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Abstract: A colouring of a graph is nonrepetitive if for every path of even order, the
sequence of colours on the first half of the path is different from the sequence of colours on
the second half. We show that planar graphs have nonrepetitive colourings with a bounded
number of colours, thus proving a conjecture of Alon, Grytczuk, Hałuszczak and Riordan
(2002). We also generalise this result for graphs of bounded Euler genus, graphs excluding a
fixed minor, and graphs excluding a fixed topological minor.

1 Introduction

A vertex colouring of a graph is nonrepetitive if there is no path for which the first half of the path is
assigned the same sequence of colours as the second half. More precisely, a k-colouring of a graph G is a
function φ that assigns one of k colours to each vertex of G. A path (v1,v2, . . . ,v2t) of even order in G is
repetitively coloured by φ if φ(vi) = φ(vt+i) for i ∈ {1, . . . , t}. A colouring φ of G is nonrepetitive if no
path of G is repetitively coloured by φ . Observe that a nonrepetitive colouring is proper, in the sense that
adjacent vertices are coloured differently. The nonrepetitive chromatic number π(G) is the minimum
integer k such that G admits a nonrepetitive k-colouring.
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The classical result in this area is by Thue [51], who proved in 1906 that every path is nonrepetitively 3-
colourable. Starting with the seminal work of Alon, Grytczuk, Hałuszczak, and Riordan [3], nonrepetitive
colourings of general graphs have recently been widely studied; see the surveys [11, 26–28, 50] and other
references [1–14, 16, 17, 20–23, 25–38, 40–45, 48–54].

Several graph classes are known to have bounded nonrepetitive chromatic number. In particular, cycles
are nonrepetitively 3-colourable (except for a finite number of exceptions) [12], trees are nonrepetitively
4-colourable [9, 36], outerplanar graphs are nonrepetitively 12-colourable [5, 36], and more generally,
every graph with treewidth k is nonrepetitively 4k-colourable [36]. Graphs with maximum degree ∆ are
nonrepetitively O(∆2)-colourable [3, 17, 27, 32], and graphs excluding a fixed immersion have bounded
nonrepetitive chromatic number [53].

It is widely recognised that the most important open problem in the field of nonrepetitive graph
colouring is whether planar graphs have bounded nonrepetitive chromatic number. It was first asked
by Alon et al. [3]. The best known lower bound is 11, due to Ochem (see [16]). The best known upper
bound is O(logn) where n is the number of vertices, due to Dujmović, Frati, Joret, and Wood [16]. Note
that several works have studied colourings of planar graphs in which only facial paths are required to be
nonrepetitively coloured [4, 8, 33, 34, 44, 45, 48].

This paper proves that planar graphs have bounded nonrepetitive chromatic number.

Theorem 1. Every planar graph G satisfies π(G)6 768.

We generalise this result for graphs of bounded Euler genus, for graphs excluding any fixed minor,
and for graphs excluding any fixed topological minor.1 The result for graphs excluding a fixed minor
confirms a conjecture of Grytczuk [27, 28].

Theorem 2. Every graph G with Euler genus g satisfies π(G)6 256max{2g,3}.

Theorem 3. For every graph X, there is an integer k such that every X-minor-free graph G satisfies
π(G)6 k.

Theorem 4. For every graph X, there is an integer k such that every X-topological-minor-free graph G
satisfies π(G)6 k.

The proofs of Theorems 1 and 2 are given in Section 3, and the proofs of Theorems 3 and 4 are
given in Section 4. Before that in Section 2 we introduce the tools used in our proofs, namely so-called
strongly nonrepetitive colourings, tree-decompositions and treewidth, and strong products. With these
tools in hand, the above theorems quickly follow from recent results of Dujmović, Joret, Micek, Morin,
Ueckerdt, and Wood [18] that show that planar graphs and other graph classes are subgraphs of certain
strong products.

