92 research outputs found

    Hierarchical and Spatial Structures for Interpreting Images of Man-made Scenes Using Graphical Models

    Get PDF
    The task of semantic scene interpretation is to label the regions of an image and their relations into meaningful classes. Such task is a key ingredient to many computer vision applications, including object recognition, 3D reconstruction and robotic perception. It is challenging partially due to the ambiguities inherent to the image data. The images of man-made scenes, e. g. the building facade images, exhibit strong contextual dependencies in the form of the spatial and hierarchical structures. Modelling these structures is central for such interpretation task. Graphical models provide a consistent framework for the statistical modelling. Bayesian networks and random fields are two popular types of the graphical models, which are frequently used for capturing such contextual information. The motivation for our work comes from the belief that we can find a generic formulation for scene interpretation that having both the benefits from random fields and Bayesian networks. It should have clear semantic interpretability. Therefore our key contribution is the development of a generic statistical graphical model for scene interpretation, which seamlessly integrates different types of the image features, and the spatial structural information and the hierarchical structural information defined over the multi-scale image segmentation. It unifies the ideas of existing approaches, e. g. conditional random field (CRF) and Bayesian network (BN), which has a clear statistical interpretation as the maximum a posteriori (MAP) estimate of a multi-class labelling problem. Given the graphical model structure, we derive the probability distribution of the model based on the factorization property implied in the model structure. The statistical model leads to an energy function that can be optimized approximately by either loopy belief propagation or graph cut based move making algorithm. The particular type of the features, the spatial structure, and the hierarchical structure however is not prescribed. In the experiments, we concentrate on terrestrial man-made scenes as a specifically difficult problem. We demonstrate the application of the proposed graphical model on the task of multi-class classification of building facade image regions. The framework for scene interpretation allows for significantly better classification results than the standard classical local classification approach on man-made scenes by incorporating the spatial and hierarchical structures. We investigate the performance of the algorithms on a public dataset to show the relative importance of the information from the spatial structure and the hierarchical structure. As a baseline for the region classification, we use an efficient randomized decision forest classifier. Two specific models are derived from the proposed graphical model, namely the hierarchical CRF and the hierarchical mixed graphical model. We show that these two models produce better classification results than both the baseline region classifier and the flat CRF.Hierarchische und räumliche Strukturen zur Interpretation von Bildern anthropogener Szenen unter Nutzung graphischer Modelle Ziel der semantischen Bildinterpretation ist es, Bildregionen und ihre gegenseitigen Beziehungen zu kennzeichnen und in sinnvolle Klassen einzuteilen. Dies ist eine der Hauptaufgabe in vielen Bereichen des maschinellen Sehens, wie zum Beispiel der Objekterkennung, 3D Rekonstruktion oder der Wahrnehmung von Robotern. Insbesondere Bilder anthropogener Szenen, wie z.B. Fassadenaufnahmen, sind durch starke räumliche und hierarchische Strukturen gekennzeichnet. Diese Strukturen zu modellieren ist zentrale Teil der Interpretation, für deren statistische Modellierung graphische Modelle ein geeignetes konsistentes Werkzeug darstellen. Bayes Netze und Zufallsfelder sind zwei bekannte und häufig genutzte Beispiele für graphische Modelle zur Erfassung kontextabhängiger Informationen. Die Motivation dieser Arbeit liegt in der überzeugung, dass wir eine generische Formulierung der Bildinterpretation mit klarer semantischer Bedeutung finden können, die die Vorteile von Bayes Netzen und Zufallsfeldern verbindet. Der Hauptbeitrag der vorliegenden Arbeit liegt daher in der Entwicklung eines generischen statistischen graphischen Modells zur Bildinterpretation, welches unterschiedlichste Typen von Bildmerkmalen und die räumlichen sowie hierarchischen Strukturinformationen über eine multiskalen Bildsegmentierung integriert. Das Modell vereinheitlicht die existierender Arbeiten zugrunde liegenden Ideen, wie bedingter Zufallsfelder (conditional random field (CRF)) und Bayesnetze (Bayesian network (BN)). Dieses Modell hat eine klare statistische Interpretation als Maximum a posteriori (MAP) Schätzer eines mehrklassen Zuordnungsproblems. Gegeben die Struktur des graphischen Modells und den dadurch definierten Faktorisierungseigenschaften leiten wir die Wahrscheinlichkeitsverteilung des Modells ab. Dies führt zu einer Energiefunktion, die näherungsweise optimiert werden kann. Der jeweilige Typ der Bildmerkmale, die räumliche sowie hierarchische Struktur ist von dieser Formulierung unabhängig. Wir zeigen die Anwendung des vorgeschlagenen graphischen Modells anhand der mehrklassen Zuordnung von Bildregionen in Fassadenaufnahmen. Wir demonstrieren, dass das vorgeschlagene Verfahren zur Bildinterpretation, durch die Berücksichtigung räumlicher sowie hierarchischer Strukturen, signifikant bessere Klassifikationsergebnisse zeigt, als klassische lokale Klassifikationsverfahren. Die Leistungsfähigkeit des vorgeschlagenen Verfahrens wird anhand eines öffentlich verfügbarer Datensatzes evaluiert. Zur Klassifikation der Bildregionen nutzen wir ein Verfahren basierend auf einem effizienten Random Forest Klassifikator. Aus dem vorgeschlagenen allgemeinen graphischen Modell werden konkret zwei spezielle Modelle abgeleitet, ein hierarchisches bedingtes Zufallsfeld (hierarchical CRF) sowie ein hierarchisches gemischtes graphisches Modell. Wir zeigen, dass beide Modelle bessere Klassifikationsergebnisse erzeugen als die zugrunde liegenden lokalen Klassifikatoren oder die einfachen bedingten Zufallsfelder

