26 research outputs found

    Enhanced Face Image Super-Resolution Using Generative Adversarial Network

    Get PDF
    We proposed an Enhanced Face Image Generative Adversarial Network (EFGAN). Single image super-resolution (SISR) using a convolutional is often a problem in enhancing more refined texture upscaling factors. Our approach focused on mean square error (MSE), validation peak-signal-to-noise ratio (PSNR), and Structural Similarity Index (SSIM). However, the peak-signal-to-noise ratio has a high value to detail. The generative Adversarial Network (GAN) loss function optimizes the super-resolution (SR) model. Thus, the generator network is developed with skip connection architecture to improve performance feature distribution

    Joint-SRVDNet: Joint Super Resolution and Vehicle Detection Network

    Get PDF
    In many domestic and military applications, aerial vehicle detection and super-resolutionalgorithms are frequently developed and applied independently. However, aerial vehicle detection on super-resolved images remains a challenging task due to the lack of discriminative information in the super-resolved images. To address this problem, we propose a Joint Super-Resolution and Vehicle DetectionNetwork (Joint-SRVDNet) that tries to generate discriminative, high-resolution images of vehicles fromlow-resolution aerial images. First, aerial images are up-scaled by a factor of 4x using a Multi-scaleGenerative Adversarial Network (MsGAN), which has multiple intermediate outputs with increasingresolutions. Second, a detector is trained on super-resolved images that are upscaled by factor 4x usingMsGAN architecture and finally, the detection loss is minimized jointly with the super-resolution loss toencourage the target detector to be sensitive to the subsequent super-resolution training. The network jointlylearns hierarchical and discriminative features of targets and produces optimal super-resolution results. Weperform both quantitative and qualitative evaluation of our proposed network on VEDAI, xView and DOTAdatasets. The experimental results show that our proposed framework achieves better visual quality than thestate-of-the-art methods for aerial super-resolution with 4x up-scaling factor and improves the accuracy ofaerial vehicle detection

    Alignment-Free and High-Frequency Compensation in Face Hallucination

    Get PDF
    Face hallucination is one of learning-based super resolution techniques, which is focused on resolution enhancement of facial images. Though face hallucination is a powerful and useful technique, some detailed high-frequency components cannot be recovered. It also needs accurate alignment between training samples. In this paper, we propose a high-frequency compensation framework based on residual images for face hallucination method in order to improve the reconstruction performance. The basic idea of proposed framework is to reconstruct or estimate a residual image, which can be used to compensate the high-frequency components of the reconstructed high-resolution image. Three approaches based on our proposed framework are proposed. We also propose a patch-based alignment-free face hallucination. In the patch-based face hallucination, we first segment facial images into overlapping patches and construct training patch pairs. For an input low-resolution (LR) image, the overlapping patches are also used to obtain the corresponding high-resolution (HR) patches by face hallucination. The whole HR image can then be reconstructed by combining all of the HR patches. Experimental results show that the high-resolution images obtained using our proposed approaches can improve the quality of those obtained by conventional face hallucination method even if the training data set is unaligned

    A Practical Case Study: Face Recognition on Low Quality Images Using Gabor Wavelet and Support Vector Machines

    Get PDF
    Face recognition is a problem that arises on many real world applications, such as those related with Ambient Intelligence (AmI). The specific nature and goals of AmI applications, however, requires minimizing the invasiveness of data collection methods, often resulting in a drastic reduction of data quality and a plague of unforeseen effects which can put standard face recognition systems out of action. In order to deal with this, a face recognition system for AmI applications must not only be carefully designed but also subject to an exhaustive configuration plan to ensure it offers the required accuracy, robustness and real-time performance. This document covers the design and tuning of a holistic face recognition system targeting an Ambient Intelligence scenario. It has to work under partially uncontrolled capturing conditions: frontal images with pose variation up to 40 degrees, changing illumination, variable image size and degraded quality. The proposed system is based on Support Vector Machine (SVM) classifiers and applies Gabor Filters intensively. A complete sensitivity analysis shows how the recognition accuracy can be boosted through careful configuration and proper parameter setting, although the most adequate setting depends on the requirements for the final system.This work was supported in part by Projects CICYT TIN2008-06742-C02-02/TSI, CICYT TEC2008-06732-C02-02/TEC, SINPROB,CAMMADRINET S-0505 /TIC/0255 and DPS2008-07029-C02-02.Publicad

    An investigation of a new social networks contact suggestion based on face recognition algorithm

    Get PDF
    Automated comparison of faces in the photographs is a well established discipline. The main aim of this paper is to describe an approach whereby face recognition can be used in suggestion of a new contacts. The new contact suggestion is a common technique used across all main social networks. Our approach uses a freely available face comparison called "Betaface" together with our automated processig of the user´s Facebook profile. The research´s main point of interest is the comparison of friend´s facial images in a social network itself, how to process such a great amount of photos and what additional sources of data should be used. In this approach we used our automated processing algorithm Betaface in the social network Facebook and for the additional data, the Flickr social network was used. The results and their quality are discussed at the end
    corecore