152 research outputs found

    Recent Applications in Graph Theory

    Get PDF
    Graph theory, being a rigorously investigated field of combinatorial mathematics, is adopted by a wide variety of disciplines addressing a plethora of real-world applications. Advances in graph algorithms and software implementations have made graph theory accessible to a larger community of interest. Ever-increasing interest in machine learning and model deployments for network data demands a coherent selection of topics rewarding a fresh, up-to-date summary of the theory and fruitful applications to probe further. This volume is a small yet unique contribution to graph theory applications and modeling with graphs. The subjects discussed include information hiding using graphs, dynamic graph-based systems to model and control cyber-physical systems, graph reconstruction, average distance neighborhood graphs, and pure and mixed-integer linear programming formulations to cluster networks

    Brain-Computer Interface

    Get PDF
    Brain-computer interfacing (BCI) with the use of advanced artificial intelligence identification is a rapidly growing new technology that allows a silently commanding brain to manipulate devices ranging from smartphones to advanced articulated robotic arms when physical control is not possible. BCI can be viewed as a collaboration between the brain and a device via the direct passage of electrical signals from neurons to an external system. The book provides a comprehensive summary of conventional and novel methods for processing brain signals. The chapters cover a range of topics including noninvasive and invasive signal acquisition, signal processing methods, deep learning approaches, and implementation of BCI in experimental problems

    Design and application of dispersion entropy algorithms for physiological time-series analysis

    Get PDF
    Changes in the variability of recorded physiological time-series have been connected with transitions in the state of the monitored physiological system. The two primary paradigms describing this connection are the Critical Slow Down (CSD) and the Loss of Complexity (LoC) paradigms. The CSD paradigm considers that during frail or pathological states, a slowing down is observed in the capacity of the system to recover from external stressors resulting in increased output complexity for certain regulated variables. The LoC paradigm suggests that when the equilibrium of a system is disrupted, certain effector variables that displayed multi-scale complexity produce output measurements of reduced variability indicating a loss in the system’s flexibility and capacity to adapt in the presence of external stressors. For this purpose, entropy has emerged as a prominent nonlinear metric capable of assessing the non-linear dynamics and variability of time-series. Consequently, multiple entropy quantification algorithms have been developed for the analysis of time-series. These algorithms are based on Shannon Entropy such as the Permutation Entropy and Dispersion Entropy (DisEn) algorithms; and on Conditional Entropy such as the Sample Entropy and Fuzzy Entropy algorithms. Within the scope of this study, the univariate and multivariate DisEn algorithms, first introduced in 2016 and in 2019 respectively, are used as the foundation and benchmark for the introduction of novel algorithmic variations. The selection of the DisEn algorithms is made due to their capability of producing features with significant discrimination capacity taking into consideration amplitude-based information while maintaining a linear computational complexity and having a functional multivariate variation capable of quantifying cross-channel dynamics. To initially ensure the effective quantification of DisEn during univariate physiological timeseries analysis, the effect of missing and outlier samples, which are common occurrence in physiological recordings, is studied and quantified. To improve algorithmic robustness, novel variations of the univariate DisEn algorithm are introduced for the analysis of low recording quality time-series. The original algorithm and its variations are tested under different experimental setups that are replicated across heart rate variability, electroencephalogram, and respiratory impedance time-series. The analysis indicates that missing samples have a reduced effect on the output DisEn and the error percentage can be maintained at values lower than 8% with the introduction of a variation that skips invalid values. Contrary to missing samples, outliers have a major disruptive effect with error percentages in the range of 57% to 73% for the original DisEn algorithm that is limited in values lower than 22% with the introduction of respective variations. To expand the study from univariate to multivariate analysis, the multivariate DisEn algorithm is applied to physiological network segments formulated from multi-channel recordings of synchronized electroencephalogram, nasal respiratory, blood pressure, and electrocardiogram signals. The effect of outliers, present across different channels, is quantified for both univariate and multivariate DisEn features. The sensitivity of DisEn features to outliers is utilized for the detection of artifactual network segments using logistic regression classifiers. Two variations of the classifier are deployed in several experimental setups, with the first utilizing solely univariate and the second both univariate and multivariate DisEn features. Noteworthy performance is achieved, with the percentage of correct network segment classifications surpassing 95% in a number of experimental setups, for both configurations. Finally, to improve DisEn quantification during the analysis of multivariate systems for physiological monitoring applications, the framework of Stratified Entropy is introduced. Based on the framework, a set of strata with a clear hierarchy of prioritization are defined. Each channel of an input multi-channel time-series is allocated to a stratum and their contribution to the output DisEn value is determined by their allocation. Three novel Stratified DisEn algorithms are presented, as implementations of the framework, allowing multivariate analysis with controllable contribution from each channel to the output DisEn value. The original algorithm and the novel variations are implemented on synthetic time-series consisting of 1/f and white Gaussian noise, waveform physiological time-series and derived physiological data. The introduced Stratified DisEn variations operate as expected and correctly prioritize the channels allocated to the primary stratum of the hierarchy across all synthetic time-series setups. The results of waveform physiological time-series indicate that certain of the novel features extracted through Stratified DisEn achieve effect size increases in the range of 0.2 to 1.4 when separating between states of healthy sleep and sleep with obstructive sleep apnea. The derived physiological data results further highlight the increased discrimination capacity of the novel features with increases in the range of 5% to 30% in the mean absolute difference between values extracted during steady versus stressful physiological states. Furthermore, an example of decrease in the output DisEn values when moving from a steady to a stressful physiological state is highlighted during the prioritization of the heart rate channel, in alignment with LoC, providing an example of how Stratified Entropy could be used to test hypothesis based on the CSD and LoC paradigms. By making steps towards addressing the challenge of low data quality and providing a new framework of analysis, this thesis aims to improve the process of assessing and measuring the variability of physiological time-series, leading to the consequent extraction of viable physiological information