    Learning Grammars for Architecture-Specific Facade Parsing

    Get PDF
    International audienceParsing facade images requires optimal handcrafted grammar for a given class of buildings. Such a handcrafted grammar is often designed manually by experts. In this paper, we present a novel framework to learn a compact grammar from a set of ground-truth images. To this end, parse trees of ground-truth annotated images are obtained running existing inference algorithms with a simple, very general grammar. From these parse trees, repeated subtrees are sought and merged together to share derivations and produce a grammar with fewer rules. Furthermore, unsupervised clustering is performed on these rules, so that, rules corresponding to the same complex pattern are grouped together leading to a rich compact grammar. Experimental validation and comparison with the state-of-the-art grammar-based methods on four diff erent datasets show that the learned grammar helps in much faster convergence while producing equal or more accurate parsing results compared to handcrafted grammars as well as grammars learned by other methods. Besides, we release a new dataset of facade images from Paris following the Art-deco style and demonstrate the general applicability and extreme potential of the proposed framework

    Disparate View Matching

    Get PDF
    Matching of disparate views has gained significance in computer vision due to its role in many novel application areas. Being able to match images of the same scene captured during day and night, between a historic and contemporary picture of a scene, and between aerial and ground-level views of a building facade all enable novel applications ranging from loop-closure detection for structure-from-motion and re-photography to geo-localization of a street-level image using reference imagery captured from the air. The goal of this work is to develop novel features and methods that address matching problems where direct appearance-based correspondences are either difficult to obtain or infeasible because of the lack of appearance similarity altogether. To address these problems, we propose methods that span the appearance-geometry spectrum in terms of both the use of these cues as well as the ability of each method to handle variations in appearance and geometry. First, we consider the problem of geo-localization of a query street-level image using a reference database of building facades captured from a bird\u27s eye view. To address this wide-baseline facade matching problem, a novel scale-selective self-similarity feature that avoids direct comparison of appearance between disparate facade images is presented. Next, to address image matching problems with more extreme appearance variation, a novel representation for matchable images expressed in terms of the eigen-functions of the joint graph of the two images is presented. This representation is used to derive features that are persistent across wide variations in appearance. Next, the problem setting of matching between a street-level image and a digital elevation map (DEM) is considered. Given the limited appearance information available in this scenario, the matching approach has to rely more significantly on geometric cues. Therefore, a purely geometric method to establish correspondences between building corners in the DEM and the visible corners in the query image is presented. Finally, to generalize this problem setting we address the problem of establishing correspondences between 3D and 2D point clouds using geometric means alone. A novel framework for incorporating purely geometric constraints into a higher-order graph matching framework is presented with specific formulations for the three-point calibrated absolute camera pose problem (P3P), two-point upright camera pose problem (Up2p) and the three-plus-one relative camera pose problem

    Line Based Multi-Range Asymmetric Conditional Random Field For Terrestrial Laser Scanning Data Classification

