
function of the output layer unit because the characteristics and performance of an ANN are 
improved significantly with a linear function when applied to the continuous mapping of 
values in image processing (Suzuki, Horiba et al. 2003). Note that the activation function in 
the hidden layers is still a sigmoid function. The input vector can be rewritten as 
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where WHmn is a weight between the m-th unit in the input layer and the n-th unit in the 
hidden layer, and WH0n is an offset of the n-th unit in the hidden layer. The output of the 
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where WOm is a weight between the m-th unit in the hidden layer and the unit in the output 
layer, NH is the number of units in the hidden layer, and WO0 is an offset of the unit in the 
output layer. For processing of the entire image, the scanning of an input CT image with the 
MTANN is performed pixel by pixel, as illustrated in Fig. 2(b). 
 

 
Fig. 1. Architecture of an MTANN supervised filter consisting of a LOR-ANN model with 
sub-region input and single-pixel output. All pixel values in a sub-region extracted from an 
input CT image are entered as input to the LOR-ANN. The LOR-ANN outputs a single pixel 
value for each sub-region, the location of which corresponds to the center pixel in the sub-
region. Output pixel value is mapped back to the corresponding pixel in the output image. 

 
2.2. Training of an MTANN Filter 
For enhancement of lesions and suppression of non-lesions in CT images, the teaching 
image T(x,y) contains a map for the “likelihood of being lesions,” as illustrated in Fig. 2(a). 
To create the teaching image, we first segment lesions manually for obtaining a binary 
image with 1 being lesion pixels and 0 being non-lesion pixels. Then, Gaussian smoothing is 
applied to the binary image for smoothing down the edges of the segmented lesions, 
because the likelihood of being lesions should gradually be diminished as the distance from 
the boundary of the lesion decreases. Note that the ANN was not able to be trained when 
binary teaching images were used. 
The MTANN filter involves training with a large number of pairs of sub-regions and pixels; 
we call it a massive-sub-region training scheme. For enrichment of the training samples, a 
training image, RT, extracted from the input CT image is divided pixel by pixel into a large 
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number of sub-regions. Note that close sub-regions overlap each other. Single pixels are 
extracted from the corresponding teaching image as teaching values. The MTANN filter is 
massively trained by use of each of a large number of input sub-regions together with each 
of the corresponding teaching single pixels; hence the term “massive-training ANN.” The 
error to be minimized by training of the MTANN filter is given by 
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where c is a training case number, Oc is the output of the MTANN for the c-th case, Tc is the 
teaching value for the MTANN for the c-th case, and P is the number of total training pixels 
in the training images, RT. The MTANN filter is trained by a linear-output back-propagation 
(BP) algorithm where the generalized delta rule (Rumelhart, Hinton et al. 1986) is applied to 
the LOR-ANN architecture (Suzuki, Horiba et al. 2003). After training, the MTANN filter is 
expected to output the highest value when a lesion is located at the center of the sub-region 
of the MTANN filter, a lower value as the distance from the sub-region center increases, and 
zero when the input sub-region contains a non-lesion. 
 

 
(a) 

 
(b) 

Fig. 2. Training and application of an MTANN filter for enhancement of lesions. (a) Training 
of an MTANN filter. The input CT image is divided pixel by pixel into a large number of 
overlapping sub-regions. The corresponding pixels are extracted from the “teaching” image 
containing a map for the “likelihood of being a lesion.” The MTANN filter is trained with 
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pairs of the input sub-regions and the corresponding teaching pixels. (b) Application of the 
trained MTANN filter to a new CT image. Scanning with the trained MTANN filter is 
performed for obtaining pixel values in the entire output image. 

 
3. An MTANN for Classification 
 

3.1. A Training Method of an MTANN for Classification 
For distinction between lesions and non-lesions in medical images, the teaching image 
contains a Gaussian distribution with standard deviation σT for a nodule and zero for a non-
nodule (i.e., completely dark), as shown in Fig. 3. This distribution represents a map for the 
“likelihood of being a lesion”: 
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To enrich the training samples, a training region, RT, extracted from the input image is 
divided pixel by pixel into a large number of overlapping sub-regions. Single pixels are 
extracted from the corresponding teaching region as teaching values. The MTANN is 
massively trained by use of each of a large number of the input sub-regions together with 
each of the corresponding teaching single pixels. After training, the MTANN is expected to 
output the highest value when a lesion is located at the center of the sub-region of the 
MTANN, a lower value as the distance from the sub-region center increases, and zero when 
the input sub-region contains a non-lesion.  
 

 
Fig. 3. Architecture and training of an MTANN for classification of candidates into a lesion 
(e.g., a nodule) or a non-lesion (e.g., a non-nodule). A teaching image for a nodule contains a 
Gaussian distribution at the center of the image, whereas that for a non-nodule contains zero 
(i.e., it is completely dark). 
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number of sub-regions. Note that close sub-regions overlap each other. Single pixels are 
extracted from the corresponding teaching image as teaching values. The MTANN filter is 
massively trained by use of each of a large number of input sub-regions together with each 
of the corresponding teaching single pixels; hence the term “massive-training ANN.” The 
error to be minimized by training of the MTANN filter is given by 
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where c is a training case number, Oc is the output of the MTANN for the c-th case, Tc is the 
teaching value for the MTANN for the c-th case, and P is the number of total training pixels 
in the training images, RT. The MTANN filter is trained by a linear-output back-propagation 
(BP) algorithm where the generalized delta rule (Rumelhart, Hinton et al. 1986) is applied to 
the LOR-ANN architecture (Suzuki, Horiba et al. 2003). After training, the MTANN filter is 
expected to output the highest value when a lesion is located at the center of the sub-region 
of the MTANN filter, a lower value as the distance from the sub-region center increases, and 
zero when the input sub-region contains a non-lesion. 
 

 
(a) 
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Fig. 2. Training and application of an MTANN filter for enhancement of lesions. (a) Training 
of an MTANN filter. The input CT image is divided pixel by pixel into a large number of 
overlapping sub-regions. The corresponding pixels are extracted from the “teaching” image 
containing a map for the “likelihood of being a lesion.” The MTANN filter is trained with 
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pairs of the input sub-regions and the corresponding teaching pixels. (b) Application of the 
trained MTANN filter to a new CT image. Scanning with the trained MTANN filter is 
performed for obtaining pixel values in the entire output image. 

