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Abstract

This thesis addresses theoretical, mathematical modelling and design issues of Spectrally Effi-

cient FDM (SEFDM) systems. SEFDM systems propose bandwidth savings when compared to

Orthogonal FDM (OFDM) systems by multiplexing multiple non-orthogonal overlapping car-

riers. Nevertheless, the deliberate collapse of orthogonality poses significant challenges on the

SEFDM system in terms of performance and complexity, both issues are addressed in this work.

This thesis first investigates the mathematical properties of the SEFDM system and reveals the

links between the system conditioning and its main parameters through closed form formulas

derived for the Intercarrier Interference (ICI) and the system generating matrices. A rigorous

and efficient mathematical framework, to represent non-orthogonal signals using Inverse Dis-

crete Fourier Transform (IDFT) blocks, is proposed. This is subsequently used to design simple

SEFDM transmitters and to realize a new Matched Filter (MF) based demodulator using the

Discrete Fourier Transforms (DFT), thereby substantially simplifying the transmitter and de-

modulator design and localizing complexity at detection stage with no premium at performance.

Operation is confirmed through the derivation and numerical verification of optimal detectors

in the form of Maximum Likelihood (ML) and Sphere Decoder (SD). Moreover, two new lin-

ear detectors that address the ill conditioning of the system are proposed: the first based on

the Truncated Singular Value Decomposition (TSVD) and the second accounts for selected ICI

terms and termed Selective Equalization (SelE). Numerical investigations show that both detec-

tors substantially outperform existing linear detection techniques. Furthermore, the use of the

Fixed Complexity Sphere Decoder (FSD) is proposed to further improve performance and avoid

the variable complexity of the SD. Ultimately, a newly designed combined FSD-TSVD detector

is proposed and shown to provide near optimal error performance for bandwidth savings of 20%

with reduced and fixed complexity.

The thesis also addresses some practical considerations of the SEFDM systems. In particular,

mathematical and numerical investigations have shown that the SEFDM signal is prone to high

Peak to Average Power Ratio (PAPR) that can lead to significant performance degradations.

Investigations of PAPR control lead to the proposal of a new technique, termed SLiding Window

(SLW), utilizing the SEFDM signal structure which shows superior efficacy in PAPR control

over conventional techniques with lower complexity. The thesis also addresses the performance

of the SEFDM system in multipath fading channels confirming favourable performance and

practicability of implementation. In particular, a new Partial Channel Estimator (PCE) that

provides better estimation accuracy is proposed. Furthermore, several low complexity linear

and iterative joint channel equalizers and symbol detectors are investigated in fading channels

conditions with the FSD-TSVD joint equalization and detection with PCE obtained channel

estimate facilitating near optimum error performance, close to that of OFDM for bandwidth

savings of 25%. Finally, investigations of the precoding of the SEFDM signal demonstrate a

potential for complexity reduction and performance improvement.

Overall, this thesis provides the theoretical basis from which practical designs are derived to

pave the way to the first practical realization of SEFDM systems.
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LM Löwdin Method

LS Least Squares

LTE Long Term Evolution

LUT Look Up Table

MAP Maximum a Posteriori

MASK OFDM M-ary Amplitude Shift Keying OFDM

MC-CDMA Multicarrier Code Division Multiple Access

MCM Multicarrier Modulation

MF Matched Filter

MGS Modified Gram Schmidt

MIMO Multiple Inputs Multiple Outputs

ML Maximum Likliehood

MLSD Maximum Likelihood Sequence Detection

MMSE Minimum Mean Square Error



List of Tables 20

MSE Mean Square Error

OFDM Orthogonal Frequency Division Multiplexing

OFDMA Orthogonal Frequency Division Multiple Access

Ov-FDM Overlapped Frequency Division Multiplexing

PA Power Amplifier

PAPR Peak to Average Power Ratio

PC-OFDM Parallel Combinatory OFDM

PCE The Partial Channel Estimater

PDF Probability Density Function

PDP Power Delay Profile

PLC Power Line Communications

PSD Pruned Sphere Decoder

PTS Partial Transmit Sequence

QAM Quadrature Amplitude Modulation

QPSK Quadrature Phase Shift Keying

RegSD Regularized Sphere Decoder

RHS Right Hand Side

RSD Real Sphere Decoder

S/P Serial to Parallel Converter

SD Sphere Decoding

SDP Semidefinite Programming

SE Schnorr Euchner Enumeration

SEFDM Spectrally Efficient FDM



List of Tables 21

SelE Selective Equalization

SLM Selective Mapping

SLW SLiding Window PAPR Reduction Technique

SNR Signal to Noise Ratio

SVD Singular Value Decomposition

TDL Tapped Delay Line

TSVD Truncated Singular Value Decomposition

UCL University College London

WiMAX World-wide interoperability for Microwave Access

ZF Zero Forcing



Part I

SEFDM System: Characteristics,

Transmitter and Receiver Design

22



Chapter 1

Introduction

Throughout the 20th century, the rapid development of communications technologies has

transformed our economic, social and personal lives. The creation and growth of services

and applications facilitated by communications development is expected to continue, and

the added value of mobility has taken the change to a new level. Wireless communica-

tion services began with simple limited facilities for vital or emergency communications,

and moved on to become essential for all aspects of our lives. As such, wireless commu-

nications continue to evolve to provide seamless services to accommodate our insatiable

demand for bandwidth and speed. However, the wireless channel places a demand for

the invention of alternative designs with the objective of saving spectrum and coping

with wireless channel impairments. Consequently, modulation, multiplexing and multi-

ple access techniques are evolving to provide higher capacities and to combat wireless

channel limitations.

Conventional single carrier modulation systems convey information as a change in the

amplitude, frequency or phase of the carrier. The modulated signal is allowed to cover

all the available bandwidth. In the case of digital signals, as the bit rate increases the

duration of one bit is reduced, therefore the system becomes more susceptible to impair-

ments such as those caused by intersymbol interference (ISI) [1]. Therefore, multicarrier

communications are proposed to facilitate increased utilization of the scarce wireless

spectrum while combating one of its main impairments namely frequency selective fad-

ing [2].

23



Chapter 1. Introduction 24

Orthogonal Frequency Division Multiplexing (OFDM) is a well known Multicarrier Mod-

ulation (MCM) scheme that is being used at the heart of many applications [3]. The

signature feature of OFDM, which is the use of overlapping yet orthogonal subcarriers,

has facilitated many advantages that gained the system its wide popularity. In particu-

lar, OFDM is advantaged by enabling higher bandwidth utilization when compared to

conventional FDM systems employing guard bands and better immunity against channel

impairments. Instead of sending one high data rate single carrier signal, OFDM sends

multiple overlapped slower subchannels. Such a system provides better immunity against

frequency selective fading because the fading is not likely to affect all the bands at the

same time, and the slow speed of the subchannels facilitates better immunity against the

delay spread of the channel [2]. Historically, the concepts of OFDM appeared as early as

the late 1950’s [4], developed in the 1960’s [5, 6, 7] and was filed for a patent by Chang

of Bell Labs in 1966 (granted in 1970) [8]. The OFDM advantages became more at-

tractive with the proposal of using standard Discrete Fourier Transforms (DFT) at both

transmitting and receiving ends [9, 10], a feature that became even more handy with the

tremendous growth of the digital processing power [11]. Today, OFDM is at the heart

of many applications and standards. For example, Coded OFDM (COFDM) is used in

Asymmetric Digital Subscriber Loop (ADSL), also known there as Discrete Multi-tone

(DMT) [2]. Moreover, OFDM is specified in the standard of the European Digital Audio

Broadcasting (DAB) and the Terrestrial Digital Video Broadcasting (DVB-T) systems.

In addition, OFDM is specified in wireless LAN standards IEEE 802.11a, g, n and y and

in the High Performance LAN (HIPERLAN/2) [3]. OFDM is used in the Fixed World-

wide interoperability for Microwave Access (WiMAX), which is based on IEEE 802.16-

2004 standard and the mobile WiMAX, which is based on IEEE 802.16e-2005 standard.

Significantly, OFDM with multiple access (OFDMA) became the chosen technique for

the 4th generation mobile system known as Long Term Evolution (LTE) [12, 13, 14],

where a combination of OFDM and Multiple Input Multiple Output (MIMO) OFDM

is utilized for maximizing capacity in multi-service networks. OFDM was also proposed

and is currently used for broadband Power Line Communications (PLC) [15, 16], to

provide enhanced performance over single carrier and direct sequence spread spectrum

techniques. OFDM concepts are not limited only to wireless and copper and have been

applied in the optical domain [17, 18].

The OFDM system constrains the subcarriers to exist in fixed positions relative to
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each other to maintain orthogonality. Performance of the OFDM system is critically

dependent on the orthogonality of the subcarriers. Therefore, frequency shifts and timing

errors result in substantial Bit Error Rate (BER) degradation [2]. In terms of spectral

efficiency, OFDM is capable of delivering the highest possible efficiency for an orthogonal

system. That is to convey 2N independent signals on an N subcarrier system. Any

attempt to increase efficiency beyond that is impossible with the orthogonality constraint

satisfied. This led to the introduction of several non-orthogonal multicarrier Spectrally

Efficient FDM (SEFDM) systems promoting higher Spectral Efficiency than the well

known OFDM systems.

Generally, SEFDM systems employ non-orthogonal overlapped carriers where the spec-

tral efficiency is increased by reducing the spacing between the subcarriers and/or the

per carrier transmission rate, beyond the time-frequency orthogonality rule of OFDM.

Many variants of such systems appeared independently under different names. Early

examples being the Fast OFDM (FOFDM) [19] and M-ary Amplitude Shift Keying

OFDM (MASK) [20] offered to halve spectrum utilization but are constrained only

to one dimensional modulations such as BPSK and M-ary ASK. Spectrally Efficient

FDM (SEFDM) [21]; High Compaction Multicarrier-Communications (HC-MCM) [22];

Overlapped FDM system (Ov-OFDM) [23]; Multistream Faster than Nyquist Signalling

(FTN) [24, 25] and Optical Dense OFDM (DOFDM) [26], all promise variable spectral

savings for two dimensional modulations. Furthermore, the concept of non-orthogonal

multicarrier systems has been intelligently used in the design of physical layer encryption

for OFDM system [27, 28], where, the created intercarrier interference due to the lost

orthogonality is utilized to mask the intended message sent over an orthogonal subset

of the carriers. Review of the SEFDM system and brief outline of the other systems are

provided in chapter 2.

A similar spectral efficiency approach has been tackled in the single carrier case since

the 1970’s. Salz in [29] discussed Faster than Nyquist (FTN) signalling and suggested

that an error penalty is to be expected in most practical cases. FTN signalling attempts

to increase transmission rate by reducing transmission time below the Nyquist crite-

ria. However, Mazo in [30] explored the possibility of defining the minimum distance

requirement for signals transmitted at a rate faster than Nyquist. Consequently, Mazo

established that, provided an optimum detector is deployed, it is possible to increase



Chapter 1. Introduction 26

the packing of signals in time by 20% and still obtain optimal error performance [31].

Subsequent work in FTN systems considered the problem of identifying the minimum

signalling distance and confirmed that no performance degradation should be expected

for the reduction of transmission time until the identified limit [32, 33, 34]. Recently, the

work in [24] proceeded to extend the Mazo limit to two dimensional signals, exploiting

both time and frequency. The established limit shows that it is possible to reduce the

combined time-frequency requirement of a system up to a certain level without intro-

ducing performance degradation. With the concept being backed by the sum of research

work outlined above, it remains to design systems that can achieve the enhancement in

spectral efficiency at affordable complexity and the potential for implementation. This

is the focus of this thesis.

1.1 Aim and Motivation

The work in this thesis focuses on the SEFDM system of [21]. The SEFDM system

enhances bandwidth utilization by reducing the frequency distance between the subcar-

riers while maintaining the same transmission rate per carrier [21]. Notwithstanding, the

deliberate collapse of orthogonality generates significant interference between the sub-

carriers that turns the detection of the signal to an overly complex problem. Maximum

Likelihood (ML) SEFDM detector has demonstrated attractive BER performance. How-

ever, ML detection complexity increases exponentially with the increase in the system

size. In addition, linear detection techniques such as Zero Forcing (ZF) and Minimum

Mean Squared Error (MMSE) perform well only for small sized systems in high Signal

to Noise Ratio (SNR) conditions [35]. Finally, Sphere Decoders (SD) is shown to achieve

optimum performance at a much reduced but random complexity [36] whose volatility

depends on the noise and the system coefficient matrix properties.

Previous work in SEFDM [21, 35, 36] shows that bandwidth savings of 20% can be

achieved while maintaining the same error performance as OFDM in AWGN channel.

A legitimate question at this point is what is the motivation of this work? A simple

answer is that despite the fact that this new frequency-time utilization opens up a new

dimension for possible improvement of spectral efficiency, the main limitation remaining

is how realistic are the requirements of such a system in terms of transmission and
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reception complexity and error performance. The proposed techniques so far require

high complexities that can be prohibitive in some cases. The other alternative is to

lower performance expectations which may not be able to stand the argument of why

not migrate to an OFDM system with high order modulation. This indicates that the

appealing offer of bandwidth savings can be seriously demoted due to the impractical

realization efforts required. That is, the huge complexity at transmission and reception

ends threatening the applicability of the system. Therefore, the work in this thesis aims

to bridge the research gap of achieving a feasible SEFDM system while maintaining the

performance.

To achieve the above research aim, the work in this thesis commences with developing

mathematical models for the transmitted and received signals to asses the fundamental

limitations of the system and to identify their links to system parameters. Then, the

transmitter design is approached. Generation of the SEFDM signal is developed to be

realized with a complexity close to OFDM system, using judiciously arranged standard

Inverse Discrete Fourier Transform (IDFT) blocks. Following that, efficient demodulator

architectures are proposed based on the DFT. The optimal detector for the proposed

demodulator is mathematically derived and numerically evaluated. In addition, new

sub-optimal detectors, that require less complexity than the cited work with improved

error performance, are proposed and numerically evaluated. After that, investigations

of the SEFDM practical limitations are carried out. In particular, the Peak to Average

Power Ratio (PAPR) is studied and techniques to control it are proposed and evaluated.

Furthermore, investigations of the SEFDM signal equalization in fading channels are

presented and a new improved channel estimators are proposed and evaluated. Finally,

a new system that employs precoding to improve error performance and reduce receiver

complexity is developed.

1.2 Thesis Organization

This thesis is divided into two parts; the first part focuses on identifying key design

considerations and fundamental challenges that includes; system modelling; transmitter

design; demodulator design and detection in AWGN channel. The second part focuses on

practical system considerations, specifically the issue of the PAPR; the performance in
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fading channels and the development of precoding techniques to improve signal resilience

against impairments and reduce detection complexity.

Chapter 2 introduces the Spectrally Efficient FDM System. The chapter starts with

a brief outline of Orthogonal Frequency Division Multiplexing Systems followed by the

introduction of the concept of increasing spectral efficiency by employing non-orthogonal

multicarrier systems. The SEFDM system is then introduced in terms of system concepts

as well as transmitter and receiver arrangements. The chapter discusses the demodu-

lation and detection of the SEFDM signal, describes the systems in the literature that

adopt similar approaches to improve spectral efficiency and concludes by identifying the

gaps in the SEFDM research area.

Chapter 3 presents the discrete signal model for the transmitted and received SEFDM

signal with derivations of the Intercarrier Interference (ICI). In addition, the chapter

presents the general linear regression model that describes the demodulated signals when

matched filtering or orthonormal bases are used and proceeds to relate the signature

attributes of the system to its parameters.

Chapter 4 builds on the discrete SEFDM signal model derived in chapter 3 to develop

efficient transmitter architectures based on general purpose IDFT. Furthermore, the

examination of the signal realizations with general purpose Field Programmable Gate

Array (FPGA) based devices is briefly described together with the implementations on

FPGA boards which are currently underway at UCL.

Chapter 5 focuses on the reception of the SEFDM signal. Efficient demodulators based

on Matched Filter (MF) theory are proposed and then related to the DFT. The optimal

detector that minimizes the error rate for the MF based SEFDM signal is derived and

evaluated with numerical simulations. Furthermore, the Sphere Decoder (SD) realization

of the derived optimal detector is derived and numerically assessed in terms of error rate

performance and complexity. The chapter provides comparisons with the previously

developed correlation based demodulator and the ML and SD solution associated with

it.

In chapter 6 the reduction of the detection effort is approached. Two enhanced linear

detectors are designed on the basis of the discrete model and the ICI characterization
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matrix derived in chapter 3, the first based on the Truncated Singular Value Decom-

position (TSVD) and the second accounts for selected ICI terms and termed Selective

Equalization (SelE). Numerical simulations show that the TSVD and SelE are capable

of achieving enhanced error performance. Furthermore, the Fixed Complexity Sphere

Decoder (FSD) is proposed to alleviate the variable complexity obstacle faced with the

original SD algorithm and to provide enhanced error performance that can be traded off

with complexity. Finally, a new FSD algorithm is developed by combining it with the

TSVD, with detailed results showing performance improvement at a reduced complexity

than the FSD alone.

Chapter 7 addresses the issue of the PAPR of the SEFDM system. The SEFDM is

proved to be prone to high PAPR and as such is subjected to the nonlinear distortions if

the peaks exceed the dynamic ranges of the system components. However, the SEFDM

signal is shown to have lower occurrences of high PAPR when compared to OFDM

which decrease further with the increase in bandwidth compression level. PAPR con-

trol techniques imported from OFDM are then applied to the SEFDM signal. Clipping,

Partial Transmit Sequence (PTS) and Selective Mapping (SLM) are used to reduce the

probability of the PAPR exceeding a threshold level. Furthermore, a new PAPR reduc-

tion technique is designed for the SEFDM signal based on the signal design proposed in

chapters 3 and 4. The technique is termed SLiding Window (SLW) and is described in

detail with its numerical results that show an efficacy to reduce the PAPR beyond PTS

and similar to SLM with a much reduced complexity.

Chapter 8 addresses the issue of the SEFDM signal in fading channels. First, the MF

based demodulation is extended to the case of fading channel and is shown by numerical

simulations to achieve the same performance as the system based on orthonormal bases.

Following that, a new channel estimator, termed Partial Channel Estimator (PCE), is

designed and evaluated by means of numerical simulations that demonstrates improved

estimation accuracy when compared to Full Channel Estimation (FCE). Moreover, joint

channel equalization and symbol detection using the TSVD, FSD and FSD-TSVD is

proposed. The FSD-TSVD equalizer-detector based on PCE obtained channel estimates

achieves near-optimal performance with fixed complexity requirements.

Chapter 9 follows a different route to answer the SEFDM problem. In this chapter,

precoding of the SEFDM signal prior to transmission is proposed. This arrangement



Chapter 1. Introduction 30

leads to a two stages reception approach where part of the originally transmitted symbols

can be estimated with minimal detection effort, thus the complexity is localized in a

fraction of the overall system size.

Finally, chapter 10 summarizes the work in this thesis and discusses the significance of

the proposed techniques. In addition, the chapter provides recommendations for future

work.

The thesis includes two appendices. Appendix B provides detailed steps for the proof of

Lemma 3.1 and Appendix A explains Theorem 3.1 with numerical examples.

1.3 Main Contributions

This thesis documents work in different areas of the SEFDM system, covering system

modelling, transmission, reception, optimization and performance investigations. The

main contributions of this work, mathematical and engineering wise, are listed below:� Mathematical system modelling that includes:

– Development of a mathematical model for the discrete SEFDM system at

generation and reception ends and the derivations of closed form formulas for

the intercarrier interference for the continuous and discrete time systems.

– Derivations of mathematical bounds on the conditioning of the SEFDM sys-

tem based on the number of subcarriers and bandwidth compression level.

– Development of the mathematical and conceptual framework of the IDFT

based representation of the SEFDM signals.� Design and performance assessment of efficient IDFT based transmitters for SEFDM,

verified by simulations and experimentation.� Proposal and assessment of the MF demodulator and its DFT based implementa-

tion which led to the reduction of the complexity of the receiver.� Design and performance assessment of optimal detectors for the MF based receiver.� Design and performance assessment of four reduced complexity detectors:
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– Detection based on the Truncated Singular Value Decomposition (TSVD).

– Design of Selective Equalization (SelE) detection method that utilizes the

derivations of the ICI from the mathematical modelling contribution.

– The proposal and performance assessment of a Fixed Complexity Sphere De-

coders (FSD) .

– The design and performance assessment of a hybrid SEFDM detector com-

bining TSVD and the FSD .� Investigations of the PAPR in SEFDM system and its reduction mechanisms lead-

ing to the design of a new PAPR reduction technique that surpassed conventional

techniques in complexity and PAPR reduction efficiency.� Performance assessment in fading channels that included:

– Design and performance assessment of PCE channel estimators.

– Proposals of reduced complexity joint channel equalizers and symbol detec-

tors.� Introduction of precoding concept of the SEFDM to improve performance and

reduce complexity.

1.4 List of Publications

The above contributions have led to 3 journal publications and 12 conference presenta-

tions and publications listed in chronological order:

1. S. I. A. Ahmed and I. Darwazeh, IDFT Based Transmitters for Spectrally Efficient

FDM System, in London Communication Symposium (LCS’09), Sep 2009.

2. S. Isam and I. Darwazeh, Simple DSP-IDFT Techniques for Generating Spectrally

Efficient FDM Signals, in IEEE, IET International Symposium on Communication

Systems, Networks and Digital Signal Processing (CSNDSP’10), pp. 20-24, Jul

2010.
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3. S. Isam and I. Darwazeh, On the Digital Design of Non-Orthogonal Spectrally Ef-

ficient Frequency Division Multiplexed (FDM) signals, in 4th International Sym-

posium on Broadband Communications (ISBC’10), Jul 2010.

4. S. Isam and I. Darwazeh, Investigating the Performance of Spectrally Efficient

FDM System in Time Varying Fading Channel, in London Communication Sym-

posium (LCS’10), Sep 2010.

5. S. Isam and I. Darwazeh, Precoded Spectrally Efficient FDM System, in 21th Per-

sonal, Indoor and Mobile Radio Communications Symposium (IEEE PIMRC’10),

pp. 99-104, Sep 2010.

6. S. Isam and I. Darwazeh, IDFT-DFT Techniques for Generating and Receiving

Spectrally Efficient FDM Signals, American Journal for Engineering and Applied

Sciences. (Invited, to appear)
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Networking Conference (IEEE WCNC’11), pp. 1584-1589, March 2011.
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Conference (IEEE VTC’11), pp. 1-5, May 2011.
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Efficient FDM Systems, in IEEE 18th International Conference on Telecommuni-

cations (IEEE ICT’11), pp. 363-368, May 2011.
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Chapter 2

The SEFDM System

Introduction

The Spectrally Efficient Frequency Division Multiplexing (SEFDM) system was proposed

as a multicarrier modulation (MCM) scheme that promises better utilization of band-

width than an equivalent Orthogonal Frequency Division Multiplexing (OFDM) system.

SEFDM achieves spectral savings by reducing the spacing of the subcarriers and/or

transmission time, thus violating the orthogonality rule [21]. However, the reduction in

bandwidth requirements comes at the cost of increased complexity at transmitting and

receiving ends and much of the research in SEFDM systems focuses on developing high

performance systems at low complexity.

This thesis focuses on the SEFDM system of [21], therefore, this chapter aims to provide

the necessary background of the system. To put everything into prospective, the chapter

starts by briefly reviewing the OFDM system and then the SEFDM system is studied in

terms of the principles, generation and detection of the system. Furthermore, an outline

of other systems that propose better spectral efficiency than OFDM is presented and the

chapter is concluded by the statements of the gaps, limitations, and possible directions

of enhancement.

34
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Figure 2.1: OFDM spectra: N subcarriers spaced by 1/T Hz.

2.1 Orthogonal Frequency Division Multiplexing (OFDM)

In OFDM, a high data rate input symbols stream is divided into slower substreams that

are individually modulated onto the orthogonal subcarriers and sent out simultaneously

down the channel. In general, for a system transmitting an OFDM symbol every T

seconds the OFDM signal xO (t) can be expressed as

xO (t) =
1√
T

∞∑

l=−∞

N−1∑

n=0

sl,ng (t− lT ) ej2πn∆ft, (2.1)

where sl,n denotes the complex information symbol modulated on the nth subcarrier in

the lth OFDM symbol, T is the symbol duration of an OFDM symbol, ∆f is frequency

separation between the subcarriers, g (t) is a pulseshaping function and j =
√
−1. The

subcarriers are spaced out in the frequency spectrum such that their individual spectra

overlap but remain orthogonal. If g (t) is taken as a rectangular pulse, ∆f has to be

equal to the reciprocal of one OFDM symbol duration to satisfy orthogonality, thus

resulting in the sinc spectra as in Fig. 2.1. This frequency-time arrangement ensures

that the different subcarriers are separable despite the overlapping and the simultaneous

transmission.
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Figure 2.2: Block diagram of OFDM modem.

In OFDM, the number of subcarriers is chosen such that the symbol time on each subcar-

rier much longer than the channel delay spread, hence making the substream bandwidth

less than the channel coherence bandwidth [37]. This downgrading of the transmission

bandwidth of each substream ensures relatively flat fading on the subcarriers compared

to frequency selective fading experienced for the case of single carrier system [38]. In

other words, OFDM system spreads out a frequency selective fading over many symbols,

so that instead of several adjacent symbols affected by the fading, many symbols are only

partially distorted. It is customary in OFDM systems to add a cyclic prefix by adding

a copy of a part of the end of the symbol to its start, thus introducing an apparent

periodicity within each OFDM symbol which in turn transforms the convolution with

the channel response to a circular convolution and simplifies the equalization process

[39, 40].

A block diagram of an IDFT/DFT implementation of an N subcarrier OFDM system is

depicted in Fig. 2.2. The serial to parallel converter (S/P) groups the serially incoming

symbols denoted as s into N long blocks and passes one block at a time to be multi-

plexed. The IDFT carries the OFDM multiplexing and produces the time samples of

the combined signal to be converted to the analogue domain in the digital to analogue

converter (D/A) block. The transmitted symbol is up converted to the wanted frequency

and passed through the channel. At the receiver the processes in the transmitter are

reversed to extract the original input symbols.
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The very appealing advantages of OFDM come at a cost. The system mainly relies

on the subcarriers remaining orthogonal. Any impairment that can infect the system

orthogonality characteristic poses detrimental effects on the widely applauded advan-

tages. Synchronization between transmitter and receiver is crucial. Frequency shifts at

transmitting or receiving end can lead to the displacement of OFDM signal in spectrum

and/or intercarrier interference (ICI) [38, 41, 42, 43]. Furthermore, the structure of the

OFDM signal gives rise to a possibility that all subcarriers power adding up construc-

tively leading to a combined signal with a very high peak power and hence a high Peak

to Average Power Ratio (PAPR) [44]. A high PAPR places a constraint on the design

of the transmitter as it dictates the dynamic range of its circuitry. In case the circuitry

is unable to cater for the high PAPR, the resultant signal become distorted [45].

2.2 Non-orthogonal Multicarrier Communications

OFDM system constrains the subcarriers to reside in fixed relative locations in frequency,

therefore, is restricted in terms of spectral efficiency by this upper bound. Multicarrier

Modulation (MCM) communications systems with orthogonal pulseshapes [5, 46] pro-

vide lower bandwidth utilization but with better localization. The insistence on using

orthogonal bases and/or pulseshapes is attributed to the concept that the orthonor-

mal bases are considered optimum in the presence of Additive White Gaussian Noise

(AWGN) where the orthogonal bases preserve the whiteness of the noise. In addition,

orthogonality guarantees that the bases are linearly independent, hence the system is

invertible. Nevertheless, the loss of orthogonality does not necessitate the loss of linear

independence which is necessary for inverting the system.

To achieve better efficiency, non-orthogonal multicarrier communications are emerging.

These systems come into two main groups. The first did not venture too far from the

orthogonality principle by proposing the use of non-orthogonal pulseshapes, however,

the overall system remains orthogonal. The second group of systems proposes the use

of non-orthogonal bases. Of the first group Non-orthogonal FDM (NOFDM) proposes

restoration of orthogonality from the view point of the input symbols by employing

orthogonal pulse-shaping [47] and claims that modulation schemes based on incomplete

Riesz bases are more robust to frequency selective fading. The pulseshapes are chosen
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with sharp decays to improve spectral efficiency and the generation and reception bases

form a biorthogonal bases, where biorthogonality is defined as [48, 49]

〈ϕi, ϕ̃j〉 = δ (i− j) , (2.2)

where 〈·〉 is the inner product, ϕi or ϕ̃j belongs to the non-orthogonal bases sets ϕ and ϕ̃,

respectively and δ (1) = 1 and zero otherwise. The design of the pulseshapes is optimized

to improve efficiency and performance such as in [50, 51] proposing to design pulses that

generate a targeted Intersymbol Interference (ISI) or ICI pattern and power and bit

loading considerations in [52, 53, 54]. In fast time varying channels the Biorthogonal

FDM (BFDM) systems are shown to outperform OFDM [55, 56].

SEFDM systems follow a different approach to the non-orthogonal pulseshapes by ex-

plicitly defying the orthogonality rules and using non-orthogonal bases. These systems

do not assume any special pulse or system designs that restore orthogonality at any

point. Sections 2.3 to 2.7 describes the SEFDM system proposed in [21, 57] which is the

focus of the work in this thesis and section 2.8 outlines other similar proposals.

2.3 Spectrally Efficient FDM (SEFDM)

The SEFDM signal of [21] consists of a stream of SEFDM symbols each carrying a

block of N complex input symbols, denoted by s = s<e + js=m, transmitted within T

seconds. Each of the N complex input symbols modulates one of the non-orthogonal

and overlapping subcarriers, hence, giving the SEFDM signal x(t) as

x (t) =
1√
T

∞∑

l=−∞

N−1∑

n=0

sl,ne
(j2πnα(t−lT )/T ), (2.3)

where α denotes the bandwidth compression factor defined as

α = ∆fT, α < 1, (2.4)

for ∆f denoting the frequency distance between the subcarriers, T is the SEFDM symbol

duration, N is number of subcarriers and sl,n denotes the symbol modulated on the nth

subcarrier in the lth SEFDM symbol.



Chapter 2. SEFDM system: comprehensive review of the system 39

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

              
Frequency [Hz]

P
S

D

...

f
0

f
1

f
2

f
N−1

∆ f=α/T

Figure 2.3: SEFDM spectra: N subcarriers spaced by α/T Hz.

The fraction α determines the level of the bandwidth compression, thus termed band-

width compression factor with α = 1 corresponding to an OFDM signal. Fig. 2.3 depicts

the spectra of an N subcarrier SEFDM system. Due to the relatively closer locations

of the subcarriers in frequency, the spectral width of the multiplexed signal is narrower

than that of OFDM. However, the orthogonality feature in OFDM is lost and at the

peak of any individual subcarrier spectrum, the other subcarriers spectra are no longer

zeros. The bandwidth occupied by the system in Fig. 2.3 is approximately equal to

BWSEFDM =
α (N − 1) + 2

T
, (2.5)

whereas the N subcarrier OFDM system depicted in Fig. 2.1 has a bandwidth equal to

BWOFDM =
N + 1

T
. (2.6)

Equations (2.5) and (2.6) show that the occupied bandwidth of the SEFDM system

approaches α of the OFDM bandwidth with the increase in N . Fig. 2.4 depicts a

block diagram of the transmitter and receiver of the SEFDM system in AWGN channel,

sections 2.4 and 2.5 explains the building blocks of the system.
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Figure 2.4: SEFDM system modem.

2.4 SEFDM Transmitter

The SEFDM signal is composed of a combination of symbols each modulated on one

of the subcarriers. Therefore, the conventional SEFDM transmitter consists of a bank

of modulators running at the subcarriers frequencies as can be seen in Fig. 2.4. For

large system size it becomes exceptionally complex to realize this bank of modulators.

In addition, the system will be more susceptible to frequency offsets and timing errors,

as the number of oscillators increases to accommodate the increase in the number of

subcarriers. However, previous work in SEFDM mainly focused on addressing detec-

tion problem, except for [36] where the use of Fractional Fourier Transform (FrFT) for

SEFDM signal generations was suggested. The FrFT transform is a transform that re-

lates a vector to a non-orthogonal set of base vectors [58]. The kth output of the FrFT

of the N long vector A is expressed as

Xα [k] =
1√
N

N−1∑

n=0

A [n] exp

(
j2πnkα

N

)
. (2.7)

The FrFT can be realized with algorithms based on the Bluestein algorithm for the Fast

Fourier Transform (FFT) evaluation [59], requiring a complexity of about 20N log2 N

flops and additional multiplication and addition operations [58]. In contrast, OFDM

signal is efficiently generated with a single IDFT [9, 10] or equivalently using IFFT,

therefore, suggesting the necessity to invest in the reduction of SEFDM transmitter

complexity to stand a chance in surpassing OFDM complexity. In this thesis, a frame-

work for the efficient representation for non-orthogonal signals using IDFTs is presented
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in chapter 4, leading to several arrangements of simple to implement transmitter pro-

posed and reported by the authors in [60, 61, 62, 63].

2.5 SEFDM Receiver

The SEFDM receiver, as depicted in Fig. 2.4, is composed of two stages: a demodulator

and a detector. The demodulator collects statistics of the incoming signal by projecting

it onto orthonormal bases [64] whilst the detector applies detection algorithms to esti-

mate the originally transmitted information symbols based on the collected statistics.

The deliberate collapse of orthogonality generates significant interference between the

subcarriers that turns the detection of the signal to an overly complex problem. Despite

that, it has been shown that acceptable reception in terms of BER is achievable and

hence the pursuit of SEFDM system is deemed feasible [57].

Let the received signal be denoted by y (t), where

y (t) = x (t) + w (t) , (2.8)

and w (t) is an AWGN term. The ith collected statistics is obtained as

ri =

T̂

0

y (t) b∗i (t) dt, i = 0, 1, · · · , N − 1 (2.9)

where bi (t) is the ith orthonormal base obtained by applying an orthonormalization

technique on the original SEFDM subcarriers and [·]∗ is the Hermitian conjugate of the

argument1. The bases are orthonormal in order to preserve the white nature of the noise

in the system. However, projection onto a set of bases different from the one used for

signal generation does not eliminate the ICI. The complete set of received statistics is

then described as

R = MS +W, (2.10)

1[·]∗ will denote a conjugate only if the argument is a scalar.
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where the correlation between the orthonormal bases and the original subcarriers is

denoted by the N ×N matrix M where

Mij =

T̂

0

b∗j (t) e
j2πiαt/T dt, i, j = 0, 1, · · · , N − 1, (2.11)

R, S and W are N × 1 statistics of the received signal, transmitted symbols and noise

samples vectors, respectively [65]. The properties of matrix M affects the quality of

the obtained statistics and consequently affects the performance and complexity of the

detection mechanism [65]. The statistics R are fed to a detector that employs complex

detection algorithms to extract the transmitted signal with the aim of minimizing the

BER. In the next sections the techniques proposed so far for orthonormalization and

detection are discussed.

2.6 Demodulation and Orthonormalization

As mentioned in previous section, the demodulator stage of the SEFDM receiver col-

lects statistics of the incoming signal. In order to collect sufficient statistics from the

received signal, the receiver in Fig. 2.4 projects the signal onto a set of orthonormal

bases that span the same vector space as the original SEFDM subcarriers at the trans-

mitter. Orthonormal bases are bases that are orthogonal and have a norm of unity. In

addition to preserving the white nature of the noise, the bases should be orthogonal

to ensure that the collected statistics are independent. In SEFDM, the demodulation

bases are obtained by applying orthonormalization techniques on the SEFDM subcarri-

ers. Orthonormalization is the process of generating an orthonormal set of bases from

a non-orthonormal one and is a key operation in the demodulator stage in the SEFDM

receiver.

Initially, Gram Schmidt (GS) process [64] was suggested for the orthonormalization of

the subcarriers in the SEFDM system [21]. GS is a process that generates an orthogonal

set of bases from a non-orthogonal linearly independent set of bases. The obtained

orthogonal set is then normalized by applying the appropriate weighing. In GS, an

orthonormal set of bases that span the same space as the SEFDM subcarriers is obtained

by the elimination of the projection of the subcarriers onto the others in sequential order.
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For instance, GS starts by accepting one of the subcarriers as the first base and then by

the deduction of the projection of the second onto this one another base that is orthogonal

to the first is obtained. The process continues until all the bases are orthonormalized.

Projection of a vector v onto a vector u is defined by the inner product as

proju (v) =
〈u, v〉
〈u, u〉u. (2.12)

The projection can be normalized by dividing by ‖proju (v)‖, where ‖·‖ is the Euclidean

norm. The GS follows these steps to generate the set of orthonormal bases [e1 · · · ek]:

u1 = v1 e1 =
u1

‖u1‖
u2 = v2 − proju1 (v2) e2 =

u2
‖u2‖

u3 = v3 − proju1 (v3)− proju2 (v3) e3 =
u3

‖u3‖
...

