

UWS Academic Portal

Alternatives for testing of context-aware software systems in non-academic settings

Matalonga, Santiago; Amalfitano, Domenico; Doreste, Andrea; Fasolino, Anna Rita; Horta
Travassos, Guilherme
Published in:
Information and Software Technology

DOI:
10.1016/j.infsof.2022.106937

E-pub ahead of print: 30/09/2022

Document Version
Publisher's PDF, also known as Version of record

Link to publication on the UWS Academic Portal

Citation for published version (APA):
Matalonga, S., Amalfitano, D., Doreste, A., Fasolino, A. R., & Horta Travassos, G. (2022). Alternatives for testing
of context-aware software systems in non-academic settings: results from a Rapid Review. Information and
Software Technology, 149, [106937]. https://doi.org/10.1016/j.infsof.2022.106937

General rights
Copyright and moral rights for the publications made accessible in the UWS Academic Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

Take down policy
If you believe that this document breaches copyright please contact pure@uws.ac.uk providing details, and we will remove access to the
work immediately and investigate your claim.

Download date: 12 Jul 2022

https://doi.org/10.1016/j.infsof.2022.106937
https://uws.pure.elsevier.com/en/publications/478d4ffb-3dcd-4379-8a11-3f03d6c8069d
https://doi.org/10.1016/j.infsof.2022.106937

Information and Software Technology 149 (2022) 106937

Available online 6 May 2022
0950-5849/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Alternatives for testing of context-aware software systems in non-academic
settings: results from a Rapid Review

Santiago Matalonga a,*, Domenico Amalfitano b, Andrea Doreste c, Anna Rita Fasolino b,
Guilherme Horta Travassos c

a School of Computing, Engineering, and Physical Science. The University of the West of Scotland, Paisley, Renfrewshire, United Kingdom
b Department of Electrical Engineering and Information Technology, DIETI. University of Naples Federico II, Naples, Italy
c System Engineering and Computer Science, COPPE. Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

A R T I C L E I N F O

Keywords:
Context-aware software systems
Software testing
Rapid review
Contemporary software systems

A B S T R A C T

Context: Context-awareness challenges the engineering of contemporary software systems and jeopardizes their
testing. The variation of context represents a relevant behavior that deepens the limitations of available software
testing practices and technologies. However, such software systems are mainstream. Therefore, researchers in
non-academic settings also face challenges when developing and testing contemporary software systems.
Objective: To understand how researchers deal with the variation of context when testing context-aware software
systems developed in non-academic settings.
Method: To undertake a secondary study (Rapid Review) to uncover the necessary evidence from primary sources
describing the testing of context-aware software systems outside academia.
Results: The current testing initiatives in non-academic settings aim to generate or improve test suites that can
deal with the context variation and the sheer volume of test input possibilities. They mostly rely on modeling the
systems’ dynamic behavior and increasing computing resources to generate test inputs to achieve this. We found
no evidence of test results aiming at managing context variation through the testing lifecycle process.
Conclusions: So far, the identified testing initiatives and strategies are not ready for mainstream adoption. They
are all domain-specific, and while the ideas and approaches can be reproduced in distinct settings, the tech-
nologies are to be re-engineered and tailored to the context-awareness of contemporary software systems in
different problem domains. Further and joint investigations in academia and experiences in non-academic set-
tings can evolve the body of knowledge regarding the testing of contemporary software systems in the field.

1. Introduction

Contemporary software systems (CSS) refer to software systems that
demand integrating devices and communications technologies [1]. Ex-
amples of CSS domains include ambient intelligence, assisted living,
systems of systems, the internet of things, cyber-physical systems,
autonomous systems, and industry 4.0, which are now mainstream. CSS
refers to software systems that demand integrating devices and com-
munications technologies [1]. In these systems, physical objects with
embedded software are interconnected by networks to provide services
to the system’s actors. Sensors, computer devices, and applications
should interact, exchange information, and work with distinct elements
to guarantee adequate functionalities. Therefore, CSS exploit technolo-
gies that offer challenges for their construction since they question the

traditional form of developing software. CSS exhibit several character-
istics (like service discoverability and interoperation). Among the
characteristics that these systems exhibit is context awareness [2] which
is the focus of this work because it challenges current engineering
practices [3], particularly when related to testing.

Previous investigations highlighted relevant characteristics
regarding the engineering of context-aware software systems (CASS) [2,
4,5]. The hype of the press went from CEOs arguing that "driverless trucks
will never happen" [6] to headlining the first successful coast-to-coast
driverless truck journey in the USA [7]. Our previous research
regarding ubiquitous [8,9], Internet of Things [1,10], and general
context-aware software systems [11–13] revealed some gaps and the
need for software technologies to support the engineering of CSS [10],
mainly when their non-functional requirements include

* Corresponding author.
E-mail address: santiago.matalonga@uws.ac.uk (S. Matalonga).

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

https://doi.org/10.1016/j.infsof.2022.106937
Received 27 November 2021; Received in revised form 2 May 2022; Accepted 3 May 2022

mailto:santiago.matalonga@uws.ac.uk
www.sciencedirect.com/science/journal/09505849
https://www.elsevier.com/locate/infsof
https://doi.org/10.1016/j.infsof.2022.106937
https://doi.org/10.1016/j.infsof.2022.106937
https://doi.org/10.1016/j.infsof.2022.106937
http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2022.106937&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Information and Software Technology 149 (2022) 106937

2

context-awareness.
The expectation of CASS is well deserved, as such software systems

are bound to enter several aspects of our daily lives. There are clear
indications that CASS present challenges to current engineering tech-
nologies [1–3]. Their testing exposes the limitations of available soft-
ware testing practices and technologies. Context-awareness amplifies
the software testing conundrum between coverage and effort [14], as
context variation greatly increases the test input space. CASS are
currently well accepted and deployed in safety-critical underregulated
domains (like Autonomous vehicles), presenting new risk sources for
their users when not adequately tested.

Not considering the nature of context during testing and quality
assurance costs lives. Examples are already in the news, like the Boeing
737 Max [15] and the Chevrolet Onix’s recall in Brazil [16]. In the
Boeing 737 Max case, there was an omission to consider all design
changes to the airplane aerodynamics when updating a software
component designed to assist pilots in potentially dangerous situations.
This omission led to a scenario where the software component enhanced
the danger due to a faulty context interpretation. Such a scenario was
(apparently) never tested before deployment. In the Chevrolet Onix
case, the car sensors were not prepared to detect the exceptional heat-
wave in Rio the Janeiro, leading to situations where the car batteries
ignited.

This work is motivated by the assumptions that CASS are becoming
mainstream, they are being introduced to the general public, and -
considering previous works (including ours [11–14] and from other
groups [2] or [15]) - there is little evidence on the testing of CASS in
non-academic settings.

This paper presents a Rapid Review (RR) [17] to understand how the
researchers deal with the variation of context when testing CASS
developed in non-academic settings. Given our work assumptions,
knowledge of the literature in the field, and practical experience in
testing CASS, we claim that RR is a suitable method to timely achieve
our research objective. Indeed, this RR aims to find evidence from the
literature in a timely and resource-efficient manner by using methods to
accelerate or streamline traditional systematic review processes in
rapidly changing fields [18].

Our results show that current research initiatives involving non-
academic applications aim to generate or improve test suites that can
deal with the variation of context and the sheer volume of test input
possibilities. To achieve this, they mostly rely on modeling the dynamic
behavior of the systems. They also need to rely on increasing computing
resources to generate test inputs. Furthermore, we found no evidence of
research results to manage context variation throughout the testing
lifecycle process. In addition to this, all identified solutions are domain-
specific and are not ready for widespread transfer. It means that soft-
ware testers looking to test CASS need to take on these approaches and
re-engineer -or tailor - the solutions to their working domains, which
comes at a considerable cost.

The remainder of this paper is organized to convey the research
method and results. First, we ground the terminology used through this
work in Section 2. Section 3 aims to relate state of the art in testing CASS.
Details of the research method design and its execution are provided in
Sections 4 and 5, respectively. Data analysis is presented in Section 6. In
Section 7, we present the results of this RR and frame them in the context
of the state-of-the-art and the threats to the validity of this research, and
propose some lessons learned. Future research directions are presented
in Section 8, and empirical suggestions for testing CASS are reported in
Section 9. Finally, Section 10 presents our conclusions.

2. Background concepts

This section conveys the background concepts that make the
construct of this Rapid Review.

2.1. Context and Context-awareness

This work draws the definition of context by Abowd et al. [19],
where context is any information that may be used to characterize an
entity’s situation (logical and physical objects present in the system’s
environment) and the relations relevant to the actor-computer interaction
between actors and computers. As a result, context-awareness is a dynamic
property of a software system that can evolutionarily affect its overall
behavior in the interaction between actors and computers, as defined in de
Sousa et al. [11]. Therefore, context-aware software systems can identify
changes in the logical or physical environment (i.e., context) and adapt
their behavior to serve the actor better. In the relationship between the
CASS and the context itself lies the problem with their testing. When the
context variations are considered, the input space for stimulating the
CASS grows beyond the current technology’s handling capacity. The
most used strategy to deal with the context and its variation is to model
the system and exploit computing resources in simulation. In Matalonga
et al. [12], we argued, and so have others [20–22], that the actual ap-
proaches for testing CASS are not prepared yet to deal with all the
possible variations of the software system’s context.

2.2. Software Testing

Software Testing is a systematic process for revealing failures and,
therefore, indicating the presence of faults in software. This activity is
important for developing high-quality software systems by assessing
their functional and non-functional requirements [23].

The ISO/IEC/IEEE 29119-1-2013 [24] strictly relates the
non-functional requirements to the quality characteristics of a software
product. These software quality characteristics are defined in the
ISO/IEC 25010:2011 [25] (a.k.a. SQuaRE), which proposes a model
categorizing software product quality properties into eight characteris-
tics: functional suitability, reliability, performance efficiency, usability,
security, compatibility, maintainability, and portability. The ISO/-
IEC/IEEE 29119-1 classifies the requirements into two main categories,
i.e., FRs and NFRs. FRs align with the functional suitability quality
characteristic outlined in ISO/IEC 25010, whereas the NFRs are linked
to the remaining seven quality characteristics (a.k.a. quality attributes)
outlined in SQuaRE. Henceforth, we will use the terms non-functional
requirement, quality attributes, and quality characteristic without
distinctions.

In this paper, to harmonize the terminology, we draw from the terms
used in ISO/IEC/IEEE 29119-1-2013 [24]. In particular, we will use the
test processes and test techniques for analyzing the data in this research
work. According to this standard, the testing processes can be grouped
into Organizational Test, Test Management, and Dynamic Test Processes.
The former deals with organizational policies for testing and is out of
this research’s scope. The second refers to "processes covering the man-
agement of testing for a whole test project or any test phase (e.g., system
testing) or test type (e.g., performance testing) within a test project (e.g.,
project test management, system test management, performance test man-
agement)." They rely on the execution of subprocesses for (1) planning the
resources needed to execute the test activities, (2) monitoring and con-
trolling the execution of the planned activities, and (3) completing the test
process that is reached when the agreement that the testing activities are
complete has been obtained. The latter "are used to carry out dynamic
testing within a particular phase of testing (e.g., unit, integration, system, and
acceptance) or type of testing (e.g., performance testing, security testing,
usability testing)." They consist of four subprocesses.

• Test Design & Implementation Process: it is performed to derive test
cases and test procedures by exploiting combinations of testing
techniques.

• Test Environment Set-Up & Maintenance Process: it is used to build and
maintain the running environment for executing the tests.

S. Matalonga et al.

Information and Software Technology 149 (2022) 106937

3

• Test Execution Process: it executes, in the test environment, the test
procedures previously implemented.

• Test Incident Reporting Process reports test incidents such as anoma-
lies, bugs, defects, errors, and issues found during the test execution
process.

In this work, we will focus on dynamic testing techniques. In this
paper, we will use the terms testing technique and dynamic testing
technique without distinctions. According to the ISO/IEC/IEEE 29119-
2-2013 [26], the main goal of dynamic testing is to derive test cases to
be dynamically executed on a test item that runs in a testing environ-
ment. In practice, software testers usually apply one or more test design
techniques for deriving test cases and procedures with the main goal of
achieving a given test completion criteria, typically described in terms of
test coverage measures [26], and so, to reveal as many failures as
possible [27].

A test case is defined in [24] as the lowest testing scope of test
documentation. Test cases define the “set of preconditions, inputs and
expected results, developed to drive the execution of a test item” [24].
Test suites are defined as a “set of test cases” [24], which are grouped to
be executed to assess that the test item behaves as expected in specific
scenarios.

