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A B S T R A C T   

Context:  Context-awareness challenges the engineering of contemporary software systems and jeopardizes their 
testing. The variation of context represents a relevant behavior that deepens the limitations of available software 
testing practices and technologies. However, such software systems are mainstream. Therefore, researchers in 
non-academic settings also face challenges when developing and testing contemporary software systems. 
Objective:  To understand how researchers deal with the variation of context when testing context-aware software 
systems developed in non-academic settings. 
Method:  To undertake a secondary study (Rapid Review) to uncover the necessary evidence from primary sources 
describing the testing of context-aware software systems outside academia. 
Results:  The current testing initiatives in non-academic settings aim to generate or improve test suites that can 
deal with the context variation and the sheer volume of test input possibilities. They mostly rely on modeling the 
systems’ dynamic behavior and increasing computing resources to generate test inputs to achieve this. We found 
no evidence of test results aiming at managing context variation through the testing lifecycle process. 
Conclusions:  So far, the identified testing initiatives and strategies are not ready for mainstream adoption. They 
are all domain-specific, and while the ideas and approaches can be reproduced in distinct settings, the tech-
nologies are to be re-engineered and tailored to the context-awareness of contemporary software systems in 
different problem domains. Further and joint investigations in academia and experiences in non-academic set-
tings can evolve the body of knowledge regarding the testing of contemporary software systems in the field.   

1. Introduction 

Contemporary software systems (CSS) refer to software systems that 
demand integrating devices and communications technologies [1]. Ex-
amples of CSS domains include ambient intelligence, assisted living, 
systems of systems, the internet of things, cyber-physical systems, 
autonomous systems, and industry 4.0, which are now mainstream. CSS 
refers to software systems that demand integrating devices and com-
munications technologies [1]. In these systems, physical objects with 
embedded software are interconnected by networks to provide services 
to the system’s actors. Sensors, computer devices, and applications 
should interact, exchange information, and work with distinct elements 
to guarantee adequate functionalities. Therefore, CSS exploit technolo-
gies that offer challenges for their construction since they question the 

traditional form of developing software. CSS exhibit several character-
istics (like service discoverability and interoperation). Among the 
characteristics that these systems exhibit is context awareness [2] which 
is the focus of this work because it challenges current engineering 
practices [3], particularly when related to testing. 

Previous investigations highlighted relevant characteristics 
regarding the engineering of context-aware software systems (CASS) [2, 
4,5]. The hype of the press went from CEOs arguing that "driverless trucks 
will never happen" [6] to headlining the first successful coast-to-coast 
driverless truck journey in the USA [7]. Our previous research 
regarding ubiquitous [8,9], Internet of Things [1,10], and general 
context-aware software systems [11–13] revealed some gaps and the 
need for software technologies to support the engineering of CSS [10], 
mainly when their non-functional requirements include 
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context-awareness. 
The expectation of CASS is well deserved, as such software systems 

are bound to enter several aspects of our daily lives. There are clear 
indications that CASS present challenges to current engineering tech-
nologies [1–3]. Their testing exposes the limitations of available soft-
ware testing practices and technologies. Context-awareness amplifies 
the software testing conundrum between coverage and effort [14], as 
context variation greatly increases the test input space. CASS are 
currently well accepted and deployed in safety-critical underregulated 
domains (like Autonomous vehicles), presenting new risk sources for 
their users when not adequately tested. 

Not considering the nature of context during testing and quality 
assurance costs lives. Examples are already in the news, like the Boeing 
737 Max [15] and the Chevrolet Onix’s recall in Brazil [16]. In the 
Boeing 737 Max case, there was an omission to consider all design 
changes to the airplane aerodynamics when updating a software 
component designed to assist pilots in potentially dangerous situations. 
This omission led to a scenario where the software component enhanced 
the danger due to a faulty context interpretation. Such a scenario was 
(apparently) never tested before deployment. In the Chevrolet Onix 
case, the car sensors were not prepared to detect the exceptional heat-
wave in Rio the Janeiro, leading to situations where the car batteries 
ignited. 

This work is motivated by the assumptions that CASS are becoming 
mainstream, they are being introduced to the general public, and - 
considering previous works (including ours [11–14] and from other 
groups [2] or [15]) - there is little evidence on the testing of CASS in 
non-academic settings. 

This paper presents a Rapid Review (RR) [17] to understand how the 
researchers deal with the variation of context when testing CASS 
developed in non-academic settings. Given our work assumptions, 
knowledge of the literature in the field, and practical experience in 
testing CASS, we claim that RR is a suitable method to timely achieve 
our research objective. Indeed, this RR aims to find evidence from the 
literature in a timely and resource-efficient manner by using methods to 
accelerate or streamline traditional systematic review processes in 
rapidly changing fields [18]. 

Our results show that current research initiatives involving non- 
academic applications aim to generate or improve test suites that can 
deal with the variation of context and the sheer volume of test input 
possibilities. To achieve this, they mostly rely on modeling the dynamic 
behavior of the systems. They also need to rely on increasing computing 
resources to generate test inputs. Furthermore, we found no evidence of 
research results to manage context variation throughout the testing 
lifecycle process. In addition to this, all identified solutions are domain- 
specific and are not ready for widespread transfer. It means that soft-
ware testers looking to test CASS need to take on these approaches and 
re-engineer -or tailor - the solutions to their working domains, which 
comes at a considerable cost. 

The remainder of this paper is organized to convey the research 
method and results. First, we ground the terminology used through this 
work in Section 2. Section 3 aims to relate state of the art in testing CASS. 
Details of the research method design and its execution are provided in 
Sections 4 and 5, respectively. Data analysis is presented in Section 6. In 
Section 7, we present the results of this RR and frame them in the context 
of the state-of-the-art and the threats to the validity of this research, and 
propose some lessons learned. Future research directions are presented 
in Section 8, and empirical suggestions for testing CASS are reported in 
Section 9. Finally, Section 10 presents our conclusions. 

2. Background concepts 

This section conveys the background concepts that make the 
construct of this Rapid Review. 

2.1. Context and Context-awareness 

This work draws the definition of context by Abowd et al. [19], 
where context is any information that may be used to characterize an 
entity’s situation (logical and physical objects present in the system’s 
environment) and the relations relevant to the actor-computer interaction 
between actors and computers. As a result, context-awareness is a dynamic 
property of a software system that can evolutionarily affect its overall 
behavior in the interaction between actors and computers, as defined in de 
Sousa et al. [11]. Therefore, context-aware software systems can identify 
changes in the logical or physical environment (i.e., context) and adapt 
their behavior to serve the actor better. In the relationship between the 
CASS and the context itself lies the problem with their testing. When the 
context variations are considered, the input space for stimulating the 
CASS grows beyond the current technology’s handling capacity. The 
most used strategy to deal with the context and its variation is to model 
the system and exploit computing resources in simulation. In Matalonga 
et al. [12], we argued, and so have others [20–22], that the actual ap-
proaches for testing CASS are not prepared yet to deal with all the 
possible variations of the software system’s context. 

2.2. Software Testing 

Software Testing is a systematic process for revealing failures and, 
therefore, indicating the presence of faults in software. This activity is 
important for developing high-quality software systems by assessing 
their functional and non-functional requirements [23]. 

The ISO/IEC/IEEE 29119-1-2013 [24] strictly relates the 
non-functional requirements to the quality characteristics of a software 
product. These software quality characteristics are defined in the 
ISO/IEC 25010:2011 [25] (a.k.a. SQuaRE), which proposes a model 
categorizing software product quality properties into eight characteris-
tics: functional suitability, reliability, performance efficiency, usability, 
security, compatibility, maintainability, and portability. The ISO/-
IEC/IEEE 29119-1 classifies the requirements into two main categories, 
i.e., FRs and NFRs. FRs align with the functional suitability quality 
characteristic outlined in ISO/IEC 25010, whereas the NFRs are linked 
to the remaining seven quality characteristics (a.k.a. quality attributes) 
outlined in SQuaRE. Henceforth, we will use the terms non-functional 
requirement, quality attributes, and quality characteristic without 
distinctions. 

In this paper, to harmonize the terminology, we draw from the terms 
used in ISO/IEC/IEEE 29119-1-2013 [24]. In particular, we will use the 
test processes and test techniques for analyzing the data in this research 
work. According to this standard, the testing processes can be grouped 
into Organizational Test, Test Management, and Dynamic Test Processes. 
The former deals with organizational policies for testing and is out of 
this research’s scope. The second refers to "processes covering the man-
agement of testing for a whole test project or any test phase (e.g., system 
testing) or test type (e.g., performance testing) within a test project (e.g., 
project test management, system test management, performance test man-
agement)." They rely on the execution of subprocesses for (1) planning the 
resources needed to execute the test activities, (2) monitoring and con-
trolling the execution of the planned activities, and (3) completing the test 
process that is reached when the agreement that the testing activities are 
complete has been obtained. The latter "are used to carry out dynamic 
testing within a particular phase of testing (e.g., unit, integration, system, and 
acceptance) or type of testing (e.g., performance testing, security testing, 
usability testing)." They consist of four subprocesses.  

• Test Design & Implementation Process: it is performed to derive test 
cases and test procedures by exploiting combinations of testing 
techniques.  