1The Euler genus of the orientable surface with h handles is 2h. The Euler genus of the non-orientable surface with c
cross-caps is c. The Euler genus of a graph G is the minimum integer k such that G embeds in a surface of Euler genus k. Of
course, a graph is planar if and only if it has Euler genus 0; see [39] for more about graph embeddings in surfaces. A graph
X is a minor of a graph G if a graph isomorphic to X can be obtained from a subgraph of G by contracting edges. A graph
X is a topological minor of a graph G if a subdivision of X is a subgraph of G. If G contains X as a topological minor, then
G contains X as a minor. If G contains no X minor, then G is X-minor-free. If G contains no X topological minor, then G is
X-topological-minor-free.
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2 Tools

Undefined terms and notation can be found in [15].

2.1 Strongly Nonrepetitive Colourings

A key to all our proofs is to consider a strengthening of nonrepetitive colouring defined below.
For a graph G, a lazy walk in G is a sequence of vertices v1, . . . ,vk such that for each i ∈ {1, . . . ,k},

either vivi+1 is an edge of G, or vi = vi+1. A lazy walk can be thought of as a walk in the graph obtained
from G by adding a loop at each vertex. For a colouring φ of G, a lazy walk v1, . . . ,v2k is φ -repetitive if
φ(vi) = φ(vi+k) for each i ∈ {1, . . . ,k}.

A colouring φ is strongly nonrepetitive if for every φ -repetitive lazy walk v1, . . . ,v2k, there exists
i ∈ {1, . . . ,k} such that vi = vi+k. Let π∗(G) be the minimum number of colours in a strongly nonrepet-
itive colouring of G. Since a path has no repeated vertices, every strongly nonrepetitive colouring is
nonrepetitive, and thus π(G)6 π∗(G) for every graph G.

2.2 Layerings

A layering of a graph G is a partition (V0,V1, . . .) of V (G) such that for every edge vw ∈ E(G), if v ∈Vi

and w ∈Vj, then |i− j|6 1. If r is a vertex in a connected graph G and Vi is the set of vertices at distance
exactly i from r in G for all i> 0, then the layering (V0,V1, . . .) is called a BFS layering of G.

Consider a layering (V0,V1, . . .) of a graph G. Let H be a connected component of G[Vi∪Vi+1∪·· · ],
for some i> 1. The shadow of H is the set of vertices in Vi−1 adjacent to some vertex in H. The layering
is shadow-complete if every shadow is a clique. This concept was introduced by Kündgen and Pelsmajer
[36] and implicitly by Dujmović, Morin, and Wood [19].

We will need the following result.

Lemma 5 ([19, 36]). Every BFS-layering of a connected chordal graph is shadow-complete.

2.3 Treewidth

A tree-decomposition of a graph G consists of a collection {Bx ⊆V (G) : x ∈V (T )} of subsets of V (G),
called bags, indexed by the vertices of a tree T , and with the following properties:
• for every vertex v of G, the set {x ∈V (T ) : v ∈ Bx} induces a non-empty (connected) subtree of T ,

and
• for every edge vw of G, there is a vertex x ∈V (T ) for which v,w ∈ Bx.

The width of such a tree-decomposition is max{|Bx| : x ∈V (T )}−1. The treewidth of a graph G is the
minimum width of a tree-decomposition of G. Tree-decompositions were introduced by Robertson and
Seymour [46]. Treewidth measures how similar a given graph is to a tree, and is particularly important in
structural and algorithmic graph theory.

Barát and Varjú [5] and Kündgen and Pelsmajer [36] independently proved that graphs of bounded
treewidth have bounded nonrepetitive chromatic number. Specifically, Kündgen and Pelsmajer [36]
proved that every graph with treewidth k is nonrepetitively 4k-colourable, which is the best known
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VIDA DUJMOVIĆ, LOUIS ESPERET, GWENAËL JORET, BARTOSZ WALCZAK, DAVID R. WOOD

bound. Theorem 7 below strengthens this result. The proof is almost identical to that of Kündgen and
Pelsmajer [36] and depends on the following lemma. A lazy walk v1, . . . ,v2k is boring if vi = vi+k for
each i ∈ {1, . . . ,k}.

