27 research outputs found

    Vertex coloring of plane graphs with nonrepetitive boundary paths

    Full text link
    A sequence s1,s2,...,sk,s1,s2,...,sks_1,s_2,...,s_k,s_1,s_2,...,s_k is a repetition. A sequence SS is nonrepetitive, if no subsequence of consecutive terms of SS form a repetition. Let GG be a vertex colored graph. A path of GG is nonrepetitive, if the sequence of colors on its vertices is nonrepetitive. If GG is a plane graph, then a facial nonrepetitive vertex coloring of GG is a vertex coloring such that any facial path is nonrepetitive. Let πf(G)\pi_f(G) denote the minimum number of colors of a facial nonrepetitive vertex coloring of GG. Jendro\vl and Harant posed a conjecture that πf(G)\pi_f(G) can be bounded from above by a constant. We prove that πf(G)24\pi_f(G)\le 24 for any plane graph GG

    New Bounds for Facial Nonrepetitive Colouring

    Full text link
    We prove that the facial nonrepetitive chromatic number of any outerplanar graph is at most 11 and of any planar graph is at most 22.Comment: 16 pages, 5 figure

    Nonrepetitive Colourings of Planar Graphs with O(logn)O(\log n) Colours

    Get PDF
    A vertex colouring of a graph is \emph{nonrepetitive} if there is no path for which the first half of the path is assigned the same sequence of colours as the second half. The \emph{nonrepetitive chromatic number} of a graph GG is the minimum integer kk such that GG has a nonrepetitive kk-colouring. Whether planar graphs have bounded nonrepetitive chromatic number is one of the most important open problems in the field. Despite this, the best known upper bound is O(n)O(\sqrt{n}) for nn-vertex planar graphs. We prove a O(logn)O(\log n) upper bound

    On the facial Thue choice index via entropy compression

    Full text link
    A sequence is nonrepetitive if it contains no identical consecutive subsequences. An edge colouring of a path is nonrepetitive if the sequence of colours of its consecutive edges is nonrepetitive. By the celebrated construction of Thue, it is possible to generate nonrepetitive edge colourings for arbitrarily long paths using only three colours. A recent generalization of this concept implies that we may obtain such colourings even if we are forced to choose edge colours from any sequence of lists of size 4 (while sufficiency of lists of size 3 remains an open problem). As an extension of these basic ideas, Havet, Jendrol', Sot\'ak and \v{S}krabul'\'akov\'a proved that for each plane graph, 8 colours are sufficient to provide an edge colouring so that every facial path is nonrepetitively coloured. In this paper we prove that the same is possible from lists, provided that these have size at least 12. We thus improve the previous bound of 291 (proved by means of the Lov\'asz Local Lemma). Our approach is based on the Moser-Tardos entropy-compression method and its recent extensions by Grytczuk, Kozik and Micek, and by Dujmovi\'c, Joret, Kozik and Wood

    Planar graphs have bounded nonrepetitive chromatic number

    Get PDF
    A colouring of a graph isnonrepetitiveif for every path of even order, thesequence of colours on the first half of the path is different from the sequence of colours onthe second half. We show that planar graphs have nonrepetitive colourings with a boundednumber of colours, thus proving a conjecture of Alon, Grytczuk, Hałuszczak and Riordan(2002). We also generalise this result for graphs of bounded Euler genus, graphs excluding afixed minor, and graphs excluding a fixed topological minor

    Gráfszínezések és gráfok felbontásai = Colorings and decompositions of graphs

    Get PDF
    A nem-ismétlő színezéseket a véletlen módszer alkalmazhatósága miatt kezdték el vizsgálni. Felső korlátot adtunk a színek számára, amely a maximum fok és a favastagság lineáris függvénye. Olyan színezéseket is vizsgáltunk, amelyek egy síkgráf oldalain nem-ismétlők. Sejtés volt, hogy véges sok szín elég. Ezt bizonyítottuk 24 színnel. A kromatikus számot és a metszési számot algoritmikusan nehéz meghatározni. Ezért meglepő Albertson egy friss sejtése, amely kapcsolatot állít fel közöttük: ha egy gráf kromatikus száma r, akkor metszési száma legalább annyi, mint a teljes r csúcsú gráfé. Bizonyítottuk a sejtést, ha r<3.57n, valamint ha 12<r<17. Ez utóbbi azért érdekes, mert a teljes r csúcsú gráf metszési száma csak r<13 esetén ismert. A témakör legfontosabb nyitott kérdése a Hadwiger-sejtés, mely szerint minden r-kromatikus gráf tartalmazza a teljes r csúcsú gráfot minorként. Ennek általánosításaként fogalmazták meg a lista színezési Hadwiger sejtést: ha egy gráf nem tartalmaz teljes r csúcsú gráfot minorként, akkor az r-lista színezhető. Megmutattuk, hogy ez a sejtés hamis. Legalább cr színre szükségünk van bizonyos gráfokra, ahol c=4/3. Thomassennel vetettük fel azt a kérdést, hogy milyen feltétel garantálja, hogy G élei felbonthatók egy adott T fa példányaira. Legyen Y az a fa, melynek fokszámsorozata (1,1,1,2,3). Megmutattuk, hogy minden 287-szeresen élösszefüggő fa felbomlik Y-okra, ha az élszám osztható 4-gyel. | Nonrepetitive colorings often use the probabilistic method. We gave an upper bound as a linear function of the maximum degree and the tree-width. We also investigated colorings, which are nonrepetitive on faces of plane graphs. As conjectured, a finite number of colors suffice. We proved it by 24 colors. The chromatic and crossing numbers are both difficult to compute. The recent Albertson's conjecture is a surprising relation between the two: if the chromatic number is r, then the crossing number is at least the crossing number of the complete graph on r vertices. We proved this claim, if r<3.57n, or 12<r<17. The latter is remarkable, since the crossing number of the complete graph is only known for r<13. The most important open question of the field is Hadwiger's conjecture: every r-chromatic graph contains as a minor the complete graph on r vertices. As a generalisation, the following is the list coloring Hadwiger conjecture: if a graph does not contain as a minor the complete graph on r vertices , then the graph is r-list colorable. We proved the falsity of this claim. In our examples, at least cr colors are necessary, where c=4/3. Decomposition of graphs is well-studied. Thomassen and I posed the question of a sufficient connectivity condition, which guaranties a T-decomposition. Let Y be the tree with degree sequence (1,1,1,2,3). We proved every 287-edge connected graph has a Y-decomposition, if the size is divisible by four
    corecore