• Test Environment Set-Up & Maintenance Process: it is used to build and 
maintain the running environment for executing the tests. 
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• Test Execution Process: it executes, in the test environment, the test 
procedures previously implemented. 

• Test Incident Reporting Process reports test incidents such as anoma-
lies, bugs, defects, errors, and issues found during the test execution 
process. 

In this work, we will focus on dynamic testing techniques. In this 
paper, we will use the terms testing technique and dynamic testing 
technique without distinctions. According to the ISO/IEC/IEEE 29119- 
2-2013 [26], the main goal of dynamic testing is to derive test cases to 
be dynamically executed on a test item that runs in a testing environ-
ment. In practice, software testers usually apply one or more test design 
techniques for deriving test cases and procedures with the main goal of 
achieving a given test completion criteria, typically described in terms of 
test coverage measures [26], and so, to reveal as many failures as 
possible [27]. 

A test case is defined in [24] as the lowest testing scope of test 
documentation. Test cases define the “set of preconditions, inputs and 
expected results, developed to drive the execution of a test item” [24]. 
Test suites are defined as a “set of test cases” [24], which are grouped to 
be executed to assess that the test item behaves as expected in specific 
scenarios. 

2.3. Non-academic setting 

The term non-academic setting is used throughout the text to convey 
the scope and interest of this RR. By using “non-academic setting,” we 
refer to software systems developed for industrial or commercial pur-
poses. We look for evidence about testing processes adopted for these 
systems that have been presented in peer-reviewed white literature. 

3. Related works 

Secondary studies on CASS testing are new in the software engi-
neering community. To the best of our knowledge, the first publication 
dates to 2016. In the following, we discuss (1) works focusing on specific 
CASS application domains, (2) studies addressing the problem from a 
general point of view, and (3) the novelties of this RR concerning pub-
lished secondary studies. 

3.1. Secondary studies on CASS testing for specific application domains 

We analyzed six secondary studies focusing on specific application 
domains. Costa et al. [28] surveyed 13 primary studies to understand the 
strategies adopted for testing smart cities applications and to discuss the 
difficulties identified by the developers for testing this type of 
context-aware software system. Schmidtke [29] presented a classifica-
tion of different approaches to testing intelligent sensor actuator systems 
(ISAS), with a special focus on autonomous vehicles. The author dis-
cussed the verification of algorithms generated by machine learning and 
reasoning. Schmidtke also showed that while the general verification of 
autonomous vehicles is a highly complex problem, it could become 
solvable piecewise if it can be broken down spatiotemporally. In addi-
tion, Schmidtke argued that verification of ISAS is a solvable problem if 
it is not seen purely as a computer engineering problem but also as a civil 
engineering problem so that it can be solved with a novel type of 
trustworthy human-like AI systems. Almeida et al. [30] and Luo et al. 
[22] presented systematic mapping and a survey in context-aware mo-
bile applications testing. Almeida et al. [30] analyzed 68 studies to 
summarize the current state of the art concerning test automation tools 
for Android context-aware applications. The authors identified five tools 
for testing context-aware Android apps and five tools supporting 
context-aware testing. These tools were compared to understand which 
context data are supported and how and if these tools can test context 
variations. 

Moreover, the study pointed out that the main challenges in mobile 

context-aware testing are mainly related to (1) the wide diversity and 
heterogeneity of context data types and context variations and (2) the 
nature of the context that constantly varies asynchronously. Luo et al. 
[22] gave an overview of the state-of-the-art context simulation methods 
for testing mobile context-aware applications. The work also discussed 
how each identified method could be implemented and deployed by 
testing tool developers and mobile application testers. Moreover, the 
authors summarized the main five challenges in context simulation. 
These are: to support the simulation in the early stages of the testing, to 
have high-fidelity emulators, to provide sufficient coverage of hetero-
geneous contextual data, to achieve the context simulation for 
multi-device scenarios, and to improve the support of automation. 
Siqueira et al. [31] extended a previous work of Ferrari et al. [32] with 
the main goal of characterizing the challenges that are faced during the 
testing activity of adaptive software systems (AdSs). Authors selected 
and analyzed 25 papers and classified 34 specific testing challenges for 
adaptive systems and inferred relationships among them through the 
definition of 12 generic challenges. Moreover, the authors also associ-
ated these challenges with the characteristics of adaptive software sys-
tems, such as the elements receiving environment data and elements 
dealing with system adaptations. 

3.2. Secondary studies on CASS testing in general 

We selected four works addressing the problem from a general point 
of view. Siqueira et al. presented two secondary studies addressing at the 
same time the problem of CASS testing and AdSs testing [21,33]. 
Siqueira et al. [33] showed the results of a Systematic Literature Review 
(SLR) whose main goal was to characterize fault types for AdSs and 
CASS. To reach this goal, the authors analyzed (1) eleven primary 
studies addressing fault types, (2) seven additional works investigating 
fault-based testing for AdSs and CASS, and (3) existing code snippets of 
real projects. Moreover, the authors developed new code snippets to 
illustrate how the fault types may occur. As a result, 26 specific fault 
types and a summary of 6 fault type categories for AdSs and CASS were 
presented. In addition, the authors discussed relationships between the 
fault types with current fault-based testing approaches. Siqueira et al. 
[21] presented an SLR and a thematic analysis of studies to update 
existing reviews of the same authors. The SLR selected 102 studies, and 
their analysis allowed us to characterize the testing approaches by 
grouping techniques for AdSs and CASS. The authors also presented 13 
types of challenges grouped by generic and specific challenges. Mata-
longa et al. [13] selected and analyzed 12 primary studies in a 
quasi-systematic literature review (qSLR) to characterize the methods 
adopted for CASS testing and understand their effectiveness. As for the 
results, the authors observed (1) the lack of consensus between the terms 
and naming conventions defined in the ISO/IEC 25010:2011 interna-
tional standard w.r.t. the descriptions of the techniques used by the 
primary sources and (2) that only two of the twelve identified sources 
dealt with the effectiveness evaluation of the proposed testing approach. 
Moreover, the authors pointed out that (1) there is a lack of consensus on 
what the primary sources described as context, and (2) none of the 
selected primary sources considered the variation of context during the 
test process execution since the proposed testing approaches adapted 
traditional non-context-aware methods to design the test cases to be 
executed for testing CASS. De Sousa [11] published a qSLR that surveyed 
17 primary studies to characterize the CASS testing approaches from 
different points of view, i.e., the methods used to design test cases, the 
quality characteristics addressed by the test cases, the coverage criteria 
used to evaluate the test cases adequacy, and the influence of the context 
in test cases design. 

3.3. Novelties of the RR concerning the analyzed literature 

All the analyzed secondary studies shared the common goal to un-
derstand the challenges and the difficulties when testing CASS. The most 
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common of these challenges are: (1) how to deal with the uncertainty 
introduced by the context, (2) how to accommodate the variation of the 
context during the execution of the tests, (3) how to deal with the huge 
combination of possible inputs and outputs of CASS, and (4) how to 
simulate realistic system execution environment and workload during 
the testing. 

This RR complements the aforementioned secondary studies since 
none focused on how researchers deal with the context variations when 
they perform testing processes for CASS developed in non-academic 
settings. Moreover, the RR also extends the entire set of the papers 
selected by the secondary studies since it considers a different research 
goal. 

4. Research method – rapid review 

This section summarizes the Rapid Review research protocol we 
have employed as the research method to guide our work. A Rapid Re-
view (RR) aims to provide evidence on a problem more quickly and 
resource-efficiently than a Systematic Literature Review [17]. This 
research effort compares the advances in testing CASS since 2017 when 
de Sousa et al. [11] and Matalonga et al. [13] were published. These 
systematic reviews uncovered evidence of a lack of testing techniques 
regarding the full validation of context-awareness. Therefore, we have 
developed the RR protocol with the following three assumptions: 

Assumption 1. CASS have spread and are more pervasive than they 
were three to five years ago. 

Assumption 2. The software engineering and software testing com-
munities have had time to adopt (or develop new) techniques to deal 
with the context and effects of testing software systems. 

Assumption 3. Academics have been able to work with non-academic 
environments to transfer or study the approaches used to test CASS. 

4.1. Definition of goal and research questions 

This RR aims to understand how non-academic software projects 
deal with context variation when testing Context-Aware Software Sys-
tems. In addition, this RR aims to characterize the software technologies 
that enable us to consider the context variation in the CASS testing 
processes adopted outside academia. More precisely, we are interested 
in distinguishing whether (and how) the non-academic environments 
consider the context in testing, understanding whether the context is 
instantiated and varied during the test cases and whether the software 
system under test interacts at runtime with the running context. 

To reach this goal, we defined the following four research questions:  

RQ1 Which software technologies support the test management 
processes dealing with the context for CASS? 

Rationale: To understand how the context and its variations are being 
considered when managing testing activities. Under our work assump-
tions, software teams dealing with the context-aware CASS should have 
many test suites and cases whose execution they must properly manage.  

RQ1 Which are the software technologies supporting the dynamic 
testing processes dealing with the context for CASS? 

Rationale: To understand the support for executing CASS testing. We 
want to understand the given support to software practitioners 
regarding the context and its variation during the execution of CASS 
testing.  

