108 research outputs found

    A low-cost photovoltaic emulator for static and dynamic evaluation of photovoltaic power converters and facilities

    Full text link
    In testing maximum power point tracking (MPPT) algorithms running on electronic power converters for photovoltaic (PV) applications, either a PV energy source (PV module or PV array) or a PV emulator is required. With a PV emulator, it is possible to control the testing conditions with accuracy so that it is the preferred option. The PV source is modeled as a current source; thus, the emulator has to work as a current source dependent on its output voltage. The proposed emulator is a buck converter with an average current mode control loop, which allows testing the static and dynamic performance of PV facilities up to 3 kW. To validate the concept, the emulator is used to evaluate the MPPT algorithm of a 230-W experimental microinverter working from a single PV module.This work is supported by the Spanish Ministry of Science and Innovation under grant ENE2009-13998-C02-02.González Medina, R.; Patrao Herrero, I.; Garcerá Sanfeliú, G.; Figueres Amorós, E. (2014). A low-cost photovoltaic emulator for static and dynamic evaluation of photovoltaic power converters and facilities. Progress in Photovoltaics. 22(2):227-241. https://doi.org/10.1002/pip.2243S227241222Prapanavarat, C., Barnes, M., & Jenkins, N. (2002). Investigation of the performance of a photovoltaic AC module. IEE Proceedings - Generation, Transmission and Distribution, 149(4), 472. doi:10.1049/ip-gtd:20020141Durán, E., Andújar, J. M., Galán, J., & Sidrach-de-Cardona, M. (2009). Methodology and experimental system for measuring and displayingIâ Vcharacteristic curves of PV facilities. Progress in Photovoltaics: Research and Applications, 17(8), 574-586. doi:10.1002/pip.909Piliougine, M., Carretero, J., Mora-López, L., & Sidrach-de-Cardona, M. (2011). Experimental system for current-voltage curve measurement of photovoltaic modules under outdoor conditions. Progress in Photovoltaics: Research and Applications, 19(5), 591-602. doi:10.1002/pip.1073Sanchis, P., López, J., Ursúa, A., Gubía, E., & Marroyo, L. (2007). On the testing, characterization, and evaluation of PV inverters and dynamic MPPT performance under real varying operating conditions. Progress in Photovoltaics: Research and Applications, 15(6), 541-556. doi:10.1002/pip.763Kjaer, S. B., Pedersen, J. K., & Blaabjerg, F. (2005). A Review of Single-Phase Grid-Connected Inverters for Photovoltaic Modules. IEEE Transactions on Industry Applications, 41(5), 1292-1306. doi:10.1109/tia.2005.853371Kondrath, N., & Kazimierczuk, M. K. (2012). Comparison of Wide- and High-Frequency Duty-Ratio-to-Inductor-Current Transfer Functions of DC–DC PWM Buck Converter in CCM. IEEE Transactions on Industrial Electronics, 59(1), 641-643. doi:10.1109/tie.2011.2134053Tan, Y. T., Kirschen, D. S., & Jenkins, N. (2004). A Model of PV Generation Suitable for Stability Analysis. IEEE Transactions on Energy Conversion, 19(4), 748-755. doi:10.1109/tec.2004.827707Villalva, M. G., Gazoli, J. R., & Filho, E. R. (2009). Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays. IEEE Transactions on Power Electronics, 24(5), 1198-1208. doi:10.1109/tpel.2009.2013862Shengyi Liu, & Dougal, R. A. (2002). Dynamic multiphysics model for solar array. IEEE Transactions on Energy Conversion, 17(2), 285-294. doi:10.1109/tec.2002.1009482Mekki, H., Mellit, A., Kalogirou, S. A., Messai, A., & Furlan, G. (2010). FPGA-based implementation of a real time photovoltaic module simulator. Progress in Photovoltaics: Research and Applications, 18(2), 115-127. doi:10.1002/pip.950Mohan N Undeland T Robbins W Power electronics: converters, applications and design (3rd edn) 2003Garcera, G., Figueres, E., Pascual, M., & Benavent, J. M. (2004). Robust model following control of parallel buck converters. IEEE Transactions on Aerospace and Electronic Systems, 40(3), 983-997. doi:10.1109/taes.2004.1337469Vorperian, V. (1990). Simplified analysis of PWM converters using model of PWM switch. Continuous conduction mode. IEEE Transactions on Aerospace and Electronic Systems, 26(3), 490-496. doi:10.1109/7.106126Packiam, P., Jain, N. K., & Singh, I. P. (2011). Microcontroller-based simple maximum power point tracking controller for single-stage solar stand-alone water pumping system. Progress in Photovoltaics: Research and Applications, n/a-n/a. doi:10.1002/pip.1207Chuanzong F Shiping S Simulation studying of MPPT control by a new method for photovoltaic power system Electrical and Control Engineering (ICECE), 2011 International Conference on 2011 10.1109/ICECENG.2011.605791

