7 research outputs found

    Performance Investigation of Peak Shrinking and Interpolating the PAPR Reduction Technique for LTE-Advance and 5G Signals

    Get PDF
    Orthogonal frequency division multiplexing (OFDM) has become an indispensable part of waveform generation in wideband digital communication since its first appearance in digital audio broadcasting (DAB) in Europe in 1980s, and it is indeed in use. As has been seen, the OFDM based waveforms work well with time division duplex operation in new radio (NR) systems in 5G systems, supporting delay-sensitive applications, high spectral efficiency, massive multiple input multiple output (MIMO) compatibility, and ever-larger bandwidth signals, which has demonstrated successful commercial implementation for 5G downlinks and uplinks up to 256-QAM modulation schemes. However, the OFDM waveforms suffer from high peak to average power ratio (PAPR), which is not desired by system designers as they want RF power amplifiers (PAs) to operate with high efficiency. Although NR offers some options for maintaining the efficiency and spectral demand, such as cyclic prefix based (CP-OFDM), and discrete Fourier transform spread based (DFT-S-OFDM) schemes, which have limiting effects on PAPR, the PAPR is still as high as 13 dB. This value increases when the bandwidth is increased. Moreover, in LTE-Advance and 5G systems, in order to increase the bandwidth, and data-rate, carrier aggregation technology is used which increases the PAPR the same way that bandwidth increment does; therefore, it is essential to employ PAPR reduction in signal processing stage before passing the signal to PA. In this paper, we investigate the performance of an innovative peak shrinking and interpolation (PSI) technique for reducing peak to average power ratio (PAPR) in orthogonal frequency division multiplexing (OFDM) based signals at waveform generation stage. The main idea behind the PSI technique is to extract high peaks, scale them down, and interpolate them back into the signal. It is shown that PSI technique is a possible candidate for reducing PAPR without compromising on computational complexity, compatible for existing and future telecommunication systems such as 4G, 5G, and beyond. In this paper, the PSI technique is tested with variety of signals in terms of inverse fast Fourier transform (IFFT) length, type of the signal modulation, and applications. Additional work has been carried out to compare the proposed technique with other promising PAPR reduction techniques. This paper further validates the PSI technique through experimental measurement with a power amplifier (PA) test bench and achieves an adjacent channel power ratio (ACPR) of less than –55 dBc. Results showed improvement in output power of PA versus given input power, and furthermore, the error vector magnitude (EVM) of less than 1% was achieved when comparing of the signal after and before modification by the PSI techniqu

    FPGA implementation of the proposed DSI-SLM scheme for PAPR reduction in OFDM systems

    Get PDF
    High peak to average power ratio (PAPR) is the main drawback of orthogonal frequency division multiplexing (OFDM) systems. Some of the proposed PAPR reduction solutions are dummy insertion (DSI), selected mapping (SLM) and combined DSI-SLM scheme. This paper presents FPGA implementation of DSI-SLM scheme for OFDM signals. The results of the implementation and simulation are compared which show that the PAPR is almost the same as simulation results. The hardware resource consumption of the DSI-SLM method is estimated to be at least 4 times less than conventional SLM (C-SLM) method with comparable PAPR performance

    New methods of partial transmit sequence for reducing the high peak-to-average-power ratio with low complexity in the ofdm and f-ofdm systems