...
...

uk = vk −
∑k−1

j=1 vjprojujvk ek =
uk
‖uk‖

. (2.13)

GS suffers from accuracy degradation due to its large rounding error [66, 67, 64]. For

SEFDM, it was noted that the use of GS leads to performance degradation of SEFDM

systems specially with the increase in the number of subcarriers or bandwidth com-

pression level [35]. Therefore, modified versions of GS particularly the Modified Gram

Schmidt (MGS) [68] and the Iterative Modified Gram Schmidt (IMGS) methods are

proposed in [35] and [36], respectively. MGS is designed to cope with the finite resolu-

tion of computation machines by updating the initial base vector after each step. This

ensures that the obtained MGS vectors remain mutually orthogonal despite rounding

operations. Furthermore, the IMGS technique enhances the performance of the MGS

technique by repeating the MGS orthonormalization steps for many iterations [69, 70].

MGS and IMGS achieve better accuracy than GS and in SEFDM systems this is demon-

strated in improved BER performance. It is known in the literature that the application

of GS on a full column rank matrix2 resembles the QR decomposition, thus generating

an orthonormal matrix Q and an upper triangular matrix R. It is then straightforward

that the M matrix defined in equation (2.11) is equivalent to the R matrix from the

QR decomposition.

2A full column rank matrix is a one whose all columns are linearly independent.
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A different orthonormalization technique, termed the Löwdin Method (LM), was pro-

posed for SEFDM systems in [35]. LM was originally proposed for quantum chemistry

applications [71, 72]. While GS techniques generate different orthonormal bases for

each different sequence of the non-orthonormal vectors, LM bases are sequence indepen-

dent and are closer to the original non-orthonormal bases in a least squares sense [73].

The LM starts by defining a matrix Z that generates a set of orthonormal bases U of

[u0, u1, · · · , uN−1] from the SEFDM subcarriers denoted by the matrix Φ where each

row of Φ represents the time samples of an SEFDM subcarrier, such that:

U = ZΦ. (2.14)

As the columns of U are orthonormal then

UU∗ = ZΦΦ∗Z∗ = I. (2.15)

A solution for equation (2.15) is

Z = C∗− 1
2 , (2.16)

where C = Φ∗Φ. The work in [57] showed that LM provides superior performance to

GS with all its variances and is attributed to the fact the bases generated with LM are

closer to the original subcarriers than GS bases, therefore, will address partially the ICI

while preserving the whiteness of the noise.

The orthonormal bases obtained via any of the discussed techniques serve the two set

goals: to generate statistics that are independent and preserve the white nature of the

noise at the output of the correlators stage. When a GS based technique is adopted,

the resultant correlation of the bases with the incoming signal is an upper triangular

matrix M and it is a full matrix when LM is used. It has been numerically identified

that the M matrix has a great impact on the performance of the system, specially that

the matrix tends to become ill conditioned3 with the increase in number of subcarriers

and/or level of bandwidth compression in the form of a decrease in the value of α [57].

In this thesis, chapter 3 presents a mathematical investigation of the relationship of

3Conditioning may be evaluated by the condition number which is the ratio between the maximum
eigenvalue and minimum one. Ill conditioning occurs when the matrices under investigation exhibit large
difference between the values of the eigenvalues or in other words when the condition number becomes
large.



Chapter 2. SEFDM system: comprehensive review of the system 45

system conditioning and the system parameters. In addition, chapter 5 investigates the

demodulation of the SEFDM signal with easy to obtain non-orthogonal bases and shows

that the orthonormalization can be avoided without premium at performance.

2.7 Detection

Due to the loss of orthogonality, detection of SEFDM signals is challenged by the need

to extract the original signal from the ICI. The optimum detection of the SEFDM signal

requires brute force Maximum Likelihood (ML) which can become extremely complex

with the increase in the system size [21]. On the other hand, using linear detection

techniques such as Zero Forcing (ZF) and Minimum Mean Square Error (MMSE) con-

strains the size of the SEFDM system and the level of bandwidth savings [35]. Therefore,

Sphere Decoder (SD) was proposed in [36] to provide ML performance at a much reduced

complexity. Nevertheless, the SD complexity varies depending on the noise and the con-

ditioning of the system. Attempts to tame the complexity of the SD algorithm appeared

in [74] in a quasi-optimal detector combining Semidefinite Programming (SDP) and SD,

however, the complexity remains variable. Sections 2.7.1 to 2.7.5 provide an outline of

the proposed detection techniques for SEFDM system.

2.7.1 SEFDM Optimal Detector in AWGN Channel

The demodulator feeds the collected statistics to the detector to estimate of the originally

transmitted symbols. Due to the loss of orthogonality between the subcarriers, the

collected statistics from the received signal will contain ICI leading to increased error

rates. With the aim of minimizing the probability of error in estimating the transmitted

symbols for an SEFDM signal contaminated with AWGN only, ML was initially proposed

as the optimal detector for the SEFDM system [21]. The ML criterion is applied by

examining all possible combinations of input symbols for every received SEFDM symbol.

Recalling that the orthonormal bases maintain the white nature of the noise in the

system, the ML estimate of the transmitted message ŜML is derived in [57] starting

from equation (2.10) to give a Least Squares (LS) problem as
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ŜML = min
s∈QN

‖R−MS‖2 , (2.17)

where QN is the set of all possible SEFDM symbols combinations. Equation (2.17)

specifies that the ML estimate for SEFDM system is the one that is closest to the signal

statistics in terms of the Euclidean distance. QN has MN entries where M is the con-

stellation cardinality and N is the number of subcarriers. It is clear then that with the

increase in number of subcarriers and/or the constellation size of input symbols the com-

plexity of the ML detector grows exponentially which represents a serious impediment

to its realization.

2.7.2 Simple SEFDM Detectors

To address the high complexity of ML detection Kanaras et al in [65] investigated using

linear detection techniques for the SEFDM signal detection. In particular, ZF and

MMSE were suggested as sub-optimal detection techniques.

In principle, a ZF detector reverses forcibly any operation carried at transmission [75].

Starting by constraining the ML detection problem in equation (2.17) to integer values

only, the ZF solution ŜZF of the Integer LS (ILS) problem is obtained as [76, 77, 57]

ŜZF =
⌊
M−1R

⌉

=
⌊
M−1 (MS +W )

⌉

=
⌊
S +M−1W

⌉
, (2.18)

where b·e is a slicing operator that rounds the argument to the closest constellation

point. The properties of the M matrix and its inverse will dictate the quality of the ZF

estimation, when the matrices of the system are ill conditioned the ZF detector results

in the modulation of the added noise in the system and overall poor BER performance.

Moreover, the work in [57] proposed an iterative technique for detecting the SEFDM

signal termed Iterative Cancellation (IC). The proposed detector is based on that the M

matrix is upper triangular when any GS based method is used for orthonormalization

and thus proceeds to implement the solution starting from the last line of the SEFDM

solution equation in (2.18) and iteratively estimating the input symbols. The IC detector
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showed better performance than standard ZF mainly because of the avoidance of direct

matrix inversion that leads to noise enhancement.

In order to mitigate the effects of noise enhancement associated with ZF, the MMSE

detector is proposed for SEFDM system [65]. MMSE optimizes between noise enhance-

ment and ICI mitigation by including noise whitening term [75]. Estimation based on

MMSE is expressed in [65] as

ŜMMSE =

⌊
M∗

(
MM∗ +

1

σ2
W

I

)−1

R

⌉
, (2.19)

where σ2
W is the noise variance and I is the identity matrix. The MMSE detector yields

better error performance than ZF, however, still considered poor [65].

In summary, simple SEFDM detector, either linear such as ZF and MMSE or iterative IC,

require less complexity when compared to ML detection, nevertheless, their performance

is severely restricted by the noise and the conditioning of the system and can support

small system sizes and/or low bandwidth savings.

2.7.3 Sphere Decoder

Sphere Decoding (SD) is proposed in [35, 36] for detecting SEFDM signals. Basically SD

is an algorithm to perform ML detection at a reduced complexity. Whilst ML estimates

are obtained by finding the point that gives the minimum distance from the statistics

point R from the set of all possible combinations of transmitted symbols, SD achieves

the same objective by transforming all possibly transmitted symbols combination into

a multi-dimensional hypersphere and then searching for the point that is closest to

R within the sphere [78]. The SD achieves complexity reduction by performing the

search for candidate solutions within a pre-determined radius g from the received signal

statistics point, such that the search sphere is smaller than the whole possible solutions

space.

The SD estimate ŜSD is defined as

ŜSD = min ‖R−MS‖2 , (2.20)

s∈QN , ‖R−MS‖2≤g
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where g is the initial radius of the search hypersphere. In the Real SD (RSD), all the

variables in equation (2.20) are expanded using real decomposition [79], thus, doubling

the dimension of the problem as

R̃ =


 R {R}

Im {R}


 , M̃ =


 R {M} Im {M}

−Im {M} R {M}


 ,

S̃ =


 R {S}

Im {S}


 , W̃ =


 R {W}

Im {W}


 (2.21)

Using Cholesky decomposition [80], the problem in equation (2.20) can be expressed as

ŜSD = min
∥∥∥L
(
P − S̃

)∥∥∥
2
, (2.22)

s∈QN , ‖R−MS‖2≤g

where L is an upper triangular matrix defined by the Cholesky decomposition as M̃T M̃ =

LTL , where [·]T denotes a matrix transpose and P is the unconstrained ML estimate

of S defined as

P =
(
M̃TM̃

)−1
M̃T R̃, (2.23)

where
(
M̃TM̃

)−1
M̃T is the Moore-Penrose pseudoinverse of matrix M̃ [66]. The SD

algorithm then proceeds by examining all the nodes that satisfy the radius constraint

starting from the level number 2N and moving downwards until reaching level number

1. At each level only the points that satisfy equation (2.22) are kept and the radius is

updated accordingly. That is at level number y, all the nodes that satisfy

|p̂y − s|2 ≤ gy/l
2
yy, (2.24)

where |·| is the absolute value,

p̂y = py −
N∑

j=y+1

(lyj/lyy) (sj − pj) (2.25)

and

gy = g −
N∑

j=y+1

ljj |p̂y − s|2 , (2.26)

are retained where any discarded node will eradicate all its predecessor nodes, and hence
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Figure 2.5: SD tree search.

reduces the remaining search space compared to the initial one. Fig. 2.6 illustrates a

functional diagram of the SD algorithm and shows the decoding steps. Fig. 2.5 depicts

the SD tree search. At each search level, the candidate points are examined in a specified

order and those that satisfy the radius constraint are accepted.

Two important factors for SD algorithm are the choice of the initial radius and the

order of enumeration of candidate points at each decision level; both issues received

substantial research effort. The choice of the initial radius g decides the complexity

of the algorithm as it decides the initial size of the search hypersphere, however, a

trade off between performance and complexity is needed as a small radius will reduce

the probability of finding the optimal solution while a large radius will increase the

complexity. For SEFDM, the radius is set in the majority of investigated cases to be

equal to the distance to an initial estimate of the transmitted symbols obtained using ZF

or MMSE. The second factor is the order of the enumeration of candidate points, where

two techniques are widely used, namely, Fichke-Pohst (FP) and Schnorr Euchner (SE)

[81]. FP orders the point in ascending order from the bound defined in equation (2.24)

while SE enumeration orders the candidate points based on their distance from the centre

of the search interval as defined in equation (2.25)[82]. In SEFDM, SE enumeration was

adopted as SE permits that the initial radius to be set to a large number with no serious

effects on the complexity [57].

To avoid doubling the dimension of the problem associated with the RSD, the authors

of [36, 57] proposed the Complex SD (CSD) algorithm [83]. CSD represents the SEFDM

LS problem in phasor form and follows similar search steps to the RSD to estimate the

originally transmitted symbols.
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Figure 2.6: SD functional diagram.

In terms of the BER the SD algorithm manages to approach the optimum ML perfor-

mance with lower complexity (in worst cases it is equal to ML complexity). However,

there is no guarantee as to the level of complexity needed for a solution to be obtained.

The complexity is highly dependent on the noise and in this SEFDM context it is also

dependent on the conditioning of the system. The complexity of the SD approaches

ML complexity with the increase in the number of subcarriers and/or the decrease of

the distance between the subcarriers. Examining the functional diagram for the SD

algorithm in Fig. 2.6 demonstrates the iterative and sequential nature of the algorithm,

thus, suggesting the unsuitability of the algorithm for hardware implementation. This

issue is addressed by the proposal of the Fixed SD in chapter 6.
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Finally, the SD concepts were used to develop a joint channel equalizer and symbol

detector for SEFDM signals in time dispersive channels [84]. The proposed equalization

and detection approach was tested in static fading channels for systems with and without

cyclic prefix. Numerical results provided therein confirmed support for systems up to

20% bandwidth saving. The work in [84] serves as a proof of concept in fading channels,

however, further analysis in multipath fading will be necessary to asses the performance

of the system which is provided in chapter 8.

2.7.4 Semidefinite Programming

Semidefinite Programming (SDP) was proposed for SEFDM detection to provide fixed

complexity and improved error performance over linear techniques [85]. An SDP solution

is obtained by reformulating the ML detection problem in equation (2.17) based on the

relaxation of the constraints of the NP hard detection problem therein. The new SDP

solution can be solved in polynomial time [86].

The SDP solution starts from the expanded form of the ML problem obtained via the real

decomposition as in (2.21), thus, the problem dimension is doubled to 2N . Assuming

4QAM information symbols, the expanded ML problem is expressed as [85]

min R̃T R̃− R̃TM̃S̃ − S̃TM̃T R̃+ S̃TM̃TM̃S̃, (2.27)

s̃∈{±1}

where s̃ denotes a single element of S̃, the 2N × 1 vector of expanded 4QAM input

symbols. Equation (2.27) can be further reduced to

min S̃TM̃TM̃S̃ − R̃TM̃S̃ − S̃TM̃T R̃, (2.28)

s̃∈{±1}

as the term R̃T R̃ is a constant. Now define the matrix Γ and the vector Y , such that

S̃TM̃TM̃S̃ − R̃TM̃S̃ − S̃TM̃T R̃ = Y TΓY, (2.29)
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where Γ and Y are block matrices given by

Γ =


 M̃T M̃ −M̃T R̃

−R̃TM̃ 0


 , Y =


 S̃

1


 . (2.30)

Due to the Hermitian nature of Γ, by its definition, and from the definition of matrices

inner product the term Y TΓY can be reduced to Tr {ΓY} where Tr {·} is the trace

operation4 and

Y =





S̃S̃T S̃

S̃T 1



 . (2.31)

The new block matrix Y properties play a key role in the reformulation of the ML

problem. The diagonal elements of Y will be equal to one and the matrix itself is

positive semidefinite5 and of rank 1 [57]. Therefore, the problem in equation (2.28) can

be equivalently expressed as

min Tr {ΓY}

diag {Y} = e

Y � 0

rank {Y} = 1 , (2.32)

where diag {·} refers to the diagonal elements of the argument matrix, e is a (2N + 1)×1

vector of ones, � indicates the matrix is positive semidefinite and rank {·} gives the rank

of the argument matrix . The relaxation of the non affine rank {Y} = 1 constraint in

equation (2.32) leads to the SDP problem

min Tr {ΓY}

diag {Y} = e

Y � 0. (2.33)

The SDP solution of the transformed problem searches for Y that satisfies the conditions

of equation (2.33) and can be pursued using well established Interior Point Methods

4For an N ×N matrix A, Tr {A} =
∑N

1 aii.
5A positive semidefinite matrix is a Hermitian matrix whose all eigenvalues are not negative.
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(IPM). Finally, the SDP solution, matrix Y is used to estimate the vector S̃. The work

in [57] discussed the use of three different heuristic methods namely:

1. The rank-1 method where the SDP solution is accepted as the unconstrained esti-

mate of S̃ and thus a slicing function is applied to find the corresponding 4QAM

symbols [87].

2. The dominant eigenvector, where the eigenvector, or its negative version, that

corresponds to the maximum eigenvalue is used as the argument of a slicing oper-

ator depending on whether the sign of the last element of the vector is positive or

negative respectively.[88].

3. the randomization techniques, the technique starts by applying the dominant eigen-

vector method and uses the selected vector to generate a Bernoulli distribution.

The technique then proceeds to generate random vectors and choose the one that

minimizes the function in equation (2.29) [88, 89, 86].

To assess the performance of the SDP approach for SEFDM detection, [57] presented

numerical simulation results. In terms of the BER performance, the SDP solution ap-

proximates the ML solution with any deviation from the optimal solution starting to

increase with the further deterioration of the conditioning of the SEFDM system. How-

ever, SDP solution performance surpassed linear detectors. Simulations using CVX

optimization tool led to an SDP solution with a polynomial complexity of O
(
8N3.5

)

[88, 57]. The main advantage is the fixed complexity and the insensitivity to noise when

compared to the SD algorithm.

2.7.5 Hybrid Detectors

The different detectors for SEFDM system discussed so far provided support for either

BER performance or complexity. A trade off between BER performance and affordable

complexity leads to the choice of one detector or the other from all proposals. This

motivated the search for hybrid detectors that can tackle both factors (i.e. performance

and complexity) at the same time. With the goal of reducing the complexity while

providing attractive BER performance, a number of detectors were proposed in [90, 85,
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91] that start with a simple sub-optimal detector to provide a seed estimate to a more

sophisticated detector operated at a reduced complexity.

The first to appear was a detector combining MMSE and ML, proposed in [90], providing

better error performance than using only MMSE detection and a reduced complexity

when compared with ML detection only. The MMSE-ML detector starts by extracting an

estimate of the originally transmitted symbols following MMSE procedure as explained

in section 2.7.2. After that an ML search is performed in a restricted neighbourhood

around the MMSE estimate. The definition of the neighbourhood is key for the successful

detection and complexity reduction. In [90], the neighbourhood D contains the SEFDM

symbols that satisfy

Si ∈ D if dH

(
S

′

i , Ŝ
′
)
≤ P, (2.34)

where P = 0, ..., N log2 M and dH is the Hamming distance between the binary versions

of the SEFDM symbols and MMSE estimate denoted by S
′

i and Ŝ
′
, respectively. Thus,

the new MMSE-ML estimate becomes

ŜMMSE−ML = min
s∈D

‖R−MS‖ . (2.35)

In terms of complexity, the MMSE-ML detector requires lower complexity than original

ML due to the reduction in the size of the search space. However, the BER performance,

though better than MMSE detection, is still sub-optimal.

Another detector that combines SDP and ML was proposed in [85]. The SDP-ML

technique starts by generating an SDP estimate of the originally transmitted symbols

as explained in 2.7.4. Following that, an ML search is executed within a neighbourhood

around the SDP estimate in a similar manner as the MMSE-ML detector. The SDP-

ML detector offered BER performance advantage over SDP, however, the complexity is

higher now due to the required ML search. Therefore, the work in [74, 91] proposed the

use of SD to implement the ML part of the SDP-ML detector and is termed Pruned

Sphere Decoder (PSD). The pruning of the SD algorithm is achieved by first setting

the initial radius of the SD algorithm so that the SDP estimate lies on the surface of

the search sphere. Second, the SD search is modified so that only points that satisfy

a specific Hamming distance constraint are examined. In essence, the SD search is

constrained to points within a specified neighbourhood around the SDP estimate in a
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similar manner as in equation (2.34) for the MMSE-ML case. The PSD achieves the

same BER performance of the SDP-ML at a reduced complexity, hence, enabling the

increase in the system dimension in terms of the number of subcarriers.

2.7.6 Detection Limitations

In general, all detection techniques reviewed in this chapter showed performance that is

dependent on the number of subcarriers and/or bandwidth compression level. Numerical

investigations of the underlying matrices, particularly the M matrix, [57] have shown

that the SEFDM tends to become severely ill conditioned with increase in the number of

subcarriers and/or bandwidth compression level. Usually the conditioning of a matrix

A is reflected in its condition number defined as

κ (A) =
σmax

σmin
, (2.36)

where σmax and σmin are the maximum and minimum singularvalue of A respectively.

An ill conditioned matrix is characterized with a large condition number. The main

drawbacks of the ill conditioning of a matrix that characterizes a system, is that a

solution to the system may not be tractable due to numerical precision limitations and

that the implementation of the system will need to support a large dynamic range. The

work in [57] has shown by numerical simulations that the condition number of the M

matrix increases with the increase in number of subcarriers and/or the decrease of α and

consequently, classified the SEFDM LS problem as an ill-posed problem6. The common

practice to solve ill-posed problems is to use some form of regularization to transform

the ill-posed problem into an alternative well-posed one. For SEFDM system, Tikhonov

regularization was suggested and examined in [36].

Tikhonov regularization is achieved by adding a penalty term, that provides information

about the solution, to the problem function as

min
s∈QN

‖R−MS‖+ ε ‖LS‖ , (2.37)

6An ill-posed problem is characterized by a coefficients matrix with singularvalues gradually decaying
[92] and hence, high sensitivity to small perturbations such as noise.
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where ε is termed the regulator and L is termed the regulator matrix. For simplicity, L

is taken as the identity matrix I, hence the solution of the problem in equation (2.37)

reduces to

Ŝ = M∗ (MM∗ + εI)−1R. (2.38)

Clearly, equation (2.38) is equivalent to the MMSE solution provided in equation (2.19) if

the regulator is set to ε = 1/σ2
w. The value of the regulator will dictate the improvement

in the conditioning of the initial LS problem. However, regularization adds an error term

to the initial problem, therefore, a trade off between the improvement of the conditioning

of the system will dictate the choice of the regulator.

Numerical evaluations of the effects of the regularization of the SEFDM problem have

confirmed improvement of the performance [57]. Furthermore, a regularized version of

sphere decoder (RegSD) of [93] was proposed and investigated in [36] for SEFDM system

detection. The performance of the RegSD is shown to be superior to that of the SD in

terms of reduction of complexity and its sensitivity to noise. This improvement is due to

the improvement of the initial estimate in the SD algorithm obtained from a ZF operation

and the improvement of the conditioning of the coefficient matrix which affects the tree

search of the SD algorithm. In terms of the BER performance the regulator imposes no

penalties due to the equivalence of the two problems before and after regularization.

2.8 Other Spectrally Efficient Systems

The concept of non-orthogonal spectral efficiency improvement has been tackled in other

system scenarios. In this section a brief outline of the main proposals is presented.

Early examples of systems proposing higher spectral efficiency is the Fast OFDM (FOFDM)

which proposes doubling the bandwidth of OFDM systems [19]. The subcarriers in

FOFDM system are placed at half the frequency separation of an equivalent OFDM sys-

tem, as such the achievable spectral efficiency is doubled. In principle, FOFDM system

relies on the fact that when modulating the OFDM subcarriers with real input symbols,

the orthogonality rule is valid for half the spacing of the system carrying complex input

symbols. Therefore, FOFDM can convey the same information using half the bandwidth

of an equivalent OFDM systems if the restriction to one dimensional modulation schemes
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such as Binary Phase Shift Keying (BPSK ) is satisfied. FOFDM system can be im-

plemented using IDFT/DFT or equivalently IFFT/FFT at transmission and reception

sides, respectively. In terms of BER performance, FOFDM delivers similar performance

as OFDM for one dimensional modulation schemes [94, 95], yet, for higher dimensional

modulations the performance degrades to unacceptable levels [96, 97].

Furthermore, the concepts of FOFDM have been tested in the optical communications

field in the so called Optical Fast OFDM [98]. The Optical-FOFDM uses the Inverse

Discrete Cosine Transform (IDCT) and Discrete Cosine Transform (DCT) for the mul-

tiplexing and de-multiplexing of the signal, respectively. The proposed Optical-FOFDM

offers a choice of either reduction in complexity or doubling of the spectral efficiency [98]

and is demonstrated in hardware in [99]. Recently, [99] proposed the use of the DFT for

the Optical-FOFDM system in a similar manner as in [19].

In terms of spectral efficiency, FOFDM can be equivalent to a 4-QAM OFDM system

and the achievable savings in spectral efficiency is restricted due to the restriction to

real modulation schemes.

A similar system termed M-ary Amplitude Shift Keying (MASK) OFDM proposing

half bandwidth saving of equivalent OFDM bandwidth appeared in [20] for systems

supporting M-ary ASK symbols only. The system places the subcarriers at half the

distance of orthogonality of conventional OFDM. Similar to FOFDM, the trick used

here is that if considering only the real part of the subcarriers, the orthogonality can

still be maintained at half the spacing of the complex subcarriers. Therefore, MASK

OFDM can only accommodate real modulation schemes. A system based on the DCT

and the IDCT is proposed for generation and reception in analogy to the IFFT/FFT

based OFDM.

High Compaction Multicarrier Communication Modulation (HC-MCM) is another sys-

tem that proposed spectral efficiency enhancement [22]. Although, HC-MCM briefly

discussed spectral savings exploiting either the frequency or time domain, the work

presented in [22] only analyzed the case of time domain compression where the higher

spectral efficiency is achieved by transmitting at higher rate than an equivalent OFDM

system. A DFT based implementation of the HC-MCM is presented in [22]. Generation

of HC-MCM signals is based on standard IDFT as it is generated as ordinary OFDM,
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yet only a part of the modulated signal is actually transmitted. Spectral efficiency is

achieved by reducing transmission time of HC-MCM symbol compared to an equivalent

OFDM system which results in increasing the individual subcarriers bandwidth thus

breaking the orthogonality rule. The signal is received by a DFT followed by an ML

decoder, however results for systems of 4 subcarrier only were displayed due to the high

complexity of the ML detection. To reduce complexity of the ML decoder the use of the

M-algorithm is proposed in [100] and is further suggested to be combined with parallel

combinatory OFDM (PC-OFDM) to improve its bandwidth efficiency while benefiting

from the ability to reduce the PAPR [101].

Similar to SEFDM, Overlapped Frequency Division Multiplexing (Ov-FDM) system

proposes spectral efficiency enhancement by locating the subcarriers at spacing less than

the required by the orthogonality condition [23]. The initial Ov-FDM proposal followed

the same approach as SEFDM in terms of the way the subcarriers are set up and the

method adopted for optimum detection, which is the Maximum Likelihood Sequence

Detection (MLSD). To enable DFT based implementation, the Ov-FDM system applies a

precoding stage before an IDFT stage. In simple terms, the precoding stage manipulates

the inputs to the IDFT so that the outputs occupy less bandwidth. As the detection

of Ov-FDM is based on MLSD criteria it is expected that the system will be limited in

terms of the number of subcarriers or modulation levels. Enhancement of the Ov-FDM

system appeared in [102, 103] proposing the use of Gabor transforms for reducing the

complexity of detection with the concept of non-orthogonality extended across both time

and frequency dimensions [104]. Detection of Ov-FDM signals proposed SD, SDP and

lattice reduction techniques [105, 106, 107].

Another system that proposed spectral efficiency improvement is the Multistream Faster

than Nyquist System (MFTN). The MFTN system first appeared in 2005 where the

Mazo limit defined for faster than Nyquist signalling in [31] was extended to the fre-

quency domain in what is called the two dimensional Mazo limit [24]. The main con-

cept therein, was to repeat the packing achieved in time for FTN system, in the fre-

quency domain. Furthermore, a combined packing effect is approached by packing in

time and frequency at the same time. The first proposal for MFTN system used M-

algorithms for detection and therefore, was severely constrained in terms of number

subcarriers that can be supported. Further development of the MFTN system appeared
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in [108, 109, 110, 25] that extended the system to support more subcarriers. As the

detection of the MFTN proved to be challenging, various decoding arrangements were

proposed in [108, 109, 110, 25, 111] aiming to improve the support of system sizes in

terms of number of subcarriers and/or bandwidth savings possibilities. Implementations

of MFTN transmitters appeared in [112], whereby a transmitter based on an FTN map-

per that maps the appropriate information to the subcarriers of the next stage which

is based on the Isotropic Orthogonal Transform Algorithm (IOTA) multicarrier modu-

lation block. The proposed MFTN transmitter has higher complexity than an equiva-

lent OFDM, however, it retained some of the building blocks of OFDM. Furthermore,

[113, 114] presented an implementation of an MFTN receiver using Field Programmable

Gates Array (FPGA).

Finally, Optical Dense OFDM (DOFDM) system proposed the use of non-orthogonal

subchannels [26]. It was shown experimentally that the DOFDM can perform close to

OFDM with the signal degradation due to chromatic dispersion possibly mitigated for

by optimizing symbols timing and optical polarization of neighbouring subchannels.

2.9 Review Outcome and Conclusions

The main goal of this chapter was to set the scene for the work in this thesis by pre-

senting the advancements achieved in SEFDM system. At the start, OFDM was briefly

outlined as being a technique chosen to support high data rates and fading immunity.

Brief descriptions of OFDM transmission and reception were provided in addition to

brief highlights of main OFDM system characteristics. Then, the concept of using non-

orthogonal overlapped signal to achieve higher spectral efficiency was discussed. Ap-

pearing under different names, two systems managed to achieve doubling the OFDM

spectral efficiency for one dimensional modulation schemes. Effectively, these systems

can not be more spectrally efficient than a higher order modulation scheme sent within

the same bandwidth. Furthermore, a class of systems proposing the support of higher or-

der modulation schemes in conjunction with non-orthogonal subcarriers was introduced.

A review of Spectrally Efficient FDM system (SEFDM) as the first proposal was provided

together with an outline of other similar proposals. In principle, all variants of SEFDM

systems are equivalent and all findings and remarks can be generalized to other system
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with change of notations and consideration of special conditions if any exists. As in

their respective proposals, these systems are capable of supporting variable and flexible

spectral efficiencies. However, the loss of orthogonality complicated the processes of such

systems at both transmission and reception ends. Of the two, the reception end received

the majority of the attention as the different variants of the SEFDM systems investi-

gated several detection arrangements. Sub-optimal linear detection techniques required

less complexity but offered poor error performance. The performance is found to be

highly dependent on the number of subcarriers and/or level of bandwidth compression.

Optimum detection techniques in the form of ML or SD facilitated error performance

similar or close to that of OFDM system with the SD needing much lower complexity

compared to ML detection. In terms of BER performance, it was shown that several

detection techniques are able to deliver attractive performance. However, the complexity

of the published techniques is still an open area for further enhancements.

Overall, the very appealing concept of improving spectral efficiency has excited much

research in the area of non-orthogonal multicarrier systems. However, many issues seem

to be unresolved and untouched in some cases. The reduction of complexity is an

urgent issue for study, yet, other issues need thorough examination. For instance, the

representation of the SEFDM signals as a set of vectors suggest that investigations of

the linear dependency can aid to determine if there are fundamental limitations for such

an approach and to assess the existence of solutions for the system and the affordability

and realizability of such solutions.

It is noted that the performance of the SEFDM system is dependent on the number

of subcarriers and the level of bandwidth compression. However, there is no rigorous

analysis of how the system becomes dependent on these two parameters and why. This

information is necessary for the informed pursuit of interference mitigation techniques. It

is expected that representing the system by a detailed mathematical model will facilitate

defining the root causes of performance degradation. As there is a need to establish the

mathematical basis on which the properties of the system could be extracted, the next

chapter in this thesis deals with the issues of modelling and mathematical investigations

of the key system parameters.

Moreover, the generation of the SEFDM signal via a bank of modulators is expected to

limit the implementation potential of the system, whereas generation with IFrFT has
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not received detailed investigations to map clearly the road to hardware implementation.

In chapter 4 of this thesis, a framework for the generation of SEFDM signals with IDFT

is presented. The framework provides flexible arrangements and specification for IDFT

based architectures that led to the successful implementation of the transmitter using

FPGA.

Moreover, the demodulator stage has assumed the use of orthonormal bases which in

turn requires orthonormalization processes. Furthermore, the correlation with the bases

requires a bank of correlators. This arrangement will certainly add to the complexity

of the SEFDM receiver. In chapter 5 of this thesis the demodulation of the signal

is considered. Other demodulators are investigated, associated with the mathematical

derivations and numerical assessment of the respective optimal detectors.

Furthermore, as a multicarrier system, the SEFDM is prone to exhibit high PAPR. The

high PAPR will affect the design of the power amplifier and will determine the system

dynamic range, hence the dynamic range of all the components in the transmitter.

Moreover, uncontrolled PAPR may lead to non-linearity problems. Therefore, chapter

7 of this thesis presents a study of the PAPR of SEFDM system and proposes and

evaluates efficient PAPR reduction techniques.

SEFDM system has been thoroughly investigated under AWGN channel. A study of

the effects of multipath fading channel is essential before deciding on the feasibility of

the system in practical settings. Issues such as channel estimation and equalization

are crucial for the proposal of SEFDM systems in practical wireless communications

settings, hence, are covered in chapter 8 of this thesis.

As discussed above many issues remain untackled and as such base the work presented

in the subsequent chapters. The work in this thesis focuses on and adopts the signal

notation of the SEFDM system of [21], where any findings can be generalized to the

outlined other SEFDM systems with appropriate change of notation.



Chapter 3

Mathematical Properties of

SEFDM Signals

3.1 Introduction

Previous work in SEFDM indicated some performance limitations. It was stated in

[35] that the achievable BER deteriorates with the increase in the number of subcar-

riers and/or the reduction of the frequency spacing between the subcarriers. It is also

stated that the complexity of detection strongly depends on the conditioning of the M

matrix described in section 2.5 [35]. In this chapter, the limitations of the system are

investigated by mathematical modelling and analysis. The study is motivated by the

need to establish the grounds that govern the performance of the system. The aim of

the work presented here is to identify the mathematical characteristics of the SEFDM

system and to identify theoretical bounds and drivers of system performance. This is

achieved by identifying the mathematical structure of the underlying matrices leading

to the derivations of closed form formulas and bounds that explain the observed per-

formance and aid the informed system design. The study includes the determination of

important system parameters that can aid in estimating the numerical stability of the

system. In particular, closed form representation of the intercarrier interference (ICI) in

the system is derived. It is found that the effect from neighbouring subcarriers is higher

than relatively distant ones, hence, equalization could be effective for only highly inter-

fering carriers as will be shown in chapter 6. Moreover, it is found that the conditioning

62
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of the system is highly controlled by the number of subcarriers and/or their relative

spacing in frequency. The system is proved to be non-singular, though it could become

ill conditioned when the amount of bandwidth savings and/or number of subcarriers are

increased.

3.2 The Discrete SEFDM Signal

To benefit from signal processing techniques, it is considered useful to address a discrete

representation of the SEFDM system instead of the continuous one. In addition, all

the work in SEFDM has been numerically evaluated, thus, all published results are

approximations to the continuous signal case. In this section, a discrete system model

is presented.

The discrete SEFDM signal is prepared by applying periodic sampling. Particularly,

without loss of generality, the SEFDM symbol with zero index is considered, corre-

sponding to the symbol at l = 0 in equation (2.3)

x0 (t) =
1√
T

N−1∑

n=0

s0,ne
(j2πnαt/T ). (3.1)

By sampling the SEFDM symbol in equation (3.1) at (T/Q) intervals where Q = ρN ,

and ρ is an oversampling factor, the discrete SEFDM signal, with the 0 index omitted,

is then expressed as

X [k] =
1√
Q

N−1∑

n=0

sne
j2πnkα

Q , (3.2)

where X [k] is the kth time sample of the SEFDM symbol in equation (3.1), k =

0, 1, · · · , Q − 1 and the factor 1/
√
Q is a normalization constant. The complete dis-

crete model is then expressed in matrix format as

X = ΦS, (3.3)

where X = [x0, · · · , xQ−1]
T is a vector of time samples of x (t) in equation (2.3), S =

[s0, · · · , sN−1]
T is a vector of input symbols, and Φ is the sampled carriers matrix. Φ is
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a Q×N matrix whose elements are

φk,n =
1√
Q
e

j2παnk
Q , (3.4)

for 0 ≤ n < N, 0 ≤ k < Q . The defined discrete SEFDM signal model forms the basis

for the design of efficient transmitting structures that are presented in chapter 4.

3.2.1 The Carriers Matrix

Sampling the subcarriers of the SEFDM system result in a Q×N matrix Φ where

Φ = 1√
Q




1 1 1 · · · 1

1 e
j2πα
Q e

j4πα
Q · · · e

j2π(N−1)α
Q

...
. . .

1 e
j2π(Q−1)α

Q e
j4π(Q−1)α

Q · · · e
jπ(Q−1)(N−1)α

Q



. (3.5)

An important observation here is that the matrix Φ in equation (3.5) is a Vandermonde

matrix. A Vandermonde matrix is a special matrix whose entries are defined by the

entries of the generating row (or column) as [80]:

V =




1 a01 a02 · · · a0N

1 a11 a12 · · · a1N
...

. . .
...

1 aQ−1
1 aQ−1

2 · · · aQ−1
N



. (3.6)

Using Vandermonde matrix notation, the matrix Φ can be expressed as row Vander-

monde matrix as

Φ = V

(
1, e

j2πα
Q , e

j4πα
Q , · · · , e

j2π(N−1)α
Q

)
, (3.7)
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noting that Φ can also be expressed as a column Vandermonde matrix. Furthermore,

Φ is constructed from points on the unit circle of the complex z-plane, particularly the

elements of the generating row are powers of the Qth root of unity e
j2π
Q 1.