2.3. Non-academic setting

The term non-academic setting is used throughout the text to convey
the scope and interest of this RR. By using “non-academic setting,” we
refer to software systems developed for industrial or commercial pur-
poses. We look for evidence about testing processes adopted for these
systems that have been presented in peer-reviewed white literature.

3. Related works

Secondary studies on CASS testing are new in the software engi-
neering community. To the best of our knowledge, the first publication
dates to 2016. In the following, we discuss (1) works focusing on specific
CASS application domains, (2) studies addressing the problem from a
general point of view, and (3) the novelties of this RR concerning pub-
lished secondary studies.

3.1. Secondary studies on CASS testing for specific application domains

We analyzed six secondary studies focusing on specific application
domains. Costa et al. [28] surveyed 13 primary studies to understand the
strategies adopted for testing smart cities applications and to discuss the
difficulties identified by the developers for testing this type of
context-aware software system. Schmidtke [29] presented a classifica-
tion of different approaches to testing intelligent sensor actuator systems
(ISAS), with a special focus on autonomous vehicles. The author dis-
cussed the verification of algorithms generated by machine learning and
reasoning. Schmidtke also showed that while the general verification of
autonomous vehicles is a highly complex problem, it could become
solvable piecewise if it can be broken down spatiotemporally. In addi-
tion, Schmidtke argued that verification of ISAS is a solvable problem if
it is not seen purely as a computer engineering problem but also as a civil
engineering problem so that it can be solved with a novel type of
trustworthy human-like AI systems. Almeida et al. [30] and Luo et al.
[22] presented systematic mapping and a survey in context-aware mo-
bile applications testing. Almeida et al. [30] analyzed 68 studies to
summarize the current state of the art concerning test automation tools
for Android context-aware applications. The authors identified five tools
for testing context-aware Android apps and five tools supporting
context-aware testing. These tools were compared to understand which
context data are supported and how and if these tools can test context
variations.

Moreover, the study pointed out that the main challenges in mobile

context-aware testing are mainly related to (1) the wide diversity and
heterogeneity of context data types and context variations and (2) the
nature of the context that constantly varies asynchronously. Luo et al.
[22] gave an overview of the state-of-the-art context simulation methods
for testing mobile context-aware applications. The work also discussed
how each identified method could be implemented and deployed by
testing tool developers and mobile application testers. Moreover, the
authors summarized the main five challenges in context simulation.
These are: to support the simulation in the early stages of the testing, to
have high-fidelity emulators, to provide sufficient coverage of hetero-
geneous contextual data, to achieve the context simulation for
multi-device scenarios, and to improve the support of automation.
Siqueira et al. [31] extended a previous work of Ferrari et al. [32] with
the main goal of characterizing the challenges that are faced during the
testing activity of adaptive software systems (AdSs). Authors selected
and analyzed 25 papers and classified 34 specific testing challenges for
adaptive systems and inferred relationships among them through the
definition of 12 generic challenges. Moreover, the authors also associ-
ated these challenges with the characteristics of adaptive software sys-
tems, such as the elements receiving environment data and elements
dealing with system adaptations.

3.2. Secondary studies on CASS testing in general

We selected four works addressing the problem from a general point
of view. Siqueira et al. presented two secondary studies addressing at the
same time the problem of CASS testing and AdSs testing [21,33].
Siqueira et al. [33] showed the results of a Systematic Literature Review
(SLR) whose main goal was to characterize fault types for AdSs and
CASS. To reach this goal, the authors analyzed (1) eleven primary
studies addressing fault types, (2) seven additional works investigating
fault-based testing for AdSs and CASS, and (3) existing code snippets of
real projects. Moreover, the authors developed new code snippets to
illustrate how the fault types may occur. As a result, 26 specific fault
types and a summary of 6 fault type categories for AdSs and CASS were
presented. In addition, the authors discussed relationships between the
fault types with current fault-based testing approaches. Siqueira et al.
[21] presented an SLR and a thematic analysis of studies to update
existing reviews of the same authors. The SLR selected 102 studies, and
their analysis allowed us to characterize the testing approaches by
grouping techniques for AdSs and CASS. The authors also presented 13
types of challenges grouped by generic and specific challenges. Mata-
longa et al. [13] selected and analyzed 12 primary studies in a
quasi-systematic literature review (qSLR) to characterize the methods
adopted for CASS testing and understand their effectiveness. As for the
results, the authors observed (1) the lack of consensus between the terms
and naming conventions defined in the ISO/IEC 25010:2011 interna-
tional standard w.r.t. the descriptions of the techniques used by the
primary sources and (2) that only two of the twelve identified sources
dealt with the effectiveness evaluation of the proposed testing approach.
Moreover, the authors pointed out that (1) there is a lack of consensus on
what the primary sources described as context, and (2) none of the
selected primary sources considered the variation of context during the
test process execution since the proposed testing approaches adapted
traditional non-context-aware methods to design the test cases to be
executed for testing CASS. De Sousa [11] published a qSLR that surveyed
17 primary studies to characterize the CASS testing approaches from
different points of view, i.e., the methods used to design test cases, the
quality characteristics addressed by the test cases, the coverage criteria
used to evaluate the test cases adequacy, and the influence of the context
in test cases design.

3.3. Novelties of the RR concerning the analyzed literature

All the analyzed secondary studies shared the common goal to un-
derstand the challenges and the difficulties when testing CASS. The most

S. Matalonga et al.

Information and Software Technology 149 (2022) 106937

4

common of these challenges are: (1) how to deal with the uncertainty
introduced by the context, (2) how to accommodate the variation of the
context during the execution of the tests, (3) how to deal with the huge
combination of possible inputs and outputs of CASS, and (4) how to
simulate realistic system execution environment and workload during
the testing.

This RR complements the aforementioned secondary studies since
none focused on how researchers deal with the context variations when
they perform testing processes for CASS developed in non-academic
settings. Moreover, the RR also extends the entire set of the papers
selected by the secondary studies since it considers a different research
goal.

4. Research method – rapid review

This section summarizes the Rapid Review research protocol we
have employed as the research method to guide our work. A Rapid Re-
view (RR) aims to provide evidence on a problem more quickly and
resource-efficiently than a Systematic Literature Review [17]. This
research effort compares the advances in testing CASS since 2017 when
de Sousa et al. [11] and Matalonga et al. [13] were published. These
systematic reviews uncovered evidence of a lack of testing techniques
regarding the full validation of context-awareness. Therefore, we have
developed the RR protocol with the following three assumptions:

Assumption 1. CASS have spread and are more pervasive than they
were three to five years ago.

Assumption 2. The software engineering and software testing com-
munities have had time to adopt (or develop new) techniques to deal
with the context and effects of testing software systems.

Assumption 3. Academics have been able to work with non-academic
environments to transfer or study the approaches used to test CASS.

4.1. Definition of goal and research questions

This RR aims to understand how non-academic software projects
deal with context variation when testing Context-Aware Software Sys-
tems. In addition, this RR aims to characterize the software technologies
that enable us to consider the context variation in the CASS testing
processes adopted outside academia. More precisely, we are interested
in distinguishing whether (and how) the non-academic environments
consider the context in testing, understanding whether the context is
instantiated and varied during the test cases and whether the software
system under test interacts at runtime with the running context.

To reach this goal, we defined the following four research questions:

RQ1 Which software technologies support the test management
processes dealing with the context for CASS?

Rationale: To understand how the context and its variations are being
considered when managing testing activities. Under our work assump-
tions, software teams dealing with the context-aware CASS should have
many test suites and cases whose execution they must properly manage.

RQ1 Which are the software technologies supporting the dynamic
testing processes dealing with the context for CASS?

Rationale: To understand the support for executing CASS testing. We
want to understand the given support to software practitioners
regarding the context and its variation during the execution of CASS
testing.

RQ1 What are the issues or limitations of the observed solutions for
testing CASS?

Rationale. To understand the extent to which CASS are being tested
and if the experiences and lessons learned can be captured for other
testers looking to test CASS. When looking at solutions proposed in the
literature (see Section 3), it is clear that CASS testing has many chal-
lenges for current engineering practices and solutions come with
compromises.

RQ1 How mature are the identified solutions for widespread
adoption?

Rationale: To understand the effort that a software tester looking for
testing CASS would be required to invest in adopting one of the proposed
solutions. To the best of our knowledge, all solutions observed in the
literature (see Section 3) are domain-specific and would require exten-
sive re-engineering to be adopted for other use cases or application
domains.

4.2. The primary studies selection process

This section provides an overview of the process we followed in
selecting primary studies in this study. As Figure 1 shows, the process
relies on executing three steps, i.e., Automated Search Strategy, Primary
studies selection, and Snowballing search strategy. Executions of this
process are presented in Section 5.

The selection process (see Figure 1) was decomposed into the ac-
tivities described in this section. The JabRef Tool1 has been used to
manage and support the selection procedure. In each activity, we voted
for the source’s inclusion and discussed the motivations for conflicting
votes (see Section 5.1).

4.2.1. Automated search strategy and removal of duplicates
Scopus was the main search engine, and the ACM Digital Library was

the secondary. We applied our search string and selection procedures in
SCOPUS and repeated the task in ACM Digital Library. Based on this, the
search string was adapted to fulfill the requirements of both search en-
gines. The variations are built on a canonical search string developed
following the PICOC method with five levels of filtering (see Table 1).
Duplicated papers returned by both search engines were removed.

4.2.2. Application of the inclusion/exclusion criteria
Eight inclusion criteria (IC) and three Exclusion Criteria (EC) were

applied to include or discard the primary studies returned by Automated
and Snowballing Search Strategies.

To be included in our study, the study must accomplish all the
following IC.

IC1. the paper must be in the context of software engineering;
IC2. the paper must be in the context of context-aware software
systems;
IC3. the paper must be peer-reviewed;
IC4. the paper must report a primary study;
IC5. the paper should be conducted within a non-academic setting;
IC6. the paper must report an evidence-based study grounded in
empirical methods (e.g., interviews, surveys, case studies, formal
experiments, and others);
IC7. the paper must provide data to answer at least one of the RR
research questions by showing that dealing with context during
testing was a concern;
IC8. the paper must be written in the English language.

To be excluded from our RR, a work must satisfy at least one of the
EC summarized in the following:

1 http://www.jabref.org/

S. Matalonga et al.

http://www.jabref.org/

Information and Software Technology 149 (2022) 106937

5

EC1. The paper has similar contents w.r.t. other studies from the
same authors and was published later in different venues;
EC2. the paper is an earlier version of a more recent or complete
version also identified;
EC3. the paper has not been published in Computer Science and
Computer Engineering.

We developed a shared understanding among the team regarding the
concepts included in these criteria during the protocol execution. We
exemplify this further in Section 5.1.

4.2.3. Snowballing search strategy
Forward and backward snowballing [34] was used as a comple-

mentary search strategy to mitigate the threat of missing literature. We
seeded the snowballing process with the selected sources after applying
the selection procedure (see Section 4.2.2) to the sources identified from

the automated search process. Regarding the initial seeds, we verified
that these were suitable to conduct a snowballing process by reviewing
and evaluating the five-point soft test proposed by the snowballing
guidelines by Wohlin [34]. Therefore, we decided to include all sources,
as no research group or author seemed to gravitate toward the initial
seeds. Furthermore, in 2020 (see Section 5), the seed sources were
complemented with sources suggested by colleagues with expertise in
software engineering and CASS software testing, who reviewed the
protocol and the first round of results.

4.3. Data extraction process

We designed a data extraction form to extract the information
needed to answer the research questions. This form’s pertinence became
clear since it fine-combed the sources for their suitability to answer the
research questions. The following fields were included in the data
extraction form:

Field 1. Abstract: it contains the abstract of the analyzed primary
study.
Field 2. Description: it reports a high-level summary of the proposed
testing technique in the author’s words.
Field 3. Study type: it is a description of the type of experimental
study that was described in the source.
Field 4. Application domain: it describes the non-academic setting in
which the study took place.
Field 5. Type of software system: it reports the possible type of soft-
ware systems reported in the source.
Field 6. RQ1: it reports sentences for answering research question 1.
Field 7. RQ2: it reports sentences for answering research question 2.
Field 8. RQ3: it reports sentences for answering research question 3.
Field 9. RQ4: it reports sentences for answering research question 4.

Excerpts that directly answered the research questions were extrac-
ted in these fields. Table 2 presents the data extraction form for Qin et al.
[35] (S10).

5. Execution of the protocol

The fast feedback nature of the RR research process allowed us to
execute three iterations of the research protocol defined in Section 4.
Figure 2 shows in detail the execution of the primary studies selection
process we performed in the RR.