    Get PDF
    The orthogonal frequency division multiplexing system (OFDM) is one of the most important components for the multicarrier waveform design in the wireless communication standards. Consequently, the OFDM system has been adopted by many high-speed wireless standards. However, the high peak-to-average- power ratio (PAPR) is the main obstacle of the OFDM system in the real applications because of the non-linearity nature in the transmitter. Partial transmit sequence (PTS) is one of the effective PAPR reduction techniques that has been employed for reducing the PAPR value 3 dB; however, the high computational complexity is the main drawback of this technique. This thesis proposes novel methods and algorithms for reducing the high PAPR value with low computational complexity depending on the PTS technique. First, three novel subblocks partitioning schemes, Sine Shape partitioning scheme (SS-PTS), Subsets partitioning scheme (Sb-PTS), and Hybrid partitioning scheme (H-PTS) have been introduced for improving the PAPR reduction performance with low computational complexity in the frequency-domain of the PTS structure. Secondly, two novel algorithms, Grouping Complex iterations algorithm (G-C-PTS), and Gray Code Phase Factor algorithm (Gray-PF-PTS) have been developed to reduce the computational complexity for finding the optimum phase rotation factors in the time domain part of the PTS structure. Third, a new hybrid method that combines the Selective mapping and Cyclically Shifts Sequences (SLM-CSS-PTS) techniques in parallel has been proposed for improving the PAPR reduction performance and the computational complexity level. Based on the proposed methods, an improved PTS method that merges the best subblock partitioning scheme in the frequency domain and the best low-complexity algorithm in the time domain has been introduced to enhance the PAPR reduction performance better than the conventional PTS method with extremely low computational complexity level. The efficiency of the proposed methods is verified by comparing the predicted results with the existing modified PTS methods in the literature using Matlab software simulation and numerical calculation. The results that obtained using the proposed methods achieve a superior gain in the PAPR reduction performance compared with the conventional PTS technique. In addition, the number of complex addition and multiplication operations has been reduced compared with the conventional PTS method by about 54%, and 32% for the frequency domain schemes, 51% and 65% for the time domain algorithms, 18% and 42% for the combining method. Moreover, the improved PTS method which combines the best scheme in the frequency domain and the best algorithm in the time domain outperforms the conventional PTS method in terms of the PAPR reduction performance and the computational complexity level, where the number of complex addition and multiplication operation has been reduced by about 51% and 63%, respectively. Finally, the proposed methods and algorithms have been applied to the OFDM and Filtered-OFDM (F-OFDM) systems through Matlab software simulation, where F-OFDM refers to the waveform design candidate in the next generation technology (5G)

    Peak Shrinking and Interpolating Technique for reducing Peak to Average Power Ratio

    Get PDF
    This paper discusses topic of high Peak to Average Power Ratio (PAPR) in Orthogonal Frequency Division Multiplexing (OFDM) based signals. An innovative technique is proposed to reduce PAPR without compromising Error Vector Mapping (EVM). The proposed technique is named Peak Shrinking and Interpolating (PSI), and results show no more than 1% EVM when the technique is operated. The hardware resource consumption of PSI technique is analyzed and compared with the simplest Crest Factor Reduction (CFR) technique known as Clipping and Filtering (CF). This analysis, together with EVM performance, and PAPR reduction performance indicates that PSI technique can be an outstanding scheme for existing and future technologies such as Long-Term Evolution (LTE) and 5th Generation of cellular mobile communications (5G), resulting in more efficient Power Amplifier (PA) operation

    Design and implementation of low complexity adaptive optical OFDM systems for software-defined transmission in elastic optical networks