3.3 Characterizing the ICI in the SEFDM System

Expectedly, the SEFDM system will suffer from ICI due to the loss of orthogonality.

In order to investigate this interference the cross correlation between the subcarriers is

derived to estimate energy leakage amongst all subcarriers. Derivations for the correla-

tion for the continuous time FOFDM system was presented in [95], where the real and

imaginary parts of the correlation were explored and hence used to explain how FOFDM

facilitates reliable transmission over half the bandwidth of OFDM. In this thesis, the

cross correlation is derived for the SEFDM system where the FOFDM system is con-

sidered a special case corresponding to α = 0.5. Furthermore, the correlation of the

discrete time system is derived and analyzed.

Considering two arbitrarily SEFDM subcarriers denoted by e
j2πmαt

T and e
j2πnαt

T , the cross

correlation is given by

rc (m,n) =
1

T

ˆ T

0
e

j2πmαt
T e−

j2πnαt
T dt

= ejπα(m−n)sinc (α (m− n))

= sinc (2α (m− n))

+j sin (πα (m− n)) sinc (α (m− n)) . (3.8)

This correlation may be expressed in terms of amplitude and phase as

|rc (m,n) | = |sinc (α (m− n))| , (3.9)

Θrc(m,n) =





πα (m− n) , dα (m− n)e odd

πα (m− n) + π , dα (m− n)e even

, (3.10)

1The Qth root of unity e
j2π
Q satisfies that

(

e
j2π
Q

)Q

= 1 and that
(

e
j2π
Q

)(kQ+m)

= e
j2πm

Q .
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where |·| is the absolute value and d·e is the ceiling operation. It is clear from equation

(3.8) that the cross correlation is dependent on two parameters of the system, the band-

width compression factor α and the relative distance between the subcarriers reflected

by the indices m and n. The formula for the amplitude shows that the cross correlation

is expected to decrease with the increase in the distance between the subcarriers and

the one under question. As for the phase, equation (3.10) shows that the phase of the

correlation with the subcarriers on the RHS of the subcarrier under examination will be

the negative of the phase with the subcarriers on the LHS.

As, the discrete SEFDM system will be the base for more realistic system designs and

implementation, the ICI in the case of the sampled system is now evaluated. Considering

two discretized SEFDM carriers denoted by e
j2παkm

Q and e
j2παkn

Q , k = 0, ..., (Q−1) , where

Q is an arbitrary number of samples per carrier, the cross correlation of the discrete

SEFDM system is derived to be:

cm,n =
1

Q

Q−1∑

k=0

e
j2παkm

Q e−
j2παkn

Q

=
1

Q

[
1− ej2πα(m−n)

1− e
j2πα(m−n)

Q

]

= ejπα(m−n)e
−jπα(m−n)

Q


sinc (α (m− n))

sinc
(
α(m−n)

Q

)


 , (3.11)

where the derivation is based on the rule of the sum of a geometric series. The amplitude

in this case is given as

|cm,n| =

∣∣∣∣∣∣
sinc (α (m− n))

sinc
(
α(m−n)

Q

)

∣∣∣∣∣∣
, (3.12)

Based on equation (3.11), the cross correlation coefficient matrix can be expressed as

C = 1
Q




1 1−ej2πα

1−e
j2πα
Q

1−ej4πα

1−e
j4πα
Q

· · · 1−ej2π(N−1)α

1−e
j2π(N−1)α

Q

...
. . .

1 1−ej2(N−1)πα

1−e
j2(N−1)πα

Q

1−ej4(N−1)πα

1−e
j4(N−1)πα

Q

· · · 1−ejπ(N−1)(N−1)α

1−e
jπ(N−1)(N−1)α

Q




, (3.13)
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The matrix C in (3.13) characterizes the spillage of energy between the subcarriers. C

is a Toeplitz 2 and Hermitian 3N × N matrix where N is the number of subcarriers and

it may be expressed in short form as

cm,n =
1

Q




Q ,m = n

1−ej2πα(m−n)

1−e
j2πα(m−n)

Q

,m 6= n


 . (3.14)

Examining equation (3.11) shows that the correlation coefficient matrix is directly related

to the carriers matrix Φ as

C = Φ∗Φ. (3.15)

Theorem 3.1. In an SEFDM system with α = b/c where b , c ∈ N , b < c, and N > c

at least two of the subcarriers are mutually orthogonal.

Proof. From equations (3.9) and (3.12) for the continuous and discrete system, respec-

tively, it is clear that for

α (mo − no) ∈ Z, (3.16)

the amplitudes of the correlation coefficients are equal to

|rc (mo, no) | = 0,

|cmo,no | = 0,

thus indicating orthogonality between the mth
o and nth

o subcarriers, the condition that

N > c is to ensure that the available subcarriers indices can satisfy the condition in

equation (3.16) for at least two subcarriers.

2An N ×N Toeplitz matrix A has the structure of

A =



























a0 a1 a2 · · · · · · aN−1

a−1 a0 a1 a2

...

a−2 a−1

. . .
. . .

. . .
...

...
. . .

. . .
. . . a1 a2

...
. . . a1 a0 a1

a−N−1 · · · · · · a−2 a−1 a0



























.

3A Hermitian matrix A is defined as
A = A∗.
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The significance of Theorem 3.1 is that not all the subcarriers will be interfering with

each other and is utilized in chapter (8) to design improved fading channel estimators.

This theorem is illustrated by numerical examples in appendix A, where it is also shown

that the number of subsets of orthogonal subcarriers and the number of subcarriers

within a subset is dependent on α and N .

When Q approaches infinity the discrete case cross correlation becomes equal to the

continuous case that is equation (3.11) becomes equivalent to equation (3.8) as

lim
Q→∞

cm,n = ejπα(m−n)sinc (α (m− n)) = rc [m,n] . (3.17)

For any other value of Q, the interference between the mth and nth subcarrier in discrete

case will differ from the continuous time case by a factor f where

f =
e

−jπα(m−n)
Q

sinc
(
α(m−n)

Q

) . (3.18)

The formulas derived for the correlation coefficients are illustrated with numerical ex-

amples for different α and N values in Fig. 3.1 and 3.2. Fig. 3.1 depicts plots for

the amplitude of the correlation between SEFDM subcarriers, as in equations (3.9) for

different values of α and the distance between the middle subcarrier and the rest of the

subcarriers in terms of their integer indices. Fig. 3.1a shows that the amplitude of the

correlation is inversely proportional to α which is an expected outcome as the smaller

the value of α the more correlated the subcarriers become until all converge to a single

carrier case. Moreover, the amplitude of the correlation appears to decrease with the

increase in the relative distance between the subcarriers which confirms that the inter-

ference from adjacent interfering subcarriers is higher than from relatively distant ones.

These observations are confirmed in Fig. 3.1a and 3.1c depicting the amplitudes of the

correlation for selected relative distance between the subcarriers or α values, respec-

tively. It is necessary to emphasize that the previous observations exclude the relatively

orthogonal subcarriers identified in Theorem 3.1, as these subcarriers will not generate

ICI among themselves.

Fig. 3.2 depicts the phase of the correlation with respect to α and the subcarriers rel-

ative distance. To keep the figure legible selected distances and α values are displayed.
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Figure 3.1: Correlation amplitude in SEFDM systems.
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Figure 3.2: Correlation phase in SEFDM systems
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Figure 3.3: Discrete correlation amplitude in SEFDM systems
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Figure 3.4: Discrete correlation phase in SEFDM systems

Fig. 3.2a shows that the phase of the correlation changes periodically with α for the

same distance between subcarriers. Fig. 3.2b confirms that the correlation exhibits a

conjugate symmetry around the subcarrier in question (middle subcarrier in this case),

which explains that the correlation matrix being Hermitian. Fig. 3.3 and 3.4 display

the amplitude and phase of the cross correlation for the discrete SEFDM system. The

figure shows that the amplitude of the correlation is higher than that of the continuous

system case, specially the ICI contributions from distant subcarriers to the one under

consideration. This is due to the fact that the discrete signal is represented by a fraction

of the samples of the continuous system case (−→ ∞), thus the subcarriers appear closer

in the subspace of the signal. In addition, the phase of the discrete system correlation

experiences changes as depicted in Fig. 3.4 which shows the conjugate symmetry re-

flected in the correlation matrix being Hermitian. The effect of the sampling process
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Figure 3.5: Amplitude of the factor f for Q = 2N .

−25 −20 −15 −10 −5 0 5 10 15 20 25

−pi/4

0

pi/4

Carriers Distance

P
ha

se
 C

ha
ng

e

α =0.1
α =0.4
α =0.75

(a) Phase vs (m− n)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−pi/4

0

pi/4

α

P
ha

se
 C

ha
ng

e
Distance of −2
Distance of −1
Distance of 0
Distance of 1
Distance of 2

(b) Phase vs α

Figure 3.6: Phase of the factor f for Q = 2N .

on the ICI is further investigated by plotting the amplitude and phase of the factor f ,

derived in equation (3.18), with respect to the subcarriers distance and α as shown in

Fig. 3.5 and 3.6. From the plots it can be seen that the amplitude and phase of the

correlation increase with the increase in α and the distance between the subcarrier in

question and the other subcarriers. Moreover, the figures further confirm that the effects

of discretizing the system are more serious on the ICI contribution from the subcarriers

that are relatively remote. In the case of orthogonal systems, there is no effect of the

process of discretization as the system is free from ICI in the first place.

The study of the ICI in the SEFDM system is essential for the understanding of the

behaviour of the system. Clearly, the loss of orthogonality results in ICI that is in pro-

portion to the level of bandwidth compression and the number of interfering subcarriers.
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However, this ICI is deterministic with values that can be pre-calculated. Therefore, the

design of the SEFDM system can accommodate the knowledge of the ICI for the recep-

tion process as will be shown in chapters 5 and 6.

3.4 The Discrete SEFDM Receiver

On the reception side the fundamental question in communication system arises, that

is how to estimate efficiently the originally transmitted signal based on observations

of the received signal y (t). One widely used technique is to collect statistics of the

received signal and use it to estimate the transmitted message. The SEFDM receiver

follows this two stage process. The first stage is a demodulator that extracts statistics

of the incoming signal whereas the second stage generates estimates of the originally

transmitted symbols based on the collected statistics. In this section, the model of the

SEFDM signal after demodulation is identified and used in subsequent sections to derive

the relationships between system parameters and performance.

Considering SEFDM symbol with index l = 0 as defined in equation (3.1), the received

signal corresponding to this symbol will arrive contaminated with AWGN and is thus

described as

y0 (t) = x0 (t) + w (t) , (3.19)

where w (t) denotes the noise. Equivalently, the discrete received signal can be described

as

Y [k] =
1√
Q

Q−1∑

n=0

sne
j2πnkα

Q +W [k] , (3.20)

for k = 0, 1, · · · , N − 1 where W is a Q× 1 vector of AWGN noise samples.

The demodulator stage works on the samples of the incoming signal to produce a vector

R that contains the statistics of the signal r0 (t):

R = f (Y ) . (3.21)

The vector R must provide sufficient information for subsequent stages to successfully

decode the signal. In the literature, there are two widely used reception techniques

namely correlation reception and matched filter [64]. A correlation receiver generates
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signal statistics by projecting the signal onto an orthonormal set of bases spanning the

same signal space as the transmitted signal. Matched filtering aims to maximize the

signal to noise ratio at the receiver output, therefore, matches the processes followed to

generate the signal.

All SEFDM detectors proposed before this thesis used the correlation receiver technique

as described in section 2.5, thus a brief summary of the process in this receiver is provided

in section 3.4.2. The next section is devoted for the derivation of the matched filter for

the SEFDM system. The obvious advantage of using a matched filter in the SEFDM

system is the elimination of the orthonormalization process. However, it is crucial to

verify that a similar error performance to that of the correlation receiver is achievable,

which is the focus of chapter 5.

3.4.1 The Matched Filter (MF)

The MF4 for the discrete SEFDM system is equivalent to the carriers matrix Φ. MF

reception is expressed as

R = Φ∗ΦS +Φ∗W

= CS +WΦ∗ , (3.22)

whereWΦ∗ is the expanded noise term onΦ. The properties of the noise can be identified

based on the knowledge of the matrix Φ and C. The noise term associated with the ith

observation from R is given as

WΦ∗,i = Φ∗
iW, (3.23)

where Φ∗
i refers to the ith row of Φ∗. Therefore, each noise term is basically a linear

transformation of the AWGN noise samples vector W . The mean of the noise term

WΦ∗,i is given by

E {WΦ∗,i} = E {Φ∗
iW} ,

= Φ∗
iE {W}

= 0, (3.24)

4In this context the general definition of the matched filter is adopted in that the filter response is
chosen to maximize the signal to noise ratio [115].
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where E [·] is the expectation operator. The final line of equation (3.24) is obtained due

to the assumption that the noise in the system has a zero mean.

In addition, the covariance matrix of the transformed noise vector needs to be evaluated

as the subcarriers are not orthogonal, thus the noise samples will be correlated. The

covariance matrix denoted as Ψ of the transformed noise signal is derived as follows

Ψi,k = E {(Wi − E {Wi}) (W ∗
k − E {Wk})} . (3.25)

Substituting for E {Wi} and E {Wk} from equation (3.24) leads to

Ψi,k = E {WiW
∗
k } ,

= E {Φ∗
iWiW

∗
kΦk} ,

= Φ∗
iE {WiW

∗
k }Φk, (3.26)

where Φk is the kth row of Φ and the expectation operator is moved inwards due to

the deterministic nature of the carriers matrix. Recalling that E {WW ∗} is equal to

σ2I, where σ2 is the noise variance because by definition the original noise samples are

uncorrelated, equation (3.26) is further reduced to

Ψi,k = σ2Φ∗
iΦk,

= σ2ci,k. (3.27)

Equation (3.27) confirms that the transformed noise is correlated and has a covariance

matrix that is equal to σ2C.

3.4.2 The Correlation Receiver

The original SEFDM proposal uses the correlation receiver technique to extract the suf-

ficient statistics of the transmitted signal [21]. The receiver relies on using orthonormal

bases onto which the incoming signal is projected. The discrete correlation receiver for

the SEFDM system follows the same principles as the continuous one. The incoming
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signal samples as in equation (3.20) are projected onto orthonormal vectors correspond-

ing to the orthonormal bases described in section 2.5, which can be obtained from the

subcarriers matrix following the orthonormalization techniques discussed in section 2.6.

Thus, the statistics vector R in this case is expressed as

R = B∗ΦS +B∗W, (3.28)

= MS +WB∗ , (3.29)

where B is an an N ×N matrix whose columns are orthonormal vectors obtained from

the columns of the carriers matrixΦ, M is anN×N matrix whose elements represent the

correlation between the subcarriers and the orthonormal bases and WB∗ is the expanded

noise on B∗. It is straight forward to show that the mean of the elements of WB∗ is an

N × 1 vector of zeros. Furthermore, the orthogonal nature of the bases ensures that the

elements of WB∗ remain uncorrelated. The covariance matrix denoted again as Ψ of the

transformed noise signal can be derived as follows

Ψi,k = E {(Wi − E {Wi}) (N∗
k − E {Wk})} . (3.30)

Substituting for E {Wi} and E {Wk} from equation (3.24) leads to

Ψi,k = E {WiW
∗
k } ,

= E {B∗
iWW ∗Bk} ,

= B∗
iE {WW ∗}Bk,

= B∗
iBk, (3.31)

where Bk is the kth column of B. However, by definition of the orthonormal bases

B∗B = B×B∗ = I, (3.32)

thus leading to

Ψi,k =


 1 , i = k

0 , i 6= k


 . (3.33)
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Equation (3.31) confirms that the expanded noise terms are uncorrelated unlike the case

with the matched filter.

Furthermore, equation (3.29) shows that the information symbols are related to the

statistics vector via the matrix M. The M matrix as described in section 2.5 is basically

the correlation of the original subcarriers with the orthonormal bases, and is simply

expressed as

M = B∗ ×Φ. (3.34)

Examining the Gram matrix of the M matrix given by M∗M:

M∗M = Φ∗ ×B×B∗Φ

= Φ∗Φ = C. (3.35)

Now define ΣM a matrix containing the singularvalues of M, and U and D as unitary

matrices5 that contain the left singularvectors and right singularvectors of M, respec-

tively. M is related to ΣM by the Singular Value Decomposition (SVD) as in equation

(3.36).

M = UΣMD∗. (3.36)

Substituting equation (3.36) in equation 3.35 yields:

UΣMD∗DΣ∗
MU∗ = C

UΣMΣ∗
MU∗ = C

ΣMΣ∗
M = U∗CU (3.37)

The RHS of equation (3.37) describes the Eigenvalue Decomposition of the C matrix,

where U∗CU = Λ for Λ is an N ×N diagonal matrix containing the eigenvalues6 of C.

The LHS contains the squares of the singularvalues of the M matrix. From equation

(3.37) it is clear that the squares of the singularvalues of M are equal to the eigenvalues

5A unitary matrix is a square matrix that satisfy the condition UU
∗ = U

∗
U = I, where I is the

identity matrix
6In principle, the eigenvalues of the N × N matrix C are the roots of its characteristic equation

det (λI−C) = 0, which is a polynomial of degree N .
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of C. Hence it can be deducted that regardless of the type of demodulation, the matrix

C can provide the required information about the system. Therefore, the work in this

chapter focuses on the matrix C to explain the complexity and performance of the

detection schemes described in [65, 90, 35, 36].

3.5 SEFDM Solution Determinants

Based on equations (3.22) and (3.29), the demodulated SEFDM signal can be expressed

as

R = CS +W, (3.38)

where C denotes the C or M matrix for MF or correlation receiver respectively and

W is used here to refer to the expanded noise term onto the conjugate subcarriers

or orthonormal bases according to which type of receiver is adopted. Equation (3.38)

shows that the SEFDM system is represented by a linear combination of the vector

of N transmitted information symbols plus a noise term. Thus, the SEFDM model

is classified as multiple linear regression model, where R is the dependent variable,

C is the design matrix and W is the noise. There are many estimation methods for

systems described with linear regression models, yet it is essential for all methods that

the design matrix has full column rank7 and error free elements. The rank of a matrix

can be efficiently evaluated by the SVD, however, the decision on the rank will depend

on the numerical precision of the evaluating machine and the targeted application of the

system. Therefore, it is deemed useful to examine the properties of the design matrix

C not in terms of rank but on conditioning as a matrix may have full rank with poor

conditioning which in turn affects the dynamic range of the required hardware and the

BER performance.

In addition, equation (3.35) shows whether MF or correlation receiver is used the under-

lying matrices that describe the system remain closely related. Having derived closed

formulas for the matrices Φ and C in sections 3.2 and 3.3 and established the links to

the M matrix in section 3.4.2, the rest of the work in this chapter focuses on the study of

the properties of these matrices to extract the properties of the system, particularly, to

define how and why it becomes ill conditioned. Recalling that section 3.4.2 related the

M matrix to the C matrix, in this work the focus will be on identifying the properties

7Column rank of matrix corresponds to the maximum number of linearly independent column vectors
and the same for row rank matrix. A full column rank matrix has all its column linearly independent.
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Table 3.1: Summary of relationships between key matrices in SEFDM system.

Φ B M C

Φ = GS or LM = BM = [Φ∗]−1 C

B GS or LM = = [Φ∗]−1M∗ through Φ

M = B∗Φ = B∗Φ = = B∗ [Φ∗]−1C

C = Φ∗Φ through Φ = M∗M =

of the C and Φ matrices as the key indicators of the system properties and all results on

the C matrix can be extended to the M matrix. Table. 3.1 summarizes the relationships

between these matrices.

3.5.1 Singularity Investigation

Kanaras et al. have indicated that the system suffers from performance degradations

with the increase in the number of subcarriers and/or bandwidth compression level, and

related this degradation to the ill conditioning of the system [35]. Based on numerical

examinations, it was noted that the M matrix can become numerically singular8 [57].

This section presents a mathematical examination of the singularity of the SEFDM

system by examining the carriers matrix Φ and that the findings can be extended to C,

and M through Table. 3.1.

A starting point is the finding in section 3.2.1 that the carriers matrixΦ is Vandermonde.

Vandermonde matrices have a reputation of being ill conditioned [116, 117, 118]. This

is specially the case of matrices constructed from real entries. When the entries of the

matrix are complex, the matrices are sometimes well conditioned as is the case of a DFT

matrix which is a perfectly conditioned Vandermonde matrix. By rule a Vandermonde

matrix is non-singular if and only if the entries of the generating row or column are

distinct [80]. The rule defining singularity of a Vandermonde matrix V follows from its

determinant formula as

det (V) =
∏

1≤i<k≤n

(ak − ai) , (3.39)

8Singular matrices are characterized by a zero determinant, consequently, the singular matrix has no
inverse.
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where ai and ak are the elements of the generating row or column. The determinant of

a matrix can provide an indicator of the conditioning of a matrix. The smaller the value

of the determinant the more ill conditioned the matrix becomes and a zero determinant

matrix is certainly singular. Therefore, a close investigation of the determinant of Φ

can provide information about the system overall. For the case of the Vandermonde

matrix, if any two elements ai and ak are equal the determinant in equation (3.39) will

be equal to zero and thus, the matrix is singular and has no matrix inverse. The elements

of the generating row of the Φ matrix are powers of the main element e
j2πkα

Q for k =

0, 1, 2, · · · , (N − 1) therefore, the elements ai and ak will be equal to e
j2πiα

Q and e
j2πkα

Q ,

respectively for i and k = 0, 1, 2 · · · , (N − 1). It is necessary to find if these two elements

will be equal and the respective values of i and k in this case as

e
j2πiα

Q = e
j2πkα

Q ,

2πiα

Q
=

2πkα

Q
± 2πm, m = 1, 2, · · ·

α

Q
=

±m

(i− k)
, (3.40)

where i− k is the distance between the two elements under investigation. The last line

shows that the equality of the ith and kth terms of the generating row can only hold

for i − k > Q, but by definition Q ≥ N and (i, k) < N . This proves that the elements

{an}N−1
0 will always be distinct and confirms that the Φ matrix is not singular.

Although, it is proved that the matrix Φ is not singular, numerical analysis showed

that for a given machine precision Φ can appear to be singular. The implication of a

singular carriers matrix is that the system becomes non-invertible, hence, non-solvable

by simple linear detection methods. This observation necessitates further investigation

of the determinant of Φ matrix to obtain knowledge of its behaviour.

Lemma 3.1. The determinant of Φ could be expressed as

det (Φ) = (−j)N(
N−1

2 ) e
jπα(N2−1)

6

N−1∏

δ ≥ 0

2 sin

(
πδα

N

)N−δ

. (3.41)



Chapter 3. Properties of the SEFDM System 80

Proof. Following equation (3.39) for the determinant of Vandermonde matrices, and

taking Q = N to obtain a square matrix, the determinant of the carriers matrix Φ is

given by

det (Φ) =
∏

0≤i<k≤N−1

(
e

j2πkα
N − e

j2πiα
N

)
. (3.42)

Equation (3.42) can be manipulated as follows:

det (Φ) =
∏

0≤i<k≤N−1

e
j2πkα

N

(
1− e

j2π(i−k)α
N

)
,

=
∏

0≤i<k≤N−1

e
jπα(k+i)

N

(
e

−jπ(i−k)α
N − e

jπ(i−k)α
N

)
,

=
∏

0≤i<k≤N−1

2j e
jπα(k+i)

N sin

(
π (i− k)α

N

)
. (3.43)

Recalling that sin (−x) = − sin (x), equation (3.43) can be expressed as the product of

a magnitude term and angular term as

det (Φ) =
∏

0≤i<k≤N−1

−j e
jπα(k+i)

N

∏

0≤i<k≤N−1

2 sin

(
π (k − i)α

N

)
. (3.44)

Next each term of the RHS of equation (3.44) will be evaluated separately. Starting

with the magnitude term of the determinant of Φ

|det (Φ)| =
∏

0≤i<k≤N−1

2 sin

(
π (k − i)α

N

)
, (3.45)

where |·| denotes the magnitude of a complex number. Equation (3.45) can be equiva-

lently expressed as

|det (Φ)| =

N−1∏

k>1

k−1∏

i ≥ 0

2 sin

(
π (k − i)α

N

)
,

which can be further simplified to

|det (Φ)| =
N−1∏

δ ≥ 0

2 sin

(
πδα

N

)N−δ

, (3.46)
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where δ = k− i and corresponds to the distance between the elements of the generating

row of the matrix. The angular term is expressed as

∠ {det (Φ)} =
∏

0≤i<k≤N−1

−j e
jπα(k+i)

N (3.47)

which is simplified to

∠ {det (Φ)} = (−j)N(
N−1

2 ) e
jπα(N2−1)

6 . (3.48)

The intermediate steps between equation (3.47) and (3.48) are shown in appendix B.

The formula for the determinant of the carriers matrix shows direct relationship to α

and N . With the increase in bandwidth compression which is reflected in a decrease in

the value of α, the sin argument will decrease which in turn decreases the determinant

value. The same effect occurs for the increase in the number of subcarriers. Moreover,

the combined effect of the term α
N will affect the system performance in a similar manner

as decreasing α or increasing N separately.

Lemma 3.2. An upper bound for the determinant of Φ is

|det (Φ)| < 1. (3.49)

Proof. Recalling that C = Φ∗Φ , hence

det (C) = |det (Φ)| . (3.50)

Now applying the identity

det (A) ≤
∏

i

aii, (3.51)

where aii represents the ith element of the main diagonal for the matrix A [119], with

the equality valid only for diagonal matrices. Equation (3.14) shows that cii = 1 and

recalling that for α < 1, which is the SEFDM case, the C matrix is not diagonal, it is

thus concluded that its determinant will be less than one which consequently proves the

same holds for the magnitude of the determinant of Φ.
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Worth noting, that for the case of OFDM the correlation matrix is diagonal, thus has a

unity determinant.

Corollary 3.1. For α < 1 , then

|σmin| ≤ 1 ≤ |σmax| , (3.52)

where σmin and σmax are the minimum and maximum singularvalues of Φ.

Proof. Recalling that

|det (Φ)| =
N∏

i=1

|σi| , (3.53)

where σi is i
th singularvalue of Φ, the following bound is straightforward

∣∣σN
min

∣∣ ≤ |det (Φ)| ≤
∣∣σN

max

∣∣ . (3.54)

Finally substituting the bound for |det (Φ)| from Lemma 3.2 proves the Corollary.

Equation (3.54) indicates that the minimum singularvalue will decrease with the increase

in N or the decrease of α as suggested by the det formula, whilst Corollary 3.1 bounds

the maximum singularvalue to be always greater than one for α < 1.

Fig. 3.7 displays plots of the magnitude of the determinant of Φ as in equation (3.41)

as well as the determinant of the numerically generated SEFDM subcarriers. The figure

shows that the formula yields the same values as the generated carriers and that the

determinant is less than 1 for α < 1 as proved by Lemma 3.2. The plot confirms that

the determinant decreases significantly with the increase in the number of subcarriers

and the decrease in the value of α. The numerical values observed in the figure indicate

that the system can appear singular to machine precision even for a moderate number

of subcarriers and bandwidth compression levels.

3.5.2 Conditioning of the SEFDM System

The results of the study of the determinant of the carriers matrix indicate that the

conditioning of the SEFDM system deteriorates with the increase in the number of
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Figure 3.7: Determinant of carriers matrix Φ. The circles denote the determinant ob-
tained using the formula in equation (3.41) while the lines are the determinant obtained

by numerical simulations.

subcarriers and/or bandwidth compression levels. The implications of ill conditioning

are two folds: first the system will be sensitive to small perturbations and second, the

system will require higher resolution to represent the extreme values, both affecting

the applicability of SEFDM in practical systems. In this section, the conditioning of

the SEFDM system is further analyzed by investigating the condition number of the C

matrix defined by

κ (C ) =
λmax

λmin
, (3.55)

where λmax and λmin are the maximum and minimum eigenvalues of C.

Lemma 3.3. For α being a rational number in the form α = b
c where b , c ∈ N , b <

c and b 6= 1, the upper bound on the maximum eigenvalue of the C matrix is

λmax ≤
(
N − 1 + l

Q
+

β2Q

3l sin2 (β) b2

)
c, (3.56)

and the lower bound on minimum eigenvalues is
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λmin ≥
(
N + 1− l

Q
− β2Q

3l sin2 (β) b2

)
c, (3.57)

where l is βQ√
3 b sin(β)

, β is chosen to satisfy 0 ≤ β ≤ π.

Proof. The key to the proof is the rational form of α , where for this case the N × N

matrix C can be written as

ci,j =
1

Q

Q−1∑

k=0

e
j2πbk(j−i)

M ,

where M = cQ , Q represents an arbitrary number of samples per carrier. Define an

M×M matrix C̆ as

c̆i,j =
1

M

Q−1∑

k=0

e
j2πk(j−i)

M . (3.58)

By definition the C matrix is given as

ci,j = c̆p,q for p, qmod b = {1, 2, ..., Q − 1} . (3.59)

For this case of α (a rational number), the SEFDM correlation matrix is equivalent to

a class of matrices found in superresolution and missing samples restoration field [117].

Thus, it is possible to apply the bounds identified in [117] since the condition set there

is met by ensuring that the minimum distance between any adjacent elements is never

equal to 1, in this case it is equal to b. The bounds are then adjusted according to new

systems parameters with respect to α = b/c.

Lemma 3.4. For the same parameters as in Lemma 3.3 another upper bound on the

maximum eigenvalue is obtained as

λmax ≤ 1

α
, (3.60)

and for minimum eigenvalue as

λmin ≥ 0. (3.61)



Chapter 3. Properties of the SEFDM System 85

Proof. Assuming α = b/c and applying the same analysis to maintain the equivalence of

the cross correlation matrix and the matrices in superresolution and samples restoration

as in Lemma 3.3. The bounds for the adjusted matrix can be derived from the bounds

in [120]:

bKBc
K

≤ λmin ≤ λmax ≤ dKBe
K

, (3.62)

where d·e and b·c denote the ceiling and floor functions, respectively. In this case K = b

and B = (N − 1− 0 + 1) /M = 1/c, substituting values of K and B in equation (3.62)

yields:

bb/cc
b

c ≤ λmin ≤ λmax ≤ db/ce
b

c

bαc
α

≤ λmin ≤ λmax ≤ dαe
α

0 ≤ λmin ≤ λmax ≤ 1

α
, (3.63)

because bαc = 0 and dαe = 1.

The upper bound for the maximum eigenvalue depends only on the bandwidth compres-

sion factor α. The lower bound for the minimum eigenvalue confirms that all eigenvalues

are non-negative. Combining Corollary 3.1 and Lemma 3.4 shows that for the C matrix

0 ≤ λmin ≤ 1 ≤ λmax ≤ 1

α
. (3.64)

Corollary 3.2. The eigenvalues of the C matrix are real and non-negative.

Proof. The C matrix is shown to be Hermitian in equation (3.13), consequently all its

eigenvalues will be real. Lemma 3.4 has shown that the minimum eigenvalue is never

negative. A matrix with non-negative eigenvalues is termed positive semidefinite, where

the minimum eigenvalue is greater than zero then the matrix is positive definite.

The derived bounds for the maximum and minimum eigenvalues of the correlation matrix

C show that these values are expected to grow, or shrink, respectively, with the changes
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Figure 3.8: Extreme eigenvalues of the C matrix for α = 0.5, 0.75 and 1 and N =
1− 32.

in the system parameters. Numerical examples of extreme eigenvalues for different sets

of N and α are provided here to highlight these changes. Fig. 3.8 depicts the maximum

and minimum eigenvalues obtained by simulations. From Fig. 3.8 it is noted that the

maximum eigenvalue increases with the decrease in the subcarriers spacing and/or their

number until a quick saturation point after which it becomes dependent on α only. For

α = 1, the case of OFDM system, the system is perfectly conditioned as all eigenvalues

are equal to unity. Furthermore, Fig.3.9 focuses on the decay of the minimum eigenvalue.

From the figure it can be seen that the minimum eigenvalue shrinks with the increase

in the number of subcarriers until a saturation point beyond which the value exhibits

very slight changes. The actual value at the the saturation point may be dependent

on the precision of the computation machine. Nevertheless, the figure shows that the

saturation point occurs at different α and N pairs as listed in Table 3.3. The table

shows that the ratio α/N for which the minimum eigenvalue reaches a saturation point

is always the same, hence, suggesting that the minimum eigenvalue is affected by both

α and N at the same time.

Furthermore, Fig. 3.10 displays all the eigenvalues for the C matrix for different values

of α. It is noted from the figure that for a system of N carriers, αN of the eigenvalues

will have values very close to one while the remaining eigenvalues can take very small
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Figure 3.9: Minimum eigenvalues of the C matrix for α = 2/3, 2/4, 2/5 and 1 and
N = 1− 64.
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Table 3.3: Parameters of saturation points of the minimum eigenvalue of matrix C.

λminsat α N α/N

6× 10−32 2/5 28 0.01428

5× 10−32 2/4 35 0.01428

8× 10−31 2/3 47 0.01418
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Figure 3.11: Upper and lower bounds of maximum and minimum eigenvalues of the
C matrix for 16 subcarrier SEFDM system based on Lemma 3.3.

values depending on the value of α. Simulation investigations of the condition number

of the M matrix, provided in [57], has shown that the singularvalues of M exhibit the

same performance as the C matrix, which is an expected outcome as the two matrices

are linked as explained in section 3.4.2.

Numerical results for the bounds derived in Lemmas 3.3 and 3.4 are obtained by sim-

ulations for different values of α and N . The choice of β decides the quality of the

bounds. For the bounds in Lemma 3.3, simulations for β = α/cQ are conducted. For

this specific value of β Fig. 3.11 shows plots of the bounds driven in equations (3.56)

and (3.57) with respect to α for a 16 subcarrier SEFDM system. The upper bound on

the maximum eigenvalue is loose, yet it shows the general trend. The lower bound on

the minimum eigenvalue is loose and negative.

The derived bounds and subsequent numerical analysis have shown that the minimum
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the C matrix based on equation (3.65).

Figure 3.12: Bounds on maximum and minimum eigenvalue of C matrix

eigenvalue is non-negative but changes with the change in N and α. Based on this anal-

ysis and by further numerical examination of the minimum eigenvalue, an an empirical

lower bound on it is defined as

λmin ≥ 1

N
α4N . (3.65)

Fig. 3.12 displays the upper bound on the maximum eigenvalue in equation (3.60) and

the lower bound on the minimum eigenvalue from equation (3.65). The bounds in Fig.

3.12 provide closer approximations to the behaviour of the extreme eigenvalues.

From equation (3.60) and equation 3.65 an upper bound on the condition number of C

is derived as

cond (C) ≤ 1

N
α−4N+1. (3.66)

This bound is plotted in Fig. 3.13 with respect to α and number of subcarriers. The

figure confirms the dramatic growth in the condition number which leads to the SEFDM

system becoming singular to machine precision. The derived bounds and numerical

investigations of the maximum and minimum eigenvalues and condition number indicate

that the minimum eigenvalue significantly affects the conditioning of the system.
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Figure 3.13: Maximum bound on condition number of the C matrix.

3.6 Discussion and Conclusions

In this chapter the properties of the SEFDM system were investigated. The work started

by establishing the discrete model for the system as the base for determining the prop-

erties of the system. Characteristics of the system were obtained from the structure

of the subcarriers and linked to the bandwidth compression factor and the number of

subcarriers.

The issue of the derivations of the intercarrier interference (ICI) was addressed. Closed

form representations of the ICI in the system in the case of continuous and discrete

system were derived. The ICI was shown to be dependent on the number of subcarriers

and the bandwidth compression level. Furthermore, it has been identified that some of

the subcarriers will be relatively orthogonal and that the ICI contributions from closer

carriers in frequency is expected to be higher. These two findings form the base for

the Selective Equalization (SelE) detector detailed in chapter 6 and the Partial Channel

Estimator in chapter 8.

Moreover, the discrete model for the matched filter demodulated signal was derived and

the system is expressed neatly in matrix format, where the characteristic matrices were

linked to the correlation receiver in the original SEFDM proposal. Consequently, a uni-

fied linear regression model for matched filtering or correlation demodulation was built.
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This representation of the system accomplished the objective of identifying the mathe-

matical entities that describe the SEFDM system which then constituted the subject of

the mathematical analysis of the conditioning of the system.

The existence and practicality of a solution of the SEFDM system was assessed by exam-

ining its numerical stability in the form of investigating the singularity and conditioning

of the system. Investigations have shown that the SEFDM system can be non-singular,

thus has a solution. Nevertheless, it can become severely ill conditioned that it appears

singular to machine precision which hinders the possibility to retrieve that solution.

