23,038 research outputs found

    Electrical transport in suspended and double gated trilayer graphene

    Full text link
    We present a fabrication process for high quality suspended and double gated trilayer graphene devices. The electrical transport measurements in these transistors reveal a high charge carrier mobility (higher than 20000 cm^2/Vs) and ballistic electric transport on a scale larger than 200nm. We report a particularly large on/off ratio of the current in ABC-stacked trilayers, up to 250 for an average electric displacement of -0.08 V/nm, compatible with an electric field induced energy gap. The high quality of these devices is also demonstrated by the appearance of quantum Hall plateaus at magnetic fields as low as 500mT.Comment: to appear in Applied Physics Letters. Typos corrected and references update

    Quantum Transport and Band Structure Evolution under High Magnetic Field in Few-Layer Tellurene

    Full text link
    Quantum Hall effect (QHE) is a macroscopic manifestation of quantized states which only occurs in confined two-dimensional electron gas (2DEG) systems. Experimentally, QHE is hosted in high mobility 2DEG with large external magnetic field at low temperature. Two-dimensional van der Waals materials, such as graphene and black phosphorus, are considered interesting material systems to study quantum transport, because it could unveil unique host material properties due to its easy accessibility of monolayer or few-layer thin films at 2D quantum limit. Here for the first time, we report direct observation of QHE in a novel low-dimensional material system: tellurene.High-quality 2D tellurene thin films were acquired from recently reported hydrothermal method with high hole mobility of nearly 3,000 cm2/Vs at low temperatures, which allows the observation of well-developed Shubnikov-de-Haas (SdH) oscillations and QHE. A four-fold degeneracy of Landau levels in SdH oscillations and QHE was revealed. Quantum oscillations were investigated under different gate biases, tilted magnetic fields and various temperatures, and the results manifest the inherent information of the electronic structure of Te. Anomalies in both temperature-dependent oscillation amplitudes and transport characteristics were observed which are ascribed to the interplay between Zeeman effect and spin-orbit coupling as depicted by the density functional theory (DFT) calculations

    Observation of Valley Zeeman and Quantum Hall Effects at Q Valley of Few-Layer Transition Metal Disulfides

    Full text link
    In few-layer (FL) transition metal dichalcogenides (TMDC), the conduction bands along the Gamma-K directions shift downward energetically in the presence of interlayer interactions, forming six Q valleys related by three-fold rotational symmetry and time reversal symmetry. In even-layers the extra inversion symmetry requires all states to be Kramers degenerate, whereas in odd-layers the intrinsic inversion asymmetry dictates the Q valleys to be spin-valley coupled. In this Letter, we report the transport characterization of prominent Shubnikov-de Hass (SdH) oscillations for the Q valley electrons in FL transition metal disulfide (TMDs), as well as the first quantum Hall effect (QHE) in TMDCs. Our devices exhibit ultrahigh field-effect mobilities (~16,000 cm2V-1s-1 for FL WS2 and ~10,500 cm2V-1s-1 for FL MoS2) at cryogenic temperatures. Universally in the SdH oscillations, we observe a valley Zeeman effect in all odd-layer TMD devices and a spin Zeeman effect in all even-layer TMD devices.Comment: 20 pages, 4 figure

    A capacitance spectroscopy-based platform for realizing gate-defined electronic lattices

    Full text link
    Electrostatic confinement in semiconductors provides a flexible platform for the emulation of interacting electrons in a two-dimensional lattice, including in the presence of gauge fields. This combination offers the potential to realize a wide host of quantum phases. Here we present a measurement and fabrication scheme that builds on capacitance spectroscopy and allows for the independent control of density and periodic potential strength imposed on a two-dimensional electron gas. We characterize disorder levels and (in)homogeneity and develop and optimize different gating strategies at length scales where interactions are expected to be strong. A continuation of these ideas might see to fruition the emulation of interaction-driven Mott transitions or Hofstadter butterfly physics

    Scale-invariant large nonlocality in polycrystalline graphene

    Get PDF
    The observation of large nonlocal resistances near the Dirac point in graphene has been related to a variety of intrinsic Hall effects, where the spin or valley degrees of freedom are controlled by symmetry breaking mechanisms. Engineering strong spin or valley Hall signals on scalable graphene devices could stimulate further practical developments of spin- and valleytronics. Here we report on scale-invariant nonlocal transport in large-scale chemical vapour deposition graphene under an applied external magnetic field. Contrary to previously reported Zeeman spin Hall effect, our results are explained by field-induced spin-filtered edge states whose sensitivity to grain boundaries manifests in the nonlocal resistance. This phenomenon, related to the emergence of the quantum Hall regime, persists up to the millimeter scale, showing that polycrystalline morphology can be imprinted in nonlocal transport. This suggests that topological Hall effects in large-scale graphene materials are highly sensitive to the underlying structural morphology, limiting practical realizations.Comment: Main paper (14 pages, 5 figures) and Supplementary information (8 pages, 8 figures

    Broken symmetry states and divergent resistance in suspended bilayer graphene

    Get PDF
    Graphene [1] and its bilayer have generated tremendous excitement in the physics community due to their unique electronic properties [2]. The intrinsic physics of these materials, however, is partially masked by disorder, which can arise from various sources such as ripples [3] or charged impurities [4]. Recent improvements in quality have been achieved by suspending graphene flakes [5,6], yielding samples with very high mobilities and little charge inhomogeneity. Here we report the fabrication of suspended bilayer graphene devices with very little disorder. We observe fully developed quantized Hall states at magnetic fields of 0.2 T, as well as broken symmetry states at intermediate filling factors ν=0\nu = 0, ±1\pm 1, ±2\pm 2 and ±3\pm 3. The devices exhibit extremely high resistance in the ν=0\nu = 0 state that grows with magnetic field and scales as magnetic field divided by temperature. This resistance is predominantly affected by the perpendicular component of the applied field, indicating that the broken symmetry states arise from many-body interactions.Comment: 23 pages, including 4 figures and supplementary information; accepted to Nature Physic

    Quantum transport in double-gated graphene devices

    Full text link
    Double-gated graphene devices provide an important platform for understanding electrical and optical properties of graphene. Here we present transport measurements of single layer, bilayer and trilayer graphene devices with suspended top gates. In zero magnetic fields, we observe formation of pnp junctions with tunable polarity and charge densities, as well as a tunable band gap in bilayer graphene and a tunable band overlap in trilayer graphene. In high magnetic fields, the devices' conductance are quantized at integer and fractional values of conductance quantum, and the data are in good agreement with a model based on edge state equilibration at pn interfaces
    corecore