 
3. An MTANN for Classification 
 

3.1. A Training Method of an MTANN for Classification 
For distinction between lesions and non-lesions in medical images, the teaching image 
contains a Gaussian distribution with standard deviation σT for a nodule and zero for a non-
nodule (i.e., completely dark), as shown in Fig. 3. This distribution represents a map for the 
“likelihood of being a lesion”: 
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To enrich the training samples, a training region, RT, extracted from the input image is 
divided pixel by pixel into a large number of overlapping sub-regions. Single pixels are 
extracted from the corresponding teaching region as teaching values. The MTANN is 
massively trained by use of each of a large number of the input sub-regions together with 
each of the corresponding teaching single pixels. After training, the MTANN is expected to 
output the highest value when a lesion is located at the center of the sub-region of the 
MTANN, a lower value as the distance from the sub-region center increases, and zero when 
the input sub-region contains a non-lesion.  
 

 
Fig. 3. Architecture and training of an MTANN for classification of candidates into a lesion 
(e.g., a nodule) or a non-lesion (e.g., a non-nodule). A teaching image for a nodule contains a 
Gaussian distribution at the center of the image, whereas that for a non-nodule contains zero 
(i.e., it is completely dark). 
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3.2. A Scoring Method for Combining Output Pixels 
For combining output pixels from a trained MTANN, we developed a scoring method. A 
score for a given lesion candidate from the trained MTANN is defined as 
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is a Gaussian weighting function with standard deviation σ, and with its center 
corresponding to the center of the region for evaluation, RE; and O (x,y) is the output region 
of the n-th trained MTANN, where its center corresponds to the center of RE. The use of the 
Gaussian weighting function allows us to combine the responses (outputs) of a trained 
MTANN as a distribution. A Gaussian function is used for scoring, because the output of a 
trained MTANN is expected to be similar to the Gaussian distribution used in the teaching 
region. This score represents the weighted sum of the estimates for the likelihood that the 
region (lesion candidate) contains a lesion near the center, i.e., a higher score would indicate 
a lesion, and a lower score would indicate a non-lesion.  

 
3.3. A Mixture of Expert MTANNs 
To distinguish lesions from various types of non-lesions (or FPs), we have extended the 
capability of a single MTANN, and have developed a mixture of expert MTANNs. The 
architecture of the mixture of expert MTANNs is shown in Fig. 4(a). The mixture of expert 
MTANNs consists of several MTANNs that are arranged in parallel. Each MTANN is 
trained independently by use of the same nodules and a different set of non-nodules, as 
shown in Fig. 4(b). Each MTANN acts as an expert for distinction between lesions (e.g., 
nodules) and non-lesions (e.g., non-nodules) representing a specific non-lesion type. The 
scores from the expert MTANNs are combined by use of a mixing ANN such that different 
types of non-lesions can be distinguished from lesions. The mixing ANN consists of a linear-
output multilayer ANN model with a linear-output BP training algorithm (Suzuki, Horiba 
et al. 2003) for processing of continuous output/teaching values; the activation functions of 
the units in the input, hidden, and output layers are an identity, a sigmoid, and a linear 
function, respectively. One unit is employed in the output layer for distinction between a 
lesion and a non-lesion. The scores of each expert MTANN are used for each input unit in 
the mixing ANN; thus, the number of input units corresponds to the number of expert 
MTANNs, N. The scores of each expert MTANN act as the features for distinguishing 
lesions from a specific type of non-lesion for which the expert MTANN is trained. The 
output of the mixing ANN for the c-th lesion candidate is represented by 
 

 NnSNNM cnc  1|}{ , ,   (9) 

where NN (·) is the output of the linear-output ANN model, and n is an MTANN number. 
The teaching values for lesions are assigned the value one, and those for non-lesions are 

zero. Training of the mixing ANN may be performed by use of a leave-one-lesion-out cross-
validation scheme (Mosier 1951). After training, the mixing ANN is expected to output a 
higher value for a lesion and a lower value for a non-lesion. Thus, the output can be 
considered to be a “likelihood of being a lesion.” By thresholding the output, a distinction 
between lesions and non-lesions can be made. The balance between a true-positive rate and 
an FP rate is determined by the selected threshold value. If the scores of each expert 
MTANN properly characterize the specific type of non-lesion for which the expert MTANN 
is trained, the mixing ANN combining several expert MTANNs will be able to distinguish 
lesions from various types of non-lesions. 
 

 
(a) 

 
(b) 

Fig. 4. Architecture (a) and training (b) of a mixture of expert MTANNs for classification of 
lesion candidates into lesions or multiple types of non-lesions. 
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3.2. A Scoring Method for Combining Output Pixels 
For combining output pixels from a trained MTANN, we developed a scoring method. A 
score for a given lesion candidate from the trained MTANN is defined as 
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is a Gaussian weighting function with standard deviation σ, and with its center 
corresponding to the center of the region for evaluation, RE; and O (x,y) is the output region 
of the n-th trained MTANN, where its center corresponds to the center of RE. The use of the 
Gaussian weighting function allows us to combine the responses (outputs) of a trained 
MTANN as a distribution. A Gaussian function is used for scoring, because the output of a 
trained MTANN is expected to be similar to the Gaussian distribution used in the teaching 
region. This score represents the weighted sum of the estimates for the likelihood that the 
region (lesion candidate) contains a lesion near the center, i.e., a higher score would indicate 
a lesion, and a lower score would indicate a non-lesion.  

 
3.3. A Mixture of Expert MTANNs 
To distinguish lesions from various types of non-lesions (or FPs), we have extended the 
capability of a single MTANN, and have developed a mixture of expert MTANNs. The 
architecture of the mixture of expert MTANNs is shown in Fig. 4(a). The mixture of expert 
MTANNs consists of several MTANNs that are arranged in parallel. Each MTANN is 
trained independently by use of the same nodules and a different set of non-nodules, as 
shown in Fig. 4(b). Each MTANN acts as an expert for distinction between lesions (e.g., 
nodules) and non-lesions (e.g., non-nodules) representing a specific non-lesion type. The 
scores from the expert MTANNs are combined by use of a mixing ANN such that different 
types of non-lesions can be distinguished from lesions. The mixing ANN consists of a linear-
output multilayer ANN model with a linear-output BP training algorithm (Suzuki, Horiba 
et al. 2003) for processing of continuous output/teaching values; the activation functions of 
the units in the input, hidden, and output layers are an identity, a sigmoid, and a linear 
function, respectively. One unit is employed in the output layer for distinction between a 
lesion and a non-lesion. The scores of each expert MTANN are used for each input unit in 
the mixing ANN; thus, the number of input units corresponds to the number of expert 
MTANNs, N. The scores of each expert MTANN act as the features for distinguishing 
lesions from a specific type of non-lesion for which the expert MTANN is trained. The 
output of the mixing ANN for the c-th lesion candidate is represented by 
 

