26,287 research outputs found

    Real time hand gesture recognition including hand segmentation and tracking

    Get PDF
    In this paper we present a system that performs automatic gesture recognition. The system consists of two main components: (i) A unified technique for segmentation and tracking of face and hands using a skin detection algorithm along with handling occlusion between skin objects to keep track of the status of the occluded parts. This is realized by combining 3 useful features, namely, color, motion and position. (ii) A static and dynamic gesture recognition system. Static gesture recognition is achieved using a robust hand shape classification, based on PCA subspaces, that is invariant to scale along with small translation and rotation transformations. Combining hand shape classification with position information and using DHMMs allows us to accomplish dynamic gesture recognition

    Achieving the Way for Automated Segmentation of Nuclei in Cancer Tissue Images through Morphology-Based Approach: a Quantitative Evaluation

    Get PDF
    In this paper we address the problem of nuclear segmentation in cancer tissue images, that is critical for specific protein activity quantification and for cancer diagnosis and therapy. We present a fully automated morphology-based technique able to perform accurate nuclear segmentations in images with heterogeneous staining and multiple tissue layers and we compare it with an alternate semi-automated method based on a well established segmentation approach, namely active contours. We discuss active contours’ limitations in the segmentation of immunohistochemical images and we demonstrate and motivate through extensive experiments the better accuracy of our fully automated approach compared to various active contours implementations

    Accurate and reliable segmentation of the optic disc in digital fundus images

    Get PDF
    We describe a complete pipeline for the detection and accurate automatic segmentation of the optic disc in digital fundus images. This procedure provides separation of vascular information and accurate inpainting of vessel-removed images, symmetry-based optic disc localization, and fitting of incrementally complex contour models at increasing resolutions using information related to inpainted images and vessel masks. Validation experiments, performed on a large dataset of images of healthy and pathological eyes, annotated by experts and partially graded with a quality label, demonstrate the good performances of the proposed approach. The method is able to detect the optic disc and trace its contours better than the other systems presented in the literature and tested on the same data. The average error in the obtained contour masks is reasonably close to the interoperator errors and suitable for practical applications. The optic disc segmentation pipeline is currently integrated in a complete software suite for the semiautomatic quantification of retinal vessel properties from fundus camera images (VAMPIRE)

    A Survey on Ear Biometrics

    No full text
    Recognizing people by their ear has recently received significant attention in the literature. Several reasons account for this trend: first, ear recognition does not suffer from some problems associated with other non contact biometrics, such as face recognition; second, it is the most promising candidate for combination with the face in the context of multi-pose face recognition; and third, the ear can be used for human recognition in surveillance videos where the face may be occluded completely or in part. Further, the ear appears to degrade little with age. Even though, current ear detection and recognition systems have reached a certain level of maturity, their success is limited to controlled indoor conditions. In addition to variation in illumination, other open research problems include hair occlusion; earprint forensics; ear symmetry; ear classification; and ear individuality. This paper provides a detailed survey of research conducted in ear detection and recognition. It provides an up-to-date review of the existing literature revealing the current state-of-art for not only those who are working in this area but also for those who might exploit this new approach. Furthermore, it offers insights into some unsolved ear recognition problems as well as ear databases available for researchers

    Segmentation of Three-dimensional Images with Parametric Active Surfaces and Topology Changes

    Get PDF
    In this paper, we introduce a novel parametric method for segmentation of three-dimensional images. We consider a piecewise constant version of the Mumford-Shah and the Chan-Vese functionals and perform a region-based segmentation of 3D image data. An evolution law is derived from energy minimization problems which push the surfaces to the boundaries of 3D objects in the image. We propose a parametric scheme which describes the evolution of parametric surfaces. An efficient finite element scheme is proposed for a numerical approximation of the evolution equations. Since standard parametric methods cannot handle topology changes automatically, an efficient method is presented to detect, identify and perform changes in the topology of the surfaces. One main focus of this paper are the algorithmic details to handle topology changes like splitting and merging of surfaces and change of the genus of a surface. Different artificial images are studied to demonstrate the ability to detect the different types of topology changes. Finally, the parametric method is applied to segmentation of medical 3D images
    corecore