Derivations of bounds on the condition number and it constituents confirmed that the

conditioning of the system deteriorates with the decrease of the subcarriers spacing or

with the increase in the number of subcarriers in the system. The deterioration in the

conditioning of the system leads to the degradation of the system performance due to

the fact that ill conditioning can blur the uniqueness of a solution as some values become

close to being linearly dependent and thus cannot be separated unless other conditions

are imposed on the solution. In addition, the conditioning of the system affects its imple-

mentation due to the usually limited numerical range of system components. Therefore,

the bounds derived on the condition number can be used to determine suitable pairs of

α and N . In addition, the information about the condition number may be utilized for

complexity analysis as it is directly related to the performance of the detection algo-

rithms. Armed with the knowledge of the signals mathematical properties, the following

three chapters are concerned with the derivation of new transmitter architectures chap-

ter 4 and new receiver and detector architectures chapters 5 and 6, respectively. Such

architectures satisfy the criteria described in this chapter and allow for easy to implement

solutions of SEFDM systems.



Chapter 4

SEFDM Transmitter Design

4.1 Introduction

The non-orthogonal subcarriers in the SEFDM system mean that conventional OFDM

transmission techniques cannot automatically be applied for SEFDM. Analogue genera-

tion of the SEFDM signal is realized by modulating the incoming input stream through

a bank of modulators running at the different subcarriers frequencies. With the increase

in the number of subcarriers it becomes exceptionally complex to realize this bank of

modulators. In addition, the system will be susceptible to higher frequency offsets and

timing errors, as the number of oscillators increases. Thus, motivating the search for

systems employing efficient digital generation techniques such as the Fourier Transform.

The use of Fourier Transform communications dates back to 1969 when Salz and We-

instein published their paper on “Fourier Transform Communications” [9] proposing a

communication system transmitting the IDFT of a sequence. At the receiver, the origi-

nal sequence is retrieved using the DFT. The system described in [9] promised robust-

ness against channel linear impairments. Soon later the frequency division multiplexed

signal was linked to the DFT in [10], where they showed that the FDM systems are

implementable using the IDFT-DFT pairs provided that the subcarriers are orthogonal,

a system that is now widely known as OFDM.

Non-orthogonal multicarrier systems violate the obvious translation of the subcarriers

to the frequencies provided by the IDFT. Nevertheless, systems that are based on time

92
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compression of OFDM signals have maintained the use of the IDFT. In particular,

Fast OFDM (FOFDM) systems is based on the symmetry property of the IDFT for real

signals. The FOFDM signal is initially generated as an OFDM signal where only half the

samples are transmitted to provide 50% bandwidth savings, whereas the discarded half

is equal to the conjugate of the transmitted one [19]. Therefore, an FOFDM transmitter

is basically a conventional OFDM transmitter except that the transmitted time domain

samples are reduced by half, thus the FOFDM symbols are sent at rate twice of that of

an equivalent OFDM system.

In addition, the High Compaction Multi Carrier Modulation (HC-MCM) signal [22],

introduced in section 2.8, follows the same principle as FOFDM. The difference here is

that the length of the HC-MCM symbols in time is an arbitrary fraction of an equiv-

alent OFDM system (not necessarily 50%). Reducing the symbol transmission time

is effectively equivalent to increasing the transmission rate per individual subcarrier.

Therefore, the HC-MCM system employs a conventional OFDM transmitter, with the

spectral efficiency increased by reducing the transmission time.

Moreover, the Overlapped Frequency Division Multiplexing (Ov-FDM) system examined

the issue of signal design using IDFTs. The approach in [23] is to apply frequency domain

coding prior to using the IDFT for modulation. However, it was not assessed whether the

effort exerted in the coding process will justify the use of the IDFT. The author of this

thesis believes the coding complexity of [23] is close to that of generating a signal with

complex multipliers as the coding operation requires the same number of multiplications

and additions needed to construct the signal by direct multiplications with the carriers

matrix Φ.

In [36] the use of Fractional Fourier Transform (FrFT) for SEFDM signal generation

was proposed. The m point FrFT is based on fractional roots of unity ej2πα/m, unlike

the IDFT which is based on the integral roots of unity ej2π/m for an m point DFT

[58]. The FrFT can be evaluated with algorithms using IDFTs by first expressing the

FrFT as a convolution in the same manner proposed in the Bluestein algorithm for the

FFT evaluation [59]. This led to the proposal of an algorithm for the evaluation of the

FrFT using three IDFTs operations and some pre-processing in [58]. Such an algorithm

may be used in the FrFT implementation of the SEFDM signal. It is necessary to

emphasize that the described transform in [58] is widely known in the literature as the
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chirp z-transform [64], and that the term Fractional Fourier Transform is originally used

to describe a generalized Fourier transform using orthogonal fractionally spaced bases

[121].

The M-ary Amplitude Shift Keying (MASK) OFDM proposed the use of the Discrete

Cosine Transform (DCT) for generating its signals1 [20]. Basically, the DCT uses cosine

functions with different frequencies to express a series of data points [122] and can be

evaluated with the Fast Cosine Transform (FCT) algorithms [123].

As discussed, there have been several attempts to generate non-orthogonal multicarrier

signals with similar ease as OFDM. However, these attempts lack the foundation and are

mainly based on observations, thus are restricted to their respective systems. Therefore,

in this chapter a framework to generate SEFDM signals based on the IDFT is drawn.

The framework facilitates the IDFT design of any FDM signal with arbitrary subcarriers

spacing. The proposed framework eliminates the need for a bank of analogue modulators

to generate the SEFDM signal, therefore allowing for the digital implementation of the

SEFDM transmitter. The framework is interpreted into three different SEFDM trans-

mitter architectures, each providing different implementation complexity. The proposed

designs employ similar building blocks as OFDM based systems, hence, would facilitate

an easy migration and/or coexistence with OFDM on the transmitter side. Only minor

changes are required in the input symbols stream to facilitate the IDFT design of any

signal with an arbitrary subcarriers spacing such as SEFDM and MASK OFDM system

proposed in [20].

4.2 The IDFT Design of SEFDM Signals

Conventionally the SEFDM signal is generated with a bank of modulators running at

the subcarrier frequencies as shown in Fig. 4.1. The input symbols modulate the non-

orthogonal subcarriers generated by the bank of independent modulators. This method

of generation can severely hinder the applicability of the system with the focus of current

designs on reducing size and complexity of equipment. Furthermore, the system will be

more susceptible to frequency errors specially when the number of subcarriers increases.

1Although the authors in [20] stated wrongly that it is impossible to implement the system using the
IDFT, the transmitters designed here are automatically applicable to the MASK OFDM system.
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Figure 4.1: A conventional SEFDM transmitter.

In contrast, OFDM signals are usually generated using the IDFT. For an N subcarrier

OFDM system, the input symbols are fed into an N point IDFT and the outputs are

fed to a Digital to Analogue Converter (D/A) to generate the time domain signal [10,

124]. Basically, the orthogonal structure of OFDM facilitates the use of the IDFT

for its generation. In contrast, SEFDM lacks orthogonality, therefore is not readily

implementable with the standard IDFT operation. This section explores the possible

relationship between the SEFDM and the IDFT to lay the foundation for the IDFT

implementation of the SEFDM system.

The discrete SEFDM signal model presented in section 3.2 shows how the signal can be

generated from frequency and time samples of the subcarriers and the input symbols.

Equation (3.2), derived previously in section 3.2 and reproduced below, presented the

representation of the discrete SEFDM as

X [k] =
1√
Q

N−1∑

n=0

sne
j2πnkα

Q . (3.2)

where X [k] is the kth time sample of the SEFDM symbol in equation (3.1), k =

0, 1, · · · , Q − 1, Q = ρN , ρ is an oversampling factor and the factor 1/
√
Q is a nor-

malization constant. The aim of this section is to show how the IDFT can be used

to generate non-orthogonal signals such as the SEFDM signal, where the IDFT of a
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sequence Y = [y0, y1, · · · , yN−1]
T , denoted with the vector Y , is given by [125]

Y [k] =
1√
N

N−1∑

n=0

yne
j2πnk

N . (4.1)

Theorem 4.1. Any multicarrier signal as in equation (3.2) can be expressed as X =
[
x

′

i

]Q−1

0
where:

X
′

= ζΩS, (4.2)

Ω is an L× L IDFT matrix with the entries ωn,k = 1√
L
e

j2πnk
L for 0 ≤ n, k < L, L > Q,

ζ a normalization correction constant, and the N × 1 vector S
′
,L and ζ defined as:

case 1:

S
′

=





Si 0 ≤ i < N

0 N ≤ i < L
, (4.3)

when ζ =
√

1/α,L = Q/α for Q/α ∈ N, and

case 2:

S
′

i =





Si/b i mod b = 0

0 otherwise,
(4.4)

when L = cQ,ζ =
√
c for α = b/c, b, c ∈ N and b < c.

Proof. The IDFT matrix Ω is expressed as

Ω =
1√
L




1 1 · · · 1

1 ω · · · ωL−1

...
. . .

1 ωL−1 ω(L−1)2



. (4.5)

Ω is a Vandermonde matrix constructed from points on the unit circle, thus can be

equivalently expressed as

Ω =
1√
L
V
(
1, e

j2π
L , e

j4π
L , · · · , e

j2π(L−1)
L

)
. (4.6)
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Now define the L× L matrix Φ
′
such that φ

′

ij = φij for 0 ≤ i < Q, 0 ≤ j < N , that is

φ′
n,k =

1√
Q
e(j2παnk/Q) (4.7)

for 0 ≤ n, k < L. Clearly, Φ
′
is a Vandermonde matrix, hence, can be expressed as

Φ
′

=
1√
Q
V

(
1, e

j2πα
Q , e

j4πα
Q , · · · , e

j2π(L−1)α
Q

)
. (4.8)

The proof now focuses on deriving the conditions such that
[
φ′
1j

]L−1

j=0
= [ω1j]

L−1
j=0 , and

thus guarantee that Φ′ = Ω, due to the Vandermonde nature. Noting that [ω1j ]
L−1
j=0 are

uniformly spread around the unit circle. As the dimensions of Φ
′
and Ω are the same

and by definition the first elements are equal then to guarantee the equality of Φ
′
to Ω it

remains to find the value of L with regards to α and Q so that
[
φ′
ij

]L−1

i,j=0
are uniformly

spread around the unit circle.

The work in [118], proved that the elements of the generating row of a Vandermonde

matrix constructed from points on the unit circle and expressed as
{
e

j2παn
L

}L−1

n=0
are

spread uniformly around the unit circle if and only if {αn}L−1
0 mod L is a complete

residue system2. Hence, this rule will be applied for the parameters defined here to prove

the theorem, that is to find L that makes {αn}L−1
0 mod Q a complete residue system.

For case 1: define that Q/α = β, where β ∈ N, hence{αn}L−1
0 mod Q can be rewritten as

{αn}L−1
0 mod αβ, which is equivalent to {n}L−1

0 mod β. The system {αn}L−1
0 mod Q

in this case will be a complete residue system if and only if L=β , hence L = Q/α.

Substituting for L and N in equation (4.7) yields

φ′
n,k =

1√
Q
ej2πnk/L = ζωn,k, (4.9)

for 0 ≤ n, k < L where ζ = 1√
α
. Equation (4.9) shows that for L = N/α and ζ =

√
1/α ,

Φ
′
= ξΩ. Now define the L× 1 vector S′ such that

S′ =


 S

Š


 . (4.10)

2A set of numbers (a0, a1, · · · , aq−1) mod q is a complete residue system if ai = i (mod q), for i =
1, 2, · · · ,m− 1 [126].
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Hence

X ′ = Φ
′

S′ (4.11)

= ξΩS′ (4.12)

Setting Š = 0 leads to

X ′ = ξΩS′ =


 Φ

Φ
′′


S, (4.13)

where φ
′′

ij = φ
′

ij for Q ≤ i < L, 0 ≤ j < N . It is then straight forward that

ΦS =
[
x′i
]Q−1

0
. (4.14)

For case 2, α = b/c: X ′ [k] from equation (4.2) can be expressed as

X ′ [k] =
ζ√
L

L−1∑

0

S
′

le
2πjlk/L,

=
ζ√
L

∑

lmod b=0

S
′

le
2πjlk/L +

ζ√
L

∑

lmod b6=0

S
′

le
2πjlk/L. (4.15)

The second term equals zero by the definition of S
′
in equation (4.4). The Substitution

by l = bl
′
, L = cQ and ζ =

√
c yields

X ′ [k] =
1√
Q

Q−1∑

l′=0

S
′

bl′
e

2πjbl
′
k

cQ

=
1√
Q

Q−1∑

l′=0

Sl′e
2πjbl

′
k

cQ

= X [k] (4.16)

the last line is obtained as by definition S
′

bl′
= Sl′ .

Theorem 4.1 shows that there are ways to express the SEFDM signal with an IDFT

operation with simple manipulations of the input symbol vectors. These manipulations

are merely in the form of zero insertions at the end of the vector, in a manner similar

to zero padding and/or between the symbols. The time samples of the SEFDM signal

in equation (3.2) are equivalent to Q consecutive outputs of an IDFT operation on an
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elongated input symbol vector composed of the original input symbols and zeros. The

change in length ensures the alignment of the IDFT frequency samples and the SEFDM

subcarriers while the zero inputs suppress the unwanted frequencies.

4.3 SEFDM IDFT Based Transmitters

Theorem 4.1 shows that it is possible to express the SEFDM signal using IDFT opera-

tions. This section details the design of a set of transmitter arrangements based on the

derived IDFT representations of the SEFDM signals.

4.3.1 Proportional Inputs IDFT Transmitter

Theorem 4.1 shows that the SEFDM signal can be expressed with the first Q outputs

of the IDFT of a modified input symbols vector. Case 1 of the theorem specifies that

the term Q/α is integer and proceeds to insert zeros at the tail of the input symbols

vector. Fig. 4.2 illustrates this concept by plotting the frequency samples of the SEFDM

system and those of a corresponding IDFT. The unit circle plots emphasize that the

SEFDM frequency samples span a fraction of the IDFT frequency samples which covers

the whole circle. Thus, the reduction in bandwidth offered by the SEFDM system can

be achieved by suppressing the unwanted frequency tones in an equivalent IDFT based

OFDM system. This can be simply achieved by setting the corresponding inputs to zero.

The silenced tones are those with frequencies outside the SEFDM bandwidth. That is,

for an N subcarrier SEFDM system with bandwidth compression factor α, it is possible

to modify a Q/α long IDFT operation by appending zeros to the last ((1− α) /α)Q

inputs to the IDFT, where Q = ρN . Then, Q consecutive outputs corresponding to

Q time samples are selected to represent the SEFDM signal. The number of time

samples taken is crucial to maintain the required spectral efficiency. A condition for this

arrangement is that Q has to be divisible by b for α = b/c to have the exact bandwidth

compression, although it is possible to round the Q/α to the nearest integer and accept

a modified version of α in the system.

Fig. 4.3 depicts a transmitter for the case of Q/α an integer. The change in the size

of the input symbols vector ensures that the frequency samples of the SEFDM system
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(a) Frequency samples of an N subcarrier SEFDM
system on the unit circle.

(b) Frequency samples of an M point IDFT on the unit
circle.

Figure 4.2: Frequency samples of an N subcarrier SEFDM system and an M point
IDFT on the unit circle.



Chapter 4. SEFDM Transmitter Design 101

Figure 4.3: The IDFT implementation for SEFDM proportional inputs transmitter.
Zeros are inserted after the input symbols to suppress unwanted frequency tones.

coincides only with the frequency samples of the IDFT that are within the bandwidth of

the SEFDM signal. The figure shows how the desired bandwidth savings is maintained

by suppressing the unwanted frequency tones by setting the corresponding inputs to

zero. Then, Q consecutive IDFT outputs are fed to the D/A to generate the analogue

signal. If more than Q outputs are considered the effective spectral efficiency will be

reduced as the Q outputs correspond to a symbol duration of T and any increases in

the number of samples beyond that is effectively an increase in the symbol duration and

hence a larger α.

The transmitter in Fig. 4.3 appears similar to the zero padding in IDFT evaluation

when a higher frequency resolution is needed. The distinguishing feature is that only

part of the outputs of the IDFT is considered in order to maintain the characteristic

relationship for SEFDM signals; ∆f = α/T . An advantage of this design is that the

zeros could be positioned before, after or around the input symbols so as to determine

the location of the SEFDM signal in the spectrum.

4.3.2 The IDFT Transmitter for Rational α

The fraction α is a key parameter in the design of SEFDM systems as it defines the

amount of bandwidth compression offered by the system. Without loss of practicality
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Figure 4.4: Frequency samples of a 16 point IDFT (diamonds and circles) and a 4
carrier SEFDM system for α = 3/4 (diamonds only) on the unit circle.

it may be assumed that α is a rational number, recalling that there are series that can

generate best rational approximations. For the case α being a rational number, it is

shown in case 2 in Theorem 4.1 that the SEFDM signal can be expressed using an IDFT

operation on the input symbols. Fig. 4.4 illustrates an example SEFDM system with

4 subcarriers and α = 3
4 and a 16 point IDFT plotted on the unit circle. The figure

shows the overlapping of the frequency samples of the SEFDM system with the samples

of the IDFT. Again, setting the inputs corresponding to the unwanted IDFT frequency

samples to zero will ensure obtaining the SEFDM spectrum.

Fig. 4.5 depicts the block diagram of an SEFDM transmitter based on the described

criteria. The equivalence of the IDFT of a sequence of data points to the sampled

SEFDM signal is achieved by ensuring that all frequency tones that are outside the

SEFDM bandwidth and in between the SEFDM subcarriers are removed from the output

of the IDFT by setting the corresponding input symbols to zero. At the output of the

IDFT Q samples are carried forward and the rest are discarded.

4.3.3 SEFDM as a Sum of Multiple IDFT

Manipulation of the SEFDM signal representation in equation (3.2) can lead to another

new design that uses multiple shorter IDFT operations. Case 2 in theorem 4.1 shows
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Figure 4.5: The IDFT implementation of SEFDM transmitter for α rational number.
Zeros are inserted between input symbols to suppress unwanted frequency tones.

that the SEFDM signal for α a rational number and S
′
defined as in equation (4.4), can

be represented as

X [k] =
1√
Q

Q−1∑

m=0

S
′

me2πjmk/Q. (4.17)

For such system settings, X [k] in equation (4.17) can be rearranged to:

X [k] =
1√
Q

Q−1∑

l=0

c−1∑

i=0

si+lce
j2π(i+lc)k

cQ , (4.18)

by setting m = i+ lc , and can be further simplified to:

X [k] =
1√
Q

c−1∑

i=0

e
j2πik
cN

Q−1∑

l=0

si+lce
j2πlk

Q . (4.19)

The last term in equation (4.19) is the Q long IDFT of the sequence s(i+lc). This could be

implemented by arranging the input as a c×Q matrix in column major order, performing

a Q point IDFT on each row and multiplying the result by complex exponentials. In

matrix format equation (4.19) can be represented as

X = diag [ΩS∇] (4.20)
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where diag [·] denotes the diagonal elements of the argument matrix, Ω now represents

the Q point IDFT matrix given as

Ω =
1√
Q




1 1 · · · 1

1 ω · · · ωQ−1

...
. . .

1 ωQ−1 ω(Q−1)2




(4.21)

S and ∇ are given as

S =




s
′

0 s
′

1 · · · s
′

c−1

s
′

c s
′

c+1 s
′

2c−1

...
. . .

...

s
′

cQ−1−c · · · s
′

cQ−1




(4.22)

and

∇ =




1 1 · · · 1

1 ω
1
c · · · ω

Q−1
c

...
. . .

1 ω
Q−1
c ω

(Q−1)2

c



. (4.23)

Fig. 4.6 shows a transmitter structure using multiple shorter IDFTs when compared to

the designs using one larger IDFT as in Fig. 4.3 and 4.5. In the post processing block

the kth outputs of the c IDFT stages are multiplied each by the corresponding complex

exponential of the kth column of the matrix ∇ to produce X [k]. The main advantage

of this design is the use of shorter IDFT operations. In addition, the complexity can

be reduced by generating the complex exponentials exp
(
j2πik
cQ

)
for i = 0, · · · , c− 1 and

k = 0, · · · , Q beforehand by applying an IDFT (or more efficiently an IFFT) operation

of length cQ points initialized with {1, 0, 0, · · · , 0} for c circular shifts. This scheme

could be especially useful for systems with large numbers of subcarriers as it becomes

less feasible to increase the length of the IDFT to generate the signal as in the single

module designs in sections 4.3.1 and 4.3.2. Equation (4.18) shows that SEFDM could

be effectively seen as a combination of multiple OFDM systems translated in frequency

so as to reduce the spacing of the subcarriers.
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Figure 4.6: Multiple IDFTs implementation of SEFDM transmitter.

4.4 Performance Analysis

Sections 4.3.1, 4.3.2 and 4.3.3 presented different SEFDM transmitters based on the

IDFT. This section evaluates the performance of the systems in terms of the generated

signal and complexity, noting that the IDFT can be efficiently generated with the IFFT

algorithm.

To verify numerically the designs, SEFDM transmitters were modelled using MATLAB.

The IDFT based designs are benchmarked against the signal generated by direct mul-

tiplications of the subcarriers samples and the input symbols vector. Fig. 4.7 shows

the time samples of a randomly chosen SEFDM symbol generated by the proportional

inputs design and generated using simulated analogue system. The figure shows that the

time samples of both systems are equal. In addition, Fig. 4.8 shows the time samples

of an SEFDM symbol generated with each of the three transmitters. The figure shows

that the real and imaginary parts of the signal obtained from the three transmitters are

equal.

The spectrum of the generated signal with the proportional inputs design is displayed

in Fig. 4.9. The figure shows that the transmitter generated the required bandwidth

reduction and the result includes the other two transmitter designs as all the proposed

systems generate the same time signals. When α = 1, the proposed transmitter gener-

ated an OFDM spectrum. There are no restrictions in terms of the sampling rate which

can be achieved by the scaling of the IDFT length and number of outputs according to

the desired oversampling factor. In addition, Fig. 4.10 illustrates how the positioning
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(a) Real part of time samples.
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(b) Imaginary part of time samples.

Figure 4.7: Real and imaginary parts of the time samples of one symbol of a 16
subcarrier SEFDM for α = 0.8, generated using IDFTs as in section 4.3.1 and simulated

analogue system.
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(a) Real part of time samples.
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(b) Imaginary part of time samples.

Figure 4.8: Real and imaginary parts of the time samples of one symbol of a 16
subcarrier SEFDM for α = 0.8, generated using the three IDFT based transmitters.

of the inserted zeros in the proportional inputs transmitter can be used to translate the

signal spectrum in frequency.

Reception of the signals generated with any of the three transmitters could follow any

method used to receive the original signal described in [35]. Nevertheless, an end to

end SEFDM system was simulated in AWGN channel as in [21]. Detection is realized

by projecting the signal onto the conjugate carriers realized with the DFT blocks as

described in section 5.3 of the next chapter followed by an ML detector. Fig. 4.11 shows

numerical results for the BER of the digitally generated SEFDM signal. The digital sig-

nal exhibited the same BER as the analogue one. From BER results it is confirmed that

the new way of generating the SEFDM signal exhibited the same BER performance as
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Figure 4.9: IDFT SEFDM spectrum for 32 subcarrier SEFDM for α = 1/2, 3/4 and
1.
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Figure 4.10: Shifting the IDFT based SEFDM spectrum for 16 subcarrier system for
α = 0.8.

the analogue method, thereby verifying the correctness of the new approaches described

in this chapter.
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Figure 4.11: BER performance of an IDFT based SEFDM system with 8 subcarriers,
α = 0.8 and BPSK and 4QAM input symbols detected with ML.

4.4.1 Design Comparisons

The transmitters described in sections 4.3.1, 4.3.2 and 4.3.3 provide the means to gen-

erate an SEFDM signal. The main differences between the proposed designs are in the

size and number of IDFT modules in the transmitter. The design in section 4.3.1 uses

a single IDFT module of size Q/α, hence, requires that Q/α is an integer number. The

design proposed in section 4.3.2 uses a single IDFT module that is c × Q long and it

places a constraint on α to be a rational number. The transmitter designed in section

4.3.2 interleaves zeros with the message symbols in order to maintain the frequency

profile of the SEFDM signal. Hence, for large Q and c (in the denominator of α) the

transmitter will require an IDFT stage of length cQ. Both designs require one IDFT

module but with different lengths. There are some reasons to favour one over the other

such as the shorter length of the IDFT module of the proportional inputs transmitter is

an obvious advantage over the one with rational α. However, for some system practical

restrictions (such as an IFFT length being a power of 2) it may not be possible to satisfy

the requirement of Q/α being an integer number. A special case is when α = 1/c for
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c ∈ N, where the two described transmitter arrangements converge and produce the

same transmitter structure. An advantage of both designs is the support of spectrum

positioning based on the locations of the zero inputs which may be added to the head,

tail or around the input symbols.

The design in section 4.3.3 uses multiple IDFT modules which are shorter in length when

compared to the single IDFT based designs. For systems with a large number of sub-

carriers it can be less convenient or economic to use larger IDFTs as in the proportional

inputs and the rational α transmitters. This design requires the IDFT to be of the same

length as the subcarriers. The multiple IDFTs design poses no restriction on the value

of α or Q/α, thus can support a wider range of α values. Overall, for any combination

of N and α there can be a compatible option from the proposed transmitters.

4.4.2 Complexity Analysis

Differences in the number and size of the IDFTs in the proposed design will offer differ-

ent computational complexity. The computational complexity of the directly generated

SEFDM signal as in equation 4.1 is Q×N complex multiplications and Q (N − 1) com-

plex additions. The complexity of the proposed transmitters in sections 4.3.1, 4.3.2

and 4.3.3 depends on the complexity of the evaluation of the IDFT. When the IFFT

algorithm is used for evaluating the IDFT, the complexity is reduced to O (Q log Q)

complex multiplications and additions.

Assuming that the complexity of the IFFT algorithm is γQ log2 Q complex multiplica-

tions and additions, where γ is a constant; The complexity of the proportional trans-

mitter, as described in section 4.3.1, will be

γ(Q/α log2Q/α) = γ(Q/α log2 Q−Q/α log2 α). (4.24)

The complexity of the design in section 4.3.2 will be

γ(cQ log2 cQ) = γ(cQ log2 Q+ cQ log2 c). (4.25)

Nevertheless, in both designs zeros are inserted at some input indices and a subset of the

outputs is actually needed, suggesting complexity reduction using pruning of the inputs
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[127] and the outputs [128]. Pruning of the inputs of the proportional inputs transmitter

transmitters is suggested in [129] leading to complexity of

γ(Q/α log2N). (4.26)

The same concept can be applied on the transmitter design for α a rational number,

hence the complexity of the pruned system will be

γ(cQ log2 bN). (4.27)

The reduction in complexity for both transmitters is achieved by first considering the

zeros inserted to realize the SEFDM frequency samples and then the zero padding to

achieve the number of samples of Q where Q ≥ N by definition in equation (3.2).

Section 4.3.3 described a multiple IDFT based design. The computational complexity

of this design is a combination of the complexity of the c Q long IDFTs, cQ complex

multiplications and (c− 1)Q complex additions.

Fig. 4.12 shows the complexity of the proposed transmitters in sections 4.3.1, 4.3.2 and

4.3.3 by plotting the number of multiplications with respect to the number of subcarriers

and three values of α as an example of the expected computational savings for the pro-

posed systems. It is clear that the proposed systems provide substantial computational

savings specially for large system sizes when compared with the direct generation of the

signal. The plots show that the complexity of the transmitter for rational α and the

multiple IDFTs increases with the increase in the value of α. The plots did not consider

the pruning of the IFFTs which will result in further complexity reduction. Nevertheless,

the main advantage of the use of the IDFT is that it is a standard operation supported

in many hardware platforms. Therefore, the implementation of the IDFT based trans-

mitter relieves the implementation task from custom designing complex multipliers for

specific system parameters (i.e. number and sample of the subcarriers).
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(b) α = 2/3
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(c) α = 3/4

Figure 4.12: Number of multiplications as an indicator of the computational com-
plexity for the proposed transmitters for α = 1/2, 2/3 and 3/4.

4.5 Hardware Signal Generation

The efficient representation of the SEFDM signal with IDFT operations sets the scene

for hardware implementations. Based on the IDFT generation for SEFDM signals, a

realization of the signal was obtained using Aeroflex PXI Arbitrary Waveform Gener-

ator (AWG) equipment [130]. The I and Q values of the time samples obtained from

MATLAB simulations of the proposed transmitters are fed to the device which generated

the corresponding analogue signal. The generated signal was captured with a spectrum

analyzer and is depicted in Fig. 4.13 .

Moreover, implementations of the proposed designs are currently underway at UCL3.

3The implementations are part of the EngDs of Marcus Perrett and Paul Whatmough currently
underway at UCL.
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Figure 4.13: Spectrum of AWG generated SEFDM signal for 16 subcarrier system
and α = 0.5.

An implementation of the multiple IDFT transmitter in VLSI architecture is reported

[131]. The transmitter is treated as three functional blocks reflecting the matrix repre-

sentation in equation (4.20). The hardware presented in [131] supports three working

modes: OFDM, SEFDM with α = 2/3 and 1/2, the last being equivalent to FOFDM.

Nevertheless, it is expected that other values of α can be supported in a similar manner.

Furthermore, Perrett et al. presented a reconfigurable architecture for SEFDM systems

implemented on an FPGA [132]. The new system support several values of α and allows

real-time reconfigurability by developing a modified Ethernet stack [133]. The system

employs an additional IDFT module to calculate the values of the rotations in place

of the Look Up Table (LUT) and the design itself is set to accommodate up to the

highest requirement of the supported α values. The system aims to provide a testbed

for research purposes therefore is optimized in terms of the functionality rather than

resource utilization. Nevertheless, the new system employs a direct indexing strategy

for the re-ordering block, thus reduces substantially the complexity when compared to

the implementation in [131] due to the elimination of the divider stage needed to create

the column major order of the symbols as in equation (4.22).
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4.6 Discussion and Conclusions

In this chapter a new framework to generate SEFDM signals is proposed. The framework

is based on using standard IDFTs to generate fractionally spaced signals in frequency.

The framework established can be applied for the IDFT design of any multicarrier com-

munication system with any frequency spacing. The framework poses no restrictions

on the input symbols type and requires minor alterations to the order of the input

symbols stream to realize systems with any frequency spacing, therefore, support uni-

versal transmitter design for different MCM systems. The mathematically proven IDFT

representation of non-orthogonal multicarrier signals is particularly important for the

implementation of such systems and the manipulation and study of their signals. The

proposed framework eliminates the need for a bank of analogue modulators and uses

standard IDFT operations for modulating the signals. Three IDFT transmitters were

designed with different requirements of number and length of the needed IDFT operation.

Numerical verification confirmed that the transmitters produce the required bandwidth

compression with identical BER performance to that of an ideal oscillator based design.

In addition to the reduction of complexity, the IDFT based transmitters have a range

of advantages over analogue ones and over direct generation with complex multipliers

and adders. The structure of the proposed transmitters employ similar building blocks

as OFDM systems, hence, will facilitate a smooth changeover between existing systems

based on OFDM to systems employing SEFDM. Moreover, systems that allow for multi-

rate communications could benefit from these methods where the operation could be

switched between OFDM and SEFDM. Such a feature could be especially useful for ap-

plications where the available spectrum changes. Such a mode of operation can be more

suited for the uplink as the base station is more capable to accommodate the complex

SEFDM receiver. The main limitation of these simple transmitters is that they require

a larger IDFT when compared to OFDM with the same number of subcarriers. Finally,

it will be shown in the next chapter that the proposed framework can be extended to

the reception side leading to the proposal of the DFT based SEFDM demodulator.



Chapter 5

The SEFDM Receiver

5.1 Introduction

Previous chapters have demonstrated how the SEFDM signal can be neatly modelled and

efficiently generated using standard IDFT modules. However, reception of the SEFDM

signal still remains a challenge due to the ICI created by the non-orthogonal subcarriers.

The SEFDM receiver comprises two main stages: the demodulator and the detector. The

demodulation of the incoming signal leads to the collection of a set of sufficient statistics

on which detection algorithms are applied to retrieve the originally transmitted symbols.

In the original proposal for SEFDM systems, the sufficient statistics are generated by

correlating the incoming signal with orthonormal bases, where the orthonormal bases

are obtained through the orthonormalization of the non-orthogonal subcarriers using

Gram Schmidt (GS) and its modifications or Löwdin Method (LM) [57]. After that

Maximum Likelihood (ML) criterion is applied to the sufficient statistics to estimate the

originally transmitted symbols for optimal detection [21] and/or sub-optimal techniques

as outlined in section 2.7.

For the demodulation of the SEFDM signal, correlation with orthonormal bases was

initially suggested in [21] and adopted in all subsequent work [134, 57], whilst several

detection algorithms have been investigated for the SEFDM signal. The use of orthonor-

mal bases is motivated by the desire to maintain the whiteness of the noise. However,

as the bases are different from the subcarriers that create the signal, the ICI is not ac-

counted for. In addition to the residual ICI, the orthonormal bases require generation

114
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from the initial subcarriers following orthonormalization techniques such as GS and its

modifications and LM, hence adding to the complexity of the receiver. The demodulation

process itself requires a bank of correlators customized to the used bases. Furthermore,

the bases will need to be fundamentally changed if the number of subcarriers and/or

bandwidth savings level changes, thus a system relying on orthonormal bases will not

be readily supported in reconfigurable architectures.

Therefore, new choices for the demodulator are presented in this chapter. In particular,

demodulation following the Matched Filter (MF) principle is proposed. The MF in

SEFDM is designed from the subcarriers and is shown to be efficiently realizable using

DFT. The main advantage of the MF demodulator is the reduction of complexity due

to the total elimination of the orthonormalization stage and the standardized DFT

based implementation. In addition, reception with the DFT bases is proposed which is

considered as an alternative form of correlation with orthonormal bases.

Furthermore, optimal detection requirements for the different demodulators are mathe-

matically derived and tested with numerical simulations. The main aim is to decide if

there is a fundamental performance difference between the different demodulators. In

all cases of demodulation, the optimal detector is found to require an exhaustive search

of all possibly transmitted combinations of symbols satisfying a cost function relevant to

the demodulator technique in use. The complexity of the optimal detector can become

prohibitive with the increase in the system dimensions. Therefore, the realization of

the optimal detector with the Sphere Decoding (SD) algorithm is proposed and derived

for the MF demodulator. Numerical investigations are provided for different system

settings.

5.2 The SEFDM Demodulator

In this section, it is proposed that the SEFDM signal to be alternatively correlated

with the conjugates of the original subcarriers instead of the orthonormal bases. This

arrangement is effectively a matched filter for the system. The main advantage of this

proposal is the elimination of the orthonormalization process which adds to the com-

plexity of the system. Section 3.4.1 showed the derivations for the MF demodulation,
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where the obtained statistics are described as

R = CS +WΦ∗ , (5.1)

where C represents the correlation coefficient matrix as derived in equation (3.15),

whereas the MF is given as the conjugate subcarriers matrix Φ∗, thus C = Φ∗Φ and

the noise term WΦ∗ has a zero mean and a covariance matrix Ψ = σ2C as derived in

equations (3.26) and (3.27).

Another option is to use orthonormal bases that span the same space as the SEFDM

signal. Recalling that the Q point DFT represents a set of Q orthogonal bases, another

demodulator based on standard DFT is proposed. The collected statistics in this case

can be expressed as

R = Ω∗S +WΩ∗ , (5.2)

where Ω∗ represents the Q point DFT matrix.

In general, it is shown in chapter 3 that the SEFDM system can be expressed by the

linear regression model with the equation reproduced below

R = CS +W, (3.38)

where C represent the design matrix of the system and is composed from the correlation

of the carriers matrix Φ and the vectors of the chosen demodulator (i.e Gram Schmidt

bases, MF bases, DFT). Therefore, the detection of the SEFDM system focuses on

solving the linear regression model in equation (3.38) whereas the differences between

the different demodulators is incorporated in the different design matrices as well as the

noise properties associated with them.

5.3 The DFT Based MF Demodulator

The realization of the demodulator is a key design consideration in the SEFDM receiver.

The orthonormal bases require orthonormalization if GS or LM is used. On the other

hand, if DFT bases are used, as proposed in equation (5.2), then the implementation
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is straightforward with standard DFT/FFT modules. Of concern in this section, is the

efficient realization of the MF demodulator.