 NnSNNM cnc  1|}{ , ,   (9) 

where NN (·) is the output of the linear-output ANN model, and n is an MTANN number. 
The teaching values for lesions are assigned the value one, and those for non-lesions are 

zero. Training of the mixing ANN may be performed by use of a leave-one-lesion-out cross-
validation scheme (Mosier 1951). After training, the mixing ANN is expected to output a 
higher value for a lesion and a lower value for a non-lesion. Thus, the output can be 
considered to be a “likelihood of being a lesion.” By thresholding the output, a distinction 
between lesions and non-lesions can be made. The balance between a true-positive rate and 
an FP rate is determined by the selected threshold value. If the scores of each expert 
MTANN properly characterize the specific type of non-lesion for which the expert MTANN 
is trained, the mixing ANN combining several expert MTANNs will be able to distinguish 
lesions from various types of non-lesions. 
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Fig. 4. Architecture (a) and training (b) of a mixture of expert MTANNs for classification of 
lesion candidates into lesions or multiple types of non-lesions. 
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4. A CAD Scheme for Detection of Lung Nodules on CT Images 
 

4.1. Lung Cancer Detection in CT 
Lung cancer continues to rank as the leading cause of cancer deaths among Americans 
(American:Cancer:Society 2005; Jemal, Murray et al. 2005); the number of lung cancer deaths 
each year is greater than the combined number of breast, colon, and prostate cancer deaths. 
Evidence suggests that early detection of lung cancer may allow more timely therapeutic 
intervention and thus a more favorable prognosis for the patient (Heelan, Flehinger et al. 
1984; Flehinger, Kimmel et al. 1992; Sobue, Suzuki et al. 1992; Miettinen 2000). Therefore, in 
the 1970s, screening programs for early detection of lung cancer were carried out with chest 
radiography and cytologic examination of sputum in the United States (Flehinger, Melamed 
et al. 1984; Fontana, Sanderson et al. 1984; Frost, Ball et al. 1984) and in Europe (Kubik and 
Polak 1986). As the CT imaging techniques have advanced, screening with low-dose helical 
CT has been performed for early detection of lung cancer (Kaneko, Eguchi et al. 1996; Sone, 
Takashima et al. 1998; Henschke, McCauley et al. 1999; Henschke, Naidich et al. 2001; 
Miettinen and Henschke 2001; Sone, Li et al. 2001; Nawa, Nakagawa et al. 2002; Swensen, 
Jett et al. 2003) since early 1990.   
Because CT is more sensitive than chest radiography in the detection of small non-calcified 
nodules due to lung carcinoma at an early stage (Sone, Takashima et al. 1998; Miettinen and 
Henschke 2001), lung cancer screening programs are being conducted in the United States 
(Henschke, McCauley et al. 1999; Henschke, Naidich et al. 2001; Miettinen and Henschke 
2001; Swensen, Jett et al. 2003) and Japan (Kaneko, Eguchi et al. 1996; Sone, Takashima et al. 
1998; Sone, Li et al. 2001; Nawa, Nakagawa et al. 2002) with low-dose single-detector CT as 
the screening modality. Recently, multi-detector-row CT (MDCT) has been used for lung 
cancer screening. Helical CT and MDCT, however, generate a large number of images that 
must be read by radiologists. This may lead to “information overload” for radiologists. 
Furthermore, radiologists may fail to detect some cancers, which are visible in retrospect, 
during the interpretation of CT images (Gurney 1996; Li, Sone et al. 2002). Therefore, a CAD 
scheme for detection of lung nodules in CT has been investigated as a tool for lung cancer 
screening, because the CAD scheme may detect some cancers that are “missed” by 
radiologists (Li, Sone et al. 2002), and provide quantitative detection results as a “second 
opinion” to assist radiologists in improving their detection accuracy (Kobayashi, Xu et al. 
1996).  

 
4.2. Database of Lung Nodules in CT 
To test the performance of a CAD scheme utilizing the MTANN filters, we created a CT 
database consisting of 69 lung cancers in 69 patients (Li, Sone et al. 2002). The scans used for 
this study were acquired with a low-dose protocol of 120 kVp, 25 mA or 50 mA, 10-mm 
collimation, and a 10-mm reconstruction interval at a helical pitch of two. The reconstructed 
CT images were 512 x 512 pixels in size with a section thickness of 10 mm. The 69 CT scans 
consisted of 2,052 sections. All cancers were confirmed either by biopsy or surgically.  

 
4.3. Detection of Nodule Candidates 
The flowchart of our CAD scheme utilizing the MTANN supervised lesion enhancement 
filter and the MTANNs for classification is shown in Fig. 5. To limit processing area to the 
lungs, we segmented the lung regions in a CT image by use of thresholding based on Otsu’s 

threshold value determination (Otsu 1979). Then, we applied a rolling-ball technique along 
the outlines of the extracted lung regions to include a nodule attached to the pleura in the 
segmented lung regions (Armato, Giger et al. 2001).  
To enhance lung nodules in CT images, we trained an MTANN filter with 13 lung nodules 
in a training database and the corresponding “teaching” images that contained maps for the 
“likelihood of being nodules,” as illustrated in Fig. 2(a). To obtain the training regions, RT, 
we applied a mathematical morphology opening filter to the manually segmented lung 
nodules (i.e., binary regions) such that the training regions sufficiently covered nodules and 
surrounding normal structures (i.e., a 9 times larger area than the nodule region, on 
average). A three-layer structure was employed for the MTANN filter, because any 
continuous mapping can be approximated by a three-layer ANN (Funahashi 1989). The 
number of hidden units was selected to be 20 by use of a method for designing the structure 
of an ANN (Suzuki, Horiba et al. 2001; Suzuki 2004). The size of the input sub-region, RS, 
was 9 by 9 pixels, which was determined experimentally in our previous studies (Suzuki, 
Armato et al. 2003; Arimura, Katsuragawa et al. 2004; Suzuki and Doi 2005). The slope of the 
linear function, a, was 0.01. With the parameters above, training of the MTANN filter was 
performed by 1,000,000 iterations. To test the performance, we applied the trained MTANN 
filter to the entire lungs. We applied thresholding to the output images of the trained 
MTANN filter to detect nodule candidates. We compared the results of nodule-candidate 
detection with and without the MTANN filter.  
We applied the trained MTANN filter to original CT images. The result of enhancement of 
nodules in CT images by the trained MTANN filter is shown in Fig. 6. The MTANN filter 
enhances the nodule and suppresses most of the normal structures in the CT image. 
Although some medium-sized vessels and some of the large vessels in the hilum remain in 
the output image, the nodule with spiculation is enhanced well. We applied thresholding to 
the output images of the trained MTANN filter. There are a smaller number of candidates in 
the MTANN-based image, as illustrated in Fig 6(c), whereas there are many nodule 
candidates in the binary image obtained by use of simple thresholding without the MTANN 
filter, as shown in Fig. 6(d). Note that the large vessels in the hilum can easily be separated 
from nodules by use of their area information. 
 