The swimlanes in Figure 2 represent the three executions of the
process we performed in 2019, 2020 and 2022 respectively. Within each
swimlane, the same steps of the RR process presented in Figure 1 are
depicted, thus indicating, by means of full arrows, the flow of execution
of such steps during the process. The document icons, connected
through dotted arrows to the steps, represent the set of primary studies
produced as output or needed as input by each step. The numerical
values reported in the document icons represent the total number of

Fig. 1. Primary studies selection process

Table 1
PICOC-based search string

PICOC Main Term Synonyms

Population Contemporary
Software Systems

"ambient intelligence" OR "assisted living"
OR "multiagent systems" OR "systems of
systems" OR "internet of things" OR "cyber
physical systems" OR "autonomous systems"
OR "autonomic computing" OR "multi-
agent systems" OR "pervasive computing"
OR "mobile computing" OR "distributed
systems" OR "cooperative robotics" OR
"adaptive systems" OR "industry 4.0" OR
"fourth industrial revolution" OR "web of
things" OR "internet of everything" OR
"contemporary software systems" OR "smart
manufacturing" OR digitalization OR
digitization OR "digital transformation" OR
"smart cit*" OR "smart building" OR "smart
health" OR "smart environment"

Intervention Software Testing "test* management" OR "test* planning" OR
"test* monitoring" OR "test* control" OR
"test* completion" OR "test* design" OR
"test* type" OR "test* implementation" OR
"test* environment" OR "test* execution"
OR "test* reporting" OR "software test*" OR
"software validation" OR "software
verification"

Comparison Not Applied
Outcome Software Testing

Technologies
"test* management" OR "test* planning" OR
"test* monitoring" OR "test* control" OR
"test* completion" OR "test* design" OR
"test* type" OR "test* implementation" OR
"test* environment" OR "test* execution"
OR "test* reporting" OR "software test*" OR
"software validation" OR "software
verification"

Context Context Variation "variation" OR "context" OR "context
awareness"

S. Matalonga et al.

Information and Software Technology 149 (2022) 106937

6

primary studies in each set.
The first execution of the protocol was executed in 2019. In this

iteration 8 papers were filtered in over the 611 distinct studies returned
by the search engines, and a final set of 8 primary studies were selected
from the 43 distinct papers returned by snowballing. The results of the
analysis of these papers were published in a technical report [36].

Regarding the 2020 iteration, the actor icon represents three re-
searchers from academia with more than ten years of experience in CASS
software testing who suggested six primary studies after reviewing the
technical report we published at the end of the previous iteration. In this
iteration no one of the 16 distinct papers, gathered from the search
engines, passed our IC and EC. We considered the six papers suggested
by the researchers as candidate sources, but, after applying the IC and
EC, none of them were selected. Furthermore, we included these studies
as additional input for the snowballing process to further mitigate the
risk of missing literature. At the end of this iteration a final set of 11
primary studies were selected over the 72 papers returned by
snowballing.

In January 2022 we revisited again the protocol execution, and no
new sources were included after we applied the IC and EC to the 41
distinct primary studies returned by the search engines. Finally, from the
110 works collected by snowballing, the same 11 works already selected
in 2020 have been included in the final set of primary studies.

It is worth observing that in the snowballing search strategies per-
formed in 2020 and 2022, we also added, as input, the primary studies
already selected in the previous stages.

5.1. Achieving consistency with the inclusion criteria

We invested much effort in establishing the criteria’ consistency
among the different researchers when applying the inclusion criteria at
the different RR inclusion activities. In all such activities, each primary
study was analyzed by two researchers that voted the paper as “yes,”
“no,” or “doubt.” Studies that obtained two “yes” were included. On the
contrary, studies with two “no” were discarded, and researchers dis-
cussed the remaining ones to reach a common consensus.

We present a few examples of the research team’s discussions to
convey our rationale regarding the inclusion/exclusion criteria.

Regarding IC2, we extensively discussed what qualifies a context-
aware software system. Upon reflection, most of these discussions
revolved around the complexity of the software system under test. This
decision draws from Lewis’s conceptual pragmatism [37]. Thereby, we
probed the test item described in the candidate sources to determine
whether the added complexities needed for considering the context and
its variation were worth making to test such software. This exercise led
to the rejection of several sources. Each proposal was reviewed to verify
that the software under test was a CSS that exhibits context-aware
characteristics (even within a non-academic setting) to merit the con-
cepts’ application. For instance, in Xu et al. [38], the proposal considers
context-awareness. It conveys how the software under test is expected to
be deployed in an industrial setting. However, the complexities of the
defined setting for the evaluation are too simple for this RR (column Test
Item in Table 4 synthesizes this process for the selected studies).
Therefore, we make explicit that we are not making a judgment call on
the pertinence of that system to the research goals expressed in [38].
Instead, we are making a judgment call on the pertinence of that soft-
ware under test to our study’s goals. Furthermore, we note to the reader
that this judgment was made after going through the data extraction
process for this source (conveying how thorough we were of the inclu-
sion/exclusion decision taken).

We want to clarify how we have interpreted that the primary study
was conducted within a non-academic setting regarding IC5. This RR aims
to identify evidence of testing CASS outside academia. Therefore, the
source’s criterion clearly states that the test item was intended to be
deployed in the production environment. We wanted to weed out test
items developed for the research, even if these were based on real-life
applications and/or with an industrial sponsor’s support. For instance,
Rosenthal and Lewis [39] were evaluated in this RR’s process, passing
the inclusion criteria until the Data Extraction process. At this point, we
noticed that the authors commented that they "implemented the SVS
(Smart Vacuum System) application as a completely autonomous robot
that receives input from sensors and responds accordingly." [39]. As a
result, we agreed that these implementation types could not be judged to
belong to a non-academic setting. There is an explicit statement that the
researchers implemented the test item. Interestingly, several other
sources suffered the same analysis as [39]. For instance, [40,41] contain
similar statements that can only be identified in a thorough reading (or
during the Data Extraction process). Qin et al. [35] present an inter-
esting case on the other end. The proposal is relevant to this research,
but it became evident that only the second use case described in the
paper presents evidence of an industrial setting during the data extrac-
tion. Therefore, only evidence from the second use case was included in
the analysis of this research.

Regarding IC7, we settled into three conditions to appraise this cri-
terion: the paper must address the phenomenon of interest, the test item
must be context-aware, and the proposal must show evidence of having
a CASS software under test. For instance, for [38,42], we judged that
there was no evidence of the test cases’ execution upon finalizing the
data extraction of those references.

6. Data analysis

In this section, we report a detailed analysis of the extracted data.

Table 2
Example of Data Extraction Form regarding the work of Qin et al. [35]

Field Example Extraction excerpt

Abstract <A full text of the abstract was extracted. We mainly used this
as a reference for discussions. For brevity, we do not include it
here>

Description "in this article, we present an approach, named context-based
multiinvariant detection (CoMID), to automatically
generating invariants for specifying developers’ implicit
assumptions and checking these invariants for detecting when
a cyber-physical program has entered an abnormal state at its
runtime. CoMID addresses the preceding challenges with its
two techniques: context-based trace grouping and
multiinvariant detection." [35]

Study type "We present the evaluation of our CoMID approach, including
comparing it with two existing approaches.
We select three real-world cyber-physical programs, namely,
NAO robot.., and six-rotor UAV …. as the evaluation subjects."
[35]

Application
Domain

Cyber-physical program

Type of software
system

<Authors make no explicit statement as to this field. For our
purposes, we can abstract from the ’Study type’ field and
leave this field empty>

Answer to research questions
RQ1 <No data extracted for this source>
RQ2 "CoMID works in four steps, which are as follows:

1) it first executes program P in the environment E to collect
safe execution traces, i.e., no failure condition triggered (Step
1: trace collection);
…
We implement CoMID as a prototype tool in Java 8" [35]

RQ3 “CoMID still has room for improvement. For example, it
currently records the values of program variables at entry and
exit points of all executed methods, and uses these variable
values to generate invariants. Monitoring all executed
methods greatly increases the time overhead of CoMID, and
makes it less effective when applied to a time-critical cyber-
physical program (e.g., a program whose iteration length is
less than 100 ms, as discussed in Section IV-C).” [35]

RQ4 <No data extracted from this source regarding RQ4>

S. Matalonga et al.

Information and Software Technology 149 (2022) 106937

7

First, we briefly describe the research reported in the selected papers.
Then, we characterize these testing techniques and answer the research
questions we proposed based on our evidence.

6.1. Overview of the included sources

This section provides an overview of the sources selected as this RR.
Table 3 presents the bibliographic information of the final sources,

reporting the number of publications by venue type and year. Next, we
present a summary of the selected sources. We added this summary to
provide the readers with an overall understanding of the selected
sources.

S1. Ma et al. [43] present a model-based approach for self-healing
software systems. Their approach includes a modeling framework
and an execution environment. Their approach focuses on dealing

Fig. 2. Primary studies selection process execution

S. Matalonga et al.

Information and Software Technology 149 (2022) 106937

8

with the uncertainties bright to the software systems by perceiving
the context. The authors evaluate their approach on a
computer-based simulation, in which their approach is applied to
nine self-healing software systems. Test cases are designed in the
modeling framework and executed simultaneously in the model and
the system.
S2. Arieta et al. [44] propose testing individual configurations from
software product lines of cyber-physical systems. The individual
configurations are selected by employing software-based simulation.
Their approach models the Software product line of the CPS, and
simulation is used to evaluate the CPS’s interactions and the context
dynamically. The authors evaluate their approach in a
computer-simulated environment. Their case study subject is a
model of an Unmanned Aerial Autonomous Vehicle. Test cases are
generated based on an initial set of test cases evaluated against the
SPL-CPS modeled variability points.
S3. Shin et al. [45] propose a search-based approach for prioritizing
acceptance test cases for CPS. Interestingly, while context variation
is not explicitly addressed in this proposal, the authors consider the
problems brought by uncertainties in the environment’s perception.
That consideration is reflected in the case study. The presented case
study involves a simulation environment where software for a sat-
ellite system is evaluated. Test cases are defined in a domain-specific
language, and the author’s search-based proposal optimizes the se-
lection and execution of the test cases.
S4. Shin et al. [46] present an approach for specifying and analyzing
hardware-in-the-loop test cases for cyber-physical systems. A textual
language named Hardware-In-the-loop TEst Case Specification
(HITECS) is defined using the UML profile mechanism to apply these
methods. Their approach deals with uncertainties that context can
realize in the software under the test’s environment. They present a
case study where the test item is a satellite system to evaluate their
approach. Their main aim with the case study is to evaluate their test
cases’ quality concerning the approach capacity to estimate the test

cases’ execution time. Their case study environment simulates an
in-orbit test setup that includes all hardware and communication
protocols.
S5. Lahami et al. [41] present a runtime approach to detect and
execute test cases affected by context changes. They evaluate their
approach in a case study involving a healthcare application deployed
within a controlled environment in their lab. The authors introduce
changes to the system’s components under test to observe how the
approach senses the context and selects test cases from a set of
initially defined test cases.
S6. Fröhlich et al. [47] present a method for evaluating the safety of
critical context-awareness systems’ failures. Their underlying
assumption is the combination of input values from context sensing
components of the software system. Their approach consists of
injecting faults and observing how safely the CASS fails. They eval-
uate their approach in a steering system of an autonomous car within
a simulated environment custom-built to their proposal.
S7. Abdessalem et al. [48] deal with conflicting feature interactions
from feature composition of self-adaptive behavior driven by
context. Context is considered in this proposal as it is the driver for
triggering the adaptations. In this proposal, the authors reframe the
problem of finding undesired feature interaction as a search problem.
They evaluate their approach using three systems from a self-driving
car (automated emergency braking, adaptive cruise control (ACC),
and traffic sign recognition). Executable models of these systems are
simulated as the search-based approach identifies conflicting feature
interactions.
S8. Abdessalem et al. [49] propose an automated technique to test
complex Advanced Driver Assistance Systems (ADAS) using
physics-based executable models of the system and its environment.
As an evaluation, they presented an exploratory case study using an
ADAS called Pedestrian Detection Vision-based (PeVi) system. The
PeVi was created to help drivers detect pedestrians’ proximity (either
human or animal) during low visibility situations. The case study
focused on identifying high-risk test scenarios (the ones that are
more likely to reveal critical failures) using a multi-objective search.
The context was captured as a domain model, specifying a restricted
simulation environment and serving as input data (which can be
either static or dynamic properties) to test scenarios. Since testing
PeVi with real hardware and environment would be dangerous,
time-consuming, and costly, they used physics-based simulation
platforms as a testing environment.
S9. Abdessalem et al. 2018 [50] focus on simulation-based testing of
vision-based control systems from the automotive domain (ADAS). A
domain model is used to capture the test input space and output. The
input variables were classified into two categories: Static input var-
iables (the values still fixed during the entire ADAS simulation) and
Dynamic objects (indicating objects that change their position during
the simulation). As an evaluation, they presented an exploratory case
study of an Automated Emergency Braking (AEB) system from the
automotive domain. The objective was to evaluate the ability of a
search-based testing algorithm called NSGAIIDT to investigate crit-
ical regions in ADAS input spaces to identify critical test scenarios.
They used a commercial ADAS simulator called PreScan simulator as
a test environment.
S10. Qin et al. [35] present an approach for dealing with context
input states that can lead to failures. In their approach, context varies
as no restrictions on context variables’ values are imposed. However,
they demonstrate this approach offline, as execution captures of the
system under test are performed in the field for later post-processing
in the lab to evaluate their approach. As mentioned in Section 5.1, we
are interested in evaluating their approach to the Unmanned
Autonomous Vehicle in this paper. Their main idea is to define rules
for context values that, if broken, would lead to failure (they call
these invariants), then observe the software system’s behavior to

