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Abstract

Changes in the variability of recorded physiological time-series have been connected with

transitions in the state of the monitored physiological system. The two primary paradigms

describing this connection are the Critical Slow Down (CSD) and the Loss of Complexity (LoC)

paradigms. The CSD paradigm considers that during frail or pathological states, a slowing

down is observed in the capacity of the system to recover from external stressors resulting

in increased output complexity for certain regulated variables. The LoC paradigm suggests

that when the equilibrium of a system is disrupted, certain effector variables that displayed

multi-scale complexity produce output measurements of reduced variability indicating a loss

in the system’s flexibility and capacity to adapt in the presence of external stressors.

For this purpose, entropy has emerged as a prominent nonlinear metric capable of assessing

the non-linear dynamics and variability of time-series. Consequently, multiple entropy quanti-

fication algorithms have been developed for the analysis of time-series. These algorithms are

based on Shannon Entropy such as the Permutation Entropy and Dispersion Entropy (DisEn)

algorithms; and on Conditional Entropy such as the Sample Entropy and Fuzzy Entropy

algorithms.

Within the scope of this study, the univariate and multivariate DisEn algorithms, first intro-

duced in 2016 and in 2019 respectively, are used as the foundation and benchmark for the

introduction of novel algorithmic variations. The selection of the DisEn algorithms is made due

to their capability of producing features with significant discrimination capacity taking into con-

sideration amplitude-based information while maintaining a linear computational complexity

and having a functional multivariate variation capable of quantifying cross-channel dynamics.

To initially ensure the effective quantification of DisEn during univariate physiological time-

series analysis, the effect of missing and outlier samples, which are common occurrence in

physiological recordings, is studied and quantified. To improve algorithmic robustness, novel

variations of the univariate DisEn algorithm are introduced for the analysis of low record-

ing quality time-series. The original algorithm and its variations are tested under different

experimental setups that are replicated across heart rate variability, electroencephalogram,

and respiratory impedance time-series. The analysis indicates that missing samples have a

reduced effect on the output DisEn and the error percentage can be maintained at values

lower than 8% with the introduction of a variation that skips invalid values. Contrary to missing

samples, outliers have a major disruptive effect with error percentages in the range of 57%

to 73% for the original DisEn algorithm that is limited in values lower than 22% with the

introduction of respective variations.
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To expand the study from univariate to multivariate analysis, the multivariate DisEn algorithm

is applied to physiological network segments formulated from multi-channel recordings of syn-

chronized electroencephalogram, nasal respiratory, blood pressure, and electrocardiogram

signals. The effect of outliers, present across different channels, is quantified for both uni-

variate and multivariate DisEn features. The sensitivity of DisEn features to outliers is utilized

for the detection of artifactual network segments using logistic regression classifiers. Two

variations of the classifier are deployed in several experimental setups, with the first utilizing

solely univariate and the second both univariate and multivariate DisEn features. Noteworthy

performance is achieved, with the percentage of correct network segment classifications

surpassing 95% in a number of experimental setups, for both configurations.

Finally, to improve DisEn quantification during the analysis of multivariate systems for physiolo-

gical monitoring applications, the framework of Stratified Entropy is introduced. Based on the

framework, a set of strata with a clear hierarchy of prioritization are defined. Each channel of

an input multi-channel time-series is allocated to a stratum and their contribution to the output

DisEn value is determined by their allocation. Three novel Stratified DisEn algorithms are

presented, as implementations of the framework, allowing multivariate analysis with control-

lable contribution from each channel to the output DisEn value. The original algorithm and the

novel variations are implemented on synthetic time-series consisting of 1/f and white Gaussian

noise, waveform physiological time-series and derived physiological data. The introduced

Stratified DisEn variations operate as expected and correctly prioritize the channels allocated

to the primary stratum of the hierarchy across all synthetic time-series setups. The results

of waveform physiological time-series indicate that certain of the novel features extracted

through Stratified DisEn achieve effect size increases in the range of 0.2 to 1.4 when separ-

ating between states of healthy sleep and sleep with obstructive sleep apnea. The derived

physiological data results further highlight the increased discrimination capacity of the novel

features with increases in the range of 5% to 30% in the mean absolute difference between

values extracted during steady versus stressful physiological states. Furthermore, an example

of decrease in the output DisEn values when moving from a steady to a stressful physiological

state is highlighted during the prioritization of the heart rate channel, in alignment with LoC,

providing an example of how Stratified Entropy could be used to test hypothesis based on the

CSD and LoC paradigms.

By making steps towards addressing the challenge of low data quality and providing a new

framework of analysis, this thesis aims to improve the process of assessing and measur-

ing the variability of physiological time-series, leading to the consequent extraction of viable

physiological information.
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Lay Summary

To acquire a better understanding of the functionalities of human physiology multiple devices

have been developed that allow the recording of physiological signals. These signals are

usually composed of the electrical activity of different organ systems of the human body and

can provide important insights with regards to the physiology of the monitored individual.

Manual inspection of these signals from medical personnel allows the prognosis and diagnosis

of disease and also supports medical decision making. However, due to the immense amounts

of signals being recorded there is a limit as to how much information can be retrieved manually.

Consequently, to fully utilize these recordings, there is growing interest of developing computer

programs – algorithms, capable of analyzing these vast amounts of data. The development of

such algorithms is a challenging task due to specific characteristics of those signals.

Physiological signals are complex and their nature can change rapidly, based on the operation

of the corresponding organ system. Furthermore, different organ systems in the human body

are in constant interaction with each other and therefore during the analysis of such signals it

is important to consider not only the signal itself but also the interactions observed between

the particular signal and signals of other organ systems. Finally, the quality of the recordings

is usually low, since an individual has to be able to function normally throughout the day if

the recording occurs under normal conditions, or they might be in interaction with medical

personnel when in a clinical environment.

This work studies algorithms that are capable of measuring the variability of patterns needed

to describe a particular signal. The more patterns required for the description of the signal the

higher the value of variability assigned to that signal. Measuring the variability of physiological

signals allows the detection of changes in the physiology of individuals, providing valuable

insights for their health.

Therefore, the presented work introduces novel variations of these algorithms, developed to

address the aforementioned characteristics in order to improve their viability for the analysis of

physiological signals in the following three ways. First, by improving their effectiveness during

the analysis of signals of low quality when applied to one signal at a time. Second, by partially

automating the separation between signal segments of acceptable quality that are ready for

analysis and those that are of low quality and might require further preprocessing. Third, by

developing a new methodology for the analysis of multiple signals at a time, that allows the

patterns of certain signals to be prioritized over others when this would allow a more accurate

understanding of the interactions between the respective organ systems.
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Chapter 1

Introduction

1.1 Motivation for this Research

With the advancement of physiological recording technology deployed across a broad spec-

trum of applications, from wearable devices to intensive care units, increased amounts of

data are becoming available for analysis. Their appropriate utilization could lead to effective

prognosis, early stage intervention, personalised treatments, and improved clinical decision

making [1–8].

For this purpose, the development of respective algorithms requires certain characteristics

of the physiological time-series to be considered. These consist of the potential non-linear

nature of their dynamics [9–14], their multivariate nature due to the interaction of multiple

organ systems in human physiology [15–19], and the low data-quality arising from typical

recording conditions [20–22].

Furthermore, the utilization of such algorithms could aid in addressing dangerous phenomena

such as that of “alarm fatigue” observed in clinical environments [23,24]. Algorithms currently

deployed in intensive care units display excessive amounts of false positive alarms that are

disruptive to the operation of clinical staff and can lead them to ignore alarms that are per-

ceived as false even when they are accurate, leading to potential errors. [2,25].

The variability1 of recorded physiological time-series has been highlighted as an important

feature that can provide clinically viable insights with regards to the physiological state of the

monitored individual. Changes in the variability of the recorded physiological time-series have

been connected with transitions in the state of the monitored system. Based on the Critical

Slow Down (CSD) paradigm [26–28] certain variables follow a homeostatic behavior with low

levels of variability being prevalent during healthy physiological states and increased levels

of variability observed when the transition to a pathological state has occurred, indicating

a collapse of the regulatory mechanisms that were meant to nullify perturbations. A second

1. A detailed description of the context within which the term variability is used in this Thesis is provided in
Section 2.1.3.

1
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group of variables follows non-homeostatic behavior as described from the Loss of Complexity

(LoC) [9, 10, 29, 30] paradigm, with increased levels of variability observed during healthy

states and low levels of variability during pathological states indicating a collapse of underlying

complex mechanisms and adaptive capacity.

Entropy quantification algorithms have been extensively used for the measurement of variabil-

ity in time-series [31], including the analysis of physiological recordings. These algorithms can

be broadly characterised into those based on Shannon Entropy (ShEn) [32] or on Conditional

Entropy (CEn), which is defined as the quantity of information observed in a sample at a

time-point n that cannot be explained based on previous samples up to time point n−1 [33].

Examples of such algorithms include Permutation Entropy (PEn) [34] and DisEn [35,36] based

on ShEn, and Approximate Entropy (ApEn) [37] and Sample Entropy (SampEn) [38] based

on CEn.

This thesis utilizes the univariate Dispersion Entropy (DisEn) [35,36] and Multivariate Multiscale

Dispersion Entropy (mvMDE) [39] algorithms, first introduced in 2016 and in 2019, respect-

ively, to study how the characteristics of physiological time-series and their respective record-

ings influence algorithmic design and the implementation during different forms of analysis.

The selection of the DisEn algorithms is made due to their capability of producing features with

significant discrimination capacity taking into consideration amplitude-based information while

maintaining a computational complexity that scales linearly with the size of the input data, and

having a functional multivariate variation capable of quantifying cross-channel dynamics [39].

1.2 Aims and Objectives

The presented research has two main aims. The first aim is to investigate the current capacity

of DisEn algorithms to conduct effective physiological time-series analysis when faced with the

challenges of low data quality and implementation of multivariate analysis within the context

of human physiology. The second aim is to expand on the initial findings and introduce novel

variations of DisEn algorithms and frameworks to address these challenges and expand the

research tools available for analysis.

To achieve these aims, the following three objectives are defined:

• To analyse the robustness of univariate DisEn to artifactual samples and develop vari-

ations that mitigate the disruptive capacity of artifacts.

• To extend the assessment of the impact of artifacts in the performance of mvMDE

during the analysis of multi-channel time-series and to implement a process for the

partial automation of separating between valid and artifactual segments of data.

• To expand multivariate analysis for the extraction of novel and informative features

taking into consideration the LoC and CSD paradigms.
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1.3 Contributions

Consequently, the main contributions of this Thesis are:

Univariate Dispersion Entropy Analysis for the Assessment of Missing and Outlier

Samples and Development of Robust Variations - Chapter Three: Quantification of the

effects of artifactual samples in the performance of univariate DisEn and the proposal of

novel variations of DisEn for increased robustness during the analysis of time-series segments

containing artifactual samples.

The research corresponding to this Chapter has been published in “Entropy ” [40].

Multivariate Dispersion Entropy Analysis for the Assessment of Outliers and Detection

of Artifactual Network Segments - Chapter Four: Quantification of the effects of artifactual

outliers in the performance of mvMDE and the development of an artifactual network segment

detection tool using a logistic regression classifier that utilizes univariate and multivariate

DisEn features, for the partial automation of data cleaning.

The research corresponding to this Chapter has been published in “Entropy ” [41].

The Stratified Entropy Framework and its Implementation using Dispersion Entropy -

Chapter Five: Introduction of the Stratified Entropy framework that allows the extraction of

novel features capable of measuring information that was previously inaccessible through

traditional multivariate analysis. Three novel Stratified Multivariate Multiscale Dispersion En-

tropy (SmvMDE) algorithms are designed and tested as implementations of the framework.

The research corresponding to this Chapter has been published in “IEEE Transactions on

Biomedical Engineering” [42].

1.4 Structure of the Thesis

The structure of the Thesis is as follows:

• Chapter 1 – Introduction: This Chapter introduced the motivation, objectives, and con-

tributions of this Thesis.

• Chapter 2 – Background: The Chapter starts by introducing key characteristics of physiolo-

gical systems, challenges arising by the quality of physiological recordings, and op-

portunities for the extraction of viable physiological information through the measure-

ment of physiological time-series’ variability. It continues with the description of entropy

quantification algorithms as a prominent tool for measuring variability and reviews state

of the art variations capable of multivariate and multiscale analysis. It concludes by

discussing the framework of Network Physiology and novel forms of analysis that have

been developed since its initial introduction.
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• Chapter 3 – Univariate Dispersion Entropy Analysis for the Assessment of Missing

and Outlier Samples and Development of Robust Variations: The Chapter presents

the work conducted using the univariate DisEn algorithm. Missing and outlier samples

are simulated across different physiological time-series to study the effect of artifactual

samples in the operation of univariate DisEn. Novel DisEn variations are introduced for

improved robustness to artifactual samples and their performance is benchmarked to

that of the original algorithm.

• Chapter 4 – Multivariate Dispersion Entropy Analysis for the Assessment of Outliers

and Detection of Artifactual Network Segments: The Chapter presents the experiments

conducted using mvMDE on networks of multi-channel time-series formulated from

synchronised physiological recordings. Artifactual outliers are simulated on all channels

of the network and their disruptive capacity in the output features is quantified and differ-

ences based on the channel containing the artifacts are analysed. Finally, the utilization

of both univariate and multivariate DisEn features for the detection of artifactual network

segments is studied through the deployment of a logistic regression classifier.

• Chapter 5 – The Stratified Entropy Framework and its Implementation using Dispersion

Entropy: The Chapter introduces the framework of Stratified Entropy and presents three

algorithmic variations of the Stratified mvMDE algorithm as implementations of the

framework. The operation of the novel algorithms is compared to that of mvMDE and is

tested and analysed using multi-channel synthetic time-series, waveform physiological

time-series and derived physiological data.

• Chapter 6 – Summary, Limitations of Study and Future Work: This Chapter summarises

the presented work, discusses limitations of the study and highlights opportunities for

future work and concludes the Thesis.



Chapter 2

Background

2.1 Characteristics of Physiological Systems and Time-Series

This section discusses topics that have to be considered during the analysis of physiological

time-series. These topics consist of:

1. Characteristics arising from the nature of physiological systems.

2. Data quality issues arising due to the recording conditions.

3. The variability of physiological time-series and how increases or reductions of variability

are associated with changes in the state of the monitored physiological system.

2.1.1 The Dynamic, Nonlinear, and Multivariate Nature of Physiological Sys-
tems

Physiological systems have been abstracted as dynamic systems that can be described by

two core elements, their state and their dynamics. The state of the system at a particular

point in time can be determined by the values of the variables that represent it [43, 44]. Con-

sequently, when a system is represented by V variables, its current state can be represented

as a point in an V -dimensional space [45] that is termed as the state or phase space of a

dynamic system. The dynamics of a system constitute the laws that describe how the state of

the system changes over time [46].

With regards to the dynamics that describe physiological systems, it is important to consider

that a significant number of them are characterized by non-linearity [13, 45, 47–49]. This

implies that the homogeneity and additivity properties, which are core properties of linear

systems, are not preserved. Therefore, the outputs of physiological systems and their state

transitions cannot be predicted through the simple linear combination of interactions of their

internal components. Instead, due to non-linear effects such as feedback and/or multiplicative

effects between their components, or with components of external systems, state transitions

become significantly unpredictable. In some cases small changes in values of the state vari-

ables can lead to rapid state transitions while in other cases large input deviations can have

negligible state changes when saturation effects are observed [46,49].

5
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Finally, physiological systems do not exist independently but instead are in constant and

intricate interactions with other systems in the organism they formulate [15, 17] in what could

potentially be described as a system of systems. Consequently, the analysis of physiolo-

gical systems is a multivariate analysis process that would benefit from the consideration

of interactions both between internal components of the same system but also between

components of distinct systems [18, 19, 50]. This multivariate nature becomes even more

crucial when also taking into account the potential non-linear dynamics of these systems

which indicates that state transitions can occur from small changes in both their internal or

external interactions [51–53].

Consequently, the analysis of data retrieved from physiological sensors requires the careful

consideration of the non-linear and multivariate nature of the dynamics of the monitored

systems.

2.1.2 Physiological Recordings and Data Quality

The amount of physiological time-series data available for analysis has significantly increased

through the advancement and deployment of physiological recording technologies ranging

from wearable devices to novel monitoring systems deployed in clinical environments. The

extraction of viable physiological information from such data could lead to effective prognosis,

early stage intervention, personalized treatments, refined clinical study design, and improved

clinical decision making [1–8].

However, physiological time-series contain significant amounts of artifactual samples. These

artifacts can be generated from physiological events such as in the case of artifacts gener-

ated in EEG signals due to eye movement [54], recording events such as loose equipment

attachment, user movement and electromagnetic interference [20–22] and algorithmic errors

occurring during the preprocessing of data such as in the formulation of a RR time-series from

an input ECG signal [55].

Therefore, the analysis of such datasets should carefully consider the existence of artifac-

tual samples and have processes in place to mitigate their disruptive capacity. This can be

achieved either through the modification of feature extraction algorithms to increase their

robustness to artifactual samples [56], the appropriate deployment of data cleaning and quality

control preprocessing procedures [57, 58] or the utilization of end-to-end machine learning

pipelines that are robust to artifacts [59]. Within the scope of this Thesis two types of artifactual

samples are considered in alignment with prior research, artifactual missing samples [60] and

artifactual outlier samples [61]. Missing samples are considered any samples whose value is

invalid either due to a fault during the recording of the respective signal or from their removal

through data preprocessing steps. Artifactual outliers are considered samples whose values

have been significantly altered from their original values.
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Failure to address low data quality will limit the capacity of algorithmic implementations to

extract useful information when deployed in physiological monitoring applications. From an ef-

fectiveness standpoint, the performance of disease prognosis and clinical support algorithms

can be severely limited when trained on low quality datasets [62,63]. Notably, inaccuracy in the

extracted features such as in the case of SpO2 sensors deployed in intensive care units [25],

can lead to the already threatening phenomenon of “alarm fatigue” [2, 23, 24] described in

Section 1.1.

The combination of the non-linear and multivariate dynamics arising from the nature of the

monitored physiological systems and the low data quality arising from the nature of physiolo-

gical recording conditions formulate a combined challenge that calls for appropriate algorithms

to be used in the analysis of such time-series.

2.1.3 Complexity, Irregularity and Variability

The terms complexity, irregularity and variability are commonly used within the context of

physiological time-series analysis. In many occasions they have been used in a manner that

could be considered interchangeable [64–66] and can lead to confusion particularly when

considering that the use of these terms can change across different publications of academic

research.

Within the scope of this Thesis and after careful reviewing of the literature presented in this

Chapter the terms are used in the following manner:

• The term complexity of a physiological signal is used to describe changes in the value of

the signal that arise from consistent structural dynamics of the monitored physiological

system [67,68]. When measured it is expected to follow a stable profile of values across

multiple temporal scales.

• The term irregularity is used to describe random changes in the signal that do not

arise from underlying dynamics in the monitored system [39, 69]. When measured it is

expected to follow a declining profile of values across increasing temporal scales.

• Finally the term variability is the main term used in this Thesis to describe changes

in the values of physiological time-series. The term variability was selected as a less

restrictive term [29, 70] that will be used to describe in general changes of interest in

physiological time-series. It should be noted that within this scope, the term variability

is used to describe the amplitude fluctuations observed across a set of samples as

typically taken in entropy quantification algorithms and is not used in association with

second order moments of a random variable such as that of variance.
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2.1.4 Variability of Physiological Time-Series

For the effective extraction of clinically viable information from recorded physiological time-

series, the quantification of their variability has arisen as a prominent feature that can provide

significant insights with regards to the physiological state of the monitored individual [9,29,70].

This has occurred because changes in the variability of recorded time-series have been

connected with transitions in the state of the monitored physiological system. The two primary

paradigms describing this connection are the CSD [26–28] and the LoC [9,10,29,30] paradigms.

Based on the CSD paradigm, during healthy physiological states, certain variables follow

a homeostatic pattern. They are characterized by low variability and are maintained at a

physiologically beneficial setpoint with any perturbations being corrected via appropriate re-

covery mechanisms [27, 71]. A slowing down of their recovery rate is an indication that the

monitored individual is reaching a breaking point after which they have transitioned into a

pathological state with the regulated variables eventually losing their capacity to recover and

therefore being characterized by increased levels of variability [26,27,71].

The LoC paradigm highlights that for some variables increased variability across multiple tem-

poral scales is observed during healthy physiological states [70]. These variables follow a non-

homeostatic pattern, their increased variability is indicative of complex underlying dynamics

of the monitored system and is reflective of the capacity of the system to adapt to a variety of

external stressors [9, 10, 29, 30]. Consequently decreases in the variability of such variables

indicate the transition from a healthy to a pathological state with a reduction of the individual’s

adaptive capacity [9,70].

A recent hypothesis that aims to combine these two paradigms is the “Entropy Pump” (EP)

hypothesis that separates physiological variables in two categories. Regulated variables that

display homeostatic behavior in alignment with the CSD paradigm and effector variables that

display non-homeostatic behavior following the LoC paradigm [19]. Based on this hypothesis,

an entropy pump is observed thanks to which homeostasis is achieved by maintaining a

stable, low complexity output for regulated variables through the complex and variable outputs

of effector variables that counteract any perturbations affecting the regulated variables through

negative feedback loops [19, 51, 72]. Therefore, the transition to a pathological state would

be indicated by the collapse of the directionality of the pump and a consequent increase

of the regulated variables’ variability in alignment with the CSD paradigm and a reduction

of the effector variables’ variability in alignment with the LoC paradigm. As an example of

this directionality during healthy physiological states and its collapse, the respective research

indicates the case of the systolic blood pressure maintained at a steady setpoint through

increased heart rate variability in healthy individuals as opposed to increased systolic blood

pressure variability and reduced heart rate variability recorded for individuals with type-2

diabetes [19].
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A tool that has been increasingly applied for the measurement of variability in physiological

time-series is entropy quantification algorithms that are discussed in detail in Sections 2.2 -

2.5.

2.2 Entropy as a Measure of Variability

This section discusses the mathematical concepts that have led to the utilization of entropy

for the analysis of time-series and the measurement of their variability. The core concepts of

ShEn and CEn are discussed in detail alongside the processes of binning estimates and the

formulation of embedded vectors that have aided in the implementation of algorithms for their

estimation.

2.2.1 Shannon Entropy

Shannon’s initial definition of Entropy within the context of Information Theory was made

with the aim of quantifying the amount of information contained within a signal [31, 32]. The

mathematical definition of ShEn defined the information of a signal as the amount of unex-

pected data contained in a message (time-series segment). Consequently, for a time-series

X = {xi, i = 1, . . . ,N} and the probability of each xi, i = 1, . . . ,N denoted as pi with pi > 0 and

∑
N
i=1 pi = 1, ShEn is defined as:

ShEn(X) =−
N

∑
i=1

pi · log(pi). (2.1)

It is important to consider that, the range of i plays an important role in the applicability of an

algorithm that utilizes ShEn. When a time-series is extracted from a system whose samples

can have a value retrieved from a limited set of potential values and consequently i being a

relatively small number, the direct application of ShEn is possible as long as the probability of

each value pi can be calculated for the analyzed time-series segment.

However, within the context of a time-series where each sample can have a potentially unique

value, or a value with a significantly low probability of repetition, the direct application of ShEn

would lead to values that are consistently close to its maximum value and are unable to

track potential changes in the state of the system based on its output entropy values. The

analysis of physiological time-series is an important example of this phenomenon. In this

case, the spectrum of potential sample values is large both due to the complexity of the

system that generates the time-series but also due to the noise present in the recording
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process itself. Consequently, during such analysis, the ShEn features extracted from the

sample values would not be capable of providing meaningful insights with regards to the state

of the monitored system. Since almost every sample value will be considered unique leading

to a strong bias of increased ShEn.