 
 

Fig. 5. Flowchart of our CAD scheme utilizing the MTANN supervised lesion enhancement 
filter and the mixture of expert MTANNs for classification. 
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4. A CAD Scheme for Detection of Lung Nodules on CT Images 
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Lung cancer continues to rank as the leading cause of cancer deaths among Americans 
(American:Cancer:Society 2005; Jemal, Murray et al. 2005); the number of lung cancer deaths 
each year is greater than the combined number of breast, colon, and prostate cancer deaths. 
Evidence suggests that early detection of lung cancer may allow more timely therapeutic 
intervention and thus a more favorable prognosis for the patient (Heelan, Flehinger et al. 
1984; Flehinger, Kimmel et al. 1992; Sobue, Suzuki et al. 1992; Miettinen 2000). Therefore, in 
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et al. 1984; Fontana, Sanderson et al. 1984; Frost, Ball et al. 1984) and in Europe (Kubik and 
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CT has been performed for early detection of lung cancer (Kaneko, Eguchi et al. 1996; Sone, 
Takashima et al. 1998; Henschke, McCauley et al. 1999; Henschke, Naidich et al. 2001; 
Miettinen and Henschke 2001; Sone, Li et al. 2001; Nawa, Nakagawa et al. 2002; Swensen, 
Jett et al. 2003) since early 1990.   
Because CT is more sensitive than chest radiography in the detection of small non-calcified 
nodules due to lung carcinoma at an early stage (Sone, Takashima et al. 1998; Miettinen and 
Henschke 2001), lung cancer screening programs are being conducted in the United States 
(Henschke, McCauley et al. 1999; Henschke, Naidich et al. 2001; Miettinen and Henschke 
2001; Swensen, Jett et al. 2003) and Japan (Kaneko, Eguchi et al. 1996; Sone, Takashima et al. 
1998; Sone, Li et al. 2001; Nawa, Nakagawa et al. 2002) with low-dose single-detector CT as 
the screening modality. Recently, multi-detector-row CT (MDCT) has been used for lung 
cancer screening. Helical CT and MDCT, however, generate a large number of images that 
must be read by radiologists. This may lead to “information overload” for radiologists. 
Furthermore, radiologists may fail to detect some cancers, which are visible in retrospect, 
during the interpretation of CT images (Gurney 1996; Li, Sone et al. 2002). Therefore, a CAD 
scheme for detection of lung nodules in CT has been investigated as a tool for lung cancer 
screening, because the CAD scheme may detect some cancers that are “missed” by 
radiologists (Li, Sone et al. 2002), and provide quantitative detection results as a “second 
opinion” to assist radiologists in improving their detection accuracy (Kobayashi, Xu et al. 
1996).  

 
4.2. Database of Lung Nodules in CT 
To test the performance of a CAD scheme utilizing the MTANN filters, we created a CT 
database consisting of 69 lung cancers in 69 patients (Li, Sone et al. 2002). The scans used for 
this study were acquired with a low-dose protocol of 120 kVp, 25 mA or 50 mA, 10-mm 
collimation, and a 10-mm reconstruction interval at a helical pitch of two. The reconstructed 
CT images were 512 x 512 pixels in size with a section thickness of 10 mm. The 69 CT scans 
consisted of 2,052 sections. All cancers were confirmed either by biopsy or surgically.  

 
4.3. Detection of Nodule Candidates 
The flowchart of our CAD scheme utilizing the MTANN supervised lesion enhancement 
filter and the MTANNs for classification is shown in Fig. 5. To limit processing area to the 
lungs, we segmented the lung regions in a CT image by use of thresholding based on Otsu’s 

threshold value determination (Otsu 1979). Then, we applied a rolling-ball technique along 
the outlines of the extracted lung regions to include a nodule attached to the pleura in the 
segmented lung regions (Armato, Giger et al. 2001).  
To enhance lung nodules in CT images, we trained an MTANN filter with 13 lung nodules 
in a training database and the corresponding “teaching” images that contained maps for the 
“likelihood of being nodules,” as illustrated in Fig. 2(a). To obtain the training regions, RT, 
we applied a mathematical morphology opening filter to the manually segmented lung 
nodules (i.e., binary regions) such that the training regions sufficiently covered nodules and 
surrounding normal structures (i.e., a 9 times larger area than the nodule region, on 
average). A three-layer structure was employed for the MTANN filter, because any 
continuous mapping can be approximated by a three-layer ANN (Funahashi 1989). The 
number of hidden units was selected to be 20 by use of a method for designing the structure 
of an ANN (Suzuki, Horiba et al. 2001; Suzuki 2004). The size of the input sub-region, RS, 
was 9 by 9 pixels, which was determined experimentally in our previous studies (Suzuki, 
Armato et al. 2003; Arimura, Katsuragawa et al. 2004; Suzuki and Doi 2005). The slope of the 
linear function, a, was 0.01. With the parameters above, training of the MTANN filter was 
performed by 1,000,000 iterations. To test the performance, we applied the trained MTANN 
filter to the entire lungs. We applied thresholding to the output images of the trained 
MTANN filter to detect nodule candidates. We compared the results of nodule-candidate 
detection with and without the MTANN filter.  
We applied the trained MTANN filter to original CT images. The result of enhancement of 
nodules in CT images by the trained MTANN filter is shown in Fig. 6. The MTANN filter 
enhances the nodule and suppresses most of the normal structures in the CT image. 
Although some medium-sized vessels and some of the large vessels in the hilum remain in 
the output image, the nodule with spiculation is enhanced well. We applied thresholding to 
the output images of the trained MTANN filter. There are a smaller number of candidates in 
the MTANN-based image, as illustrated in Fig 6(c), whereas there are many nodule 
candidates in the binary image obtained by use of simple thresholding without the MTANN 
filter, as shown in Fig. 6(d). Note that the large vessels in the hilum can easily be separated 
from nodules by use of their area information. 
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   (a)     (b) 

 
   (c)     (d) 
Fig. 6. Enhancement of a lesion by the trained lesion-enhancement MTANN filter for a non-
training case. (a) Original image of the segmented lung with a nodule (indicated by an 
arrow). (b) Output image of the trained lesion-enhancement MTANN filter. The nodule is 
enhanced in the output image, whereas most of the normal structures are suppressed. (c) 
Nodule candidates detected by the trained lesion-enhancement MTANN followed by 
thresholding. (d) Nodule candidates detected by simple thresholding only. 

