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Abstract

We present geometric and photometric head modeling techniques that are
computationally e�cient, and yet achieve a high level of realistic animation.
First, we reconstruct a textured face model from range data obtained by a
Cyberware scanner. The geometric model is selectively re�ned at features of
interest while simultaneously extrapolating missing data, and the �nal head
model is suitable for real{time facial animation. We then propose a photometry
compensation algorithm using the OpenGL graphics library, that reduces the
photometric discrepancies at the 3D level between a synthesized view of the
model and the same view of the real person. We evaluate the performance of
the proposed algorithm using computer generated images.

Due to the realism of the geometric and photometric models, enhanced
analysis/synthesis cooperations are made possible in such applications as face
cloning, head tracking, face recognition, video indexing or person authenti�ca-
tion.
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1 INTRODUCTION 1

1 Introduction

This article is organized as follows: section 2 presents a face model construction
algorithm from range and texture data; then, section 3 deals with facial expressions
modeling; in section 4, we propose a 3D illumination compensation (or lighting
reconstruction) algorithm to match synthesized model images with real views. And
�nally, we discuss the potential applications of our modules in section 5.

2 Face Model Construction

2.1 Related Work

In the literature, it seems that the easiest way to build a new 3D face model for a
person is to start from an existing model, and to adapt it to conform the user's face,
with more or less automated algorithms, and starting from various kinds of input
data.

For example, one may choose to work with 2D images of a new person: Chaut
et al. adapt by hand a spline{based generic mask using a face and pro�le view of
the person, and texture it with pixels extracted from both views [1]. This process
can be automated by image processing techniques, as in the chain described by
Tang and Huang, based on the extraction of characteristic facial points [2]. In this
category, we also �nd the work of Reinders et al., who use only one view for \head
and shoulders" video{coding applications in [3]. It is clear that 2D images lack
information about the user's face geometry, and as a result, such adapted models
have a poor geometric resolution.

Another approach consists in using texture and range data, obtained from cylin-
drical geometry Cyberware range �nders [5]1. Such a dataset is a highly realistic
representation of the speaker's face, but it cannot be used directly as a face model for
several reasons. First, this dataset is too dense (in average 1.4 million vertices) for
real{time computation. Furthermore, due to the limitation of the acquisition tech-
nology, the dataset is often incomplete and sometimes includes some outliers (as in
�gure 1(a)). Building a higher level face model from this kind of dataset tradition-
ally required considerable user input, until Lee, Terzopoulos and Waters developed
a framework to adapt their generic \skin and muscle" facial model to the range
and texture data [6]. Although very authentic and fully functional, their model is
computationally complex, and cannot be animated at interactive rates on standard
workstations.

We propose alternative face modeling techniques from texture and range data,
yielding models that are simpler to manipulate and animate. We will see that our
algorithms are not only able to create a new model from range and texture data
with limited user interaction (section 2.2), but also able to automatically adapt an
existing model to new data (section 2.3).

1Cyberware scanners are not the only devices capable to produce a range and texture dataset:
for example, Proesmans and Van Gool developped an inexpensive system which analyses a grid
projected on a face [4].
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(a) (b) (c) (d)

Figure 1: Reconstruction of a geometric model from a Cyberware dataset: (a)
range data (b) initialization; (c) main deformation; (d) mesh re�nement | We have
interactively selected the area of interest (chin, ears, nose, lips) where the re�nement
is performed. The resulting mesh has 2084 vertices and was built in less than 5mns
on a DEC Alphastation 233Mhz.

2.2 Mesh Recovery from Range Data

As we said in the introduction, a Cyberware dataset is not directly suitable for
local deformation computation, and more generally for manipulations. To achieve
both visual realism and real{time computation, we need a geometric model with
a limited number of vertices but with enough details in order to distinguish facial
features such as the lips or eyebrows. We have developed a reconstruction system
based on deformable simplex meshes [7] to build such models. Unlike classic ap-
proaches, those deformable models are handled as discrete meshes, not relying on
any parameterization. Because they are topological dual of triangulations, they can
be easily converted as a set of triangles for display purposes or standard 3D �le
formats like VRML [8]. Finally, they can represent geometric models independently
of their topology and they lead to fast computations.

In �gure 1, we show the di�erent stages of reconstruction from a Cyberware
dataset where the hair information is missing and with some outliers. The de-
formable model is initialized as a sphere (�gure 1(b)) and then deformed to roughly
approximate the face geometry (�gure 1(c)). The last stage consists in re�ning the
mesh model based on the distance between the data and surface curvature (�g-
ure 1(d)).

