5,180 research outputs found

    Developing a distributed electronic health-record store for India

    Get PDF
    The DIGHT project is addressing the problem of building a scalable and highly available information store for the Electronic Health Records (EHRs) of the over one billion citizens of India

    Safe and sustainable lithium-ion batteries

    Get PDF
    The transition to clean energy and electric mobility is driving unprecedented demand for lithium-ion batteries (LIBs). This paper investigates the safety and sustainability of LIBs, exploring ways of reducing their impact on the environment and ensuring they do not pose a danger to health of workers or users

    Toward Biologically-Inspired Self-Healing, Resilient Architectures for Digital Instrumentation and Control Systems and Embedded Devices

    Get PDF
    Digital Instrumentation and Control (I&C) systems in safety-related applications of next generation industrial automation systems require high levels of resilience against different fault classes. One of the more essential concepts for achieving this goal is the notion of resilient and survivable digital I&C systems. In recent years, self-healing concepts based on biological physiology have received attention for the design of robust digital systems. However, many of these approaches have not been architected from the outset with safety in mind, nor have they been targeted for the automation community where a significant need exists. This dissertation presents a new self-healing digital I&C architecture called BioSymPLe, inspired from the way nature responds, defends and heals: the stem cells in the immune system of living organisms, the life cycle of the living cell, and the pathway from Deoxyribonucleic acid (DNA) to protein. The BioSymPLe architecture is integrating biological concepts, fault tolerance techniques, and operational schematics for the international standard IEC 61131-3 to facilitate adoption in the automation industry. BioSymPLe is organized into three hierarchical levels: the local function migration layer from the top side, the critical service layer in the middle, and the global function migration layer from the bottom side. The local layer is used to monitor the correct execution of functions at the cellular level and to activate healing mechanisms at the critical service level. The critical layer is allocating a group of functional B cells which represent the building block that executes the intended functionality of critical application based on the expression for DNA genetic codes stored inside each cell. The global layer uses a concept of embryonic stem cells by differentiating these type of cells to repair the faulty T cells and supervising all repair mechanisms. Finally, two industrial applications have been mapped on the proposed architecture, which are capable of tolerating a significant number of faults (transient, permanent, and hardware common cause failures CCFs) that can stem from environmental disturbances and we believe the nexus of its concepts can positively impact the next generation of critical systems in the automation industry

    Alternatives for testing of context-aware software systems in non-academic settings:results from a <i>Rapid Review</i>

    Get PDF
    Context: Context-awareness challenges the engineering of contemporary software systems and jeopardizes their testing. The variation of context represents a relevant behavior that deepens the limitations of available software testing practices and technologies. However, such software systems are mainstream. Therefore, researchers in non-academic settings also face challenges when developing and testing contemporary software systems. Objective: To understand how researchers deal with the variation of context when testing context-aware software systems developed in non-academic settings. Method: To undertake a secondary study (Rapid Review) to uncover the necessary evidence from primary sources describing the testing of context-aware software systems outside academia. Results: The current testing initiatives in non-academic settings aim to generate or improve test suites that can deal with the context variation and the sheer volume of test input possibilities. They mostly rely on modeling the systems’ dynamic behavior and increasing computing resources to generate test inputs to achieve this. We found no evidence of test results aiming at managing context variation through the testing lifecycle process. Conclusions: So far, the identified testing initiatives and strategies are not ready for mainstream adoption. They are all domain-specific, and while the ideas and approaches can be reproduced in distinct settings, the technologies are to be re-engineered and tailored to the context-awareness of contemporary software systems in different problem domains. Further and joint investigations in academia and experiences in non-academic set- tings can evolve the body of knowledge regarding the testing of contemporary software systems in the field

    Towards a Cubesat Autonomicity Capability Model A Roadmap for Autonomicity in Cubesats

    Get PDF

    10431 Abstracts Collection -- Software Engineering for Self-Adaptive Systems

    Get PDF
    From 24.10. to 29.10.2010, the Dagstuhl Seminar 10431 ``Software Engineering for Self-Adaptive Systems\u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available
    • …
    corecore