    A current source inverter with series AC capacitors for transformerless grid-tied photovoltaic applications

    Get PDF
    The Current Source Inverter (CSI) is one of the simplest power converter topologies that can convert DC to AC and feed power generated from photovoltaic (PV) cells into the AC grid with a single power conversion stage over the whole PV voltage range. The CSI also provides smooth DC current which is one of the requirements of the PV cells as well as preventing reverse current using unidirectional switches. However, the CSI operates with low efficiency at lower PV voltages, which is where the PV cells produce maximum output power. This low efficiency is caused by large differences in voltage levels between the PV side and the grid side across the converter. This thesis presents an alternative topology to the three-phase CSI by connecting an AC capacitor in series with each AC phase line of the CSI circuit. The presence of the series AC capacitors in the CSI topology allows the AC voltage levels to be adjusted to match the voltage levels of the PV cells. Therefore, the CSI with series AC capacitors is able to operate with optimal DC-AC voltage levels. Performance of the proposed topology is evaluated in comparison to the standard CSI and five other converter topologies based on transformerless circuit concepts selected from those already available in the market and suitable converters discussed in the literature. All converter topologies were modeled and simulated with the SABER simulation software package. The CSI with series AC capacitors prototype was constructed in order to validate the feasibility of the proposed topology and the performance of the proposed topology in comparison to the standard CSI. Simulation results show that the CSI with series AC capacitors provides improved efficiency and better input/output power quality in comparison to the standard CSI. The proposed topology also achieves the lowest output line current distortion, lowest voltage stress across the circuit components and lowest estimated cost of power semiconductors when compared to all considered topologies. Experimental results are also presented to validate the simulation results

    A current source inverter with series AC capacitors for transformerless grid-tied photovoltaic applications

    Get PDF
    The Current Source Inverter (CSI) is one of the simplest power converter topologies that can convert DC to AC and feed power generated from photovoltaic (PV) cells into the AC grid with a single power conversion stage over the whole PV voltage range. The CSI also provides smooth DC current which is one of the requirements of the PV cells as well as preventing reverse current using unidirectional switches. However, the CSI operates with low efficiency at lower PV voltages, which is where the PV cells produce maximum output power. This low efficiency is caused by large differences in voltage levels between the PV side and the grid side across the converter. This thesis presents an alternative topology to the three-phase CSI by connecting an AC capacitor in series with each AC phase line of the CSI circuit. The presence of the series AC capacitors in the CSI topology allows the AC voltage levels to be adjusted to match the voltage levels of the PV cells. Therefore, the CSI with series AC capacitors is able to operate with optimal DC-AC voltage levels. Performance of the proposed topology is evaluated in comparison to the standard CSI and five other converter topologies based on transformerless circuit concepts selected from those already available in the market and suitable converters discussed in the literature. All converter topologies were modeled and simulated with the SABER simulation software package. The CSI with series AC capacitors prototype was constructed in order to validate the feasibility of the proposed topology and the performance of the proposed topology in comparison to the standard CSI. Simulation results show that the CSI with series AC capacitors provides improved efficiency and better input/output power quality in comparison to the standard CSI. The proposed topology also achieves the lowest output line current distortion, lowest voltage stress across the circuit components and lowest estimated cost of power semiconductors when compared to all considered topologies. Experimental results are also presented to validate the simulation results

    Control of the photovoltaic emulator using fuzzy logic based resistance feedback and binary search