Table 3
The final set of selected papers in the Rapid Review

Code Full Reference Venue
Type

Year

S1 Ma et al. Modeling foundations for executable model-
based testing of self-healing cyber-physical systems
[43]

Journal 2019

S2 Arrieta et al. Automatic generation of test system
instances for configurable cyber-physical systems [44]

Journal 2017

S3 Shin et al. Test case prioritization for acceptance
testing of cyber-physical systems: a multi-objective
search-based approach [45]

Conference 2018

S4 Shin et al. Uncertainty-aware specification and
analysis for hardware-in-the-loop testing of cyber-
physical systems [46]

Journal 2021

S5 Lahami et al. Safe and efficient runtime testing
framework applied in dynamic and distributed systems
[41]

Journal 2016

S6 Fröhlich et al. Testing Safety Properties of Cyber-
Physical Systems with Non-Intrusive Fault Injection –
An Industrial Case Study [47]

Conference 2016

S7 Abdessalem et al. Testing autonomous cars for
feature interaction failures using many-objective
search [48]

Conference 2018

S8 Abdessalem et al. Testing advanced driver assistance
systems using multi-objective search and neural
networks [49]

Conference 2016

S9 Abdessalem et al. Testing Vision-Based Control
Systems Using Learnable Evolutionary Algorithms
[50]

Conference 2018

S10 Qin et al. CoMID: Context-Based Multiinvariant
Detection for Monitoring Cyber-Physical Software
[35]

Journal 2020

S11 Qin et al. SIT: Sampling-based interactive testing for
self-adaptive apps [51]

Journal 2016

S. Matalonga et al.

Information and Software Technology 149 (2022) 106937

9

abstract these invariants states and execute them in a model of the
system to observe the behavior.
S11. Qin et al. [51] present an approach for selecting test cases for
self-adaptive context-aware software systems. Context variation is
considered in terms of uncertainty in the adaptation rules and un-
certainty in the sensor’s capacity to measure the environment
accurately. They evaluate their approach with three case studies to
implement it in a simulated environment. Their approach selects test
cases by sampling input space parameters after sorting them into
different categories according to the abovementioned abstraction.

The following section characterizes these technologies and describes
how they are applied in non-academic settings to test context-aware
CSS.

6.2. Analysis of the identified papers

In the selected primary studies, we did not find any evidence
regarding software technologies supporting the management of the test
activities dealing with the context for CASS, RQ1.

In the following, we describe the analysis of the extracted data that
allowed (1) to characterize the technologies for supporting the testing
execution (RQ2), (2) to understand the limitations of the approaches as
described by the authors (RQ3), and (3) to understand whether the
identified solutions are mature enough for their widespread adoption
(RQ4). The discussion is supported by tables summarizing the analysis
and focusing on the evidence. In addition, in Annex 1, we reported
additional tables having deeper details about the evidence we extracted
from the analyzed papers to answer the research questions.

6.2.1. Analysis of the software technologies supporting the execution of test
activities dealing with the context.

To describe the software technologies supporting the execution of
CASS testing processes, we analyzed the extracted data to understand,
for each proposed approach, the following characteristics:

1 the test items, i.e., the types of CASS under test (see Table 4),
2 the testing scope of the proposal (either test case or test suite level),

and the addressed quality attributes (see Table 5),
3 the context variation, i.e., how the context variation has been

considered (see Table 6),
4 characteristics of the testing environment adopted for executing the

proposed testing process (see Table 7),
5 the adopted dynamic testing technique (see Table 8).

An interesting variety of test items were used to evaluate the pro-
posed testing techniques regarding the observed test items. Table 4
summarizes the evidence on the test items under investigation in the
selected sources.

Table 5 presents that the test techniques for testing CASS are focused
on either defining test cases or improving test suites. When defining test
cases, the intent is to assure functionality, evaluate the reliability and
verify that when the systems fail, it does so in a controlled manner.
When looking at test suites, the sources look at improving a specific
quality attribute in the set of existing test cases in the test suite

(reliability or performance). When looking at the quality attributes, it
can be observed that many of them are still to be explored. It can be
argued that those present in Table 5 are related to the challenge of
dealing with the test input space brought about by context variation.

Table 6 presents the three strategies we have observed in the sources
to deal with context variation. One strategy is to model the contextual
variables and their influence on the proposal. Another strategy is to
consider that the sources of contextual variation are related to the
intrinsic errors in the environment measurements through the sensors
(referred to as environmental uncertainties). While in S10, execution of
the test item in its operational environment was used to capture the
contextual variables, and then these measurements were used to vali-
date the proposal.

Table 7 looks at the technology used to develop the proposed solu-
tions and the test items’ environments. Table 6 allows the reader to
observe the relationship between the technologies and the environment
used during the empirical evaluations. We divided the environments
into Simulation, where empirical evaluations were carried out within
computational environments, and Physical-world, where empirical
evaluations were carried out involving Physical-world elements (such as
sensors field trials). For instance, UML-based models were the most
frequent technology, and it has been used in both simulation and real-
like environments. Nevertheless, Matlab/Simulink has been used in
three sources, but we did not uncover evidence of Matlab/Simulink
models being used in real-like environments to test CASS. Another evi-
dence we collected regards the adoption of Physical-world environments
for implementing Hardware in the Loop (HIL) techniques, as we
observed in S3 and S4. Indeed, such an environment is needed to provide
an effective platform to emulate in real-time the context variation. A HIL

Table 4
Test item types in the selected sources

Test item Sources

Self-driving automotive system S7, S8, S9
Satellite Cyber-physical system S3, S4
Unmanned Aerial Vehicles S2, S10
Self-healing cyber-physical systems S1
Adaptable and distributed healthcare system S5
Electric car steering cyber-physical system S6
Self-adaptive mobile application S11

Table 5
Scope and quality attributes under investigation in the selected sources

Testing scope of the proposal Quality attribute Sources

Test case Functional suitability S1, S2, S6, S9
Reliability S7, S9, S10, S11
Safety S6

Test suite Reliability S3, S5
Performance S4

Table 6
How sources consider context variation

Consideration of context variation Sources

Modeled contextual variables S2, S5, S6, S7, S8, S9
Environmental uncertainties perceived as context variation S1, S3, S4, S11
Captured from executions in the real world S10

Table 7
Technology and environments where testing took place in the selected sources

Technology Environment
Simulation Physical-world

Matlab/Simulink S7, S8, S9
UML Diagram or UML metamodels S1, S2, S11 S4, S5
Ad-hoc Domain-specific language S3 S3, S6
Though source code invariants S10

Table 8
Test techniques involved in the selected sources

Test Technique Sources
Model-based testing S1, S2, S5, S11
Search-based testing S3, S7, S8, S9
Formal Method S4
Fault injection S6
Multi-invariant-based S10

S. Matalonga et al.

Information and Software Technology 149 (2022) 106937

10

simulation environment usually includes the electrical emulation of
sensors and actuators. These electrical emulations act as the interface
between the context and the system under test. Finally, ad-hoc domain-
specific languages are also frequently observed, both with simulations
and physical-world environments. While the technology of the Test Item
probably drives the technology section, it is interesting to observe in
Table 7 that those technologies with application in simulation and the
real world require effort in customized development and are unlikely to
be available off-the-shelf.

Finally, we looked at the test techniques used to define the test cases
or suites (Table 8). Model-based testing and search-based testing are the
most frequently used technique. These techniques make a good fit to
deal with the volume of test cases (or test suites) needed to warrantee
CASS quality.

6.2.2. Analysis of the limitations of the proposals
As shown in the Data Extraction, we collected the authors’ self-

reflection sections and passages regarding the potential imitations of
their proposals. The common limitations emerged when analyzing the
extracted sentences, and the studies where they have been presented are
reported in Table 9. First, Resource-consuming indicates that the pro-
posed testing approach consumes too many resources. Extension to
other application domains’ limitations abstracts the common theme that
the solutions are domain-specific and require re-engineering to be
adapted to other domains (this is also discussed in Section 6.2.3).

It is also interesting to observe that three sources declared that while
considering the huge variability of the input domain space, their ap-
proaches presented limitations that did not allow them to fully accom-
modate the variation in the context.

Finally, two other sources highlighted different limitations that we
thought were interesting to highlight while not common to other sour-
ces. The effort-driven approach for manually building the models in-
dicates that the activity for building the models of the context requires
the intervention of a human tester. As for Model technical limitations
that simplify reality limitations, the source referred to the technical
inability of the adopted framework to model contexts that are very close
to reality.

These results showed evidence of the complexities of testing CASS
and the inherent limitations of current engineering approaches.

6.2.3. Analysis of how the identified solutions are ready for widespread
adoption

To understand how and if the proposed solutions are ready for being
widely adopted, we evaluated their technology readiness levels (TRLs).
TRLs provide a useful model for conveying the maturity of technologies.
The classification was initially defined for the Apollo missions and has
been extensively adopted in Europe [52]. The TRL levels are a discrete
scale of nine levels, from Basic research (TRL1) to Operational Readiness
(TRL9). We used an estimator tool developed by the University of San
Diego [53]. Table 9 shows how we classified the sources into three
orthogonal dimensions (Engineering cycle, Study type, and Environ-
ment control) to support an evidence-based input to the TRL estimator.

The "Engineering cycle" column is based on Wieringa et al. [54] and
presents a classification for technology development projects that clas-
sifies the aim of experimental work. We used this classification to pro-
vide a uniform language to address the study’s primary sources’

experimental evaluations. We were able to classify the sources into two
of the six phases of the engineering cycle (Problem investigation, Solu-
tion design, Solution validation, Solution selection, Solution imple-
mentation, and Implementation evaluation). These were:

• Solution design: the research project aims to propose an improvement
to a current situation.

• Solution validation: the research project aim at characterizing some
properties/quality attributes of a proposed solution.

The "Study type" column is based on the classification provided by
Easterbrook et al. [55]. This classification indicates the investigation
strategy described in the primary source. We used this classification to
provide uniform language and convey the capacity to generalize the
sample’s research results. While the classification provided by East-
erbrook et al. [55] includes five main study types (controlled experi-
ments, case studies, survey research, ethnography, and action research),
all of the selected studies in our sample were classified within the case
study main category, with the possible subcategories meaning:

• Exploratory case studies to develop new theories or observations.
• Confirmatory case studies to confirm existing theories.

The column "Environment control" is based on the classification
proposed in Travassos and Barros [56], indicating the degree of control
that the experimenters introduce in the environment to observe the
phenomenon under study. We used this classification to convey the
degree of control the experimenter has in the environment where the
empirical evaluation is described in the source tool place. Potential
categories in this classification are:

• In-vivo: the empirical step was executed in the target environment
(with real organizations and professional developers).

• In-vitro: the empirical step was executed in a controlled environment
(such as a laboratory, controlled sett-up, or community of practice).

• In-virtuo: the empirical step was executed in semi-simulated and
controlled environments with interactions between the participants
and a computerized model of reality.

• In-silico: the empirical step was executed in a fully simulated and
controlled environment (the model and the subjects are described as
computer models).

We followed a Delphi-type cycle [57] to achieve consensus on our
estimates for each category. First, the two lead researchers would clas-
sify the paper into the available categories and explain their positions.
Then, the other authors reviewed the results.

