138 research outputs found

    Comparison and Characterization of Android-Based Fall Detection Systems

    Get PDF
    Falls are a foremost source of injuries and hospitalization for seniors. The adoption of automatic fall detection mechanisms can noticeably reduce the response time of the medical staff or caregivers when a fall takes place. Smartphones are being increasingly proposed as wearable, cost-effective and not-intrusive systems for fall detection. The exploitation of smartphones’ potential (and in particular, the Android Operating System) can benefit from the wide implantation, the growing computational capabilities and the diversity of communication interfaces and embedded sensors of these personal devices. After revising the state-of-the-art on this matter, this study develops an experimental testbed to assess the performance of different fall detection algorithms that ground their decisions on the analysis of the inertial data registered by the accelerometer of the smartphone. Results obtained in a real testbed with diverse individuals indicate that the accuracy of the accelerometry-based techniques to identify the falls depends strongly on the fall pattern. The performed tests also show the difficulty to set detection acceleration thresholds that allow achieving a good trade-off between false negatives (falls that remain unnoticed) and false positives (conventional movements that are erroneously classified as falls). In any case, the study of the evolution of the battery drain reveals that the extra power consumption introduced by the Android monitoring applications cannot be neglected when evaluating the autonomy and even the viability of fall detection systems.Ministerio de Economía y Competitividad TEC2009-13763-C02-0

    Assessing the feasibility of augmenting fall detection systems by relying on UWB-based position tracking and a home robot

    Get PDF
    Falls in the home environment are a primary cause of injury in older adults. According to the U.S. Centers for Disease Control and Prevention, every year, one in four adults 65 years of age and older reports experiencing a fall. A variety of different technologies have been proposed to detect fall events. However, the need to detect all fall instances (i.e., to avoid false negatives) has led to the development of systems marked by high sensitivity and hence a significant number of false alarms. The occurrence of false alarms causes frequent and unnecessary calls to emergency response centers, which are critical resources that should be utilized only when necessary. Besides, false alarms decrease the level of confidence of end-users in the fall detection system with a negative impact on their compliance with using the system (e.g., wearing the sensor enabling the detection of fall events). Herein, we present a novel approach aimed to augment traditional fall detection systems that rely on wearable sensors and fall detection algorithms. The proposed approach utilizes a UWB-based tracking system and a home robot. When the fall detection system generates an alarm, the alarm is relayed to a base station that utilizes a UWB-based tracking system to identify where the older adult and the robot are so as to enable navigating the environment using the robot and reaching the older adult to check if he/she experienced a fall. This approach prevents unnecessary calls to emergency response centers while enabling a tele-presence using the robot when appropriate. In this paper, we report the results of a novel fall detection algorithm, the characteristics of the alarm notification system, and the accuracy of the UWB-based tracking system that we implemented. The fall detection algorithm displayed a sensitivity of 99.0% and a specificity of 97.8%. The alarm notification system relayed all simulated alarm notification instances with a maximum delay of 106 ms. The UWB-based tracking system was found to be suitable to locate radio tags both in line-of-sight and in no-line-of-sight conditions. This result was obtained by using a machine learning-based algorithm that we developed to detect and compensate for the multipath effect in no-line-of-sight conditions. When using this algorithm, the error affecting the estimated position of the radio tags was smaller than 0.2 m, which is satisfactory for the application at hand

    Development of a Wireless Mobile Computing Platform for Fall Risk Prediction

    Get PDF
    Falls are a major health risk with which the elderly and disabled must contend. Scientific research on smartphone-based gait detection systems using the Internet of Things (IoT) has recently become an important component in monitoring injuries due to these falls. Analysis of human gait for detecting falls is the subject of many research projects. Progress in these systems, the capabilities of smartphones, and the IoT are enabling the advancement of sophisticated mobile computing applications that detect falls after they have occurred. This detection has been the focus of most fall-related research; however, ensuring preventive measures that predict a fall is the goal of this health monitoring system. By performing a thorough investigation of existing systems and using predictive analytics, we built a novel mobile application/system that uses smartphone and smart-shoe sensors to predict and alert the user of a fall before it happens. The major focus of this dissertation has been to develop and implement this unique system to help predict the risk of falls. We used built-in sensors --accelerometer and gyroscope-- in smartphones and a sensor embedded smart-shoe. The smart-shoe contains four pressure sensors with a Wi-Fi communication module to unobtrusively collect data. The interactions between these sensors and the user resulted in distinct challenges for this research while also creating new performance goals based on the unique characteristics of this system. In addition to providing an exciting new tool for fall prediction, this work makes several contributions to current and future generation mobile computing research