RQ1 What are the issues or limitations of the observed solutions for 
testing CASS? 

Rationale. To understand the extent to which CASS are being tested 
and if the experiences and lessons learned can be captured for other 
testers looking to test CASS. When looking at solutions proposed in the 
literature (see Section 3), it is clear that CASS testing has many chal-
lenges for current engineering practices and solutions come with 
compromises.  

RQ1 How mature are the identified solutions for widespread 
adoption? 

Rationale: To understand the effort that a software tester looking for 
testing CASS would be required to invest in adopting one of the proposed 
solutions. To the best of our knowledge, all solutions observed in the 
literature (see Section 3) are domain-specific and would require exten-
sive re-engineering to be adopted for other use cases or application 
domains. 

4.2. The primary studies selection process 

This section provides an overview of the process we followed in 
selecting primary studies in this study. As Figure 1 shows, the process 
relies on executing three steps, i.e., Automated Search Strategy, Primary 
studies selection, and Snowballing search strategy. Executions of this 
process are presented in Section 5. 

The selection process (see Figure 1) was decomposed into the ac-
tivities described in this section. The JabRef Tool1 has been used to 
manage and support the selection procedure. In each activity, we voted 
for the source’s inclusion and discussed the motivations for conflicting 
votes (see Section 5.1). 

4.2.1. Automated search strategy and removal of duplicates 
Scopus was the main search engine, and the ACM Digital Library was 

the secondary. We applied our search string and selection procedures in 
SCOPUS and repeated the task in ACM Digital Library. Based on this, the 
search string was adapted to fulfill the requirements of both search en-
gines. The variations are built on a canonical search string developed 
following the PICOC method with five levels of filtering (see Table 1). 
Duplicated papers returned by both search engines were removed. 

4.2.2. Application of the inclusion/exclusion criteria 
Eight inclusion criteria (IC) and three Exclusion Criteria (EC) were 

applied to include or discard the primary studies returned by Automated 
and Snowballing Search Strategies. 

To be included in our study, the study must accomplish all the 
following IC. 

IC1. the paper must be in the context of software engineering; 
IC2. the paper must be in the context of context-aware software 
systems; 
IC3. the paper must be peer-reviewed; 
IC4. the paper must report a primary study; 
IC5. the paper should be conducted within a non-academic setting; 
IC6. the paper must report an evidence-based study grounded in 
empirical methods (e.g., interviews, surveys, case studies, formal 
experiments, and others); 
IC7. the paper must provide data to answer at least one of the RR 
research questions by showing that dealing with context during 
testing was a concern; 
IC8. the paper must be written in the English language. 

To be excluded from our RR, a work must satisfy at least one of the 
EC summarized in the following: 

1 http://www.jabref.org/ 
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EC1. The paper has similar contents w.r.t. other studies from the 
same authors and was published later in different venues; 
EC2. the paper is an earlier version of a more recent or complete 
version also identified; 
EC3. the paper has not been published in Computer Science and 
Computer Engineering. 

We developed a shared understanding among the team regarding the 
concepts included in these criteria during the protocol execution. We 
exemplify this further in Section 5.1. 

4.2.3. Snowballing search strategy 
Forward and backward snowballing [34] was used as a comple-

mentary search strategy to mitigate the threat of missing literature. We 
seeded the snowballing process with the selected sources after applying 
the selection procedure (see Section 4.2.2) to the sources identified from 

the automated search process. Regarding the initial seeds, we verified 
that these were suitable to conduct a snowballing process by reviewing 
and evaluating the five-point soft test proposed by the snowballing 
guidelines by Wohlin [34]. Therefore, we decided to include all sources, 
as no research group or author seemed to gravitate toward the initial 
seeds. Furthermore, in 2020 (see Section 5), the seed sources were 
complemented with sources suggested by colleagues with expertise in 
software engineering and CASS software testing, who reviewed the 
protocol and the first round of results. 

4.3. Data extraction process 

We designed a data extraction form to extract the information 
needed to answer the research questions. This form’s pertinence became 
clear since it fine-combed the sources for their suitability to answer the 
research questions. The following fields were included in the data 
extraction form: 

Field 1. Abstract: it contains the abstract of the analyzed primary 
study. 
Field 2. Description: it reports a high-level summary of the proposed 
testing technique in the author’s words. 
Field 3. Study type: it is a description of the type of experimental 
study that was described in the source. 
Field 4. Application domain: it describes the non-academic setting in 
which the study took place. 
Field 5. Type of software system: it reports the possible type of soft-
ware systems reported in the source. 
Field 6. RQ1: it reports sentences for answering research question 1. 
Field 7. RQ2: it reports sentences for answering research question 2. 
Field 8. RQ3: it reports sentences for answering research question 3. 
Field 9. RQ4: it reports sentences for answering research question 4. 

Excerpts that directly answered the research questions were extrac-
ted in these fields. Table 2 presents the data extraction form for Qin et al. 
[35] (S10). 

5. Execution of the protocol 

The fast feedback nature of the RR research process allowed us to 
execute three iterations of the research protocol defined in Section 4. 
Figure 2 shows in detail the execution of the primary studies selection 
process we performed in the RR. 

The swimlanes in Figure 2 represent the three executions of the 
process we performed in 2019, 2020 and 2022 respectively. Within each 
swimlane, the same steps of the RR process presented in Figure 1 are 
depicted, thus indicating, by means of full arrows, the flow of execution 
of such steps during the process. The document icons, connected 
through dotted arrows to the steps, represent the set of primary studies 
produced as output or needed as input by each step. The numerical 
values reported in the document icons represent the total number of 

Fig. 1. Primary studies selection process  

Table 1 
PICOC-based search string  

PICOC Main Term Synonyms 

Population Contemporary 
Software Systems 

"ambient intelligence" OR "assisted living" 
OR "multiagent systems" OR "systems of 
systems" OR "internet of things" OR "cyber 
physical systems" OR "autonomous systems" 
OR "autonomic computing" OR "multi- 
agent systems" OR "pervasive computing" 
OR "mobile computing" OR "distributed 
systems" OR "cooperative robotics" OR 
"adaptive systems" OR "industry 4.0" OR 
"fourth industrial revolution" OR "web of 
things" OR "internet of everything" OR 
"contemporary software systems" OR "smart 
manufacturing" OR digitalization OR 
digitization OR "digital transformation" OR 
"smart cit*" OR "smart building" OR "smart 
health" OR "smart environment" 

Intervention Software Testing "test* management" OR "test* planning" OR 
"test* monitoring" OR "test* control" OR 
"test* completion" OR "test* design" OR 
"test* type" OR "test* implementation" OR 
"test* environment" OR "test* execution" 
OR "test* reporting" OR "software test*" OR 
"software validation" OR "software 
verification" 

Comparison Not Applied  
Outcome Software Testing 

Technologies 
"test* management" OR "test* planning" OR 
"test* monitoring" OR "test* control" OR 
"test* completion" OR "test* design" OR 
"test* type" OR "test* implementation" OR 
"test* environment" OR "test* execution" 
OR "test* reporting" OR "software test*" OR 
"software validation" OR "software 
verification" 

Context Context Variation "variation" OR "context" OR "context 
awareness"  
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primary studies in each set. 
The first execution of the protocol was executed in 2019. In this 

iteration 8 papers were filtered in over the 611 distinct studies returned 
by the search engines, and a final set of 8 primary studies were selected 
from the 43 distinct papers returned by snowballing. The results of the 
analysis of these papers were published in a technical report [36]. 

Regarding the 2020 iteration, the actor icon represents three re-
searchers from academia with more than ten years of experience in CASS 
software testing who suggested six primary studies after reviewing the 
technical report we published at the end of the previous iteration. In this 
iteration no one of the 16 distinct papers, gathered from the search 
engines, passed our IC and EC. We considered the six papers suggested 
by the researchers as candidate sources, but, after applying the IC and 
EC, none of them were selected. Furthermore, we included these studies 
as additional input for the snowballing process to further mitigate the 
risk of missing literature. At the end of this iteration a final set of 11 
primary studies were selected over the 72 papers returned by 
snowballing. 

In January 2022 we revisited again the protocol execution, and no 
new sources were included after we applied the IC and EC to the 41 
distinct primary studies returned by the search engines. Finally, from the 
110 works collected by snowballing, the same 11 works already selected 
in 2020 have been included in the final set of primary studies. 

It is worth observing that in the snowballing search strategies per-
formed in 2020 and 2022, we also added, as input, the primary studies 
already selected in the previous stages. 

5.1. Achieving consistency with the inclusion criteria 

We invested much effort in establishing the criteria’ consistency 
among the different researchers when applying the inclusion criteria at 
the different RR inclusion activities. In all such activities, each primary 
study was analyzed by two researchers that voted the paper as “yes,” 
“no,” or “doubt.” Studies that obtained two “yes” were included. On the 
contrary, studies with two “no” were discarded, and researchers dis-
cussed the remaining ones to reach a common consensus. 

We present a few examples of the research team’s discussions to 
convey our rationale regarding the inclusion/exclusion criteria. 