Table 10 conveys that the proposals were classified within the design
half of the engineering cycle. It means authors are still mainly concerned
about the purpose fitness of the proposed solution. Furthermore,
selected sources apply case study research. While this can be suitable to
evaluate the proposals, it also limits the transferability to other appli-
cation domains. Finally, we also note that the researchers had some
degree of control over the environment (i.e., we could not classify any
proposals within the "in-vivo" category). That last observation is
consistent that all estimations of the TRL levels are within levels 3 to 6,
showing that the identified sources are not ready for widespread
adoption.

7. Results

This section presents the result of this RR. Frist, we present a
straightforward evidence-based answer to the research questions of the
RR. Next, we discuss the experimental limits of our research method and
reflect on the threats to the validity of the answers. The following sub-
section gradually frames the answers in terms of the literature and then
looks forward by summarizing the lessons learned results.

Table 9
Limitations of the proposal

Limitation Sources

Resource-consuming S4, S5, S8, S10
Extension to other application domains S1, S2, S4, S5
Variability of the input domain S1, S10, S11
Effort-driven approach for building the models manually S2
Model technical limitations that simplify reality S8

S. Matalonga et al.

Information and Software Technology 149 (2022) 106937

11

7.1. Answering the RQs

The RR uncovered evidence on test proposals for dealing with the
complexity considering the context for CASS. Despite the breadth of the
system types for which these proposals were identified, they share the
common trait that they deal with the complexities brought by consid-
ering the context in the testing process.

RQ 1: Which software technologies support the test management
processes dealing with the context for CASS?

We did not identify any solution dealing with test activities
management.

Test management activities for CASS must become a research di-
rection to address the huge volume of test cases that must be managed
during the test process, as discussed in Section 8.

RQ 2: Which software technologies support the dynamic testing
processes dealing with the context for CASS?

The reviewed solutions focus on enabling the execution (dynamic
testing) of context-aware software systems. As shown in Section 6.2,
technologies can be characterized from different perspectives:

Perspective 1. Interesting results were obtained regarding the testing
goals. We observed that the scope of tech-niques is divided into those
that look at test cases and those that look at test suites. When
developing test cases, the sources intend to verify the functional
suitability (S1, S2, S6, S9), the Reliability (S7, S9, S10, S11), or the
Safety (S6). Another approach is that technique assumes that a test
suite is already available. The proposal looks to improve Reliability
by identifying the test cases in the test suite that can damage the
software or the hardware (S3, S5). Alternatively, they look to
improve the performance of the test suite (S4).
Perspective 2. The variation of context is mainly considered by uti-
lizing models that can also be executed. Usually, these models are
implemented in Matlab/Simulink (S7, S8, and S9), UML diagrams, or
UML metamodels (S1, S2, S4, S5, S6, and S11). Ad-hoc solutions
relying on a DSL (S3) and source code invariants (S10) were also
proposed.
Perspective 3. As for the testing environment, we observed that it is
mainly a simulation environment where the executable models can

be executed with the software system under test (S1, S2, S3, S4, S7,
S8, S9, and S11). Therefore, another possible solution is to build a
testing environment like the real environment (S5, S6, and S10).
Perspective 4. Regarding the adopted dynamic testing techniques,
we observed that model-based (S1, S2, S5, and S11) and search-
based or genetic (S3, S7, S8, and S9) approaches are the most
exploited. Model-based is mainly adopted for testing the software
system’s quality under test. In contrast, search-based or genetic im-
proves a test suite’s quality attribute or generates test scenarios.
Other types of approaches have also been proposed, such as the use
of formal methods (S4), fault injection (S6), and multi-invariant
based (S10).

The results abstracted in Perspective 1 open two future research di-
rections (Future direction 3 and Future direction 4) as described in Section
8. The findings expressed from Perspectives 2 to 4 are not new in the
literature. We discussed them in Section 7.3, confirming that these
technologies are ready to be applied in non-academic settings.
Furthermore, this was discussed in Section 7.4. In Lesson learned 1 and
Lesson learned 2, we describe our understanding of the requirements
that dynamic models and simulation environments must attend to sup-
port CASS testing.

RQ3. What are the issues or limitations of the observed solutions for
testing CASS?

Limitations for testing CASS were presented in Section 6.2.2. We
grouped the authors’ self-assessments of the limitations into five groups
(see Table 9). We interpret these limitations as a signal that testing CASS
is still a problem that has not been solved. It is interesting to note that
the issues and limitations are linked to testing CASS’s challenges on
current engineering solutions. While we note that these sources address
these challenges, the authors’ self-reflection on the issues and limita-
tions reveals the complexities of Testing CASS. For instance, one of the
main challenges for testing CASS stems from the myriad of possible
input brought about by context variation (see [13,14]), yet three sources
(S1, S10, and S11) present that an issue or limitation is to consider the
variability of the input domain.

The most common issue or limitation was that the approaches
consumed many computing resources (S4, S5, S8, and S10). A limitation
also stems from the attempt to reproduce the contextual inputs from
computerized models. However, all models represent reality, and as
such is fitting that the authors are concerned with the (technical) sim-
plifications that their model brings into reality (S8). This dependency on
a model is also a constraint in implementing or extending an approach
into other application domains (S1, S2, S4, and S5).

Concerning the literature, we observed that some challenges and
issues were already known, but new ones have been raised for CASS
testing in non-academic settings, as we discus in Section 7.3).

RQ4: How mature are the identified solutions for widespread
adoption?

Observing the analysis in Section 6.2.3, we claim that none of these
proposals is mature enough for widespread adoption. Only one paper
was classified at TRL6, which means that the proposals can only be
expected to have been demonstrated in a relevant, not completely
stressful environment, and transfer to another environment can come at
a high cost. We have observed that all proposals require significant in-
vestment in technological development. Furthermore, though the path
set by these tools can potentially be implemented in other working do-
mains, they are still shy of higher readiness levels where the proposed
approaches can be transferred to other domains without significant re-
engineering or tailoring.

The second outstanding observation is that the selected papers did
not present technologies to support either Organizational Test Process or

Table 10
Level estimators of testing technology readiness

ID Engineering
Cycle

Study Type Environment
Control

Estimated
TRL

S1 Solution
validation

Confirmatory case
study

In-vitro L4

S2 Solution
validation

Exploratory case
study

In-vitro L3

S3 Solution design Confirmatory case
study

In-virtuo L4

S4 Solution
validation

Confirmatory case
study

In-virtuo L4

S5 Solution
validation

Confirmatory case
study

In-vivo L5

S6 Solution design Exploratory case
study

In-vitro L3

S7 Solution
validation

Confirmatory case
study

In-virtuo L5-L6

S8 Solution
validation

Exploratory case
study

In-silico L3

S9 Solution
validation

Exploratory case
study

In-silico L3

S10 Solution
validation

Exploratory case
study

In-vitro L4

S11 Solution design Exploratory case
study

In-virtuo L5-L6

S. Matalonga et al.

Information and Software Technology 149 (2022) 106937

12

Test Management Processes (RQ1). Regarding Organizational Test
Process, this can be understood as the ISO/IEC/IEEE 29119-2-2013 [26]
guidelines for Organizational Test Process are mainly related to orga-
nizational policies for testing. In contrast, as mentioned in our answer to
RQ1, the lack of technologies to support the test management process
suggests an unexplored research direction. Moreover, it has implications
for the widespread adoption of the proposals since organizations looking
to incorporate these approaches will have to consider issues like costs
and deadlines (project-based elements which have been not considered
in the observed sources). Furthermore, establish policies for accepting
CASS deployment to the production environments.

We observe that progress has been made since the secondary studies
reviewed in Section 3. In Section 7.3, we compare these results with
previous secondary studies.

7.2. Threats to validity

This section discusses the threats to this research work’s validity
using the categories described by Wholin et al. [58].

Regarding internal validity, the threat of missing literature is com-
mon in all secondary studies. Nonetheless, we want to bring two points
to the reader’s attention. First, throughout Section 4, we intended to
convey the thoroughness of our approach to searching the available
literature. Second, the aim of Section 6.1 is to convey the criteria with
which the literature was analyzed and ultimately selected. Other
research works to address the challenge of testing CASS, yet they are not
included in our sample as they do not meet our inclusion criteria;
therefore, they are not within the scope of this study.

Another point to make is that we decided to only look at white
literature. Given that the working assumption is that CASS are main-
stream, it is likely that big players2 have found ways to test these types of
systems. However, it is just as revealing that it has not been contributed
to the academic literature if the knowledge is available. Therefore, it
should be the object of a multi-vocal study.

Regarding construct validity, the reader can question the objectivity
of the RR since it is biased by our previous research. Rapid Reviews are
designed to be executed by experts in the field. Therefore, though our
approach toward the new evidence is objective, our previous knowledge
informed our judgment. We would argue that this strengthens the re-
sults. Nonetheless, we have taken care to expose these assumptions so
the reader can judge.

We stress that we have taken a specific understanding of the con-
structs mentioned in the inclusion criteria regarding external validity.
We have fine-combed the literature and have had extensive discussions
(see Section 6.1) before deciding if a source complies with our under-
standing of Context Awareness, Testing, Contemporary software systems,
and non-academic setting. This process has strengthened the construct
validity at the expense of our external validity. Therefore, further
evaluation with practitioners is necessary to strengthen our findings.

We have tried to provide evidence for our research questions’ an-
swers (Section 6.2) regarding conclusion validity. The analysis section
fairly portrays the uncovered evidence, which is, in turn, based on a
thorough and verbatim data extraction process. Thus, we believe we
have provided end-to-end traceability from the sources to the answers to
the research questions. In addition, we have made a clear distinction in
this paper to differentiate evidence-based answers to the research
questions (Section 6.2) from our interpretation (following sections).

7.3. Comparing this Rapid Review against other secondary studies

This work is the first secondary study to understand how CASS are
tested in non-academic settings. We found primary studies that were not
already considered in previous studies. Their analysis from similar and

different points of view, concerning the ones already addressed in the
past, allowed us to increase the body of knowledge on CASS testing in
different ways.

On the one hand, this RR showed similar results obtained in previous
secondary studies, such as the limitations of the testing strategies, how
the context variations are taken into account, and the types of adopted
testing techniques, which are still valid when the focus moves to non-
academic settings. On the other hand, we observed that new chal-
lenges arise in those more realistic settings differently from these pre-
vious works. Indeed, much more interest is given to reducing the costs of
the testing processes. In some cases, test cases must not damage the
expensive hardware of the testing environment. Also, for the way to
characterize the context variation, we observed that not only models or
formal specifications could be used. Indeed, we understood that domain
languages or the preliminary data collection from the real field to infer
the context variations are also adopted in real scenarios. Finally, we
pointed out that, along with model-based testing and simulation-based
techniques already reported in other secondary studies, search-based,
genetic algorithms, and code invariant-based testing techniques are
also adopted.

Another interesting result is that, in non-academic settings, the
testing processes should also be executed in a testing environment that is
identical, or resemble as much as possible, the execution environment. It
leads the test engineers to put much effort into building a proper testing
environment where test cases can be executed.

An additional improvement to the body of knowledge provided by
this RR has been to understand which are the most interesting appli-
cation fields for the community. In our observations, hot industrial
topics (like automotive, autonomous drones, and satellite systems) have
been the most addressed types of systems.

We also pointed out how mature are the proposed solutions for being
adopted in production scenarios thanks to the analysis of the experi-
mental evaluations and the estimation of the reached TRLs. Another
interesting result regards the absence of evidence on how the testing
processes are managed and planned.

7.4. Lessons learned

Considering the RR results, our previous results, and our experience
in CASS testing, we put forward the following three main lessons we
learned from this research.

7.4.1. Lesson learned 1: needs for proper models to describe the system’s
dynamic behavior

Testing context-awareness features of contemporary software sys-
tems require a model capable of modeling the system’s dynamic
behavior. A model is a reasonable representation of the system that can
be used as a surrogate of the actual system to design or improve test
suites. In our answer to RQ2 (Section 7.1), all sources use models to
explore the system.

Our point of view is that systems models that cannot evolve with the
software system are not good for modeling the dynamic nature. These
models successfully design stable context states but fail to provide
insight into the system’s behavior during a state transition. For instance,
these models cannot perceive the variation of context that has not been
defined into a set of valid states.

As a result of this observation, we favor proposals modeling the
systems’ dynamic behavior as these are better suited to capture the
dynamic nature of the context. Nonetheless, we have also observed
proposals that, while developing dynamic models, these are used to fix
values for context variables, thereby limiting the models’ capacity to
reproduce the varying nature of the context.

7.4.2. Lesson learned 2: needs for executable models
Another issue regarding models relates to the technologies used in

their development. We have observed various technologies, from formal 2 A few come quickly to mind: Tesla; Google; NASA, DJI, among others.