    Get PDF
    Photovoltaic (PV) emulator is a power supply that produces similar currentvoltage (I-V) characteristics as the PV module. This device simplifies the testing phase of PV systems under various conditions. The essential part of the PV emulator (PVE) is the control strategy. Its main function is to determine the operating point based on the load of the PVE. The direct referencing method (DRM) is the widely used control strategy due to its simplicity. However, the main drawback of DRM is that the output voltage and current oscillate due to the inconsistent operating point under fixed load. This thesis proposes an improved and robust control strategy named resistance feedback method (RFM) that yields consistent operating point under fixed load, irradiance and temperature. The RFM uses the measured voltage and current to determine the load of the PVE in order to identify the accurate operating point instantaneously. The conventional PV models include the I-V and voltage-current PV model. These PV models are widely used in various control strategies of PVE. Nonetheless, the RFM requires a modified PV model, the current-resistance (I-R) PV model, where the mathematical equation is not available. The implementation of the I-R PV model using the look-up table (LUT) is feasible, but it requires a lot of memory to store the data. A mathematical equation based I-R PV model computed using the binary search method is proposed to overcome the drawback of the LUT. The RFM consists of the I-R PV model and the closed-loop buck converter. In this work, the RFM is investigated with two different controllers, namely the proportional-integral (PI) and fuzzy logic controllers. The RFM using the PI controller (RFMPI) and the RFM using the fuzzy logic controller (RFMF) are tested with resistive load and maximum power point tracking (MPPT) boost converter. The perturb and observe algorithm is selected for the MPPT boost converter. In order to properly design the boost converter for the MPPT application, the sizing of the passive components is proposed, derived and confirmed through simulation. This derivation allows adjustment on the output voltage and current ripple of the PVE when connected to the MPPT boost converter. The simulation results of the proposed control strategies are benchmarked with the conventional DRM. To validate the simulation results, all controllers are implemented using dSPACE ds1104 rapid prototyping hardware platform. The RFM computes an operating point of the PVE at 20% faster than the DRM. The generated output PVE voltage and current using RFMPI and the RFMF are up to 90% more accurate compared to the DRM. The efficiency of the PVE is beyond 90% when tested under locus of maximum power point. In transient analysis, the settling time of RFMF is faster than the RFMPI. In short, the proposed RFMF is robust, accurate, quick respond and compatible with the MPPT boost converter

    Study of photovoltaic system integration in microgrids through real-time modeling and emulation of its components using HiLeS

    Get PDF
    L'intégration actuelle des systèmes photovoltaïques dans les systèmes d'alimentation conventionnels a montré une croissance importante, ce qui a favorisé l'expansion rapide des micro-réseaux du terme anglais microgrid. Cette intégration a cependant augmenté la complexité du système d'alimentation qui a conduit à de nouveaux défis de recherche. Certains de ces défis de recherche encouragent le développement d'approches de modélisation innovantes en temps réel capables de faire face à cette complexité croissante. Dans ce contexte, une méthodologie innovante est proposée et basée sur les composants pour la modélisation et l'émulation de systèmes photovoltaïques en temps réel integers aux microgrids. L'approche de modélisation proposée peut utiliser le langage de modélisation des systèmes (SysML) pour décrire la structure et le comportement des systèmes photovoltaïques intégrés en tenant compte de leurs caractéristiques multidisciplinaires. De plus, cette étude présente le cadre de spécification de haut niveau des systèmes embarqués (HiLeS) pour transformer les modèles SysML développés en code source destinés à configurer le matériel intégré. Cette caractéristique de la generation automatique de code permet de profiter de dispositifs avec un haut degré d'adaptabilité et de performances de traitement. Cette méthodologie basée sur HiLeS et SysML est axée sur l'étude des systems photovoltaïques partiellement ombragés ainsi que des architectures flexibles en électronique de puissance en raison de leur influence sur les microgrids actuels. En outre, cette perspective de recherche est utilisée pour évaluer les stratégies de contrôle et de supervision dans les conditions normales et de défauts. Ce travail représente la première étape pour développer une approche innovante en temps réel pour modéliser et émuler des systèmes photovoltaïques complexes en tenant compte des propriétés de modularité, de haut degré d'évolutivité et des conditions de travail non uniformes. Les résultats expérimentaux et analytiques valident la méthodologie proposée.Nowadays, the integration of photovoltaic systems into electrical grids is encouraging the expansion of microgrids. However, this integration has also increased the power system complexity leading to new research challenges. Some of these research challenges require the development of innovative modeling approaches able to deal with this increasing complexity. Therefore, this thesis is intended to contribute with an innovative methodology component-based for modeling and emulating in real-time photovoltaic systems integrated to microgrids. The proposed modeling approach uses the Systems Modeling Language (SysML) to describe the structure and behavior of integrated photovoltaic systems. In addition, this study presents the High Level Specification of Embedded Systems (HiLeS) to transform automatically the developed SysML models in embedded code and Petri nets. These characteristics of automatic code generation and design based on Petri nets allow taking advantage of FPGAs for application of real-time emulation of photovoltaic systems. This dissertation is focused on partially shaded photovoltaic systems and flexible power electronics architectures because of their relevant influence on current microgrids. Furthermore, this research perspective is intended to evaluate control and supervision strategies in normal and fault conditions. This work represents the first step to develop an innovative real-time approach to model and emulate complex photovoltaic systems considering properties of modularity, high degree of scalability, and non-uniform working conditions. Finally, experimental and analytical results validate the proposed methodology