Regarding IC2, we extensively discussed what qualifies a context- 
aware software system. Upon reflection, most of these discussions 
revolved around the complexity of the software system under test. This 
decision draws from Lewis’s conceptual pragmatism [37]. Thereby, we 
probed the test item described in the candidate sources to determine 
whether the added complexities needed for considering the context and 
its variation were worth making to test such software. This exercise led 
to the rejection of several sources. Each proposal was reviewed to verify 
that the software under test was a CSS that exhibits context-aware 
characteristics (even within a non-academic setting) to merit the con-
cepts’ application. For instance, in Xu et al. [38], the proposal considers 
context-awareness. It conveys how the software under test is expected to 
be deployed in an industrial setting. However, the complexities of the 
defined setting for the evaluation are too simple for this RR (column Test 
Item in Table 4 synthesizes this process for the selected studies). 
Therefore, we make explicit that we are not making a judgment call on 
the pertinence of that system to the research goals expressed in [38]. 
Instead, we are making a judgment call on the pertinence of that soft-
ware under test to our study’s goals. Furthermore, we note to the reader 
that this judgment was made after going through the data extraction 
process for this source (conveying how thorough we were of the inclu-
sion/exclusion decision taken). 

We want to clarify how we have interpreted that the primary study 
was conducted within a non-academic setting regarding IC5. This RR aims 
to identify evidence of testing CASS outside academia. Therefore, the 
source’s criterion clearly states that the test item was intended to be 
deployed in the production environment. We wanted to weed out test 
items developed for the research, even if these were based on real-life 
applications and/or with an industrial sponsor’s support. For instance, 
Rosenthal and Lewis [39] were evaluated in this RR’s process, passing 
the inclusion criteria until the Data Extraction process. At this point, we 
noticed that the authors commented that they "implemented the SVS 
(Smart Vacuum System) application as a completely autonomous robot 
that receives input from sensors and responds accordingly." [39]. As a 
result, we agreed that these implementation types could not be judged to 
belong to a non-academic setting. There is an explicit statement that the 
researchers implemented the test item. Interestingly, several other 
sources suffered the same analysis as [39]. For instance, [40,41] contain 
similar statements that can only be identified in a thorough reading (or 
during the Data Extraction process). Qin et al. [35] present an inter-
esting case on the other end. The proposal is relevant to this research, 
but it became evident that only the second use case described in the 
paper presents evidence of an industrial setting during the data extrac-
tion. Therefore, only evidence from the second use case was included in 
the analysis of this research. 

Regarding IC7, we settled into three conditions to appraise this cri-
terion: the paper must address the phenomenon of interest, the test item 
must be context-aware, and the proposal must show evidence of having 
a CASS software under test. For instance, for [38,42], we judged that 
there was no evidence of the test cases’ execution upon finalizing the 
data extraction of those references. 

6. Data analysis 

In this section, we report a detailed analysis of the extracted data. 

Table 2 
Example of Data Extraction Form regarding the work of Qin et al. [35]  

Field Example Extraction excerpt 

Abstract <A full text of the abstract was extracted. We mainly used this 
as a reference for discussions. For brevity, we do not include it 
here>

Description "in this article, we present an approach, named context-based 
multiinvariant detection (CoMID), to automatically 
generating invariants for specifying developers’ implicit 
assumptions and checking these invariants for detecting when 
a cyber-physical program has entered an abnormal state at its 
runtime. CoMID addresses the preceding challenges with its 
two techniques: context-based trace grouping and 
multiinvariant detection." [35] 

Study type "We present the evaluation of our CoMID approach, including 
comparing it with two existing approaches. 
We select three real-world cyber-physical programs, namely, 
NAO robot.., and six-rotor UAV …. as the evaluation subjects." 
[35] 

Application 
Domain 

Cyber-physical program 

Type of software 
system 

<Authors make no explicit statement as to this field. For our 
purposes, we can abstract from the ’Study type’ field and 
leave this field empty>

Answer to research questions 
RQ1 <No data extracted for this source>
RQ2 "CoMID works in four steps, which are as follows: 

1) it first executes program P in the environment E to collect 
safe execution traces, i.e., no failure condition triggered (Step 
1: trace collection); 
… 
We implement CoMID as a prototype tool in Java 8" [35] 

RQ3 “CoMID still has room for improvement. For example, it 
currently records the values of program variables at entry and 
exit points of all executed methods, and uses these variable 
values to generate invariants. Monitoring all executed 
methods greatly increases the time overhead of CoMID, and 
makes it less effective when applied to a time-critical cyber- 
physical program (e.g., a program whose iteration length is 
less than 100 ms, as discussed in Section IV-C).” [35] 

RQ4 <No data extracted from this source regarding RQ4>
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First, we briefly describe the research reported in the selected papers. 
Then, we characterize these testing techniques and answer the research 
questions we proposed based on our evidence. 

6.1. Overview of the included sources 

This section provides an overview of the sources selected as this RR. 
Table 3 presents the bibliographic information of the final sources, 

reporting the number of publications by venue type and year. Next, we 
present a summary of the selected sources. We added this summary to 
provide the readers with an overall understanding of the selected 
sources. 

S1. Ma et al. [43] present a model-based approach for self-healing 
software systems. Their approach includes a modeling framework 
and an execution environment. Their approach focuses on dealing 

Fig. 2. Primary studies selection process execution  
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with the uncertainties bright to the software systems by perceiving 
the context. The authors evaluate their approach on a 
computer-based simulation, in which their approach is applied to 
nine self-healing software systems. Test cases are designed in the 
modeling framework and executed simultaneously in the model and 
the system. 
S2. Arieta et al. [44] propose testing individual configurations from 
software product lines of cyber-physical systems. The individual 
configurations are selected by employing software-based simulation. 
Their approach models the Software product line of the CPS, and 
simulation is used to evaluate the CPS’s interactions and the context 
dynamically. The authors evaluate their approach in a 
computer-simulated environment. Their case study subject is a 
model of an Unmanned Aerial Autonomous Vehicle. Test cases are 
generated based on an initial set of test cases evaluated against the 
SPL-CPS modeled variability points. 
S3. Shin et al. [45] propose a search-based approach for prioritizing 
acceptance test cases for CPS. Interestingly, while context variation 
is not explicitly addressed in this proposal, the authors consider the 
problems brought by uncertainties in the environment’s perception. 
That consideration is reflected in the case study. The presented case 
study involves a simulation environment where software for a sat-
ellite system is evaluated. Test cases are defined in a domain-specific 
language, and the author’s search-based proposal optimizes the se-
lection and execution of the test cases. 
S4. Shin et al. [46] present an approach for specifying and analyzing 
hardware-in-the-loop test cases for cyber-physical systems. A textual 
language named Hardware-In-the-loop TEst Case Specification 
(HITECS) is defined using the UML profile mechanism to apply these 
methods. Their approach deals with uncertainties that context can 
realize in the software under the test’s environment. They present a 
case study where the test item is a satellite system to evaluate their 
approach. Their main aim with the case study is to evaluate their test 
cases’ quality concerning the approach capacity to estimate the test 

cases’ execution time. Their case study environment simulates an 
in-orbit test setup that includes all hardware and communication 
protocols. 
S5. Lahami et al. [41] present a runtime approach to detect and 
execute test cases affected by context changes. They evaluate their 
approach in a case study involving a healthcare application deployed 
within a controlled environment in their lab. The authors introduce 
changes to the system’s components under test to observe how the 
approach senses the context and selects test cases from a set of 
initially defined test cases. 
S6. Fröhlich et al. [47] present a method for evaluating the safety of 
critical context-awareness systems’ failures. Their underlying 
assumption is the combination of input values from context sensing 
components of the software system. Their approach consists of 
injecting faults and observing how safely the CASS fails. They eval-
uate their approach in a steering system of an autonomous car within 
a simulated environment custom-built to their proposal. 
S7. Abdessalem et al. [48] deal with conflicting feature interactions 
from feature composition of self-adaptive behavior driven by 
context. Context is considered in this proposal as it is the driver for 
triggering the adaptations. In this proposal, the authors reframe the 
problem of finding undesired feature interaction as a search problem. 
They evaluate their approach using three systems from a self-driving 
car (automated emergency braking, adaptive cruise control (ACC), 
and traffic sign recognition). Executable models of these systems are 
simulated as the search-based approach identifies conflicting feature 
interactions. 
S8. Abdessalem et al. [49] propose an automated technique to test 
complex Advanced Driver Assistance Systems (ADAS) using 
physics-based executable models of the system and its environment. 
As an evaluation, they presented an exploratory case study using an 
ADAS called Pedestrian Detection Vision-based (PeVi) system. The 
PeVi was created to help drivers detect pedestrians’ proximity (either 
human or animal) during low visibility situations. The case study 
focused on identifying high-risk test scenarios (the ones that are 
more likely to reveal critical failures) using a multi-objective search. 
The context was captured as a domain model, specifying a restricted 
simulation environment and serving as input data (which can be 
either static or dynamic properties) to test scenarios. Since testing 
PeVi with real hardware and environment would be dangerous, 
time-consuming, and costly, they used physics-based simulation 
platforms as a testing environment. 
S9. Abdessalem et al. 2018 [50] focus on simulation-based testing of 
vision-based control systems from the automotive domain (ADAS). A 
domain model is used to capture the test input space and output. The 
input variables were classified into two categories: Static input var-
iables (the values still fixed during the entire ADAS simulation) and 
Dynamic objects (indicating objects that change their position during 
the simulation). As an evaluation, they presented an exploratory case 
study of an Automated Emergency Braking (AEB) system from the 
automotive domain. The objective was to evaluate the ability of a 
search-based testing algorithm called NSGAIIDT to investigate crit-
ical regions in ADAS input spaces to identify critical test scenarios. 
They used a commercial ADAS simulator called PreScan simulator as 
a test environment. 
S10. Qin et al. [35] present an approach for dealing with context 
input states that can lead to failures. In their approach, context varies 
as no restrictions on context variables’ values are imposed. However, 
they demonstrate this approach offline, as execution captures of the 
system under test are performed in the field for later post-processing 
in the lab to evaluate their approach. As mentioned in Section 5.1, we 
are interested in evaluating their approach to the Unmanned 
Autonomous Vehicle in this paper. Their main idea is to define rules 
for context values that, if broken, would lead to failure (they call 
these invariants), then observe the software system’s behavior to 