    Improved Motor Imagery Classification Using Adaptive Spatial Filters Based on Particle Swarm Optimization Algorithm

    Full text link
    As a typical self-paced brain-computer interface (BCI) system, the motor imagery (MI) BCI has been widely applied in fields such as robot control, stroke rehabilitation, and assistance for patients with stroke or spinal cord injury. Many studies have focused on the traditional spatial filters obtained through the common spatial pattern (CSP) method. However, the CSP method can only obtain fixed spatial filters for specific input signals. Besides, CSP method only focuses on the variance difference of two types of electroencephalogram (EEG) signals, so the decoding ability of EEG signals is limited. To obtain more effective spatial filters for better extraction of spatial features that can improve classification to MI-EEG, this paper proposes an adaptive spatial filter solving method based on particle swarm optimization algorithm (PSO). A training and testing framework based on filter bank and spatial filters (FBCSP-ASP) is designed for MI EEG signal classification. Comparative experiments are conducted on two public datasets (2a and 2b) from BCI competition IV, which show the outstanding average recognition accuracy of FBCSP-ASP. The proposed method has achieved significant performance improvement on MI-BCI. The classification accuracy of the proposed method has reached 74.61% and 81.19% on datasets 2a and 2b, respectively. Compared with the baseline algorithm (FBCSP), the proposed algorithm improves 11.44% and 7.11% on two datasets respectively. Furthermore, the analysis based on mutual information, t-SNE and Shapley values further proves that ASP features have excellent decoding ability for MI-EEG signals, and explains the improvement of classification performance by the introduction of ASP features.Comment: 25 pages, 8 figure

    Linear and nonlinear approaches to unravel dynamics and connectivity in neuronal cultures