The MF demodulator is constructed from the conjugates of the subcarriers. Applying

the same concepts as in chapter 4, it will be shown that the MF can be realized with the

DFT operation with some modifications on the input vector. The DFT of a sequence

Y = [y0, y1, · · · , yN−1]
′

denoted with the vector F {Y } is given by [125]:

Fk {Y } =
1√
N

N−1∑

n=0

yn exp

(−j2πnk

N

)
. (5.3)

Hence, following a similar route to prove Theorem 4.1, equation (5.1) can be realized as

R =
[
R

′
]N−1

0
, (5.4)

where

R
′

= ζΩ∗Y
′

, (5.5)

where Ω∗ represents the L point DFT matrix for

Y
′

=





Yi 0 ≤ i < N

0 N ≤ i < L
. (5.6)

when ζ = 1√
α
, L = Q/α for Q/α ∈ N , or equivalently

Y
′

[i] =





Yi/b i mod b = 0

0 otherwise,
(5.7)

when L = cQ,ζ =
√
c for α = b/c, b, c ∈ N and b < c.

Furthermore, the MF can be expressed as the sum of multiple DFTs, similar to the

transmitter design detailed in section 4.3.3, as

R [k] =
1√
N

c−1∑

i=0

exp

(
j2πik

cN

)N−1∑

l=0

Y
′′

(i+ lc) exp

(
j2πlk

N

)
, (5.8)

where

Y
′′

[i] = Y
′

[i] . (5.9)
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Figure 5.1: Proportional inputs DFT based MF demodulator design.

Figure 5.2: DFT based MF demodulator design for α rational number.

Fig. 5.1, 5.2 and 5.3 depict three receiver structures based on equations (5.4) and

(5.8). The designs show how the correlation with the conjugate carriers is realized with

standard DFT blocks. The generated statistics are fed to the detector that employs

algorithms to estimate the originally transmitted symbols.

The DFT based demodulator reduces the complexity of the SEFDM receiver. First, the

demodulator uses general purpose components that can in turn be efficiently realized

with the FFT. The receiver is relieved from the orthonormalization process and the bank

of modulators are replaced by the standard DFT blocks, hence, the complexity of the
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Figure 5.3: Multiple DFTs design for the MF demodulator.

receiver is mainly concentrated in the detection stage. Furthermore, the DFT based

demodulator is similar to OFDM receiver, hence can facilitate coexistence between the

systems and smooth migration.

5.4 The Optimal Detection for the SEFDM Signal

The second stage of the SEFDM receiver is a detector that estimates the originally

transmitted symbols based on the collected statistics in the demodulation stage. In

this section, the optimal detector for the SEFDM signal is discussed. In particular, the

optimal detector for the statistics obtained via the DFT bases and MF are derived. The

detector is optimal in the sense that it minimizes the probability of error.

5.4.1 Orthonormal Bases

For the original SEFDM system proposal, the receiver starts by correlation with or-

thonormal bases obtained via GS or LM orthonormalization [21, 57]. The optimal de-

tector is derived for the demodulated signal in that case as

ŜML = min
s∈QN

‖R−MS‖ , (5.10)

where M is the matrix describing the correlation of the subcarriers and the orthonormal

bases [21].
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Figure 5.4: The block diagram of an SEFDM system employing DFT bases for the
demodulation, r′

i
= R [i].

If DFT bases are used, the derivation of the optimal solution will follow the same steps as

the case of orthonormal bases in the original system proposal. The noise properties are

key for this similarity, as the DFT bases constitutes an orthogonal set of bases, hence,

the noise at the output of the DFT will remain white with zero mean and covariance

matrix of σ2
NI. Therefore, the optimal detector for the use of the DFT bases remains in

the same format as the detector described by equation (5.10), the only difference is in

the values taken by the M matrix in this case. Fig. (5.4) depicts a block diagram of an

SEFDM system employing DFT bases in place of the GS/LM bases.

5.4.2 MF Demodulation

The MF demodulator generates a statistics vector with different properties when com-

pared to the use of orthonormal bases. In particular, the noise characteristics after the

demodulation are affected by the non-orthogonal structure of the demodulator. Section

3.4.1 examined the properties of the expanded noise term onto the vectors of the MF.

Therefore, the optimal detector for this case has to accommodate for the altered noise.

The optimal detector estimates the originally transmitted data symbols by applying
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Figure 5.5: The block diagram using IDFT based MF demodulator, r′
i
= R [i].

Maximum a Posteriori (MAP) detection. For received statistics denoted by the vector

R as described in equation (5.1) and a sent message denoted by the vector Sm, the a

’posteriori’ probability is expressed as [135]

p (Sm|R) =
p (R|Sm) p (Sm)

p (R)
. (5.11)

The MAP detector aims to maximize the probability in equation (5.11). The a ’priori’

p (Sm) is set equal to 1/MN to satisfy the assumption that all transmitted symbols

are Independent and Identically Distributed (IID) and belong to the same constellation,

therefore, revealing that the probability p (Sm|R) on the LHS of equation (5.11) depends

mainly on the likelihood function p (R|Sm), hence maximizing the likelihood function

will guarantee the maximization of equation (5.11).

Noting that for a transmitted message Sm, R has a multivariate normal distribution with

mean vector Um = CSm and covariance matrix Ψ where Ψ = σ2C, thus, the p (R|Sm)

is given by

p (R|Sm) =
1

(2π)N/2 |det (ΣN)|1/2
e−

1
2
(R−CSm)∗Ψ−1(R−CSm). (5.12)
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Therefore, minimizing the exponent term in equation (5.12) will result in maximizing

the likelihood function p (R|Sm):

(R−CSm)∗ Ψ−1 (R−CSm) =
1

σ2
(R−CSm)∗Φ

−1
Φ∗−1

(R−CSm)

=
1

σ2

∥∥∥Φ∗−1
(R−CSm)

∥∥∥
2

(5.13)

The detector reduces to find

ŜML = min
s∈QN

∥∥∥Φ∗−1
(R−CSm)

∥∥∥
2
. (5.14)

Equation (5.14) shows that the optimal solution for the MF obtained statistics is the

one that maximizes the likelihood function (ML) and can be achieved by minimizing

the Euclidean norm of the cost function. Clearly, the solution differs from the optimal

solution for the GS based system, shown in equation 2.17, as the function contains terms

related to the noise and the design matrix itself is different (i.e. C in MF case and M

in orthonormal bases case).

Applying the Cauchy–Schwarz inequality [48], reveals an upper bound for the term in

equation (5.13) as

∥∥∥Φ∗−1

(R−CSm)
∥∥∥
2

≤
∥∥∥Φ∗−1

∥∥∥
2
‖R−CSm‖2

≤ σmax ‖R−CSm‖2 , (5.15)

where σmax is the maximum singular value of the matrix Φ∗−1
, and is independent of

the transmitted or received message. Therefore, the inequality in equation (5.15), leads

to an upper bound for the minimization of the MF optimal detector in equation (5.14)

as

min
s∈QN

‖R−CSm‖2 . (5.16)

This bound shows that minimization of the term (R−CSm) yields an upper bound for

the minima of the term
(
Φ∗−1

(R−CSm)
)
. The upper bound neglects the colouring

of the noise and thus, shows a similar structure to the cost function of the system with

orthonormal bases (whether GS or DFT bases) in equation (5.10), with the exception

of the different design matrix. In other words, the upper bound focuses on the collected
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statistics relationship to the possibly transmitted symbols and ignores the noise colour-

ing. Recalling that the conditioning of the system affects the level of noise colouring

as the system swings from being perfectly conditioned (i.e. no colouring effect) to close

to singular with the increase in the bandwidth compression level and the number of

subcarriers as discussed in chapter 3, therefore it is expected that the tightness of the

upper bound will consequently depend on the bandwidth compression level and number

of subcarriers.

Fig. 5.5 depicts a block diagram of an SEFDM system. The demodulator is a matched

filter and is thus, realized with the DFT block. The detector uses the ML criteria derived

in equation (5.14). The ML detector examines all the possibly transmitted symbol sets

and chooses the one that minimizes the norm in equation (5.14).

5.4.3 Numerical results

Section 5.4 discussed several demodulator choices for the SEFDM system and the rel-

evant optimal detectors that aim to minimize the error rate. The optimal solution for

the MF, derived in equation (5.14) indicates the need to account for the correlated noise

term. The performance of the proposed detectors is investigated through numerical

simulations. The simulations assume perfect knowledge of the subcarriers’ frequencies

on the reception side and that the received signal is impaired by AWGN. The simula-

tions provide the error performance for SEFDM demodulation with orthonormal bases

obtained with the IMGS algorithm described in section 2.6 or as DFT bases and the

MF demodulation as described in section 5.2. For all types of demodulation, an optimal

detector is implemented. The optimal detection is achieved by an exhaustive search

of all possibly transmitted combinations of input symbols to satisfy the ML criterion

relevant for each demodulator choice as provided in section 5.4. Due to the complexity,

the systems simulated have only four subcarriers.

Fig. 5.6 depicts the BER performance for MF detection and the upper bound for systems

carrying BPSK and 4QAM input symbols for different values of α and Eb/N0. The figure

shows that the upper bound tightness is in an inverse proportion to the bandwidth

compression level. This is directly linked to the conditioning of the SEFDM system

as with the increase in bandwidth compression levels the system starts to deviate from
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Figure 5.6: BER of MF demodulator optimal detection and its upper bound derived
in equation (5.16) for α = 0.7− 0.9, 4 subcarrier system with BPSK and 4QAM input

symbols.
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Figure 5.7: BER of different demodulators and optimal detection for α = 0.7 − 0.9,
4 subcarrier system with BPSK and 4QAM input symbols.
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Figure 5.8: BER of different demodulators and optimal detection at Eb/N0 = 5 dB
for α = 0.4− 1, 4 subcarrier system and BPSK and 4QAM input symbols.

the end close to orthogonality to the one close to singularity, thus the MF effect on the

noise is emphasized with the deterioration in the conditioning. Consequently the upper

bound, which does not account for the noise colouring, looses its tightness. In addition,

the figures show that the performance for 4QAM input symbols is more vulnerable to

bandwidth compression than BPSK.

Furthermore, optimal solutions for the three different demodulators are simulated. Fig.

5.7 and 5.8 show the BER performance for optimal detection for DFT bases, MF and
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IMGS demodulators. In all cases, the optimal detector is applied which required an

exhaustive search of all possibly transmitted combinations of input symbols to satisfy

the corresponding cost function. The figures show that the three detectors achieve the

same performance for different values of α and BPSK and 4QAM input symbols. The

plots confirm that no performance degradation is expected for the MF demodulation.

Based on this it is concluded that the choice of one demodulator over the other will

be influenced by other factors such as complexity of realization and compatibility with

other system components and other systems (i.e. OFDM). However, it is necessary to

evaluate the different performances with other detectors which will be covered in the

next section and chapter where new detectors are proposed.

5.5 Sphere Decoder (SD) for the MF Based System

The MF shows a remarkable advantage of reducing complexity as it can be efficiently

realized with standard components. However, the optimal solution as derived in section

5.4 requires exhaustive search over all the possibly transmitted combination of symbols.

In practice, such a task can become overly demanding specially with the increase in the

number of subcarriers and/or modulation level of the input symbols. This motivated

the exploration of low complexity implementation of the exhaustive search as provided

by the SD algorithm. The use of the SD algorithm was proposed for the detection of

the IMGS based system to overcome the complexity burden of the brute force ML [36].

The SD algorithm achieves the ML search with lower complexity by transforming the

search space to a multi-dimensional sphere and then searches only candidate solutions

that exist within a specific radius from the statistics point.

Section 2.7.3 explains the use of the SD algorithm for the SEFDM system based on

orthonormal bases. Having a different cost function for the matched filter, the original

SD derivations for the orthonormal bases can not be used immediately. Thus, this section

presents a step by step derivation of the SD algorithm for the MF demodulator case.

In the case of the MF, the optimal detection is obtained as the one that satisfies equation

(5.14). The SD algorithm places an additional constraint on the optimal solution, which

is to exist within a predefined radius g. Thus the SD solution will be
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ŜSD = min
∥∥∥Φ∗−1

(R−CS)
∥∥∥
2
, (5.17)

s∈QN , ‖R−CS‖2≤g

The variables in equation (5.17) are expanded using real decomposition [79] as

R̃ =


 R {R}

Im {R}


 , C̃ =


 R {C} Im {C}

−Im {C} R {C}


 ,

Φ̃ =


 R {Φ} Im {Φ}

−Im {Φ} R {Φ}


 , (5.18)

S̃ =


 R {S}

Im {S}


 . (5.19)

While the dimension of the problem is doubled, real candidate symbols are useful for

the simplification of the solution. Substituting with the real decomposed variables and

expanding the norm term of equation (5.17) leads to

(
P − S̃

)T
C̃T Φ̃−1

(
Φ̃−1

)T
C̃
(
P − S̃

)
=

(
P − S̃

)T
C̃T

(
P − S̃

)
≤ g, (5.20)

where P is the unconstrained ML estimate defined as

P =
(
C̃T C̃

)−1
C̃T R̃. (5.21)

The work in chapter 3 proved that the matrix C and consequently C̃ have real diagonal

entries and that C is positive definite for α and N values that result in the minimum

eigenvalue that is not equal to zero for the computation machine precision. For such

combinations of α and N , the Cholesky decomposition can be applied to C̃ as

chol
{
C̃T
}
= LTL. (5.22)

This step shows the main difference between the SD solution for the MF and IMGS
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systems, which is reflected in the different argument for the Cholesky decomposition.

Then, equation (5.17) can be equivalently expressed as

ŜSD = min
∥∥∥L
(
P − S̃

)∥∥∥
2
, (5.23)

s∈QN ,‖L(P−S̃)‖2≤g

Due to the triangular structure of L, the search for the solution is pursued in 2N con-

secutive steps. Starting from level 2N , the algorithm examines candidate input symbol

points (i.e. from the used alphabet) that satisfy

dp2N −√
g2N/l2N,2Ne ≤ s2N ≤ bp2N +

√
g2N/l2N,2Nc , (5.24)

where d·e and b·c refer to rounding to the nearest integer greater or smaller than the

argument, respectively. The candidate points are then enumerated following Schnorr

Euchner (SE) or Fichke-Pohst (FP). The former orders the points according to their

distance from the centre of the search interval and the latter orders the points based on

their distance from the lower bound of the search interval; information on both tech-

niques was provided in section 2.7.3. Definition of the radius is important as previously

discussed in section 2.7.3. A widely used choice is to set the radius equal to an initial

estimate of the transmitted symbols. The initial estimate can be obtained by applying

Zero Forcing (ZF) or Minimum Mean Square Error (MMSE) detection. For MF based

systems the ZF and MMSE are defined as

ŜZF =
⌊
C−1R

⌉

=
⌊
C−1 (CS +N)

⌉

=
⌊
S +C−1N

⌉
, (5.25)

and

ŜMMSE =

⌊
C∗
(
CC∗ +

1

σ2
W

I

)−1

R

⌉
, (5.26)

respectively. Clearly the only difference between the ZF and MMSE detectors for MF

or IMGS system is in the different matrices M and C.
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5.5.1 Note on SD Application to DFT Bases Demodulation

In the case of DFT demodulation as proposed in section 5.2, the SD algorithm cannot

be applied as the diagonal entries are non-real. The correlation between the DFT bases

and the subcarriers is given by

c̆m,n =
1

Q

Q−1∑

k=0

e
j2παkm

Q e−
j2πkn

Q

=
1

Q

[
1− ej2π(αm−n)

1− e
j2π(αm−n)

Q

]
. (5.27)

Equation 5.27 shows that not all the diagonal elements will be real which is the condition

for the Cholesky decomposition needed for the work of the SD algorithm. This shows

that the use of the MF demodulation is superior to DFT bases as it combines ease of

realization with support of SD detection.

5.5.2 Numerical Results

Numerical results of simulations using SD detection in conjunction with MF are pre-

sented in this section. Results are provided for 4QAM input symbols for systems with

different number of subcarriers and α values. For comparison purposes the results show

performance of the SD detector for an IMGS based SEFDM system. The SD algorithm

adopts SE enumeration and the initial radius is set to a value arbitrarily greater than

the distance from the ZF estimate of the transmitted symbols. In addition, some figures

included BER curves for ZF and MMSE detectors for the IMGS and MF based systems

to highlight the SD performance advantage.

Fig. 5.9 and 5.10 depicts the error performance for the SD detector for different values

of Eb/N0, α values and number of subcarriers. Noting that the SD algorithm is capable

of achieving the ML performance for larger system dimensions than is achievable for

the exhaustive ML search. The plots confirm that the SD algorithm achieves the same

error performance for MF and IMGS based SEFDM demodulators. In addition, Fig. 5.9

highlights the effects of the reduction of the bandwidth compression level expressed by

the α value in terms of deterioration in the BER.
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Figure 5.9: BER of SD detection with MF and IMGS demodulation vs Eb/N0 for a
16 subcarrier system with α = 0.6− 0.9 and 4QAM input symbols.
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Figure 5.10: BER of SD detection with MF and IMGS demodulation vs Eb/N0 for
α = 0.8 for 4, 8, 12 and 16 subcarriers and 4QAM input symbols.
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Figure 5.11: BER of SD detection with MF and IMGS demodulation vs the number
of subcarriers for Eb/N0 = 5 dB.

Fig. 5.11 depicts the BER of SD detection with respect to the number of subcarriers

at a fixed Eb/N0 = 5 dB. Performance of ZF and MMSE detectors is presented for

comparison purposes. The figure clearly shows the error performance advantage offered

by the SD detection which showed slight deterioration with the increase in the number

of subcarriers. Fig. 5.12 focuses on the error performance for different values of α at

Eb/N0 = 5 dB. The figure confirms the equivalence of the MF and IMGS demodulators

and further shows the degradation of the error performance with the decrease in the

value of α.

In addition, the simulations addressed the complexity of detection for the MF and IMGS

based SEFDM systems in terms of the average number of node visits taken to decode a

single SEFDM symbol from the simulation of 1000 SEFDM symbols (i.e. 16000 4QAM

input symbols), as depicted in Fig. 5.13 and 5.14. Both figures confirm that the SD

algorithm requires the same number of node visits whether MF or IMGS is used to

generate the statistics of the received signal. Fig. 5.13 highlights the dramatic increase

in the average number of nodes visits with the increase in the number of subcarriers.

Fig. 5.13 shows the increase in detection complexity with the reduction in the value of

α. However, the results indicate that complexity showed less sensitivity to the reduction

in the value of α when compared to the number of subcarriers. Even for a given value of
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Figure 5.12: BER of SD detection with MF and IMGS demodulation for α = 0.7− 1
for Eb/N0 = 5 dB, 16 subcarriers and 4QAM input symbols.
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and 16 subcarriers and α = 0.8.
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Figure 5.14: Average node visits required to decode one SEFDM symbol for α =
0.6− 0.9 and 16 subcarriers.

α and/or number of subcarriers, both figures show that the complexity varies with the

signal to noise ratio.

5.6 Hardware Implementation of the MF Demodulator

The DFT design of the MF based demodulator, presented in section 5.3, prepares the

front end of the SEFDM receiver for hardware implementation where the DFT is effi-

ciently implemented using the FFT algorithm. The work in [136] presented for the first

time the hardware design of the demodulator on FPGA1. The implementation uses the

MF demodulator depicted in Fig. 5.1. The design requires one DFT/FFT module and

zero insertion at the extra inputs of the DFT/FFT.

The implementation of the detection part remains challenged with the high ML complex-

ity and the variable complexity of the SD. ML detectors have exponential complexity

that grows with the increase in the number of subcarriers and modulation level. On the

other hand, the SD search continues until a solution is reached, as such the resources

required can range from minimal requirements to ML requirements. Furthermore, the

1Implementations on an FPGA are carried out as part of the Engineering Doctorate program by
Ryan Grammenos at UCL in 2011.
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typical SD algorithm is sensitive to the noise in the system and in the SEFDM context

the algorithm is dependent on system parameters as seen from complexity plots in Fig.

5.13 and 5.14 where the average number of node visits showed changes with changes in

α and N . Nevertheless, implementations of ML and SD detectors for Multiple Inputs

Multiple Outputs (MIMO) systems have been previously reported [137]. Section 6.7

discusses in more details the considerations for hardware implementation of SEFDM

detectors.

5.7 Discussion and Conclusions

In this chapter, the SEFDM demodulator stage in the receiver was investigated. Previ-

ously, only demodulation based on the use of orthonormal bases obtained via GS based

technique or LM was adopted. In this chapter a new demodulator for the SEFDM

system was proposed and investigated. The demodulator is matched to the SEFDM

subcarriers and aims to tackle the intercarrier interference in the system in contrast to

the IMGS system that focuses on maintaining the whiteness of the AWGN noise. The

main advantage of the MF demodulator is the elimination of the need for orthonormal-

ization on reception side, thus can support reconfigurable architectures and in principle

reduces the complexity of the system. Furthermore, an efficient algorithm for the im-

plementation of the demodulator based on the DFT was developed. Three topologies

using single or multiple DFT modules were proposed to support flexibility. In addition,

the DFT based demodulator facilitated compatibility with OFDM on the reception side

and is symmetric to the transmitter, therefore, can facilitate dual operation.

Moreover, the optimal detector that minimizes the error probability for the MF based

demodulator was derived and was found to follow ML criteria. The non-orthogonal

structure of the MF leads to the colouring of the noise. Therefore, the derived ML de-

tector was shown to account for the colouring of the noise, where a derived upper bound

showed that ignoring this effect leads to error performance deterioration. Numerical

simulations have confirmed that the same performance as the IMGS based demodulator

is achievable. Hence, the new demodulator is considered superior to the IMGS due to

the simple implementation potential.
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The ML detector of the MF based system requires an exhaustive search over all possibly

transmitted combinations of the input symbols. With the increase in the number of

subcarriers and/or the modulation level of the input symbols, the ML becomes overly

complex. This issue was faced in the IMGS based SEFDM system and motivated the

search for lower complexity alternatives. Following the same footsteps, and in order to

reduce the complexity of the optimal detector for the MF, the SD algorithm was applied

for the MF based SEFDM system. The SD algorithm performs the search for the ML

solution for the MF based system with reduced complexity. Numerical simulations have

shown that the MF system can achieve the optimal solution and also the same error

performance as the IMGS based system. Results for the complexity of detection have

confirmed that the SD algorithm required the same complexity regardless of using IMGS

or MF for the demodulation of the signal.

The work in this chapter shows that for the demodulation of the SEFDM signal a re-

duced complexity MF demodulator can be used. The MF demodulator reduces the

complexity of the system by eliminating the orthonormalization stage. Furthermore, an

efficient implementation structures based on the general purpose DFT or equivalently

FFT are proposed, thus facilitating more complexity reduction and supporting recon-

figurable structures and compatibility with existing system in a matching manners to

the transmitter design. Investigations of the error performance of the optimal solution

and its low complexity realization via SD algorithms confirm that no error penalty is

expected with the use of the MF for demodulation. In addition, no additional complex-

ity for the detector is expected as confirmed by numerical results for SD nodes visits.

Moreover, demodulation based on DFT bases as an alternative set of orthonormal bases

is considered in this chapter. The optimal ML detector for this case is derived and eval-

uated numerically. The DFT bases demodulator achieves the same error performance as

MF and IMGS. Nevertheless, the DFT based demodulator does not support detection

with the SD algorithm, hence, poses restriction on the size of the system as opposed to

MF or IMGS.

In conclusion, the MF demodulator is proposed as a new simpler alternative to IMGS

demodulation with no penalties in terms of error performance nor complexity increases

in the detection stage. The MF based demodulator poses no restrictions on the detector

whether being ML or SD. Demodulation using DFT bases is recommended for small sized
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systems and ML detection. These recommendations result in localizing the complexity of

the SEFDM receiver at the detection stage. The next chapter is dedicated to the design

and testing of low complexity detectors that can provide attractive error performance.



Chapter 6

Low Complexity Detectors for

SEFDM System

6.1 Introduction

Analysis of the SEFDM signal has shown that the signal suffers from intercarrier in-

terference (ICI) resulting from the non-orthogonal structure of the subcarriers. Con-

sequently, the detection of the SEFDM signal requires efficient handling of such ICI.

Regardless of which method is followed for the demodulation of the SEFDM signal,

chapter 5 showed that the ML detector can produce optimal BER performance but is

prohibitively complex. SEFDM literature has shown that simple linear detectors fail to

provide competitive BER performance for moderate bandwidth savings and/or number

of subcarriers. On the other hand iterative detection techniques are impaired by high

realization complexity and hence constitute a challenge for the hardware implementation

of SEFDM systems. Thus, the pursuit for low complexity detectors remains a challenge

and is the focus of this chapter.

This chapter presents the details of the design of several low complexity detectors that

can achieve competitive error performance. Two new linear detectors are proposed for

the SEFDM system and are shown to demonstrate superior BER performance than pre-

viously proposed designs using Zero Forcing (ZF) and Minimum Mean Square Error

(MMSE), with almost the same complexity. Firstly, a detector based on the Truncated

138
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Singular Value Decomposition (TSVD) is proposed. The TSVD based detector tackles

the ill conditioning attribute of the SEFDM system that impairs the ZF and MMSE

performance. In principle, the TSVD technique provides an approximate well condi-

tioned system to the one in question, thus can exhibit more resilience to noise effects.

Investigations of the error performance of the TSVD detector show superior performance

to ZF and MMSE. In addition, the TSVD based detector support systems with large

number of subcarriers while maintaining an error performance close to that of the sys-

tems with a small number of subcarriers. Moreover, another linear detector that invests

in the knowledge of the intercarrier interference (ICI) pattern in the SEFDM system is

proposed. The detector is termed Selective Equalization (SelE) as it only equalizes for

the interference of selected subcarriers. The choice of the selected subcarriers is based

on their ICI contributions. The SelE detector has shown superior performance to the

ZF and MMSE and a similar performance to the TSVD.

Furthermore, new modified iterative detector that overcomes the variable complexity

constraint of SD is proposed and evaluated. The Fixed Sphere Decoder (FSD) is first

applied to offer a fixed complexity detection algorithm. The error performance is sub-

optimal but can be enhanced by increasing the complexity. The work then proceeds to

propose a hybrid FSD-TSVD detector that combines the BER performance enhance-

ment facilitated by the TSVD and the fixed complexity of the FSD to produce a new

SEFDM detector that answers both questions of performance and complexity. Overall,

the proposed FSD-TSVD detector enhances the error performance of the standard FSD

without introducing any premium in computational cost.

6.2 The Truncated Singular Value Decomposition (TSVD)

Analysis of the SEFDM system presented in chapter 3 has confirmed that the system is

ill conditioned and thus the SEFDM problem is classified as a discrete ill posed prob-

lem. As the conditioning of the system worsens, the system becomes sensitive to any

perturbations (i.e. noise). In the mathematical literature, this class of problems has

been addressed, where the regularization, as introduced in section 2.7.6, is an example

of manipulating ill posed problems to produce a more stable solution. In this section,

the use of the Truncated Singular Value Decomposition (TSVD) [138, 139] is proposed
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for the detection of the SEFDM signals. TSVD is a method widely used to produce

a better quality pseudoinverse of ill conditioned matrices. Thus, TSVD is proposed to

manage the effect of the ill conditioning of the SEFDM system, and hence provide better

BER performance when compared to ZF and MMSE detectors.

In essence, TSVD is a method to generate an approximated inverse of an ill conditioned

matrix to yield a modified least squares problem that is less sensitive to perturbations.

The approximated inverse is derived by finding the Singular Value Decomposition (SVD)

of the argument matrix and then truncating its small singularvalues that overly multi-

ply the noise. The TSVD detector solves the MF based SEFDM system described by

equation (5.1) by first finding the SVD of the C matrix given as

C = UΣV∗, (6.1)

where U and V are unitary matrices whose columns are the eigenvectors of CC∗ and

C∗C, respectively and Σ =diag (σ1, σ2, · · · , σN ) , for σi the i
th singular value of C. The

TSVD based pseudoinverse of C, denoted by Cξ, is defined as

Cξ = VΣ−1
ξ U∗, (6.2)

where Σ−1
ξ = diag (1/σ1, 1/σ2, · · · , 1/σξ , 0, · · · , 0), ξ is the truncation index. The trun-

cation index, ξ, defines the number of singularvalues that are accepted, and therefore

determines the quality of the generated matrix and consequently the obtained solution.

In other words, to calculate the pseudoinverse, TSVD filters out the elements in Σ−1

that correspond to small singular values in Σ starting at index ξ + 1. The TSVD based

detector is then defined as

ŜTSV D = bCξRe . (6.3)

The same approach can be applied to the IMGS based system to arrive at a solution

ŜTSV D = bMξRe , (6.4)

where Mξ is the TSVD based pseudoinverse of the matrix M defined in equation (2.11)

following the same steps to derive C.
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The complexity of the TSVD detector is of similar order as ZF as it only requires the

inversion of the matrix which is usually carried out with the aid of the SVD.

6.2.1 The TSVD Truncation Index

The TSVD technique generates an approximated inverse of an ill conditioned matrix.

As illustrated in section 6.2, the technique is based on filtering out the effects of the

small singular values. Therefore, it is noted that the closeness of the obtained inverse to

the original one will depend on the number of filtered out singularvalues. It is crucial

to strike a balance between generating a matrix that does not carry any components

of the small singularvalues and obtaining an inverse that is still representative of the

original matrix. Thus, the choice of the truncation index becomes a dominant factor of

the quality of the obtained solution and has been the focus of research in the subject

of solving discrete ill posed problems [140, 141]. In [140] the optimum truncation index

is stated to satisfy the picard condition. That is for a system expressed using the

generalized singularvalue decomposition, the Fourier coefficients on the right hand side

decay faster than the generalized singularvalues. In SEFDM particularly, it has been

observed by simulation that αN of the eigenvalues of C are larger than or equal to

1 while (1− α)N of the eigenvalues quickly decay to values close to 0, as depicted in

Fig. 3.10. Therefore, the search for the best detector matrix Cξ is performed based on

truncation indices around this benchmark.

Particular to the SEFDM system, the quality of the detector matrix Cξ, which in turn

is dependent on the truncation index will be translated to the transmitted symbols

estimates and will certainly affect the error performance of the system. Fig. 6.1 and

6.2 illustrate how the BER performance is dependent on the truncation index ξ for the

case of BPSK and 4QAM input symbols, respectively. The figures show performance for

MF and IMGS based systems and indicate the same behaviour for both systems. Both

figures show that the TSVD detector is capable for outperforming the MMSE detection

for many truncation index values. Furthermore, the figures show that for different α

values there is an optimum value for the truncation index ξ that achieves the lowest BER.

It is observed that this optimum value is approximately αN for BPSK input symbols

and αN+1 for 4QAM input symbols which is consistent with the value anticipated from

the conditioning of the C matrix. The truncation index decides whether the system is
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Figure 6.1: BER performance of TSVD detector vs the truncation index ξ for a 64
subcarrier system carrying BPSK symbols.
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optimized for noise or interference, as it decides the closeness of the approximated inverse

to the actual one. The optimum point is the one that tackles the ICI while maintaining

limited colouring of the noise. For the sake of brevity, detailed performance analysis of

the TSVD detector is presented in section 6.4 after the introduction of another improved

linear detector in the next section.

6.3 The Selective Equalization (SelE)

Studies of the conditioning of the SEFDM system have shown that the system tends to

become ill conditioned with the increase in the number of subcarriers and/or bandwidth

compression levels. Thus, linear detection techniques such as ZF and MMSE fail to

cope with error rate requirements due to the noise enhancement associated with the

ill conditioning. The previous section introduced the use of TSVD for SEFDM signal

detection to overcome the ill conditioning effects on the system performance. In this

section, a newly developed technique that approaches the ill conditioning of the system

from a different angle is presented. The technique exploits the a priori knowledge of the

behaviour of the correlation coefficient matrix in order to produce a better estimate of

the transmitted message.

Equation (5.25) showed the ZF detector for the MF based system, where all the ICI

terms are eliminated by the multiplication with the inverse of the matrix C. Theorem

3.1 has shown that some subcarriers within the SEFDM system will be orthogonal.

Furthermore, the formula for the ICI terms derived in equation (3.14) and plotted in Fig.

3.1, shows that in general interference from closer subcarriers is higher than distant ones.

Motivated by this finding, a new detector for SEFDM is presented in this section. The

detector basically equalizes for the subcarriers that contribute significantly to the total

ICI on a given subcarrier. Therefore, a selected subset of the subcarriers is considered

by the detector, thus this procedure is termed Selective Equalization (SelE).

In essence, SelE is based on constructing an approximate version of the correlation

matrix by discarding the small ICI contributions. A trade off between the closeness

to the original system and the simplicity of the detector matrix is to be considered.

The SelE can swing between a full equalization of the ICI terms which is merely a ZF



Chapter 6. Low Complexity Detectors for SEFDM System 144

detector to the complete discard of all ICI terms which is equivalent to receiving an

SEFDM signal using a demodulator and a slicer.

The SelE detector can be represented by the matrix Cκ, defined as

Cκ = [C : cm,n > κ] , (6.5)

where κ is termed the selection parameter and it denotes the minimum accountable

interference level measured from the subcarrier in question and will be expressed in dB.

Therefore, any ICI term in C with a difference in power from the subcarrier in question

exceeding κ dB will be considered in the equalization process. Recalling that the derived

formula for the elements of C for a normalized system in equation (3.14) shows that the

diagonal elements of C are equal to one, the elements of Cκ can be expressed as

Cκ [m,n] =





cm,n if [cm,n]dB > κ

0 otherwise

. (6.6)

The SelE detector is then defined as

ŜSelE =
⌊
C−1

κ R
⌉
. (6.7)

The decision of the value of the selection parameter κ will dictate the closeness of the SelE

detector to the ZF one. A small value of κ will result in more interference contributions

to be considered. Fig. 6.3 and 6.4 depicts the error performance with respect to the

value of κ. The performance is compared to that of the TSVD detector with the best

truncation index. Both figures show that the performance is dependent on the selection

parameter. BER remains at a relatively low level until a specific value of κ is reached

for each α after which the performance deteriorates till levelling at ZF performance.

Furthermore, the figure shows that the SelE concept for the IMGS based system is not

capable of generating tangible performance improvement.
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Figure 6.3: BER performance of SelE detector vs the selection parameter κ for a 64
subcarrier system carrying BPSK symbols.
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Figure 6.5: SelE detector block diagram, r′
i
= R [i] .

6.4 TSVD and SelE Detectors Performance Assessment

Fig. 6.5 depicts a block diagram for an SEFDM system employing SelE. The detector

part requires a multiplier followed by a slicer. The TSVD detector will differ from the

one in Fig. 6.5by the input matrix Cξ in place of Cκ. The performance of TSVD

and SelE detectors in terms of BER is assessed by means of numerical simulations of

systems with a variable number of subcarriers and bandwidth compression levels. The

systems assume perfect knowledge of the subcarriers frequencies on the reception side

and that the received signal is impaired by AWGN. The results displayed in this section

show the performance for the MF based system only because for the TSVD detector the

MF and IMGS based systems achieves the same performance as shown in Fig. 6.1 and

6.2 and that for the SelE system the IMGS based failed to achieve error performance

improvement.

Fig. 6.6 depicts the BER performance of the TSVD and SelE detectors for different α

values for a 64 subcarrier system at Eb/N0 = 5 dB, along with MMSE and ZF. Both

TSVD and SelE provided remarkable error performance improvement for BPSK and

4QAM input symbols specially BPSK case. Moreover, for α > 0.5, the figure shows that

for BPSK input symbols, the SelE provided performance slightly better than that of the

TSVD while for QPSK the performance is the same. In addition, for the case of BPSK

input symbols, the figure shows that for α = 0.5, both the TSVD and SelE systems

achieve the same performance as the FOFDM system.

Fig. 6.7 and 6.8 depict the BER for the TSVD and SelE detectors for BPSK and

4QAM input symbols for different numbers of subcarriers at Eb/N0 = 5 dB, optimum
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Figure 6.6: BER performance of TSVD and SelE detectors for α = 0.4 − 1, 64
subcarrier system, ξ = αN + 1 and κ = −10 dB.

truncation indices and selection parameters. Both figures indicate that the advantage of

both detectors becomes more prominent with the increase in the number of subcarriers.

For a small number of subcarriers (4-16) there is a small BER degradation observed

with the increase in the number of subcarriers, however, for relatively larger numbers of

subcarriers the performance saturates and ceases to deteriorate.

Fig. 6.9 and 6.10 show the BER performance with respect to Eb/N0 for BPSK and 4QAM

input symbols, respectively. Both figures demonstrate substantial BER improvement

when compared to MMSE for both detectors. Furthermore, Fig. 6.9 demonstrates

BER advantage for the SelE detector over the TSVD detector for systems with BPSK

input symbols, whereas for 4QAM input symbols both detectors achieved the same error

performance as seen in Fig. 6.10.

Overall, both techniques provided substantial BER improvement over ZF and MMSE.

Furthermore, the techniques enabled the use of large numbers of subcarriers where ZF
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and MMSE totally fail. TSVD achieves the same performance for both IMGS and MF

based systems whereas SelE suits the MF based system only. Nevertheless, the design of

the SelE detector is simpler than the TSVD as it eliminates the need to perform SVD.

Despite the substantial BER reduction, the BER performance is still not comparable to

OFDM. These results are provided here to demonstrate the BER performance enhance-

ment offered by the techniques which is the base for further performance enhancement

when combined with sophisticated detectors to be introduced in the following sections.