2.2.2 Binning Estimates

For this reason, estimation approaches have been defined for the quantification of entropy

measures during time-series analysis with one of the most widely deployed methods being the

binning estimator. Based on this approach approach a time-series X that contains values in

a range of RX = [Xmin,Xmax] undergoes a quantization process that results in the formulation

of a time-series Xq that consists of samples that belong in the alphabet AX = {1, . . . ,Q}.

Consequently each sample xq
i , i = 1, . . . ,Q is assigned to one of the Q quantization levels (or

“bins”). The bins can then be utilized in a variety of different approaches for the estimation

of an entropy metric. The most direct approach is the following: for each respective bin, its

probability of occurrence is calculated and then the ShEn of the input time-series can be

estimated using the probabilities of each bin (AX = {1, . . . ,Q}) as opposed to those of each

unique sample:

ShEn(X) =−
Q

∑
AX=1

pAX · log(pAX ) (2.2)

When considering this process, an important question that has to be answered with regards

to its applicability is how the bins are defined so that they can provide an accurate estimation

of the time-series dynamics. A straightforward and simple approach is the even spread of the

Q bins in the amplitude range of the the time-series, resulting in bins with equal amplitude

range: r = (Xmax −Xmin/Q) [73]. An alternative approach which is utilized when the bins are

not directly used for the calculation of the output entropy value and are instead an intermediate

step, is the implementation of a variable bin size to ensure an equal number of samples been

allocated to each bin [74,75].

Sections 2.4.1 - 2.4.2 will discuss in detail the PEn [34, 76] and DisEn [35, 36, 39] algorithms

that follow a more advanced approach to binning estimation based on symbolic dynamics,

with the DisEn algorithm formulating the algorithmic foundation of the work presented in this

Thesis.
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2.2.3 Embedded Vectors

An additional tool that is extensively utilized in entropy quantification algorithms is the for-

mulation of embedded vectors. For a time-series X = {xi, i = 1, . . . ,N}, groups of samples

(xi) can be extracted for the formulation of m-dimensional embedded vectors following a

sliding window step of 1 sample at a time and a time delay d between picked samples,

following Takens’ embedding theorem [77], resulting in: xi = {xi,xi+d , . . . ,xi+(m−1)d}, for each

i = 1,2, ...,N − (m−1)d.

For example, assuming X = {1,2,3,4,5,6,7,8}, m = 2 and d = 1 the embedded vectors that

would be formulated are: {1,2},{2,3},{3,4},{4,5},{5,6},{6,7},{7,8}.

The formulation of embedded vectors is a fundamental process that is commonly combined

with the formulation of bins, for the implementation of algorithms based on symbolic dynamics

such as PEn and DisEn as well as the estimation of CEn through the utilization of algorithms

such as ApEn and SampEn.

2.2.4 Conditional Entropy

Conditional Entropy (CEn) is defined as a the quantity of information observed in a sample at a

time-point n that cannot be explained based on previous samples up to time point n−1 [33,78].

For a time-series X = {xi, i = 1, . . . ,N} and a second time-series Y = {xi, i = 1, . . . ,N +1}
which is a copy of X up to sample i = N, a mathematical definition of CEn is given as:

CEn(Y |X) =− ∑
xεX ,yεY

p(x,y) · log
p(x,y)
p(x)

(2.3)

If the definition of CEn is applied directly to a time-series, the same challenges arise as

discussed for ShEn since minor fluctuations in the amplitude of the input signal would lead to

disproportionately high estimations of novel information. However, algorithms such as ApEn

and SampEn utilize algorithmic steps that combine the binning estimation process with the for-

mulation of embedded vectors to implement a computational approach capable of estimating

CEn with improved accuracy.

2.3 Approximate and Sample Entropy Algorithms

2.3.1 Approximate Entropy

Introduced in 1991 [37], the ApEn algorithm utilizes a two step process for the computational

estimation of an input time-series CEn.
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As a first step, embedded vectors of dimension m are formulated and a similarity distance

between the vectors is calculated to define whether the vectors are considered equivalent

based on a predefined tolerance r. The same process is then repeated for embedded vectors

of dimension m + 1 allowing the calculation of two similarity measures among embedded

vectors, one between m samples and a second between m+1 samples which is in alignment

with the definition of CEn. With the two similarity matrices for m and m + 1 vectors, the

second step is implemented, as it is now possible to compare the difference in the amount

of information available when accessing samples up to time points n − 1 (represented by

embedded dimension m) and n (represented by embedded dimension m+1).

Consequently, for a time-series X , embedding vectors xm
i with (1 ≤ i ≤ N −m+1) are formu-

lated, and the probability Cm
i (r) of finding any other vector whose similarity distance is ≤ r is

calculated as follows [37,79]:

Cm
i (r) =

# of xm
j such that d[xm

i ,x
m
j ]≤ r

N −m+1
,(1 ≤ j ≤ N −m+1) (2.4)

where r is a value defined by the user of the algorithm and usually corresponds to a percent-

age of the standard deviation (σ ) of the time-series in the range of 10% to 25%. Following

the two step process, m+1 embedded vectors are also formulated and the same process is

applied for the calculation of the respective metric:

Cm+1
i (r) =

# of xm+1
j such that d[xm+1

i ,xm+1
j ]≤ r

N −m
,(1 ≤ j ≤ N −m) (2.5)

With Cm
i (r) and Cm+1

i (r) calculated, an additional metric Φm(r), Φm+1(r) is defined as;

Φ
m(r) =

1
(N −m+1)

N−m+1

∑
i=1

lnCm
i (r) (2.6)

Φ
m+1(r) =

1
(N −m)

N−m

∑
i=1

lnCm+1
i (r) (2.7)

This metric corresponds to the average logarithmic probability of finding any matching m-

dimensional embedded vectors in the time-series X and operates as a summary metric of

vector similarity for the m-dimensional case. With the metrics for both groups, one with regards

to similarity observed during the accessing of m (n−1) and m+1 (n) samples, CEn can now

be estimated through the calculation of ApEn using the following equation:

ApEn(m,r,N) = Φ
m(r)−Φ

m+1(r) (2.8)
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The equation for the calculation of ApEn allows the derivation of a metric that describes the

amount of novel information retrieved when increasing the samples accessed from the input

time-series X . For example if the m dimensional vectors remain similar in the m+ 1 case

then this leads to the conclusion that no increase in novel information is observed through the

inclusion of the additional sample in the vectors. Consequently the calculated ApEn for this

case will be zero. In the opposite case, where all the similar m dimensional vectors become

dissimilar in the m+ 1 case it means that the new information introduced by the additional

sample cannot be predicted by the previous samples in each vector leading to a maximum

value of ApEn.

While ApEn managed to introduce an operational estimation of the CEn concept, there is an

important bias that has to be considered [38]. The calculation of the Cm
i (r) and Cm+1

i (r) met-

rics takes into consideration self-matches, matches occurring between the same embedded

vector in the special case of i = j. Consequently, ApEn is biased towards the calculation of a

higher degree of similarity than what is actually present in the time-series X . Furthermore,

this bias is size dependent, with shorter time-series facing a larger bias of similarity and

therefore a lower than expected calculated value of ApEn, leading to inconsistency when

trying to compare the ApEn values of time-series with different sample length N. The bias

exists in the algorithm because if the self-matching cases of the vector are omitted than there

is a chance that the natural logarithm in equations 2.6-2.7 will have a ln(0) value which is

undefined and would therefore result in a computational error. To address this limitation, the

SampEn algorithm was introduced which would later supersede ApEn.

Despite its limitations, ApEn found extensive use for the analysis of physiological time-series in

applications such as the investigation of abnormalities in respiratory function caused by panic

disorders [80] and the analysis of EEG signals to measure the effectiveness of anesthesia

drugs [81], to estimate sleep stages [82] and to detect changes in the EEG’s variability that

could be associated with Alzheimer’s disease [83].

2.3.2 Sample Entropy

The SampEn algorithm modifies the step for the calculation of Cm
i (r) and Cm+1

i (r) metrics [38],

for separation purposes the respective variables in SampEn will be signified as Um
i (r) and

Um+1
i (r) respectively. The equations for their calculation are the following:

Um
i (r) =

# of xm
j such that d[xm

i ,x
m
j ]≤ r

N −m−1
,(1 ≤ i ≤ N −m, j ̸= i) (2.9)

Um+1
i (r) =

# of xm+1
j such that d[xm+1

i ,xm+1
j ]≤ r

N −m−1
,(1 ≤ i ≤ N −m, j ̸= i) (2.10)
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When comparing the ApEn equations 2.4-2.5 to the respective SampEn 2.9-2.10 three changes

can be noted. The first is the rule that the cases where i = j are discounted from the calcu-

lation of vector similarity to remove the bias present in ApEn. The second change is the

modification of the range for the values of j to be the same for both equations to ensure that

the same number of vectors are evaluated during the calculations of U for both m and m+1

cases. The third change, which is a direct result of the previous two, is that the denominator for

both cases has been updated to N −m−1, with the N −m been determined by the common

j range and the additional −1 factor added to account for the j ̸= i restriction.

Furthermore, instead of the Φ metrics of ApEn, SampEn calculates the summary values

Um(r) and Um+1(r) as follows:

Um(r) =
1

(N −m)

N−m

∑
i=1

Um
i (r) (2.11)

Um+1(r) =
1

(N −m)

N−m

∑
i=1

Um+1
i (r) (2.12)

The ln(·) function within the summation of the ApEn equations 2.6-2.7 is removed in the

respective SampEn equations 2.11-2.12 to avoid the potential ln(0) value error and instead is

utilized during the calculation of the SampEn value itself as follows:

SampEn(n,r,N) =− ln
Um+1(r)
Um(r)

(2.13)

With these modifications SampEn is capable of following a similar pattern as ApEn with

regards to measuring the difference in matching vectors when moving from m to m+ 1 di-

mensionality while not being affected by ApEn’s bias resulting in the effective replacement of

the algorithm for the estimation of CEn.

SampEn has been extensively utilized in physiological time-series analysis. Examples of its

application include the analysis of neonatal heart rate variability for the detection of sepsis

[84],the analysis of center of pressure time-series data for the detection of postural differences

when walking with open versus closed eyes [85], the analysis of EEG signals for the detection

of epileptic seizures [86], and the analysis fMRI data for the detection of age related changes

in dynamic functional connectivity [87].
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2.3.3 Implementation considerations for ApEn and SampEn

Parameter Selection

Both the ApEn and the SampEn algorithms operate utilizing the same parameters of r that

corresponds to the percentage of statistical deviation utilized as the tolerance threshold for the

classification of two vectors as similar and m which defines the number of samples contained

in each embedded vector.

The selection of the value of r is a balancing act and depends on the temporal characteristics

of the dynamics included in the analyzed time-series. A lower than viable value of r would

lead to increased sensitivity in fluctuations caused by noise and therefore would incorrectly

label vectors as being different. Contrariwise, an overly increased value of r would significantly

reduce the sensitivity of detecting differences among vectors and would therefore incorrectly

label them as similar when they are not [37,79]. As stated in Section 2.3.1 the recommended

range for r is between 10% to 25% of the time-series σ for both ApEn and SampEn. This is

an empirically derived range recommended in the original publication [37] that introduced the

ApEn algorithm in 1991 and was further reinforced in 2000 based on experiments conducted

in the study that introduced SampEn [38]. It should be noted that this range corresponds to

time-series with relatively slow dynamics such as measurements of hormonal release and

would therefore require adjusting when applied to other signals with faster dynamics such as

EEG [88].

The recommendations for the selection of value for the m parameter are also empirical. As

a rule of thumb for both ApEn and SampEn it is recommended that the value of m should

be selected based on the restriction posed by the length of the analyzed time-series N. It is

stated that the condition N > 10m should be treated as a harsh minimum with a recommended

range of 20m to 30m [38, 79]. Consequently, common values utilized for m are those of 2 and

3.

Computational Complexity

The computational complexity of both the ApEn and SampEn algorithms is quadratic O(N2)

with regards to the input time-series length. This occurs due to the operational requirement

of both algorithms to calculate the distances between all vectors with the same dimension (m

and m+1) [37,38]. Furthermore an additional factor that can affect computational time is that

of m since it affects the equation used to calculate the distances between two vectors with

higher values for m leading to more complex distance equations. The quadratic scaling, is a

significant limitation that posed an additional motivation for the development of novel entropy

quantification algorithms that could achieve lower computational times such as in the case of

PEn and DisEn algorithms which aim to estimate ShEn.
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2.4 Permutation and Dispersion Entropy Algorithms

This section describes the PEn and DisEn algorithms that combine the utilization of binning

estimates and embedded vectors for the estimation of ShEn in input time-series. Both al-

gorithms utilize a similar approach of matching the embedded vectors to symbolic patterns

that are treated as separate bins whose relative frequency of occurrence is calculated. How-

ever, the algorithms differ to the extend that the PEn algorithm disregards information from the

amplitude value of the samples while the DisEn algorithm contains additional steps to include

that information in the formulation of respective bins. At this point it is important to clarify that

the version of the DisEn algorithm discussed in this Thesis is the version first described in

the original publication of 2016 [35] and the one referred to as "Amplitude Based Dispersion

Entropy" algorithm in the follow up publication of 2018 [36]. In the 2018 publication there is an

additional variation titled "Fluctuation Based Dispersion Entropy" whose functionality is closer

to the PEn algorithm.

2.4.1 Permutation Entropy

PEn is based on ShEn and utilizes the formulation of embedded vectors, with each vector

being mapped to an ordinal pattern. Each unique ordinal pattern is treated as a bin whose

relative frequency is used to calculate the output PEn value. The algorithm is designed with

the aim of having low temporal complexity and relative robustness to noise for the extraction

of viable features describing the variability of the input time-series segment.

For an input univariate time-series x j( j = 1,2, . . . ,N) of length N the steps followed by the

PEn algorithm are as follows:

1. Formulation of embedded vectors: An embedding dimension (m) and a time delay (d)

are set for the creation of embedded vectors, xi = {xi,xi+d , . . . ,xi+(m−1)d}, of length m,

for each i = 1,2, ...,N − (m−1)d.

2. Embedded vector reordering: Withing each embedded vector, each sample is given a

positioning index in the range of: 0 . . .m−1, the samples are then arranged in increasing

amplitude order. The newly ordered index positions correspond to the ordinal pattern of

that embedded vector. There are m! unique ordinal patterns based on the embedding

dimension used. The number of times a particular ordinal pattern arises during the

reordering of an embedded vector is recorded.

3. Calculation of Ordinal Pattern Relative Frequency: For each of the m! unique ordinal

patterns, their relative frequency (p) is calculated based on the number of instances

that an embedded vector has being assigned to that ordinal pattern divided by the total

number of embedded vectors, as follows:
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p(πv0...vm−1) =
#{i

∣∣i ≤ N − (m−1)d,xm
i has type πv0...vm−1 }

(N − (m−1)d)
(2.14)

4. Calculation of Univariate Permutation Entropy: Utilizing the relative frequencies of each

ordinal pattern the time-series’ output PEn is calculated based on Shannon’s definition

of Entropy:

PEn(X,m,d) =−
m!

∑
π=1

p(πv0...vm−1) · ln
(

p(πv0...vm−1)
)
. (2.15)

Consequently, an input time-series that could be described by a singular ordinal pattern would

result in the minimum output PEn value (i.e., 0) as opposed to one requiring the utilization of

all possible ordinal patterns in equal probability which would result in a maximum output value.

It is important to consider the case where two samples within an embedded vector share the

same value. In that case, the designers of the algorithm [34] suggested ranking the equal

samples based on their order of emergence with the first equal sample taking an ordinal

value that is one level lower than the second. The addition of noise was also suggested as

a potential solution however that could lead to in-precise patterns. Furthermore, due to the

utilization of ordinal patterns, amplitude based information is disregarded. Such information

could correspond to the magnitude of the difference between samples within an embedded

vector. An embedded vector with samples values of {100,150,200} and a vector with values

{100,101,102} would both be mapped to an ordinal pattern of {1,2,3} despite the differences

between the samples of the first vector being larger than the respective differences of the

second. Information with regards to the mean (µ) value of samples in an embedded vector is

also disregarded since an embedded vector with sample values of {30,20,10} and one with

values of {1030,1020,1010} would both be mapped to an ordinal pattern of {3,2,1} despite

the significant difference of their µ values. Finally, in the case of significantly small difference

between sample values, PEn becomes susceptible to noise since small amplitude fluctuations

can lead to the mapping of an incorrect ordinal pattern.

Recent research has produced algorithmic variations for PEn that aim to utilize amplitude

based information to partially address these limitations. The Weighted PEn algorithm intro-

duced in 2013 [89] utilizes the variance of the samples in each embedded vector to define a

weight coefficient with regards to its contribution in the calculation of the relative frequency

for its mapped ordinal pattern, while the Amplitude Aware PEn presented in 2016 [90] utilizes

information with regards to the µ value of the samples included in each embedded vector

and the amplitude difference between consecutive samples for the definition of a respective

coefficient. In addition to these variations, the utilization of amplitude information is also

addressed in a different manner in the DisEn algorithm discussed in Section 2.4.2.
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PEn has found extensive utilization in the analysis of physiological time-series in applications

such as the analysis of EEG signals to measure the effectiveness anesthesia [91], the detec-

tion of absence seizures [92] and the characterization of sleep stages [93]. Additionally heart

rate variability time-series have been analysed for the detection of cardiovascular autonomic

neuropathy in patients with type 1 diabetes mellitus [94] and the detection of individuals that

had cardiodepressive vasovagal syncope during a head-up tilt test procedure [95]. Finally,

PEn has also been utilized in the study of gene expression time-series for the detection of

temporal gene expression profiles [96].

2.4.2 Dispersion Entropy

The DisEn algorithm, similarly to PEn, is also based on ShEn and utilizes embedded vec-

tors that are mapped to unique dispersion patterns which are then utilized as bins for the

calculation of relative frequencies. Unlike PEn, the DisEn algorithm is capable of utilizing

amplitude based information during the mapping of each embedded vector to one of the

unique dispersion patterns [35,36].

Prior to the application of DisEn, an optional but recommended preprocessing step is the

application of a mapping function to the input time-series. In the 2018 study a number of

mapping functions were tested, with the recommendation being the utilization of a non-linear

mapping function such as the Logarithm Sigmoid Function (LogSig) [36]. The selection of

a non-linear over a linear mapping function seeks to ensure that maximum and minimum

amplitude values, that can be significantly larger or smaller than the µ value of the channel,

do not disrupt the allocation of samples to classes by forcing the majority of samples to be

assigned to a small number of classes [36]. It also allows the formulation of an amplitude

range that would facilitate the effective allocation of classes as described in the first of the

following algorithmic steps.

The process followed by the algorithm for the analysis of either the original or the mapped

input univariate time-series x j( j = 1,2, . . . ,N) of length N is the following:

1. Production of a “quantised” time-series: A number of classes (c) are distributed along

the amplitude range of the time-series, and each sample is allocated to the nearest

respective class based on its amplitude. This results in the production of a “quantised”

time-series u j( j = 1,2, . . . ,N).

2. Formulation of embedded vectors: An embedding dimension (m) and a time delay (d)

are set for the creation of embedded vectors, um,c
i = {uc

i ,u
c
i+d , . . . ,u

c
i+(m−1)d}, of length

m, for each i = 1,2, ...,N − (m−1)d.

3. Mapping to dispersion patterns: Each embedded vector um,c
i is mapped to a respective

dispersion pattern πv0...vm−1 based on its corresponding classified samples.

The number of potential unique dispersion patterns is cm, as defined by the number

of classes and the embedding dimension.
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4. Calculation of Dispersion Pattern Relative Frequency: For each of the cm unique dis-

persion patterns, their relative frequency is calculated as follows:

p(πv0...vm−1) =
#{i

∣∣i ≤ N − (m−1)d,um,c
i has type πv0...vm−1 }

(N − (m−1)d)
(2.16)

5. Calculation of Univariate Dispersion Entropy: Utilizing the obtained relative frequencies,

the time-series’ output DisEn value is calculated using the following equation [35, 36],

based on Shannon’s definition of entropy:

DisEn(X,m,c,d) =−
cm

∑
π=1

p(πv0...vm−1) · ln
(

p(πv0...vm−1)
)

(2.17)

Following the aforementioned steps, an input time-series described by a single dispersion

pattern would result in a minimum output DisEn value (i.e., 0) as opposed to one requiring

the utilization of all possible dispersion patterns in equal probability, which would result in a

maximum output value.

Examples of physiological time-series analysis using DisEn include the analysis of magneto-

encephalogram (MEG) signals for the detection of variability reductions in the prevalence of

Alzheimer’s disease when compared to healthy individuals [97] and the analysis of ECG data

for the detection of distribution differences in the values of DisEn when comparing between

healthy heart beats, atrial premature beats and beats corresponding to premature ventricular

contractions [98].

2.4.3 Implementation considerations for PEn and DisEn

Parameter Selection

Both the PEn and the DisEn algorithms utilize the parameter d which corresponds to the

time-delay applied between the selection of samples utilized for the formulation of embedded

vectors and m which corresponds to the length of each embedded vector (similarly to the

ApEn and SampEn algorithms). In the case of the DisEn algorithm an additional parameter c

is utilized corresponding to the number of classes that are spread throughout the amplitude

range of the input signal after the optional application of a mapping function.

With regards to d the most commonly utilized value is that of 1 since usually all samples are

utilized in the order of occurrence, however higher values can be used if the sampling rate

of the input signal is considered significantly higher than the temporal profile of the target

dynamics to be captured.
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For DisEn the selection of value for c is a balancing act with reduced values of c leading

to loss of signal information and increased values of c leading to reduced robustness to

noise. For very low value of c, multiple samples will be allocated to the same class despite

being representative of different dynamics. For example in the extreme and not sustainable

case of c = 1 all embedded vectors will be mapped to the same dispersion pattern leading

to a minimum value of DisEn = 0 regardless of the input time-series. For a significantly

increased value of c even fluctuations caused by noise would lead to the formulation of

different dispersion patterns, leading to biased high values of output DisEn. As an empirical

recommendation, the range of 3 ≤ c ≤ 9 is recommended as practical values for the majority

of applications [35,36].

Furthermore an additional consideration which affects the selection of values for both c and

m is associated with number of input samples N. As discussed in the respective study [36],

in order to acquire a representative set of relative frequencies for the formulated dispersion

patterns, the number of input samples should follow the condition: N > cm with an empir-

ical recommendation for trustworthy results being the condition that: N > cm+1. Furthermore

with regards m a minimum value of 2 is required to allow for each embedded vector to be

formulated from at least two input samples.

For the PEn algorithm the selection of value for m is less restrictive since there is no c

parameter as in the case of DisEn. As an empirical recommendation from the respective

study [34] the value range of 3 ≤ m ≤ 7 is recommended.

Computational Complexity

For both PEn and DisEn their computational complexity scales linearly with the number of

input samples (O(N)). This occurs since each embedded vector is accessed only once to be

mapped to an ordinal or dispersion pattern. This is an important advantage over the ApEn and

SampEn algorithms whose scaling is quadratic (O(N2)) and consequently their computational

time can be prohibitively long for an array of applications.