Table 3 
The final set of selected papers in the Rapid Review  

Code Full Reference Venue 
Type 

Year 

S1 Ma et al. Modeling foundations for executable model- 
based testing of self-healing cyber-physical systems  
[43] 

Journal 2019 

S2 Arrieta et al. Automatic generation of test system 
instances for configurable cyber-physical systems [44] 

Journal 2017 

S3 Shin et al. Test case prioritization for acceptance 
testing of cyber-physical systems: a multi-objective 
search-based approach [45] 

Conference 2018 

S4 Shin et al. Uncertainty-aware specification and 
analysis for hardware-in-the-loop testing of cyber- 
physical systems [46] 

Journal 2021 

S5 Lahami et al. Safe and efficient runtime testing 
framework applied in dynamic and distributed systems 
[41] 

Journal 2016 

S6 Fröhlich et al. Testing Safety Properties of Cyber- 
Physical Systems with Non-Intrusive Fault Injection – 
An Industrial Case Study [47] 

Conference 2016 

S7 Abdessalem et al. Testing autonomous cars for 
feature interaction failures using many-objective 
search [48] 

Conference 2018 

S8 Abdessalem et al. Testing advanced driver assistance 
systems using multi-objective search and neural 
networks [49] 

Conference 2016 

S9 Abdessalem et al. Testing Vision-Based Control 
Systems Using Learnable Evolutionary Algorithms  
[50] 

Conference 2018 

S10 Qin et al. CoMID: Context-Based Multiinvariant 
Detection for Monitoring Cyber-Physical Software  
[35] 

Journal 2020 

S11 Qin et al. SIT: Sampling-based interactive testing for 
self-adaptive apps [51] 

Journal 2016  
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abstract these invariants states and execute them in a model of the 
system to observe the behavior. 
S11. Qin et al. [51] present an approach for selecting test cases for 
self-adaptive context-aware software systems. Context variation is 
considered in terms of uncertainty in the adaptation rules and un-
certainty in the sensor’s capacity to measure the environment 
accurately. They evaluate their approach with three case studies to 
implement it in a simulated environment. Their approach selects test 
cases by sampling input space parameters after sorting them into 
different categories according to the abovementioned abstraction. 

The following section characterizes these technologies and describes 
how they are applied in non-academic settings to test context-aware 
CSS. 

6.2. Analysis of the identified papers 

In the selected primary studies, we did not find any evidence 
regarding software technologies supporting the management of the test 
activities dealing with the context for CASS, RQ1. 

In the following, we describe the analysis of the extracted data that 
allowed (1) to characterize the technologies for supporting the testing 
execution (RQ2), (2) to understand the limitations of the approaches as 
described by the authors (RQ3), and (3) to understand whether the 
identified solutions are mature enough for their widespread adoption 
(RQ4). The discussion is supported by tables summarizing the analysis 
and focusing on the evidence. In addition, in Annex 1, we reported 
additional tables having deeper details about the evidence we extracted 
from the analyzed papers to answer the research questions. 

6.2.1. Analysis of the software technologies supporting the execution of test 
activities dealing with the context. 

To describe the software technologies supporting the execution of 
CASS testing processes, we analyzed the extracted data to understand, 
for each proposed approach, the following characteristics:  

1 the test items, i.e., the types of CASS under test (see Table 4),  
2 the testing scope of the proposal (either test case or test suite level), 

and the addressed quality attributes (see Table 5),  
3 the context variation, i.e., how the context variation has been 

considered (see Table 6),  
4 characteristics of the testing environment adopted for executing the 

proposed testing process (see Table 7),  
5 the adopted dynamic testing technique (see Table 8). 

An interesting variety of test items were used to evaluate the pro-
posed testing techniques regarding the observed test items. Table 4 
summarizes the evidence on the test items under investigation in the 
selected sources. 

Table 5 presents that the test techniques for testing CASS are focused 
on either defining test cases or improving test suites. When defining test 
cases, the intent is to assure functionality, evaluate the reliability and 
verify that when the systems fail, it does so in a controlled manner. 
When looking at test suites, the sources look at improving a specific 
quality attribute in the set of existing test cases in the test suite 

(reliability or performance). When looking at the quality attributes, it 
can be observed that many of them are still to be explored. It can be 
argued that those present in Table 5 are related to the challenge of 
dealing with the test input space brought about by context variation. 

Table 6 presents the three strategies we have observed in the sources 
to deal with context variation. One strategy is to model the contextual 
variables and their influence on the proposal. Another strategy is to 
consider that the sources of contextual variation are related to the 
intrinsic errors in the environment measurements through the sensors 
(referred to as environmental uncertainties). While in S10, execution of 
the test item in its operational environment was used to capture the 
contextual variables, and then these measurements were used to vali-
date the proposal. 

Table 7 looks at the technology used to develop the proposed solu-
tions and the test items’ environments. Table 6 allows the reader to 
observe the relationship between the technologies and the environment 
used during the empirical evaluations. We divided the environments 
into Simulation, where empirical evaluations were carried out within 
computational environments, and Physical-world, where empirical 
evaluations were carried out involving Physical-world elements (such as 
sensors field trials). For instance, UML-based models were the most 
frequent technology, and it has been used in both simulation and real- 
like environments. Nevertheless, Matlab/Simulink has been used in 
three sources, but we did not uncover evidence of Matlab/Simulink 
models being used in real-like environments to test CASS. Another evi-
dence we collected regards the adoption of Physical-world environments 
for implementing Hardware in the Loop (HIL) techniques, as we 
observed in S3 and S4. Indeed, such an environment is needed to provide 
an effective platform to emulate in real-time the context variation. A HIL 

Table 4 
Test item types in the selected sources  

Test item Sources 

Self-driving automotive system S7, S8, S9 
Satellite Cyber-physical system S3, S4 
Unmanned Aerial Vehicles S2, S10 
Self-healing cyber-physical systems S1 
Adaptable and distributed healthcare system S5 
Electric car steering cyber-physical system S6 
Self-adaptive mobile application S11  

Table 5 
Scope and quality attributes under investigation in the selected sources  

Testing scope of the proposal Quality attribute Sources 

Test case Functional suitability S1, S2, S6, S9 
Reliability S7, S9, S10, S11 
Safety S6 

Test suite Reliability S3, S5 
Performance S4  

Table 6 
How sources consider context variation  

Consideration of context variation Sources 

Modeled contextual variables S2, S5, S6, S7, S8, S9 
Environmental uncertainties perceived as context variation S1, S3, S4, S11 
Captured from executions in the real world S10  

Table 7 
Technology and environments where testing took place in the selected sources  

Technology Environment 
Simulation Physical-world 

Matlab/Simulink S7, S8, S9  
UML Diagram or UML metamodels S1, S2, S11 S4, S5 
Ad-hoc Domain-specific language S3 S3, S6 
Though source code invariants  S10  

Table 8 
Test techniques involved in the selected sources  

Test Technique Sources 
Model-based testing S1, S2, S5, S11 
Search-based testing S3, S7, S8, S9 
Formal Method S4 
Fault injection S6 
Multi-invariant-based S10  
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simulation environment usually includes the electrical emulation of 
sensors and actuators. These electrical emulations act as the interface 
between the context and the system under test. Finally, ad-hoc domain- 
specific languages are also frequently observed, both with simulations 
and physical-world environments. While the technology of the Test Item 
probably drives the technology section, it is interesting to observe in 
Table 7 that those technologies with application in simulation and the 
real world require effort in customized development and are unlikely to 
be available off-the-shelf. 

Finally, we looked at the test techniques used to define the test cases 
or suites (Table 8). Model-based testing and search-based testing are the 
most frequently used technique. These techniques make a good fit to 
deal with the volume of test cases (or test suites) needed to warrantee 
CASS quality. 

6.2.2. Analysis of the limitations of the proposals 
As shown in the Data Extraction, we collected the authors’ self- 

reflection sections and passages regarding the potential imitations of 
their proposals. The common limitations emerged when analyzing the 
extracted sentences, and the studies where they have been presented are 
reported in Table 9. First, Resource-consuming indicates that the pro-
posed testing approach consumes too many resources. Extension to 
other application domains’ limitations abstracts the common theme that 
the solutions are domain-specific and require re-engineering to be 
adapted to other domains (this is also discussed in Section 6.2.3). 

