2,564 research outputs found

    Facial Expression Recognition

    Get PDF

    Recognising facial expressions in video sequences

    Full text link
    We introduce a system that processes a sequence of images of a front-facing human face and recognises a set of facial expressions. We use an efficient appearance-based face tracker to locate the face in the image sequence and estimate the deformation of its non-rigid components. The tracker works in real-time. It is robust to strong illumination changes and factors out changes in appearance caused by illumination from changes due to face deformation. We adopt a model-based approach for facial expression recognition. In our model, an image of a face is represented by a point in a deformation space. The variability of the classes of images associated to facial expressions are represented by a set of samples which model a low-dimensional manifold in the space of deformations. We introduce a probabilistic procedure based on a nearest-neighbour approach to combine the information provided by the incoming image sequence with the prior information stored in the expression manifold in order to compute a posterior probability associated to a facial expression. In the experiments conducted we show that this system is able to work in an unconstrained environment with strong changes in illumination and face location. It achieves an 89\% recognition rate in a set of 333 sequences from the Cohn-Kanade data base

    Efficient illumination independent appearance-based face tracking

    Get PDF
    One of the major challenges that visual tracking algorithms face nowadays is being able to cope with changes in the appearance of the target during tracking. Linear subspace models have been extensively studied and are possibly the most popular way of modelling target appearance. We introduce a linear subspace representation in which the appearance of a face is represented by the addition of two approxi- mately independent linear subspaces modelling facial expressions and illumination respectively. This model is more compact than previous bilinear or multilinear ap- proaches. The independence assumption notably simplifies system training. We only require two image sequences. One facial expression is subject to all possible illumina- tions in one sequence and the face adopts all facial expressions under one particular illumination in the other. This simple model enables us to train the system with no manual intervention. We also revisit the problem of efficiently fitting a linear subspace-based model to a target image and introduce an additive procedure for solving this problem. We prove that Matthews and Baker’s Inverse Compositional Approach makes a smoothness assumption on the subspace basis that is equiva- lent to Hager and Belhumeur’s, which worsens convergence. Our approach differs from Hager and Belhumeur’s additive and Matthews and Baker’s compositional ap- proaches in that we make no smoothness assumptions on the subspace basis. In the experiments conducted we show that the model introduced accurately represents the appearance variations caused by illumination changes and facial expressions. We also verify experimentally that our fitting procedure is more accurate and has better convergence rate than the other related approaches, albeit at the expense of a slight increase in computational cost. Our approach can be used for tracking a human face at standard video frame rates on an average personal computer

    Expressive Body Capture: 3D Hands, Face, and Body from a Single Image

    Full text link
    To facilitate the analysis of human actions, interactions and emotions, we compute a 3D model of human body pose, hand pose, and facial expression from a single monocular image. To achieve this, we use thousands of 3D scans to train a new, unified, 3D model of the human body, SMPL-X, that extends SMPL with fully articulated hands and an expressive face. Learning to regress the parameters of SMPL-X directly from images is challenging without paired images and 3D ground truth. Consequently, we follow the approach of SMPLify, which estimates 2D features and then optimizes model parameters to fit the features. We improve on SMPLify in several significant ways: (1) we detect 2D features corresponding to the face, hands, and feet and fit the full SMPL-X model to these; (2) we train a new neural network pose prior using a large MoCap dataset; (3) we define a new interpenetration penalty that is both fast and accurate; (4) we automatically detect gender and the appropriate body models (male, female, or neutral); (5) our PyTorch implementation achieves a speedup of more than 8x over Chumpy. We use the new method, SMPLify-X, to fit SMPL-X to both controlled images and images in the wild. We evaluate 3D accuracy on a new curated dataset comprising 100 images with pseudo ground-truth. This is a step towards automatic expressive human capture from monocular RGB data. The models, code, and data are available for research purposes at https://smpl-x.is.tue.mpg.de.Comment: To appear in CVPR 201
    corecore