2.5 Multivariate Multiscale Entropy Quantification Algorithms

This section describes in detail the Multivariate Multiscale Permutation Entropy (mvMPE) and

the Multivariate Multiscale Dispersion Entropy (mvMDE) algorithms. Both of these algorithms

follow similar approaches with regards to the coarse graining process used for multiscale

analysis but have differences with regards to the utilization of samples from different channels

of the input time-series for the extraction of multivariate features.
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2.5.1 Multivariate and Multiscale Analysis

As discussed in Subsection 2.1.1, physiological systems display multivariate dynamics that

occur due to interactions that are both internal, within components of the same system and

external with components of other systems. Consequently, a comprehensive measurement of

physiological variability through the use of entropy metrics would require the development of

multivariate analysis techniques to allow the assessment of dynamics occurring across the

channels of multi-channel time-series that are formulated from the combination of multiple

recorded variables. For this purpose, recent research has produced algorithmic variations

capable of multivariate analysis such as the mvMPE and the mvMDE algorithms presented in

Sections 2.5.2 and 2.5.3 respectively.

The necessity for multivariate analysis due to the nature of physiological systems is comple-

mented by the requirement for analysis across multiple temporal scales due to their dynam-

ics, particularly when considering the multiscale complexity displayed by effector variables

during healthy physiological states [9, 19, 68]. Consequently, for a complete assessment of

physiological variability and appropriate utilization of multivariate data, when available, entropy

quantification algorithms need to be capable of both multivariate and multiscale analysis.

Coarse Graining Process

For the successful quantification of a time-series’ complexity across multiple time scales, it is

common to utilize a coarse graining process to modify the input time-series based on the time

scale factor τ . The mvMPE and the mvMDE algorithms utilize the moving average coarse

graining approach as follows [67,99,100]:

Given a p-channel time-series Y = {yk,b}b=1,2,··· ,N
k=1,2,··· ,p , each channel is processed separately and

divided into non-overlapping segments of length equal to the defined τ . For each segment, an

average value is calculated and used to derive the coarse-grained multi-channel time-series

as follows:

xk,i(τ) =
1
τ

iτ

∑
b=(i−1)τ+1

yk,b,1 ≤ i ≤
⌊

L
τ

⌋
= N,1 ≤ k ≤ p (2.18)

where L is the original channel length and N the resulting coarse-grained channel length.

While this process is commonly used for multiscale analysis, it is important to consider that the

variance of the time-series generated is reduced during the averaging of the original samples.

Consequently, this reduction should be taken into consideration when comparing between

the output multiscale profiles of two distinct time-series, with variance occurring from random

fluctuations expected to follow strong pattern of reduction as the τ value increases [67] .

Finally, the reduction of variance should also be taken into consideration during the design
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of respective algorithmic steps such as in the case of mvMDE during the application of a

mapping function, where the µ and σ of the original non coarse-grained time-series are used

for the mapping across all τ values. This ensures that the mapping function applied to the

time-series is not affected by the averaging process [39].

The original versions of both mvMPE and mvMDE utilize the moving average approach, they

can however, be modified to utilize more complex processes such as the low-pass Butterworth

filtering [100, 101], and empirical mode decomposition [101]. Finally, while coarse graining

is commonly used for the implementation of multiscale analysis, novel and more complex

methods have been introduced that can provide a more accurate multiscale profile of the

input time-series at the cost of increased computational complexity. Examples include the

composite multiscale analysis [102] and the refined composite multiscale analysis [103].

2.5.2 Multivariate Multiscale Permutation Entropy

The original Multivariate Multiscale Permutation Entropy (mvMPE) algorithm was introduced in

2012 [76] with the algorithmic operations that allow for multiscale analysis being introduced at

the first algorithmic steps of mvMPE and the operations corresponding to multivariate analysis

at the final steps.

The steps for the formulation of embedded vectors and their mapping to ordinal patterns,

described in Section 2.4.1, are applied to each of the p channels separately following the

same algorithmic operations. However the step that calculates the relative frequency of each

ordinal pattern is modified. The number of cases in which an embedded vector has been

mapped to a certain ordinal pattern are counted across all p-channels and consequently the

relative frequency for each pattern is also divided by the number of channels p, as follows:

p(πv0...vm−1) =
#{i

∣∣i ≤ N − (m−1)d,xm
i has type πv0...vm−1 }

p(N − (m−1)d)
. (2.19)

The output mvMPE value is then calculated in the same manner as for univariate PEn but this

time using the relative frequencies calculated based on all p-channels:

mvMPE(X,m,d) =−
m!

∑
π=1

p(πv0...vm−1) · ln
(

p(πv0...vm−1)
)
. (2.20)

An important point to highlight with regards to the presented implementation of mvMPE is the

fact that while the relative frequencies of each unique ordinal pattern are calculated based

on the mapping that occurs across all p-channels of the time-series, the embedded vectors

that are mapped to the ordinal patterns are formulated from each channel independently.
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Consequently no cross-channel dynamics are represented in the embedded vectors since

there is no mixing of samples from different channels. Contrariwise, the mvMDE algorithm

discussed in Section 2.5.3 formulates patterns that are based on cross-channel dynamics

while the recently proposed graph-based mvMPE algorithm [104] utilizes a user defined

cartesian product of two graphs to model relations between the different channels of the input

time-series during the calculation of the output entropy value.

The mvMPE algorithm was initially utilized for the analysis of EEG signals for the detection of

differences between healthy elderly individuals and individuals suffering from Mild Cognitive

Impairment and Alzheimer’s Disease [76].

2.5.3 Multivariate Multiscale Dispersion Entropy

Multivariate Multiscale Dispersion Entropy (mvMDE) allows the multivariate quantification of

DisEn from multi-channel time-series. Similarly to its univariate equivalent, the preprocessing

of each individual channel using a mapping function is recommended. For a set of p-channel

time-series X = {xk,i}i=1,2,··· ,N
k=1,2,··· ,p of length N each, the computational steps of mvMDE are the

following [39]:

1. Production of univariate quantised time-series: A number of classes (1,2, . . . ,c) are

distributed along the amplitude range of each channel separately. Their samples are

allocated to their nearest respective class based on their amplitude. As a result, a

quantized channel u j( j = 1,2, . . . ,N) is produced for each respective input channel,

resulting in a set of p-quantized channels U = {uk,i}i=1,2,··· ,N
k=1,2,··· ,p.

2. Formulation of multivariate embedded vectors: From {uk,i}, the quantized samples are

embedded into univariate vectors of length m (with a time delay d) for each channel. The

univariate embedded vectors are then combined in sets of p-synchronised vectors, one

from each channel. The vectors within each synchronised set are serially concatenated

for the production of a respective multivariate embedded vector Z( j), of length m · p, for

each j = 1,2, . . . ,N − (m−1)d.

3. Mapping to multiple dispersion patterns: In mvMDE, each embedded vector is mapped

to multiple dispersion patterns to effectively evaluate patterns both temporally within the

same channel as well as across channels. Each subset of m elements in Z( j) is ac-

cessed, following all possible
(m·p

m

)
combinations. This formulates φq( j)(q= 1, . . .

(m·p
m

)
)

embedded subvectors that are then mapped to their corresponding πv0...vm−1 dispersion

pattern. The total number of dispersion pattern instances is (N − (m− 1)d)
(m·p

m

)
and

the number of unique dispersion patterns is cm.

4. Calculation of Dispersion Pattern Relative Frequency: For each of the cm unique dis-

persion patterns, their relative frequency is calculated as follows:

p(πv0...vm−1) =
#{ j

∣∣ j ≤ N − (m−1)d,φq( j) has type πv0...vm−1 }
(N − (m−1)d)

(mp
m

) (2.21)
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5. Calculation of Multivariate Dispersion Entropy: Utilizing the relative frequencies of the

dispersion patterns considering both temporal and spatial domains as above, the output

entropy value for X is calculated based on Shannon’s definition of entropy:

mvMDE(X,m,c,d) =−
cm

∑
π=1

p(πv0...vm−1) · ln
(

p(πv0...vm−1)
)

(2.22)

The publication that introduced mvMDE in 2019 presented four different variations of the

algorithm. The variation described in this section is the fourth variation which is also the one

specified by its designers as the final and recommended variation. The mvMDE algorithm has

been applied to 148-channel MEG data for distinguishing between healthy individuals and

individuals suffering from Alzheimer’s disease and to EEG data for the detection of variability

differences between focal versus non-focal recordings [39].

2.6 Network Physiology

As it has been emphasized in this Chapter, the potential multivariate dynamics of physiolo-

gical systems have been an important consideration of recent research aiming to provide a

comprehensive analysis of their operation. A framework associated with a significant number

of recent multivariate approaches is that of Network Physiology, first introduced in 2012 [105].

The framework of Network Physiology aims to describe the interactions occurring across di-

verse organ systems by representing them as a physiological network and extracting features

from within that network. For this purpose two different processes are utilized, the formulation

of a graph structure and the utilization of a respective feature extraction algorithm such as the

Time Delay Stability (TDS) algorithm [18,105].

2.6.1 Utilization of Graphs

Graphs are structures that contain a set of objects that are related to each other. The two

core components that formulate a graph are nodes and edges. Each node of the graph

is associated with an object while the edges of the graph connect the different nodes with

each other based on the existence of interaction between the respective objects [106]. A core

distinction between graph architectures is that graphs can contain either directed or undirected

edges. In the case of an undirected graph [107], an edge described as one connecting two

nodes, for example A to B, is the same edge as the one described to connect B to A.

Contrariwise in directed graphs the direction of the edge matters therefore an edge connecting

A to B would not be the same as one connecting B to A since they would be reverse with

regards to their directionality [108].
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In the initial implementation of Network Physiology undirected graphs were utilized due to the

symmetrical nature of the TDS algorithm utilized for the extraction of features. A physiological

network is constructed by representing each monitored physiological system as a node of the

graph and projecting the interactions between systems as edges between the nodes [105,

109]. At this point, it is important to clarify that within the initial definition of the framework,

graphs are not used with the aim of utilizing graph specific algorithms for the extraction of

features but as a visualization and meta analysis tool for the tracking of topological changes

and the matching of different graph topologies with physiological states of interest [18, 105].

The features used for the measurement of topological changes are instead extracted through

the use of the TDS algorithm.

2.6.2 Time Delay Stability Algorithm

The TDS algorithm was developed with the aim of identifying and quantifying the pair-wise

coupling and network interactions of diverse dynamical systems based on prior observations

of coordinated bursting activity in the outputs of signals such as EEG, ECG, and respiratory

rate [18, 110, 111]. For this purpose the algorithm aims to track the time delay with which

bursts of activation in the output signal of a given system are followed by burst in the signals

of other systems.

Periods of TDS with constant time delay between cross signal bursts indicate stable inter-

actions and stronger coupling between the respective systems. Moving this into the graph

representation of physiological networks during the analysis of multi-channel time-series with

each channel corresponding to an input signal, the value given to a specific edge between

two nodes, with each node representing a signal, is associated with the percentage of the

time were TDS is observed [18, 105]. Consequently, the TDS algorithm is a bivariate feature

extraction algorithm that measures the coupling stability between two input signals (A and B)

based on the following steps [18,105,112]:

1. Both input signals (A and B) are divided into overlapping window segments, the length

and overlap of each window is selected based on the target application and usually the

overlap is 50% of the overall window length.

2. Each segment is normalized to a µ of 0 and unit σ to ensure that the coupling measured

between the signals is not affected by their relative amplitudes.

3. The cross-correlation of each pair of synchronised segments from the two signals is

calculated using periodic boundary conditions.

4. For each pair of windows the maximum absolute value of the cross-correlation function

is used as an estimate of the time delay (γ) for that pair. The resulting γ values formulate

a time-series with length equal to the total number of window pairs between the two

signals.
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5. The resulting time-series is then scanned in groups of 5 windows at a time. When the

γ of the first window in each group remains relatively stable across the 4 consecutive

windows with fluctuations that do not surpass the range of [γ − 1,γ + 1] that group of

windows is considered stable and the time period covered by that group is marked as

a period of TDS. If any γ value in a group surpasses the range, then that group of

windows remains unmarked.

6. The final TDS value is calculated as the percentage of points that have been designated

as having TDS in the overall γ time-series.

When the TDS algorithm is implemented within the framework of Network Physiology, a

TDS matrix is constructed that contains all the TDS values measuring the coupling strength

associated with the edges that connect the different nodes in the constructed physiological

network.

2.6.3 Implementations of the Framework

Network Physiology was first implemented for the detection of differences during different

sleep stages such as deep, light, and rapid eye movement sleep through the analysis of EEG,

ECG, and RESP signals [18,105]. Furthermore, a recent study utilized the framework to study

the coupling between synchronous bursts in cortical rhythms and peripheral muscle activation

during states of sleep and wakefulness through the analysis of EEG and electromyographic

(EMG) signals [112].

While the first implementations of Network Physiology were based on the utilization of graphs

and the TDS algorithm, novel implementations with different forms of analysis have been

introduced. For example the framework was extended to the analysis of thermal imaging

data, with the aim of separating between subjects telling the truth versus lying in a simu-

lated experiment, through the use of a modified version of the multivariate Granger causality

algorithm instead of TDS [113]. Recently, Network Physiology was combined with the testing

of the EP hypothesis for the detection of physiological disruptions caused by COVID-19 using

three forms of analysis: principal component analysis, descriptive statistics, and network

analysis [72].

Of particular interest is the utilization of entropy quantification algorithms within the framework

of Network Physiology. Within this scope the Conditional Transfer Entropy algorithm was

applied to EEG, ECG, RESP, and blood volume pulse (BVP) signals, for the detection of

edges that displayed statistical significance when comparing across networks of individuals

that were being monitored during states of rest and mental stress [114]. Furthermore, self

entropy, mutual information, and conditional mutual information metrics were applied to time-

series formulated from EEG, ECG, RESP, and BVP signals for the extraction of network based
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features that were used for the classification of different levels of mental stress using support

vector, random forest, and logistic regression classifiers in a comparative study [115]. Within

the scope of this Thesis, the framework of Network Physiology poses an interesting domain

to contextualise the work in Chapters 4 and 5.

2.7 Conclusion of the Chapter

This Chapter provided the background and literature review that is associated with the work

presented in Chapter 3,4 and 5. Section 2.1 discussed key characteristics of physiological

systems that have to be considered during the design and implementation of algorithms that

aim to analyse respective time-series and introduced paradigms and hypothesis that connect

the changes in variability of physiological time-series with changes in the state of physiological

systems. Section 2.2 introduced Entropy as a measure of variability, outlined fundamental con-

cepts and described processes that are utilized for the quantification of Entropy in time-series.

Sections 2.3 and 2.4 introduced the ApEn, SampEn, PEn and DisEn algorithms by discussing

in detail their mathematical definitions, algorithmic steps and implementations. Section 2.5

expanded into the domain of multivariate and multiscale analysis and presented in detail the

mvMPE and mvMDE algorithms. Finally Section 2.6 presented the framework of Network

Physiology discussing its structure and components and gave examples of implementations

that expanded upon the initial framework. Moving forward the DisEn algorithm is utilized as

the foundation of the work presented in the following Chapters.



Chapter 3

Univariate Dispersion Entropy

Analysis for the Assessment of

Missing and Outlier Samples and

Development of Robust Variations

Note: This Chapter’s contributions have been published in Entropy, 2020 [40].

3.1 Introduction

This Chapter presents the experiments conducted utilising the univariate DisEn algorithm

for the analysis of physiological time-series containing simulated artifactual samples. The

experiments are designed to measure the effects of artifactual samples in the operation of

DisEn and develop variations that have improved performance during the analysis of time-

series with increased amounts of artifacts, by mitigating their disruptive capacity.

Prior research tested the robustness of ApEn, SampEn, and Fuzzy Entropy (FuzzyEn) dur-

ing the analysis of time-series containing missing samples. The results indicate that, while

the classification capacity of the algorithms can be preserved under certain conditions, the

fluctuations of entropy values can be large, affecting the accuracy of the results extracted for

each analysed time-series segment [60]. Furthermore, recent research has provided new vari-

ations of SampEn leading to improved performance when analysing time-series with missing

samples [56]. Concerning the effect of artifactual samples that have the form of outliers, ApEn

and SampEn have been tested, and the results indicate that outlier samples can disrupt the

process of entropy quantification to a much greater extent than missing samples and should

therefore be a key consideration when testing the robustness of respective algorithms [61].

28
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As discussed in Chapter 2 the DisEn algorithm was selected as the foundational algorithmic

platform for this Thesis due to its favorable characteristics such as increased discrimination

capacity and low computation time [36, 116]. However, while its performance is promising,

it is important to ensure that the algorithm is capable of being deployed in scenarios where

significant amounts of missing and outlier samples are contained in the extracted recordings.

Consequently the research presented in this Chapter seeks to contribute the following:

• The quantification of the effect of missing and outlier samples on the performance of

DisEn.

• The introduction of new variations of the DisEn algorithm to improve its performance

when applied to time-series with missing and outlier samples.

• The assessment of the performance of the original algorithm and its variations, across

different physiological time-series with simulated artifacts and under separate experi-

mental setups defined by the percentage of missing or outlier samples and the degree

to which these samples are grouped together or exist individually.

The Chapter is structured in the following manner. The Methods section presents the al-

gorithmic variations of DisEn developed and tested in this set of experiments. It continues by

presenting the datasets used, the process for producing time-series containing missing and

outlier samples, the metrics used for performance assessment, and the statistical analysis

applied to the results of the designed experimental setups. The Results section provides

a summary of the results of the implemented statistical tests, continues by presenting the

performance of DisEn variations, for each physiological type separately, applied to time-

series with missing samples, and closes with the respective performance for time-series with

outlier samples. In the Discussion section, important insights from the study are reviewed,

and performance patterns are examined and interpreted considering the interplay between

normal samples and missing or outlier samples, the rapidity of amplitude fluctuations of the

analysed time-series, and the operation of the respective DisEn variation. Finally, limitations

of the current study are addressed, and opportunities for future work are highlighted.

3.2 Methods

3.2.1 Dispersion Entropy (DisEn)

As discussed in Section 2.4.2, the DisEn algorithm has a set of steps prior to the formulation

of a “quantised” time-series that focus on the mapping of the input time-series with a selec-

ted mapping function. The variations of DisEn introduced in this Chapter contain additional

algorithmic steps that affect these initial processes of the algorithm. A summary of the original

DisEn’ algorithmic steps is shown in 3.1 while the respective algorithmic diagrams for the

variations are displayed in Figures 3.2-3.5.
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Figure 3.1: Algorithmic diagram of the original Dispersion Entropy algorithm.

3.2.2 Dispersion Entropy Variations

The following variations of the algorithm are developed and tested for improved performance

when used for the analysis of time-series that contain missing and outlier samples. The first

two variations aim at improving the robustness of DisEn by mitigating the effect of missing

samples while the latter two by mitigating the effect of outlier samples.

Skip Sample Dispersion Entropy (SkipDisEn)

The SkipDisEn variation removes samples marked as missing and connects the remaining

samples in a continuous time-series based on the computational steps shown in Figure 3.2.

This is the default approach followed in prior entropy quantification algorithms [60,84]; in this

study, the aim is to assess the effectiveness of the respective DisEn variation when applied

on time-series with missing samples.



3.2. Methods 31

Figure 3.2: Algorithmic diagram of the Skip Sample Dispersion Entropy (SkipDisEn) variation.
The added step is outlined in green.

Linearly Interpolated Dispersion Entropy (LinInterDisEn)

The LinInterDisEn variation uses linear interpolation to replace samples tagged as missing

based on the equation y(x) = yo(x1−x)+y1(x−xo)
x1−xo

, where y0, y1 are the amplitudes, and x0, x1 are

the locations of the nearest available samples. In this variation, linear interpolation is being

implemented due to promising results of performance improvement for entropy quantification

algorithms in previous research [56, 117]. Similarly to SkipDisEn, this variation focuses on

having improved performance when dealing with missing samples. Its computational steps

are shown in Figure 3.3.
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Figure 3.3: Algorithmic diagram of the Linearly Interpolated Dispersion Entropy (LinInter-
DisEn) variation. The added step is outlined in green.

Alternative Statistical Metrics Dispersion Entropy (AltMetDisEn)

The AltMetDisEn variation uses alternative statistical metrics for the implementation of map-

ping functions. The originally used µ is replaced with a median and σ is estimated using the

median absolute deviation multiplied by the scaling factor of 1.4826 [118]. The new statistical

metrics are chosen for their robustness to outliers in order to reduce the disruption of classes

allocation due to the increases in the amplitude range of the input time-series caused by

outliers [119]. Furthermore, AltMetDisEn is modified in the same manner as SkipDisEn in

order to skip any samples tagged as missing and is therefore expected to have an analogous

performance on the analysis of time-series with missing samples. The algorithmic diagram of

AltMetDisEn is shown in Figure 3.4.
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Dynamic Skip Sample Dispersion Entropy (DynSkipDisEn)

The DynSkipDisEn variation implements a dynamic skipping approach through the use of

an additional parameter named cutoff. DynSkipDisEn aims at replicating the performance

of SkipDisEn when applied to time-series with outlier samples by automatically discarding

any samples with values that deviate more than a certain degree of σ , defined by the cutoff

parameter, from the µ of each analysed time-series segment, as shown in Figure 3.5. The

utilization of the σ and µ of each respective time-series segment for the removal of outliers

is a necessary step when considering that the majority of physiological time-series are non-

stationary [120,121] and therefore the respective σ and µ values are expected to change over

time and consequently from one analyzed input segment to the next. Furthermore, since the

cutoff threshold of this algorithm is a scaled version of the σ of its input time-series segment,

the effect of outlier samples in the calculated σ should be taken into consideration when

selecting the value of the cutoff parameter, as discussed in Section 3.4.5.

Figure 3.4: Algorithmic diagram of the Alternative Statistical Metrics Dispersion Entropy
(AltMetDisEn) variation. The added and modified steps are outlined in green.
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Figure 3.5: Algorithmic diagram of the Dynamic Skip Sample Dispersion Entropy (DynSkip-
DisEn) variation. The added and modified steps are outlined in green.

3.2.3 Experimental Datasets

Aiming to develop variations of the DisEn algorithm with robust performance across a spec-

trum of monitoring applications, the following physiological time-series are chosen for the

study.

Heart rate variability (RR) data are commonly monitored in a range of biometric applications

from wearable devices to patient monitoring in intensive care units for monitoring the cardi-

ovascular system of individuals [122, 123]. The Fantasia Database [124] publicly available in

Physionet [125] contains 40 EEG recordings of healthy adults sampled at 250 Hz, while also

providing the respective RR data sampled at the rate of occurrence of each interval, which

are used for this study. In total, RR data of 20 young adults are chosen for analysis.

In addition, EEG are chosen as a representative and commonly analysed signal for monitoring

the nervous system of individuals. The EEG signals used for this study are retrieved from the

publicly available CHB-MIT Scalp EEG Database [125, 126] which contains recordings from

children that had intractable seizures. The data used in this study consist of 13 records of

bipolar FP1-F7 channel recordings sampled at 256 Hz.
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To measure the performance of the algorithm in monitoring the operation of the respiratory

systems of individuals, the RI signal is chosen. A total of 15 recordings are retrieved by the

publicly available BIDMC PPG and Respiration Dataset [125, 127] which contains recordings

from critically-ill patients during hospital care at the Beth Israel Deaconess Medical Centre.

Each recording contains 8 minutes of RI signal sampled at 125 Hz.

In this Chapter, the choice to utilize both a derived time-series such as the RR and signals

such as the EEG and RI is made to ensure that differences in the effect of missing and outlier

samples are measured in both types of time-series that can be analyzed across different

applications.