The face model is then texture{mapped by associating to each vertex of the
simlex mesh the (u; v) texture coordinates of its closest point in the range data.
Where no range data is available (at the hair level for instance), we project the
vertex on the image plane through the cylindrical transformation of the Cyberware
acquisition. This algorithm therefore produces an accurate geometric and texture
face model.

2.3 Mesh Registration from Range Data

In addition to recovering geometric models with a prescribed number of vertices,
deformable surfaces described as simplex meshes are used to perform non-rigid reg-
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(a) (b) (c) (d)

Figure 2: Reconstruction of a geometric model for a new person starting from an ex-
isting head model representing someone else (Non-rigid Registration): (a) the initial
textured simplex mesh; (b) the dataset; (c) mesh registration when only applying
local deformations; (d) mesh registration with global and local deformations
| (c) and (d) use the texture of model (a) mapped onto the range data (b) after
registration.

istration on range data. The goal is to �t a given geometric face model on a Cyber-
ware dataset while preserving the correspondence between them. In another words,
we would like the vertices on the nose of the recovered model to be on the nose of
the original model.

Our non{rigid registration method proceeds by �rst applying global transfor-
mations (such as rigid or a�ne transformations) on the reference face model to
minimize the distance between the model and the dataset. Those transformations
are applied iteratively as in the ICP algorithm [9]. We have then introduced a new
framework (see [10]) that combines a global and a local displacement �eld in a sim-
ple manner. Since we proceed in a global to local manner, the method maintains the
geometric correspondence between the di�erent facial features. Figure 2(d) shows
that the facial features correspondence is kept, because it uses the texture of 2(a)
mapped onto the mesh model built from 2(b).

3 Facial Animation Possibilities

Let us �rst recall that the face geometric mesh has been re�ned at speci�c facial
features which are meant to be animated locally. Our triangular patches wireframe
o�ers two general ways to precisely generate facial expressions, via mesh vertices
displacements, and via texture modi�cation. Once again, the next discussion will
be oriented by real{time and e�ciency concerns.

3.1 Geometric Animations

Mesh morphing consists in interpolating the mesh vertices positions between ex-
treme facial expressions. It is particularly suitable for real{time and performance
animation because it involves only linear combinations between prede�ned vertex
positions, and allows to smoothly deform a surface as complex and pliable as the
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(a)

            

(b)

Figure 3: Facial expression modeling between a face model and other range
data from the same speaker: (a) closed{mouthed/closed{eye face model initially
aligned with the open{mouthed/open{eyed texture and range data (b) open{
mouthed/open{eyed face model obtained after deformation

human face. It generally produces less unwanted e�ects like bulging, creasing and
tearing than does facial animation created with bones, lattices, or direct manipula-
tions [11]. The only requirement for this technique is to have a collection of separate
wireframes in di�erent expressions with the same number of vertices in the same
exact order. The two next sections will emphasize how our geometrical model can
ease this task.

3.1.1 Mesh Iterative Adaptation.

Given two Cyberware images of the same speaker but with di�erent facial expres-
sions, we �t the same geometric model with the same number of vertices on both
datasets. To get a nice synthesis of the facial expression, it is important to ensure
a proper correspondence of facial features between the two models. However, the
speaker's face may not be in the same position in the two range images. To com-
pensate for displacements, we are using the non{rigid registration method described
in section 2.3 (the only di�erence is that the source and target models represent the
same speaker, with another facial expression). In �gure 3, we show the registra-
tion between a face model with closed eyes and closed mouth, and a range image
corresponding to open eyes and open mouth.

3.1.2 Mesh Edition.

Alternatively to the mesh iterative adaptation, if Cyberware scans are not available
for all facial expressions, it is straightforward to export the wireframe in a standard
3D �le format to modify it with commercial 3D modeling software [12], or to insert
additional separate primitives to represent the teeth and tongue.

3.2 Texture Animation

The texture mapped onto the mesh vertices can be altered at rendition time either
by switching texture patterns, or blending images. Figure 4 shows results of the
model's gaze algorithm by switching between several prede�ned textures.
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Figure 4: Gaze control by texture switching | the middle texture is the original
data from the scanner, the other ones were altered to modify the gaze.