It is also interesting to observe that three sources declared that while 
considering the huge variability of the input domain space, their ap-
proaches presented limitations that did not allow them to fully accom-
modate the variation in the context. 

Finally, two other sources highlighted different limitations that we 
thought were interesting to highlight while not common to other sour-
ces. The effort-driven approach for manually building the models in-
dicates that the activity for building the models of the context requires 
the intervention of a human tester. As for Model technical limitations 
that simplify reality limitations, the source referred to the technical 
inability of the adopted framework to model contexts that are very close 
to reality. 

These results showed evidence of the complexities of testing CASS 
and the inherent limitations of current engineering approaches. 

6.2.3. Analysis of how the identified solutions are ready for widespread 
adoption 

To understand how and if the proposed solutions are ready for being 
widely adopted, we evaluated their technology readiness levels (TRLs). 
TRLs provide a useful model for conveying the maturity of technologies. 
The classification was initially defined for the Apollo missions and has 
been extensively adopted in Europe [52]. The TRL levels are a discrete 
scale of nine levels, from Basic research (TRL1) to Operational Readiness 
(TRL9). We used an estimator tool developed by the University of San 
Diego [53]. Table 9 shows how we classified the sources into three 
orthogonal dimensions (Engineering cycle, Study type, and Environ-
ment control) to support an evidence-based input to the TRL estimator. 

The "Engineering cycle" column is based on Wieringa et al. [54] and 
presents a classification for technology development projects that clas-
sifies the aim of experimental work. We used this classification to pro-
vide a uniform language to address the study’s primary sources’ 

experimental evaluations. We were able to classify the sources into two 
of the six phases of the engineering cycle (Problem investigation, Solu-
tion design, Solution validation, Solution selection, Solution imple-
mentation, and Implementation evaluation). These were:  

• Solution design: the research project aims to propose an improvement 
to a current situation.  

• Solution validation: the research project aim at characterizing some 
properties/quality attributes of a proposed solution. 

The "Study type" column is based on the classification provided by 
Easterbrook et al. [55]. This classification indicates the investigation 
strategy described in the primary source. We used this classification to 
provide uniform language and convey the capacity to generalize the 
sample’s research results. While the classification provided by East-
erbrook et al. [55] includes five main study types (controlled experi-
ments, case studies, survey research, ethnography, and action research), 
all of the selected studies in our sample were classified within the case 
study main category, with the possible subcategories meaning:  

• Exploratory case studies to develop new theories or observations.  
• Confirmatory case studies to confirm existing theories. 

The column "Environment control" is based on the classification 
proposed in Travassos and Barros [56], indicating the degree of control 
that the experimenters introduce in the environment to observe the 
phenomenon under study. We used this classification to convey the 
degree of control the experimenter has in the environment where the 
empirical evaluation is described in the source tool place. Potential 
categories in this classification are:  

• In-vivo: the empirical step was executed in the target environment 
(with real organizations and professional developers).  

• In-vitro: the empirical step was executed in a controlled environment 
(such as a laboratory, controlled sett-up, or community of practice).  

• In-virtuo: the empirical step was executed in semi-simulated and 
controlled environments with interactions between the participants 
and a computerized model of reality.  

• In-silico: the empirical step was executed in a fully simulated and 
controlled environment (the model and the subjects are described as 
computer models). 

We followed a Delphi-type cycle [57] to achieve consensus on our 
estimates for each category. First, the two lead researchers would clas-
sify the paper into the available categories and explain their positions. 
Then, the other authors reviewed the results. 

Table 10 conveys that the proposals were classified within the design 
half of the engineering cycle. It means authors are still mainly concerned 
about the purpose fitness of the proposed solution. Furthermore, 
selected sources apply case study research. While this can be suitable to 
evaluate the proposals, it also limits the transferability to other appli-
cation domains. Finally, we also note that the researchers had some 
degree of control over the environment (i.e., we could not classify any 
proposals within the "in-vivo" category). That last observation is 
consistent that all estimations of the TRL levels are within levels 3 to 6, 
showing that the identified sources are not ready for widespread 
adoption. 

7. Results 

This section presents the result of this RR. Frist, we present a 
straightforward evidence-based answer to the research questions of the 
RR. Next, we discuss the experimental limits of our research method and 
reflect on the threats to the validity of the answers. The following sub-
section gradually frames the answers in terms of the literature and then 
looks forward by summarizing the lessons learned results. 

Table 9 
Limitations of the proposal  

Limitation Sources 

Resource-consuming S4, S5, S8, S10 
Extension to other application domains S1, S2, S4, S5 
Variability of the input domain S1, S10, S11 
Effort-driven approach for building the models manually S2 
Model technical limitations that simplify reality S8  
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7.1. Answering the RQs 

The RR uncovered evidence on test proposals for dealing with the 
complexity considering the context for CASS. Despite the breadth of the 
system types for which these proposals were identified, they share the 
common trait that they deal with the complexities brought by consid-
ering the context in the testing process. 

RQ 1: Which software technologies support the test management 
processes dealing with the context for CASS? 

We did not identify any solution dealing with test activities 
management. 

Test management activities for CASS must become a research di-
rection to address the huge volume of test cases that must be managed 
during the test process, as discussed in Section 8. 

RQ 2: Which software technologies support the dynamic testing 
processes dealing with the context for CASS? 

The reviewed solutions focus on enabling the execution (dynamic 
testing) of context-aware software systems. As shown in Section 6.2, 
technologies can be characterized from different perspectives: 

Perspective 1. Interesting results were obtained regarding the testing 
goals. We observed that the scope of tech-niques is divided into those 
that look at test cases and those that look at test suites. When 
developing test cases, the sources intend to verify the functional 
suitability (S1, S2, S6, S9), the Reliability (S7, S9, S10, S11), or the 
Safety (S6). Another approach is that technique assumes that a test 
suite is already available. The proposal looks to improve Reliability 
by identifying the test cases in the test suite that can damage the 
software or the hardware (S3, S5). Alternatively, they look to 
improve the performance of the test suite (S4). 
Perspective 2. The variation of context is mainly considered by uti-
lizing models that can also be executed. Usually, these models are 
implemented in Matlab/Simulink (S7, S8, and S9), UML diagrams, or 
UML metamodels (S1, S2, S4, S5, S6, and S11). Ad-hoc solutions 
relying on a DSL (S3) and source code invariants (S10) were also 
proposed. 
Perspective 3. As for the testing environment, we observed that it is 
mainly a simulation environment where the executable models can 

be executed with the software system under test (S1, S2, S3, S4, S7, 
S8, S9, and S11). Therefore, another possible solution is to build a 
testing environment like the real environment (S5, S6, and S10). 
Perspective 4. Regarding the adopted dynamic testing techniques, 
we observed that model-based (S1, S2, S5, and S11) and search- 
based or genetic (S3, S7, S8, and S9) approaches are the most 
exploited. Model-based is mainly adopted for testing the software 
system’s quality under test. In contrast, search-based or genetic im-
proves a test suite’s quality attribute or generates test scenarios. 
Other types of approaches have also been proposed, such as the use 
of formal methods (S4), fault injection (S6), and multi-invariant 
based (S10). 

The results abstracted in Perspective 1 open two future research di-
rections (Future direction 3 and Future direction 4) as described in Section 
8. The findings expressed from Perspectives 2 to 4 are not new in the 
literature. We discussed them in Section 7.3, confirming that these 
technologies are ready to be applied in non-academic settings. 
Furthermore, this was discussed in Section 7.4. In Lesson learned 1 and 
Lesson learned 2, we describe our understanding of the requirements 
that dynamic models and simulation environments must attend to sup-
port CASS testing. 

RQ3. What are the issues or limitations of the observed solutions for 
testing CASS? 

Limitations for testing CASS were presented in Section 6.2.2. We 
grouped the authors’ self-assessments of the limitations into five groups 
(see Table 9). We interpret these limitations as a signal that testing CASS 
is still a problem that has not been solved. It is interesting to note that 
the issues and limitations are linked to testing CASS’s challenges on 
current engineering solutions. While we note that these sources address 
these challenges, the authors’ self-reflection on the issues and limita-
tions reveals the complexities of Testing CASS. For instance, one of the 
main challenges for testing CASS stems from the myriad of possible 
input brought about by context variation (see [13,14]), yet three sources 
(S1, S10, and S11) present that an issue or limitation is to consider the 
variability of the input domain. 

The most common issue or limitation was that the approaches 
consumed many computing resources (S4, S5, S8, and S10). A limitation 
also stems from the attempt to reproduce the contextual inputs from 
computerized models. However, all models represent reality, and as 
such is fitting that the authors are concerned with the (technical) sim-
plifications that their model brings into reality (S8). This dependency on 
a model is also a constraint in implementing or extending an approach 
into other application domains (S1, S2, S4, and S5). 

Concerning the literature, we observed that some challenges and 
issues were already known, but new ones have been raised for CASS 
testing in non-academic settings, as we discus in Section 7.3). 

RQ4: How mature are the identified solutions for widespread 
adoption? 