    Get PDF
    [eng] In the present thesis, we propose to explore neuronal circuits at the mesoscale, an approach in which one monitors small populations of few thousand neurons and concentrates in the emergence of collective behavior. In our case, we carried out such an exploration both experimentally and numerically, and by adopting an analysis perspective centered on time series analysis and dynamical systems. Experimentally, we used neuronal cultures and prepared more than 200 of them, which were monitored using fluorescence calcium imaging. By adjusting the experimental conditions, we could set two basic arrangements of neurons, namely homogeneous and aggregated. In the experiments, we carried out two major explorations, namely development and disintegration. In the former we investigated changes in network behavior as it matured; in the latter we applied a drug that reduced neuronal interconnectivity. All the subsequent analyses and modeling along the thesis are based on these experimental data. Numerically, the thesis comprised two aspects. The first one was oriented towards a simulation of neuronal connectivity and dynamics. The second one was oriented towards the development of linear and nonlinear analysis tools to unravel dynamic and connectivity aspects of the measured experimental networks. For the first aspect, we developed a sophisticated software package to simulate single neuronal dynamics using a quadratic integrate–and–fire model with adaptation and depression. This model was plug into a synthetic graph in which the nodes of the network are neurons, and the edges connections. The graph was created using spatial embedding and realistic biology. We carried out hundreds of simulations in which we tuned the density of neurons, their spatial arrangement and the characteristics of the fluorescence signal. As a key result, we observed that homogeneous networks required a substantial number of neurons to fire and exhibit collective dynamics, and that the presence of aggregation significantly reduced the number of required neurons. For the second aspect, data analysis, we analyzed experiments and simulations to tackle three major aspects: network dynamics reconstruction using linear descriptions, dynamics reconstruction using nonlinear descriptors, and the assessment of neuronal connectivity from solely activity data. For the linear study, we analyzed all experiments using the power spectrum density (PSD), and observed that it was sufficiently good to describe the development of the network or its disintegration. PSD also allowed us to distinguish between healthy and unhealthy networks, and revealed dynamical heterogeneities across the network. For the nonlinear study, we used techniques in the context of recurrence plots. We first characterized the embedding dimension m and the time delay δ for each experiment, built the respective recurrence plots, and extracted key information of the dynamics of the system through different descriptors. Experimental results were contrasted with numerical simulations. After analyzing about 400 time series, we concluded that the degree of dynamical complexity in neuronal cultures changes both during development and disintegration. We also observed that the healthier the culture, the higher its dynamic complexity. Finally, for the reconstruction study, we first used numerical simulations to determine the best measure of ‘statistical interdependence’ among any two neurons, and took Generalized Transfer Entropy. We then analyzed the experimental data. We concluded that young cultures have a weak connectivity that increases along maturation. Aggregation increases average connectivity, and more interesting, also the assortativity, i.e. the tendency of highly connected nodes to connect with other highly connected node. In turn, this assortativity may delineates important aspects of the dynamics of the network. Overall, the results show that spatial arrangement and neuronal dynamics are able to shape a very rich repertoire of dynamical states of varying complexity.[cat] L’habilitat dels teixits neuronals de processar i transmetre informació de forma eficient depèn de les propietats dinàmiques intrínseques de les neurones i de la connectivitat entre elles. La present tesi proposa explorar diferents tècniques experimentals i de simulació per analitzar la dinàmica i connectivitat de xarxes neuronals corticals de rata embrionària. Experimentalment, la gravació de l’activitat espontània d’una població de neurones en cultiu, mitjançant una càmera ràpida i tècniques de fluorescència, possibilita el seguiment de forma controlada de l’activitat individual de cada neurona, així com la modificació de la seva connectivitat. En conjunt, aquestes eines permeten estudiar el comportament col.lectiu emergent de la població neuronal. Amb l’objectiu de simular els patrons observats en el laboratori, hem implementat un model mètric aleatori de creixement neuronal per simular la xarxa física de connexions entre neurones, i un model quadràtic d’integració i dispar amb adaptació i depressió per modelar l’ampli espectre de dinàmiques neuronals amb un cost computacional reduït. Hem caracteritzat la dinàmica global i individual de les neurones i l’hem correlacionat amb la seva estructura subjacent mitjançant tècniques lineals i no–lineals de series temporals. L’anàlisi espectral ens ha possibilitat la descripció del desenvolupament i els canvis en connectivitat en els cultius, així com la diferenciació entre cultius sans dels patològics. La reconstrucció de la dinàmica subjacent mitjançant mètodes d’incrustació i l’ús de gràfics de recurrència ens ha permès detectar diferents transicions dinàmiques amb el corresponent guany o pèrdua de la complexitat i riquesa dinàmica del cultiu durant els diferents estudis experimentals. Finalment, a fi de reconstruir la connectivitat interna hem testejat, mitjançant simulacions, diferents quantificadors per mesurar la dependència estadística entre neurona i neurona, seleccionant finalment el mètode de transferència d’entropia gereralitzada. Seguidament, hem procedit a caracteritzar les xarxes amb diferents paràmetres. Malgrat presentar certs tres de xarxes tipus ‘petit món’, els nostres cultius mostren una distribució de grau ‘exponencial’ o ‘esbiaixada’ per, respectivament, cultius joves i madurs. Addicionalment, hem observat que les xarxes homogènies presenten la propietat de disassortativitat, mentre que xarxes amb un creixent nivell d’agregació espaial presenten assortativitat. Aquesta propietat impacta fortament en la transmissió, resistència i sincronització de la xarxa