    Get PDF
    Terrestrial Laser Scanning (TLS) is a ground-based, active imaging method that rapidly acquires accurate, highly dense three-dimensional point cloud of object surfaces by laser range finding. For fully utilizing its benefits, developing a robust method to classify many objects of interests from huge amounts of laser point clouds is urgently required. However, classifying massive TLS data faces many challenges, such as complex urban scene, partial data acquisition from occlusion. To make an automatic, accurate and robust TLS data classification, we present a line-based multi-range asymmetric Conditional Random Field algorithm. The first contribution is to propose a line-base TLS data classification method. In this thesis, we are interested in seven classes: building, roof, pedestrian road (PR), tree, low man-made object (LMO), vehicle road (VR), and low vegetation (LV). The line-based classification is implemented in each scan profile, which follows the line profiling nature of laser scanning mechanism.Ten conventional local classifiers are tested, including popular generative and discriminative classifiers, and experimental results validate that the line-based method can achieve satisfying classification performance. However, local classifiers implement labeling task on individual line independently of its neighborhood, the inference of which often suffers from similar local appearance across different object classes. The second contribution is to propose a multi-range asymmetric Conditional Random Field (maCRF) model, which uses object context as post-classification to improve the performance of a local generative classifier. The maCRF incorporates appearance, local smoothness constraint, and global scene layout regularity together into a probabilistic graphical model. The local smoothness enforces that lines in a local area to have the same class label, while scene layout favours an asymmetric regularity of spatial arrangement between different object classes within long-range, which is considered both in vertical (above-bellow relation) and horizontal (front-behind) directions. The asymmetric regularity allows capturing directional spatial arrangement between pairwise objects (e.g. it allows ground is lower than building, not vice-versa). The third contribution is to extend the maCRF model by adding across scan profile context, which is called Across scan profile Multi-range Asymmetric Conditional Random Field (amaCRF) model. Due to the sweeping nature of laser scanning, the sequentially acquired TLS data has strong spatial dependency, and the across scan profile context can provide more contextual information. The final contribution is to propose a sequential classification strategy. Along the sweeping direction of laser scanning, amaCRF models were sequentially constructed. By dynamically updating posterior probability of common scan profiles, contextual information propagates through adjacent scan profiles

    Interpreting Deep Visual Representations via Network Dissection

    Full text link
    The success of recent deep convolutional neural networks (CNNs) depends on learning hidden representations that can summarize the important factors of variation behind the data. However, CNNs often criticized as being black boxes that lack interpretability, since they have millions of unexplained model parameters. In this work, we describe Network Dissection, a method that interprets networks by providing labels for the units of their deep visual representations. The proposed method quantifies the interpretability of CNN representations by evaluating the alignment between individual hidden units and a set of visual semantic concepts. By identifying the best alignments, units are given human interpretable labels across a range of objects, parts, scenes, textures, materials, and colors. The method reveals that deep representations are more transparent and interpretable than expected: we find that representations are significantly more interpretable than they would be under a random equivalently powerful basis. We apply the method to interpret and compare the latent representations of various network architectures trained to solve different supervised and self-supervised training tasks. We then examine factors affecting the network interpretability such as the number of the training iterations, regularizations, different initializations, and the network depth and width. Finally we show that the interpreted units can be used to provide explicit explanations of a prediction given by a CNN for an image. Our results highlight that interpretability is an important property of deep neural networks that provides new insights into their hierarchical structure.Comment: *B. Zhou and D. Bau contributed equally to this work. 15 pages, 27 figure

    kk-Schur functions and affine Schubert calculus

    Full text link
    This book is an exposition of the current state of research of affine Schubert calculus and kk-Schur functions. This text is based on a series of lectures given at a workshop titled "Affine Schubert Calculus" that took place in July 2010 at the Fields Institute in Toronto, Ontario. The story of this research is told in three parts: 1. Primer on kk-Schur Functions 2. Stanley symmetric functions and Peterson algebras 3. Affine Schubert calculusComment: 213 pages; conference website: http://www.fields.utoronto.ca/programs/scientific/10-11/schubert/, updates and corrections since v1. This material is based upon work supported by the National Science Foundation under Grant No. DMS-065264

    LIPIcs, Volume 277, GIScience 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 277, GIScience 2023, Complete Volum
    • …
    corecore