    Design and Implementation of Control Techniques of Power Electronic Interfaces for Photovoltaic Power Systems

    Get PDF
    The aim of this thesis is to scrutinize and develop four state-of-the-art power electronics converter control techniques utilized in various photovoltaic (PV) power conversion schemes accounting for maximum power extraction and efficiency. First, Cascade Proportional and Integral (PI) Controller-Based Robust Model Reference Adaptive Control (MRAC) of a DC-DC boost converter has been designed and investigated. Non-minimum phase behaviour of the boost converter due to right half plane zero constitutes a challenge and its non-linear dynamics complicate the control process while operating in continuous conduction mode (CCM). The proposed control scheme efficiently resolved complications and challenges by using features of cascade PI control loop in combination with properties of MRAC. The accuracy of the proposed control system’s ability to track the desired signals and regulate the plant process variables in the most beneficial and optimised way without delay and overshoot is verified. The experimental results and analysis reveal that the proposed control strategy enhanced the tracking speed two times with considerably improved disturbance rejection. Second, (P)roportional Gain (R)esonant and Gain Scheduled (P)roportional (PR-P) Controller has been designed and investigated. The aim of this controller is to create a variable perturbation size real-time adaptive perturb and observe (P&O) maximum power point tracking (MPPT) algorithm. The proposed control scheme resolved the drawbacks of conventional P&O MPPT method associated with the use of constant perturbation size that leads to a poor transient response and high continuous steady-state oscillations. The prime objective of using the PR-P controller is to utilize inherited properties of the signal produced by the controller’s resonant path and integrate it to update best estimated perturbation that represents the working principle of extremum seeking control (ESC) to use in a P&O algorithm that characterizes the overall system learning-based real time adaptive (RTA). Additionally, utilization of internal dynamics of the PR-P controller overcome the challenges namely, complexity, computational burden, implantation cost and slow tracking performance in association with commonly used soft computing intelligent systems and adaptive control strategies. The experimental results and analysis reveal that the proposed control strategy enhanced the tracking speed five times with reduced steady-state oscillations around maximum power point (MPP) and more than 99% energy extracting efficiency.Third, the interleaved buck converter based photovoltaic (PV) emulator current control has been investigated. A proportional-resonant-proportional (PR-P) controller is designed to resolve the drawbacks of conventional PI controllers in terms of phase management which means balancing currents evenly between active phases to avoid thermally stressing and provide optimal ripple cancellation in the presence of parameter uncertainties. The proposed controller shows superior performance in terms of 10 times faster-converging transient response, zero steady-state error with significant reduction in current ripple. Equal load sharing that constitutes the primary concern in multi-phase converters has been achieved with the proposed controller. Implementing of robust control theory involving comprehensive time and frequency domain analysis reveals 13% improvement in the robust stability margin and 12-degree bigger phase toleration with the PR-P controller. Fourth, a symmetrical pole placement Method-based Unity Proportional Gain Resonant and Gain Scheduled Proportional (PR-P) Controller has been designed and investigated. The proposed PR-P controller resolved the issues associated with the use of the PI controller which are tracking repeating control input signal with zero steady-state and mitigating the 3rd order harmonic component injected into the grid for single-phase PV systems. Additionally, the PR-P controller has overcome the drawbacks of frequency detuning in the grid and increase in the magnitude of odd number harmonics in the system that constitute the common concerns in the implementation of conventional PR controller. Moreover, the unprecedented design process based on changing notch filter dynamics with symmetrical pole placement around resonant frequency overcomes the limitations that are essentially complexity and dependency on the precisely modelled system. The verification and validation process of the proposed control schemes has been conducted using MATLAB/Simulink and implementing MATLAB/Simulink/State flow on dSPACE Real-time-interface (RTI) 1007 processor, DS2004 High-Speed A/D and CP4002 Timing and Digital I/O boards