 
4.4. Classification of Nodule Candidates 
Nodule candidates generally include true positives and mostly FPs. For reduction of the 
FPs, we trained an MTANN for classification of nodule candidates into nodules or non-
nodules (Suzuki, Armato et al. 2003; Suzuki, Yoshida et al. 2008).  We used 10 different-sized 
nodules with various contrasts and 10 non-nodule images including medium-sized and 
small vessels as training cases for the MTANN, as shown in Fig. 7. Parameters such as the 

size of the subregion of the MTANN, the standard deviation of the 2D Gaussian function in 
the teaching image, and the size of the teaching image were determined by experimental 
analysis (16) to be 9 x 9 pixels, 5.0 pixels, and 19 x 19 pixels, respectively. We employed a 
three-layer structure for the MTANN, because it has been proved theoretically that a three-
layer ANN can approximate any continuous mapping (38,39). The number of hidden units 
in the MTANN was determined to be 20 by use of a method for determining the structure of 
an ANN (40,41). Thus, the numbers of input, hidden, and output units were 81, 20, and one, 
respectively. With the parameters above, the training of the MTANN was performed 500,000 
times, and it converged with a mean absolute error of 0.112. Figure 7 shows the input 
images used for training the MTANN and the output images of the trained MTANN. It is 
apparent that the nodules are represented by light “fuzzy nodular” distributions in the 
output images, whereas the vessels are dark and thus “almost removed.”  
 

 
Fig. 7. Ten nodules and 10 non-nodule images including vessels used for training an 
MTANN, and the corresponding output images of the trained MTANN. The nodules are 
various-sized with different contrasts. The non-nodule images include medium-sized and 
small vessels with various orientations, which are the majority of non-nodules in the lungs. 

 
4.5. Simulated CT Images 
To investigate the basic characteristics of the trained MTANNs, we created simulated CT 
images that contained model nodules and model vessels. A nodule was modeled as a 
sphere, and a vessel as a cylinder. The simulated images included various-sized model 
nodules (8.0 mm, 14.0 mm, and 20.0 mm in diameter) with low, medium, and high contrast 
[200 Hounsfield units (HU), 400 HU, and 600 HU], various-sized model vessels (2.0 mm, 3.0 
mm, and 4.0 mm in diameter) with different orientations such as horizontal, vertical, and 
diagonal, and model nodules overlapping with model vessels, as shown in Fig. 8(a). We 
created the same-sized model nodules with different contrasts, because solid opacity and 
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three-layer structure for the MTANN, because it has been proved theoretically that a three-
layer ANN can approximate any continuous mapping (38,39). The number of hidden units 
in the MTANN was determined to be 20 by use of a method for determining the structure of 
an ANN (40,41). Thus, the numbers of input, hidden, and output units were 81, 20, and one, 
respectively. With the parameters above, the training of the MTANN was performed 500,000 
times, and it converged with a mean absolute error of 0.112. Figure 7 shows the input 
images used for training the MTANN and the output images of the trained MTANN. It is 
apparent that the nodules are represented by light “fuzzy nodular” distributions in the 
output images, whereas the vessels are dark and thus “almost removed.”  
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MTANN, and the corresponding output images of the trained MTANN. The nodules are 
various-sized with different contrasts. The non-nodule images include medium-sized and 
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ground-glass opacity (GGO) of the same size have different contrasts. The background level 
was -900 HU, which corresponds to the average background level in the lungs.  
Figure 8(b) shows the output image of the MTANN trained with actual nodules. In the 
output image, the various-sized model nodules with different contrasts are represented by 
light “nodular” distributions, whereas various-sized model vessels with different 
orientations are almost dark, and are thus removed. Therefore, it is apparent in the figure 
that model nodules can be distinguished from model vessels. This result indicates that the 
MTANN was able to learn from a very small number of training actual cases (10 actual 
nodules and 10 actual vessel images) to enhance sphere-like objects (model nodules) and 
suppress cylinder-like objects (model vessels), and that the trained MTANN would be 
robust against a change in scale and rotation.  
 

 
Fig. 8. Simulated CT image that contains various-sized model nodules with different 
contrasts and various-sized model vessels with different orientations, and the corresponding 
output images of the MTANNs trained with 10 actual nodules and 10 actula vessel images. 
(a) Input image for the MTANNs. (b) Output image of the trained MTANN. 

 
4.6. Performance of a CAD Scheme 
In order to investigate the performance for actual nodules and vessels, we applied the 
trained MTANN to non-training cases. Figures 9(a) and (b) show the output images of the 
trained MTANN, where various-sized actual nodules with different contrasts are 
represented by light “nodular” distributions, whereas medium-sized and small actual 
vessels with different orientations are almost eliminated. To distinguish nodules from 
various types of non-nodules, we trained 6 classification-MTANNs with 10 typical nodules 
and 6 different types of 10 non-nodules such as medium-sized vessels, small vessels, large 
vessels, soft-tissue opacity, and abnormal opacities from a training database. We applied the 
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trained classification-MTANNs to various types of nodules and non-nodules. The trained 
classification-MTANNs enhance nodules and suppress most of normal structures including 
various-sized lung vessels in CT images, as shown in Fig. 9.  The scores indicating the 
likelihood of being a nodule from the 6 classification-MTANNs were combined with a 
mixing ANN to form a mixture of expert classification-MTANNs. We used a leave-one-out 
cross-validation test for testing the mixing ANN in the mixture of expert MTANNs. We 
evaluated the performance by using free-response receiver-operating-characteristic (FROC) 
analysis (Egan, Greenberg et al. 1961).  
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ground-glass opacity (GGO) of the same size have different contrasts. The background level 
was -900 HU, which corresponds to the average background level in the lungs.  
Figure 8(b) shows the output image of the MTANN trained with actual nodules. In the 
output image, the various-sized model nodules with different contrasts are represented by 
light “nodular” distributions, whereas various-sized model vessels with different 
orientations are almost dark, and are thus removed. Therefore, it is apparent in the figure 
that model nodules can be distinguished from model vessels. This result indicates that the 
MTANN was able to learn from a very small number of training actual cases (10 actual 
nodules and 10 actual vessel images) to enhance sphere-like objects (model nodules) and 
suppress cylinder-like objects (model vessels), and that the trained MTANN would be 
robust against a change in scale and rotation.  
 

 
Fig. 8. Simulated CT image that contains various-sized model nodules with different 
contrasts and various-sized model vessels with different orientations, and the corresponding 
output images of the MTANNs trained with 10 actual nodules and 10 actula vessel images. 
(a) Input image for the MTANNs. (b) Output image of the trained MTANN. 
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various-sized lung vessels in CT images, as shown in Fig. 9.  The scores indicating the 
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(c) 

Fig. 9. Illustrations of (a) various types of actual nodules and the corresponding output 
images of the trained MTANN for non-training cases, (b) various-sized lung vessels and and 
the corresponding output images, and (c) other types of non-nodules and the corresponding 
output images.  
 