Besides switching, OpenGL is capable to blend di�erent textures together to
produce a new one. This possibility is highly interesting to fade wrinkles into the
model texture at low{cost in terms of computations, compared to hard{coding them
in heavy spline{based meshes [13].

4 Photometric Modeling

4.1 Related Work

The goal of photometric modeling is to reduce the photometric discrepancies between
the speaker's face in the real world environment and his synthetic model directly at
the 3D level, and can be seen as an alternative and elegant technique to other 2D
view{based techniques, such as histogram �tting [14]. In [15], Eisert et al. propose
an algorithm to recover the 3D position and intensity of a single in�nite light source
from a static view assuming an initial guess of the position prior to the motion
estimation. Bozda�gi and al. [16] have a more complex approach that determines
the mean illumination direction and surface albedo to be included in their Optical
Flow equation for motion estimation. Both approaches are based on a Lambertian
illumination model (i.e. composed of ambient and di�use lighting) without specular
reections and cast shadows. However, in the real world, cast shadows, and specular
highlights (if the user does not have make{up), are likely to occur on a face, and will
be di�cult to compensate using only a single light as in the previous algorithms.

In [17], Belhumeur derives that the set of images of a convex Lambertian object
under all possible lighting conditions is a cone, which can be constructed from
three properly chosen images, and empirically shows that cast shadows and specular
reections generally do not damage the conic aspect of the set.

Motivated by the reconstruction possibility of an arbitrary illuminated view
from several object images, we propose to recover the face illumination from a single
speaker's view by using a set of light sources at di�erent in�nite positions. The main
advantage of our algorithm is that it can rely on the OpenGL industry{standard
library to use hardware acceleration and compensate unknown light sources with
ambient, di�use and specular components at the 3D level in real{time. A similar
idea, applied to interior design, is found in [18], where the scene global lighting
is computed from the illumination of some objects painted by hand by the scene
designer. In our algorithm, the synthetic scene lighting is adjusted by observing the
illumination of the facial features in the real environment.
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4.2 Proposed Algorithm

Using OpenGL, we implemented the following general lighting equation, including
ambient, di�use and specular reections induced by N independent in�nite light
sources for a 3D textured primitive, with an additional degree of freedom (a lumi-
nance o�set Lo�set)

Lobject = Lo�set + Ltexture � (Aambient+
i=N�1X

i=0

[(maxfli:n; 0g)�Di + (maxfsi:n; 0g)
shininess � Si])

(1)

where Lobject denotes the �nal pixel luminance, Ltexture the corresponding texture
luminance, Aambient the global ambient light intensity, Di and Si the di�use and

specular intensity for the ith light, n and li the object normal and the ith light

source direction, si the normalized bisector between the ith light source direction
and the viewing direction, and �nally \shininess" the specular exponent controlling
the size and brightness of specular highlights.

One can readily verify that the rendered image pixels values in equation 1 are
linear with respect to the components of the light sources. Therefore, all the un-
knowns (the light source intensities, and the luminance o�set if needed) can be
estimated by a simple least mean square inversion for all the face pixels. The esti-
mation process does not need to be constrained to output positive intensities, since
OpenGL can deal with negative light intensities. Therefore, our algorithm consists
in the following steps:

� align the synthetic model with the speaker's image;

� extract, from the real speaker's image, pixel luminance values around the facial
features of interest. Pixels being too bright are discarded to avoid areas where
the camera sensor might have saturated (the luminance of such pixels would
not depend linearly on the light sources contributions);

� extract, from the synthetic image, the corresponding texture luminance values
and object lighting normals;

� the light sources intensities (and the global luminance o�set, if allowed) are
�nally estimated by solving equation 1 in the least mean square sense.

4.3 Experimental Results

To validate the assumption that unknown light sources can be compensated by a
set of lights at prede�ned positions, we conducted experiments on synthetic images
in order to avoid problems of misalignment between a face model and an unknown
image. Four images were created respectively with a left di�use illumination (5(a)),
an ambient and left di�use lighting (5(b)), ambient, left di�use and specular com-
ponents (5(c)), and ambient, di�use and specular illuminations from two di�erent
light sources (5(d)).