    Symmetrical Pole Placement Method-Based Unity Proportional Gain Resonant and Gain Scheduled Proportional (PR-P) Controller With Harmonic Compensator for Single-Phase Grid-Connected PV Inverters

    Get PDF
    In this paper, a symmetrical pole placement Method-based Unity Proportional Gain Resonant and Gain Scheduled Proportional (PR-P) Controller is presented. The proposed PR-P controller resolved the issues that are tracking repeating control input signal with zero steady-state and mitigating of 3rd order harmonic component injected into the grid associated with the use of PI controller for single-phase PV systems. Additionally, the PR-P controller has overcome the drawbacks of frequency detuning in the grid and increase in the magnitude of odd number harmonics in the system that constitute the common concerns in the implementation of conventional PR controller developed as an alternative to PI controller. Moreover, the application of an unprecedented design process based on changing notch filter dynamics with symmetrical pole placement around resonant frequency overcomes the limitations that are essentially complexity and dependency on the precisely modelled system associated with the use of various controllers such as Adaptive, Predictive and Hysteresis in grid connected PV power generation systems. The proposed PR-P controller was validated employing Photovoltaic emulator (PVE) consisting of a DC-DC Buck power converter, a maximum power point tracking (MPPT) algorithm and a full-bridge grid connected inverter designed using MATLAB/Simulink system platform. Details of the proposed controller, Photovoltaic emulator (PVE) simulations, analysis and test results were presented in the paper

    A Real-Time ANPC Inverter Digital Twin with Integrated Design-For-Trust

    Get PDF
    The demand for renewable energy has increased over the last few years, and so has the demand for greater expectations within the energy market. This increasing trend has been accompanied by more significant usage of internet-connected devices (IoT), leading to critical electrical infrastructure being connected to the internet. Implementing internet connectivity with such devices and systems provides benefits such as improving the system\u27s performance, facilitating irregularity and anomaly mitigation, and providing additional situational awareness for enhanced decision-making. However, enhancing the connected system with IoT introduces a drawback – a greater vulnerability to cyber-attacks. Cyber-attacks targeting critical infrastructure in the electrical sector have occurred in the United States and Ukraine. These cyber-attacks highlight and expose vulnerabilities that a system inherits when connecting to the internet. These attacks left thousands of customers without electricity for hours until operators could regain control of the electric utility grid. Therefore, to address the vulnerabilities of an internet-connected power electronic device, this work focused on the hardware layer of the system. Implementing a cyber-control system inside the hardware layer can significantly reduce the possibility of an attacker patching malicious controller firmware into a photovoltaic grid-connected inverter, thus mitigating the likelihood that the inverter becomes inactive a cyber-attack scenario. With this mitigation technique, if a cyberattack is successful and an attacker gains control of the network, a cyber-defense technique is in place to mitigate the impact of the cyber-attack. This additional protection layer was developed based on an innovative concept known as Digital Twin (DT). A DT, in this case, replicates an Active-Neutral Point Clamped (ANPC) inverter and was designed using a hardware language known as VHDL (Very High-SpeedIntegrated Circuit Hardware Description Language) and applied to Field-Programmable-GateArray (FPGA). The DT is embedded within the FPGA and contained in a controller board, the UCB (Unified Controller Board), developed by the University of Arkansas electrical engineering team. This UCB also contains two Digital Signal Processors (DSPs) responsible for generating associated signals to control an authentic physical inverter. These DSP signals are received and processed by the FPGA that implements the DT of an ANPC; in other words, it simulates in realtime the expected output of an actual ANPC inverter using the signals from the DSP. When a new firmware is ready to be patched, the DT provides output signals simulating behavior that a real ANPC inverter would generate with the new firmware. The new firmware is tested to check if it meets all the operational requirements established using a Design-For-Trust technique (DFTr). If the new firmware fails in at least one of the DFT tests, it is considered malicious and must be rejected. This work is divided into sections, such as Background, which explains the pieces that were used and the strategy behind this work; Process and Procedure, which explains the methodology that was adopted to prove the reliability and effectiveness of this work; Results and Discussion, where the simulations and results are described and explained; followed by Conclusion and Future work section, which concludes this work and adds possible future projects to continue this work furthe