    Arduino Based Fall Detection and Alert System

    Get PDF
    Falling down is among the major causes of medical problem that are faced by the elderly people. Elderly people tend to injured themselves from falling down more often especially when they are living alone. When a falling event occurred, medical attention need to be provided immediately in order to reduce the risk of faller from getting severe injuries which may lead to death. Several technologies have been developed which some utilized webcams to monitor the activities of elderly people. However, the cost of operation and installation is expensive and only applicable for indoor environment. Some user also worried about their privacy issues. Current commercialized device required user to wear wireless emergency transmitter in form of pendant and wristband. This method will restrict the user movement and produce high false alarm due to frequent swinging and movement of the device. This project proposed a fall detection system which is cost effective and reliable to detect fall and alert nearby healthcare center or relatives for help and support. For fall detection, accelerometer and gyroscope was used to detect acceleration and body tilt angle of the faller respectively

    Computational Approaches for Remote Monitoring of Symptoms and Activities

    Get PDF
    We now have a unique phenomenon where significant computational power, storage, connectivity, and built-in sensors are carried by many people willingly as part of their life style; two billion people now use smart phones. Unique and innovative solutions using smart phones are motivated by rising health care cost in both the developed and developing worlds. In this work, development of a methodology for building a remote symptom monitoring system for rural people in developing countries has been explored. Design, development, deployment, and evaluation of e-ESAS is described. The system’s performance was studied by analyzing feedback from users. A smart phone based prototype activity detection system that can detect basic human activities for monitoring by remote observers was developed and explored in this study. The majority voting fusion technique, along with decision tree learners were used to classify eight activities in a multi-sensor framework. This multimodal approach was examined in details and evaluated for both single and multi-subject cases. Time-delay embedding with expectation-maximization for Gaussian Mixture Model was explored as a way of developing activity detection system using reduced number of sensors, leading to a lower computational cost algorithm. The systems and algorithms developed in this work focus on means for remote monitoring using smart phones. The smart phone based remote symptom monitoring system called e-ESAS serves as a working tool to monitor essential symptoms of patients with breast cancer by doctors. The activity detection system allows a remote observer to monitor basic human activities. For the activity detection system, the majority voting fusion technique in multi-sensor architecture is evaluated for eight activities in both single and multiple subjects cases. Time-delay embedding with expectation-maximization algorithm for Gaussian Mixture Model was studied using data from multiple single sensor cases

    Support Vector Machine Classifiers Show High Generalizability in Automatic Fall Detection in Older Adults

    Get PDF
    Falls are a major cause of morbidity and mortality in neurological disorders. Technical means of detecting falls are of high interest as they enable rapid notification of caregivers and emergency services. Such approaches must reliably differentiate between normal daily activities and fall events. A promising technique might be based on the classification of movements based on accelerometer signals by machine-learning algorithms, but the generalizability of classifiers trained on laboratory data to real-world datasets is a common issue. Here, three machine-learning algorithms including Support Vector Machine (SVM), k-Nearest Neighbors (kNN), and Random Forest (RF) were trained to detect fall events. We used a dataset containing intentional falls (SisFall) to train the classifier and validated the approach on a different dataset which included real-world accidental fall events of elderly people (FARSEEING). The results suggested that the linear SVM was the most suitable classifier in this cross-dataset validation approach and reliably distinguished a fall event from normal everyday activity at an accuracy of 93% and similarly high sensitivity and specificity. Thus, classifiers based on linear SVM might be useful for automatic fall detection in real-world applications