3.2.4 Generation of Disrupted Time-Series

The production of “disrupted” time-series containing missing (disruptedM) or outlier (disruptedO)

samples, used for measuring the performance of different variations of the DisEn algorithms

is done through the following steps. For disruptedM time-series:

1. Extraction of ground truth DisEn values. Each original time-series containing N points

without missing samples is separated in non-overlapping windows of 360 samples

each. The selected window length is applicable for the analysis of both waveform

physiological time-series at a high temporal resolution [36, 98] such as the EEG and

RI time-series, and the analysis of derived physiological time-series, such as the RR,

which can have a lower sampling frequency and therefore require windows of small

sample length for effective temporal analysis [128]. It is important to note that the capa-

city to retrieve a viable output value from relatively small sample lengths is considered

one of the advantages of the original DisEn algorithm [36, 98] compared to algorithms

such as SampEn as discussed in Sections 2.3.3 and 2.4.3. The original algorithm DisEn

is used to calculate the ground truth DisEn value of each respective window.

2. Segmentation of time-series. Copies of the initial time-series are segmented in groups

of 1–5 samples, as defined by the grouping factor G. The G factor values used are 1,

2, 3, 4, and 5 samples.

3. Marking of missing samples. Based on the percentage factor P, a percentage of seg-

ments are uniformly drawn from each time-series and their samples are marked as

missing. The P factor values used in this study are 10%, 20%, 30%, 40%, and 50%.

4. Production of random variations. Finally, the above process is replicated 10 times for

each combination of P and G values producing different random variations for each

experimental setup.

5. Total number of disrupted time-series. As a result from each initial time-series, 5×5×
10 = 250 “disruptedM” versions are produced, and these are used to assess the per-

formance of the DisEn algorithm variations.
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The rationale of choice for the above setups of “disruption” is to acquire a clear perspective of

how increases in the number of missing samples affect the performance of DisEn algorithms

and whether that performance changes when these missing samples are distributed individu-

ally or clustered together in groups considering that both events are common in physiological

monitoring applications.

For the production of “disruptedO” time-series, an almost identical process is used. However,

in this case, the modified samples are not marked as missing; instead, their amplitude is

replaced with a value outside the physiological range of the original time-series. Similarly

to previous experiments, testing the robustness of ApEn and SampEn to outliers [61], the

amplitude of each outlier sample is obtained from a Gaussian distribution. For each physiolo-

gical time-series the outliers’ µ is defined as: outliermean =±4×max|amplitude| and σ as:

0.5×max|amplitude|. Half of the modified samples are given a positive value, and half of

them are given a negative value. For G factors higher than 1, all modified samples within a

group share the same sign and value. The choice of setting the µ of the distribution to be

the maximum absolute amplitude observed in the input time-series multiplied by a factor of

4 is made to ensure that outlier samples are outside the physiological range of the recorded

time-series, and at the same time simulate the limitation of the maximum amplitude of the

recording equipment. The value of σ for each time-series is chosen to allow outlier values

to vary, as it is expected, while at the same time not allow their range of values to spread

within physiological range. Similarly to time-series with missing samples for each original time-

series, 5×5×10 = 250 “disruptedO” versions are produced.

3.2.5 Performance Assessment

As mentioned in Section 3.2.4, the initial time-series is separated in windows and the ground

truth DisEn value, for each window, is computed and stored using the original DisEn algorithm.

The same process takes place for each disrupted time-series, and the absolute percentage

deviation is calculated using the ground truth DisEn value of a specific window versus the

equivalent DisEn value calculated from the “disrupted” version of the same window. This as-

sessment is applied to each physiological dataset separately. To summarise the performance

of the selected algorithm for a setup of P and G values, a single µ absolute percentage

deviation value is acquired and presented alongside its respective σ . This is achieved by

averaging across

1. the windows of each time-series,

2. the 10 different “disrupted” editions of each time-series, and

3. the total number of time-series that have been chosen from the respective dataset

records.
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Furthermore, in the case of the AltMetDisEn variation, if the variation is applied to the original

time-series, the calculated DisEn values will differ from those of the original DisEn algorithm.

This occurs because the changes implemented in the AltMetDisEn variation occur prior to

mapping the input time-series with a selected mapping function and therefore have an effect

even when no missing or outlier samples exist. To maintain consistency with the rest of the

performance measurements, the values of the original DisEn algorithm are used as ground

truth in the calculation of error percentages for the AltMetDisEn similarly to the rest of the

variations. To measure the error introduced by the AltMetDisEn variation when applied to

the original time-series, the AltMetDisEn variation is also applied to each of the original

time-series, and the mean absolute percentage deviation from the original DisEn values is

calculated and reported in the respective parts of Section 3.3 to compare it with the error

occurring due to missing or outlier samples. Finally, for all variations of DisEn tested, including

the original algorithm, the parameter values chosen are as follows:

• Embedding dimension: m = 2 samples.

• Number of classes: c = 6 classes.

• Mapping approach: logarithm sigmoid function.

• Time delay: 1 sample.

• Cutoff: 0.7 σ (used only by DynSkipDisEn).

The parameter values are selected after consulting the respective literature [35, 36] and

considering that each input window used in this study has a length of 360 samples [98].

3.2.6 Statistical Testing

The following statistical analysis is applied for the error percentage distributions produced by

DisEn variations during each experimental setup.

• Kolmogorov-Smirnov Test. Each separate distribution is standardised and compared to

a standard normal distribution using a Kolmogorov-Smirnov test.

• Mann-Whitney U Test. Based on the results of the Kolmogorov-Smirnov test, a Mann-

Whitney U test is chosen and applied to all distribution pairs produced within the same

experimental setup to test whether the distribution of error percentages produced by

one DisEn variation is significantly different from the distributions produced from the

other variations tested under the same experimental setup.
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3.3 Results

3.3.1 Summary of Statistical Testing Results

The results of the Kolomogorov-Smirnov test applied to all error percentage distributions

after they have been standarised indicate that all distributions reject the null hypothesis at

the 1% significance level. Therefore, their error percentages do not come from a Gaussian

distribution.

The Mann-Whitney U test, which was chosen after taking into consideration the non-Gaussian

nature of the distributions, indicates that out of the total 450 distribution pairs tested, 441 U

tests reject the null hypothesis with a strict threshold of a p-value lower than 10−3. Actually,

97% of p-values are lower than 10−7. The nine error percentage distribution pairs that do not

display statistically significant difference are signified in their respective sections that follow.

3.3.2 Experimental Setups for Time-Series with Missing Samples

The variations SkipDisEn, AltMetDisEn, and LinInterDisEn were tested on the three separate

physiological datasets of RR, EEG, and RI time-series that have been modified to contain

missing samples, as described in Section 3.2.4. Their performance was assessed under

25 different experimental configurations as defined by the percentage of missing samples,

P factor, and the grouping of missing samples, G factor. The original version of the DisEn

algorithm would return an invalid output if a single sample within the input time-series was

marked as missing, resulting in very low performance when dealing with time-series contain-

ing missing samples. Therefore, in this part of the analysis, only the performances of new

variations are presented and compared.

Performance for RR Time-Series with Missing Samples

As shown in Figure 3.6, SkipDisEn and AltMetDisEn display similar performance when ana-

lysing RR time-series. The µ percentage error for SkipDisEn is within the range of 0.98% and

4.70%, with minimum values at P = 10%, G = 5 and maximum values at P = 50%, G = 1,

respectively. The mean percentage error for AltMetDisEn is within the range of 2% and 4.12%

observed at P = 10%, G = 1 and P = 50%, G = 1, respectively. Furthermore, the mean

percentage deviation of the ground truth values for AltMetDisEn from the original ground truth

values is calculated at 2.41% with a σ of 1.23%.

LinInterDisEn displays a significantly higher average error rate within the range of 1.15% and

16.29% with minimum deviation at P = 10%, G = 1 increasing significantly especially in cases

of “clustered” missing samples (higher G-Factor values) to reach a maximum average error

rate of 16.29% observed at P = 50%, G = 5. The effect of “clustered” missing samples in the

performance of LinInterDisEn is expected due to the reduced accuracy of synthetic samples

produced using linear interpolation when a higher number of adjacent samples are missing.
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Figure 3.6: Performance of DisEn variations on RR time-series with missing samples. The
µ and σ of the percentage error are shown for each tested variation. The distribution pairs
of SkipDisEn and AltMetDisEn for: P = 40%, G = 4 ; P = 50%, G = 4 ; P = 40%, G = 5 ;
P = 50%, G = 5 do not display statistically significant differences based on the Mann-Whitney
U test.

Out of the 75 U test results retrieved in this group of experimental setups, 4 distribution

pairs do not display statistically significant difference. These consist of the error percentage

distributions acquired from the SkipDisEn and the AltMetDisEn variations for the experimental

setups of:

• P = 40%, G = 4 with a p-value of 0.19.

• P = 50%, G = 4 with a p-value of 0.03.

• P = 40%, G = 5 with a p-value of 0.01.

• P = 50%, G = 5 with a p-value of 0.19.

Performance for EEG Time-Series with Missing Samples

As shown in Figure 3.7, SkipDisEn and AltMetDisEn maintain similar levels of performance.

However, in this analysis, LinInterDisEn displays better performance for lower P and G factor

values. SkipDisEn’s error is within the range of 1.38% and 7.59% observed at P = 10%, G = 3

and P = 50%, G = 1 and similarly AltMeDisEn’s error is within the range of 2.28% and 7.39%

observed at P = 10%, G = 1 and P = 50%, G = 1, respectively. The mean absolute deviation

of ground truth values of AltMetDisEn from the original ground truth values is calculated at

2.42% with a σ of 0.60%.
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Figure 3.7: Performance of DisEn variations on EEG time-series with missing samples. µ

and σ of the percentage error are shown for each tested variation. The distribution pairs of
AltMetDisEn and LinInterDisEn for P = 50%, G = 2 and SkipDisEn and LintInterDisEn for
P = 10%, G = 5 do not display statistically significant difference based on the Mann-Whitney
U test.

LinInterDisEn achieves improved performance for lower values of P,G compared to SkipDisEn

and AltMetDisEn. Its error is within the range of 0.74% and 8.79% observed at P = 10%,

G = 1 and P = 50%, G = 5, respectively. With increases in the values of experimental factors,

particularly that of G, its initially superior performance eventually drops to lower than that of

the aforementioned variations in the analysis of EEG time-series.

From the 75 U tests retrieved from this experimental setup, only two do not display statist-

ical significance: the U test between the error percentage distributions of AltMetDisEn and

LinInterDisEn for P = 50%, G = 2 with a p-value of 0.59 and the U test between SkipDisEn

and LinInterDisEn distributions for P = 10%, G = 5 with a p-value of 0.01.
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Performance for RI Time-Series with Missing Samples

As shown in Figure 3.8, there is a significant performance difference between SkipDisEn

and AltMetDisEn. SkipDisEn has a mean percentage error in the range of 0.93% and 5.72%

for P = 10%, G = 1 and P = 50%, G = 5, respectively, while AltMetDisEn displays inferior

performance with a mean percentage error in the range of 3.64% and 8.14% for P = 10%,

G = 1 and P = 50%, G = 1. The mean absolute deviation between the ground truth values of

AltMetDisEn and the original ones is calculated at 3.03% with a σ of 1.47%. Both SkipDisEn

and AltMetDisEn variations continue to follow a pattern of low error percentages that increase

for higher P,G values across all tested physiological time-series.

In the analysis of RI time-series, LinInterDisEn significantly outperforms SkipDisEn and AltMetDisEn,

unlike in the case of RR and EEG time-series. Its mean percentage error is limited in the range

of 0.03% and 1.11% with minimum and maximum values observed at P = 10%, G = 1 and

P = 50%, G = 5, respectively. Unlike in the cases of SkipDisEn and AltMetDisEn, it can be

seen that the performance of LinInterDisEn changes based on the physiological time-series

analysed. All U test results in this group of experimental setups indicate statistical significance

between the distributions.

3.3.3 Experimental Setups for Time-Series with Outlier Samples

In contrast with the case of missing samples, the original version of the DisEn algorithm

returns a valid DisEn value when applied to a window containing multiple outlier samples.

Therefore, in this part of the study, the original version of the DisEn algorithm is used and

its performance results are reported providing a starting point for measuring the effects of

outliers on the calculation of DisEn values. The original DisEn algorithm and its AltMetDisEn

and DynSkipDisEn variations were tested on the RR, EEG, and RI datasets under the same

experimental configurations for factors P and G described in Section 3.3.2 and using the same

values for the DisEn parameters as defined in Section 3.2.5. In this experimental setup, the

analysed time-series have been modified to contain outlier samples outside the physiological

range of each time-series as described in Section 3.2.4.

Performance on RR Time-Series with Outlier Samples

Figure 3.9 shows that the original DisEn displays poor performance on the analysis of RR

time-series, especially for lower values of the P factor. Its mean absolute error is in the range of

24.35% and 72.58% for the configurations P = 50%, G = 1 and P = 10%, G = 5, respectively.

AltMetDisEn displays improved performance in the cases of low P values. However, for higher

P values, its performance is similar to that of the original DisEn. Its percentage error is

in the range of 22.64% and 55.78% observed at P = 50%, G = 1 and P = 30%, G = 5,

respectively. DynSkipDisEn achieves the best performance with an error percentage in the
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Figure 3.8: Performance of DisEn variations on RI time-series with missing samples. The µ

and σ of the percentage error are shown for each tested variation. All distribution pairs display
a statistically significant difference based on the Mann-Whitney U test.

range of 14.58% and 17.84% for P = 40%, G = 1 and P = 10%, G = 3. For the original DisEn

and the AltMetDisEn variation, a certain amount of performance improvement is noticed as

the percentage of outlier samples increases, which indicates that a deeper analysis on the

effect of outlier values on the performance of DisEn is required. This is discussed in Section

3.4.4 of the study.

The only distribution pair that does not display a statistically significant difference for this

group of experimental setups consists of the original DisEn and AltMetDisEn distributions for

P = 40% and G = 5 with a p-value of 0.20.

Performance for EEG Time-Series with Outlier Samples

In the case of EEG time-series, the performance of all variations seems to improve compared

to RR time-series. As shown in Figure 3.10, the original DisEn displays an error rate in the

range of 16.37% and 62.55% for P = 50%, G = 2 and P = 1, G = 5. AltMetDisEn achieves an

improved performance for lower P and G values with a percentage error rate in the range

of 14.11% and 40.47% for P = 30%, G = 1 and P = 10%, G = 5. Once more, the best

performance is achieved by DynSkipDisEn with a percentage error limited in the range of

8.34% and 11.89% for P = 40%, G = 1 and P = 10%, G = 5. All distribution pairs for this

group of experimental setups display a statistically significant difference.
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Figure 3.9: Performance of DisEn variations on RR time-series with outlier samples. The µ

and σ of the percentage error are shown for each tested variation. The distribution pair of the
original DisEn and AltMetDisEn distributions for P= 40%, G= 5 does not display a statistically
significant difference based on the Mann-Whitney U test.
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Figure 3.10: Performance of DisEn variations on EEG time-series with outlier samples. The µ

and σ of the percentage error are shown for each tested variation. All distribution pairs display
statistically significant difference based on the Mann-Whitney U test.
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Figure 3.11: Performance of DisEn variations on RI time-series with outlier samples. µ and
σ of the percentage error are shown for each tested variation. The distribution pairs of the
original DisEn and AtlMetDisEn for P = 50%, G = 5 and AltMetDisEn and DynSkipDisEn for
P = 50%, G = 5 do not display statistically significant differences based on the Mann-Whitney
U test.

Performance RI Time-Series with Outlier Samples

As shown in Figure 3.11, when applied to RI time-series, the original DisEn algorithm per-

centage error is in the range of 16.31% and 51.89% for P = 50%, G = 5 and P = 50%, G = 1.

The AltMetDisEn performance shows a percentage error range of 14.02% and 56.65% for

P = 20%, G = 2 and P = 50%, G = 1, respectively. DynSkipDisEn achieves a significantly

improved performance with a percentage error limited in the range of 3.70% and 7.65% for

P = 10%, G = 1 and P = 50, G = 5. For this group of experimental setups, two distribution

pairs do not display any statistically significant difference. These consist of the original DisEn

and the AltMetDisEn distributions for P= 50, G= 5 with a p-value of 0.01 and the AltMetDisEn

and DynSkipDisEn distributions for P = 50, G = 5 with a p-value of 0.01.

3.3.4 Computation Time

To ensure that the variations presented and tested in this study preserve the low computation

time of the original DisEn algorithm [36], their computation time was measured for the analysis

of time-series with a length of 360 and with 9000 samples on randomly selected time-series

segments from all three physiological datasets, and the results are presented in Tables 4.1

and 3.2, respectively. The computations are carried out using a PC with Intel(R) Core(TM)

i7-8750H CPU @ 2.2GHZ, 16 GB RAM running MATLAB R2018b. The computation time of



3.3. Results 45

Table 3.1: Computation time in milliseconds for the time-series segments of 360 samples.

RR EEG RI

DisEn 1.6 1.5 1.9
SkipDisEn 1.5 1.4 1.9

AltMetDisEn 1.7 1.8 1.9
LinInterDisEn 1.6 1.7 2
DynSkipDisEn 1.5 1.4 1.5

Table 3.2: Computation time in seconds for the time-series segments of 9,000 samples.

RR EEG RI

DisEn 2.1 2.3 2.3
SkipDisEn 2.4 2.5 2.2

AltMetDisEn 2.6 2.8 2.7
LinInterDisEn 3.1 3.3 3.2
DynSkipDisEn 2.5 2.5 2.6

the original DisEn algorithm is measured when applied to randomly selected segments of

the original time-series, SkipDisEn and LinInterDisEn are applied to disruptedM time-series,

while the AltMetDisEn and DynSkipDisEn are applied to disruptedO time-series. As the results

indicate, no significant difference in the computation time is noted across the algorithmic

variations apart from a small expected increase in the case of the LinInterDisEn variation

observed at the time-series segments with a length of 9000 samples due to the additional

linear interpolation mechanism introduced.

3.4 Discussion

As part of this study, novel variations of the DisEn algorithm are introduced to improve its

performance when applied to time-series with missing and outlier samples. Time-series from

three different physiological time-series— RR, EEG, and RI —are modified to produce multiple

variations of time-series containing missing samples (disruptedM) and time-series containing

outlier samples (disruptedO). Each produced variation of disruptedM and disruptedO time-

series corresponds to a different experimental setup in order to assess the performance of

algorithmic variations under different percentages of missing or outlier samples and under

different degrees of grouping of these samples. The results of the analysis indicate that, while

low-data quality, especially when it arises from artifactual outlier samples, can cause disrup-

tion in the entropy quantification mechanisms of the DisEn algorithm, significant improvements

in its performance can be achieved with corresponding modifications.
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3.4.1 Differences in the Effect of Missing versus Outlier Samples

An initial finding of the study concerns the effectiveness of DisEn when applied to disruptedM

time-series versus its limited performance during the analysis of disruptedO time-series. In

the case of disruptedM time-series, the SkipDisEn variation, which requires minimal modi-

fication of the initial DisEn algorithm, is capable of achieving a mean percentage error that

remains lower than 7.6% across all examined time-series, even when up to 50% of the

original samples are missing. Furthermore, the LinInterDisEn variation’s performance can

surpass that of SkipDisEn, as shown in the analysis of disruptedM RI time-series. However,

it is important to consider that LinInterDisEn’s performance is significantly affected by the

rapidity of amplitude fluctuations in the investigated time-series and should therefore only be

used when the respective information is available. For example as seen from the presented

results, while LinInterDisEn outperforms SkipDisEn for RI time-series, it underperforms in the

case of RR and EEG time-series which contain dynamics that are represented by more rapid

amplitude fluctuations and therefore the accuracy of the imputation is reduced.

On the other hand, from the disruptedO time-series results, it can be verified that, in the case

of DisEn, similarly to ApEn and SampEn [61, 129], outlier samples have a much more dis-

ruptive effect than missing samples. Taking into consideration the effectiveness of SkipDisEn

in acquiring viable DisEn values, it is recommended when possible to label outlier samples

as missing in order to achieve a performance close to that observed in the analysis of dis-

ruptedM time-series. However, when the removal of all outlier samples is not guaranteed, the

DynSkipDisEn variation is recommended. DynSkipDisEn is designed to tackle the disruption

of the class allocation process, through the removal of samples that deviate from the µ more

than a certain degree of σ , as defined by the additional cutoff parameter.

3.4.2 Factors Affecting the Performance of LinInterDisEn

As shown in Section 3.3.2, the performance of LinInterDisEn is primarily affected by two

factors: the clustering of missing samples on the analysed time-series, controlled by the G

factor of the defined experimental setups, and the rapidity of amplitude fluctuations in each

time-series analysed. The clustering of missing samples has an expected negative effect on

the performance of LinInterDisEn due to the reduced quality of synthetic samples produced

using linear interpolation when a larger amount of adjacent samples are missing.

Furthermore, the characteristics of the time-series analysed are expected to affect the per-

formance of the linear interpolation mechanism when considering that RR time-series contain

rapid amplitude fluctuations that are harder to estimate using linear interpolation [130–132].

RI time-series are dominated primarily by low-frequency components [133,134], leading to a
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larger number of linear time-series segments that can be more accurately estimated. Finally,

EEG time-series fall in between with a significant amount of high-frequency components [135],

leading to amplitude fluctuations that can challenge the LinInterDispEn algorithm, especially

in experimental setups with high P and G factor values.

3.4.3 Standard Deviations of Performance Measurements

The σ values recorded throughout the presented experimental setups signify fluctuations

in the performance of each tested variation on a window-by-window basis. This deviation

occurs primarily due to two factors, the first one being that the disrupted time-series were

formulated by introducing missing and outlier samples on the original time-series randomly,

at the entire length of the time-series in order to more realistically simulate the phenomenon

instead of equally distributing them across each window. Therefore, some windows would

have more missing or outlier samples than others, leading to inevitable fluctuations in the

tested performance.

However, the second factor that leads to increased σ values of the mean performance error

is the small sample length of the analysed windows. An important advantage of the original

DisEn algorithm is its capacity to acquire valuable insights, even when applied to time-series

windows with small sample lengths [36,98]; for that reason, it is chosen the performance of the

original DisEn algorithm and its variations using 360 samples per window, which is a consid-

erably smaller sample length than what was commonly used in similar studies concerning the

performance of ApEn and SampEn when applied to time-series containing missing and outlier

samples [56, 60, 61]. Considering the observed fluctuations in the algorithmic performance

recorded in the study, it is recommended that, for field applications where the DisEn value of

each window is considered individually, a larger sample length is used (if possible) when the

analysed time-series are expected to contain missing and outlier samples.

3.4.4 Effect of Outlier Sample Percentage across Physiological Time-Series

In order to acquire a better perspective on the effect of outlier samples in the performance

of DisEn variations across different physiological time-series, it is important to consider the

mechanism through which outlier samples disrupt the DisEn calculation process. As men-

tioned in Section 2.4.2, during the second operational step of DisEn, a number of classes

(c = 6 in these experiments) are allocated across the amplitude range of the mapped input

time-series. With the introduction of outlier samples, this range expands significantly, resulting

in fewer classes being allocated within the range of the original time-series. Instead, the

majority of classes are allocated in the extended amplitude range. As a result, amplitude

dynamics existing in the original time-series that would previously be represented using mul-
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tiple dispersion patterns are now classified under a single dispersion pattern category, leading

to a much lower output DisEn value. This phenomenon is shown in Figures A.1–A.6, where

examples of disrupted dispersion patterns for P = 10% , G = 1 are shown in green, and those

for P = 50% , G = 1 are shown in red.

For high percentages of outlier samples, new dispersion patterns arise, and these do not

represent physiological dynamics that occur within the original samples of the time-series but

instead represent the amplitude dynamics that occur between original and outlier samples.