Lemma 6 ([36]). Every path P has a 4-colouring φ such that every φ -repetitive lazy walk is boring.

Theorem 7. For every graph G of treewidth at most k > 0, we have π∗(G)6 4k.

Proof. The proof proceeds by induction on k. If k = 0, then G has no edges, so assigning the same colour
to all the vertices gives a strongly nonrepetitive colouring. For the rest of the proof, assume that k > 1.
Consider a tree-decomposition of G of width at most k. By adding edges if necessary, we may assume that
every bag of the tree-decomposition is a clique. Thus, G is connected and chordal, with clique-number at
most k+1.

Let (V0,V1, . . .) be a BFS-layering of G. We refer to Vi as the set of vertices at depth i. Note that the
subgraph G[Vi] of G induced by each layer Vi has treewidth at most k−1.2 Thus the spanning subgraph
H of G induced by all edges whose endpoints have the same depth also has treewidth at most k−1. By
the induction hypothesis, H has a strongly nonrepetitive colouring φ1 with 4k−1 colours. The graph P
obtained from G by contracting each set Vi (which might not induce a connected graph) into a single
vertex xi is a path, and thus, by Lemma 6, P has a 4-colouring φ2 such that every φ2-repetitive walk is
boring. For each i> 0 and each vertex u ∈Vi, set φ(u) := (φ1(u),φ2(xi)). The colouring φ of G uses at
most 4 ·4k−1 = 4k colours.

We now prove that φ is strongly nonrepetitive. Let W be a φ -repetitive lazy walk v1, . . . ,v2k. Our goal
is to prove that v j = v j+k for some j ∈ {1, . . . ,k}. Let d be the minimum depth of a vertex in W .

Let W ′ be the sequence of vertices obtained from W by removing all vertices at depth greater than d.
We claim that W ′ is a lazy walk. To see this, consider vertices vi,vi+1, . . . ,vi+t of W such that vi and vi+t

have depth d but vi+1, . . . ,vi+t−1 all have depth greater than d; thus, vi+1, . . . ,vi+t−1 were removed when
constructing W ′. Then, the vertices vi+1, . . . ,vi+t−1 lie in a connected component of the graph induced
by the vertices of depth greater than d, thus it follows that vi and vi+t are adjacent or equal by Lemma 5.
This shows that W ′ is a lazy walk in G[Vd ].

The projection of W on P is a φ2-repetitive lazy walk in P, and is thus boring by Lemma 6. It
follows that the vertices v j and v j+k of W have the same depth for every j ∈ {1, . . . ,k}. In particular, v j

was removed from W ′ if and only if v j+k was. Hence, there are indices 16 i1 < i2 < · · ·< i` 6 k such
that W ′ = vi1 ,vi2 , . . . ,vi` ,vi1+k,vi2+k, . . . ,vi`+k. Since W is (φ1,φ2)-repetitive, it follows that W ′ is also
(φ1,φ2)-repetitive and in particular W ′ is φ1-repetitive. By the definition of φ1, there is an index ir such
that vir = vir+k, which completes the proof.

2.4 Strong Products

The strong product of graphs A and B, denoted by A�B, is the graph with vertex set V (A)×V (B), where
distinct vertices (v,x),(w,y) ∈ V (A)×V (B) are adjacent if (1) v = w and xy ∈ E(B), or (2) x = y and
vw ∈ E(A), or (3) vw ∈ E(A) and xy ∈ E(B). Nonrepetitive colourings of graph products have been

2This is clear for i = 0 (since k > 1), and for i> 1 this follows from the fact that the graph G[Vi] plus a universal vertex is a
minor of G (contract V0 ∪ ·· ·∪Vi−1 into a single vertex and remove Vi+1,Vi+2, . . . ), and thus has treewidth at most k. Since
removing a universal vertex decreases the treewidth by exactly one, it follows that G[Vi] has treewidth at most k−1.
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studied in [7, 35, 36, 42]. Indeed, Kündgen and Pelsmajer [36] note that their method shows that the
strong product of k paths is nonrepetitively 4k-colourable, which is a precursor to the following results.