    Get PDF
    Due to the increasing global IP traffic and the exponential growing demand for broadband services, optical networks are experimenting significant changes. Advanced modulation formats are being implemented at the Digital Signal Processing (DSP) level as key enablers for high data rate transmission. Whereas in the network layer, flexi Dense Wavelength-Division Multiplexing (DWDM) grids are being investigated in order to efficiently use the optical spectrum according to the traffic demand. Enabling these capabilities makes high data rate transmission more feasible. Hence, introducing flexibility in the system is one of the main goals of this thesis. Furthermore, minimizing the cost and enhancing the Spectral Efficiency (SE) of the system are two crucial issues to consider in the transceiver design. This dissertation investigates the use of Optical Orthogonal Frequency Division Multiplexing (O-OFDM) based either on the Fast Fourier Transform (FFT) or the Fast Hartley Transform (FHT) and flexi-grid technology to allow high data rate transmission over the fiber. Different cost-effective solutions for Elastic Optical Networks (EON) are provided. On the one hand, Direct Detection (DD) systems are investigated and proposed to cope with present and future traffic demand. After an introduction to the principles of OFDM and its application in optical systems, the main problems of such modulation is introduced. In particular, Peak-to-Average Power Ratio (PAPR) is presented as a limitation in OFDM systems, as well as clipping and quantization noise. Hence, PAPR reduction techniques are proposed to mitigate these impairments. Additionally, Low Complexity (LC) PAPR reduction techniques based on the FHT have also been presented with a simplified DSP. On the other hand, loading schemes have also been introduced in the analyzed system to combat Chromatic Dispersion (CD) when transmitting over the optical link. Moreover, thanks to Bit Loading (BL) and Power Loading (PL), flexible and software-defined transceivers can be implemented maximizing the spectral efficiency by adapting the data rate to the current demand and the actual network conditions. Specifically, OFDM symbols are created by mapping the different subcarriers with different modulation formats according to the channel profile. Experimental validation of the proposed flexible transceivers is also provided in this dissertation. The benefits of including loading capabilities in the design, such as enabling high data rate and software-defined transmission, are highlighted.Degut al creixement del tràfic IP i de la demanda de serveis de banda ampla, les xarxes òptiques estan experimentant canvis significatius. Els formats avançats de modulació, implementats a nivell de processat del senyal digital, habiliten la transmissió a alta velocitat. Mentre que a la capa de xarxa, l'espectre òptic es dividit en ranures flexibles ocupant l'ample de banda necessari segons la demanda de tràfic. La transmissió a alta velocitat és fa més tangible un cop habilitades totes aquestes funcionalitats. D'aquesta manera un dels principals objectius d'aquesta tesis es introduir flexibilitat al sistema. A demés, minimitzar el cost i maximitzar l'eficiència espectral del sistema són també dos aspectes crucials a considerar en el disseny del transmissor i receptor. Aquesta tesis investiga l'ús de la tecnologia Optical Orthogonal Frequency Division Multiplexing (OFDM) basada en la transformada de Fourier (FFT) i la de Hartley (FHT) per tal de dissenyar un sistema flexible i capaç de transmetre a alta velocitat a través de la fibra òptica. Per tant, es proposen diferent solucions de baix cost vàlides per a utilitzar en xarxes òptiques elàstiques. En primer lloc, s'investiguen i es proposen sistemes basats en detecció directa per tal de suportar la present i futura demanda. Després d'una introducció dels principis d' OFDM i la seva aplicació als sistemes òptics, s'introdueixen alguns dels problemes d'aquesta modulació. En particular, es presenten el Peak-to-Average Power Ratio (PAPR) i els sorolls de clipping i de quantizació com a limitació dels sistemes OFDM. S'analitzen tècniques de reducció de PAPR per tal de reduir l'impacte d'aquests impediments. També es proposen tècniques de baixa complexitat per a reduir el PAPR basades en la FHT. Finalment, s'utilitzen algoritmes d'assignació de bits i de potència, Bit Loading (BL) i Power Loading (PL), per tal de combatre la dispersió cromàtica quan es transmet pel canal òptic. Amb la implementació dels algoritmes de BL i PL, es poden dissenyar transmissors i receptors flexibles adaptant la velocitat a la demanda del moment i a les actuals condicions de la xarxa. En particular, els símbols OFDM es creen mapejant cada portadora amb un format de modulació diferent segons el perfil del canal. El sistema és validat experimentalment mostrant les prestacions i els beneficis d'incloure flexibilitat per tal de facilitar la transmissió a alta velocitat i cobrir les necessitats de l'Internet del futurDebido al crecimiento del tráfico IP y de la demanda de servicios de banda ancha, las redes ópticas están experimentando cambios significativos. Los formatos avanzados de modulación, implementados a nivel de procesado de la señal digital, habilitan la transmisión a alta velocidad. Mientras que en la capa de red, el espectro óptico se divide en ranuras flexibles ocupando el ancho de banda necesario según la demanda de tráfico. La transmisión a alta velocidad es más tangible una vez habilitadas todas estas funcionalidades. De este modo uno de los principales objetivos de esta tesis es introducir flexibilidad en el sistema. Además, minimizar el coste y maximizar la eficiencia espectral del sistema son también dos aspectos cruciales a considerar en el diseño del transmisor y receptor. Esta tesis investiga el uso de la tecnologia Optical Orthogonal Frequency Division Multiplexing (OFDM) basada en la transformada de Fourier (FFT) y en la de Hartley (FHT) con tal de diseñar un sistema flexible y capaz de transmitir a alta velocidad a través de la fibra óptica. Por lo tanto, se proponen distintas soluciones de bajo coste válidas para utilizar en redes ópticas elásticas. En primer lugar, se investigan y se proponen sistemas basados en detección directa con tal de soportar la presente y futura demanda. Después de una introducción de los principios de OFDM y su aplicación en los sistemas ópticos, se introduce el principal problema de esta modulación. En particular se presentan el Peak-to-Average Power Ratio (PAPR) y los ruidos de clipping y cuantización como limitaciones de los sistemas OFDM. Se analizan técnicas de reducción de PAPR con tal de reducir el impacto de estos impedimentos. También se proponen técnicas de baja complejidad para reducir el PAPR basadas en la FHT. Finalmente, se utilizan algoritmos de asignación de bits y potencia, Bit Loading (BL) y Power Loading (PL), con tal de combatir la dispersión cromática cuando se transmite por el canal óptico. Con la implementación de los algoritmos de BL y PL, se pueden diseñar transmisores y receptores flexibles adaptando la velocidad a la demanda del momento y a las actuales condiciones de la red. En particular, los símbolos OFDM se crean mapeando cada portadora con un formato de modulaci_on distinto según el perfil del canal. El sistema se valida experimentalmente mostrando las prestaciones y los beneficios de incluir flexibilidad con tal de facilitar la transmisión a alta velocidad y cubrir las necesidades de Internet del futuro