6.5 The Fixed Sphere Decoder (FSD)

The detection of SEFDM with TSVD or SelE results in remarkable BER improvements

over the use of ZF and MMSE. In addition, both TSVD and SelE have demonstrated

the support of systems with a large number of subcarriers. The error rate performance

is shown to be stable with the change in the number of subcarriers for a given α value.

However, the performance is still sub-optimal specially for higher cardinality modula-

tions, thus, in this section, detection of SEFDM with iterative detectors is revisited with

a special focus on fixing the complexity while maintaining attractive BER performance.

Detection of the SEFDM system with Sphere Decoders (SD) as proposed in [36] for

IMGS based systems has shown the ability to achieve optimal error performance. The

SD solution in conjunction with the MF based demodulator as presented in chapter 5

has demonstrated the same performance as the IMGS based system. The SD algorithm

obtains the ML solution by allowing the search to continue until the ML estimate is

reached, therefore the complexity of the algorithm is variable and depends on the noise

and the properties of the system. This behaviour is illustrated in Fig. 6.11 showing the

number of node visits taken to decode each symbol from 1000 SEFDM symbols for each

Eb/N0. The figure shows that the number of node visits decrease with the increase in

Eb/N0, however, for the same Eb/N0 value the node visits required for decoding a single

SEFDM symbol varies. Attempts to tame the complexity of the SD algorithm appeared

in [74] in a quasi-optimal detector combining semidefinite programming (SDP) and SD,

however, the complexity still remains variable.

The variable complexity and the sequential nature of the SD algorithm can impede

the implementation of communication system.Therefore, the Fixed complexity Sphere
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Figure 6.11: Number of node visits to decode each of 1000 SEFDM symbols using SD
algorithm for each value of Eb/N0, for a 16 subcarrier system with α = 0.8 and 4QAM

input symbols.

Decoder (FSD) was introduced for Multiple Input Multiple Output (MIMO) systems

detection [142, 143, 144]. The FSD fixes the complexity of the SD by restricting the

search space to a fixed size subspace. The fixed complexity lends the technique more

suitable to hardware implementation [145]. However, the FSD does not guarantee an

optimal solution like the standard SD since it enumerates a fraction of the points within

the sphere search space. In this section, the FSD algorithm is applied to the SEFDM

problem.

6.5.1 FSD Application to SEFDM System

The FSD algorithm fixes the complexity of the SD algorithm by restricting the search

within a limited subspace of the problem. As the conventional SD, FSD converts the

SEFDM problem to an equivalent depth-first problem. At every level, a fixed number

of nodes, termed here as the tree width, are examined. The FSD estimate is given by

ŜFSD = min
S̃⊂H, s̃∈M

∥∥∥L
(
P − S̃

)∥∥∥
2
≤ ğ, (6.8)
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where L defined from the Cholesky Decomposition in equation (5.22) H is the search

subspace of the FSD algorithm of which S̃ is a candidate vector, P is the unconstrained

ML estimate defined in equation (5.21) and ğ is the radius of the search sphere. ğ

corresponds to the distance from the ZF estimate ŜZF and is given by ğ =
∥∥∥R−CŜZF

∥∥∥
2
,

where ŜZF is obtained from ŜZF =
⌊
C−1R

⌉
.

The FSD relies on the assumption that as the search continues downwards the levels,

the probability of finding a node within the sphere decreases, that is

E [dN ] ≥ E [dN−1] · · · ≥ E [d1] , (6.9)

where di is number of candidate nodes for level i and E [·] is the expected value. This

constraint was proved for MIMO systems in [142] and [143] and here it is proved that it

holds for the SEFDM system. Starting by emphasizing that any retained node at search

level y, should satisfy

|py − s|2 ≤ ğy/l
2
yy, (6.10)

the proof proceeds to show that the RHS of (2.24) decreases as the search moves down-

wards the spheres and this indicates the probability of having constellation points sat-

isfying the condition should decrease. It is by definition that the radius ğy satisfy

ğ ≥ ğN−1 ≥ · · · ≥ ğ1. (6.11)

By the definition of the Cholesky Decomposition, the elements of L are given by

lyy =

√√√√cyy −
y∑

k=1

lk,yl
∗
k,y , (6.12)

and

lyi = (1/lyy)

(
cyi −

y∑

k=1

lk,il
∗
k,y

)
. (6.13)

However, for the SEFDM system cyy is deterministic and can be calculated based on

equation (3.14) as

cyy = 1. (6.14)
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Figure 6.12: The FSD tree search algorithm with tree width equal to 2.

Equation (6.14) shows cyy and recalling that C is Toeplitz, it is straight forward that

lNN ≤ lN−1N−1 ≤ · · · ≤ l11. (6.15)

Equations (6.11) and (6.15) lead to

ğ

lNN
≥ ğN−1

lN−1N−1
≥ · · · ≥ ğ1

l11
(6.16)

which in turn indicates that the probability of nodes satisfying equation (6.10) decreases

as the search moves from level y to level y − 1 due to the shrinking of the parameter

ği/lii. This relationship justifies how the FSD can reach a solution even within the

limited search space.

Fig. 6.12 illustrates the FSD tree search for a 4 subcarrier system with BPSK symbols.

In this particular example, the FSD tree width is fixed to 2. At each level, a fixed number

of nodes (=2) is retained, whereas the discarded nodes at that level result in discarding

all their children nodes. Fig. 6.13 is a functional diagram for the FSD algorithm as

implemented in the SEFDM system. The algorithm has a fixed number of iterations.

Some steps for the initialization of the algorithm are independent of the decoded symbols,

thus can be calculated once and stored for the duration of the transmission as long as

the number of subcarriers and bandwidth compression level remain the same.



Chapter 6. Low Complexity Detectors for SEFDM System 154

Initialize Perform FSD search
Get 

estimates 
�

•Prepare L,
•Tree width 
w
•Points until 
level k   

•Prepare
•Define g

S
~

R
~ Level 2N-w

Order candidate points using SE
Keep  the closest 2^w candidate 

vector

Accept the closest 
vector to g

Level-1

Level>1

Start

Terminate FSD
Output S

Yes

No

Fixed for 
fixed 	 and 
N pair.

Figure 6.13: The FSD functional diagram.

6.5.1.1 Complexity Analysis

The FSD enumerates a number of w nodes corresponding to the tree width. This means

that from level k where k = log2 w, a number of w log2M where M is the constellation

cardinality will be examined. From the first search level which corresponds to the level

number 2N , where N is the number of subcarriers, until the level number 2N − k all

the nodes will be retained, hence can be added to the initialization of the decoder stage.

The algorithm will have 2N − k iterations, where in each iteration number of w log2 M

points will be examined. Furthermore, the decision on the distance of all the nodes in

the FSD subset is independent from each other and can be performed simultaneously.
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The overall number of effective nodes visits will be equal to the 2N − k for a system

employing w log2 M parallel processing capabilities.

6.5.2 FSD Design Concepts

Due to the limitation of the SD search in a subset of the points within the initial

hypersphere, the choice of the subset H and its size are crucial determinants of the

performance of the FSD algorithm as they directly affect the probability of reaching

the optimum solution. The quality of the initial estimate plays a significant role in the

determination of the search subset as it defines the initial radius, hence defines which

candidate points are included in the FSD search space. The size of the search subset

is a design parameter that may be set according to the targeted BER performance

and/or detection complexity. One main difference between SEFDM and MIMO systems

is that SEFDM aims to accommodate a large number of subcarriers whereas the typical

maximum order of a MIMO system is 4× 4, therefore, it is expected that the tree width

for SEFDM will include a higher number of nodes than MIMO although the ratio of the

searched nodes to the overall problem space may be smaller.

In this work, at each tree level a fixed number of nodes corresponding to the tree width

are considered. The decision on the next level nodes is based on Schnorr-Euchner (SE)

enumeration [82] of the constellation candidates. SE orders the children nodes based on

their respective distances from the received signal statistics vector or equivalently from

the centre point decided by P in equation (5.21). At the end of the search, the retained

points will be distinguished by their distance from the statistics point and the closest

point is accepted.

Fig. 6.14 depicts an FSD based SEFDM detector. The design of the FSD block is simpler

than SD and allows the trade-off between complexity and error performance which can

be implemented as a reconfigurable architecture. Furthermore, the FSD is suitable for

parallel processing as it allows for the independent checking of candidate nodes within

a tree level.
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Figure 6.14: FSD detection block diagram, r′
i
= R [i].

6.5.3 Performance Investigations

Performance of the FSD algorithm for SEFDM detection was evaluated in an AWGN

channel by numerical simulations. BER performance is recorded for FSD and SD for

different tree widths and different system settings. Tests of the FSD in AWGN are carried

out to verify that the proposed techniques are fundamentally valid, where the extension

to fading channels is covered in chapter 8. The simulations considered 4QAM modulated

input symbols as BPSK symbols can be efficiently detected with linear detectors with a

attractive quality.

Fig. 6.15 shows the performance of the FSD detector for different values of Eb/N0 for

a 16 subcarrier system with α = 0.8 carrying 4QAM input symbols. The figure shows

that the FSD detector provides BER performance that approaches SD with the increase

in the tree width which is effectively the increase of the size of the search subset. Noting

that the ML search space of the system is given by MN = 416(= 4.3 × 109), and the

simulations checked for tree widths of 24 (= 16) , 26 (= 64) and 28 (= 256), it is clear

that the FSD requires reduced complexity at the cost of BER degradation.

Fig. 6.16 shows the FSD performance for different levels of bandwidth compression

at Eb/N0 = 5 dB. The figure shows that the FSD performance approaches SD with

the increase in α. In addition, the figure confirms that the deviation from the SD

performance is inversely proportional to the complexity, which is an expected result of

increasing the search subset size.



Chapter 6. Low Complexity Detectors for SEFDM System 157

1 2 3 4 5 6 7 8 9
10

−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

B
E

R

 

 
SD 
FSD, tree width 16
FSD, tree width 64
FSD, tree width 256
TSVD
Single Carrier

Figure 6.15: BER performance of the FSD detector for α = 0.8 and 16 subcarrier
system carrying 4QAM symbols for maximum tree width of 16, 64 and 256.

Fig. 6.17 shows the BER improvement with the increase in the tree width for α = 0.7, 0.8

and 0.9 at Eb/N0 = 5 dB. The figure confirms the improvement with the increase in

the search subspace, however, the figure indicates that this advantage is not in linear

proportion to the increase in tree width and effectively the complexity. Furthermore,

the figure indicates that the effect of the size of the search subspace increases with the

reduction in α (i.e. tree width of 1024 is needed in the case of α = 0.7 in contrast to 64

for α = 0.8 to achieve the same BER).

Fig. 6.18 depicts the performance for different values of α for the same tree width

of 256. The figure shows the expected deterioration in the error performance with the

reduction in the value of α. The main cause is expected to be attributed to the worsening

conditioning of the system with the reduction in α value that in turn is reflected in the

likelihood of finding the solution within the limited search subspace.

Fig. 6.19 depicts the BER performance for systems with different number of subcarriers

for the same decoder tree width of 256. The figure indicates degradation in the error
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Figure 6.16: BER performance of FSD detector for a 16 subcarrier system carrying
4QAM symbols for α = 0.7−1, α = 1 corresponds to OFDM for a maximum tree width

of 16, 64 and 256.
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Figure 6.17: BER performance of the FSD for different tree width for 16 carriers
SEFDM system carrying 4QAM symbols with α = 0.7, 0.8 and 0.9.
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Figure 6.18: BER performance of the FSD detector for a 16 subcarrier SEFDM
system carrying 4QAM symbols for α = 0.75− 0.95.

performance with the increase in the number of subcarriers. The main reason can be

attributed to the fixed tree width as the subspace covered by the decoder for the system

with more subcarriers is relatively smaller than the one with fewer subcarriers.

Fig. 6.20 illustrates the complexity of detection by plotting the average number of node

visits for the original SD and FSD systems with three different tree widths. The figure

shows how the SD complexity varies with Eb/N0 while the FSD complexity remains

constant. In addition, the dynamic range of the average number of node visits for SD

is large, thus implementing the algorithm will require the allocation of resources that

can accommodate the highest possible number of node visits. The figure reflects the two

extreme cases from a completely sequential search to completely parallel search.

Overall, the numerical results confirms that the FSD provides good BER performance

at a much reduced complexity, with the highest complexity used in most figures being

a very small fraction of the ML search space
(
∼ 28/232

)
. Finally, the proposed detector

allows the trade off performance and complexity which is governed by the choice of the

tree width.
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Figure 6.19: BER performance of the FSD detector for 12, 16 and 20 subcarrier
system for α = 0.8 and maximum tree width of 256.
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Figure 6.20: Average nodes visits for original SD and FSD for maximum tree width
of 16, 64 and 256 for a 16 carriers SEFDM system carrying 4QAM symbols for α = 0.8.
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6.6 Hybrid SEFDM Detectors

Examining the proposed SEFDM detectors show that there is a need to trade off per-

formance for complexity. On one hand, simple detectors can provide low complexity,

yet poor error performance or restricted system size and bandwidth compression levels.

On the other hand, iterative detectors are capable of delivering attractive error perfor-

mance at the cost of complexity. In this section, a detector that tackles both issues is

presented. This is achieved by employing a simple detector at receiver front end followed

by a complex one. The first detector provides an improved seed estimate to the second

one. The improved quality of the first estimate facilitates the reduction of the complexity

of the second one. The idea of having hybrid detection is not new [90, 85, 91], however,

the proposed technique provides enhanced error performance and reduced complexity

than previously proposed systems. Furthermore, the new detector facilitates fixing the

complexity by employing the FSD algorithm at receiver back end.

6.6.1 The FSD-TSVD Detector

The FSD constrains the subspace of the search covered by the original SD algorithm, thus

fixes the complexity but no longer guarantees optimal solution. Noting that the FSD

relies on the unconstrained ML estimate P obtained by matrix division, the accuracy of

the evaluation of the estimate P can affect the FSD solution. Particular to the SEFDM

system, this estimate will suffer from the ill conditioning of the system. Therefore, in

this section it is proposed to combine the concepts of the TSVD detector with the FSD

to cope better with the ill conditioning of the system and consequently enhance the BER

performance and/or reduce complexity.

The combined FSD-TSVD detector, applies TSVD detection concepts to obtain the

unconstrained ML estimate P and an initial estimate of the transmitted symbols ŜTSV D.

The initial estimate ŜTSV D provides a benchmark for the tested points in the FSD

algorithm. The FSD solution, therefore, has to be closer to the statistics points than

the estimate ŜTSV D. Recalling that the estimate ŜTSV D is of better quality than the

ZF or MMSE estimates as discussed in section 6.4, the accuracy of the FSD part of the

detector will improve consequently. Furthermore, applying TSVD concepts to obtain
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the unconstrained estimate P results in improving the accuracy of the FSD, as for ill

conditioned systems the TSVD gives a better solution when compared to exact inverses.

In terms of complexity, the TSVD can be computed using a QR factorization of the

matrix C [146], which can be exchanged with the Cholesky decomposition in the FSD

algorithm. Fig. 6.21 depicts the combined FSD-TSVD detector. The detector starts

by finding the TSVD estimate of the transmitted symbols as in (6.3). This estimate is

then used to calculate the radius that positions the TSVD estimate at the surface of the

sphere as

ĝ =
∥∥∥Φ∗−1

(
R−CŜTSV D

)∥∥∥
2
. (6.17)

The FSD-TSVD algorithm, then enumerates a fixed number of points at each level. The

FSD-TSVD estimate is given by

ŜFSD−TSVD = arg min
s̃∈M

∥∥∥L
(
P̂ − S̃

)∥∥∥
2
≤ ĝ (6.18)

where P̂ is the unconstrained TSVD estimate defined as P̂ = CξR and S̃ ⊂ H for H the

subspace of the FSD algorithm. If no node is discovered within the sphere then

ŜFSD−TSVD = ŜTSV D. (6.19)

The proposed FSD-TSVD detector has two main differences from the original SD de-

tector. The first is that the complexity of the FSD-TSVD is fixed to a number of nodes

equal to the FSD tree width. The second, is that the FSD-TSVD measures the distance

of the nodes with the FSD subspace from the unconstrained TSVD estimate P̂ . This last

difference distinguishes the proposed FSD-TSVD algorithm from the conventional FSD

algorithm presented in section 6.5. The FSD initialization block in Fig. 6.21 ensures

that the FSD uses the reference point P̂ and calculates ĝ.

6.6.2 Performance Investigations

Performance of the FSD-TSVD detector is examined for different number of subcarriers

and levels of bandwidth compression. For comparison purposes results for the TSVD,

FSD, and SD detectors are plotted where applicable. Fig. 6.22 depicts the BER of FSD-

TSVD detector for tree widths of 16 and 256 for a 16 subcarrier system with α = 0.8.
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Figure 6.22: BER performance for the FSD-TSVD detector for a 16 subcarrier
SEFDM system for α = 0.8 carrying 4QAM symbols.

The figure shows that the FSD-TSVD detector is capable of delivering performance

with a penalty of about 0.5 dB from the single carrier case or OFDM. In addition, the

FSD-TSVD detector shows the capability of substantially reducing the complexity of

detection when compared to regular FSD as the FSD-TSVD detector with tree width

of 16 achieved close error performance to the FSD with tree width of 256. This effect

is further demonstrated in Fig. 6.23 where the BER for α values of 0.7 − 1 is plotted

at Eb/N0 = 5 dB. Again the figure confirms that the FSD-TSVD detector improves

the BER performance when compared to the regular FSD for the same complexity

requirement. For the different values of α, the figure shows that the FSD-TSVD detector

is capable of delivering performance near SD’s at a fraction of the complexity of either

the SD or the regular FSD.

Fig. 6.24 depicts the BER performance of the FSD-TSVD detector for different values

of α for a fixed complexity. The figure indicates that for fixed complexity there will

be some performance degradation. This is due to the conditioning of the system that
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Figure 6.23: BER performance of the FSD-TSVD and FSD detectors for a 16 sub-
carrier system carrying 4QAM symbols, α = 0.7 − 1 and maximum tree width 64 for

FSD-TSVD and 256 for FSD.

worsens with the decrease in α values and that results in degrading the performance of

the SD detector as illustrated in Fig. 5.9. However, for the FSD-TSVD detector the

sub-optimal performance can be improved by increasing the tree width (i.e. complexity)

as illustrated in Fig. 6.25. The figure illustrates this BER performance enhancement

by increasing the complexity for α = 0.7, 0.8 and 0.9 for Eb/N0 =5dB. The figure shows

more impact of the increase in tree width for systems with smaller α values. This

suggests that detection effort increases with the increase in bandwidth compression.

Furthermore, Fig. 6.26 depicts the BER performance of the FSD-TSVD detector with

different complexities for Eb/N0 = 1−8 dB. It is clear from Fig. 6.25 and Fig. 6.26 that

the BER performance improves with the increase in complexity, however, the improve-

ment is not linearly proportional to the complexity increases and the trade off between

complexity and performance can benefit from the fact that after some point limited BER

improvement is attainable until a very high complexity is reached.
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Figure 6.24: BER performance of the FSD-TSVD detector for a 16 subcarrier SEFDM
system carrying 4QAM symbols for α = 0.65− 0.95 maximum tree width 512.
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Figure 6.25: BER performance of the FSD-TSVD detector for different tree widths
for a 16 carriers SEFDM system carrying 4QAM symbols with α = 0.7− 0.9.
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Figure 6.26: BER performance of the FSD-TSVD detector for different tree width
for a 16 subcarrier SEFDM system carrying 4QAM symbols for α = 0.8.

6.7 Hardware Implementation of SEFDM Receivers

Chapters 4 and 5 presented transmitter and demodulator options that can be readily

implemented using IDFT/DFT or IFFT/FFT blocks. However, the detection of the

signal is presented with two main challenges. First, the ill conditioning of the SEFDM

system is translated to large dynamic range of the system numbers and thus will impact

the needed resolution and the dynamic range of the building blocks of the detector.

Second, the complexity of the detector itself can be substantial in order to handle the

ICI.

Both challenges are addressed in the case of the TSVD and SelE detectors. Both de-

tectors use well conditioned detection matrices, thus requiring a smaller dynamic range.

As for the complexity, the detection process requires matrix multiplication and a slicer.

All SEFDM detectors require the generation of the C matrix. Based on the principles

of the IDFT transmitter and the DFT demodulator, the C matrix for a system of N

subcarriers and α = b/c, can be generated by applying an IDFT operation of length cN

points initialized with {1, 0, 0, · · · , 0} for c circular shifts, extract the first N outputs of
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each IDFT output and apply it to the inputs of a cN long DFT operation and use the

first N outputs as the first row of the C matrix, and the process is repeated until all the

rows of C are obtained.

Furthermore, for a system with fixed parameters the required detection matrices can be

generated once and stored for the duration of the transmission. After this point, the

SelE detection matrix can be built by discarding the ICI terms less than the defined

threshold. The crucial point remains to achieve matrix inversion. SVD can be used

to achieve this and the literature shows FPGA based hardware implementation of the

decomposition [147]. This operation is also needed to construct the TSVD detector

matrix. When SVD is used for the inversion process, the complexity of the TSVD

and SelE becomes the same. Nevertheless, the ultimate case of SelE is to perform MF

based demodulation and apply a slicer at the output of the DFT block, thus requiring

no computational detection. Based on the proposed TSVD detector herein, an FPGA

design of the receiver is proposed in [136]. The detector uses stored values for the TSVD

detection matrix for selected values of α and N . Furthermore, the stored matrices can

be designed to realize the ZF and SelE detectors and if there is information on the signal

to noise ratio, the detector can implement MMSE.

Implementations of the FSD are reported in [148] for MIMO system detection. The

algorithm as illustrated in Fig. 6.13 has some steps that need to be evaluated only once

for the detection duration. Therefore, for an SEFDM system with fixed parameters, these

steps can be evaluated once and stored for future detection where a fully reconfigurable

system which can change tree width, number of subcarriers and α will need to have the

needed circuitry to perform all these steps on the fly. Obviously, a fixed system on the

other end can be much simpler with all the complicated steps performed once and stored

for detection work.

6.8 Discussion and Conclusions

In this chapter several detectors for the SEFDM signal were presented with the common

denominator being the reduced and fixed complexity of detection. In the beginning, the

use of the Truncated Singular Value Decomposition (TSVD) for the detection of Spec-

trally Efficient FDM (SEFDM) signals was proposed. In principle, the TSVD detector
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modifies the ill posed problem for SEFDM detection to an approximate well posed one,

thus improves the stability of the system in the presence of noise. Numerical simulations

showed that the TSVD based detector achieved a sub-optimal solution of the SEFDM

least squares problem that was more immune to small perturbations than Zero Forcing

(ZF) and Minimum Mean Squared Error (MMSE), hence yielding a better BER perfor-

mance. Furthermore, the complexity of the TSVD detector is of the same order as the

ZF one as the SVD operation which is necessary for the TSVD detector represents a

simple method to find the inverse for the case of the ZF detector. Moreover, the results

show that the TSVD detector exhibited the same error performance with respect to the

increase in the number of subcarriers.

Then, another linear detector based on utilizing the intercarrier interference (ICI) pat-

tern derived in chapter 3 was proposed. The detector was termed Selective Equalization

(SelE) due to the fact that the solution acknowledges only ICI terms exceeding a pre-

defined threshold. Numerical results confirmed that the SelE detector outperforms the

ZF and MMSE in terms of the error performance with the same complexity. For BPSK

input symbols, the SelE detector outperformed the TSVD in terms of the error perfor-

mance and matched it for 4QAM input symbols. In addition, the SelE achieved the

same error performance with the increase in the number of subcarriers. Moreover, the

concepts of SelE provide a basis to assess the potential problems in the case of approx-

imated detection systems that due to the finite resolution of devices will need to use

shortened representations of the detection matrices.

The TSVD and SelE detectors both offered improved error performance when compared

to standard linear detectors such as ZF and MMSE. In addition, both detectors managed

to provide consistent error performance for systems with large numbers of subcarriers.

For small bandwidth savings, both detectors offered attractive error performance with

1-2 dB power penalty at BER of 10−3 . However, for higher levels of bandwidth com-

pression, the performance was sub-optimal and with a substantial error margin when

compared to the optimal detection using ML and SD. Therefore, the work turned back

to iterative decoding techniques and the use of the Fixed complexity Sphere Decoding

(FSD) algorithm for SEFDM signals detection was proposed.

The FSD provides sphere-wise detection, therefore, is capable of ameliorating the effects

of the inherent ICI in the SEFDM signal. Furthermore, FSD offers fixed complexity
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and is therefore more suitable for hardware implementation when compared to the orig-

inal SD. Performance investigations of the proposed FSD detector have demonstrated

attractive BER performance. Results have shown that the FSD error performance is

sub-optimal, however, the degradation in the performance is compensated for by the at-

tractive low and fixed complexity and the potential for parallel processing, noting that

the BER performance can be improved by increasing the complexity.

Furthermore, a novel detector for SEFDM signal that combines the TSVD and the

FSD was proposed. The FSD-TSVD detector improves the design of the original FSD

algorithm by firstly generating a TSVD estimate of the transmitted symbols and then

applying TSVD principles for respective parts of the FSD algorithm. The new algorithm

is better suited to systems suffering from ill conditioning effects. Numerical results have

shown that the proposed FSD-TSVD detector achieves superior BER performance to

that of the FSD and performs close to the standard SD. Therefore, it constitutes an

enhancement of the standard FSD since it improves FSD error performance while main-

taining its merits of low and fixed complexity. The FSD-TSVD detector offers the best

detection possibility for a practical SEFDM system as it addresses both performance and

complexity issues, and may be applied in other systems that suffer from ill conditioning

such as MIMO systems [149].
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Chapter 7

SEFDM Peak to Average Power

Ratio (PAPR): Studies and

Routes to Mitigation

7.1 Introduction

Most of the previous work on SEFDM systems focused on developing efficient trans-

mission [60, 61] and detection techniques [21, 35, 90, 36, 74, 91, 150, 151]. In practice,

implementations of communication systems require optimization to satisfy size, power

consumption and ultimately cost constraints. An important parameter in design opti-

mization is the dynamic range of the signals in the system which in turn dictates the

dynamic range of the components of the system. The Peak to Average Ratio (PAPR)

provides a measure of the variation in the power of the signal and hence the required

dynamic range of the components. In particular, multicarrier signals are prone to high

PAPR as the multiple subcarriers may add up and generate high peak signals resulting

in a high PAPR. The implication of this high PAPR is that the components of the sys-

tem must have linear response for the complete range of the signal power. The PAPR

of the digital signal dictates the dynamic range of the digital circuitry while the contin-

uous PAPR dictates the dynamic range of the analogue components. In particular, the

Power Amplifier (PA) in the transmitter must provide gain without compression for the

complete range of the signal. In other words the PA should include a predefined back

172
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off1 in order to ensure that the amplifier continues to work in its linear region for the

highest possible peak, otherwise the amplified signal can be distorted. Nevertheless, the

efficiency of the PA will be greatly affected if a high back off is needed. Hence the power

consumption of the whole transmitter will be affected. Power efficiency is a critical issue

in wireless communication specially when dealing with end users where the focus is on

power savings. The increase in power consumption has other consequences such as the

increase in heat dissipation which adds up to other system design challenges. In addition,

a high PAPR and hence a large dynamic range of the signal requires a large dynamic

range for the digital to analogue converters (D/A) at the transmitter, thus increasing

further the complexity and power consumption. On the other hand, when the dynamic

range of the signal is greater than the equipments the system will be operating in non

linear regions, hence, will undergo nonlinear distortion. For a PA working in the nonlin-

ear region Inter-Modulation Distortion (IMD) occurs resulting in spectral widening and

increase the out of band interference. Furthermore, the non linear response will gener-

ate in band distortion that contributes to the inter-carrier interference and consequently

leads to higher BER.

The SEFDM signal as a multicarrier system is expected to exhibit high PAPR and due

to the discussed complications associated with the high PAPR. This chapter is dedicated

to first study the PAPR of SEFDM signal and then to pursue mitigation techniques and

evaluate their performance. The study covers the currently used methods for PAPR

reduction in OFDM and evaluates the performance of such methods in SEFDM sys-

tem. In particular, PAPR reduction using clipping, Partial Transmit Sequences (PTS)

and Selective Mapping (SLM) are evaluated for the PAPR reduction of SEFDM signals.

Furthermore, a novel PAPR reduction algorithm is proposed and based on sliding a

time window across an extended SEFDM symbol period, therefore termed the SLiding

Window (SLW) PAPR reduction technique. Numerical simulations confirm the SLW

efficacy in PAPR reduction and show no side effects. In addition, a complete trans-

mitter that employs SLW is proposed based on the SEFDM IDFT transmitter. SLW

shows remarkable PAPR reduction with no spectral spreading or BER compromises at

a much reduced complexity when compared to standard PTS and SLM PAPR reduction

techniques.

1Back off refers to the ratio of the maximum possible output of the power amplifier and the mean
transmit power.
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Figure 7.1: Instantaneous power for 1000 SEFDM symbols overlaid on one symbol
duration for α = 0.8 and 16 subcarriers.

7.2 Evaluation of the PAPR of SEFDM Signals

Before delving into design of PAPR reduction techniques, this section examines the power

of the SEFDM signal. Fig. 7.1 depicts the instantaneous power of 1000 SEFDM symbols

overlaid on a symbol duration. It can be seen from the figure that the instantaneous

power varies randomly within the period of the symbols. In addition, the figure depicts

the occurrences of high peaks. To evaluate the PAPR of SEFDM signals consider the

lth SEFDM symbol:

x (t) =
1√
T

N−1∑

n=0

sl,ne
j2πnαt/T , (7.1)

where sl,n is the nth complex input symbol. The PAPR of x (t) is generally defined by

PAPR =
max |x (t)|2

E[|x (t)|2]
, (7.2)
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where max |x (t)|2 denotes the peak power of the signal x (t) and E[|x (t)|2] is the average
power. The instantaneous power Pi of the time domain signal in Fig. 7.1 and equation

(7.1) is a random variable. Pi can be expressed as follows:

Pi = |x (t)|2

=
1

T

N−1∑

n=0

N−1∑

m=0

sl,ns
∗
l,mej2παt(n−m)/T . (7.3)

The last line in equation (7.3) is obtained by introducing the intermediate variable m in

order to move the sum operators outwards. Pi can be further modified as

Pi =
1

T

N−1∑

n=0

|sl,n|2

+
1

T

N−1∑

n=0

N−1∑

m=0
m6=n

sl,ns
∗
l,me

j2παt(n−m)
T . (7.4)

According to equations (7.3) and (7.4) the instantaneous power is dependent on α. For

instance, Fig. 7.2 depicts the instantaneous power for a 16 subcarrier SEFDM symbol

with α = 0.5 and a 16 subcarrier OFDM symbol modulated with the same information

symbols. From the figure it can be seen that the SEFDM instantaneous power is a

stretched version of half of the OFDM signal power, that is the length of the stretched

part is αT in time units from the OFDM symbol.

The peak power Ppeak will be

Ppeak = max (Pi) . (7.5)

Using the expectation operator E [·], the average power P may be estimated from

P = E

[
N−1∑

n=0

N−1∑

m=0

sl,ns
∗
l,me

j2παt(n−m)
T dt

]
. (7.6)

The independence of the symbols and subcarriers allows the simplification of P by ap-

plying the expectation operator independently onto the symbols part and the subcarriers

part of equation (7.6) as:

P =

N−1∑

n=0

E
[
|sl,n|2

]
+

N−1∑

n=0

N−1∑

m=0
m6=n

E
[
sl,ns

∗
l,m

]
sinc(πα (n−m))e

(

jπαt(n−m)
T

)

. (7.7)
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Figure 7.2: Instantaneous power of one SEFDM symbol (upper) for α = 0.5 and one
OFDM symbol (lower) both systems have 16 subcarriers.

Equation (7.7) shows that the average power is composed from two components: the

first is the power of the individual subcarriers reflected in the norm of the individual

symbols given by the term (
N−1∑

n=0

E
[
|sl,n|2

]
)

(7.8)

and the second is composed from the power spillage between the subcarriers given by

the term 


N−1∑

n=0

N−1∑

m=0
m6=n

E
[
sl,ns

∗
l,m

]
sinc(πα (n−m))e

(

jπαt(n−m)
T

)


 . (7.9)

Furthermore, the second term, shown in equation (7.9), shows that the power spillage

between the subcarriers given by E
[
sl,ns

∗
l,m

]
is multiplied by the factor

g = sinc(πα (n−m))e

(

jπαt(n−m)
T

)

. (7.10)

When α = 1, the factor g = 0, therefore, the average power will constitute of the first

term only as shown in equation (7.8). While for α < 1 the average power will be affected

by the value of g which is in turn dependent on α. Fig. 7.3 depicts the values of the

factor g for a 16 subcarrier system for α ranging from 0.1 to 1. It can be seen from

the figure that the effect of the factor g is a reduction in the power leakage among the

subcarriers as the term is upper bounded by 1. Fig. 7.4 and 7.5 depict the average
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Figure 7.3: The absolute value of the factor g in equation (7.10). The dotted lines to
distinguish the values of |g| associated with the different α values.
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Figure 7.4: Average power of 100 SEFDM symbols for a system with 16 subcarriers
and 4QAM input symbols for α = 0.5, 0.75 and 1.
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Figure 7.5: Peak power of 100 SEFDM symbols for a system with 16 subcarriers and
4QAM input symbols for α = 0.5, 0.75 and 1.

power and peak power for three values of α. Fig. 7.4 shows that the average power

varies from symbol to symbol for α < 1 whereas for OFDM system where α = 1 the

average power is fixed for all symbols as anticipated from equation (7.7). Fig. 7.5 shows

the peak power for the same symbols whose average power is plotted in Fig. 7.4. The

figure shows that the peak power varies from symbol to symbol for all α values.

The previous analysis shows that the peak and average power of the SEFDM signal are

random variables as shown from equations (7.4), (7.5) and (7.7) and is further indicated

by the plots in Fig. 7.4 and 7.5, consequently, the PAPR is a random variable. In

addition, in theory the PAPR in multicarrier systems is a function of the number of

carriers [39], however, in practice the likelihood of all carriers reaching their maximum

can reduced by using scrambled data and large constellation size [152] in [45]. Due to

the random nature of the PAPR the Complementary Cumulative Distribution Function2

(CCDF) is used to characterize the probability of the PAPR of the signal exceeding a

threshold denoted by γ that is Pr{PAPR > γ}. Fig.7.6 depicts the CCDF of the PAPR

2The Complementary Cumulative Distribution Function(CCDF) describes the probability of a ran-
dom variable being larger than a certain value.
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of the SEFDM signal exceeding a threshold of γ for different number of subcarriers ob-

tained by numerical simulations. Fig. 7.6 shows that the probability of PAPR exceeding

the threshold γ increases expectedly with the increase in the number of sub-carriers.

In addition, Fig 7.7 depicts the CCDF of the PAPR of SEFDM systems with different

values of α. The figure shows that the probability of the SEFDM PAPR exceeding the

threshold γ decreases with the reduction in α.

7.3 Overview of Conventional PAPRReduction Techniques

PAPR reduction is a topic extensively researched in OFDM system, leading to the pro-

posal of many reduction techniques [153]. In general, PAPR reduction techniques may be

classified as distortionless or distorting. The distortionless techniques reduce the PAPR

without introducing non linear distortion. Such techniques involve performing reduc-

tion operations at the transmitter and inform the receiver of the needed information to

reverse the effects of the applied operations. The information necessary for decoding

the signal is made available to the receiver by sending side information along the data.

Hence, the reduction in PAPR is achieved at the cost of reduced throughput as the

introduced side information is deducted from the overall throughput. Prominent exam-

ples of distortionless techniques are Selective Mapping (SLM) [154], Partial Transmit

Sequence (PTS) [155] and Precoding. The distorting techniques introduce non linear

distortion as a side effect of the PAPR reduction. There is no need for side information,

nevertheless, these techniques lead to performance degradation usually in the form of

spectral spreading and/or BER degradation. Distorting techniques include clipping and

additive and multiplicative correction functions [156].

A simple method for PAPR reduction is by clipping the high peaks of the signal. Clip-

ping can happen unintentionally in the system due to the limit in the highest power

tolerated by the system circuitry. In OFDM systems usually clipping is followed by a fil-

tering stage to reduce out of band emission. However, filtering results in peak re-growth,

hence clipping is repeated many times until the wanted PAPR probability is obtained

which in turn will result in non linear changes in the signal and may corrupt the orthog-

onality between the carriers. Other amplitude limiting techniques are proposed such as

adding a correcting function to the time domain signal [156]. In addition multiplicative
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manipulations of the time domain signal is proposed in [43]. Tone reservation limits the

amplitude of the signal by dedicating certain frequency tones for transmitting PAPR

reduction signals [157, 153]. Such reserved tones must be known to the receiver.