    Wearable Biosensors to Understand Construction Workers' Mental and Physical Stress

    Full text link
    Occupational stress is defined as harmful physical and mental responses when job requirements are greater than a worker's capacity. Construction is one of the most stressful occupations because it involves physiologically and psychologically demanding tasks performed in a hazardous environment this stress can jeopardize construction safety, health, and productivity. Various instruments, such as surveys and interviews, have been used for measuring workers’ perceived mental and physical stress. However valuable, such instruments are limited by their invasiveness, which prevents them from being used for continuous stress monitoring. The recent advancement of wearable biosensors has opened a new door toward the non-invasive collection of a field worker’s physiological signals that can be used to assess their mental and physical status. Despite these advancements, challenges remain: acquiring physiological signals from wearable biosensors can be easily contaminated from diverse sources of signal noise. Further, the potential of these devices to assess field workers’ mental and physical status has not been examined in the naturalistic work environment. To address these issues, this research aims to propose and validate a comprehensive and efficient stress-measurement framework that recognizes workers mental and physical stress in a naturalistic environment. The focus of this research is on two wearable biosensors. First, a wearable EEG headset, which is a direct measurement of brain waves with the minimal time lag, but it is highly vulnerable to various artifacts. Second, a very convenient wristband-type biosensor, which may be used as a means for assessing both mental and physical stress, but there is a time lag between when subjects are exposed to stressors and when their physiological signals change. To achieve this goal, five interrelated and interdisciplinary studies were performed to; 1) acquire high-quality EEG signals from the job site; 2) assess construction workers’ emotion by measuring the valence and arousal level by analyzing the patterns of construction workers’ brainwaves; 3) recognize mental stress in the field based on brain activities by applying supervised-learning algorithms;4) recognize real-time mental stress by applying Online Multi-Task Learning (OMTL) algorithms; and 5) assess workers’ mental and physical stress using signals collected from a wristband biosensor. To examine the performance of the proposed framework, we collected physiological signals from 21 workers at five job sites. Results yielded a high of 80.13% mental stress-recognition accuracy using an EEG headset and 90.00% physical stress-recognition accuracy using a wristband sensor. These results are promising given that stress recognition with wired physiological devices within a controlled lab setting in the clinical domain has, at best, a similar level of accuracy. The proposed wearable biosensor-based, stress-recognition framework is expected to help us better understand workplace stressors and improve worker safety, health, and productivity through early detection and mitigation of stress at human-centered, smart and connected construction sites.PHDCivil EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/149965/1/hjebelli_1.pd