This can lead to an increase in the irregularity of the input time-series and therefore to an

increase in the calculated DisEn value for disruptedO time-series with high P factor values.

This is an important phenomenon to consider during the analysis of the performance of DisEn

variations when tested on disruptedO time-series.

It is observed that, in the case of RR and EEG disruptedO time-series, with the effect being

more prevalent in the case of RR, the performance of the original DisEn and the AltMetDisEn

is actually increasing as the percentage of outlier samples increases, which at first can seem

counterintuitive. However, in the case of RI time-series, the performance of DisEn variations

does not follow a clear pattern. Taking into consideration the existence of rapid amplitude

fluctuations in RR and EEG time-series, as opposed to the RI time-series, which contain

primarily gradual changes in amplitude, as discussed in Section 3.4.2, the number of unique

dispersion patterns used to describe each window of the original time-series is expected to be

higher for RR followed by EEG and then by RI time-series. Therefore, their respective DisEn

values are expected to follow a similar pattern.

As mentioned previously for small values of the P factor, the mean DisEn value drops signific-

antly in all three cases due to the time-series apparently becoming more regular as shown in

green in Figures A.1–A.6. As the outlier percentage increases, more dispersion patterns are

introduced, as shown in red in Figures A.1–A.6, in order to describe the now multiple amplitude

fluctuations that occur between normal and outlier samples. Consequently, the DisEn values

of all three time-series increase for higher P factor values. In the cases of RR and EEG time-

series, the increase in DisEn values that occurs brings them closer to their respective ground

truth values, resulting in the performance “increase” observed in Sections 3.3.3 and 3.3.3.

Therefore, this increase in performance is not achieved due to an internal mechanism of the

algorithm but rather from the acquisition of DisEn values closer to the ground truth arising

from amplitude fluctuations occurring between outlier and normal samples.

In the case of the original RI time-series, their corresponding DisEn are lower values com-

pared to those for RR and EEG time-series. Therefore, increases in DisEn values for dis-

ruptedO time-series occurring from the aforementioned phenomenon do not necessarily bring

the calculated DisEn values closer to the ground truth; therefore, algorithmic performance

does not follow a pattern similar to that of RR and EEG disruptedO time-series.



3.4. Discussion 49

Finally, in the case of DynSkipDisEn, the calculation of DisEn is not affected significantly by

dispersion patterns arising from the interaction between original and outlier samples due to

the significant amount of outlier samples that are removed.

3.4.5 Setting the Cutoff Parameter of DynSkipDisEn

When setting the value of the cutoff parameter for the DynSkipDisEn variation, it is important

to balance two opposing sources of error. A high cutoff value, e.g., close to 2 σ from the µ , can

allow an extensive amount of outliers within the range of samples analysed by the algorithm,

leading to a significant reduction in its performance. On the other hand, a strict low cutoff

value can lead to the false positive removal of valid samples. Considering the more disruptive

nature of outliers as opposed to that of missing valid samples, a more conservative approach

towards choosing lower values for the cutoff parameter is recommended when considering

multiple options. Therefore, when setting the value of the cutoff, the quality of the data to be

analysed should be taken into consideration when corresponding information is available.

Within the scope of this study, the cutoff parameter is set to the strict value of 0.7 σ from the

µ due to the high percentage of outlier samples introduced in the majority of the experimental

setups. Furthermore, due to the range of values that outliers can cover, those with values

further from the physiological range increase the calculated σ of the input window, while those

with values closer to physiological range have a higher probability of passing through the

cutoff threshold, making a strict cutoff value a necessity. As shown in Figures A.7–A.15, when

comparing the capacity of DynSkipDisEn with a cutoff of 0.7 versus a cutoff of 1 to reconstruct

the class allocation pattern of the original time-series from its disruptedO versions, having a

strict cutoff value of 0.7 leads to significantly improved performance, especially in the cases

of higher outlier percentages where a cutoff of 1 leads to highly disrupted class allocation

patterns. However, for applications where DynSkipDisEn is combined with preprocessing for

the removal of outlier samples, a higher cutoff between 1 and 2 is recommended, since in that

case the percentage of remaining outliers in the time-series should be significantly lower, and

a higher cutoff value would therefore provide improved performance.

It is important to highlight that while the value of 0.7 σ was selected for this study, the

calibration of the cutoff parameter through any form of iterative fine tuning, would require

the appropriate separation of the available data into training, validation and testing sets to

avoid overfitting. Consequently, an iterative derivation of the cutoff parameter would have to

utilize appropriate output labels for supervised training which might not be available in certain

applications.
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3.4.6 Limitations of Current Study and Future Work

As indicated by the results of this study, the rapidity of amplitude of the investigated physiolo-

gical time-series have a direct effect on the performance of DisEn and its variations. Therefore,

while the physiological time-series used in the study— RR, EEG and RI —are commonly used

for health monitoring applications, the study can be expanded to verify the observations in

additional physiological time-series such as EMG, blood pressure, and potentially intracranial

pressure signals. Therefore, it is suggested that similar experimental setups are used to as-

sess the performance of DisEn variations prior to their deployment in respective applications.

Furthermore, the DisEn algorithm can be implemented using a wide variety of mapping func-

tions. Within the scope of this study, the logarithm sigmoid function is used due to its success-

ful implementation in previous studies of physiological time-serie analysis [36, 98]. However,

as mentioned in Section 3.4.4, outlier samples tend to disrupt the process of class allocation,

which follows the mapping of the original time-series with the chosen mapping function. It

would therefore be valuable to expand the study on measuring the robustness of different map-

ping functions to outliers such as the normal cumulative distribution function. Consequently,

when optimising a DisEn variation for a specified implementation, the mapping function should

be chosen by considering both the characteristics of the input time-series and the mapping

function’s robustness to outlier samples.

Furthermore, while DynSkipDisEn is a promising variation trying to automatically remove

outlier samples, there are two points that should be taken into consideration. The first one

is that, even if the samples of the original time-series follow a Gaussian distribution, the

existence of outliers will change the distribution in a non-Gaussian form, this should be taken

into consideration, since it will affect the calculated µ and σ based on which the DynSkipDisEn

filters the samples of the input window. Finally, as suggested in Section 3.4.5, the correct

choice of value for the cutoff parameter should consider the amount of outliers located in the

analysed time-series. This information might not be available in certain applications. When

this is the case, the choice of a relatively low cutoff value is recommended, considering the

more disruptive nature of outliers when compared to missing samples.

3.5 Conclusion of the Chapter

This study investigates the effect of missing and outlier samples in the operation of DisEn

and presents algorithmic variations to minimise their effect and improve its performance. The

results indicate that the effect of missing samples can be effectively reduced with the addition

of a skipping step in the operations of DisEn, while linear interpolation can further improve its

performance when operating on time-series containing primarily low-frequency components.

Outlier samples affect to a larger extent the performance of DisEn by disrupting the amplitude
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range during the class allocation step of the algorithm. A significant mitigation of the disruptive

effect of outliers is achieved with the introduction of a cutoff parameter in the DynSkipDisEn

variation. The presented DisEn variations operate using information only from within the time-

series segment that is used as input at a time to allow for a real-time entropy quantification

process. However, upon availability, information concerning a time-series’ dominant frequency

components and estimations of missing and outlier samples’ percentages can aid in the

selection of the appropriate DisEn variation and the optimisation of its parameter values. The

insights and algorithmic variations presented in this study could aid the implementation of

DisEn in physiological monitoring applications.



Chapter 4

Multivariate Dispersion Entropy

Analysis for the Assessment of

Outliers and Detection of Artifactual

Network Segments

Note: This Chapter’s contributions have been published in Entropy, 2021 [41].

4.1 Introduction

This Chapter presents a set of experiments that study the challenges posed by artifactual

outliers during multivariate entropy quantification. As mentioned in Chapter 2, multiple mul-

tivariate entropy quantification algorithms have been developed to measure the dynamics de-

veloped across different recorded variables. Examples include multivariate versions of SampEn

[69], FuzzyEn [136, 137], PEn [76], and DisEn [39]. Furthermore, the application of such

algorithms for the extraction of multivariate entropy-based features can be utilized within

the scope of Network Physiology [18, 105] to produce a network-based representation of the

system’s state [114,115].

However, for the accurate detection of topological transitions occurring within the network and

their correct association with transitions in the state of the monitored system, it is crucial to

ensure that the features extracted with these kind of algorithms are accurately measuring

the dynamics of the recorded variables as opposed to quantifying disruptions that arise from

artifactual samples [62, 63, 138, 139]. Currently, there is a lack of studies testing the disrupt-

ive capacity of artifactual outliers in the performance of multivariate entropy quantification

algorithms. Therefore, the motivation behind the work of this Chapter is to extend the study

presented in Chapter 3 from univariate to multivariate analysis, to assess differences and

similarities with regards to the disruptive capacity of artifacts in the performance of DisEn.

52
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The design of the experiments in this Chapter were based on the insights provided by the

experiments of Chapter 3. Based on those results, it was noted that while the effects of missing

samples can be minimised significantly, outlier samples can have a disruptive impact in the

output values of DisEn features in alignment with prior research conducted for ApEn and

SampEn [61]. Consequently, the work in this Chapter was conducted with the following aims

in mind. To study the effect of artifactual outliers on multivariate DisEn features and compare

it to the effect observed on univariate features; and to utilize the sensitivity of univariate

and multivariate DisEn features to artifactual outliers for the detection of artifactual network

segments. The approach taken with regards to the utilization of the DisEn algorithms in this

Chapter is the reverse to that followed in Chapter 3. In Chapter 3 the challenge of low data

quality was approached through the modification of the univariate DisEn algorithm to improve

its robustness to artifactual samples. In this Chapter, the algorithm is used as a sensor [140],

using the sensitivity of its features to outliers as an advantage to classify between viable and

artifactual network segments.

For this purpose, network segments are formulated from multi-channel time-series. Within the

context of Network Physiology each channel would correspond to a node of the network rep-

resenting the monitored system and each network segment to a temporal slice of the system.

Each channel consists of one of the following physiological signals: EEG, nasal RESP, arterial

BP, and ECG. Artifactual outliers are simulated with one channel being “disrupted” at a time to

allow for the study of differences in the effect of outliers based on the morphology of the signal

corresponding to the channel. Multiple experiments are conducted with varying percentages

of outlier samples.

The values of features extracted from network segments containing artifactual outliers are

compared with the respective values of features extracted from the original network segments

to quantify the disruptive capacity of the outliers. Finally, the logistic regression classifier is

tested in two configurations—a univariate, and a network-based multivariate configuration.

The two configurations are deployed to allow for comparisons between the two approaches

and identify benefits, as well as potential challenges when moving from univariate to multivari-

ate analysis for the classification of network segments.

Consequently, the contributions of the work presented in this Chapter are:

• The quantification of the effect of artifactual outliers in the accuracy of both univariate

and multivariate DisEn feature values extracted from the physiological network seg-

ments formulated form multi-channel time-series.

• The assessment of whether a simple logistic regression classifier could be effectively

trained on distributions of features extracted from “normal” and “artifactual” network

segments to differentiate between the two.
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4.2 Methods

4.2.1 Stages of the Study

The research presented in this manuscript is conducted in the following stages:

• Network Formulation and Feature Extraction: The available multi-channel time-series

recordings are segmented in multivariate network segments. For each normal network

segment, 16 different variants of artifactual network segments are produced, one for

each experimental setup of interest, as described in Section 4.2.4. From each segment,

a total of 15 univariate and multivariate features are extracted.

• Statistical Analysis: Conducted separately in each experimental setup, statistical ana-

lysis is applied to each extracted feature at the level of: separate feature distribu-

tions, pairs of feature distributions, and individual feature values, as described in Sec-

tion 4.2.5.

• Artifactual Network Segment Detection: A univariate and multivariate network-based

logistic regression classifier is trained and tested in each experimental setup to assess

the capacity of both configurations in detecting artifactual network segments when

outliers are present in different channels and at varying percentages of occurrence.

4.2.2 Experimental Data and Preprocessing

For the formulation of a network based on multi-channel time-series, the publicly available MIT-

BIH Polysomnographic Database is chosen, which contains a total of 18 records of synchron-

ised physiological signals initially recorded for the evaluation of chronic Obstructive Sleep

Apnea (OSA) syndrome and digitized at a sampling interval of 250 Hz [125,141]. For the

purposes of this study, 11 records are selected based on the availability of complete and

synchronised recordings of EEG, RESP, BP, and ECG signals. Within the utilized records

there were occurrences of both healthy sleep and pathological sleep phenomena such as

OSA. The inclusion of data corresponding to both healthy and pathological states is done to

ensure that the comparison is made between all forms of valid data versus artifactual ones.

Furthermore, the utilization of the ECG signal for the formulation of one of the channels,

as opposed to the use of RR series utilized in Chapter 3, was made to ensure that all four

channels of the time-series contained samples synchronized to the same sampling interval of

250 Hz.

Each multi-channel recording is segmented in non-overlapping windows of 7500 samples (30

seconds), resulting in a total of 1463 multi-channel network segments, 133 per record. The

length of the window is chosen, after consulting the respective literature [36, 39] to ensure

that it is long enough as to allow a sufficient amount of samples for the effective calculation of

the output DisEn values, while at the same time being short enough to provide an adequate

temporal resolution for effective monitoring of the system.
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Within the framework of Network Physiology, the recordings are analyzed in sets of 1463

multi-channel “network segments” consisting of windows of four synchronised channels, one

from each physiological signal, following the process described in Section 4.2.3. No further

preprocessing is applied to the the time-series prior to the application of the respective DisEn

algorithms.

4.2.3 Extraction of DisEn Features

For each normal network segment, a total of 15 features are extracted, four of which are

univariate, one from each channel, and 11 of which are multivariate.

In contrast to the Network Physiology framework, the features extracted in this study are

not associated with an edge in a graph architecture. This is done to avoid the limitation of

the original graph architecture to only consider bivariate interactions between the nodes of

the network [18, 105]. Instead one feature is extracted by including all available nodes in

the accessed network of EEG-RESP-ECG-BP channels and to retrieve the other 10 pos-

sible multivariate features, the following subnetwork combinations are utilized: EEG-RESP,

EEG-BP, EEG-ECG, RESP-BP, RESP-ECG, BP-ECG, EEG-BP-ECG, RESP-BP-ECG, EEG-

RESP-BP, EEG-RESP-ECG.

In the case of univariate features, for each channel, its respective 7500 sample window is fed

as input to the univariate DisEn algorithm [35,36]. For each multivariate feature, the respective

combination of synchronised 7500 sample windows is fed as input to the multivariate DisEn

algorithm for its calculation [39].

Table 4.1 displays the parameter values which are the same for univariate and multivariate

DisEn. The values were selected after consulting the performance benchmarks provided in

the respective studies [36,39] and considering the empirical rules discussed in Section 2.4.3.

Taking into consideration the number of 7500 samples contained within each window the

number of classes (c) was set to 9 to allow for an effective quantization of the amplitude range

present in each window. With the value of c defined and based on the recommendation for

univariate DisEn [36] that cm+1 < 7500 the value of the embedding dimension (m) was set to 3.

Finally, the time-delay (d) was set to 1 to ensure that no samples are skipped in the formulation

of embedded vectors. As a preprocessing step, each individual time-series is mapped using

the Normal Cumulative Distribution Function (NCDF).
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Table 4.1: Parameter values for univariate and multivariate DisEn.

Parameter Symbol Value

Embedding Dimension m 3
Number of Classes c 9

Time Delay d 1

4.2.4 Production of Artifactual Network Segments

Within the scope of this study, artifactual outlier samples are simulated across all four channels

of – EEG, RESP, BP, and ECG – with one channel being “disrupted” at a time. Furthermore,

the percentage of samples being outliers is determined by the percentage factor P whose

value varies across experimental setups in the levels of 0.1%, 0.5%, 1%, and 5%. As a

result, a total of 16 experimental setups are formulated, containing the 1463 normal network

segments and a corresponding variation of 1463 artifactual network segments.

The process through which the 1463 artifactual network segments of each experimental setup

are produced is the following:

1. Marking of Outlier Samples: Based on the percentage factor P, a percentage of samples

are uniformly drawn from each 7500-sample window, and their amplitude is replaced

with a value in the outlier amplitude range.

2. Setting the Value of Outlier Samples: The amplitude of each outlier is obtained from

a Gaussian distribution with a standard deviation (σ ) equal to the absolute maximum

amplitude of each channel: σ = max|amplitude|. Concerning the distribution mean (µ),

there are two choices to be considered. The first choice, which is in alignment with the

simulation processes followed by previous studies testing the effect of outlier samples

in the performance of ApEn, SampEn, and univariate DisEn [40, 61, 129], would be to

ensure that outlier values are outside the physiological range of each recorded signal

while maintaining the amplitude boundaries of respective sensing equipment, leading

to a distribution µ equal to outliermean = ±4×max|amplitude|. The second choice

would be to set a lower distribution µ to ensure that a minority of outliers remain

within physiological range to also cover certain scenarios where sensor miscalibration

and recording interferences could produce outliers of the respective magnitude, and for

that purpose, a µ equal to outliermean = ±2×max|amplitude| is chosen. In order to

provide results that are comparable to previous studies while at the same time covering

all possible scenarios, each experimental setup is replicated for both outlier µ with the

results of the second case, outliermean = ±2×max|amplitude|, presented first and

discussed in more detail since it covers a wider range of scenarios. In all experimental

setups, the sign of half the outliers is set to positive and the other half to negative,

following random assignment.
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3. Calculation of Artifactual DisEn Features: For each experimental setup, the correspond-

ing 1463 artifactual network segments are used to calculate the respective univariate

and multivariate artifactual DisEn Features based on the same process that was fol-

lowed for the normal network segments in Section 4.2.3.

4.2.5 Statistical Analysis

To quantify the disruptive capacity of outlier samples in the accuracy of extracted network

features, the following three-stage statistical analysis is applied.

1. Kolmogorov–Smirnov Test: Initially, each feature distribution is standardised and com-

pared to a standard normal distribution using the Kolmogorov–Smirnov Test.

2. Mann–Whitney U Test: At the second stage, and after consulting the results of the

Kolmogorov–Smirnov test, the Mann–Whitney U test is chosen to compare each feature

distribution extracted from artifactual network segments with its corresponding feature

distribution extracted from the respective normal network segments, to verify statistic-

ally significant differences between the distributions of each pair.

3. Mean Percentage Difference: Finally, for each DisEn feature extracted from an artifac-

tual network segment, the absolute percentage difference from its original value, the

one calculated from the respective network segment without outliers, is calculated. To

provide a summary for every feature extracted during each experimental setup, its mean

percentage difference (MPD) and σ of the percentage difference are calculated.

4.2.6 Artifactual Network Segment Detection

For the detection of artifactual network segments, a logistic regression classifier is applied

in two configurations, a univariate and a multivariate one. The univariate configuration is

utilising, from each network segment, only the four DisEn features that are extracted using the

respective channel as separate input to the univariate DisEn algorithm, while the multivariate

configuration utilises all the available 15 features of each network segment. The choice to

implement two separate algorithmic configurations is made with the following aims in mind:

• To derive insights concerning the potential benefits but also challenges that arise when

moving from univariate to multivariate analysis for network segment classification.

• To identify differences in classification performance, for both configurations, based on

the channel containing outlier samples in each experimental setup.
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For this purpose, both algorithmic configurations were tested under the same 16 experimental

setups. Each setup contains features extracted from a total of 2926 segments, out of which

1463 are the original network segments, and the other 1463 are their artifactual variations,

as determined by the parameters of the experiment. As mentioned in Section 4.2.2, the 1463

network segments correspond to 11 records, or 133 segments per record. The segments

selected for training and testing during each experimental setup are selected in the following

two data splits.

The first data split is done at the record level, with the first nine records used for training and

the last two for testing purposes. This is done to ensure that the training of the classifier is

done on different patients than the ones it is tested on, and therefore, its recorded performance

is patient-agnostic. This leads to the feature sets of a total of 2394 segments (1197 normal

vs. 1197 artifactual ones) being used for training, and a total of 532 feature sets (266 normal

vs. 266 artifactual ones) being used for testing.

At this point, a second data split is introduced in the training set. It is important to consider

that in a field application, the classifier would never have access to the exact same network

segments in both normal and artifactual variations. For this reason, only half, or 1197 training

sets are used, the first 599 of which correspond to feature sets of a normal network segment,

while the other 598 correspond to different artifactual ones. As a result, for each experimental

setup, both classifier configurations are trained on 1197 distinct training feature sets and

tested on 532 testing feature sets.

Finally, the performance of each configuration for a certain experimental setup is calculated

as the percentage of correct network segment classifications observed for each configuration

when applied to the respective testing dataset.

4.3 Results

4.3.1 Kolmogorov–Smirnov and Mann–Whitney U Test Results

With 16 experimental setups and 15 features extracted from the network segments of each

setup, a total of 240 feature distributions are produced corresponding to artifactual network

segments, alongside 15 feature distributions corresponding to normal network segments.

For the outliers with a µ of: outliermean = ±2×max|amplitude|, 211 out of the total 255

distributions displayed a statistically significant difference from a normal distribution after

being standarised, rejecting the null hypothesis with p-value < 0.05. For outliers with a µ

of outliermean = ±4 × max|amplitude|, 212 out of the 255 distributions rejected the null
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hypothesis at p-value < 0.05. Taking into consideration the non-Gaussian nature of most

feature distributions, the Mann–Whitney U test is selected to compare in pairs, the feature

distributions extracted from artifactual network segments with the feature distributions extrac-

ted from the corresponding normal network segments.

Since in each experimental setup, only one of the channels contains outliers, out of the 15

total features extracted per network segment, only eight of these features were extracted from

channel combinations that include the “artifactual” channel. As a result, it is expected that in

each experimental setup these eight feature distributions will display a statistically significant

difference when compared to the distributions of features extracted from the respective normal

segments. No significant difference is expected for the seven feature distributions that do not

include the "artifactual" channel.

As expected, for both categories of outlier distributions with different µ magnitude, and for

all experimental setups, all feature distributions extracted from a combination of channels

containing outliers have a statistically significant difference to the original feature distributions,

rejecting the null hypothesis with p values < 10−12. No statistical difference is observed

between pairs corresponding to channel combinations that did not include artifactual outliers.

4.3.2 Disruption of DisEn values across Experimental Setups

The experimental setups presented in this study contain networks within which one channel

contains artifactual outliers. As a result, while network features that are not extracted from

network segments containing outliers remain unaffected, the values of rest of the features dis-

play significant MPD, as highlighted by the following results. The Sections 4.3.2–4.3.2 present

the results for outliers with both outliermean = ±2 × max|amplitude| and outliermean =

±4×max|amplitude|. The results from the first outlier configuration are discussed in detail

while second configuration tends to follow similar patterns, but with increase in the overall

values of MPD, which is expected considering the increased deviation of the mean outlier

amplitude from the physiological amplitude range.