PAPR reduction in OFDM signals can be realized by multiplying the data vector by

a set of different phase vectors and then choosing the set that gives the lowest peak

factor as in SLM and PTS. The phase vectors are known to both the transmitter and

the receiver [43]. The concept of SLM is based on that the probability of the power of an

OFDM symbol exceeding a certain level is lower if that symbol is expressed in different

format and thus the symbol with the lowest PAPR is chosen for transmission [154]. The

transmitter sends side information to aid the receiver to extract the original signal. The

main issue in SLM is how to generate different representation of the same symbol. Many

proposals for generation of equivalent frames are found in the literature. Of these the

simplest is to generate a set of random vectors; multiply these vectors with the original

frame and compare the resultant PAPR then select the frame with the lowest PAPR.

The efficiency of SLM in PAPR reduction increases with the increase in the number

of vectors, however, the computational complexity will increase consequently. There is

a need to send side information along the transmitted symbols resulting in decreased

throughput. Many variance of SLM have been proposed in the literature [158, 159, 160]

to improve the efficiency of SLM and reduce the overhead of the side information.

PTS is based on partitioning the OFDM signal into sub-blocks and apply different phase

shifts on each block. The phase shifts are chosen such that the combined output of the

blocks is optimized in terms of PAPR [155]. There are many procedures for combining

the sub-blocks in the literature that trade the reduction in the PAPR with the complexity

of searching for the optimum phase shifts [161, 162, 163]. Again there is a need to inform

the receiver of the operation performed at the transmitter to enable the decoding of the

received signal by sending side information. The side information constitutes a reduction

in the overall throughput.

Other PAPR reduction techniques rely on using codes that ensures that only low peak

power OFDM symbols are chosen as in [156] and [164], resulting in a reduced sys-

tem throughput. In addition, precoding is suggested as a solution for PAPR reduction

problem where each data block is multiplied by a precoding matrix prior to OFDM

modulation and transmission [165].
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Figure 7.8: Block diagram of an SEFDM transmitter employing clipping for PAPR
control.

7.4 PAPR Reduction in SEFDM System

Studies of the PAPR of the SEFDM signal in section 7.2 have shown that the system

is susceptible to high PAPR. Noting the similarity between the SEFDM system and the

OFDM system, this section presents three PAPR reduction techniques that are imported

from OFDM system and are implemented in SEFDM system namely: clipping, SLM and

PTS. Particularly, clipping is studied to evaluate the possible effects of the uncontrolled

PAPR on the SEFDM system performance as it is expected to be created by the limited

dynamic range of the circuitry of the transmitter. The performance of the three tech-

niques is evaluated in terms of efficiency in PAPR reduction by numerical simulations.

In addition, simulations looked at possible side effects in terms of spectral spreading

and/or error performance degradation. To ensure accurate simulations, oversampling

by a factor of 4 of the discrete signals is applied in accordance with the recommendation

in [162] for multicarrier signals.

7.4.1 Clipping

Clipping is basically limiting the amplitude of the signal to a certain level. When no

PAPR controlling scheme is applied, clipping occurs naturally by the circuitry of the

system which naturally have a limited dynamic range. As a method for PAPR reduction,

clipping is the easiest to implement, however, clipping usually increases the errors in the

system and causes spectral spreading as it adds nonlinear distortion to the signal. In this

section clipping is examined within the context of SEFDM signal as a method for PAPR

reduction but the study serves the objective of evaluating the effects of the uncontrolled

PAPR in SEFDM system on the spectrum of the signal and the BER performance.

Fig. 7.8 illustrates an SEFDM system employing clipping. The clipping block can take

many forms in a similar manner as OFDM. Some forms of clipping associated with

OFDM are classical clipping, deep clipping and smooth clipping [166]. Classical clipping
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Figure 7.9: CCDF of the PAPR of 16 subcarrier SEFDM system employing clipping
for α = 0.9, 0.7 and 0.5 with 4QAM symbols.

clips any amplitude in the signal exceeding a certain level to a predefined level. Deep

clipping perform large clips for the high amplitude peaks to overcome the peaks re-

growth problem. Smooth clipping uses functions to map amplitude peaks to reduced

ones.

The performance of clipping in SEFDM system is investigated by numerical simulations

focusing on the CCDF to provide information about the efficiency of clipping in PAPR

reduction, the spectrum and the BER performance after clipping. Clipping is performed

by limiting the amplitude of the SEFDM signal to generate a pre-defined Clipping Ratio

(CR) so that the PAPR denoted by γ is limited to

γ ≤ CR. (7.11)

Fig. 7.9 shows the CCDF of an SEFDM system employing clipping for different values

of α for a CR of 4 corresponding to limiting the system to highest PAPR of 6 dB. Fig.

7.10 depicts the CCDF for 16 and 64 carriers systems. In both figures it can be seen

that, for all cases, clipping achieved the PAPR reduction goal.

The spectrum of the clipped signal for different values of CR is plotted in Fig. 7.11. The
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Figure 7.10: CCDF of PAPR of SEFDM system employing clipping for N = 16, 32
and 64 , 4QAM input symbols and α = 0.8.

spectrum of the clipped signal showed an increase in the out of band emission compared

to the non-clipped signal. In addition, the out of band emission increases with the

increase in the clipping ratio. In OFDM systems clipping is usually followed by filtering

to reduce the out of band emission [162, 167, 166], however, the filtering may create in

band distortion.

As clipping adds non-linear distortion to the signal it is expected that the BER perfor-

mance of the clipped system will be affected. The level of BER deterioration depends

on the CR as this ratio will determine the frequency of clipping. Fig. 7.12 depicts the

BER of clipped SEFDM system modulated with BPSK and 4QAM input symbols for

clipping ratio of 4 for system with 4 subcarrier detected with ML and 12 subcarrier

detected with SD algorithm. Although ML detection is employed for a small size system

with 4 subcarriers, it is found that there is performance penalty in the form of degraded

BER performance. Furthermore, the SD detected system shows more deterioration in

the BER performance. These results indicate that the detection of the SEFDM signal

will suffer from the uncontrolled PAPR if it leads to peaks clipping due to the finite

dynamic range of the transmitter circuitry. In addition, the results show that if clipping

is used as a PAPR control method then performance deterioration is to be expected as
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Figure 7.11: Spectrum of clipped 16 subcarrier SEFDM system modulated with
4QAM symbols for α = 0.8.

well as the increase of the out of band emission.

7.4.2 Selective Mapping (SLM)

SLM is a technique used for the control of the PAPR of OFDM system. SLM mainly

relies on generating equivalent representations of each OFDM symbol and then trans-

mitting symbols with the lowest PAPR [154]. As the structure of the SEFDM symbol is

similar to that of OFDM, SLM is suggested here for the control of the PAPR of SEFDM

signals.

Of the many proposals for the generation of equivalent representations of OFDM [158,

159, 160], the simplest is to generate a set of random vectors (generating randomized

phases); multiply these vectors with replicas of the original input symbols block, com-

pare the resultant PAPR and select the SEFDM symbol with the lowest PAPR for

transmission. The efficiency of SLM in PAPR reduction increases with the increase in
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Figure 7.12: BER performance of clipped 4 subcarrier SEFDM system modulated
with BPSK and 4QAM symbols for α = 0.8 and CR = 4. ML and SD detection are

applied.

Figure 7.13: Block diagram of an SEFDM transmitter employing SLM for PAPR
control with U phase vectors.

the number of vectors, however, the computational complexity will also increase propor-

tionally. There is a need to send side information concurrently with transmitted symbols

which in turn results in decreasing the throughput.

Fig. 7.13 shows a block diagram of an SEFDM system employing SLM. The system is
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Figure 7.14: CCDF of the PAPR of an SEFDM system employing SLM with up to 4
phase vectors for a 32 subcarrier SEFDM system, α = 0.5 and 4QAM input symbols.

composed of a bank of SEFDM modulators that generate equivalent SEFDM symbols

for the same set of input stream by using different phase vector for each modulator chain.

The PAPR of the different SEFDM symbols is evaluated and the symbol that provides

the lowest PAPR is forwarded down the channel. It is possible to design the transmitter

to use a single SEFDM modulator, however, the generation of the equivalent SEFDM

symbols will need to be done sequentially rather than in parallel.

The performance of SLM is investigated by simulations. Random vectors are constructed

as described in [154]. Fig. 7.15 and Fig. 7.16 show the plots of the CCDF of an SEFDM

system employing SLM for different values of α and different number of subcarriers,

respectively. The plots are for systems using SLM with one, two and four phase vectors

and show the original signal with no PAPR control. The plots show that substantial

PAPR reduction can be achieved. In addition, the efficiency in PAPR reduction increases

with the increase in number of vectors.

The spectrum and the BER of SLM based SEFDM are investigated. The spectrum of

the resultant signal is depicted in Fig. 7.17 to check for any spectral spreading. Fig. 7.17

shows that the level of out of band emission is different for the different phase vectors.
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Figure 7.15: CCDF of the PAPR of SEFDM systems employing SLM with 4 phase
vectors for different values of α, 32 subcarriers and 4QAM input symbols.
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Figure 7.16: CCDF of the PAPR of SEFDM systems employing SLM with 4 phase
vectors for different numbers of subcarrier for SEFDM system with α = 0.8 and 4QAM

input symbols.

This observation can be used to control the level of out of band emission using phase

vectors.
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Figure 7.18: BER performance of SEFDM system using SLM for 4 subcarrier system
with α = 0.8 and 4 phase vectors. ML detection is applied.

Finally, the performance of the SLM based SEFDM system is examined in AWGN

channel. Fig. 7.18 shows the BER performance of an SEFDM system employing SLM

with BPSK and 4QAM symbols. The figure shows no significant effects of SLM on the

BER.
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Figure 7.19: Block diagram for an SEFDM transmitter employing PTS for PAPR
control.

7.4.3 Partial Transmit Sequence (PTS)

PTS is another well known technique for controlling the PAPR of OFDM signal [155].

Again, due to the similarity between the two systems, PTS is imported into SEFDM

context. PTS is based on partitioning the OFDM signal into sub-blocks and then ap-

plying different phase shifts to each sub-block. The phase shifts are chosen such that

the combined output of the sub-blocks is optimized in terms of PAPR [155]. Several

procedures for combining the sub-blocks are reported in the literature that trade the

reduction in the PAPR with the complexity of searching for the optimum phase shifts

[161, 162, 163]. Again, there is a need to inform the receiver of the operation per-

formed at the transmitter to enable the decoding of the received signal by sending side

information, thus a resultant reduction in the overall throughput.

Fig. 7.19 shows a block diagram of an SEFDM system employing PTS. The SEFDM

signal is divided into three sub-blocks and each sub-block is modified with a separate

phase shift. The PAPR reduction is achieved by performing an exhaustive search of the

combination of the phase shifts that achieves the lowest PAPR. The complexity of the

search for the optimum combination of phase alterations is the main limitation of the

PTS method. For instance, for a system that is divided to 3 sub-blocks and assuming



Chapter 7. Peak to Average Power Ratio (PAPR) 191

2 3 4 5 6 7 8 9 10
10

−4

10
−3

10
−2

10
−1

10
0

γ [dB]

P
r[

P
A

P
R

 >
 γ]

 

 

α=0.6, Original
α=0.6, PTS 4 vectors
α=0.6, PTS 16 vectors
α=0.8, Original
α=0.8, PTS 4 vectors
α=0.8, PTS 16 vectors
α=1, Original
α=1, PTS 4 vectors
α=1, PTS 16 vectors

Figure 7.20: CCDF of the PAPR of SEFDM systems employing PTS using 4 , 16
vectors for different values of α for 32 subcarrier SEFDM system with 4QAM input

symbols.

that only two phase changes are available, there is a need to choose the optimum SEFDM

symbol (i.e. the one with minimum PAPR) from a set of 23 possibilities.

The efficiency of PTS in reducing the PAPR of SEFDM system is examined by simula-

tions. Fig. 7.20 and Fig. 7.21 displays the CCDF of the PAPR of an SEFDM system

employing PTS for different values of α and N . It can be seen from the figure that PTS

showed higher efficiency in PAPR reduction when using 4 phase vectors leading to a

search of 24 combinations for each SEFDM symbol.

The spectrum and BER performance of the PTS based SEFDM system are examined.

The spectrum of the PTS based system is provided in Fig. 7.22 showing that the

spectrum of the SEFDM system is maintained. The spectrum of the PTS manipulated

signal showed some decrease in the out of band emission for the case of 16 phase vectors.

This indicates that the concepts of PTS may be examined for the reduction of out of

band emission. Finally, the BER of an SEFDM system using PTS is depicted in Fig.

7.23. The figure show slight BER reduction for BPSK input symbols case.
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Figure 7.21: CCDF of PAPR of SEFDM system employing PTS using 4 , 16 vectors
for different numbers of subcarriers for SEFDM system with α = 0.8 and 4QAM input

symbols.
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Figure 7.22: Spectrum of a 64 subcarrier SEFDM system using PTS for PAPR con-
trol. α = 0.75 and input symbols are 4QAM.
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Figure 7.23: BER performance of an SEFDM system using PTS for 4 subcarrier
system with α = 0.8 and 16 phase vectors.

7.5 SLiding Window (SLW) PAPR Reduction Technique

The PAPR reduction techniques explored in section 7.4 are specifically designed for

OFDM systems, therefore may not be optimum for the SEFDM signal design. In this

section a new technique to reduce the PAPR in SEFDM system is proposed. The

technique makes use of the properties of the SEFDM signal to achieve PAPR reduction.

The performance of the proposed technique is investigated by simulations in terms of

its efficiency in PAPR reduction and its effects on the performance of the system. As

simulations uses discrete samples of the system it was necessary to abide by the rule of the

minimum number of samples needed to capture all the peaks in the signal. Oversampling

by a factor of 4 is used in all reported simulations.

7.5.1 Sliding the SEFDM Signal

Consider the SEFDM symbol with index l = 0 from equation (2.3) which can be denoted

as

x (t) =
1√
T

N−1∑

n=0

sn exp (j2πnαt/T ) . (7.12)
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Figure 7.24: An SEFDM symbol in time duration of [0− T/α]. The concept of the
different time windows

The SEFDM symbol is transmitted in the time interval [0 − T ], however, the expres-

sion on the RHS of (7.12) has a period equal to T/α. To maintain the characteristic

relationship between ∆f and T for SEFDM system, it is necessary to restrict the trans-

mission duration to T seconds. However, there is no restriction on the exact instant to

start transmission. This observation is utilized here to search for a time window in the

interval [0− T/α] during which the signal has the minimum PAPR as illustrated in Fig.

7.24. The different time windows should all be of duration of T seconds. It can be seen

from Fig. 7.24 that each window has a different peak value and expectedly a different

PAPR. The window that captures the signal at its minimum PAPR can be transmitted

down the channel and consequently the overall PAPR of the system will be reduced.

Effectively, this is as if a sliding time window is applied on the signal from which the

term SLiding Window, or shortly (SLW), is coined for this PAPR reduction technique.

The Sliding window is effectively a translation in time, resulting in no modification of

the signal.

The efficiency of SLW in reducing the PAPR stems from the fact that by expressing
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a signal using equivalent representations, the probability of having PAPR value larger

than a threshold decreases in similar manner as in SLM and PTS [154]. Assuming that

the probability of the PAPR of a signal exceeding a value γ is given by [Pr(PAPR > γ)],

then the probability of the lowest PAPR obtained from k different representation of the

signal exceeding γ denoted [Pr(PAPRlowest > γ)] is given by

[Pr(PAPRlowest > γ)] = [Pr(PAPR > γ)]k , (7.13)

which is always less than Pr(PAPR > γ).

7.5.2 The IDFT Implementation of SLW

The SLW PAPR reduction technique can be integrated with the IDFT design for gen-

erating SEFDM signal proposed in chapter 4. From chapter 4, the SEFDM signal is

expressed as

X [k] =
1√
α
F−1,M
k

{
S

′
}

(7.14)

for 0 ≤ k ≤ ρN − 1, where M = ρN/α, F−1,M {A} is the M point IDFT of the N

long sequence A, ρ is an oversampling factor to ensure that all peaks in the signal are

captured and

S
′

=





si 0 ≤ i < N

0 N ≤ i < M − 1
(7.15)

for S = [s0, · · · sN−1] is a vector of input symbols. The IDFT can generate M time

samples with the same frequency contents of the SEFDM system, of these samples the

ones that correspond to the interval [0− T ] are actually transmitted. This indicates

that the sliding can be implemented simply by changing the starting sample index for

the different time windows. Then, the PAPR of the different windows are calculated

and the one with lowest PAPR is transmitted.

Consider the SEFDM signal at the output of the IDFT in any of the transmitters archi-

tectures proposed in [60, 61], the outputs of the IDFT are time samples given by

X [k] =
1√
M

M−1∑

n=0

s
′

n exp (j2πnkα/M) , (7.16)
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Figure 7.25: Block diagram for an SEFDM transmitter employing SLW for PAPR
control.

where k = 0, 1, · · · , ρN − 1. The SEFDM signal is originally generated by selecting the

first ρN samples. Now define a time window as

Wg =





1 , ag ≤ k < ag + ρN − 1

0 , elsewhere
, (7.17)

where ag marks the starting instant of the window and g denotes the window index.

The resultant signal will be

X [k] = 1/
√
M

M−1∑

n=0

Wg s
′

n exp (j2πnkα/M) . (7.18)

The effect of applying the window Wg will limit k to values within that window. In

other words by substituting by k = h+ag for h = 0, 1, · · · , ρN −1, where h corresponds

to time samples only within Wg, equation (7.18) can be rewritten as

X [h+ ag] = 1√
M

M−1∑

n=0

sne
j2πn(h+ag)α/M ,

= 1√
M

M−1∑

n=0

sne
j2πnagα/Mej2πnhα/M . (7.19)

Equation (7.19) illustrates how the different windows result in different translations in

time benefiting from the fact that in the IDFT evaluation the translation in time can be

expressed equivalently as a phase shift in the frequency domain.
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Fig. 7.25 depicts an implementation of the proposed technique. s
′

i is the ith modified

symbol that is obtained after the reordering and zero insertion into the original infor-

mation symbols necessary for SEFDM signal design as shown in equation (7.15). The

outputs of the IDFT are fed into a module that calculates the PAPR and as such de-

termines the optimum window in terms of the PAPR and allows the transmission of the

time samples within that window to the next stage in the transmitter. The receiver will

need to be informed of the time window used at the transmitter to be able to decode

the signal. Such information is typically sent as side information which in turn reduces

the overall throughput.

7.5.3 Sliding Mechanism: Fixed Sliding vs Dynamic Sliding

The way the sliding windows are designed will dictate the performance of the system.

Sliding can be performed by locating the peak of the signal and then slide the window

to the location that results in the exclusion of the peak. Such sliding will be performed

on a symbol by symbol basis, therefore, termed dynamic sliding. Furthermore, the

dynamic sliding can be repeated to ensure that the slider sweeps all of the available time

samples space and captures the window with the minimum PAPR. Dynamic sliding can

be performed in few steps, however, the amount of the side information needed at the

receiver is expected to be high. Unless there is an efficient method to transmit the side

information, it may not be practical to perform dynamic sliding.

Another way is to design fixed time windows that are known to both the transmitter and

receiver. The PAPR of all the windows is checked for every SEFDM symbol and the one

with the minimum PAPR is chosen. Such a sliding mechanism fixes the amount of the

side information as the needed side information will be log2w bits for w time windows.

7.5.4 Performance Evaluation

The performance of SLW is evaluated by numerical simulations in terms of efficiency

in PAPR reduction and effects on spectrum and BER. Simulated signals were heavily

oversampled to ensure that all peaks are captured.
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Figure 7.26: CCDF of the PAPR of an SEFDM system employing SLW for dynamic
sliding and 4 windows in fixed sliding. The system has 12 subcarrier with α = 0.5 and

4QAM input symbols.

Fig. 7.26 shows the CCDF for a system employing SLW. The system depicted employs

dynamic sliding with one and two iterations, and fixed sliding with 4 windows. It

can be clearly seen that substantial PAPR reduction (up to 3 dB) is obtained with 4

time windows, whereas dynamic sliding achieved competitive results (< 1 dB) with just

two iterations. However, the side information is required to communicate the dynamic

sliding performed can be high (enough information to locate the peak samples locations),

whereas only two bits are needed to send the used window index in this example of fixed

sliding.

The performance of SLW in PAPR reduction is evaluated for different values of α in

Fig. 7.27. The figures confirm that SLW provides PAPR reduction as described. The

level of PAPR reduction varies with the level of bandwidth compression. As α increases

the SEFDM symbol duration increases with respect to the signal period, hence the

overlapping between windows increases and the potential of PAPR reduction decreases

consequently.
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Figure 7.27: CCDF of PAPR of 16 subcarrier SEFDM employing SLW (with 4 win-
dows) for different α values.
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Figure 7.28: Spectrum of 16 subcarrier SEFDM system, α = 0.5 and 4QAM input
symbols using SLW for PAPR control.
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Figure 7.29: BER performance of SEFDM system using SLW for 4 subcarrier system
with α = 0.8 and 4QAM input symbols.

The spectrum of the signal and the BER performance after applying SLW were examined

numerically. Fig. 7.28 displays the spectrum of the original SEFDM signal and three

other proposed slided signals. As expected, all the windows maintained the same 3 dB

bandwidth, whilst the BER performance remains unaffected by the sliding as displayed

in Fig. 7.29 using conventional SEFDM receiver [21].

Fig. 7.30 depicts SLW, PTS and SLM PAPR reduction for a 16 carrier SEFDM system

for α = 0.5 for the same side information requirement. The figure shows that SLW

outperforms PTS with 4 phase vectors by about 1 dB at 10−2, whereas SLM showed

almost the same PAPR reduction probability as SLW. However, SLW has the advantage

of ease of implementation since it is easily integrated with the SEFDM IDFT based

transmitter. SLW mainly relies on the IDFT based transmitter architecture and does

not require any multiplication or addition operations at the transmitter. Moreover,

there is no need to duplicate the IDFT module in the system as it is the case with

SLM and PTS. In addition, there is almost no added complexity in the reception side
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Figure 7.30: CCDF of PAPR of a 12 subcarrier SEFDM system with α = 0.5 using
SLW, PTS and SLM techniques for the same side information requirement for the PAPR

reduction

for a system using SLW. The receiver will only need to slide the recovering functions,

conjugate subcarriers or IMGS bases for MF or correlation demodulation, respectively,

in time to maintain synchronization with the transmitter.

7.6 Conclusions

This chapter addressed the issue of Peak to Average Power Ratio (PAPR) in SEFDM

system. Mathematical derivations of the instantaneous power of the SEFDM system

together with simulations have confirmed that the SEFDM signal will exhibit random

power variations during transmission time. The statistics of the PAPR of the signal

exceeding certain level were examined by simulations that generate the CCDF of the

PAPR. It is found that an SEFDM signal has a lower probability to exceed a PAPR value

than an equivalent OFDM signal, nevertheless, the SEFDM signal exhibited significant

occurrences of PAPR exceeding high values.
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Methods imported from OFDM system were applied to SEFDM system. In particular,

clipping, selective mapping (SLM) and partial transmit sequences (PTS) were examined

for use in SEFDM system. Studying the effects of clipping on the signal provided

information about how the system may be affected when no PAPR control technique is

used. The results obtained shows that the clipped SEFDM signal suffers from increased

out of band emission. In addition, the BER performance showed deterioration even for

small system size and ML detection. With increasing the number of subcarriers and

using SD, the BER performance showed further degradations. This result confirms that

the uncontrolled PAPR will pose detrimental effects on the system performance, if the

PAPR exceeded the dynamic range of the transmitter circuitry.

In the pursuit of PAPR reduction in SEFDM, it was necessary to evaluate the effects of

reduction techniques on the performance of the system. Performance measures used here

are the CCDF to evaluate the efficiency of PAPR reduction, the BER and power spectral

density. Obtained results suggest that using any of the three techniques (clipping, SLM

and PTS) provide PAPR reduction with varying efficiencies and performance penalties.

Clipping achieves the required PAPR reduction but introduces out of band interference

and BER degradations while SLM and PTS provide less PAPR reduction with no impact

on spectrum or BER performance, yet it requires sending side information along the data.

A new method specially tailored for SEFDM system was designed and evaluated. The

method makes use of the simple digital implementations of SEFDM transmitters offering

substantial PAPR reduction of about 2− 3 dB. Most of the techniques proposed in the

OFDM literature provide about 2 dB reduction. In addition, the proposed method does

not require any BER or spectrum compromises. The method is termed SLiding Window

(SLW) PAPR reduction technique as the PAPR reduction is realized by sliding a time

window over an extended symbol duration, comparing the achieved PAPR reduction

and eventually transmitting the window with the lowest PAPR. The SLW follows a

similar philosophy as SLM and PTS. In the three techniques the signal is expressed in

different ways and the one with the lowest PAPR is transmitted. However, in SLW no

multiplication or addition operations are applied on the signal, as the time dimension

is exploited to choose the optimum time to capture the SEFDM signal. In SLM and

PTS the reduction is achieved by changing the phase of the individual carriers randomly

where in SLW it is achieved by changing the phase of the combined signal. Moreover,
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there is no need to duplicate the IDFT module in the system as is the case with SLM

and PTS. The signal is basically the same signal but sampled at a later or earlier times.

The receiver needs not change the mechanisms of detection, but will need to slide any

recovering functions in time to maintain synchronization with the transmitter.

To conclude, the work in this chapter shows that the SEFDM signal can exhibit high

PAPR. If the dynamic range of transmitter circuitry is not matched to the signal PAPR

requirements and the PAPR is not controlled, the system will experience performance

degradations in the form of spectral spreading and BER performance deterioration. On

the other hands, several techniques can be used for the control of the PAPR with the

SLW being the most prominent candidate for its high efficiency in PAPR control and

the lower complexity of realization. Nevertheless, SLW requires sending side information

and the benefit of avoiding the effects of the uncontrolled PAPR needs to be weighed

against the reduction in throughput required for the PAPR reduction.



Chapter 8

SEFDM in Fading Channels,

Performance, Channel Estimation

and Equalization

8.1 Introduction

Previous chapters discussed the characteristics of the SEFDM signal, efficient generation

and reception techniques. The system has been investigated in AWGN channel in order

to identify its intrinsic issues. In practical systems, performance investigations need to

address practical channel options, particularly investigations in the wireless channel to

assess the potential of improving the utilization of the limited spectrum. The work in

[84] has proposed the use of Iterative Modified Gram Schmidt (IMGS) bases for signal

demodulation followed by Sphere Decoder (SD) joint channel equalizer and symbol de-

tector. The system was tested in two fixed channel scenarios where channel estimation

was performed using pilot SEFDM symbols. Three issues arise from this work. First, the

proposed system uses IMGS bases for the demodulation, therefore will require orthonor-

malization process and a bank of correlators customized for system structure. Second,

the results presented in [84] have indicated that the SD algorithm is capable of achiev-

ing performance close to OFDM for bandwidth savings of 20%. However, as discussed

in section 6.5, the SD suffers from variable complexity, therefore is not optimized for

hardware designs. Third, the work has shown that the accuracy of the proposed channel

204



Chapter 8. SEFDM in Fading Channels 205

estimator suffers with the increase in bandwidth compression level. The work in this

chapter addresses the three discussed issues and proposes solutions that overcome their

shortcomings.

The structure of the SEFDM transceiver is revisited and the use of the Matched Filter

(MF) proposed in chapter 5 is extended to the system in fading channel. The effects

of the MF demodulation is verified by deriving and numerically investigating a Maxi-

mum Likelihood (ML) joint equalizer and detector and then the associated SD using MF

based statistics. Then, an improved method for channel estimation is proposed and its

operation verified. The derived technique builds on the findings on the structure of the

SEFDM system from chapter 3. This new estimator is termed Partial Channel Estima-

tor (PCE) as it invokes a subset of the system subcarriers that contains the relatively

orthogonal carriers. That is PCE activates only the orthogonal or near orthogonal sub-

carriers within the SEFDM symbol and transmits pre-determined pilots symbols onto

these carriers. This way the ill conditioning of the system is avoided as the sent pilot

SEFDM symbols contain only orthogonal subcarriers. The performance of the proposed

estimator is examined in terms of accuracy of estimation and impact on the error per-

formance. Numerical investigations of the PCE have demonstrated the superiority of

the technique over techniques employing fully loaded SEFDM symbols.

Furthermore, equalization of the faded SEFDM signal is considered using linear and

sphere-wise equalization techniques. In particular, performance of linear equalizers Zero

Forcing (ZF) and Minimum Mean Square Error (MMSE) is briefly investigated. More-

over, the use of the Truncated Singular Value Decomposition (TSVD) for signal equal-

ization and detection is proposed. The TSVD facilitates substantial error performance

improvement over ZF and MMSE. Finally, the use of the Fixed Complexity Sphere

Decoder (FSD) and the combined FSD-TSVD for jointly equalizing and detecting the

SEFDM signal is proposed. Numerical results demonstrate superior performance when

compared to linear techniques.

Overall, the work in this chapter is considered an introduction to the examination of

the SEFDM in fading channels. Further studies in different channel conditions can be

useful to determine the most suited systems to adopt the SEFDM criteria.
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Figure 8.1: Multipath propagation environment.

8.2 The Wireless Channel: Preliminaries

The wireless channel represents the main resource for the wireless communications as

well as the main source of their limitation. To start with the spectrum is a resource that

needs to be used and divided with the interest of operators and users. On the other

hand, spectrum access is a resource that constitutes a main initial cost for the wireless

communications service providers which is eventually covered in the tariffs imposed on

users end. Spectral efficiency is therefore an issue that affects the users, service providers

and regulating bodies.

The nature of wireless signal propagation subjects the signal to many forms of impair-

ments, thus constrains the performance of wireless systems and their spectral needs.

Sources of impairments in the wireless channel include: in band interference from other

signals in the same channel; out of band interference from signals in adjacent chan-

nels; noise from different sources; and multipath fading. Multipath fading occurs due

to the fact that the transmitted electromagnetic signal may follow different routes (and

methods) before arriving at the receiver such as reflection, diffraction and scattering as

illustrated in Fig. 8.1.

In a multipath propagation environment, the different signal versions received experience

different amplitude and phase changes. At the receiver, the signals add up vectorially
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and depending on the phase of the different waves the superposition could be construc-

tive or destructive resulting in changes of the signal over time, frequency and distance

[168, 169]. Furthermore, the wireless channel state can vary with time, thus different

symbols and parts of symbols may take different durations to arrive at reception side

leading to intersymbol interference (ISI). In addition, due to the relative motion of the

communicating parties and/or the scatterers in the surrounding environment, the re-

ceived signal phase will have some changes over time which represents a frequency shift

known as the Doppler shift. This frequency shift is directly proportional to the velocity

and direction of motion with respect to the direction of arrival of the received multipath

signal and may cause what is known as frequency spreading. Overall, a signal propagat-

ing through multipath environment may suffer from random changes in its amplitude

and phase, random frequency shifts and can be dispersed in time.

In general, the multipath channel is identified by a set of parameters that describe the

frequency and time dispersive nature of the channel. Delay spread and coherence band-

width describe the time dispersive nature of the channel whereas the Doppler frequency

and the coherence time describe the frequency dispersive nature of the channel.

Delay spread describes the broadening of the transmitted symbol in time due to the

supperposition of the copies arriving via different propagation paths where the coher-

ence bandwidth describes the range of frequencies over which the channel response is

considered flat. When the signal bandwidth is less than the channel coherence band-

width, the different frequency components of the signal experience flat fading. On the

other hand, if the signal bandwidth is greater than the channel bandwidth the signal will

encounter frequency selective fading as the frequency components outside the coherence

bandwidth will be treated in a different way compared to the component within the

coherence bandwidth [168, 1].

Due to the Doppler effect the spectrum of the transmitted signal may be broadened as

Doppler spread. Doppler spread is defined as the range of frequencies over which the

Doppler spectrum is nonzero [1]. In addition, the channel may exhibit different Doppler

shifts over time, where the time duration over which the channel response is invariant

is denoted as the coherence time. Based on the channel coherence time and the signal

transmission time two fading types are classified: fast and slow. Fast fading, also termed

time selective fading, happens when the symbol period is greater than the coherence time
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Figure 8.2: Wireless channel model.

of the channel while slow fading occurs when the symbol period is much smaller than

the coherence time of the channel.

As discussed above the fading is categorized based on the two characterizing features

of multipath channel which is time variant and dispersant. The delay spread leads to

time dispersion and frequency selective fading. The Doppler spread leads to frequency

dispersion and time selective fading. The type and extent of fade experienced by a

signal depends on signal parameters such as bandwidth and symbol period and channel

parameters such as delay spread, coherence bandwidth and coherence time.

8.2.1 Modelling the Multipath Channel

Modelling the multipath channel is vital for understanding the wireless channel and

to design appropriate mitigation techniques. However, due to the varying nature of the

wireless propagation, channel models are typically based on statistics from measurements

for a specific system or spectrum allocation [170]. The multipath structure of the channel

is determined by channel sounding techniques such as direct pulse measurements, spread

spectrum slicing correlator measurements, and swept frequency measurements.

To accommodate the time and frequency dispersive nature of the channel, the mobile

radio channel is modelled as a linear filter with a time varying Channel Impulse Response

(CIR) h (t, τ) [1], which is a function of t to represent the time variations of the channel,

and τ to represent the channel multipath delay, thus the input/output relationship of

the channel depicted in Fig. 8.2 is defined as

y (t) = h (t, τ)⊗ x (t) , (8.1)

where ⊗denotes the convolution operation.
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Figure 8.3: Tapped delay line (TDL) channel model.

Simulations models of the wireless channel can be deterministic or stochastic [171]. De-

terministic models assume knowledge of the structure of the channel and that the channel

remains the same for the specified duration of channel use. On the other hand, stochas-

tic models treat some aspects of the channel as random processes. For narrowband

signals the channel is usually modelled with statistical Rayleigh, Rician and Nakagami

fading with one path as the signal duration being sufficiently longer than the delay of

the channel [1]. For wideband signals, channel models follow the Wide-Sense Stationary

Uncorrelated Scattering (WSSUS) assumption [172] and are modelled as Tapped Delay

Lines (TDL) [173, 174, 175, 64], depicted in Fig. 8.3. The general TDL model has the

low pass impulse response as

h (τ, t) =

N(t)∑

n=1

ρn (τn (t) , t) δ (τ − τn (t)) , (8.2)

where N (t) denotes the time-varying number of multipath components, ρn (τn (t) , t) are

the low pass time-varying complex channel coefficients and τn (t) are the time varying

delays. The parameters of the TDL model can be fixed or random, and are time invariant

or time varying to reflect different channel conditions.

The power of the tap gains is drawn from the Power Delay Profile (PDP) whereas the

Probability Density Function (PDF) of each gain is defined by the Doppler spectrum to

reflect the frequency dispersive nature of the channel. The PDP P (τ), also known as

the multipath intensity profile, represents the average received power as a function of

the delays. Commonly assumed forms for P (τ) are uniform and exponential [176]. The

Doppler spectrum Bd indicates how fast the channel characteristics are changing. In
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simulations, the channel path gains are filtered to reflect the required Doppler spectrum

noting that the different paths may experience different Doppler conditions. A widely

used model for Doppler filtering is the Jakes’ model [169].

To create a snapshot of the channel, typically a random number of paths is generated.

Then, different path delays are drawn from the distribution of delays. Following that,

random processes corresponding to the number of paths are generated. Each process is

filtered to reflect the associated Doppler Spectrum. Finally, the power of the random

processes is adjusted according to the PDP values corresponding to the delays. The

created snapshot of the channel is valid for as long as a fixed number of multipath

components and their associated delays can be assumed. A practical limitation of the

TDL model is that the delays are variable and can take values that are fractions of the

sampling duration, therefore, may require a huge amount of oversampling. This issue

is solved by the adopting a uniformly spaced TDL model [173]. The uniformly spaced

TDL model generates an equivalent TDL model with a new number of taps and equal

delays with tap gains that are adjusted so that the resultant model is equivalent to the

discrete multipath channel with non-uniformly spaced delays.

8.3 Design and Assessment Methodology

The SEFDM system in fading channel is constructed from the same main system blocks

as described in previous chapters. The SEFDM signal may be generated following any

of the proposed IDFT based structures in chapter 4. The signal propagates through a

fading channel and then suffers AWGN at reception side. The receiver is constructed of

the two main components investigated in chapter 5: the first stage collects the statistics

and the second performs equalization and detection.