    Signal Processing Using Non-invasive Physiological Sensors

    Get PDF
    Non-invasive biomedical sensors for monitoring physiological parameters from the human body for potential future therapies and healthcare solutions. Today, a critical factor in providing a cost-effective healthcare system is improving patients' quality of life and mobility, which can be achieved by developing non-invasive sensor systems, which can then be deployed in point of care, used at home or integrated into wearable devices for long-term data collection. Another factor that plays an integral part in a cost-effective healthcare system is the signal processing of the data recorded with non-invasive biomedical sensors. In this book, we aimed to attract researchers who are interested in the application of signal processing methods to different biomedical signals, such as an electroencephalogram (EEG), electromyogram (EMG), functional near-infrared spectroscopy (fNIRS), electrocardiogram (ECG), galvanic skin response, pulse oximetry, photoplethysmogram (PPG), etc. We encouraged new signal processing methods or the use of existing signal processing methods for its novel application in physiological signals to help healthcare providers make better decisions

    Intelligent Biosignal Analysis Methods

    Get PDF
    This book describes recent efforts in improving intelligent systems for automatic biosignal analysis. It focuses on machine learning and deep learning methods used for classification of different organism states and disorders based on biomedical signals such as EEG, ECG, HRV, and others

    Evaluation Of Automated Eye Blink Artefact Removal Using Stacked Dense Autoencoder

    Get PDF
    The presence of artefacts in Electroencephalograph (EEG) signals can have a considerable impact on the information they portray. In this comparative study, the automated removal of eye blink artefacts using the constrained latent representation of a stacked dense autoencoders (SDAE) and comparing its ability to that of the manual independent component analysis (ICA) approach was evaluated. A comparative evaluation of 5 stacked dense autoencoder architectures lead to a chosen architecture for which the ability to automatically detect and remove eye blink artefacts were both statistically and humanistically evaluated. The ability of the stacked dense autoencoder was statistically evaluated with the manual approach of ICA using the correlation coefficient, a comparative affect on the SNR using both approaches and a humanistic evaluation using visual inspections of the components of the stacked dense autoencoder reconstruction to that of the post ICA reconstruction where an inverse RMSE allowed for a further statistical evaluation of this comparison. It was found that the stacked dense autoencoder was unable to reconstruct random signal segments in any meaningful capacity when compared to that of ICA

    Persistence in complex systems

    Get PDF
    Persistence is an important characteristic of many complex systems in nature, related to how long the system remains at a certain state before changing to a different one. The study of complex systems' persistence involves different definitions and uses different techniques, depending on whether short-term or long-term persistence is considered. In this paper we discuss the most important definitions, concepts, methods, literature and latest results on persistence in complex systems. Firstly, the most used definitions of persistence in short-term and long-term cases are presented. The most relevant methods to characterize persistence are then discussed in both cases. A complete literature review is also carried out. We also present and discuss some relevant results on persistence, and give empirical evidence of performance in different detailed case studies, for both short-term and long-term persistence. A perspective on the future of persistence concludes the work.This research has been partially supported by the project PID2020-115454GB-C21 of the Spanish Ministry of Science and Innovation (MICINN). This research has also been partially supported by Comunidad de Madrid, PROMINT-CM project (grant ref: P2018/EMT-4366). J. Del Ser would like to thank the Basque Government for its funding support through the EMAITEK and ELKARTEK programs (3KIA project, KK-2020/00049), as well as the consolidated research group MATHMODE (ref. T1294-19). GCV work is supported by the European Research Council (ERC) under the ERC-CoG-2014 SEDAL Consolidator grant (grant agreement 647423)
    • …
    corecore