Setups with EEG Outliers

The MPD values for setups with EEG outliers are shown in Figure 4.1. For the univariate

feature, the MPD ranges from a minimum value of 17.9% with a σ of 15.8% observed at a

P factor of 0.1%, to a maximum value of 60.6% with a σ of 20% observed at a P factor of

5%. Bivariate features display a maximum MPD of 31.5% and a σ of 11.8% observed for the

feature extracted from synchronised segments of the EEG and RESP channels at a P factor

of 5%, while for the rest of the features, the MPD values do not surpass 16.6%. It is important

to note the continuous decrease of MPD observed as the number of channels forming the

network segments from which a feature is extracted, increases.
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Figure 4.1: The µ and σ of the percentage difference are shown for each artifactual feature
distribution across experimental setups where the EEG channel of the network contains a
percentage of outliers determined by the corresponding P-factor. These results correspond to
experimental setups with outliermean =±2×max|amplitude|.
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Figure 4.2: The µ and σ of the percentage difference are shown for each artifactual feature
distribution across experimental setups where the EEG channel of the network contains a
percentage of outliers determined by the corresponding P-Factor. These results correspond
to experimental setups with outliermean =±4×max|amplitude|.
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Setups with RESP Outliers

For setups with RESP outliers, a noteworthy change is observed in the results shown in

Figure 4.3. Significant but substantially smaller MPD values are observed for the univariate

feature when compared to the EEG outlier setups, with a minimum MPD of 5% and a σ of

7.5% observed for a P factor 0.1% and a maximum MPD of 20.5% and a σ of 14.2% observed

for a P factor of 5%. The bivariate features follow closely with a maximum MPD of 14.7% and

a σ of 8.2% observed for the feature extracted from synchronised segments of the RESP and

ECG channels, at a P factor of 5%, while the MPD values for the rest of the features do not

surpass 7.6%.
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Figure 4.3: The µ and σ of the percentage difference are shown for each artifactual feature
distribution across experimental setups where the RESP channel of the network contains a
percentage of outliers determined by the corresponding P-factor. These results correspond to
experimental setups with outliermean =±2×max|amplitude|.
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Figure 4.4: The µ and σ of the percentage difference are shown for each artifactual feature
distribution across experimental setups where the RESP channel of the network contains a
percentage of outliers determined by the corresponding P-Factor. These results correspond
to experimental setups with outliermean =±4×max|amplitude|.

Setups with BP Outliers

The MPD values for experimental setups with BP outliers are shown in Figure 4.5 and seem to

follow a similar pattern to the one observed for the EEG and RESP setups. The BP univariate

feature displays significant value disruption with a minimum MPD of 11.3% and a σ of 4.6%

for a P factor of 0.1% increasing to a MPD of 48.2% with a σ of 6.4% for a P factor of 5%. For

bivariate features, a maximum MPD of 24.9% and a σ of 3.6% are observed for the feature

extracted from synchronised segments of the BP and RESP channels at a P factor of 5%,

while the rest of the features follow with MPD values that do not exceed 13.1%.
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Figure 4.5: The µ and σ of the percentage difference are shown for each artifactual feature
distribution across experimental setups, where the BP channel of the network contains a
percentage of outliers determined by the corresponding P-factor.These results correspond to
experimental setups with outliermean =±2×max|amplitude|.
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Figure 4.6: The µ and σ of the percentage difference are shown for each artifactual feature
distribution across experimental setups where the BP channel of the network contains a
percentage of outliers determined by the corresponding P-Factor. These results correspond
to experimental setups with outliermean =±4×max|amplitude|.
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Setups with ECG Outliers

Finally, the MPD values for experimental setups with outlier samples contained in the ECG

channel are shown in Figure 4.7 following the same pattern. The univariate feature extracted

from the ECG channel contains the highest MPD range with a minimum value of 23.2% and

a σ of 11.7% for a P factor of 0.1%, increasing to 60.1% with a σ of 9.1% for a P factor of

5%. Bivariate features follow with a significant reduction in disruption. Their maximum MPD

is observed in the case of the feature extracted from synchronised segments of the ECG

and RESP channels with value of 29% and a σ of 7.1% observed at a P factor of 5%. The

rest of the features follow with MPD values that are lower than 14.2% across all respective

setups. Finally, of particular interest is the profile followed from the univariate ECG feature for

experiments with outliermean = ±4×max|amplitude|. Moving from a P factor value of 1%

to 5% shows a decline in the MPD value. This pattern is similar to the results reported in

Sections 3.3.3 and 3.3.3 and discussed in 3.4.4 with regards to dispersion patterns that are

mapped to fluctuations arising between outlier and normal samples.
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Figure 4.7: The µ and σ of the percentage difference are shown for each artifactual feature
distribution across experimental setups where the ECG channel of the network contains a
percentage of outliers determined by the corresponding P-factor. These results correspond to
experimental setups with outliermean =±2×max|amplitude|.
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Figure 4.8: The µ and σ of the percentage difference are shown for each artifactual feature
distribution across experimental setups where the ECG channel of the network contains a
percentage of outliers determined by the corresponding P-Factor. These results correspond
to experimental setups with outliermean =±4×max|amplitude|.

4.3.3 Network Segment Classification Results

As indicated by the MPD results, outliers have a significant effect in the values of the extracted

features, with the univariate feature having the largest deviations from the original values. It

would therefore be important to verify whether these deviations can be used to detect artifac-

tual network segments, in the case of the univariate classifier, and whether the inclusion of

multivariate features improves performance or introduces disruptive noise. The performances

of both the univariate and multivariate classifiers are reported for the respective experimental

setups which are grouped together based on the channel of the network containing outliers,

following the same format as Section 4.3.2 with the results for outliers with outliermean =

±2×max|amplitude| discussed in detail. The results for outliermean =±4×max|amplitude|
indicate that the increased amplitude difference leads to increased percentages of correct

classification across all experimental setups.

Classification Performance with EEG Outliers

In the case of EEG outliers, a pattern of performance improvement is observed when moving

from univariate to multivariate classification, as shown in Table 4.2. Initially, the multivariate

classifier significantly outperforms the univariate one with correct classification percentages of

88.7% compared to the univariate 70.3% for a P factor 0.1% and of 97.2% compared to 88.5%

for a P factor of 0.5%. Eventually, the univariate and multivariate classifiers reach equivalent

performance levels for P factors of 1% and 5%.
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Table 4.2: Percentage of correct network segment classifications for univariate and multivari-
ate classifiers when tested on experimental setups, with outliers located in the EEG channel
of the network outliermean =±2×max|amplitude|.

EEG

P-factor Univariate Multivariate

0.1% 70.3% 88.7%
0.5% 88.5% 97.2%
1% 97.7% 98.5%
5% 99.1% 99.1%

Table 4.3: Percentage of correct network segment classifications for univariate and multivari-
ate classifiers when tested on experimental setups, with outliers located in the EEG channel
of the network and outliermean =±4×max|amplitude|.

EEG

P-factor Univariate Multivariate

0.1% 84.2% 96.6%
0.5% 98.9% 99.2%
1% 99.2% 98.9%
5% 99.6% 99.6%

Classification Performance with RESP Outliers

For experimental setups with RESP outliers, limited effectiveness is initially observed for both

classifiers, while a significant classification improvement (20% increase) is achieved when

moving from the univariate to the multivariate model for a P factor of 5%. As shown in

Table 4.4, both classifiers display performance that does not surpass a percentage of correct

classifications of 56% for a P factor of 0.1%. However, for the P factor of 5%, the multivariate

model achieves a percentage of 96.2% of correct classifications, significantly outperforming

the univariate one with a respective percentage of 76.5%.

Table 4.4: Percentage of correct network segment classifications for univariate and multivari-
ate classifiers when tested on experimental setups with outliers located in the RESP channel
of the network and outliermean =±2×max|amplitude|.

RESP

P-factor Univariate Multivariate

0.1% 55.8% 55.6%
0.5% 64.1% 67.5%
1% 72.6% 71.2%
5% 76.5% 96.2%
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Table 4.5: Percentage of correct network segment classifications for univariate and multivari-
ate classifiers when tested on experimental setups with outliers located in the RESP channel
of the network and outliermean =±4×max|amplitude|.

RESP

P-factor Univariate Multivariate

0.1% 63.7% 67.1%
0.5% 83.8% 76.3%
1% 89.1% 78.8%
5% 90.8% 95.1%

Table 4.6: Percentage of correct network segment classifications for univariate and multivari-
ate classifiers when tested on experimental setups with outliers located in the BP channel of
the network and outliermean =±2×max|amplitude|..

BP

P-factor Univariate Multivariate

0.1% 94% 99.1%
0.5% 100% 99.6%
1% 99.4% 100%
5% 100% 100%

Classification Performance with BP Outliers

For experimental setups with BP outliers, both univariate and multivariate classifiers achieve

similar and effective performance as displayed in Table 4.6. The correct classification per-

centages are in the range of 94% to 100% for the univariate classifier and above 99% for

the multivariate one. In this case, artifactual segments are detected even in significantly low

percentages of outliers, indicating that the channel in which the outliers are located plays an

important role in the correct classification of the corresponding network segments.

Table 4.7: Percentage of correct network segment classifications for univariate and multivari-
ate classifiers when tested on experimental setups with outliers located in the BP channel of
the network and outliermean =±4×max|amplitude|.

BP

P-factor Univariate Multivariate

0.1% 99.4% 99.4%
0.5% 100% 100%
1% 100% 100%
5% 100% 100%
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Table 4.8: Percentage of correct network segment classifications for univariate and multivari-
ate classifiers when tested on experimental setups with outliers located in the ECG channel
of the network and outliermean =±2×max|amplitude|.

ECG

P-factor Univariate Multivariate

0.1% 61.8% 68.6%
0.5% 94.9% 74.4%
1% 97% 80.8%
5% 100% 95.7%

Table 4.9: Percentage of correct network segment classifications for univariate and multivari-
ate classifiers when tested on experimental setups with outliers located in the ECG channel
of the network and outliermean =±4×max|amplitude|.

ECG

P-factor Univariate Multivariate

0.1% 95.5% 73.1%
0.5% 100% 91%
1% 100% 97.2%
5% 99.8% 100%

Classification Performance with ECG Outliers

Finally, in the case of ECG outliers, a different pattern is observed when moving from a univari-

ate to a multivariate classifier. As shown in Table 4.8, for a P factor of 0.1%, a performance

boost is noted from 61.8% of correct classifications for the univariate classifier, increasing

to 68.6% for the multivariate one. However, for larger P factors, the univariate classifier is

constantly outperforming the multivariate one with substantial effectiveness, considering the

correct classification percentage range of 94.9% to 100% as opposed to the multivariate

performance range of 74.4% to 95.7%. This indicates that after a certain threshold of outliers

in the network, the univariate classifier is effective, while the addition of multivariate features

adds noise that substantially reduces the corresponding performance of the multivariate one.
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4.4 Discussion

As part of this study, the disruptive capacity of channel-specific outliers in the values of all

possible univariate and multivariate DisEn features extracted from corresponding network

segments was quantified. Each network segment consists of four synchronised channel seg-

ments: EEG, RESP, BP, and ECG, resulting in a total of 16 experimental setups, with each

setup being defined by the channel containing the artifactual outliers and the percentage of

samples set as outliers as specified by the corresponding P factor, with possible values being:

0.1%, 0.5%, 1%, and 5%. Furthermore, for all 16 experimental setups, a univariate and a

multivariate logistic regression classifier is trained and tested for the detection of artifactual

network segments, with the percentage of correct segment classifications being reported for

each setup (in Tables 4.2–4.9).

4.4.1 Robustness of Multivariate Network Features to Univariate Outliers

Based on the results presented in Section 4.3.2, a pattern can be observed in the recorded

MPD values. The multivariate features have significantly lower values of MPD from the correct

feature values, when compared to the corresponding MPD of the univariate feature for each

experimental setup. This was particularly noticeable for setups with high P factor values, such

as 1% or 5%, when outliers are present in the EEG and ECG channels, with the univariate

MPD surpassing the corresponding multivariate MPD by at least 23%. Furthermore, the MPD

becomes lower as the number of channels forming the network segments from which a feature

is extracted, increases. The feature extracted from all four available channels in a network

segment has consistently the lowest MPD values across all experimental setups. Finally, in

the case of experimental setups with outliers in the RESP channel, while the same pattern

persists, the reduction of the value of the MPD when moving from univariate to multivariate

features is significantly smaller. This further indicates that signal-specific characteristics affect

the disruptive capacity of outliers, a subject that is discussed in further detail in Section 4.4.2.

When comparing the operation of univariate and multivariate DisEn, a core difference that

provides a relative robustness to multivariate features when compared to univariate ones con-

cerns the number of quantised samples formulating the embedded vectors that are mapped

to dispersion patterns. For the univariate DisEn algorithm, as indicated in Section 2.4.2, the

embedding dimension (m) defines the number of quantised samples used to create dispersion

patterns [35, 36]. In this study, m = 3 for both the univariate and multivariate algorithms.

However, as mentioned in Section 2.5.3, in the case of multivariate features, the number of

quantised samples formulating a multivariate embedded vector that is then mapped to multiple

dispersion patterns increases with the number of channels used for its extraction. As a result,

the effect of outlier samples in the formulation of the corresponding dispersion patterns is

reduced, leading to a reduction in their capacity to disrupt the calculation of the respective

DisEn value.
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Therefore, while the outliers still led to a significant disruption in the distribution of values for

the corresponding multivariate features, as indicated by the results of the Mann–Whitney U

test reported in Section 4.3.1, the relative robustness of multivariate features when compared

to univariate ones indicates a potential advantage of multivariate methodologies for respective

applications. It would be worthwhile to expand on this study with the replication of equivalent

experiments utilising other entropy quantification algorithms, such as the univariate and mul-

tivariate variations of PEn [34, 76] and SampEn [38, 69] to verify whether the robustness of

multivariate features to univariate outliers is persistent across different entropy quantification

methodologies.

4.4.2 Disruptive Effect of Outliers Across Physiological Signals

As indicated by the results presented in Section 4.3.2 and mentioned in Section 4.4.1, sig-

nificant changes in the effect of outliers on the value of the extracted univariate features

are observed, based on the channel containing the corresponding outliers. The disruption

is more significant when outliers are present in the EEG and ECG channels, with slightly

smaller disruption observed when outliers are present in the BP channel and significantly

smaller for outliers in the RESP channel. A similar pattern was observed in the experiments

presented in Chapter 3 as discussed in Section 3.4.4. When outliers are present, they tend to

disrupt the process of allocating classes across the amplitude range of the segment [35, 39]

by significantly expanding it based on the outliers’ amplitudes. As a result, the amount of

classes allocated in the physiological range is significantly reduced, leading to a reduction of

dispersion patterns representing physiological dynamics in the input segment, and therefore

an overall reduction of the calculated DisEn values. Signals such as the ECG [142] and

EEG [135] contain higher-frequency components leading to rapid fluctuations in the amplitude

of each signal, relative to the BP [143] and especially the RESP [133,134] signals. As a result,

the observed decrease in DisEn values differs from channel to channel, based on the signal

formulating it, resulting in the observed difference in MPD magnitudes.

It is important to notice that the same pattern is not observed to the same degree in the

case of multivariate features. As discussed in Section 4.4.1, the multivariate features display

a certain robustness to the effect of outliers based on the number of channels formulating

the network segments from which they are extracted. No major deviations in the values

of MPD are observed among the same multivariate features across different experimental

setups where the channel containing the outliers changes. These findings indicate that the

potential combination of univariate DisEn variations modified to be robust to outliers, similarly

to the ones presented in Chapter 3, with the current multivariate DisEn variation (mvMDE) [39]

could provide an effective entropy quantification interface for the extraction of features from

multi-channel time-series that contain artifactual outliers.
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4.4.3 Performance Comparison in Artifactual Segment Detection

The classification performance observed across experimental setups and presented in Sec-

tion 4.3.3, indicates promising results for the detection of artifactual network segments. How-

ever, strong differences that should be taken into consideration are observed in the perform-

ance of the univariate and multivariate classifiers based on the channel containing the arti-

factual outliers. In the case of EEG and RESP experimental setups, the multivariate classifier

outperformed the univariate one, while significant performance differences were observed

between the two groups of experimental setups. In the case of the EEG channel, significant

performance was achieved by the multivariate classifier even for low P-factor values, such as

0.5%, while the univariate classifier reached similar levels of performance for P-factor values

of 1% and 5%. However, the RESP outliers proved much more challenging in the detection of

the corresponding network segments, with only the multivariate classifier achieving effective

performance at a P factor of 5%. It is important to consider that the reduced performance in the

case of the experimental setups with RESP outliers was expected, especially in the case of the

univariate classifier, when considering that the corresponding outliers had significantly lower

disruptive capacity when compared to experimental setups with outliers in other channels, as

quantified in Section 4.3.3. In the case of BP outliers, no significant performance differences

were noted between the univariate and multivariate models with both classifiers displaying

effective performance, as mentioned in Section 4.3.2.

However, the case of ECG outliers highlights an important challenge when deploying archi-

tectures that utilise multiple multivariate features. For P factor values of 0.5% and higher,

the univariate model is not just highly effective at classifying network segments, but also

outperforms the multivariate one, indicating that in this case, the multivariate features add

noise that reduces the performance of the multivariate model. This highlights the necessity

of utilising a machine-learning architecture that would be robust to potential noise added

by the utilisation of multiple features, through effective feature selection [144–146]. This is

particularly important for future applications of Network Physiology aiming not just at the

assessment of data quality, but also at the extraction of physiological insights from networks

[114, 147, 148], since in those types of applications, the most informative features will be

harder to detect due to the dynamics of interest having the potential to occur at any level of

multivariate interaction, as opposed to starting from outliers which initially occur at one of the

channels during recording.
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4.4.4 Limitations of Current Study and Future Work

Throughout the experimental setups of this study, it is important to note that,

as mentioned in Section 4.2.4, only one channel at a time contained artifactual outliers.

This design choice for the experiments of the study was made in order to prioritise experi-

mental setups that would provide insights, not just about the effect of artifactual outliers in

the quantification processes of DisEn, but also about how these effects differ based on which

channel of the time-series contains the outliers. Consequently, this study could be further

expanded through the conduction of experiments where outliers are present in more than one

channel at a time, this is expected to lead to higher MPD observed for multivariate features,

and therefore, even better classification performance in the detection of artifactual network

segments when utilising a multivariate classifier.

Furthermore, while the simulated artifactual outliers presented in this study were in alignment

with previous research in the field [40, 61], it would be important to replicate this study and

especially the classification of artifactual network segments, utilising data sets with annotated

real-world artifactual segments to further assess the applicability of the method as a deployed

data quality control tool.

Finally, as indicated by the results presented in Section 4.3.3 and discussed in Section 4.4.3,

the logistic regression classifier was not able to appropriately utilise the multivariate features

in the case of experimental setups with ECG outliers, leading to reduced performance when

compared to the univariate one. Therefore, both for the purpose of artifactual segment detec-

tion and for future applications of Network Physiology, it would be important to expand on this

study by designing and implementing classification architectures capable of effective feature

selection.

4.5 Conclusion of the Chapter

This study investigated and quantified the effect of artifactual outlier samples in the accuracy

of univariate and multivariate DisEn features extracted from network segments consisting of

four synchronised channels. Furthermore, it presented a proof-of-concept artifactual segment

detection tool deployed in univariate and multivariate configurations using the corresponding

extracted features.

The results indicate that the distribution of values for each feature extracted from a network

segment containing artifactual outliers is significantly altered. The largest magnitude of dis-

ruption is observed in univariate features with an MDP value in the range of 20–48% for

most experimental setups, while the multivariate features display a relative robustness, which

increases based on the number of channels from which they are extracted. The feature extrac-

ted from all four available channels in a network segment displays an MDP value that remains
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lower than 10% across experimental setups. The classification results of the study indicate

that the univariate classifier performance surpasses 90% of correct segment classifications

for the majority of experimental setups. A strong exception are the setups with outliers in the

RESP channel where a performance of 90% correct segment classifications is surpassed only

with the multivariate classifier for a P factor of 5%. The multivariate classifier outperforms the

univariate one in setups with EEG and RESP outliers, but underperforms when compared

to the univariate one in the case of ECG outliers. These results highlight the importance of

using a machine learning architecture capable of effective feature selection when moving from

univariate to multivariate analysis.

Finally, the changes observed both in terms of the percentage differences and the classifica-

tion effectiveness when comparing across experimental setups in which outliers are present

in different channels indicate that, in alignment with prior research [40], the characteristics of

each physiological signal should be taken into consideration when assessing the impact of

outlier samples in the process of entropy quantification.



Chapter 5

The Stratified Entropy Framework and

its implementation using Dispersion

Entropy

Note: This Chapter’s contribution have been published in IEEE Transactions on Biomedical

Engineering, 2022 [42].

5.1 Introduction

This Chapter introduces the framework of Stratified Entropy analysis and presents three novel

algorithmic variations of SmvMDE as implementations of the framework.

In Section 2.1.4, it was mentioned that the quantification of entropy – as a measure of physiolo-

gical signal’s variability – is of direct interest for the extraction of physiologically viable inform-

ation and the potential monitoring of a system’s states, particularly when considering the

CSD [26–28] and LoC [10, 70] paradigms that associate changes in the measured variability

with state transitions.

Chapters 3 and 4 presented research that focused on the challenge of low data quality arising

from artifactual samples that are common occurrence in physiological recordings. The effect

of artifacts during both univariate and multivariate entropy quantification were studied and

two different approaches, that of modifying the feature extraction algorithm itself and that of

partially automating the process of data cleaning, were considered [40,41].

The research presented in this Chapter focuses on the challenge that arises during multivari-

ate analysis due to the differences that are present between the multiple channels formulating

the time-series. As discussed in Section 2.1.1, for the effective analysis of physiological

dynamics, approaches should consider both univariate and multivariate analysis of multi-

channel time-series. This is a necessary step to ensure that cross-channel dynamics can

be quantified to allow the study of dynamics developed across different components of the

same organ system as well as across distinct systems [15–19].

74
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However, while multivariate algorithms can extract an output feature from a multi-channel time-

series, the approach is limited with regards to the total information retrieved. The dynamics

of certain input channels may overshadow those of others due to the potentially different

dominant frequencies amongst the physiological signals in each channel. This becomes ap-

parent when multi-channel time-series are comprised of signals that arise from heterogeneous

organ systems such as the combination of ECG [142], EEG [135], arterial BP [143], and nasal

RESP signals [133, 134], whose dominant frequencies and temporal structures display clear

differences.

As a step towards addressing this challenge, recent studies have suggested non-uniform

multiscale embedding between the input channels [149]. This approach aims to find the

optimal combination of scales for the analysis of the multi-channel time-series so that each

channel is analyzed at the scale where most of its dynamics would arise, by modifying the

time-delay [149] or the embedding dimension used for each channel [150]. While this ap-

proach offers an interesting and modular configuration of analysis, it faces challenges that

limit its applicability. These are the potential mismatch of each channel’s data length with the

optimal scale values, the limitation of multiscale analysis to specific scales for each channel

resulting in an incomplete multiscale output, the instability of the method for increased number

of channels and the potential for overshadowing to occur even at optimal scale combinations.

A different approach for the analysis of interdependencies within a group of multi-channel

time-series arises from the utilization of Cross-Entropy algorithms, developed for ApEn, SampEn

[38], FuzzyEn [151], and PEn [152]. With them, an entropy based feature quantifies the

coupling between two channels. The variations of SampEn and FuzzyEn are non-directional,

while the variations of ApEn and PEn are directional. In the latter cases, one of the two chan-

nels acts as a “designated” channel in the measurement. Thus, the potential overshadowing

of each channels’ dynamics could be avoided since each channel has the opportunity to

be designated. However, this approach is limited to bivariate measurements between two

channels. Therefore, it cannot capture higher-order dynamics arising jointly from three or

more channels. A second limitation is that, by definition, it measures the coupling between

the two channels and is not a measurement of their combined dynamics.

With the aim of addressing these challenges, the framework of Stratified Entropy is proposed,

combining positive elements of both the Multivariate and Cross-Entropy algorithms to aug-

ment the information that can be extracted from a set of multi-channel time-series by allowing

each channel’s dynamics to have a different level of prioritization during the quantification of

the output entropy value based on its allocation to a respective stratum. Namely, the main

contributions of this chapter are:

• The introduction of the Stratified-Entropy framework as a new form of multivariate and

multiscale analysis that increases the amount of information extracted from a multi-

channel time-series via entropy quantification algorithms.