To test the performance of our CAD scheme utilizing the MTANN lesion enhancement filter 
and the classification MTANNs, we applied it to the test database containing 69 lung 
cancers. The MTANN lesion enhancement filter followed by thresholding identified 97% 
(67/69) of cancers with 6.7 FPs per section. The classification-MTANNs were applied to the 
nodule candidates (true positives and FPs) for classification of the candidates into nodules 
or non-nodules. The scores from the 6 classification-MTANNs are shown in Fig. 10. 
Although the distributions for nodules and non-nodules overlap, many nodules can be 
separated from non-nodules by decision boundaries. The FROC curve indicating the 
performance of the mixture of expert MTANNs is shown in Fig. 11. The mixture of expert 
MTANNs was able to remove 60% (8,172/13,688) or 93% (12,667/13,688) of non-nodules 
(FPs) with a loss of 1 true positive or 10 true positives, respectively. Thus, our MTANN-
based CAD scheme achieved a 96% (66/69) or 84% (57/69) sensitivity with 2.7 (5,516/2,052) 
or 0.5 (1,021/2,052) FPs per section. The remaining true-positive nodules included a ground-
glass opacity, a cancer overlapping vessels, and a cancer touching the pleura. In contrast, the 
difference-image technique followed by multiple thresholding in the previously reported 
CAD scheme (Arimura, Katsuragawa et al. 2004) detected 96% (66/69) of cancers with 19.3 
FPs per section. Thus, the MTANN lesion-enhancement filter was effective for improving 
the sensitivity and specificity of a CAD scheme. The feature analysis and the rule-based 
scheme removed FPs further and achieved 9.3 FPs per section. Finally, with LDA, the 
previously reported CAD scheme yielded a sensitivity of 84% (57/69) with 1.4 (2,873/2,052) 
FPs per section. Therefore, MTANNs were effective for improving the sensitivity and 
specificity of a CAD scheme.  
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Fig. 10. Distributions of scores from MTANN nos. 1 and 2 of the 6 classification-MTANNs 
for 67 nodules (white circles) and 13,688 non-nodules (black dots) detected by the lesion-
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(c) 

Fig. 9. Illustrations of (a) various types of actual nodules and the corresponding output 
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the corresponding output images, and (c) other types of non-nodules and the corresponding 
output images.  
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5. A CAD Scheme for Detection of Polyps in CTC 
 

5.1. Colorectal Cancer Detection in CTC 
Colorectal cancer is the second leading cause of cancer deaths in the United States (Jemal, 
Murray et al. 2005). Evidence suggests that early detection and removal of polyps (i.e., 
precursors of colorectal cancer) can reduce the incidence of colorectal cancer (Winawer, 
Fletcher et al. 1997; Dachman 2003). CT colonography (CTC), also known as virtual 
colonoscopy, is a technique for detecting colorectal neoplasms by use of a CT scan of the 
colon (Macari and Bini 2005). The diagnostic performance of CTC in detecting polyps, 
however, remains uncertain due to a propensity for perceptual errors (Fletcher, Booya et al. 
2005). Computer-aided detection (CAD) of polyps has been investigated to overcome the 
difficulty with CTC. CAD has the potential to improve radiologists’ diagnostic performance 
in the detection of polyps. 
Although CAD schemes are useful for improving radiologists’ sensitivity in detection of 
polyps in CTC, a major challenge for CAD schemes is reducing the number of FPs, while 
maintaining high sensitivity. Major sources of FPs generated by CAD schemes include 
haustral folds, residual stool, rectal tubes, the ileocecal valve, and extra-colonic structures 
such as the small bowel and stomach (Yoshida and Dachman 2005). Among those FP 
sources, rectal tubes are relatively obvious FPs.  Radiologists may, however, lose their 
confidence in CAD as an effective tool if the CAD scheme generates such obvious FPs. 
Therefore, removal of rectal-tube-induced FPs is desirable. To address this issue, we 
previously reported a 3D MTANN for distinction between polyps and rectal tubes in 3D 
CTC volumetric data (Suzuki, Yoshida et al. 2006). The 3D MTANN eliminated all rectal-
tube-induced FPs without removal of any true positives. Our purpose in this study was to 
develop a “mixture of expert” 3D MTANNs for further reduction of FPs in a polyp-detection 
CAD scheme while maintaining high sensitivity. 

 
5.2. CTC Database 
CTC examinations were performed on 73 patients at The University of Chicago Medical 
Center. The patients’ colons were prepared by standard pre-colonoscopy cleansing with 
administration of cathartics following a water diet or low-fiber diet, and they were 
insufflated with room air or carbon dioxide. Each patient was scanned in both supine and 
prone positions. Our database thus contained 146 CTC datasets. The CT scans were 
performed with either a single- or a multi-detector-row CT scanner (HiSpeed CTi or 
LightSpeed QX/i, GE Medical Systems, Milwaukee, WI). The CT scanning parameters 
included collimations between 2.5 and 5.0 mm, reconstruction intervals of 1.0-5.0 mm [1.0 
mm (n=2, 1% of the CTC datasets), 1.25 mm (n=3, 2%), 1.5 mm (n=59, 41%), 2.5 mm (n=79, 
54%), and 5.0 mm (n=3, 2%)], and tube currents of 60-120 mA with 120 kVp. Each 
reconstructed CT section had a matrix size of 512 x 512 pixels, with an in-plane pixel size of 
0.5-0.7 mm. The CT sections were interpolated to isotropic resolution by use of linear 
interpolation in the transverse direction. All patients underwent “reference-standard” 
optical colonoscopy. Radiologists established the locations of polyps in the CTC datasets by 
use of the colonoscopy and pathology reports, as well as multiplanar reformatted views of 
the CTC on a viewing workstation (GE Advantage Windows Workstation v.4.2, GE Medical 
Systems, Milwaukee, WI). In this study, we used 5 mm as the threshold for clinically 
significant polyps(Johnson and Dachman 2000). Fifteen patients had 28 polyps, 15 of which 

were 5-9 mm in diameter, and 13 were 10-25 mm. There was no polyp that was submerged 
in fluid. Fluid was minimized by use of a saline cathartic preparation as the standard 
preparation, not a colon gavage. We also created a training database of non-polyps by 
manual extraction of volumes containing non-polyps from 27 “normal” (non-polyp) CTC 
cases. 

 
5.3. Performance of Our Initial CAD Scheme 
We applied our previously reported CAD scheme (Yoshida and Nappi 2001; Nappi and 
Yoshida 2003) to the 73 CTC cases. The scheme included centerline-based extraction of the 
colon (Frimmel, Nappi et al. 2004), shape-based detection of polyps (Yoshida and Näppi 
2001; Yoshida, Masutani et al. 2002), and initial reduction of FPs by use of a Bayesian ANN 
(Kupinski, Edwards et al. 2001) based on geometric and texture features (Nappi and 
Yoshida 2002; Nappi and Yoshida 2003). We evaluated supine and prone CTC volumes 
independently. This CAD scheme achieved a 96.4% (27/28 polyps) by-polyp sensitivity with 
an average of 3.1 (224/73) FPs per patient. Forty-eight true-positive polyp detections in both 
supine and prone CTC volumes represented 27 polyps. We combined our previously 
reported CAD scheme with the mixture of expert 3D MTANNs for further reduction of FPs. 