Observing the analysis in Section 6.2.3, we claim that none of these 
proposals is mature enough for widespread adoption. Only one paper 
was classified at TRL6, which means that the proposals can only be 
expected to have been demonstrated in a relevant, not completely 
stressful environment, and transfer to another environment can come at 
a high cost. We have observed that all proposals require significant in-
vestment in technological development. Furthermore, though the path 
set by these tools can potentially be implemented in other working do-
mains, they are still shy of higher readiness levels where the proposed 
approaches can be transferred to other domains without significant re- 
engineering or tailoring. 

The second outstanding observation is that the selected papers did 
not present technologies to support either Organizational Test Process or 

Table 10 
Level estimators of testing technology readiness  

ID Engineering 
Cycle 

Study Type Environment 
Control 

Estimated 
TRL 

S1 Solution 
validation 

Confirmatory case 
study 

In-vitro L4 

S2 Solution 
validation 

Exploratory case 
study 

In-vitro L3 

S3 Solution design Confirmatory case 
study 

In-virtuo L4 

S4 Solution 
validation 

Confirmatory case 
study 

In-virtuo L4 

S5 Solution 
validation 

Confirmatory case 
study 

In-vivo L5 

S6 Solution design Exploratory case 
study 

In-vitro L3 

S7 Solution 
validation 

Confirmatory case 
study 

In-virtuo L5-L6 

S8 Solution 
validation 

Exploratory case 
study 

In-silico L3 

S9 Solution 
validation 

Exploratory case 
study 

In-silico L3 

S10 Solution 
validation 

Exploratory case 
study 

In-vitro L4 

S11 Solution design Exploratory case 
study 

In-virtuo L5-L6  
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Test Management Processes (RQ1). Regarding Organizational Test 
Process, this can be understood as the ISO/IEC/IEEE 29119-2-2013 [26] 
guidelines for Organizational Test Process are mainly related to orga-
nizational policies for testing. In contrast, as mentioned in our answer to 
RQ1, the lack of technologies to support the test management process 
suggests an unexplored research direction. Moreover, it has implications 
for the widespread adoption of the proposals since organizations looking 
to incorporate these approaches will have to consider issues like costs 
and deadlines (project-based elements which have been not considered 
in the observed sources). Furthermore, establish policies for accepting 
CASS deployment to the production environments. 

We observe that progress has been made since the secondary studies 
reviewed in Section 3. In Section 7.3, we compare these results with 
previous secondary studies. 

7.2. Threats to validity 

This section discusses the threats to this research work’s validity 
using the categories described by Wholin et al. [58]. 

Regarding internal validity, the threat of missing literature is com-
mon in all secondary studies. Nonetheless, we want to bring two points 
to the reader’s attention. First, throughout Section 4, we intended to 
convey the thoroughness of our approach to searching the available 
literature. Second, the aim of Section 6.1 is to convey the criteria with 
which the literature was analyzed and ultimately selected. Other 
research works to address the challenge of testing CASS, yet they are not 
included in our sample as they do not meet our inclusion criteria; 
therefore, they are not within the scope of this study. 

Another point to make is that we decided to only look at white 
literature. Given that the working assumption is that CASS are main-
stream, it is likely that big players2 have found ways to test these types of 
systems. However, it is just as revealing that it has not been contributed 
to the academic literature if the knowledge is available. Therefore, it 
should be the object of a multi-vocal study. 

Regarding construct validity, the reader can question the objectivity 
of the RR since it is biased by our previous research. Rapid Reviews are 
designed to be executed by experts in the field. Therefore, though our 
approach toward the new evidence is objective, our previous knowledge 
informed our judgment. We would argue that this strengthens the re-
sults. Nonetheless, we have taken care to expose these assumptions so 
the reader can judge. 

We stress that we have taken a specific understanding of the con-
structs mentioned in the inclusion criteria regarding external validity. 
We have fine-combed the literature and have had extensive discussions 
(see Section 6.1) before deciding if a source complies with our under-
standing of Context Awareness, Testing, Contemporary software systems, 
and non-academic setting. This process has strengthened the construct 
validity at the expense of our external validity. Therefore, further 
evaluation with practitioners is necessary to strengthen our findings. 

We have tried to provide evidence for our research questions’ an-
swers (Section 6.2) regarding conclusion validity. The analysis section 
fairly portrays the uncovered evidence, which is, in turn, based on a 
thorough and verbatim data extraction process. Thus, we believe we 
have provided end-to-end traceability from the sources to the answers to 
the research questions. In addition, we have made a clear distinction in 
this paper to differentiate evidence-based answers to the research 
questions (Section 6.2) from our interpretation (following sections). 

7.3. Comparing this Rapid Review against other secondary studies 

This work is the first secondary study to understand how CASS are 
tested in non-academic settings. We found primary studies that were not 
already considered in previous studies. Their analysis from similar and 

different points of view, concerning the ones already addressed in the 
past, allowed us to increase the body of knowledge on CASS testing in 
different ways. 

On the one hand, this RR showed similar results obtained in previous 
secondary studies, such as the limitations of the testing strategies, how 
the context variations are taken into account, and the types of adopted 
testing techniques, which are still valid when the focus moves to non- 
academic settings. On the other hand, we observed that new chal-
lenges arise in those more realistic settings differently from these pre-
vious works. Indeed, much more interest is given to reducing the costs of 
the testing processes. In some cases, test cases must not damage the 
expensive hardware of the testing environment. Also, for the way to 
characterize the context variation, we observed that not only models or 
formal specifications could be used. Indeed, we understood that domain 
languages or the preliminary data collection from the real field to infer 
the context variations are also adopted in real scenarios. Finally, we 
pointed out that, along with model-based testing and simulation-based 
techniques already reported in other secondary studies, search-based, 
genetic algorithms, and code invariant-based testing techniques are 
also adopted. 

Another interesting result is that, in non-academic settings, the 
testing processes should also be executed in a testing environment that is 
identical, or resemble as much as possible, the execution environment. It 
leads the test engineers to put much effort into building a proper testing 
environment where test cases can be executed. 

An additional improvement to the body of knowledge provided by 
this RR has been to understand which are the most interesting appli-
cation fields for the community. In our observations, hot industrial 
topics (like automotive, autonomous drones, and satellite systems) have 
been the most addressed types of systems. 

We also pointed out how mature are the proposed solutions for being 
adopted in production scenarios thanks to the analysis of the experi-
mental evaluations and the estimation of the reached TRLs. Another 
interesting result regards the absence of evidence on how the testing 
processes are managed and planned. 

7.4. Lessons learned 

Considering the RR results, our previous results, and our experience 
in CASS testing, we put forward the following three main lessons we 
learned from this research. 

7.4.1. Lesson learned 1: needs for proper models to describe the system’s 
dynamic behavior 

Testing context-awareness features of contemporary software sys-
tems require a model capable of modeling the system’s dynamic 
behavior. A model is a reasonable representation of the system that can 
be used as a surrogate of the actual system to design or improve test 
suites. In our answer to RQ2 (Section 7.1), all sources use models to 
explore the system. 

Our point of view is that systems models that cannot evolve with the 
software system are not good for modeling the dynamic nature. These 
models successfully design stable context states but fail to provide 
insight into the system’s behavior during a state transition. For instance, 
these models cannot perceive the variation of context that has not been 
defined into a set of valid states. 

As a result of this observation, we favor proposals modeling the 
systems’ dynamic behavior as these are better suited to capture the 
dynamic nature of the context. Nonetheless, we have also observed 
proposals that, while developing dynamic models, these are used to fix 
values for context variables, thereby limiting the models’ capacity to 
reproduce the varying nature of the context. 

7.4.2. Lesson learned 2: needs for executable models 
Another issue regarding models relates to the technologies used in 

their development. We have observed various technologies, from formal 2 A few come quickly to mind: Tesla; Google; NASA, DJI, among others. 
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mathematical-based models to Matlab Simulink to UML-based models 
(RQ2). They all convey a key requirement that these models must be 
executable. Models are mainly used to simulate the software system 
execution to derive or improve a test suite. 

Testing CASS is cost-intensive and requires the exploitation of 
computational resources. We would conjecture that the effort required 
to test CASS is still an order of magnitude greater than the effort required 
to develop them. Much like had been observed in Matalonga et al. [13], 
the identified solutions in this RR all require significant design and 
development effort, and, when deployed, they tend to consume signifi-
cant computational resources. Furthermore, all solutions identified in 
the RR cannot be transferred to other contemporary software systems 
(see the answer to RQ4 in Section 7.1). Therefore, while the alternatives 
presented in this paper set a path to test CASS, software testers are bound 
to reproduce the steps and technologies. Testing CASS is more 
cost-intensive than testing traditional software and requires the 
exploitation of cost-effective techniques that reduce the (1) testing time 
and (2) risks of damaging expensive hardware. We learned that 
multi-objective, search-based, and model checking-based testing tech-
niques could be successfully applied to reduce CASS dynamic testing 
processes’ costs. 