With these images, we performed three kinds of experiments, A, B and C. In
A, we compensated the face illumination with lights located at the same positions
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(d)

Figure 5: The synthetic test images used in the validation experiments.

than the sources used to synthesize the images, enabling and disabling the lumi-
nance degree of freedom of equation 1. Such experiments can point out numerical
di�erences between the lighting model of equation 1, implemented by oating point
computations in our software, and the OpenGL lighting operations, implemented
by dedicated hardware. Then, in experiments B, we tried to evaluate the quality of
the compensation using light sources at prede�ned positions to reproduce the light-
ing coming from unknown directions: we compensated the face illumination with
all the light sources on but the ones used for the image creation (our software has
seven prede�ned lights, namely top, bottom, left, right, and three lights around the
camera). Table 1 presents the mean error and the root of the mean square error
around the model facial features. Finally, in experiment C, we show the typical
compensation error for a real world case 6(b).

Experiments A suggest that roundo� errors are marginal in the algorithm, and
that the equation 1 is correctly implemented by OpenGL, whereas experiments B
prove that it is fairly reasonable to expect to compensate ambient, di�use and spec-
ular reections of unknown intensities and unknown directions by a limited set of
lights at prede�ned locations. And at last, although the compensation square error
for the real user's view is not as good as for synthetic images, our algorithm has
a good performance on real faces, especially when allowing a luminance o�set. We
believe that it is due to the misalignment between the face and the synthetic model,
which cannot be perfectly matched \by hand", to the uncalibrated acquisition cam-
era, which does not realize a perfect perspective projection, and to the texture map
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Table 1: Illumination compensation mean errors and roots of mean quadratic errors
for experiments A (between synthetic views using the same lighting directions),
B (between synthetic views using di�erent lighting directions) and C (between a
synthetic view and a real view).

Image 5(a) 5(b) 5(c) 5(d) 6(b)

No compensation 74:25/77:66 79:92/87:31 78:84/86:79 36:21/44:27 51:40/62:42
Exp. A �0:01/0:11 �0:01/0:09 �0:01/0:09 �0:04/0:36
Exp. A + o�set 0:06/0:24 �0:02/0:15 �0:02/0:15 0:00/0:36
Exp. B 0:15/0:39 0:04/4:12 �0:02/3:56 �0:02/3:55
Exp. B + o�set 0:02/0:30 �0:20/4:12 �0:43/3:58 �0:14/3:56
Exp. C �3:98/15:12
Exp. C + o�set �0:02/9:31

of the face model: it should actually correspond to the user's face viewed in am-
bient lighting, but the scanning device has built{in light sources that are powerful
enough to create parasitic di�use and specular reections on the user's face during
the texture acquisition.

We do not claim that our algorithm recovers the exact scene illumination, but
it contributes to the face model realism compared to the real face view.

5 Concluding Remarks

In this paper, we proposed geometric and photometric algorithms to build an ac-
curate and e�cient head model of a person. These modeling techniques have been
successfully used in the context of a face cloning system [19], where the speaker's
face is robustly tracked by an analysis/synthesis feedback loop, without any mark
or makeup on his face to highlight features of interest. The key idea of the feed-
back loop is to synthesize search patterns for the speaker's facial features that take
into account the face 3D lighting and the variations of the patterns due to scale
changes and large rotations out of the image plane [20]. Nevertheless, an original
use of our modules could be possible for person authenti�cation or face indexing
applications. The basic principle would be to match a real face view against face
models, instead of matching a real view with images taken from a database, which
may not correspond to the current lighting conditions, the person's pose, and his
facial expression.

Given a database of 3D face models, one possible procedure could be to associate
the 2D image of the face (that must be recognized, analyzed, classi�ed...), with
one of the model. Using photometric and geometric manipulations, the �rst stage
would consist in a \rough" alignment between the face and the synthesized views
of the models. Then, the alignment could be re�ned using a second step of local
deformations (texture and geometry) corresponding to the face expression to obtain
a \full" alignment, measured by a score.
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Figure 6: Illumination compensation on a real face | from left to right: the speaker's
head model with no directional light source, the speaker in a real environment, and
the same model with illumination compensation (with and without an illumination
o�set).

Another alternative would be to use eigenfaces generated from 3Dmodels: eigen-
faces are known to loose their discriminative power when the face illumination, pose
and/or expression vary too much from those of the training database. After a
preliminary photometric calibration stage with a known person, the illumination
compensation parameters could be reused to generate 2D images of the face models
in the database, and therefore build \on the y" an adaptive and scalable eigenface
basis, which would take into account the pose and/or the facial expressions under
the current viewing conditions.