    Elderly Fall Detection Systems: A Literature Survey

    Get PDF
    Falling is among the most damaging event elderly people may experience. With the ever-growing aging population, there is an urgent need for the development of fall detection systems. Thanks to the rapid development of sensor networks and the Internet of Things (IoT), human-computer interaction using sensor fusion has been regarded as an effective method to address the problem of fall detection. In this paper, we provide a literature survey of work conducted on elderly fall detection using sensor networks and IoT. Although there are various existing studies which focus on the fall detection with individual sensors, such as wearable ones and depth cameras, the performance of these systems are still not satisfying as they suffer mostly from high false alarms. Literature shows that fusing the signals of different sensors could result in higher accuracy and lower false alarms, while improving the robustness of such systems. We approach this survey from different perspectives, including data collection, data transmission, sensor fusion, data analysis, security, and privacy. We also review the benchmark data sets available that have been used to quantify the performance of the proposed methods. The survey is meant to provide researchers in the field of elderly fall detection using sensor networks with a summary of progress achieved up to date and to identify areas where further effort would be beneficial

    Highly-efficient fog-based deep learning AAL fall detection system

    Full text link
    [EN] Falls is one of most concerning accidents in aged population due to its high frequency and serious repercussion; thus, quick assistance is critical to avoid serious health consequences. There are several Ambient Assisted Living (AAL) solutions that rely on the technologies of the Internet of Things (IoT), Cloud Computing and Machine Learning (ML). Recently, Deep Learning (DL) have been included for its high potential to improve accuracy on fall detection. Also, the use of fog devices for the ML inference (detecting falls) spares cloud drawback of high network latency, non-appropriate for delay-sensitive applications such as fall detectors. Though, current fall detection systems lack DL inference on the fog, and there is no evidence of it in real environments, nor documentation regarding the complex challenge of the deployment. Since DL requires considerable resources and fog nodes are resource-limited, a very efficient deployment and resource usage is critical. We present an innovative highly-efficient intelligent system based on a fog-cloud computing architecture to timely detect falls using DL technics deployed on resource-constrained devices (fog nodes). We employ a wearable tri-axial accelerometer to collect patient monitoring data. In the fog, we propose a smart-IoT-Gateway architecture to support the remote deployment and management of DL models. We deploy two DL models (LSTM/GRU) employing virtualization to optimize resources and evaluate their performance and inference time. The results prove the effectiveness of our fall system, that provides a more timely and accurate response than traditional fall detector systems, higher efficiency, 98.75% accuracy, lower delay, and service improvement.This research was supported by the Ecuadorian Government through the Secretary of Higher Education, Science, Technology, and Innovation (SENESCYT) and has received funding from the European Union's Horizon 2020 research and innovation program as part of the ACTIVAGE project under Grant 732679.Sarabia-Jácome, D.; Usach, R.; Palau Salvador, CE.; Esteve Domingo, M. (2020). Highly-efficient fog-based deep learning AAL fall detection system. Internet of Things. 11:1-19. https://doi.org/10.1016/j.iot.2020.100185S11911“World Population Ageing.” [Online]. Available: http://www.un.org/esa/population/publications/worldageing19502050/. [Accessed: 23-Sep-2018].