7.4.3. Lesson learned 3: needs of not trivial testing environments in SDLC 
The Software Development Life Cycle (SDLC) impacts the re-

quirements for driving context variation in test environments. Indeed, to 
properly reproduce the variation of context during the dynamic execu-
tion of testing processes, it is necessary to design, implement and deploy 
a not trivial (and perhaps not available yet) test environment. The way 
the dynamic context variation is provided may depend on the specific 
stage of the SDLC. We observed that two main solutions might be 
applied. In the first stages of the development life cycle, the testing 
environment could provide a context-aware simulated environment 
where the context models can drive the simulation (see the answer to 
RQ2/perspective 4 in Section 7.1). Second, towards the SDLC final 
stages, the testing environment should resemble as much as possible the 
real execution environment where the CASS will run (see the answer to 
RQ2/perspective 3 in Section 7.1). Possible solutions to guarantee the 
testing environment’s context-awareness are using emulators for 
mocking up real devices or using the same hardware/software compo-
nents composing the final execution environment. 

8. Future research directions on CASS testing 

Drawing from the previous observations, the lessons learned in this 
RR, and our experience, we propose research directions for testing the 
context-awareness of contemporary software systems. 

Future direction 1. Evaluating the efficacy of models to represent the 
real world. George box’s quote is often repeated: "All models are 
wrong, but some are useful." We are concerned with the model’s 
capacity to represent their production environments for testing 
CASS. If the model does not represent the production environment, 
then the results of the techniques can be challenged. 
Future direction 2. Measuring the coverage of the test suites. Coverage 
measurements of the test suite were not identified in this RR. How-
ever, Matalonga et al. [13] identified a research interest concerning 
coverage measurement (see [59,60]). Nevertheless, coverage mea-
surement was not observed in this sample of papers. Therefore, we 
would call for more research on the coverage measurement of the 
test suites regarding CASS. 
Future direction 3. Functional suitability. Related to coverage is the 
question of generating test suites for evaluating the correct behavior 
of CASS in the face of the variation of context. This problem is related 
to the sheer volume of the test cases and the capacity to solve the test 
oracle problem [61] for each possible context adaptation. Applica-
tions of metamorphic testing [62] might be a possible way towards it. 

Nonetheless, we were not surprised that the primary sources did not 
capture this approach’s applications, given its inherent complexity in 
non-academic settings. In any case, we claim this is a research line 
that needs further effort and investigation. Our preferred approach is 
to keep a degree of human factors in the loop [63,64] and then 
exploit it with simulations. 
Future direction 4. Safe failure of safety-critical CASS. When looking 
at the reliability quality attribute, existing alternatives to testing 
CASS tend to use models and simulations to identify the combina-
tions of inputs that might reveal a failure. This information can be 
captured in a test case and feedback into the development process for 
safe failure. However, as complete coverage of the test input space 
cannot be warrantied, eventually, the software will fail. Therefore, 
we would suggest that a research line should be to warranty the 
correct safe-failing behavior of CASS. It is a reduced problem from 
the test oracle, as it is only looking at ensuring a safe behavior when 
the set of inputs makes it fail. 
Future direction 5. Management of test activities for CASS. The RR 
results raise the attention to managing test activities (RQ1 and RQ4). 
The importance of this future direction lies in the volume of test cases 
needed to cover the variation of context, which introduces chal-
lenges for the testing process management in non-academic settings. 
We would assume that practices and procedures should evolve to 
manage the context, and test suites in the CASS environments must 
be dynamically tested. 
Future direction 6. Artificial Intelligence (AI) approaches for dealing 
with the complexity of the context. The RR indicated that novel 
testing techniques based on genetic algorithms [65] or reinforced 
learning [66] had been successfully adopted to reduce the costs of 
CASS’s dynamic testing processes. We believe that this trend may 
lead to the use of AI in testing processes for CASS. Furthermore, AI 
could be exploited to implement solutions aiming to emulate the 
variation of context in a more realistic way. 
Future direction 7. Tertiary, Multivocal, and Survey studies execution. 
As we observed in Section 3, many secondary studies addressing the 
topic of CASS testing have been published in the literature. We 
believe that the field is ripe to conduct a tertiary study that can 
uncover trends. Moreover, to deepen the understanding of how CASS 
are tested in practice, we believe that a Multivocal secondary study 
will be able to uncover practices that have not made their way into 
peer-reviewed publications. Finally, Survey studies where practi-
tioners are interviewed to understand how they perform CASS 
testing processes. 

9. Empirical suggestions for testing CASS 

Good practice conveys that testing must be carried out in an envi-
ronment close to the intended production environment. Each deviation 
from this heuristic means the test process risks the test Environment’s 
behavior differently from the Production Environment. Thus, testing is 
and has always been, from its definition, an exercise in risk-taking. Since 
its initial formalizations, testing and test case selection are driven by the 
test analyst, striking a balance between comprehensiveness and risk of 
defects being carried into production. In modern CASS, these forces are 
pushed to levels that current test design techniques have yet to adapt. 
The sheer possibilities of variables and corresponding values in that 
context can make the conundrum of selecting a suitable set of test cases 
even more challenging. Worsened still by the cost of reproducing the 
production environment for testing. 

We put forward three empirical suggestions based on our reflections 
regarding testing CASS that must be taken into consideration for 
developing technologies to test such software systems: 

9.1. Conceptual 

Accept the nature of the context and differentiate that the test item is 
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subjected to different input types - The test input and the input from the 
context. First, the context in which the test item is being executed will 
vary through external forces and interaction with the test item. Test 
management and Test design techniques for testing CASS must accept 
this. Secondly, test input and inputs from the context are two different 
types of inputs. The test input can and should be planned by the test 
analyst— the test input results from applying a test design technique 
during a test case definition. Model and simulation can enhance the 
capacity of the test analysis. However, as we mentioned, we prefer so-
lutions that keep the test analyst in the loop. 

On the other hand, context input is not within the control of the test 
analyst. Instead, they come from the interaction of the test item with the 
environment. CASS’s test design techniques must accept this lack of 
control and design the test cases around it. We recommend that software 
testers accept this behavioral nature of context [67] when testing CASS 
and gradually relinquish control of the context to the environment. 
Thus, the software system’s development stabilizes through its journey 
through the software development life cycle. 

9.2. Technical 

Start with a dynamic system model. All successful observed experi-
ences of testing CASS started by modeling the software system. This 
model must support dynamic simulation. The state-based simulation 
will not capture the nature of the context. Computing resources can then 
be leveraged to evaluate input value combinations to fulfill a quality 
attribute (performance, reliability). In short, the idea is to have a system 
model to aid the test analyst with the development of test cases and 
explore computing simulations to minimize the risk that a combination 
of test cases can provide contextual inputs that leads to a failure (reli-
ability). Finally, it is fed to the system during its execution in a pro-
duction environment. 

9.3. Procedural 

Manage the context - and the exposure of the test item to the context - 
throughout the SDLC. Testing CASS is expensive. Therefore, there is 
little use in investing time, effort, and money into these complex solu-
tions for testing CASS if there is no reasonable assurance that the soft-
ware systems behave as expected and have been developed following 
accepted quality guidelines. We claim that other elements of the testing 
lifecycle must be evolved to accept CASS. As far as we could investigate, 
we have already noticed that this research did not find any study that 
caters to the influence on the context of the "Organizational Test Pro-
cess’’ or the "Test Management Process." 

10. Conclusions 

Testing context-aware software systems are challenging, mainly 
because of the behavioral nature of the context. Moreover, the context 
variation in the environment during the contemporary software sys-
tem’s lifecycle generates an exponential increase in the test input space. 
This increase worsens the challenge of selecting suitable test suites to 
guarantee the test item’s quality. 

This paper presents the result of a Rapid Review aimed to identify 
alternatives to testing CASS observed and evaluated in non-academic 
settings. We commissioned this RR under the assumption that CASS 
are mainstream (from self-driving autonomous vehicles to systems of 
systems that source data from multiple IoT sources). Therefore, they are 
being tested outside academia. 

The results of this work can be summarized as follow.  

• Current research initiatives focus on generating or improving test 
suites that can deal with context variation and the sheer volume of 
test input possibilities. To achieve this, we have observed strategies 
that revolve around two concepts: creating a dynamic model of the 

software system and using computer-based simulations to identify or 
improve test suites. Furthermore, we have made the case that these 
dynamic models of the system must evolve with the CASS in order, 
for the testing result, to maintain their representativeness of the 
changing context and evolving CASS requirements.  

• All identified solutions are at a relatively early development stage 
and domain-specific. It means that there is still no technology readily 
transferable for testing CASS. Furthermore, we observed that the 
environment used to support the dynamic testing of CASS is complex. 
Finally, none of the technologies manage the testing process 
throughout the SDLC.  

• Two important claims to help software testers regarding the state of 
practice have been presented. First, testing CASS is effort-intensive 
and costly in terms of computational resources. Second, testing 
CASS starts with having a useful dynamic model of the contemporary 
software system. We conceptualized these claims into three propo-
sitions that software testers must abide by when developing their 
technologies for testing CASS. Conceptual - Accept the nature of 
context and differentiate that the test item is subjected to different input 
types: the test input and the input from the context. Technical - start with 
a dynamic model of the software system. Procedural - Manage the 
context - and the test item’s exposure to the context - throughout the 
SDLC.  

• We proposed seven future research directions for evolving the state- 
of-the-art testing CASS. Current research has mostly focused on dy-
namic test execution. The research community must address other 
aspects of the testing life cycle to evolve knowledge regarding testing 
contemporary software systems. 
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