    A Real-Time ANPC Inverter Digital Twin with Integrated Design-For-Trust

    Get PDF
    The demand for renewable energy has increased over the last few years, and so has the demand for greater expectations within the energy market. This increasing trend has been accompanied by more significant usage of internet-connected devices (IoT), leading to critical electrical infrastructure being connected to the internet. Implementing internet connectivity with such devices and systems provides benefits such as improving the system\u27s performance, facilitating irregularity and anomaly mitigation, and providing additional situational awareness for enhanced decision-making. However, enhancing the connected system with IoT introduces a drawback – a greater vulnerability to cyber-attacks. Cyber-attacks targeting critical infrastructure in the electrical sector have occurred in the United States and Ukraine. These cyber-attacks highlight and expose vulnerabilities that a system inherits when connecting to the internet. These attacks left thousands of customers without electricity for hours until operators could regain control of the electric utility grid. Therefore, to address the vulnerabilities of an internet-connected power electronic device, this work focused on the hardware layer of the system. Implementing a cyber-control system inside the hardware layer can significantly reduce the possibility of an attacker patching malicious controller firmware into a photovoltaic grid-connected inverter, thus mitigating the likelihood that the inverter becomes inactive a cyber-attack scenario. With this mitigation technique, if a cyberattack is successful and an attacker gains control of the network, a cyber-defense technique is in place to mitigate the impact of the cyber-attack. This additional protection layer was developed based on an innovative concept known as Digital Twin (DT). A DT, in this case, replicates an Active-Neutral Point Clamped (ANPC) inverter and was designed using a hardware language known as VHDL (Very High-SpeedIntegrated Circuit Hardware Description Language) and applied to Field-Programmable-GateArray (FPGA). The DT is embedded within the FPGA and contained in a controller board, the UCB (Unified Controller Board), developed by the University of Arkansas electrical engineering team. This UCB also contains two Digital Signal Processors (DSPs) responsible for generating associated signals to control an authentic physical inverter. These DSP signals are received and processed by the FPGA that implements the DT of an ANPC; in other words, it simulates in realtime the expected output of an actual ANPC inverter using the signals from the DSP. When a new firmware is ready to be patched, the DT provides output signals simulating behavior that a real ANPC inverter would generate with the new firmware. The new firmware is tested to check if it meets all the operational requirements established using a Design-For-Trust technique (DFTr). If the new firmware fails in at least one of the DFT tests, it is considered malicious and must be rejected. This work is divided into sections, such as Background, which explains the pieces that were used and the strategy behind this work; Process and Procedure, which explains the methodology that was adopted to prove the reliability and effectiveness of this work; Results and Discussion, where the simulations and results are described and explained; followed by Conclusion and Future work section, which concludes this work and adds possible future projects to continue this work furthe

    A review of PHIL testing for smart grids—selection guide, classification and online database analysis

    Get PDF
    The Smart Grid is one of the most important solutions to boost electricity sharing from renewable energy sources. Its implementation adds new functionalities to power systems, which increases the electric grid complexity. To ensure grid stability and security, systems need flexible methods in order to be tested in a safe and economical way. A promising test technique is Power Hardware In-the-Loop (PHIL), which combines the flexibility of Hardware-In-the-Loop (HIL) technique with power exchange. However, the acquisition of PHIL components usually represents a great expense for laboratories and, therefore, the setting up of the experiment involves making hard decisions. This paper provides a complete guideline and useful new tools for laboratories in order to set PHIL facilities up efficiently. First, a PHIL system selection guide is presented, which describes the selection process steps and the main system characteristics needed to perform a PHIL test. Furthermore, a classification proposal containing the desirable information to be obtained from a PHIL test paper for reproducibility purposes is given. Finally, this classification was used to develop a PHIL test online database, which was analysed, and the main gathered information with some use cases and conclusions are shown
    corecore