S. Matalonga et al.

Information and Software Technology 149 (2022) 106937

13

mathematical-based models to Matlab Simulink to UML-based models
(RQ2). They all convey a key requirement that these models must be
executable. Models are mainly used to simulate the software system
execution to derive or improve a test suite.

Testing CASS is cost-intensive and requires the exploitation of
computational resources. We would conjecture that the effort required
to test CASS is still an order of magnitude greater than the effort required
to develop them. Much like had been observed in Matalonga et al. [13],
the identified solutions in this RR all require significant design and
development effort, and, when deployed, they tend to consume signifi-
cant computational resources. Furthermore, all solutions identified in
the RR cannot be transferred to other contemporary software systems
(see the answer to RQ4 in Section 7.1). Therefore, while the alternatives
presented in this paper set a path to test CASS, software testers are bound
to reproduce the steps and technologies. Testing CASS is more
cost-intensive than testing traditional software and requires the
exploitation of cost-effective techniques that reduce the (1) testing time
and (2) risks of damaging expensive hardware. We learned that
multi-objective, search-based, and model checking-based testing tech-
niques could be successfully applied to reduce CASS dynamic testing
processes’ costs.

7.4.3. Lesson learned 3: needs of not trivial testing environments in SDLC
The Software Development Life Cycle (SDLC) impacts the re-

quirements for driving context variation in test environments. Indeed, to
properly reproduce the variation of context during the dynamic execu-
tion of testing processes, it is necessary to design, implement and deploy
a not trivial (and perhaps not available yet) test environment. The way
the dynamic context variation is provided may depend on the specific
stage of the SDLC. We observed that two main solutions might be
applied. In the first stages of the development life cycle, the testing
environment could provide a context-aware simulated environment
where the context models can drive the simulation (see the answer to
RQ2/perspective 4 in Section 7.1). Second, towards the SDLC final
stages, the testing environment should resemble as much as possible the
real execution environment where the CASS will run (see the answer to
RQ2/perspective 3 in Section 7.1). Possible solutions to guarantee the
testing environment’s context-awareness are using emulators for
mocking up real devices or using the same hardware/software compo-
nents composing the final execution environment.

8. Future research directions on CASS testing

Drawing from the previous observations, the lessons learned in this
RR, and our experience, we propose research directions for testing the
context-awareness of contemporary software systems.

Future direction 1. Evaluating the efficacy of models to represent the
real world. George box’s quote is often repeated: "All models are
wrong, but some are useful." We are concerned with the model’s
capacity to represent their production environments for testing
CASS. If the model does not represent the production environment,
then the results of the techniques can be challenged.
Future direction 2. Measuring the coverage of the test suites. Coverage
measurements of the test suite were not identified in this RR. How-
ever, Matalonga et al. [13] identified a research interest concerning
coverage measurement (see [59,60]). Nevertheless, coverage mea-
surement was not observed in this sample of papers. Therefore, we
would call for more research on the coverage measurement of the
test suites regarding CASS.
Future direction 3. Functional suitability. Related to coverage is the
question of generating test suites for evaluating the correct behavior
of CASS in the face of the variation of context. This problem is related
to the sheer volume of the test cases and the capacity to solve the test
oracle problem [61] for each possible context adaptation. Applica-
tions of metamorphic testing [62] might be a possible way towards it.

Nonetheless, we were not surprised that the primary sources did not
capture this approach’s applications, given its inherent complexity in
non-academic settings. In any case, we claim this is a research line
that needs further effort and investigation. Our preferred approach is
to keep a degree of human factors in the loop [63,64] and then
exploit it with simulations.
Future direction 4. Safe failure of safety-critical CASS. When looking
at the reliability quality attribute, existing alternatives to testing
CASS tend to use models and simulations to identify the combina-
tions of inputs that might reveal a failure. This information can be
captured in a test case and feedback into the development process for
safe failure. However, as complete coverage of the test input space
cannot be warrantied, eventually, the software will fail. Therefore,
we would suggest that a research line should be to warranty the
correct safe-failing behavior of CASS. It is a reduced problem from
the test oracle, as it is only looking at ensuring a safe behavior when
the set of inputs makes it fail.
Future direction 5. Management of test activities for CASS. The RR
results raise the attention to managing test activities (RQ1 and RQ4).
The importance of this future direction lies in the volume of test cases
needed to cover the variation of context, which introduces chal-
lenges for the testing process management in non-academic settings.
We would assume that practices and procedures should evolve to
manage the context, and test suites in the CASS environments must
be dynamically tested.
Future direction 6. Artificial Intelligence (AI) approaches for dealing
with the complexity of the context. The RR indicated that novel
testing techniques based on genetic algorithms [65] or reinforced
learning [66] had been successfully adopted to reduce the costs of
CASS’s dynamic testing processes. We believe that this trend may
lead to the use of AI in testing processes for CASS. Furthermore, AI
could be exploited to implement solutions aiming to emulate the
variation of context in a more realistic way.
Future direction 7. Tertiary, Multivocal, and Survey studies execution.
As we observed in Section 3, many secondary studies addressing the
topic of CASS testing have been published in the literature. We
believe that the field is ripe to conduct a tertiary study that can
uncover trends. Moreover, to deepen the understanding of how CASS
are tested in practice, we believe that a Multivocal secondary study
will be able to uncover practices that have not made their way into
peer-reviewed publications. Finally, Survey studies where practi-
tioners are interviewed to understand how they perform CASS
testing processes.

9. Empirical suggestions for testing CASS

Good practice conveys that testing must be carried out in an envi-
ronment close to the intended production environment. Each deviation
from this heuristic means the test process risks the test Environment’s
behavior differently from the Production Environment. Thus, testing is
and has always been, from its definition, an exercise in risk-taking. Since
its initial formalizations, testing and test case selection are driven by the
test analyst, striking a balance between comprehensiveness and risk of
defects being carried into production. In modern CASS, these forces are
pushed to levels that current test design techniques have yet to adapt.
The sheer possibilities of variables and corresponding values in that
context can make the conundrum of selecting a suitable set of test cases
even more challenging. Worsened still by the cost of reproducing the
production environment for testing.

We put forward three empirical suggestions based on our reflections
regarding testing CASS that must be taken into consideration for
developing technologies to test such software systems:

9.1. Conceptual

Accept the nature of the context and differentiate that the test item is

S. Matalonga et al.

Information and Software Technology 149 (2022) 106937

14

subjected to different input types - The test input and the input from the
context. First, the context in which the test item is being executed will
vary through external forces and interaction with the test item. Test
management and Test design techniques for testing CASS must accept
this. Secondly, test input and inputs from the context are two different
types of inputs. The test input can and should be planned by the test
analyst— the test input results from applying a test design technique
during a test case definition. Model and simulation can enhance the
capacity of the test analysis. However, as we mentioned, we prefer so-
lutions that keep the test analyst in the loop.

On the other hand, context input is not within the control of the test
analyst. Instead, they come from the interaction of the test item with the
environment. CASS’s test design techniques must accept this lack of
control and design the test cases around it. We recommend that software
testers accept this behavioral nature of context [67] when testing CASS
and gradually relinquish control of the context to the environment.
Thus, the software system’s development stabilizes through its journey
through the software development life cycle.

9.2. Technical

Start with a dynamic system model. All successful observed experi-
ences of testing CASS started by modeling the software system. This
model must support dynamic simulation. The state-based simulation
will not capture the nature of the context. Computing resources can then
be leveraged to evaluate input value combinations to fulfill a quality
attribute (performance, reliability). In short, the idea is to have a system
model to aid the test analyst with the development of test cases and
explore computing simulations to minimize the risk that a combination
of test cases can provide contextual inputs that leads to a failure (reli-
ability). Finally, it is fed to the system during its execution in a pro-
duction environment.

9.3. Procedural

Manage the context - and the exposure of the test item to the context -
throughout the SDLC. Testing CASS is expensive. Therefore, there is
little use in investing time, effort, and money into these complex solu-
tions for testing CASS if there is no reasonable assurance that the soft-
ware systems behave as expected and have been developed following
accepted quality guidelines. We claim that other elements of the testing
lifecycle must be evolved to accept CASS. As far as we could investigate,
we have already noticed that this research did not find any study that
caters to the influence on the context of the "Organizational Test Pro-
cess’’ or the "Test Management Process."

10. Conclusions

Testing context-aware software systems are challenging, mainly
because of the behavioral nature of the context. Moreover, the context
variation in the environment during the contemporary software sys-
tem’s lifecycle generates an exponential increase in the test input space.
This increase worsens the challenge of selecting suitable test suites to
guarantee the test item’s quality.

This paper presents the result of a Rapid Review aimed to identify
alternatives to testing CASS observed and evaluated in non-academic
settings. We commissioned this RR under the assumption that CASS
are mainstream (from self-driving autonomous vehicles to systems of
systems that source data from multiple IoT sources). Therefore, they are
being tested outside academia.

The results of this work can be summarized as follow.

• Current research initiatives focus on generating or improving test
suites that can deal with context variation and the sheer volume of
test input possibilities. To achieve this, we have observed strategies
that revolve around two concepts: creating a dynamic model of the

software system and using computer-based simulations to identify or
improve test suites. Furthermore, we have made the case that these
dynamic models of the system must evolve with the CASS in order,
for the testing result, to maintain their representativeness of the
changing context and evolving CASS requirements.

• All identified solutions are at a relatively early development stage
and domain-specific. It means that there is still no technology readily
transferable for testing CASS. Furthermore, we observed that the
environment used to support the dynamic testing of CASS is complex.
Finally, none of the technologies manage the testing process
throughout the SDLC.

• Two important claims to help software testers regarding the state of
practice have been presented. First, testing CASS is effort-intensive
and costly in terms of computational resources. Second, testing
CASS starts with having a useful dynamic model of the contemporary
software system. We conceptualized these claims into three propo-
sitions that software testers must abide by when developing their
technologies for testing CASS. Conceptual - Accept the nature of
context and differentiate that the test item is subjected to different input
types: the test input and the input from the context. Technical - start with
a dynamic model of the software system. Procedural - Manage the
context - and the test item’s exposure to the context - throughout the
SDLC.

• We proposed seven future research directions for evolving the state-
of-the-art testing CASS. Current research has mostly focused on dy-
namic test execution. The research community must address other
aspects of the testing life cycle to evolve knowledge regarding testing
contemporary software systems.

CRediT authorship contribution statement

Santiago Matalonga: Conceptualization, Methodology, Writing –
original draft, Writing – review & editing. Domenico Amalfitano:
Conceptualization, Methodology, Writing – original draft, Writing –
review & editing. Andrea Doreste: Investigation, Writing – original
draft. Anna Rita Fasolino: Writing – review & editing. Guilherme
Horta Travassos: Conceptualization, Methodology, Writing – original
draft, Writing – review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Supplementary materials

Supplementary material associated with this article can be found, in
the online version, at doi:10.1016/j.infsof.2022.106937.

References

[1] R.C. Motta, K.M. de Oliveira, G.H. Travassos, A conceptual perspective on
interoperability in context-aware software systems, Inf. Softw. Technol. 114 (2019)
231–257, https://doi.org/10.1016/j.infsof.2019.07.001.

[2] U. Alegre, J.C. Augusto, T. Clark, Engineering context-aware systems and
applications: A survey, J. Syst. Softw. 117 (2016) 55–83, https://doi.org/10.1016/
j.jss.2016.02.010.

[3] D. Amalfitano, S. Matalonga, G.H. Travassos, Introduction to the special issue on
engineering context-aware software systems, Inf. Softw. Technol. 132 (2021),
106509, https://doi.org/10.1016/j.infsof.2020.106509.

[4] J.y. Hong, E.h. Suh, S.J. Kim, Context-aware systems: A literature review and
classification, Expert Syst. Appl. 36 (2009) 8509–8522, https://doi.org/10.1016/j.
eswa.2008.10.071.

[5] M. Baldauf, S. Dustdar, F. Rosenberg, A survey on context-aware systems, Int. J. Ad
Hoc Ubiquitous Comput. 2 (2007) 263, https://doi.org/10.1504/
IJAHUC.2007.014070.

[6] S. Klicarr, Trucks likely will never be driverless, 2018. https://www.trucker.com/t
echnology/executives-trucks-likely-will-never-be-driverless (accessed November
22, 2019).