“Falls, ” World Health Organization. [Online]. Available: http://www.who.int/news-room/fact-sheets/detail/falls. [Accessed: 20-Sep-2018].Rashidi, P., & Mihailidis, A. (2013). A Survey on Ambient-Assisted Living Tools for Older Adults. IEEE Journal of Biomedical and Health Informatics, 17(3), 579-590. doi:10.1109/jbhi.2012.2234129Bousquet, J., Kuh, D., Bewick, M., Strandberg, T., Farrell, J., Pengelly, R., … Bringer, J. (2015). Operative definition of active and healthy ageing (AHA): Meeting report. Montpellier October 20–21, 2014. European Geriatric Medicine, 6(2), 196-200. doi:10.1016/j.eurger.2014.12.006“WHO | What is Healthy Ageing?”[Online]. Available: http://www.who.int/ageing/healthy-ageing/en/. [Accessed: 19-Sep-2018].Fei, X., Shah, N., Verba, N., Chao, K.-M., Sanchez-Anguix, V., Lewandowski, J., … Usman, Z. (2019). CPS data streams analytics based on machine learning for Cloud and Fog Computing: A survey. Future Generation Computer Systems, 90, 435-450. doi:10.1016/j.future.2018.06.042W. Zaremba, “Recurrent neural network regularization,” no. 2013, pp. 1–8, 2015.Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735-1780. doi:10.1162/neco.1997.9.8.1735J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated recurrent neural networks on sequence modeling,” pp. 1–9, 2014.N. Zerrouki, F. Harrou, Y. Sun, and A. Houacine, “Vision-based human action classification,” vol. 18, no. 12, pp. 5115–5121, 2018.Panahi, L., & Ghods, V. (2018). Human fall detection using machine vision techniques on RGB–D images. Biomedical Signal Processing and Control, 44, 146-153. doi:10.1016/j.bspc.2018.04.014Y. Li, K.C. Ho, and M. Popescu, “A microphone array system for automatic fall detection,” vol. 59, no. 2, pp. 1291–1301, 2012.Taramasco, C., Rodenas, T., Martinez, F., Fuentes, P., Munoz, R., Olivares, R., … Demongeot, J. (2018). A Novel Monitoring System for Fall Detection in Older People. IEEE Access, 6, 43563-43574. doi:10.1109/access.2018.2861331C. Wang et al., “Low-power fall detector using triaxial accelerometry and barometric pressure sensing,” vol. 12, no. 6, pp. 2302–2311, 2016.S.B. Khojasteh and E. De Cal, “Improving fall detection using an on-wrist wearable accelerometer,” pp. 1–28.Theodoridis, T., Solachidis, V., Vretos, N., & Daras, P. (2017). Human Fall Detection from Acceleration Measurements Using a Recurrent Neural Network. IFMBE Proceedings, 145-149. doi:10.1007/978-981-10-7419-6_25F. Sposaro and G. Tyson, “iFall : an android application for fall monitoring and response,” pp. 6119–6122, 2009.A. Ngu, Y. Wu, H. Zare, A.P. B, B. Yarbrough, and L. Yao, “Fall detection using smartwatch sensor data with accessor architecture,” vol. 2, pp. 81–93.P. Jantaraprim and P. Phukpattaranont, “Fall detection for the elderly using a support vector machine,” no. 1, pp. 484–490, 2012.Aziz, O., Musngi, M., Park, E. J., Mori, G., & Robinovitch, S. N. (2016). A comparison of accuracy of fall detection algorithms (threshold-based vs. machine learning) using waist-mounted tri-axial accelerometer signals from a comprehensive set of falls and non-fall trials. Medical & Biological Engineering & Computing, 55(1), 45-55. doi:10.1007/s11517-016-1504-yV. Carletti, A. Greco, A. Saggese, and M. Vento, “A smartphone-based system for detecting falls using anomaly detection,” vol. 6978, 2017, pp. 490–499.Yacchirema, D., de Puga, J. S., Palau, C., & Esteve, M. (2018). Fall detection system for elderly people using IoT and Big Data. Procedia Computer Science, 130, 603-610. doi:10.1016/j.procs.2018.04.11

    Fall Prediction and Prevention Systems: Recent Trends, Challenges, and Future Research Directions.

    Get PDF
    Fall prediction is a multifaceted problem that involves complex interactions between physiological, behavioral, and environmental factors. Existing fall detection and prediction systems mainly focus on physiological factors such as gait, vision, and cognition, and do not address the multifactorial nature of falls. In addition, these systems lack efficient user interfaces and feedback for preventing future falls. Recent advances in internet of things (IoT) and mobile technologies offer ample opportunities for integrating contextual information about patient behavior and environment along with physiological health data for predicting falls. This article reviews the state-of-the-art in fall detection and prediction systems. It also describes the challenges, limitations, and future directions in the design and implementation of effective fall prediction and prevention systems
    • …
    corecore