 
5.4. Training of Expert 3D MTANNs 
We manually selected ten representative polyp volumes (ten polyps) from the 48 true-
positive volumes (containing 27 polyps) in our CTC database as the training polyp cases for 
expert 3D MTANNs. We classified CAD-generated FP sources into eight categories, i.e., 
rectal tubes, small bulbous folds, solid stool, stool with bubbles, colonic walls with haustral 
folds, elongated folds, strip-shaped folds, and the ileocecal valve. We manually selected ten 
non-polyps in each of the eight categories from the training non-polyp database (which was 
not used for testing). The ten polyps and the ten rectal tubes were the same as those used in 
our previous study (Suzuki, Yoshida et al. 2006). The number of sample volumes for each 
category was ten, because the performance of an expert 3D MTANN was found to be 
highest when the number of training sample volumes was 20 (i.e., ten polyps and ten non-
polyps) in our previous study (Suzuki, Yoshida et al. 2006), and the performance of 2D/3D 
MTANNs was not sensitive to the number of sample regions/volumes over different types 
of non-lesions in our previous studies (Suzuki, Armato et al. 2003; Suzuki, Armato et al. 
2003; Suzuki and Doi 2005; Suzuki, Li et al. 2005; Suzuki, Yoshida et al. 2006).  
We trained eight expert 3D MTANNs with the ten polyps and ten non-polyps in each 
category. A three-layer structure was employed for the expert 3D MTANNs(Funahashi 
1989). The size of the training volume and the standard deviation of the 3D Gaussian 
distribution in the teaching volume were 15 x 15 x 15 voxels (i.e., cubic shape) and 4.5 
voxels, respectively, which were determined empirically based on our previous studies 
(Suzuki, Armato et al. 2003; Arimura, Katsuragawa et al. 2004; Suzuki and Doi 2005; Suzuki, 
Yoshida et al. 2006). The number of hidden units was selected to be 25 by use of a method 
for designing the structure of an ANN (Suzuki, Horiba et al. 2001; Suzuki 2004). With the 
parameters above, training of the expert 3D MTANNs was performed by 500,000 iterations. 
We selected four among the eight expert 3D MTANNs for the mixture of expert 3D 
MTANNs by experimental analysis, because the mixture of these four expert 3D MTANNs 
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Fletcher et al. 1997; Dachman 2003). CT colonography (CTC), also known as virtual 
colonoscopy, is a technique for detecting colorectal neoplasms by use of a CT scan of the 
colon (Macari and Bini 2005). The diagnostic performance of CTC in detecting polyps, 
however, remains uncertain due to a propensity for perceptual errors (Fletcher, Booya et al. 
2005). Computer-aided detection (CAD) of polyps has been investigated to overcome the 
difficulty with CTC. CAD has the potential to improve radiologists’ diagnostic performance 
in the detection of polyps. 
Although CAD schemes are useful for improving radiologists’ sensitivity in detection of 
polyps in CTC, a major challenge for CAD schemes is reducing the number of FPs, while 
maintaining high sensitivity. Major sources of FPs generated by CAD schemes include 
haustral folds, residual stool, rectal tubes, the ileocecal valve, and extra-colonic structures 
such as the small bowel and stomach (Yoshida and Dachman 2005). Among those FP 
sources, rectal tubes are relatively obvious FPs.  Radiologists may, however, lose their 
confidence in CAD as an effective tool if the CAD scheme generates such obvious FPs. 
Therefore, removal of rectal-tube-induced FPs is desirable. To address this issue, we 
previously reported a 3D MTANN for distinction between polyps and rectal tubes in 3D 
CTC volumetric data (Suzuki, Yoshida et al. 2006). The 3D MTANN eliminated all rectal-
tube-induced FPs without removal of any true positives. Our purpose in this study was to 
develop a “mixture of expert” 3D MTANNs for further reduction of FPs in a polyp-detection 
CAD scheme while maintaining high sensitivity. 

 
5.2. CTC Database 
CTC examinations were performed on 73 patients at The University of Chicago Medical 
Center. The patients’ colons were prepared by standard pre-colonoscopy cleansing with 
administration of cathartics following a water diet or low-fiber diet, and they were 
insufflated with room air or carbon dioxide. Each patient was scanned in both supine and 
prone positions. Our database thus contained 146 CTC datasets. The CT scans were 
performed with either a single- or a multi-detector-row CT scanner (HiSpeed CTi or 
LightSpeed QX/i, GE Medical Systems, Milwaukee, WI). The CT scanning parameters 
included collimations between 2.5 and 5.0 mm, reconstruction intervals of 1.0-5.0 mm [1.0 
mm (n=2, 1% of the CTC datasets), 1.25 mm (n=3, 2%), 1.5 mm (n=59, 41%), 2.5 mm (n=79, 
54%), and 5.0 mm (n=3, 2%)], and tube currents of 60-120 mA with 120 kVp. Each 
reconstructed CT section had a matrix size of 512 x 512 pixels, with an in-plane pixel size of 
0.5-0.7 mm. The CT sections were interpolated to isotropic resolution by use of linear 
interpolation in the transverse direction. All patients underwent “reference-standard” 
optical colonoscopy. Radiologists established the locations of polyps in the CTC datasets by 
use of the colonoscopy and pathology reports, as well as multiplanar reformatted views of 
the CTC on a viewing workstation (GE Advantage Windows Workstation v.4.2, GE Medical 
Systems, Milwaukee, WI). In this study, we used 5 mm as the threshold for clinically 
significant polyps(Johnson and Dachman 2000). Fifteen patients had 28 polyps, 15 of which 

were 5-9 mm in diameter, and 13 were 10-25 mm. There was no polyp that was submerged 
in fluid. Fluid was minimized by use of a saline cathartic preparation as the standard 
preparation, not a colon gavage. We also created a training database of non-polyps by 
manual extraction of volumes containing non-polyps from 27 “normal” (non-polyp) CTC 
cases. 

 
5.3. Performance of Our Initial CAD Scheme 
We applied our previously reported CAD scheme (Yoshida and Nappi 2001; Nappi and 
Yoshida 2003) to the 73 CTC cases. The scheme included centerline-based extraction of the 
colon (Frimmel, Nappi et al. 2004), shape-based detection of polyps (Yoshida and Näppi 
2001; Yoshida, Masutani et al. 2002), and initial reduction of FPs by use of a Bayesian ANN 
(Kupinski, Edwards et al. 2001) based on geometric and texture features (Nappi and 
Yoshida 2002; Nappi and Yoshida 2003). We evaluated supine and prone CTC volumes 
independently. This CAD scheme achieved a 96.4% (27/28 polyps) by-polyp sensitivity with 
an average of 3.1 (224/73) FPs per patient. Forty-eight true-positive polyp detections in both 
supine and prone CTC volumes represented 27 polyps. We combined our previously 
reported CAD scheme with the mixture of expert 3D MTANNs for further reduction of FPs. 