S. Matalonga et al.

https://doi.org/10.1016/j.infsof.2022.106937
https://doi.org/10.1016/j.infsof.2019.07.001
https://doi.org/10.1016/j.jss.2016.02.010
https://doi.org/10.1016/j.jss.2016.02.010
https://doi.org/10.1016/j.infsof.2020.106509
https://doi.org/10.1016/j.eswa.2008.10.071
https://doi.org/10.1016/j.eswa.2008.10.071
https://doi.org/10.1504/IJAHUC.2007.014070
https://doi.org/10.1504/IJAHUC.2007.014070
https://www.trucker.com/technology/executives-trucks-likely-will-never-be-driverless
https://www.trucker.com/technology/executives-trucks-likely-will-never-be-driverless

Information and Software Technology 149 (2022) 106937

15

[7] J. Titcomb, Ex Google Engineer Completes 3,000 Mile Coast-to-Coast Journey in
Driverless Car, Telegr (2018). https://www.telegraph.co.uk/technology/2018
/12/18/ex-google-engineer-completes-3000-mile-coast-to-coast-journey/
(accessed November 22, 2019).

[8] R.O. Spínola, F.C.R. Pinto, G.H. Travassos, Supporting Requirements Definition and
Quality Assurance in Ubiquitous Software Project, 2008, pp. 587–603, https://doi.
org/10.1007/978-3-540-88479-8_42.

[9] R.O. Spínola, G.H. Travassos, Towards a framework to characterize ubiquitous
software projects, Inf. Softw. Technol. 54 (2012) 759–785, https://doi.org/
10.1016/j.infsof.2012.01.009.

[10] R.C. Motta, G.H. Travassos, On challenges in engineering IoT software systems, in:
Proc. XXXII Brazilian Symp. Softw. Eng., 2018.

[11] I. de S. Santos, R.M. de C. Andrade, L.S. Rocha, S. Matalonga, K.M. de Oliveira, G.
H. Travassos, Test case design for context-aware applications: Are we there yet?
Inf. Softw. Technol. 88 (2017) 1–16, https://doi.org/10.1016/j.
infsof.2017.03.008.

[12] S. Matalonga, G.H. Travassos, Testing Context-aware Software Systems: Unchain
the Context, Set It Free!, in: Proc. 31st Brazilian Symp. Softw. Eng., ACM, New
York, NY, USA, 2017, pp. 250–254, https://doi.org/10.1145/3131151.3131190.

[13] S. Matalonga, F. Rodrigues, G.H. Travassos, Characterizing testing methods for
context-aware software systems: Results from a quasi-systematic literature review,
J. Syst. Softw. 131 (2017) 1–21, https://doi.org/10.1016/j.jss.2017.05.048.

[14] S. Matalonga, F. Rodrigues, G.H. Travassos, Challenges in Testing Context-Aware
Software Systems, in SBQS, Bello Horizonte, 2015. Syst. Autom. Softw. Test.

[15] G. Travis, How the Boeing 737 Max Disaster Looks to a Software Developer, IEEE
Spectr (2019).

[16] A. Schaun, O QUE PODE TER CAUSADO OS INCÊNDIOS DO CHEVROLET ONIX
PLUS?, Auto Esporte, 2019. https://revistaautoesporte.globo.com/Noticias/no
ticia/2019/11/o-que-pode-ter-causado-os-incendios-do-chevrolet-onix-plus.html
(accessed December 18, 2019).

[17] B. Cartaxo, G. Pinto, S. Soares, The role of rapid reviews in supporting decision-
making in software engineering practice, in: ACM Int. Conf. Proceeding Ser, 2018,
https://doi.org/10.1145/3210459.3210462.

[18] P. Moons, E. Goossens, D.R. Thompson, Rapid reviews: the pros and cons of an
accelerated review process, Eur. J. Cardiovasc. Nurs. 20 (2021) 515–519, https://
doi.org/10.1093/eurjcn/zvab041.

[19] G.D. Abowd, A.K. Dey, P.J. Brown, N. Davies, M. Smith, P. Steggles, G.D. Abowd,
A.K. Dey, P.J. Brown, N. Davies, M. Smith, P. Steggles, Towards a Better
Understanding of Context and Context-Awareness, in Proc. CHI 2000 Work, What,
Who, Where, When How Context-Aware. (1999) 304–307, https://doi.org/
10.1007/3-540-48157-5_29.

[20] N. Leveson, Are you sure your software will not kill anyone? Commun. ACM. 63
(2020) 25–28, https://doi.org/10.1145/3376127.

[21] B.R. Siqueira, F.C. Ferrari, K.E. Souza, V. V. Camargo, R. Lemos, Testing of
adaptive and context-aware systems: approaches and challenges, Softw. Testing,
Verif. Reliab. (2021). https://doi.org/10.1002/stvr.1772.

[22] C. Luo, J. Goncalves, E. Velloso, V. Kostakos, A Survey of Context Simulation for
Testing Mobile Context-Aware Applications, ACM Comput. Surv. 53 (2020) 1–39,
https://doi.org/10.1145/3372788.

[23] R. Pressman, B. Maxim, Software engineering : a practitioner’s approach, McGraw-
Hill Education, New York, NY, 2015.

[24] ISO/IEC/IEEE 29119-1, 2013, Software and systems engineering Software testing
Part 1:Concepts and definitions, ISO/IEC/IEEE 29119-1:2013, 2013, pp. 1–64,
https://doi.org/10.1109/IEEESTD.2013.6588537.

[25] ISO Standard, ISO/IEC 25010:2011, Systems and software engineering – Systems
and software Quality Requirements and Evaluation (SQuaRE) – System and
software quality models, 2011, p. 34.

[26] ISO/IEC/IEEE 29119-2:2013, Software and systems engineering Software testing
Part 2:Test processes, ISO/IEC/IEEE 29119-2:2013(E). (2013) 1–138. https://doi.
org/10.1109/IEEESTD.2013.6588540.

[27] SEBoK contributors, Guide to the Systems Engineering Body of Knowledge, Guid.
to Syst. Eng. Body Knowl. (2020). https://www.sebokwiki.org/w/index.php?
title=Guide_to_the_Systems_Engineering_Body_of_Knowledge_(SEBoK)&oldid=6
0050 (accessed November 24, 2020).

[28] A. Costa, L. Teixeira, Testing Strategies for Smart Cities applications, in: Proc. III
Brazilian Symp. Syst. Autom. Softw. Test. - SAST ’18, ACM Press, New York, New
York, USA, 2018, pp. 20–28, https://doi.org/10.1145/3266003.3266005.

[29] H.R. Schmidtke, A survey on verification strategies for intelligent transportation
systems, J. Reliab. Intell. Environ. 4 (2018) 211–224, https://doi.org/10.1007/
s40860-018-0070-5.

[30] D.R. Almeida, P.D.L. Machado, W.L. Andrade, Testing tools for Android context-
aware applications: a systematic mapping, J. Brazilian Comput. Soc. 25 (2019) 12,
https://doi.org/10.1186/s13173-019-0093-7.

[31] B.R. Siqueira, F.C. Ferrari, M.A. Serikawa, R. Menotti, V.V. de Camargo,
Characterisation of Challenges for Testing of Adaptive Systems, in: Proc. 1st
Brazilian Symp. Syst. Autom. Softw. Test. - SAST, ACM Press, New York, New York,
USA, 2016, pp. 1–10, https://doi.org/10.1145/2993288.2993294.

[32] F. Ferrari, B.B. de P. Cafeo, J. Noppen, Ruzanna Chitchyan, Investigating Testing
Approaches for Dynamically Adaptive Systems, in: 2nd Int. Work. Var. Compos.,
Porto Gallinhas, 2011.

[33] B.R. Siqueira, F.C. Ferrari, K.E. Souza, D.S.M. Santibanez, V.V. Camargo, Fault
sTypes of Adaptive and Context-Aware Systems and Their Relationship with Fault-
based Testing Approaches, in: 2020 IEEE Int. Conf. Softw. Testing, Verif. Valid.
Work, IEEE, 2020, pp. 284–293, https://doi.org/10.1109/
ICSTW50294.2020.00054.

[34] C. Wohlin, Guidelines for Snowballing in Systematic Literature Studies and a
Replication in Software Engineering, in: Proc. 18th Int. Conf. Eval. Assess. Softw.
Eng., New York, NY, USA 38, 2014, pp. 1–38, https://doi.org/10.1145/
2601248.2601268, 10.

[35] Y. Qin, T. Xie, C. Xu, A. Astorga, J. Lu, CoMID: Context-Based Multiinvariant
Detection for Monitoring Cyber-Physical Software, IEEE Trans. Reliab. 69 (2020)
106–123, https://doi.org/10.1109/TR.2019.2933324.

[36] D. Amalfitano, S. Matalonga, A. Doreste, A.R. Fasolino, G.H. Travassos, A Rapid
Review on Testing of Context-Aware Contemporary Software Systems, 2019.

[37] S. Rosenthal, C.I. Lewis in focus : the pulse of pragmatism, Indiana University
Press, Bloomington, 2007.

[38] C. Xu, S.C. Cheung, X. Ma, C. Cao, J. Lu, Dynamic fault detection in context-aware
adaptation, in: Proc. Fourth Asia-Pacific Symp. Internetware - Internetware ’12,
ACM Press, New York, New York, USA, 2012, pp. 1–10, https://doi.org/10.1145/
2430475.2430476.

[39] E.M. Fredericks, B. DeVries, B.H.C. Cheng, Towards run-time adaptation of test
cases for self-adaptive systems in the face of uncertainty, in: Proc. 9th Int. Symp.
Softw. Eng. Adapt. Self-Managing Syst. - SEAMS 2014, 2014, pp. 17–26, https://
doi.org/10.1145/2593929.2593937.

[40] M. Sama, S. Elbaum, F. Raimondi, D.S. Rosenblum, Z. Wang, Context-Aware
Adaptive Applications: Fault Patterns and Their Automated Identification, IEEE
Trans. Softw. Eng. 36 (2010) 644–661, https://doi.org/10.1109/TSE.2010.35.

[41] M. Lahami, M. Krichen, M. Jmaiel, Safe and efficient runtime testing framework
applied in dynamic and distributed systems, Sci. Comput. Program. (2016),
https://doi.org/10.1016/j.scico.2016.02.002.

[42] C. Xu, S.C. Cheung, X. Ma, C. Cao, J. Lu, Adam: Identifying defects in context-
aware adaptation, J. Syst. Softw. 85 (2012) 2812–2828, https://doi.org/10.1016/j.
jss.2012.04.078.

[43] T. Ma, S. Ali, T. Yue, Modeling foundations for executable model-based testing of
self-healing cyber-physical systems, Softw. Syst. Model. 18 (2019) 2843–2873,
https://doi.org/10.1007/s10270-018-00703-y.

[44] A. Arrieta, G. Sagardui, L. Etxeberria, J. Zander, Automatic generation of test
system instances for configurable cyber-physical systems, Softw. Qual. J. 25 (2017)
1041–1083, https://doi.org/10.1007/s11219-016-9341-7.

[45] S.Y. Shin, S. Nejati, M. Sabetzadeh, L.C. Briand, F. Zimmer, Test case prioritization
for acceptance testing of cyber-physical systems: a multi-objective search-based
approach, in: Proc. 27th ACM SIGSOFT Int. Symp. Softw. Test. Anal. - ISSTA 2018,
ACM Press, New York, New York, USA, 2018, pp. 49–60, https://doi.org/10.1145/
3213846.3213852.

[46] S.Y. Shin, K. Chaouch, S. Nejati, M. Sabetzadeh, L.C. Briand, F. Zimmer,
Uncertainty-aware specification and analysis for hardware-in-the-loop testing of
cyber-physical systems, J. Syst. Softw. 171 (2021), 110813, https://doi.org/
10.1016/j.jss.2020.110813.

[47] J. Fröhlich, J. Frtunikj, S. Rothbauer, C. Stückjürgen, Testing safety properties of
cyber-physical systems with non-intrusive fault injection – An industrial case study,
Lect. Notes Comput. Sci. (Including Subser. Lect. Notes Artif. Intell. Lect. Notes
Bioinformatics) (2016), https://doi.org/10.1007/978-3-319-45480-1_9.

[48] R. Ben Abdessalem, A. Panichella, S. Nejati, L.C. Briand, T. Stifter, Testing
autonomous cars for feature interaction failures using many-objective search, in:
Proc. 33rd ACM/IEEE Int. Conf. Autom. Softw. Eng., ACM, New York, NY, USA,
2018, pp. 143–154, https://doi.org/10.1145/3238147.3238192.

[49] R. Ben Abdessalem, S. Nejati, L.C. Briand, T. Stifter, Testing advanced driver
assistance systems using multi-objective search and neural networks, in: Proc. 31st
IEEE/ACM Int. Conf. Autom. Softw. Eng., ACM, New York, NY, USA, 2016,
pp. 63–74, https://doi.org/10.1145/2970276.2970311.