Lemma 8. Let H be a graph with an `-colouring φ2 such that every φ2-repetitive lazy walk is boring.
For every graph G, we have π∗(G�H)6 `π∗(G).

Proof. Consider a strongly nonrepetitive colouring φ1 of G with π∗(G) colours. For any two vertices
u ∈ V (G) and v ∈ V (H), we define the colour φ(u,v) of the vertex (u,v) ∈ V (G�H) by φ(u,v) :=
(φ1(u),φ2(v)). We claim that this is a strongly nonrepetitive colouring of G�H. To see this, consider a
φ -repetitive lazy walk W = (u1,v1), . . . ,(u2k,v2k) in G�H. By the definition of the strong product and
the definition of φ , the projection WG = u1,u2, . . . ,u2k of W on G is a φ1-repetitive lazy walk in G and the
projection WH = v1,v2, . . . ,v2k of W on H is a φ2-repetitive lazy walk in H. By the definition of φ1, there
is an index i such that ui = ui+k. By the definition of φ2, we have v j = v j+k for every j ∈ {1, . . . ,k}. In
particular, vi = vi+k and (ui,vi) = (ui+k,vi+k), which completes the proof.

Applying Lemma 6, we obtain the following immediate corollary.

Corollary 9. For every graph G and every path P, we have π∗(G�P)6 4π∗(G).

By taking H = K` and a proper `-colouring φ2 of K`, we also obtain the following direct corollary to
Lemma 8.

Corollary 10. For every graph G and every integer `> 1, we have π∗(G�K`)6 `π∗(G).

3 Planar Graphs and Graphs of Bounded Genus

The following recent result by Dujmović et al. [18] is a key theorem.

Theorem 11 ([18]). Every planar graph is a subgraph of H�P�K3 for some graph H with treewidth
at most 3 and some path P.

Corollary 9 and Theorems 7 and 11 imply that for every planar graph G,

π(G)6 π
∗(G)6 π

∗(H�P�K3)6 3π
∗(H�P)6 3 ·4π

∗(H)6 3 ·4 ·43 = 768,

which proves Theorem 1.

For graphs of bounded Euler genus, Dujmović et al. [18] proved the following strengthening of
Theorem 11.

Theorem 12 ([18]). Every graph G of Euler genus g is a subgraph of H�P�Kmax{2g,3} for some graph
H with treewidth at most 3 and some path P.

Corollary 9 and Theorems 7 and 12 imply that for every graph G with Euler genus g,

π(G)6 π
∗(G)6 π

∗(H�P�Kmax{2g,3})6max{2g,3} ·π∗(H�P)6max{2g,3} ·4 ·π∗(H)

6max{2g,3} ·44

= 256max{2g,3},

which proves Theorem 2.
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4 Excluded Minors

Our results for graphs excluding a minor depend on the following version of the graph minor structure
theorem of Robertson and Seymour [47]. A tree-decomposition (Bx : x ∈V (T )) of a graph G is r-rich if
Bx∩By is a clique in G on at most r vertices, for each edge xy ∈ E(T ).

Theorem 13 ([20]). For every graph X, there are integers r > 1 and k > 1 such that every X-minor-free
graph G0 is a spanning subgraph of a graph G that has an r-rich tree-decomposition such that each bag
induces a k-almost-embeddable subgraph of G.

We omit the definition of k-almost embeddable from this paper, since we do not need it. All we need
to know is the following theorem of Dujmović et al. [18].