5.1. Introduction 76

• The implementation of the Stratified-Entropy framework through the introduction of

three novel algorithms of SmvMDE that prioritize channels during the calculation of

the output entropy value based on their allocation to hierarchical strata.

• The analysis and benchmarking of the SmvMDE algorithms through experiments ap-

plied to synthetic time-series, waveform physiological time-series, and derived physiolo-

gical data.

5.2 Methods

5.2.1 Stratified Entropy Framework

Within the framework of Stratified Entropy, strata are defined with a clear hierarchy of pri-

oritization. The number of strata can vary based on the implementation of the framework.

Each channel is allocated to one of the available strata and every channel has a weighted

contribution in the calculation of the output entropy feature based on their allocated stratum.

Building upon the existing mvMDE algorithm [39] three novel variations of the SmvMDE are

introduced: The T-SmvMDE, Soft Threshold (ST-SmvMDE), and Proportional (P-SmvMDE)

variations. For both the original algorithm and the novel variations the output values are

normalized in the range of 0 to 1 by dividing equation 2.22 with the term lncm as follows:

mvMDE(X,m,c,d) =−
cm

∑
π=1

p(πv0...vm−1) · ln
(

p(πv0...vm−1)
)

lncm (5.1)

For the purposes of this study, all three variations have been designed based on a two strata

configuration, a core stratum (prioritized) and a periphery stratum. The potential extension to

configurations with higher numbers of strata is discussed in Subsection 5.3.5. The variations

differ in how the dynamics of channels allocated to the core stratum are prioritised over the

periphery channels.

The following subsections start with a description of the SmvMDE variations and the changes

they introduce to mvMDE, and describe the experiments conducted to analyse and bench-

mark their operation.
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5.2.2 Stratified-Dispersion Entropy Variations

Building on the original mvMDE, three variations of SmvMDE are introduced as implement-

ations of the Stratified Entropy Framework. With their two strata configuration, the SmvMDE

variations separate the channels in two sets. The set of one or more designated channels,

which are allocated to the “core” stratum, and the set of secondary channels which are

allocated to the “periphery” stratum.

The original mvMDE treats all embedded subvectors as equal [39]. Instead, the SmvMDE

variations prioritise subvectors that contain samples retrieved from designated channels. The

Threshold (T-SmvMDE), Soft Threshold (ST-SmvMDE), and Proportional (P-SmvMDE) vari-

ations use distinct approaches for adjusting the contribution of each combination by modifying

the third and fourth steps of the original mvMDE algorithm, as described in Subsection 2.5.

Threshold Variation

T-SmvMDE defines the minimum number of samples extracted from designated channels

that each subvector should contain in order to be considered. This is achieved through a

new input parameter: the threshold (t). The initially
(m·p

m

)
subvectors utilized in the case of

the original mvMDE are reduced to a subset of length lt that only includes subvectors that

meet or surpass the threshold of having t or more samples in the patterns of length m. As

a result, for each multivariate embedded vector Z( j) only φq( j)(q = 1, . . . lt) subvectors are

mapped to dispersion patterns. This results in the reduction of dispersion pattern instances to

(N − (m− 1)d)lt . Fig. 5.1 displays a diagram illustrating the T-SmvMDE subvector selection

process.

For each unique dispersion pattern, their relative frequency is calculated with a modified

denominator to match the reduced number of dispersion patterns:

p(πv0...vm−1) =

#{ j
∣∣ j ≤ N − (m−1)d,φq( j) has type πv0...vm−1 }

(N − (m−1)d)lt

(5.2)

Soft Threshold Variation

As an intermediate algorithm between T-SmvMDE and mvMDE, ST-SmvMDE combines the t

input parameter with the additional reduced weight (w) parameter to reduce the contribution

of subvectors that do not meet the threshold of t, without removing them completely. The

possible values of the w parameter range from a minimum value of 0, where the output value

will match that of T-SmvMDE, and a maximum value of 1, where the output will match that of

the original mvMDE algorithm, since no reduction of contribution will occur.
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Formulated Embedded 
Subvectors  for m=3Multi-Channel Time-Series
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stratum

Periphery 
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Sample 1 Sample 2 Sample 3
Not used: No samples 
from channel in Core 

stratum

Used

Used

Used

Figure 5.1: A representation of the embedded subvector inclusion and exclusion process for
the T-SmvMDE variation with m = 3 and t = 1.

Based on t, the subvectors are split into two subsets: A primary subset with length lp whose

contribution to the calculation of a dispersion pattern’s frequency remains unchanged; and

a secondary subset with length ls whose impact is reduced by multiplying the number of re-

spective dispersion pattern instances with w. Consequently, for each Z( j): φp( j)(p = 1, . . . lp)

subvectors are formulated from the primary and φs( j)(s = 1, . . . ls) from the secondary subset,

respectively.

Therefore, the maximum value of instances for a dispersion pattern becomes (N − (m −
1)d)(lp +(lsw)). As a result, for each unique dispersion pattern, their relative frequency is:

p(πv0...vm−1) =

#{ j
∣∣ j ≤ N − (m−1)d,φp( j) has type πv0...vm−1 }

(N − (m−1)d) (lp + lsw)

+
#{ j

∣∣ j ≤ N − (m−1)d,φs( j) has type πv0...vm−1 }
(N − (m−1)d) (lp + lsw)

·w

(5.3)
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Formulated Embedded 
Subvectors  for m=3Multi-Channel Time-Series

ST-SmvMDE
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Core Stratum

Normal Weight

Normal Weight

Normal Weight

Figure 5.2: A representation of the embedded subvector inclusion and exclusion process for
the ST-SmvMDE variation with m = 3, t = 1 and w = 0.5.

Proportional Variation

The third variation, P-SmvMDE, requires no additional parameters. Instead of utilizing a threshold

to filter subvectors, it allocates them in subsets based on the number of samples contained

in each combination that are retrieved from designated channels and applies a proportional

factor to each category. With m being the length of each subvector and h being the number of

samples extracted from designated channels, this factor is defined as h
m .

Therefore, the values of the proportional factor range from a minimum of 0 to a maximum of

1 and the total number of subsets in which the subvectors are allocated is equal to m+ 1.

Consequently, for each Z( j): φh( j)(h = 1, . . . lh) subvectors are formulated from each subset

with lh being the length of the respective subset. Hence, the maximum value of instances (α)

for a dispersion pattern becomes α = ∑
m
h=0 (N − (m−1)d) (lh h

m).

The relative frequency of each unique dispersion pattern is calculated by counting dispersion

pattern instances in subvectors of each subset multiplied by their respective ( h
m ) factor, divided

by the maximum value of instances:

p(πv0...vm−1) =
1
α
·

m

∑
h=0

#{ j
∣∣ j ≤ N − (m−1)d,φh( j) has type πv0...vm−1 } ·

h
m

(5.4)
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Figure 5.3: A representation of the embedded subvector inclusion and exclusion process for
the T-SmvMDE variation with m = 3.

5.2.3 Synthetic Time-Series Experiments

The SmvMDE variations and the original mvMDE are applied to synthetic time-series, to study

the differences in their operation and their multiscale outputs.

Uncorrelated white Gaussian and 1/ f noise

Combinations of uncorrelated white Gaussian noise (WGN) and 1/ f noise are used due to

their differences in complexity and irregularity. As discussed in Subsection 2.1 complexity

is expected to follow a stable multiscale profile [67, 68] and irregularity is expected to have

a decreasing multiscale profile. The complexity of 1/ f noise is higher than WGN while the

irregularity of WGN is higher than 1/ f [69,153]. Thus, multivariate combinations of WGN and

1/ f time-series have been used in previous research to test multiscale entropy quantification

algorithms [103,154].

To test the operation of mvMDE, all possible combinations of WGN and 1/ f noise are formu-

lated in 3-channel time-series, resulting in the following inputs for the experiments:

1. Three WGN channels.

2. Two WGN and one 1/ f channels.

3. One WGN and two 1/ f channels.

4. Three 1/ f channels.
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Table 5.1: Parameters values for Synthetic Time-Series (ST) Waveform Physiological Time-
Series (WPT) and Derived Physiological Data (DPD) Experiments

Parameter (Symbol) ST WPT DPD
Embedding Dimension (m) 2 3 3

Number of classes (c) 5 6 4
Time Delay (d) 1 1 1

Scale Factor Range (τ) 1 to 20 1 to 10 1
Threshold (T and ST SmvMDE) (t) 1 2 2
Reduced Weight (ST SmvMDE) (w) 0.5 0.5 0.5

Considering the operation of SmvMDE, the output entropy value will be affected to a larger

degree by channels allocated to the core stratum over the periphery. This would not affect

experimental setups 1) and 4). However, it would lead to different results for setups 2) and

3) which contain both WGN and 1/ f channels based on their allocation to strata. Therefore,

for SmvMDE variations, experimental setups 2) and 3) are expanded. In a first iteration, the

designated channel assigned to the core is one of the WGN channels, followed by a second

iteration where a 1/ f channel is designated. This results in a total of six experimental setups

for SmvMDE:

1. Three WGN channels.

2. Two WGN and one 1/ f channels with WGN designated.

3. One WGN and two 1/ f channels with WGN designated.

4. Two WGN and one 1/ f channels with 1/ f designated.

5. One WGN and two 1/ f channels with 1/ f designated.

6. Three 1/ f channels.

Statistical Analysis

Each experimental setup is repeated 40 times independently and the respective µ and σ are

calculated for each τ value from 1 to 10. All experimental setups are replicated for channel

lengths of 15,000 and 300 samples to assess potential differences due to long versus short

time-series. The parameter values used for mvMDE and SmvMDE are chosen based on the

limitations introduced by the short length time-series and match those used in the original

mvMDE study to allow for easy comparison between both studies [39]. They are displayed in

Table 5.1.
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Computational Time Experiments

To ensure that SmvMDE variations maintain the low computation time properties of the ori-

ginal mvMDE, 2-channel, 5-channel, and 8-channel time-series are formulated from uncor-

related WGN with channel lengths ranging from 1,000 up to 100,000 samples. Each experi-

mental setup is repeated over 20 independent realizations and the average computation time

is calculated and reported for the mvMDE and SmvMDE algorithms. For the implementation

of SmvMDE algorithms, an arbitrary designated channel is selected. The computations are

carried out using a PC with Intel(R) Core(TM) i7-8750H CPU @ 2.2 GHZ, 16 GB RAM running

MATLAB R2018b. The parameter values of mvMDE and SmvMDE remain the same with the

exception of τmax being reduced from 20 to 10 to be consistent with [39].

5.2.4 Waveform Physiological Time-series Experiments

Experiments are conducted on waveform physiological time-series to study the extend to

which the SmvMDE algorithms have increased discrimination capacity between physiological

states. For this purpose, the effect size difference of output distributions extracted using

SmvMDE are benchmarked to those extracted using mvMDE.

MIT-BIH Polysomnographic Database

To access multi-channel time-series formulated from high sampling rate signals recorded

from different organs, the publicly available MIT-BIH Polysomnographic Database is used.

It contains a total of 18 records of multiple physiological waveforms, initially recorded for

the evaluation of chronic obstructive sleep apnea (OSA) syndrome and sampled at 250 Hz

[125,141].

For the purpose of this study, the records slp41 and slp45 are selected due to the availability

of extensive sections of healthy stage 2 sleep; and the records slp04 and slp16 due to the

existence of multiple incidents of OSA with arousal during stage 2 sleep. All records contain

complete and synchronized recordings of EEG, ECG, BP, and RESP signals. The EEG signal

is split into the frequency bands of: delta (0.5-3.5 Hz), theta (4-7.5 Hz), alpha (8-11.5 Hz),

sigma (12-15.5 Hz), and beta (16-19.5 Hz) [105]. The selection of ranges for each frequency

band is made in alignment with prior research utilizing similar polysomnographic datasets for

the analysis of sleep stages [105,111]. Hence, 8-channel time-series are extracted from each

record consisting of the channels: Delta, Theta, Alpha, Sigma, Beta, ECG, BP, and RESP.
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Formulation and Selection of Analysis Windows

These time-series are split into 8-channel non-overlapping windows with 7,500 samples per

channel corresponding to the 30-second annotation interval of the database. Based on the

annotations, 235 multi-channel “healthy” windows are extracted corresponding to healthy

stage 2 sleep (slp41 = 96 windows, slp45 = 139 windows), and 235 multi-channel “apnea”

windows corresponding to OSA with arousal during stage 2 sleep (slp04 = 140 windows,

slp16 = 95 windows).

Calculation of DisEn

The parameter values for the extraction of multiscale entropy distributions from the 235 “healthy”

and 235 “apnea” windows are chosen based on the considerations discussed in Subsec-

tion 5.3.5 and displayed in Table 5.1 under the waveform physiological time-series (PT) column.

Per window, ten values are extracted, one for each τ (1 to 10).

The mvMDE is used to obtain one multiscale distribution from the “healthy” and one from the

“apnea” datasets. For the effective study of SmvMDE variations (T, ST, and P), the variations

are applied in eight iterations each per dataset. During each iteration a different channel is

designated. This leads to the extraction of eight multiscale distributions from each dataset to

study how the prioritization of each channel’s dynamics affects the output entropy values and

the physiological differentiation capacity of SmvMDE.

Statistical Analysis

To effectively benchmark the differentiation capacity of SmvMDE variations to mvMDE, the

following steps are completed for each τ separately:

1. The Hedges’g effect size is computed [155] for the “healthy” versus “apnea” output

distributions.

2. The effect size difference is calculated when moving from mvMDE to a certain SmvMDE

variation with a particular designated channel.

3. The confidence intervals are estimated for each calculated effect size difference to verify

their significance.

In Step 3, bootstrapping is applied to the “healthy” and “apnea” output distributions to estimate

the confidence intervals. The bootstrapping is implemented by sampling with replacement the

sets of 235 multiscale entropy values in each output distribution. For each output distribution

of the SmvMDE variations, 40 independent realizations of bootstrapped distributions are

generated. No bootstrapping is applied to the output distribution of mvMDE since the aim

is to benchmark the SmvMDE distributions to the same, original mvMDE results.
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To implement this analysis, the bootstrapped distributions of each SmvMDE and the original

distribution of mvMDE are used in the following steps, which are applied for each designated

channel selection and at each τ (1 to 10):

1. Each of the 40 bootstrapped “healthy” distributions is paired at random with one of

the 40 bootstrapped “apnea” distributions. (This pairing is kept the same across all

SmvMDE variations for consistency.)

2. The Hedges’ g effect size is calculated between the two distributions of each pair,

resulting in 40 sets of Hedges’g effect size values.

3. Hedges’g effect size values are also computed between the “healthy” and “apnea”

distributions of mvMDE.

4. The benchmarking effect size values of mvMDE are subtracted from the effect size val-

ues extracted from each pair of boostrapped distributions. This results in 40 multiscale

sets of effect size differences whose µ and 95% confidence intervals are calculated.

The µ and 95% confidence intervals of the effect size difference are plotted separately for

each designated channel selection and τ value from 1 to 10.

5.2.5 Derived Physiological Data Experiments

The operation of SmvMDE is also studied for low-temporal resolution, derived data. The

performance of SmvMDE variations is benchmarked to that of mvMDE via the difference in

output entropy for separate individuals, when moving from physiological states of low to high

external stress.

Maximal Exercise Dataset

For the application of SmvMDE to derived physiological data the publicly available Tread-

mill Maximal Exercise Test Dataset is used [22, 156]. This dataset was collected, curated,

and published by the Exercise Physiology and Human Performance Lab of the University of

Málaga. The recordings include five cardiorespiratory variables: heart rate (HR) (in beats per

min), oxygen consumption (VO2) (in mL/min), carbon dioxide production (VCO2) (in mL/min),

respiration rate (ReR) (in respiration/min), and pulmonary ventilation (VE) (in L/min). All vari-

ables were recorded in a synchronized manner with the sampling event being each breath

measurement, resulting in a varied sampling period (usually in the range of 1-4 s).

Each test consisted of an individual walking and running on a treadmill, starting with a warm-

up period of treadmill speeds close to 5 km/h, followed by a period of gradual speed increase

that reached speeds in the range of 14 to 17 km/h, and completed with a cool-down period

with speeds close to 5km/h. A total of 857 individuals participated in the study with some

people having more than one test, resulting in 992 recordings. The participants’ ages ranged

from 10 to 63 y.o.
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Formulation and Selection of Analysis Windows

Two physiological state classes are formulated: a low speed (LS) class that corresponds

to data recorded during warm-up until the speed reached 7 km/h; and a high speed (HS)

class that corresponds to data recorded while the treadmill speed was higher than 15 km/h.

Recordings with at least 120 synchronised samples for each class were selected to ensure an

adequate window size for analysis. In the few cases where an individual had more than one

eligible test, the first one was selected. A total of 98 eligible recordings with age range 14 to

50 y.o. are extracted.

Calculation of DisEn

The extracted data are 98 pairs of multivariate 120-sample windows, with each pair including

one segment from the LS class and one from the HS. Due to the low temporal resolution of

the data and the consequent small window size, the analysis is done only at temporal scale

τ = 1. The selected parameter values are displayed in Table 5.1. All SmvMDE variations (T,

ST, and P) are applied in five iterations each, during which a different channel is designated.

Consequently, for each algorithm and designated channel selection 98 pairs of DisEn values

are extracted.

Statistical Analysis

For each experimental setup and within each of the 98 pairs of DisEn values, the entropy

difference observed when moving from the LS to the HS state is recorded. Boxplots are

generated to compare the output difference distributions between SmvMDE and mvMDE

for each designated channel selection. Additionally, the µ absolute difference observed in

each difference distribution and the number of entries that displayed an increased absolute

value of difference during each SmvMDE configuration, compared to their mvMDE values,

are reported. Finally, to highlight a potential directionality that could match the EP hypothesis

[19,72], the number of entries with a higher entropy value in the LS state than in the HS state

are also reported for each configuration.

5.3 Results and Discussion

5.3.1 Synthetic Time-Series Experiments

The results of the application of mvMDE and SmvMDE on 3-channel time-series of WGN

and 1/ f noise, are presented in Fig. 5.4 and Fig. 5.5 for univariate length of 15,000 and 300

samples, respectively. For each experimental setup, replicated for 40 independent iterations,

the µ and σ of DisEn values are plotted for each τ (1 to 20).



5.3. Results and Discussion 86

mvMDE Operation

The operation of the mvMDE matches the patterns that have been verified by prior research

[39]. As τ increases, the output entropy value has a stronger decline for the 3-channel WGN

time-series. As the number of 1/ f channels increase, the output entropy value follows a more

stable profile with the 3-channel 1/ f time-series being the most stable.

SmvMDE Operation

For experimental setups that contain solely WGN channels and 1/ f channels respectively, the

operation of all three SmvMDE variations is identical to mvMDE, as expected. In contrast in

the other experiments, a stronger decline of output entropy is observed as τ increases when

a WGN channel is designated. Instead when a 1/ f channel is designated, the output follows

a more stable profile for increasing values of τ .

When comparing the results of the three SmvMDE variations for the same experimental setup:

1. Using the mvMDE output values as reference, the largest deviations are observed

by the P-SmvMDE variation, followed by the T-SmvMDE, and then the ST-SmvMDE

variation.

2. The ST-SmvMDE outputs are between those of T-SmvMDE and mvMDE as expected

by its design and the w value set to 0.5.

3. The higher deviation of the P-SmvMDE outputs from T-SmvMDE is expected when

considering that for an m = 2 the P-SmvMDE variation gives a higher prioritization to

the core stratum than the respective implementation of T-SmvMDE with m= 2 and t = 1.

Short Length Time-Series

Fig. 5.5 displays the results for the 300 sample length experiments. For all tested algorithms,

the outputs follow the same patterns as their 15,000 sample length equivalent, indicating that

the behaviour of SmvMDE remains the same regardless of time-series length. However, for all

experimental setups, the σ values are increased, with the increase being stronger for larger τ

values, as expected. Consequently, between the outputs of SmvMDE variations, overlapping

can be observed between experimental setups that combine WGN and 1/ f . This indicates

that during the analysis of multi-channel time-series, the sample size of the window being

analyzed should be larger than the respective minimum size for mvMDE.
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Figure 5.4: The µ and σ of output DisEn are plotted for τ values of 1 to 20 for the four
experimental setups of mvMDE and the six experimental setups of SmvMDE with time-series
length of 15,000 samples. For SmvMDE, the designated channel is displayed within ().
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Figure 5.5: The µ and σ of output DisEn are plotted for τ values of 1 to 20 for the four
experimental setups of mvMDE and the six experimental setups of SmvMDE with time-series
length of 300 samples. For SmvMDE, the designated channel is displayed within ().
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Table 5.2: Computational time of mvMDE and SmvMDE in seconds

Samples and Channels mvMDE T ST P
1,000 samples and 2-channels 0.024 0.025 0.026 0.026
1,000 samples and 5-channels 0.061 0.059 0.064 0.065
1,000 samples and 8-channels 0.100 0.0095 0.117 0.126
3,000 samples and 2-channels 0.067 0.069 0.069 0.070
3,000 samples and 5-channels 0.177 0.171 0.183 0.187
3,000 samples and 8-channels 0.302 0.285 0.339 0.356

10,000 samples and 2-channels 0.241 0.251 0.250 0.255
10,000 samples and 5-channels 0.649 0.631 0.663 0.685
10,000 samples and 8-channels 1.182 1.029 1.240 1.254
30,000 samples and 2-channels 1.056 1.091 1.101 1.108
30,000 samples and 5-channels 2.839 2.612 2.879 2.870
30,000 samples and 8-channels 4.789 4.526 5.044 5.044
100,000 samples and 2-channels 8.048 8.067 8.202 8.181
100,000 samples and 5-channels 20.550 20.157 20.820 20.967
100,000 samples and 8-channels 33.571 32.436 35.243 35.133

5.3.2 Computational Time

The results in Table 5.2 indicate that SmvMDE variations maintain the low computational time

of the original mvMDE, as expected, since no computationally critical operations have been

modified and the linear time complexity is maintained. Across all variations the main factor

affecting the computation time is the univariate length of the time-series. When comparing the

results for experimental setups with the same univariate length, the differences in computation

time between the original mvMDE and the SmvMDE variations become more noticeable for

higher number of channels.

The maximum differences in computation time are noted in the experimental setup with a

time-series length of 100,000 samples and 8-channels. The maximum increase of 1.672

seconds (4.98%) is noted when moving from the mvMDE to the ST-SmvMDE algorithm while

the maximum decrease of 1.135 seconds (3.38%) is noted when moving from mvMDE to

T-SmvMDE. The decrease of computation time in the case of T-SmvMDE is an expected

benefit due to the lower number of subvectors utilised in that variation.

5.3.3 Waveform Physiological Time-Series Experiments

The results of the statistical analysis implemented on the output entropy distributions ex-

tracted from the 235 “healthy” and 235 “apnea” 8-channel windows using T-SmvMDE and

P-SmvMDE, are presented in Fig. 5.6, with each subplot corresponding to a different desig-

nated channel selection. The mean Hedges’g effect size difference and the 95% confidence

intervals are plotted for each τ (1 to 10). For clarity, only the confidence intervals that do not

overlap with 0 are plotted. The benchmarking values of the mvMDE are shown in Table 5.3.
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ST-SmvMDE is, by design, an intermediary variation between T-SmvMDE and mvMDE. Thus,

its outputs also follow an intermediary pattern, closer to the operation of mvMDE, leading to

smaller effect size differences that are available in Table 5.4.