[50] R. Ben Abdessalem, S. Nejati, L.C. Briand, T. Stifter, Testing vision-based control
systems using learnable evolutionary algorithms, in: Proc. 40th Int. Conf. Softw.
Eng., ACM, New York, NY, USA, 2018, pp. 1016–1026, https://doi.org/10.1145/
3180155.3180160.

[51] Y. Qin, C. Xu, P. Yu, J. Lu, SIT: Sampling-based interactive testing for self-adaptive
apps, J. Syst. Softw. 120 (2016) 70–88, https://doi.org/10.1016/j.jss.2016.07.002.

[52] M. Héder, From NASA to EU: The evolution of the TRL scale in Public Sector
Innovation, Innov. J. (2017).

[53] U. of S.D.-A. Program, TRL Estimator, (n.d.). http://aries.ucsd.edu/ARIES/
MEETINGS/0712/Waganer/TRLCalcVer2_2.xls (accessed January 11, 2021).

[54] R. Wieringa, N. Maiden, N. Mead, C. Rolland, Requirements engineering paper
classification and evaluation criteria: a proposal and a discussion, Requir. Eng. 11
(2006) 102–107, https://doi.org/10.1007/s00766-005-0021-6.

[55] S. Easterbrook, J. Singer, M.A. Storey, D. Damian, Selecting empirical methods for
software engineering research, Guid. to Adv. Empir. Softw. Eng. (2008), https://
doi.org/10.1007/978-1-84800-044-5_11.

[56] G.H. Travassos, M.D.O. Barros, Contributions of In Virtuo and In Silico Experiments
for the Future of Empirical Studies in Software Engineering, in 2nd Work, Work.
Ser. Empir. Softw. Eng. Futur. Empir. Stud. Softw. Eng. (2003).

[57] H.A. Linstone, M. Turoff, The Delphi method : techniques and applications,
Addison-Wesley Pub. Co., Advanced Book Program, Reading, Mass, 1975.

[58] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell, A. Wesslén,
Experimentation in Software Engineering, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2012, https://doi.org/10.1007/978-3-642-29044-2.

[59] H. Wang, W.K. Chan, Weaving Context Sensitivity into Test Suite Construction, in:
2009 IEEE/ACM Int. Conf. Autom. Softw. Eng., IEEE, Auckland, 2009,
pp. 610–614, https://doi.org/10.1109/ASE.2009.79.

[60] H. Wang, W.K. Chan, T.H. Tse, Improving the Effectiveness of Testing Pervasive
Software via Context Diversity, ACM Trans. Auton. Adapt. Syst. 9 (2014) 1–9,
https://doi.org/10.1145/2620000, 928.

S. Matalonga et al.

https://www.telegraph.co.uk/technology/2018/12/18/ex-google-engineer-completes-3000-mile-coast-to-coast-journey/
https://www.telegraph.co.uk/technology/2018/12/18/ex-google-engineer-completes-3000-mile-coast-to-coast-journey/
https://doi.org/10.1007/978-3-540-88479-8_42
https://doi.org/10.1007/978-3-540-88479-8_42
https://doi.org/10.1016/j.infsof.2012.01.009
https://doi.org/10.1016/j.infsof.2012.01.009
http://refhub.elsevier.com/S0950-5849(22)00087-8/sbref0010
http://refhub.elsevier.com/S0950-5849(22)00087-8/sbref0010
https://doi.org/10.1016/j.infsof.2017.03.008
https://doi.org/10.1016/j.infsof.2017.03.008
https://doi.org/10.1145/3131151.3131190
https://doi.org/10.1016/j.jss.2017.05.048
http://refhub.elsevier.com/S0950-5849(22)00087-8/sbref0014
http://refhub.elsevier.com/S0950-5849(22)00087-8/sbref0014
http://refhub.elsevier.com/S0950-5849(22)00087-8/sbref0015
http://refhub.elsevier.com/S0950-5849(22)00087-8/sbref0015
https://revistaautoesporte.globo.com/Noticias/noticia/2019/11/o-que-pode-ter-causado-os-incendios-do-chevrolet-onix-plus.html
https://revistaautoesporte.globo.com/Noticias/noticia/2019/11/o-que-pode-ter-causado-os-incendios-do-chevrolet-onix-plus.html
https://doi.org/10.1145/3210459.3210462
https://doi.org/10.1093/eurjcn/zvab041
https://doi.org/10.1093/eurjcn/zvab041
https://doi.org/10.1007/3-540-48157-5_29
https://doi.org/10.1007/3-540-48157-5_29
https://doi.org/10.1145/3376127
https://doi.org/10.1145/3372788
http://refhub.elsevier.com/S0950-5849(22)00087-8/sbref0023
http://refhub.elsevier.com/S0950-5849(22)00087-8/sbref0023
https://doi.org/10.1109/IEEESTD.2013.6588537
http://refhub.elsevier.com/S0950-5849(22)00087-8/sbref0025
http://refhub.elsevier.com/S0950-5849(22)00087-8/sbref0025
http://refhub.elsevier.com/S0950-5849(22)00087-8/sbref0025
https://www.sebokwiki.org/w/index.php?title=Guide_to_the_Systems_Engineering_Body_of_Knowledge_(SEBoK)&tnqh_x0026;oldid=60050
https://www.sebokwiki.org/w/index.php?title=Guide_to_the_Systems_Engineering_Body_of_Knowledge_(SEBoK)&tnqh_x0026;oldid=60050
https://www.sebokwiki.org/w/index.php?title=Guide_to_the_Systems_Engineering_Body_of_Knowledge_(SEBoK)&tnqh_x0026;oldid=60050
https://doi.org/10.1145/3266003.3266005
https://doi.org/10.1007/s40860-018-0070-5
https://doi.org/10.1007/s40860-018-0070-5
https://doi.org/10.1186/s13173-019-0093-7
https://doi.org/10.1145/2993288.2993294
http://refhub.elsevier.com/S0950-5849(22)00087-8/sbref0032
http://refhub.elsevier.com/S0950-5849(22)00087-8/sbref0032
http://refhub.elsevier.com/S0950-5849(22)00087-8/sbref0032
https://doi.org/10.1109/ICSTW50294.2020.00054
https://doi.org/10.1109/ICSTW50294.2020.00054
https://doi.org/10.1145/2601248.2601268
https://doi.org/10.1145/2601248.2601268
https://doi.org/10.1109/TR.2019.2933324
http://refhub.elsevier.com/S0950-5849(22)00087-8/sbref0037
http://refhub.elsevier.com/S0950-5849(22)00087-8/sbref0037
https://doi.org/10.1145/2430475.2430476
https://doi.org/10.1145/2430475.2430476
https://doi.org/10.1145/2593929.2593937
https://doi.org/10.1145/2593929.2593937
https://doi.org/10.1109/TSE.2010.35
https://doi.org/10.1016/j.scico.2016.02.002
https://doi.org/10.1016/j.jss.2012.04.078
https://doi.org/10.1016/j.jss.2012.04.078
https://doi.org/10.1007/s10270-018-00703-y
https://doi.org/10.1007/s11219-016-9341-7
https://doi.org/10.1145/3213846.3213852
https://doi.org/10.1145/3213846.3213852
https://doi.org/10.1016/j.jss.2020.110813
https://doi.org/10.1016/j.jss.2020.110813
https://doi.org/10.1007/978-3-319-45480-1_9
https://doi.org/10.1145/3238147.3238192
https://doi.org/10.1145/2970276.2970311
https://doi.org/10.1145/3180155.3180160
https://doi.org/10.1145/3180155.3180160
https://doi.org/10.1016/j.jss.2016.07.002
http://refhub.elsevier.com/S0950-5849(22)00087-8/sbref0052
http://refhub.elsevier.com/S0950-5849(22)00087-8/sbref0052
http://aries.ucsd.edu/ARIES/MEETINGS/0712/Waganer/TRLCalcVer2_2.xls
http://aries.ucsd.edu/ARIES/MEETINGS/0712/Waganer/TRLCalcVer2_2.xls
https://doi.org/10.1007/s00766-005-0021-6
https://doi.org/10.1007/978-1-84800-044-5_11
https://doi.org/10.1007/978-1-84800-044-5_11
http://refhub.elsevier.com/S0950-5849(22)00087-8/sbref0056
http://refhub.elsevier.com/S0950-5849(22)00087-8/sbref0056
http://refhub.elsevier.com/S0950-5849(22)00087-8/sbref0056
http://refhub.elsevier.com/S0950-5849(22)00087-8/sbref0057
http://refhub.elsevier.com/S0950-5849(22)00087-8/sbref0057
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1109/ASE.2009.79
https://doi.org/10.1145/2620000

Information and Software Technology 149 (2022) 106937

16

[61] E.T. Barr, M. Harman, P. McMinn, M. Shahbaz, S. Yoo, The Oracle Problem in
Software Testing: A Survey, Softw. Eng. IEEE Trans. 41 (2015) 507–525, https://
doi.org/10.1109/TSE.2014.2372785.

[62] W.K. Chan, T.Y. Chen, H. Lu, T.H. Tse, S.S. Yau, Integration testing of context-
sensitive middleware-based applications: a metamorphic approach, Int. J. Softw.
Eng. Knowl. Eng. 16 (2006) 677–703, https://doi.org/10.1142/
S0218194006002951.

[63] F. Rodrigues, CATS Design: A Context-Aware Testing approach, Universidade
Federal do Rio de Janeiro, 2015.

[64] D. Andreia C, G.H. Travassos, Towards supporting the specification of Context-
Aware software system test cases. CIBSE 2020, 2020.

[65] Y. Luo, X.-Y. Zhang, P. Arcaini, Z. Jin, H. Zhao, F. Ishikawa, R. Wu, T. Xie,
Targeting Requirements Violations of Autonomous Driving Systems by Dynamic
Evolutionary Search, in: 2021 36th IEEE/ACM Int. Conf. Autom. Softw. Eng., IEEE,
2021, pp. 279–291, https://doi.org/10.1109/ASE51524.2021.9678883.

[66] T. Ma, S. Ali, T. Yue, Testing self-healing cyber-physical systems under uncertainty
with reinforcement learning: an empirical study, Empir. Softw. Eng. 26 (2021) 52,
https://doi.org/10.1007/s10664-021-09941-z.

[67] P. Dourish, What we talk about when we talk about context, Pers. Ubiquitous
Comput. 8 (2004) 19–30, https://doi.org/10.1007/s00779-003-0253-8.

S. Matalonga et al.

https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.1142/S0218194006002951
https://doi.org/10.1142/S0218194006002951
http://refhub.elsevier.com/S0950-5849(22)00087-8/sbref0063
http://refhub.elsevier.com/S0950-5849(22)00087-8/sbref0063
http://refhub.elsevier.com/S0950-5849(22)00087-8/sbref0064
http://refhub.elsevier.com/S0950-5849(22)00087-8/sbref0064
https://doi.org/10.1109/ASE51524.2021.9678883
https://doi.org/10.1007/s10664-021-09941-z
https://doi.org/10.1007/s00779-003-0253-8

	Alternatives for testing of context-aware software systems in non-academic settings: results from a Rapid Review
	1 Introduction
	2 Background concepts
	2.1 Context and Context-awareness
	2.2 Software Testing
	2.3 Non-academic setting

	3 Related works
	3.1 Secondary studies on CASS testing for specific application domains
	3.2 Secondary studies on CASS testing in general
	3.3 Novelties of the RR concerning the analyzed literature

	4 Research method – rapid review
	4.1 Definition of goal and research questions
	4.2 The primary studies selection process
	4.2.1 Automated search strategy and removal of duplicates
	4.2.2 Application of the inclusion/exclusion criteria
	4.2.3 Snowballing search strategy

	4.3 Data extraction process

	5 Execution of the protocol
	5.1 Achieving consistency with the inclusion criteria

	6 Data analysis
	6.1 Overview of the included sources
	6.2 Analysis of the identified papers
	6.2.1 Analysis of the software technologies supporting the execution of test activities dealing with the context.
	6.2.2 Analysis of the limitations of the proposals
	6.2.3 Analysis of how the identified solutions are ready for widespread adoption

	7 Results
	7.1 Answering the RQs
	7.2 Threats to validity
	7.3 Comparing this Rapid Review against other secondary studies
	7.4 Lessons learned
	7.4.1 Lesson learned 1: needs for proper models to describe the system’s dynamic behavior
	7.4.2 Lesson learned 2: needs for executable models
	7.4.3 Lesson learned 3: needs of not trivial testing environments in SDLC

	8 Future research directions on CASS testing
	9 Empirical suggestions for testing CASS
	9.1 Conceptual
	9.2 Technical
	9.3 Procedural

	10 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Supplementary materials
	References