Theorem 14 ([18]). Every k-almost embeddable graph is a subgraph of H�P�Kmax{6k,1} for some
graph H with treewidth at most 11k+10.

Theorems 7 and 14 and Corollary 9 imply that for every k-almost embeddable graph G,

π(G)6 π
∗(G)6 π

∗(H�P�Kmax{6k,1})6 6k π
∗(H�P)6 6k ·4π

∗(H)6 6k ·411(k+1). (4.1)

Dujmović et al. [20] proved the following lemma, which generalises a result of Kündgen and Pelsmajer
[36].

Lemma 15 ([20]). Let G be a graph that has an r-rich tree-decomposition such that the subgraph induced
by each bag is nonrepetitively c-colourable. Then π(G)6 c4r.

Theorem 13 and Lemma 15 and (4.1) with c = 6k ·411(k+1) imply that for every graph X and every
X-minor-free graph G,

π(G)6 π
∗(G)6 6k ·411(k+1) ·4r,

which implies Theorem 3 since k and r depend only on X .
To obtain our result for graphs excluding a fixed topological minor, we use the following version of

the structure theorem of Grohe and Marx [24].

Theorem 16 ([20]). For every graph X, there are integers r > 1 and k> 1 such that every X-topological-
minor-free graph G0 is a spanning subgraph of a graph G that has an r-rich tree-decomposition such that
the subgraph induced by each bag is k-almost-embeddable or has at most k vertices with degree greater
than k.

Alon et al. [3] proved that graphs with maximum degree ∆ are nonrepetitively O(∆2)-colourable. The
best known bound is due to Dujmović et al. [17].

Theorem 17 ([17]). Every graph with maximum degree ∆> 2 is nonrepetitively (∆2+O(∆5/3))-colourable.

Theorem 17 implies that if a graph has at most k vertices with degree greater than k, then it is
nonrepetitively c′-colourable for some constant c′ = k2 +O(k5/3)+ k. Theorem 16 and Lemma 15 and
(4.1) with c = max{6k ·411(k+1),c′} imply that for every graph X , every X-topological-minor-free graph
G satisfies π(G)6 π∗(G)6 c ·4r, which implies Theorem 4, since c and r depend only on X .
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[8] PROSENJIT BOSE, VIDA DUJMOVIĆ, PAT MORIN, AND LUCAS RIOUX-MALDAGUE.
New bounds for facial nonrepetitive colouring. Graphs Combin., 33(4):817–832, 2017.
https://dx.doi.org/10.1007/s00373-017-1816-1. 2

[9] BOŠTJAN BREŠAR, JAROSŁAW GRYTCZUK, SANDI KLAVŽAR, STANISŁAW NIWCZYK, AND

IZTOK PETERIN. Nonrepetitive colorings of trees. Discrete Math., 307(2):163–172, 2007.
https://dx.doi.org/10.1016/j.disc.2006.06.017. MR: 2285186. 2

[10] BOŠTJAN BREŠAR AND SANDI KLAVŽAR. Square-free colorings of graphs. Ars Combin., 70:3–13,
2004. MR: 2023057. 2

[11] PANAGIOTIS CHEILARIS, ERNST SPECKER, AND STATHIS ZACHOS. Neochromatica. Comment.
Math. Univ. Carolin., 51(3):469–480, 2010. http://www.dml.cz/dmlcz/140723. MR: 2741880.
2

[12] JAMES D. CURRIE. There are ternary circular square-free words of length n for n> 18. Electron. J.
Combin., 9(1):#N10, 2002. https://doi.org/10.37236/1671. MR: 1936865. 2

[13] JAMES D. CURRIE. Pattern avoidance: themes and variations. Theoret. Comput. Sci., 339(1):7–18,
2005. https://dx.doi.org/10.1016/j.tcs.2005.01.004. MR: 2142070. 2
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