 
5.4. Training of Expert 3D MTANNs 
We manually selected ten representative polyp volumes (ten polyps) from the 48 true-
positive volumes (containing 27 polyps) in our CTC database as the training polyp cases for 
expert 3D MTANNs. We classified CAD-generated FP sources into eight categories, i.e., 
rectal tubes, small bulbous folds, solid stool, stool with bubbles, colonic walls with haustral 
folds, elongated folds, strip-shaped folds, and the ileocecal valve. We manually selected ten 
non-polyps in each of the eight categories from the training non-polyp database (which was 
not used for testing). The ten polyps and the ten rectal tubes were the same as those used in 
our previous study (Suzuki, Yoshida et al. 2006). The number of sample volumes for each 
category was ten, because the performance of an expert 3D MTANN was found to be 
highest when the number of training sample volumes was 20 (i.e., ten polyps and ten non-
polyps) in our previous study (Suzuki, Yoshida et al. 2006), and the performance of 2D/3D 
MTANNs was not sensitive to the number of sample regions/volumes over different types 
of non-lesions in our previous studies (Suzuki, Armato et al. 2003; Suzuki, Armato et al. 
2003; Suzuki and Doi 2005; Suzuki, Li et al. 2005; Suzuki, Yoshida et al. 2006).  
We trained eight expert 3D MTANNs with the ten polyps and ten non-polyps in each 
category. A three-layer structure was employed for the expert 3D MTANNs(Funahashi 
1989). The size of the training volume and the standard deviation of the 3D Gaussian 
distribution in the teaching volume were 15 x 15 x 15 voxels (i.e., cubic shape) and 4.5 
voxels, respectively, which were determined empirically based on our previous studies 
(Suzuki, Armato et al. 2003; Arimura, Katsuragawa et al. 2004; Suzuki and Doi 2005; Suzuki, 
Yoshida et al. 2006). The number of hidden units was selected to be 25 by use of a method 
for designing the structure of an ANN (Suzuki, Horiba et al. 2001; Suzuki 2004). With the 
parameters above, training of the expert 3D MTANNs was performed by 500,000 iterations. 
We selected four among the eight expert 3D MTANNs for the mixture of expert 3D 
MTANNs by experimental analysis, because the mixture of these four expert 3D MTANNs 
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((1) rectal tubes, (2) stool with bubbles, (3) colonic walls with haustral folds, and (4) solid 
stool) demonstrated the highest performance (described in the next subsection).  

 
5.5. Evaluation of the Performance for False-Positive Reduction 
We applied the trained expert 3D MTANNs to the 27 polyps (48 true-positive volumes) and 
all 224 non-training FPs identified by our previously reported CAD scheme. The output 
volumes for these testing cases are shown in Fig. 12. The centers of the input volumes 
corresponded to the detection results provided by the CAD scheme (including both true 
positives and FPs); thus, this experiment included the effect of actual off-centering of polyp 
candidates produced by the initial CAD scheme. Various polyps, including a sessile polyp 
(the third image from the left in Fig. 12(a)), are represented in the output by distributions of 
bright voxels, whereas various types of non-polyps appear as darker voxels, indicating the 
ability of the expert 3D MTANNs to enhance polyps and suppress different types of non-
polyps. We applied the 3D scoring method to the output volumes for polyps and non-
polyps. The 3D Gaussian weighting function used the same standard deviation as that for 
the 3D Gaussian distribution in the polyp teaching volume. Distributions of scores from the 
expert 3D MTANNs for the 27 polyps and all FPs are shown in Fig. 13. Although the two 
distributions in each graph overlap, a substantial fraction of FPs can be eliminated by use of 
the expert 3D MTANNs. 
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Fig. 12. Illustrations of (a) various testing polyps and the corresponding output volumes of 
four trained expert 3D MTANNs and (b) four different categories of testing FPs and the 
output volumes from corresponding expert 3D MTANNs. In the output volumes, polyps 
appear as distributions of bright voxels (i.e., they are enhanced), whereas different types of 
FPs appear as dark voxels (i.e., they are suppressed). 
 

 
Fig. 13. Distributions of scores from MTANN nos. 1 and 2 in the mixture of expert 3D 
MTANNs for 27 polyps (white circles) and 224 non-polyps (black dots). 
 
We evaluated the overall performance of the mixture of expert 3D MTANNs for FP 
reduction by use of free-response receiver-operating-characteristic (FROC) analysis (Egan, 
Greenberg et al. 1961). The FROC curve of the trained mixture of expert 3D MTANNs is 
shown in Fig. 14. The FROC curve was obtained by a change in the threshold value for the 
output of the mixing ANN. This FROC curve indicates that the mixture of expert 3D 
MTANNs was able to eliminate 63% (142/224) of non-polyps (FPs) without removal of any 
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of the 27 polyps, i.e., a 96.4% (27/28) overall by-polyp sensitivity was achieved at an FP rate 
of 1.1 (82/73) per patient. 
 

 
Fig. 14. The FROC curve that shows the overall performance of the mixture of expert 3D 
MTANNs when it was applied to the entire database of 27 polyps (48 true-positive volumes) 
and 224 FPs. The FROC curve indicates that the mixture of expert 3D MTANNs yielded a 
reduction of 63% (142/224) of non-polyps (FPs) without removal of any true positives, i.e., it 
achieved 100% (27/27 or 17/17) classification performance. 

 
6. Conclusion 
 

The MTANN supervised filter was effective for enhancement of lesions including lung 
nodules and colorectal polyps and suppression of non-lesions in medical images and was 
useful for improving the sensitivity and specificity of CAD schemes substantially. 
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of the 27 polyps, i.e., a 96.4% (27/28) overall by-polyp sensitivity was achieved at an FP rate 
of 1.1 (82/73) per patient. 
 

 
Fig. 14. The FROC curve that shows the overall performance of the mixture of expert 3D 
MTANNs when it was applied to the entire database of 27 polyps (48 true-positive volumes) 
and 224 FPs. The FROC curve indicates that the mixture of expert 3D MTANNs yielded a 
reduction of 63% (142/224) of non-polyps (FPs) without removal of any true positives, i.e., it 
achieved 100% (27/27 or 17/17) classification performance. 

 
6. Conclusion 
 

The MTANN supervised filter was effective for enhancement of lesions including lung 
nodules and colorectal polyps and suppression of non-lesions in medical images and was 
useful for improving the sensitivity and specificity of CAD schemes substantially. 
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