    Spectrally efficient FDM communication signals and transceivers: design, mathematical modelling and system optimization

    Get PDF
    This thesis addresses theoretical, mathematical modelling and design issues of Spectrally Efficient FDM (SEFDM) systems. SEFDM systems propose bandwidth savings when compared to Orthogonal FDM (OFDM) systems by multiplexing multiple non-orthogonal overlapping carriers. Nevertheless, the deliberate collapse of orthogonality poses significant challenges on the SEFDM system in terms of performance and complexity, both issues are addressed in this work. This thesis first investigates the mathematical properties of the SEFDM system and reveals the links between the system conditioning and its main parameters through closed form formulas derived for the Intercarrier Interference (ICI) and the system generating matrices. A rigorous and efficient mathematical framework, to represent non-orthogonal signals using Inverse Discrete Fourier Transform (IDFT) blocks, is proposed. This is subsequently used to design simple SEFDM transmitters and to realize a new Matched Filter (MF) based demodulator using the Discrete Fourier Transforms (DFT), thereby substantially simplifying the transmitter and demodulator design and localizing complexity at detection stage with no premium at performance. Operation is confirmed through the derivation and numerical verification of optimal detectors in the form of Maximum Likelihood (ML) and Sphere Decoder (SD). Moreover, two new linear detectors that address the ill conditioning of the system are proposed: the first based on the Truncated Singular Value Decomposition (TSVD) and the second accounts for selected ICI terms and termed Selective Equalization (SelE). Numerical investigations show that both detectors substantially outperform existing linear detection techniques. Furthermore, the use of the Fixed Complexity Sphere Decoder (FSD) is proposed to further improve performance and avoid the variable complexity of the SD. Ultimately, a newly designed combined FSD-TSVD detector is proposed and shown to provide near optimal error performance for bandwidth savings of 20% with reduced and fixed complexity. The thesis also addresses some practical considerations of the SEFDM systems. In particular, mathematical and numerical investigations have shown that the SEFDM signal is prone to high Peak to Average Power Ratio (PAPR) that can lead to significant performance degradations. Investigations of PAPR control lead to the proposal of a new technique, termed SLiding Window (SLW), utilizing the SEFDM signal structure which shows superior efficacy in PAPR control over conventional techniques with lower complexity. The thesis also addresses the performance of the SEFDM system in multipath fading channels confirming favourable performance and practicability of implementation. In particular, a new Partial Channel Estimator (PCE) that provides better estimation accuracy is proposed. Furthermore, several low complexity linear and iterative joint channel equalizers and symbol detectors are investigated in fading channels conditions with the FSD-TSVD joint equalization and detection with PCE obtained channel estimate facilitating near optimum error performance, close to that of OFDM for bandwidth savings of 25%. Finally, investigations of the precoding of the SEFDM signal demonstrate a potential for complexity reduction and performance improvement. Overall, this thesis provides the theoretical basis from which practical designs are derived to pave the way to the first practical realization of SEFDM systems
    corecore