Table 5.3: mvMDE Hedges’ g effect sizes for Waveform Physiological Time-Series

τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6 τ = 7 τ = 8 τ = 9 τ = 10
Effect Size 0.225 0.233 0.242 0.247 0.246 0.236 0.220 0.193 0.159 0.105

Table 5.4: Mean ST-SmvMDE Hedges’ G effect size difference for Waveform Physiological
Time-Series. The designated channel is noted on the first column.

τ = 1 τ = 2 τ = 3 τ = 4 τ = 5 τ = 6 τ = 7 τ = 8 τ = 9 τ = 10
Delta −0.002 −0.002 −0.002 −0.001 0.000 0.001 0.003 0.005 0.010 0.025
Theta 0.019 0.019 0.019 0.019 0.020 0.021 0.023 0.024 0.028 0.032
Alpha 0.003 0.003 0.004 0.004 0.005 0.005 0.005 0.005 0.005 0.011
Sigma −0.009 −0.009 −0.009 −0.009 −0.009 −0.010 −0.011 −0.011 −0.004 0.007
Beta 0.017 0.019 0.020 0.020 0.021 0.021 0.021 0.020 0.020 0.028
ECG 0.003 0.004 0.002 −0.002 −0.005 −0.010 −0.014 −0.019 −0.022 −0.017
BP 0.016 0.017 0.018 0.018 0.016 0.017 0.018 0.017 0.016 0.020

RESP 0.022 0.022 0.025 0.026 0.027 0.028 0.029 0.029 0.033 0.038

T-SmvMDE Operation

The benchmarking of T-SmvMDE, indicates that the prioritization of the following channels

leads to consistent increases in differences between the output entropy distributions extracted

from “healthy” vs “apnea” windows when moving from the application of mvMDE to T-SmvMDE:

• ECG, RESP, and Alpha channels across all values of τ .

• Beta channel for τ values of 2 to 10.

• BP channel for τ values of 5 to 10.

The multiple cases of increase in effect size indicate that the T-SmvMDE variation may quantify

differences between the two states that the direct application of mvMDE was not able to

highlight.

P-SmvMDE Operation

The respective benchmarking results for P-SmvMDE indicate that increases in difference

between the output entropy distributions are observed when prioritizing one of the following

channels:

• Alpha across all values of τ .

• Beta for τ values of 3 to 8.

• ECG for τ values of 7 to 10.
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Figure 5.6: The µ and the 95% confidence intervals of the effect size difference calculated
from subtracting the multiscale mvMDE Hedges’ g effect sizes from those of T-SmvMDE and
P-SmvMDE. Each subplot corresponds to a different designated channel selection.

Consequently, the designated channels displaying increased discrimination capacity for P-SmvMDE

were also highlighted by T-SmvMDE. However, increases observed by moving to P-SmvMDE

were smaller in magnitude and for fewer designated channel selections compared to T-SmvMDE.

Considering the parameter values used for the SmvMDE variations in this setup, the T-SmvMDE

sets a higher prioritization to the core stratum over the periphery compared to P-SmvMDE.

This may indicate that this particular application benefited from implementations that defined

stronger prioritization. Furthermore, within the framework of Stratified Entropy, the detection of

certain prioritization cases as more effective in extracting distinct feature distributions between

physiological states highlights the potential for the development of feature selection methodo-

logies that would aim to optimize physiological classification tasks.
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Figure 5.7: Boxplots comparing the DisEn Entropy difference calculated when moving from
LS to HS using T-SmvMDE, mvMDE and P-SmvMDE. The plots correspond to different
designated channel selections with the benchmarking values of mvMDE remaining the same.
The lines connect the difference of the same experimental pair across the output differences
of each algorithm.

5.3.4 Derived Physiological Data Experiments

The DisEn differences observed when moving from the LS to the HS state for each of the

98 exercise tests are displayed in the boxplots of Fig. 5.7. Each panel corresponds to a

different designated channel selection and includes the boxplots with the distributions of

differences observed through the application of mvMDE, T-SmvMDE, and P-SmvMDE. The

mean absolute difference observed during the application of mvMDE is equal to 0.0894 while

the respective mean absolute differences, number of entries with increased entropy difference

compared to mvMDE and number of entries with larger entropy during LS versus HS are

displayed for all SmvMDE and designated channel selection in Table 5.5.
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Table 5.5: Mean absolute difference, Number of Entries with increased entropy difference
compared to mvMDE, and Number of entries with larger entropy during LS versus HS.

T-SmvMDE Mean Absolute Difference Improved Positive
HR 0.093 46 64
VO2 0.093 51 49

VCO2 0.100 68 64
ReR 0.115 66 87
VE 0.097 54 78

P-SmvMDE Mean Absolute Difference Improved Positive
HR 0.097 57 71
VO2 0.086 40 51

VCO2 0.095 69 67
ReR 0.103 64 81
VE 0.093 53 69

ST-SmvMDE Mean Absolute Difference Improved Positive
HR 0.089 47 71
VO2 0.087 37 67

VCO2 0.090 66 69
ReR 0.090 52 70
VE 0.090 51 69

SmvMDE Operation

When benchmarking the operation of SmvMDE to mvMDE, an improvement in differentiation

capacity is noted when the VCO2, ReR, and VE channels are designated. This improvement is

consistent for both T-SmvMDE and P-SmvMDE with increases in the mean absolute difference

and the entries with increased LS-HS difference. The selection of HR as a designated channel

displayed increased differentiation capacity for P-SmvMDE.

Similarly to Subsection 5.3.3, the majority of designated channels for which an increase

in the discrimination capacity of SmvMDE is noted are common between T-SmvMDE and

P-SmvMDE, indicating that while the two variations provide different ways to prioritise strata,

they have the capacity of highlighting similar dynamics that were overshadowed by traditional

multivariate analysis.

It is important to note that when designating the ReR channel, the largest mean absolute

difference is observed for both T-SmvMDE and P-SmvMDE as well as the largest number of

entries where the LS DisEn values are higher than the HS ones. This points towards a LoC

process [10, 70] when moving from a steady state to a state that induces increased stress in

the system, in alignment with the EP hypothesis [19,72].
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5.3.5 On the implementation of Stratified Entropy

Input Window Length

For the implementation of entropy quantification, the selection of the c and m parameters

defines the minimum length of each channel within the input window. The univariate DisEn

algorithm is capable of analysing short-length time-series [36] with minimum length (N) being

N > cm · τmax. The mvMDE variation of the algorithm further improved its capacity to operate

on short-length time-series due to the utilization of larger-multivariate embedding vectors

compared to their univariate counterparts [39] leading to a minimum length of: N > cm·τmax

(m·p
m )

.

For SmvMDE variations, the minimum input length is between the limits of univariate DisEn

and mvMDE. As shown in Subsection 5.3.1, overlapping is observed in the short-length time-

series among the large τ value outputs while analyzing the same time-series with different

channels being prioritized. Consequently, the utilization of a stricter minimum is recommen-

ded, closer to the univariate DisEn: N > cm · τmax when deploying SmvMDE variations.

Number of designated channels

With m being an exponent in defining the minimum input window length, it is important to

consider that during the implementation of Stratified Entropy, an increased value of m might

be needed when increasing the number of designated channels. In such case, it is important

ensure that there are not multiple subvectors consisting entirely of samples retrieved from

designated channels which would lead to them being treated equally and result to an output

profile that would resemble that of mvMDE. Furthermore, while an increase in the value

of m would allow additional designated channels this might not be an optimal approach,

since an overshadowing of dynamics would now be possible to occur within the core stratum

itself. Thus, it is recommended that the majority of Stratified Entropy applications follow a

conservative approach when allocating channels to the core stratum.

Number of Strata

The total number of strata defined in a Stratified Entropy implementation affects both its

design and its implementation since appropriate algorithmic steps have to be formulated

for the prioritization of channels based on their strata allocation, while proper selection of

parameter values is required for effective operation. For example, in the case of expanding

the presented SmvMDE variations from a two to a three strata configuration, the T-SmvMDE

and the ST-SmvMDE variations could be modified to operate with two different t and w (in

the case of ST) values based on which strata are prioritized, while P-SmvMDE could be

modified with having two tiers of proportional factors respectively. This design modification

could be complemented with an appropriate increase of the m value to allow samples of

varied prioritization to be included in the same subvectors similarly to the process discussed

for having multiple designated channels.
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However, while the expansion of the total number of strata is possible, it increases algorithmic

complexity and restricts the range of effective parameter values, particularly of m as discussed

above. Therefore, configurations with increased numbers of strata might be more relevant for

applications that would clearly benefit from their utilization despite the increased complexity,

such as for example when a priori knowledge exists with regards to a hierarchy of channels.

5.3.6 Limitations and Future Work

The algorithmic variations illustrate successful implementations of the Stratified Entropy frame-

work, with effective prioritization of the channels allocated to the core stratum over the peri-

phery, and the extraction of novel features. However, it is important to expand its imple-

mentation using additional entropy quantification algorithms, such as PEn, to acquire a more

complete perspective on the utility that the framework offers. Furthermore, due to its capacity

to be applied in a modular manner and with low computational cost, it would be worthwhile

to combine Stratified Entropy with other variations of entropy algorithms to target specific

applications. Examples include its integration with the aforementioned non-uniform multiscale

embedding to incorporate a priori knowledge, with optimal scale selection for each channel,

or the utilization of a fuzzy membership function in DisEn [157].

The results in the experiments of derived physiological data indicate a directionality in agree-

ment with the LoC paradigm and the EP hypothesis. Hence, it would be important to replicate

the analyses in other datasets and study the capacity of SmvMDE to quantify the directionality

of EP phenomena. Moreover, the combination of SmvMDE with machine learning would allow

for physiological state classification and prediction tasks. Consequently, strata allocations

should be selected with appropriate justification or through effective feature selection pro-

cesses to avoid data dredging or overfitting.

5.4 Conclusion of the Chapter

The framework of Stratified Entropy was introduced and three algorithmic variations for its

implementation were presented. Stratified Entropy allows the extraction of features that would

not be accessible through traditional multivariate entropy analysis by allowing the priorit-

ization of certain channels’ dynamics over others’ based on the allocation of channels to

different strata. The SmvMDE variations significantly extend mvMDE through the inclusion of

algorithmic steps that prioritize samples extracted from channels in the prioritized core stratum

during the calculation of the entropy value.

The results from the application of SmvMDE to time-series consisting of uncorrelated WGN

and 1/ f noise indicate that the variations successfully prioritize the dynamics of the desig-

nated channel. The low computation time profile of the original mvMDE variation is maintained

due to no computationally critical steps being modified. When applying the SmvMDE vari-
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ations to 8-channel waveform physiological time-series, certain SmvMDE features produce

distributions with higher statistical difference between healthy versus OSA sleep of stage

2. While increases in group-wise statistical differences do not imply improved discrimination

capacity at the subject level, the results indicate that certain applications favor the use of

SmvMDE over mvMDE particularly when the stratification of a time-series’ channels is of

interest. The respective results from low temporal resolution derived physiological data further

highlight the increased discrimination capacity of SmvMDE and its potential use to detect the

directionality of “entropy pump phenomena”.

The presented framework is flexible with regards to the number of channels allocated to the

prioritized stratum and the total number of strata. Furthermore, it can be extended to other

entropy quantification algorithms and combined with machine learning. Consequently, with

appropriate algorithmic design and parameter configuration, the framework of Stratified En-

tropy could provide novel and effective methodologies for the extraction of viable physiological

information.



Chapter 6

Summary, Limitations of Study and

Future Work

6.1 Summary

The increased availability of physiological time-series due to advancements in physiological

recording technology provides a unique opportunity for the extraction of viable information that

could aid both in the effective prognosis as well as the treatment of pathology through early

stage intervention, personalised treatment, and improved clinical decision making [1–8].

When considering the characteristics of these time-series it is important to note the potential

non-linear nature of their dynamics [9–14], the existence of multivariate dynamics arising from

interactions of multiple components from different organ systems [15–19], and the artifactual

samples produced due to the recording conditions [2, 20–22, 25]. Consequently, the effective

extraction of information from these time-series requires the utilization of algorithms that have

been designed while taking into consideration these characteristics.

For this purpose, entropy quantification algorithms have been utilized in a number of applica-

tions due to their capacity of measuring the variability of physiological time-series [35,36,84,

158], which has been associated with the detection of physiological state changes based on

the CSD [26–28] and LoC [9, 10, 29, 30] paradigms as well as the EP hypothesis [19, 51, 72].

Within the scope of this Thesis the DisEn algorithm is selected as the foundation of the

study due to its favorable characteristics and the existence of both univariate and multivariate

multiscale variations of the algorithm [35,36,39].

The work of this Thesis was conducted with the aims of investigating how the aforementioned

characteristics of physiological time-series affect the operation of the DisEn algorithms and

developing novel algorithmic variations and frameworks for their improved utilization. The ana-

lysis of physiological time-series was conducted in three levels. That of univariate, multivariate,

and stratified multivariate analysis as presented in Chapters 3, 4, and 5, respectively.

96
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The work presented in Chapter 3 [40] provided insights and quantified the disruptive capacity

of artifactual samples in the calculation of DisEn values from RR, EEG and RI time-series

through a series of experiments, with different percentages and groupings of missing and

outlier samples. The results of this work highlighted outlier artifactual samples as having the

highest disruptive capacity in alignment with prior research [61]. Differences were detected

with regards to the effect of artifactual samples based on the type of artifact being studied

and the time-series in which the artifacts were simulated. Furthermore, novel variations of

the univariate DisEn algorithm were introduced and their performance was tested and bench-

marked to that of the original DisEn algorithm in an effort to make preliminary steps towards

addressing the challenge of low-data quality through the introduction of algorithmic steps

that aim to reduce their disruptive capacity. The effect of missing samples was maintained at

values lower than 8% with the introduction of SkipDisEn while the significant disruptive effect

of outliers was limited to error percentages values lower than 22% with the introduction of

the DynSkipDisEn variation as opposed to the range of 57% to 73% for the original DisEn

algorithm.

The work of Chapter 4 [41] extended the investigation with regards to the effect of outlier

artifactual samples to the level of multivariate analysis. The original mvMDE algorithm was

tested on multi-channel network segments formulated from temporal windows of synchronised

physiological recordings assimilated from sensors monitoring different organ systems (EEG,

ECG, BP, and RESP). Compared to univariate features, multivariate DisEn features displayed

a certain robustness to outliers due to the multivariate embedding vector formulation process,

while the channel in which outliers were located affected the outliers’ disruptive capacity. The

disruptive capacity of outliers was increased when the channel containing outliers had higher

frequency components such as the ECG and EEG compared to BP and RESP were outliers

had a relatively reduced impact. Furthermore, an artifactual network segment detection tool

using a simple logistic regression classifier was implemented and tested in two configurations.

The first configuration utilized solely univariate DisEn features while the second utilized both

univariate and multivariate features to study differences in the classification accuracy. Again,

the channel containing the artifactual outliers determined which of the two configurations

displayed improved performance. The classification accuracy surpassing 95%, for a num-

ber of experimental setups, indicated the potential for utilizing the original DisEn algorithm’s

sensitivity to outliers as a detection measure to partially automate the data cleaning process.

Finally, Chapter 5 [42] introduced the Stratified Entropy framework and three novel SmvMDE

algorithms for its implementation. The framework was introduced with the aim of providing

a new form of analysis that would allow the prioritization of certain channels’ dynamics over

others’ based on their strata allocation, in order to extract information that was inaccessible

through multivariate analysis. In traditional multivariate analysis the dynamics of certain input

channels may overshadow those of others due to the potentially different dominant frequen-
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cies amongst the physiological signals in each channel. By allowing the prioritization of certain

channels over others, SmvMDE algorithms allow each channel to have its dynamics being

prioritized based on which strata allocation configuration is used at a time. The SmvMDE

algorithms were tested and benchmarked to the original mvMDE algorithm through exper-

iments conducted in synthetic time-series, waveform physiological time-series, and derived

physiological data. The results of the presented work indicated that the algorithms were

successfully prioritizing samples based on the strata allocation of their respective channel,

were capable of extracting novel features some of which had increased discrimination capacity

when comparing between different physiological states and could potentially be used for

hypothesis testing through the utilization of respective strata allocations based on a priori

knowledge, such as in the case of the EP hypothesis.

6.2 Limitations of Study and Future Work

This section describes limitations and opportunities for future work that correspond to the

entire scope of the Thesis. Chapter 3, 4, and 5 also contain chapter specific subsections that

discuss cases that are specific to the scope of each Chapter.

The work conducted in this Thesis utilized publicly available datasets. This is beneficial with

regards to the ease of experimental reproducibility; however it is limited from the fact that

the utilized datasets were not tailor made for the designed experiments. With regards to the

work of Chapters 3 and 4, the datasets used contained a variety of physiological time-series

from different organ systems and the artifactual samples were simulated in alignment with

the simulation practices of prior research [60,61]. However, it would be beneficial to replicate

the experiments in datasets that contain real world artifacts and have been designed with

the aim of developing solutions to address this challenge as mentioned in the respective

Sections 3.4.6 and 4.4.4. An example of such dataset is the one provided by the Great

Ormond Street Hospital for the Alan Turing Data Study Group [159] under the prerequisite

that appropriate labels of artifactual sections are provided. In Chapter 5, a variety of synthetic

and real world data were utilized to both analyse the operation of the SmvMDE algorithms and

test them in different applications for the extraction of features with increased discrimination

capacity. In this case, further insights with regards to the EP hypothesis could be extracted by

appropriate strata allocations during the analysis of a dataset containing both regulated and

effector variables.

Moving from univariate (Chapter 3) to multivariate analysis (Chapter 4) and later in this Thesis

to stratified multivariate (Chapter 5) analysis, a significant increase is noted with regards

to the potential features that can be extracted from the channels of an input time-series.

For example in the case of Chapter 4, where the input time-series contained four different

channels, using solely univariate analysis allowed the extraction of four features, one per
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channel, while multivariate analysis increased that number to fifteen, since features from all

possible combinations could be extracted. In the case of Chapter 5 the potential features

increase even more when considering that at the preprocessing level, the EEG channel was

split into different frequency bands moving from four to eight channels but also for each

multivariate feature, multiple variations of the same feature could potentially be extracted

based on which channel was allocated to the prioritized stratum. This provides opportunities

for the measurement of newly accessible dynamics and the improvement of physiological

state classification. At the same time however, it increases feature dimensionality [160]. Con-

sequently, further development and implementation of an artifactual segment detection tool

as the one presented in Chapter 4 or the utilization of the Stratified Framework presented

in Chapter 5 for the deployment of a physiological state classification architecture would

benefit from the separation of the available data in training, validation, and testing sets and the

utilization of an appropriate feature selection process. A study with this focus would have to

consider the choice of the feature selection algorithm in alignment with the utilized classifier,

similarly to the process followed by recent research which combined: features extracted using

the refined multiscale SampEn and Bubble Entropy algorithms with adaptive lasso regression

and a neural network classifier for the formulation of a predictive model for pressure injury

based on abdominal temperature signals [161].

As stated in 2.6, Network Physiology has become a prominent framework for the analysis

of interactions between different organ systems [18, 105]. However, the originally suggested

utilization of graphs limits the framework in the utilization of bivariate features that are pro-

duced based on the combination of two input channels, since the edges of a graph are drawn

between two nodes with each node representing one channel [106]. The current utilization of

features extracted from more than two channels, within the scope of Network Physiology, is

kept separate from its graph based architecture since there is no respective structure for their

representation. To fully integrate multivariate and stratified multivariate features with Network

Physiology, future research can expand the framework to utilize hypergraphs that can contain

edges which connect more than two nodes [162, 163]. Such an extension would allow the

direct integration of multivariate features into a respective hypergraph structure, while it would

allow the study of further extensions such as the potential utilization of a multilayer hypergraph

structure [164] formulated based on Stratified Entropy. Within that context each hypergraph

layer can be used to represent a particular strata allocation structure with multiple strata

allocations being used within a study.

As discussed in Section 2.4.2 one of the main advantages of the PEn and DisEn algorithms

is that their computational time scales linearly with the size of the input data O(N). This is

a significant improvement over algorithms with quadratic scaling O(N2) such as ApEn and

SampEn. However, when considering the utilization of DisEn within the scope of multivariate

multiscale analysis it becomes clear that multiple iterations of the algorithm are required to
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extract the multiple features of interest. Consequently, further computational optimizations can

become a necessity for applications requiring close to real time monitoring. For this reason,

the utilization of parallel computing processes is an important direction of future work, both

with regards to the parallel computation of features which can be done at the implementation

level but also through the optimization of the algorithm itself to run certain processes in parallel

when respective hardware is available.

Finally, the work presented in this Thesis utilized the DisEn algorithms as a consistent platform

that was tested, modified and expanded upon within the scope of the presented research.

However, the resulting findings provide useful insights that can be implemented in different

platforms of entropy quantification algorithms. Of direct interest is the implementation of the

Stratified Entropy framework to the mvMPE algorithm due its similarities to the mvMDE al-

gorithm under the prerequisite that a variation capable of formulating multivariate embedded

vectors containing samples from multiple input channels is utilized. Furthermore, it would be

important to investigate the implementation of the framework using the multivariate multiscale

variation of SampEn since despite the quadratic scaling of its computational time, it remains

one of the most widely applied entropy quantification algorithms [31].

6.3 Conclusion of the Thesis

This Thesis provided an in depth assessment on the effects of artifactual samples in the

performance of univariate and multivariate entropy quantification through the lens of the DisEn

algorithm. It made steps towards addressing the challenge of low data quality by investigating

and providing solutions both through the approach of improving the robustness of the entropy

quantification algorithm and the approach of partially automating the process of separating

between valid and artifactual data segments. Furthermore, it expanded upon the existing

forms of analysis by introducing the framework of Stratified Entropy and presenting an imple-

mentation of the framework through the novel SmvMDE algorithms with the aim of improving

the process of measuring the variability of multi-channel physiological time-series.
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Supplementary Figures for Chapter 3
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Figure A.1: Original and disrupted signal segments of RR in support of Section 3.4.4.
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Figure A.2: Original versus disrupted dispersion patterns of RR using the original DisEn
algorithm in support of Section 3.4.4.
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Figure A.3: Original and disrupted signal segments of EEG in support of Section 3.4.4.
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Figure A.4: Original versus disrupted dispersion patterns of EEG using the original DisEn
algorithm in support of Section 3.4.4.
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Figure A.5: Original and disrupted signal segments of RI in support of Section 3.4.4.
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Figure A.6: Original versus disrupted dispersion patterns of RI using the original DisEn
algorithm in support of Section 3.4.4.
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Figure A.7: Original and disrupted signal segments of RR in support of Section 3.4.5.
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Figure A.8: Original versus disrupted dispersion patterns of RR using DynSkipDisEn with a
cutoff = 0.7 in support of Section 3.4.5.
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Figure A.9: Original versus disrupted dispersion patterns of RR using DynSkipDisEn with a
cutoff = 1 in support of Section 3.4.5.
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Figure A.10: Original and disrupted signal segments of EEG.
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Figure A.11: Original versus disrupted dispersion patterns of EEG using DynSkipDisEn with
a cutoff = 0.7 in support of Section 3.4.5.
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Figure A.12: Original versus disrupted dispersion patterns of EEG using DynSkipDisEn with
a cutoff = 1 in support of Section 3.4.5.
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Figure A.13: Original and disrupted signal segments of RI in support of Section 3.4.5.
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Figure A.14: Original versus disrupted dispersion patterns of RI using DynSkipDisEn with a
cutoff = 0.7 in support of Section 3.4.5.
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Figure A.15: Original versus disrupted dispersion patterns of RI using DynSkipDisEn with a
cutoff = 1 in support of Section 3.4.5.
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