As a conclusion, our geometric and photometric algorithms can be seen as a new
way to build a compact and simple representation of a head while capturing at the
3D level all the pose, facial expression and photometric variability of a person. For
facial image analysis and recognition technologies, instead of trying to �nd biometric
and invariant measurements, our face model could provide measurements that are
adapted to a given situation by o�ering a scalable search space. Of course, the
above{mentionned applications should be further discussed, and compared to other
approaches, already published in the literature [21].



REFERENCES 10

References

[1] P.-E. Chaut, A. Sadeghin, A. Saulnier, and M.-L. Viaud. Cr�eation et animation
de clones. In Imagina | M�eta{mondes/Metaverses, pages 244{257, Monaco,
F�evrier 1997.

[2] L. Tang and T. S. Huang. Automatic construction of 3D human face models
based on 2D images. In IEEE International Conference on Image Processing,
Lausanne, Switzerland, September 1996.

[3] M.J.T. Reinders, P.L.J. van Beek, B. Sankur, and J.C.A. van der Lubbe. Facial
feature localization and adaptation of a generic face model for model{based
coding. Signal Processing: Image Communication, 7:57{74, 1995.

[4] M. Proesmans and L. Van Gool. One{shot 3D{shape and texture acquisition
of facial data. In Audio{ and Video{based Biometric Person Authenti�cation,
pages 411{418, Crans{Montana, Switzerland, March 1997.

[5] CYBERWARE Home Page. URL http://www.cyberware.com.

[6] Y. Lee, D. Terzopoulos, and K. Waters. Realistic modeling for facial animation.
In SIGGRAPH 95, pages 55{62, Los Angeles, California, August 6-11 1995.

[7] H. Delingette. General object reconstruction based on simplex meshes. Tech-
nical Report 3111, INRIA, February 1997. ftp://ftp.inria.fr/INRIA/tech-
reports/RR/RR-3111.ps.gz.

[8] VRML. URL http://vrml.sgi.com.

[9] P. J. Besl and N. D. McKay. A method for registration of 3-D shapes. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 14(2):239{256,
February 1992.

[10] J. Montagnat and H. Delingette. A Hybrid Framework for Surface Registra-
tion and Deformable Models. In Computer Vision and Pattern Recognition,
CVPR'97, pages 1041{1046, San Juan, Puerto Rico, June 1997.

[11] G. Maestri. Animating faces using morphs. Digital Magic, pages 27{28, June
1997.

[12] J. Ostermann and E. Haratsch. An animation de�nition interface | Rapid
design of MPEG{4 compliant animated faces and bodies. In International
Workshop on Synthetic{Natural Hybrid Coding and Three Dimensional Imag-
ing, Rhodes, Greece, September 1997.

[13] M.-L. Viaud. Animation Faciale avec Rides d'Expression, Vieillissement et
Parole. PhD thesis, Universit�e de Paris XI{Orsay, Orsay, France, 1992.

[14] T. S. Jebara and A. Pentland. Parametrized structure from motion for 3D
adaptive feedback tracking of faces. In IEEE Conference on Computer Vision
and Pattern Recognition, November 1996.



REFERENCES 11

[15] P. Eisert and B. Girod. Model{based 3D{motion estimation with illumination
compensation. In 6th International Conference on Image Processing and its
Applications (IPA 97), pages 194{198, Dublin, Ireland, July 1997.

[16] G. Bozda�gi, M. Tekalp, and L. Onural. 3{D motion estimation and wireframe
adaptation including photometric e�ects for model{based coding of facial image
sequences. IEEE Transactions on Circuits and Systems for Video Technology,
pages 246{256, June 1994.

[17] P. Belhumeur and D. Kreigman. What is the set of images of an object under
all possible lighting conditions? In IEEE Conference on Computer Vision and
Pattern Recognition, November 1996.

[18] C. Schoeneman, J. Dorsey, B. Smits, J. Arvo, and D. Greenberg. Painting with
light. In SIGGRAPH 93, pages 143{146, Anaheim, California, August 1-6 1993.

[19] S. Valente and J.-L. Dugelay. A multi{site teleconferencing system using VR
paradigms. In Ecmast, Milano, Italy, 1997.

[20] Mpeg demo of the face tracking
system. URL http://www.eurecom.fr/�valente/Clonage/valente-8points.mpg.
(1782100 bytes).

[21] Theme section. Face and gesture recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 19(7), July 1997.