The study of the SEFDM signal in fading channel started with mathematically modelling

the SEFDM system with fading channel effects. Following that, it is proposed to perform

the demodulation with the conjugate carriers which will be denoted as Matched Filter

(MF), although the matching here refers to the signal generator operation and does not

include matching to the channel. The MF notation is kept to maintain the similarity

of the system design with the one proposed in chapter 5 and to distinguish this work

from the system presented in [84] that uses IMGS bases at the demodulation stage.
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The proposal of the use of the MF based system is motivated by the desire to maintain

the complexity reduction facilitated by the MF based demodulation as discussed in

chapter 5. Following, the optimal joint equalizer and detector for the MF based system

is derived and verified against previous proposal by numerical simulations. In addition,

the design of improved estimator and equalizers is pursued based on the findings about

the system properties and the investigated detection techniques in chapters 3 and 6,

respectively. The performance of the proposed techniques is investigated via detailed

numerical simulations.

Investigations of the performance in wireless channels require the use of simulation mod-

els and the identification of relevant channel conditions and parameters. The type and

extent of fade experienced by a signal depends on signal parameters such as bandwidth

and symbol period and channel parameters such as delay spread, coherence bandwidth

and coherence time. The simulations considered the SEFDM under three main channel

scenarios: static, quasi static channel and time varying. For the static channel two chan-

nels are imported from the work in [84] for SEFDM system and [177] for OFDM and

termed Channel 1 and Channel 2, respectively. Both channels are static with different

number of paths. Testing under these two channels is undertaken mainly to facilitate a

comparison with the work in [84] for SEFDM system. Nevertheless, the fact that these

channels are fixed is utilized to demonstrate the potential and challenges of the SEFDM

signal in fading channels. Particularly, the fixed channels facilitate the exploration of

the effect of having systems with different number of subcarriers. Channel 1 particu-

larly, is an optimistic scenario, however, it serves the purpose of demonstration of the

correctness of the model and gives insight into the performance trends of the SEFDM

system with the introduction of channel effects. Channel 2 is a more hostile channel

with more paths and longer delays than Channel 1.

The second channel scenario is a quasi static channel designed and termed Channel

3. The channel is considered quasi static as it does not significantly change within an

SEFDM symbol transmission, and it is time variant over the duration of the transmission

of few symbols. Channel 3 is composed of random number of paths and random paths

delays set within an upper bound of 8 paths and a third of transmission time, respectively.

For Channel 3 the power of the path gains is drawn from the multipath intensity profile
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Table 8.1: COST207 reference models.

Area Type PDP Range

Rural Area (RA) 9.2
1−e−6.44 e

−9.2τ 0 < τ < 0.7

Typical Urban (TU) 1
1−e−7 e

−τ 0 < τ < 7

Bad urban (BU) 2
3(1−e−5)

e−τ 0 < τ < 5
1

3(1−e−5)
e5−τ/µs 5 < τ < 10

Hilly 1
(1−e−7)/3.5+0.1(1−e−5)

e−3.5τ 0 < τ < 2
0.1

(1−e−7)/3.5+0.1(1−e−5)
e15−τ 15 < τ < 20

Table 8.2: Simulation parameters for Channels 1, 2 and 3. Ts is the sampling period.

Channel Parameters Description Impulse Response

Channel 1 [84] Fixed h (t) = 0.8767δ (t)− 0.2279δ (t− 3Ts)

Channel 2 Fixed h (t) = 0.8767δ (t)− 0.2279δ (t− 3Ts)
[84, 177] +0.1315δ (t− 7Ts)

−0.4032eiπ/2δ (t− 10Ts)

Channel 3: Quasi static channel [this work]
No of paths random 1-8

PDP exponential 9.2
1−e−6.44 e

−9.2τ/1ms

Delay random 0 < τ < T
5

of the COST 207 1reference model for rural area (RA), provided in Table. 8.1. The

purpose of Channel 3 is to examine performance changes with some degree of uncertainty

facilitated by the random aspects of the proposed channel. In addition, Channel 3

provides similar channel conditions for different number of subcarriers which is not

supported by Channel 1 and 2.

Table. 8.2 lists the parameters of each channel and Fig. 8.4 depicts the impulse and

frequency response of Channel 1 and 2 and a time snapshot of Channel 3 . Fig. 8.5

depicts the time varying nature of Channel 3 where the channel is recorded for the time

taken to transmit 60 SEFDM symbols. The figure shows the slow fading property of the

channel.

Furthermore, Channel 4 is designed to model a fast time varying channel and is used

in section 8.5 only. Channel 4 is designed to have a single path Rayleigh channel to

focus on the effects of the time varying nature [37]. The channel exhibits two Doppler

1COST207 is a work group established by CEPT. COST207 specified suitable channel models for
typical propagation environments classified into four categories: areas with rural character (RA=rural
area), Typical urban for cities (TU=typical urban), densely built urban areas with bad propagation
conditions (BU=bad urban), and hilly terrains (HT, hilly terrain). Based on the WSSUS assumption,
COST207 developed specifications for the delay power spectral density and the Doppler power spectral
density for the four categories mentioned before[169].
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Figure 8.4: The impulse and frequency response (IR) and (FR), respectively, of Chan-
nels 1 and 2 and a time snapshot of Channel 3.



Chapter 8. SEFDM in Fading Channels 214

0

20

40

60

0

50

100

−40

−20

0

20

40

 

Subcarrier IndexFrequency [Hz]
 

M
ag

ni
tu

de
 [d

B
]

Figure 8.5: The time variance of Channel 3.

0.5 1
−7

−6

−5

−4

−3

−2

−1

0

A
m

p
li
tu

d
e

 [
d

B
]

Time/T

(a) Tc = 0.75T .

0.5 1
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

A
m

p
lit

u
d

e
 [

d
B

]

Time/T

(b) Tc = 0.3T .

Figure 8.6: A time snapshot of the impulse response of Channel 4.
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Table 8.3: Signal and channel simulation parameters.

Parameters Notation Values

Input symbols data rate Rb 1 Mbps

Number of subcarriers N Different values

SEFDM symbol duration T = N/Rb

SEFDM signal bandwidth BW ' αN−α+2
T

Sampling frequency (≥ Nyquist rate) Fs = 2Rb 2 MHz

Channel coherence time Tc = (0.3, 0.75) T

Doppler Frequency fd = 0.423/Tc[1]

frequencies and serves to test for the effects of frequency dispersion on the SEFDM signal.

Parameters for the Doppler effect are based on a coherence time that is a fraction of the

total transmission time. This ensures that the channel does change within one SEFDM

symbol transmission.

It is worth noting that the described channels are designed to reflect the performance

in fading channels in general, thus do not particularly describe any existing system.

However, some parameters are drawn from existing models to keep the channels realistic.

The reason behind this is not to associate the SEFDM system proposal to a particular

existing application and/or system specification but to explore the general boundaries

of the system.

To asses the performance of the SEFDM signal in fading channels, numerical investiga-

tions are carried under the described channels. The SEFDM signal parameters for the

simulations are displayed in Table. 8.3. Finally, in this work the performance in the

case of perfect Channel State Information (CSI) and optimal equalization and detection

is investigated to provide a benchmark for the other investigated cases. The perfect CSI

case represents the best case scenario, though may not be obtainable, it can provide an

upper bound on performance. Optimal equalization and detection may not be realizable

but can be used to derive the ultimate upper bound on system performance. In addition,

where appropriate, performance is compared against OFDM system performance and

theoretical error performance curves.
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8.4 Modelling the SEFDM System in Discrete Multipath

Fading Channel

Considering an SEFDM signal x (t) passing through a discrete multipath fading channel,

the output signal of this channel is described as

y (t) =
ν∑

1

ρn (t)x (t− τn) +w (t) , (8.3)

where ρn (t), τn represents respectively the attenuation and propagation delay associated

with the nth multipath component and w (t) defines an AWGN noise term. The kth

received sample can be described from the channel response and the transmitted samples

of the signal as

Y [k] =
ν∑

1

hn,kX[n] +W, (8.4)

where h represents the discrete CIR and ν is the delay of the channel in terms of number

of samples. Assuming that the interblock interference is cancelled either with employing

guard bands or cyclic prefix, the system can then be expressed in matrix form as

Y = HΦS +W, (8.5)

The matrix H contains the CSI and its structure varies according to the type of fading

encountered. When the fading process remains constant for the duration of sending at

least one SEFDM symbol, the channel matrix H in this case is fixed for that duration

and is Toeplitz and lower triangular, thus the first column of H gives all the required

information to construct the matrix as

H =




h1 0 · · · 0

h2 h1
...

...

hQ−1 hQ−2
. . . 0

hQ,1 hQ,2 · · · h1




. (8.6)

Such channels as represented by equation (8.6) can be found in systems with fixed chan-

nel conditions and in systems experiencing slow fading where for one symbol transmission

and/or multiple bursts the channel remains static.
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Figure 8.7: The SEFDM transceiver in fading channel, q [i] = R [i].

For time varying channels the variations in the channel response can lead to subsequent

symbols facing different channel states and that the different time samples of the same

symbol encountering variable states of the channel. The channel matrix, displayed in

equation (8.7), is for this case lower triangular and not Toeplitz as is the case for static

and slow fading channels.

H =




h1,1 0 · · · 0

h2,1 h2,2
...

...

hQ−1,1 hQ−2,1
. . . 0

hQ,1 hQ,2 · · · hQ,Q




. (8.7)

8.5 Optimal Joint Channel Equalization and Symbol De-

tection

The characteristic of the channel will vary based on the environment where the commu-

nication is taking place and consequently the effects on the signal vary. Regardless of

the type of channel, equalization of the channel effects is applied to maintain reliable

communication. Equalization of the channel can be performed first then the receiver

structure follows any of the discussed detectors in AWGN channel. However, to improve

efficiency the equalization can be combined with the detection stage in what is known as

joint channel equalization and symbol detection. The work in [84] investigated the IMGS

based system in fading channel and proposed the SD algorithm for the joint equalization

and detection. In this work, the MF based system as proposed in chapter 5 is considered

and its optimal joint equalizer-detector is investigated.

Fig. 8.7 depicts a block diagram of an SEFDM transceiver in fading channel. The

transmitter is based on the IDFT design proposed in chapter 4. The receiver obtains
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statistics of the signal by the DFT block as proposed in chapter 5 and then applies joint

equalization and detection methods to estimate the transmitted symbols. In this case

the demodulated signal is expressed as

R = Φ∗HΦS +WΦ∗. (8.8)

The problem is formulated to estimate the transmitted symbols based on the collected

statistics R. Following similar analysis as in section 5.4.2, the Maximum Likelihood

(ML) detection of the system is expressed as

ŜML = min
s∈QN

∥∥∥Φ∗−1
(R−Φ∗HΦSm)

∥∥∥
2
. (8.9)

Equation (8.9) shows that the ML equalizer-detector requires knowledge of the CSI

represented by the matrix H. Typically, the CSI is obtained by estimation either based

on the transmission of known symbols or totally blind estimation.

The performance of the ML equalizer-detector is investigated by numerical simulations

conducted in Channels 1, 2 and 4. The ML equalizer-detector is realized by performing

an exhaustive search of all transmitted symbols combinations assuming perfect CSI at re-

ception end. The combination of the perfect CSI and optimal equalization and detection

is investigated to provide a benchmark for other cases. Later on in the chapter, inves-

tigations under realistic CSI are conducted and benchmarked against the perfect CSI

case. Simulations are constrained to systems with 4 subcarriers due to the complexity of

the detector. Fig. 8.8 depicts the performance of the described ML equalizer-detector in

Channel 1 and 2. The figures show that with the reduction in the value of α, degradation

is observed with more severity for the case of 4QAM input symbols. Interestingly, the

figures indicate that for α > 0.6, performance in Channel 2 is better than in Channel 1.

However, this observation is valid for this case of number of subcarriers as will be shown

in subsequent work.

The SEFDM signal is also tested in the time varying Channel 4. Fig. 8.9 depicts the

BER performance for α = 0.8, 1 in Channel 4 for coherence time Tc = [0.3, 0.75] T

with BPSK and 4QAM input symbols. Fig. 8.9a and 8.9b show that for α = 0.8,

the systems performed close to OFDM with improvement in the performance observed

with the increase in the time variability of the channel. This may be attributed to that
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Figure 8.8: BER performance of the ML equalizer-detector in Channel 1 and 2, for a
system with 4 subcarriers.

with fast fading the probability to encounter good channel state within the transmission

time of one symbol increases. In addition, Fig. 8.9c show that for α ≥ 0.8, the system

with BPSK input symbols exhibited better BER than OFDM. Nevertheless, the system

assumes perfect CSI, therefore, the observed performance may not hold if perturbed CSI

is used.

8.5.1 Sphere Decoder (SD)

The ML detector is overly complex, therefore, joint channel equalization and signal

detection using Sphere Decoder (SD) algorithm is pursued in a similar manner to the

proposal in [84] for IMGS based system. The main difference between this work and

the work in [84] is the replacement of the IMGS stage with the DFT demodulator. This
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Figure 8.9: BER performance of the ML equalizer-detector in Channel 4 for a system
with 4 subcarriers.

leads to different cost function of the ML estimate shown in equation (8.9), where the

ML estimates are modified through the multiplication with the inverse of the Hermitian

conjugate of the carriers matrix Φ.

As the SD algorithm constrains the search for the solution within the predefined radius

g, thus, the SD solution is expressed as

ŜSD = min
∥∥∥Φ∗−1

(R−Φ∗HΦS)
∥∥∥
2
. (8.10)

s∈QN , ‖R−CS‖2≤g

The algorithm then follows similar steps as detailed in section 5.5 for the SEFDM system

in AWGN channel.
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Figure 8.10: SD joint equalizer and detector for SEFDM signal in Channel 1, 2 and
4 for 16 subcarrier system, α = 0.8 and 4QAM input symbols.

The proposed SD joint channel equalizer and symbol detector was simulated assuming

perfect CSI for SEFDM system carrying 4QAM symbols. Fig. 8.10 depicts the BER

of the SD equalizer-detector tested in Channels 1, 2 and 4. The figure shows that

the MF based system achieves the same error performance as the IMGS system in the

different channels, therefore enabling the benefit of the complexity reduction associated

with the MF based system. The figure shows that the performance of the SEFDM

system deteriorates with the deterioration in the channel conditions reflected by the

three simulated channels which is confirmed in Fig. 8.11 for system for 0.7 ≤ α ≤ 1.

Furthermore, Fig. 8.11 shows that the SD equalizer-detector can maintain the same

performance as OFDM for bandwidth savings of 20% for Channel 1 and 30% for Channels

2 and 4. This suggests that the fading channel effect can be dominant over intrinsic

system limitations arising from being ill conditioned. The results for the ML and SD

joint equalizer-detector in the time varying Channel 4 show that if perfect CSI is available

the performance will depend on the encountered level of fading. The same performance

is observed for OFDM when the designed ML and SD equalizer-detector is used.

Previous analysis assumes perfect CSI, whereas in practice equalization depends on



Chapter 8. SEFDM in Fading Channels 222

0.7 0.8 0.9 1
10

−4

10
−3

10
−2

10
−1

α

B
E

R
 a

t E
b/N

0 =
 8

 d
B

 

 
IMGS, Channel 1
MF, Channel 1
IMGS, Channel 2
MF, Channel 2
IMGS, Channel 4
MF, Channel 4

Figure 8.11: SD joint equalizer and detector for SEFDM signal in Channel 1, 2 and
4 for 12 subcarrier system and 4QAM input symbols.

estimation of the channel state, hence, in the next section, an improved channel estimator

for the SEFDM system is proposed. The SD equalizer-detector is much simpler than the

ML, however, exhibits variable complexity as explained in chapters 5 and 6. Therefore, in

section 8.7 reduced complexity joint channel equalizer and symbol detectors are proposed

and evaluated.

8.6 Channel Estimation

A signal passing through multipath channel can be severely distorted. The signal arrives

dispersed in time and frequency according to the type of channel encountered. Therefore,

equalization is applied to compensate for the detrimental effects of the channel. However,

equalization, in general, requires knowledge of the channel state. Such knowledge is

typically acquired by performing channel estimation in either time domain or frequency

domain or both. In the study in section 8.5, perfect knowledge of the CSI is assumed

in order to avoid any effects on the performance of ML or SD joint equalizer-detector

due to disturbances in the CSI. Nevertheless, in practical conditions the assumption of
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perfect CSI is difficult to achieve. This section deals with the channel estimation issue

and presents a new estimator that provides better estimation accuracy.

In general, channel estimation is a topic extensively researched for OFDM systems lead-

ing to proposals of many estimation techniques in time and/or frequency [178, 179, 180,

181]. A typical approach for estimating the time domain response of the channel is by

dedicating a burst of transmitted symbols to convey a pre-determined training (or pilot)

sequence. The receiver works out the channel response based on the received signal

and the knowledge of the pilots used. On the other hand, for estimating the frequency

response of the channel, pilot symbols are sent at predefined frequencies to determine

the channel response at such frequencies and the complete frequency response is derived

by interpolation which could be simple linear interpolation or low pass filtering [43].

The minimum number of pilot frequencies is decided by the Nyquist sampling theorem,

though in the case of simple linear interpolation oversampling is needed. Whether using

pilot tones or a training sequence, the receiver needs to apply algorithms to extract

channel response from the received signal. Techniques discussed in the literature in-

clude Least Squares (LS), Minimum Mean Square Error (MMSE) and ML each offering

different estimation accuracy and complexity [182]. Furthermore, the estimation of the

fading channel is dependent on the conditions of the channel. In the case of the quasi

static channels, the estimation needs to be frequent enough to capture the significant

time changes in the channel. In fast fading conditions, the channel estimation is com-

monly applied in conjunction with channel tracking algorithms that aims to capture

the changes in the channel [183, 184, 185]. Nevertheless, estimation based on reserving

whole transmission burst or parts within certainly reduces the overall throughput of

the system, consumes power and requires computational effort. Therefore, blind and

semi-blind estimation techniques without or with limited known transmitted bursts, re-

spectively, have been proposed for OFDM using expectation maximization algorithm,

ML and iterative techniques in [186, 187, 188, 189].

The orthogonal structure of the subcarriers in OFDM system has simplified the process

of channel estimation [190]. In particular, the perfect conditioning of the OFDM sys-

tem results in the time domain estimation to be affected only by the type of channel

encountered. In addition, the orthogonal subcarriers in the OFDM system allows for

the frequency domain estimation to use a subset of subcarriers to carry the pilots and
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the rest carry information symbols, thus, reducing the lost throughput for estimation.

Unfortunately, these features are missed in the SEFDM case due to the lack of orthog-

onality, thus motivating a research for efficient and reliable estimators for the channel

in this case. The work in [84] suggested the use of pilot symbols for channel estimation.

Performance investigations for two cases of static channels have shown that performance

of the estimator deteriorates with the reduction in the value of α, an effect that is linked

to the ill conditioning of the SEFDM system. Therefore, the next subsection presents

a newly designed estimation algorithm for the SEFDM signal that relies on the math-

ematical foundation of the SEFDM system presented in chapter 3 to address the ill

conditioning of the SEFDM system.

8.6.1 The Partial Channel Estimator (PCE)

The work in [84] discussed the possibility of estimating the channel by transmitting

randomly generated pilot SEFDM symbols. The CIR is then estimated using ZF with

the knowledge of the transmitted pilots. As discussed in chapter 3, the ill conditioning

of the SEFDM system can substantially corrupt the performance of techniques such as

ZF, as the system becomes sensitive to small perturbations (i.e. noise). Therefore, in

this section, a new channel estimation technique is presented to overcome the discussed

difficulty. The technique simply relies on invoking the mutually orthogonal subcarriers

within the SEFDM pilot symbol, to construct a robust scheme against the noise in the

system. The new estimation technique is termed the Partial Channel Estimator (PCE)

to reflect the pilots structure. The main concept of the PCE relies on the property of the

SEFDM subcarriers derived in Theorem 3.1, where it is proved that there are subsets

within the SEFDM subcarriers that are mutually orthogonal. Based on this feature, the

design of pilot symbols for channel estimation is optimized to avoid the effects of the

ill conditioning of the system that arises with the increase in the number of subcarriers

and/or bandwidth compression levels.

Let P be the N × 1 pilot symbol vector, the PCE is characterized by the definition of

the pilot vector as

P (i) =





pi , i ∈ I

0 , otherwise

, (8.11)
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where pi denotes the value of the ith pilot symbol which is typically drawn from the

same constellation cardinality of the input information symbols and I denotes the in-

dices of the orthogonal subcarriers in the chosen subset as explained in Theorem 3.1 and

appendix A. The pilots are then modulated on top of the subcarriers and transmitted

down the fading channel. The number of orthogonal sets and orthogonal subcarriers

is dependent on the value of α and the number of subcarriers as explained in Theo-

rem 3.1 and appendix A. As the value of α gets closer to 1, the correlation between

the subcarriers decreases and the system approaches orthogonality as demonstrated in

section 3.3. Therefore, the design of the pilots for the PCE can use more subcarriers

and still achieve better performance. That is near orthogonal subcarriers sets can be

used in place of the orthogonal one in order to improve estimation resolution. Another

advantage of the PCE is the reduction of the required power due to the reduction in the

number of transmitted symbols and the associated subcarriers.

Based on the received pilot symbols, channel estimation can be carried out in the time

or frequency domain. Frequency domain estimation generates estimates of the sampled

frequency response, therefore require interpolation. In addition, if only orthogonal sub-

carriers are activated in the pilot symbols, a cyclic prefix can be inserted at the start of

each PCE symbol and estimation can follow conventional OFDM techniques [179, 181],

however, the estimation part of the receiver will be totally separate from the main signal

reception part. In this work, estimation is carried in the time domain where the CIR is

extracted from the SEFDM pilot symbol based on solving a LS problem. The advantage

of this design is that the PCE symbol can include more subcarriers by activating the

near orthogonal subcarriers and that the estimation is carried through the main signal

reception part with only loading the appropriate parameters based on the knowledge of

the pilots.

Fig. 8.12 illustrates the PCE in contrast to the Full Channel Estimator (FCE) where a

whole SEFDM symbol is dedicated to carry pilots. The hollow circle corresponds to the

nulled frequency tones, where reducing the number of transmitted subcarriers leads to

reducing the ICI. At reception, the incoming signal contaminated with AWGN, denoted

by W , is expressed as

R = HΦP +W, (8.12)
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Figure 8.12: Illustration of SEFDM FCE and PCE.

where the structure of the matrix H is defined in equations (8.6) and (8.7). For this work

a quasi static channel, where the channel does not change within an SEFDM symbol

transmission period is assumed. In this case, the linear regression model in equation

(8.12) can be rearranged as

R = Ph+W, (8.13)

where the vector h is a ν × 1 as ν represents the delay in terms of number of samples,

and the matrix P is a Q×ν lower triangular Toeplitz matrix whose first column is equal

to the vector X = ΦS and first row defined as [X [0] , 0, · · · , 0]. The estimate of the

channel ĥ is obtained from the LS solution as

ĥ = min ‖R−Ph‖2 , (8.14)

which has the solution

ĥ = P∗ (PP∗)−1 R, (8.15)

= h+P∗ (PP∗)−1W. (8.16)
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To highlight the properties of the Q× ν matrix P, it is expressed as

P =




x0 0 0

x1 x0 0 0

x2 x1 x0 0 0

0

xν−1 xν−2 x0

xQ−1 xQ−ν−1




. (8.17)

The matrix P is then detailed in terms of the constituent matrix Φ and input symbol

vector S as

P =




Φ1 0 0

Φ2 Φ1 0 0

Φ3 Φ2 Φ1 0 0

0

Φν Φν Φ1

ΦQ ΦQ−ν







S 0 · · · 0

S 0 0
...

. . .

0 0 · · · S



, (8.18)

where Φi denotes the ith row of the carriers matrix Φ. Equation (8.18) is expressed

equivalently as

P = Φ̃S, (8.19)

where S is the ν × ν block diagonal matrix whose main diagonal elements are equal to

the vector S and Φ̃ is a block matrix constructed from block matrices in equation (8.20)
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0 0 · · · 0

0 0

Φ
. . .

...

Φ1:Q−1 0

Φ1:Q−2 · · ·
Φ1:Q−ν

(8.20)

where Φ1:i denotes the matrix constructed from the rows 1 to Q− i of Φ. The structure

of the P matrix is closely related to the matrix Φ which is shown to be become ill con-

ditioned with the increase in the number of subcarriers and/or bandwidth compression

level, consequently the solution that is based on inverting such matrices will suffer from

noise amplification. The solution in equation 8.16 is the same as the ZF solution for

the full loaded estimator, however, the structure of the pilot symbols ensures that the

underlying elements of the matrix P are constructed from an orthogonal subset of the

subcarriers and hence eliminates the effect of the ill conditioning found in the full loaded

system. Even when near orthogonal subcarriers are used, the conditioning of the PCE

system will be better than FCE due to the reduction of the correlation between the sub-

carriers. Another important design consideration is the power of the pilots. The FCE

technique can increase the PAPR greatly if the combination of symbols sent corresponds

to a high PAPR. This is because the FCE employs all the subcarriers and the chosen

pilot symbols combination may exhibit high PAPR. On the other hand, in principle the

PAPR of PCE pilot SEFDM symbols is lower than an FCE system using the same pilots

values, due to the fewer subcarriers in the former.

Fig. 8.13 depicts an SEFDM system with Channel Estimator block. As discussed

earlier, the PCE estimation can utilize the main system structure, whilst, frequency

domain estimation will need a stand alone estimator branch.
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Figure 8.13: Block diagram of SEFDM channel estimator.

8.6.2 Channel Estimation Numerical Results

In the literature, the examining of the performance of channel estimator is evaluated

through different parameters. The design of the pilots can be optimized to achieve a

targeted performance measure such as the Mean Square Error (MSE) in channel esti-

mation, the BER, the channel capacity and the Doppler mitigation [178, 180, 191]. In

this work, the performance of the PCE is investigated by numerical simulations under

the three channel conditions described in Table. 8.2. The performance is evaluated

using two measures: first the MSE is evaluated to highlight the comparison between the

proposed concept and FCE method. Secondly, the effects of the improved estimator on

the BER performance and complexity are evaluated.

The MSE, used to evaluate the accuracy of the proposed estimator, is calculated as

MSE = E

{[
h− ĥ

] [
h− ĥ

]′}
. (8.21)

The MSE of PCE and FCE obtained channel estimates is recorded under three pilot

power designs and the three channels listed in Table. 8.2. The performance is inves-

tigated with respect to the level of bandwidth compression or α and the number of

subcarriers. Fig. 8.14a depicts the MSE of the error in channel estimation for the PCE

and FCE techniques for a system using pilots based on random values. That is randomly
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Figure 8.14: MSE of PCE and FCE with respect to Eb/N0, α and number of subcar-
riers, with 4QAM pilot symbols. Random pilots are used for both techniques.

generated 4QAM symbols are used in the pilot SEFDM symbols. The use of random

pilots for both techniques eliminates any power based bias. The figure demonstrates

the superiority of the PCE technique. The MSE in channel estimation for PCE is lower

than the FCE case and the difference grows with worsening channel conditions as seen

in how the MSE difference is higher for Channel 2 results. Fig. 8.14b depicts the MSE

in channel estimation for the three channels for different values of α. The figure high-

lights an increase in the MSE with respect to the reduction in α, however, the PCE

maintained lower MSE values. The main reason is related to the conditioning of the

SEFDM system previously discussed in chapter 3. With the reduction in α, the SEFDM

system becomes more ill conditioned, therefore the sensitivity of the estimates to the

noise increases. The PCE reduces the effects of the ill conditioning as, only a subset of

the subcarriers is excited and thus the subcarriers can be close to be orthogonal, yet will
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Figure 8.15: MSE of PCE and FCE with respect to Eb/N0, α and number of subcar-
riers, with 4QAM pilot symbols. Equal symbols as pilots for both estimators.

also experience degradation but with less impact as FCE.

Then a fixed equal pilots are tested for both PCE and FCE systems. This arrange-

ment introduces a high peak (the highest possible peak) in the case of the FCE system.

Although it demonstrated substantial estimation improvement, this choice is not rec-

ommended as it will increase the high PAPR occurrences in the system and if a PAPR

control scheme is employed the FCE estimator looses its advantage in contrast to the

PCE estimator. The PCE maintained the estimation advantage for Channel 1 and 3

which improved further with the increase in the number of subcarriers. This observed

performance suggests that the estimator accuracy is affected by the condition of the

channel. Specially, that the increase in the number of subcarriers is effectively improv-

ing the channel condition for the case of Channel 1 as it has fixed delay and the more



Chapter 8. SEFDM in Fading Channels 232

9 10 12 14 16 18 20
10

−4

10
−3

10
−2

10
−1

Eb/No [dB]

M
S

E
 in

 C
ha

nn
el

 E
st

im
at

io
n

 

 
PCE Channel 1

FCE  Channel 1

PCE Channel 2

FCE  Channel 2

PCE  Channel 3

FCE  Channel 3

(a) Number of subcarriers 16, α = 0.5.

0.5 0.6 0.7 0.8 0.9 1
10

−4

10
−3

10
−2

10
−1

10
0

α

M
S

E
 in

 C
ha

nn
el

 E
st

im
at

io
n

 

 
PCE Channel 1
FCE  Channel 1
PCE Channel 2
FCE  Channel 2
PCE  Channel 3
FCE  Channel 3

(b) Number of subcarriers 16 and Eb/N0 =
11dB.

16 24 32
10

−4

10
−3

10
−2

10
−1

Number of Subcarriers

M
S

E
 in

 C
ha

nn
el

 E
st

im
at

io
n

 

 
PCE Channel 1
FCE  Channel 1
PCE Channel 2
FCE  Channel 2
PCE  Channel 3
FCE  Channel 3
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Figure 8.16: MSE of PCE and FCE with respect to Eb/N0, α and number of sub-
carriers, with 4QAM pilot symbols. Random symbols for FCE and equal symbols for

PCE are used.

the subcarriers the longer is the transmission time which reduces the effects of delay of

the static channel.

The third scenario is a combination of the two previous scenarios. The PCE enjoy less

PAPR probability due to the use of fewer subcarriers, therefore, can enjoy the benefit of

using the equal pilots combination. On the other hand, the FCE uses random pilots as

in the original proposal in [84] and also to ensure no impact on the PAPR of the system.

Fig. 8.16 depicts the performance in this case. This choice of pilot symbols widens the

difference in the MSE for PCE and FCE and substantial improvement is observed for

PCE system.

Furthermore, the effect of the estimation accuracy on the error performance of the system

is addressed. To assess this, the proposed PCE estimator is tested for the equalization
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Figure 8.17: BER and complexity performance of PCE based equalization and de-
tection for 16 subcarrier system, α = 0.8, 4QAM symbols in Channel 1.
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Figure 8.18: BER and complexity performance of PCE based equalization and de-
tection for 16 subcarrier system, α = 0.8, 4QAM symbols in Channel 2.

of simulated SEFDM system. Joint channel equalization and detection using SD is

performed as discussed in section 8.5.1. Fig. 8.17 and Fig. 8.18 depict the BER of a

system equalized with channel estimates obtained via PCE in fading Channel 1 and 2

as in Table. 8.2 and the required complexity in terms of average number of node visits.

For comparisons, the figure shows the performance of the system for the case of no

equalization, equalization with FCE estimated channel and perfect equalization where

full CSI is available. The plots clearly demonstrate the BER advantage of the newly

suggested PCE for channel estimation over FCE. Signals equalized with PCE obtained

channel estimates show 1dB power advantage for BER of 10−3 and reduction of average

number of nodes visits corresponding to 1 dB power boost.
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8.7 Reduced Complexity Joint Channel Equalization and

Symbol Detection

As already mentioned, the work in [84] has suggested an SD based joint equalizer-

detector. In addition, the work in section 8.5 extended the use of the SD to the MF based

system. Numerical results in [84] and in section 8.5 indicates good BER performance.

Nevertheless, the complexity of the SD algorithm is variable as discussed in section

6.5, thus poses a challenging implementation task. Therefore, in this section, reduced

complexity joint channel equalizers and symbol detectors are explored.

Join channel equalization and symbol detection using ZF, MMSE is proposed. In addi-

tion, equalization based on the TSVD is proposed to cater for channel effects in a similar

manner as proposed for SEFDM signal detection in chapter 8. The main advantage of

these linear equalizers is the low and fixed complexity, however, their performance is

affected by the conditioning of the channel and for SEFDM system case is impaired by

the conditioning of the system itself. The investigations of the linear equalizer-detectors

are mainly pursued to form the comparison grounds for the use of iterative decoders.

Following that, the use of the FSD to equalize and detect jointly the SEFDM signal

is proposed and evaluated. The FSD algorithm provides a fixed complexity alternative

to the SD and is thus well suited for hardware implementation. The FSD algorithm

facilitates substantial error performance improvement over linear detectors. To further

improve the FSD performance, the combined FSD-TSVD equalizer-detector is proposed.

The error performance is investigated by means of simulations in fixed static or quasi

static channels as described in section 8.3.

8.7.1 Zero Forcing (ZF) and Minimum Mean Square Error (MMSE)

The ZF equalizer aims to eliminate the effect of the channel by applying an equalizer

response that is the reciprocal of the CIR. This is basically a process to de-convolve the

signal from the channel. That is for a received faded signal R described by equation

(8.8), the ZF equalizer is defined as

RZF = H∗ (HH∗)−1R, (8.22)
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where H∗ (HH∗)−1 is the Moore - Penrose pseudoinverse of H. The equalized signal

RZF can then be used in conjunction with any of the detectors discussed in chapters 5

and 6.

The ZF can be applied as a joint channel equalizer and symbol detector and the estimated

transmitted symbols at the output of the equalizer-detector will be described by

ŜZF =
⌊
Φ∗H∗Φ (Φ∗HC∗H∗Φ)−1 R

⌉
. (8.23)

Nevertheless, the received signal arrives corrupted by AWGN, therefore, the use of the

ZF equalizer-detector can lead to noise enhancement. ZF equalization is useful for in-

terference limited systems or regions of operation, whereas, applying ZF to noise limited

systems leads to noise enhancement and thus poor error performance.

To compensate for the noise enhancement in ZF equalization, the MMSE equalizer

includes a noise related term. The MMSE equalizer is expressed as

RMMSE = H∗
(
HH∗ +

1

σ2
w

I

)−1

R, (8.24)

where σ2
w is the noise variance and I is the identity matrix. In a similar manner to ZF,

the MMSE equalized signal can be combined with the previously discussed detectors in

chapters 5 and 6 to estimate the originally transmitted symbols. The MMSE can be

used to construct a joint channel equalizer and symbol detector as

ŜMMSE =

⌊
Φ∗H∗Φ

(
Φ∗HC∗H∗Φ+

1

σ2
w

I

)−1

R

⌉
. (8.25)

8.7.2 The TSVD

To overcome the limitations caused by the conditioning of the channel and the SEFDM

system, equalization based on the TSVD is proposed. The TSVD equalizer uses a TSVD

based pseudoinverse of the channel and is expressed as

RTSV D = HζR, (8.26)



Chapter 8. SEFDM in Fading Channels 236

where Hζ is TSVD based pseudoinverse of H derived as

Hξ = VΣ−1
ξ U∗, (8.27)

where U , V and Σ−1
ξ are obtained from the SVD of H as

H = UΣV∗, (8.28)

where U and V unitary matrices whose columns are the eigenvectors of HH∗ and H∗H

respectively and Σ =diag (σ1, σ2, · · · , σN ) , for σi is the ith singular value of H.Σ−1
ξ =

diag (1/σ1, 1/σ2, · · · , 1/σξ , 0, · · · , 0) and ξ is the truncation index.

Furthermore, a joint TSVD based channel equalizer and symbol detector may be derived.

The TSVD equalizer-detector is defined as

ŜZF = bΥHRe , (8.29)

where Υζ
HΦ is TSVD pseudoinverse of the combined channel-subcarriers matrix Υ =

Φ∗HΦ.

Υζ
HΦ = VHΦΣ

−1
HΦξ

U∗
HΦ. (8.30)

The TSVD joint channel equalizer and symbol detector applies TSVD principles to the

matrix Φ∗HΦ that describes the system generator matrix and the channel response.

8.7.3 Numerical Results for Linear Equalizers

The performance of the ZF, MMSE and TSVD joint equalizer-detectors is examined by

numerical simulations. Fig. 8.19, 8.20 and 8.21 depicts the performance of ZF, MMSE

and TSVD joint equalizer-detector in Channels 1, 2 and 3, respectively for different

values of α and number of subcarriers for BPSK and 4QAM input symbols. The recorded

BER curves show that, in general, the performance deteriorates with the increase in the

number of subcarriers and the level of bandwidth compression. In addition, the figures

show that the TSVD equalizer-detector facilitates a superior BER performance to that

of the ZF and the MMSE.
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Figure 8.19: BER performance of SEFDM for different number of subcarriers and α
values in Channel 1.
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Figure 8.20: BER performance of SEFDM for different number of subcarriers and α
values in Channel 2.

Furthermore, examining the performance in the three channels in the figures shows

that the BER performance degrades with the deterioration in the channel conditions,

nevertheless, the advantage of the TSVD over the ZF and MMSE increases. In particular,

Fig. 8.21b, depicting the performance in Channel 3, shows that for BPSK input symbols

the TSVD equalizer-detector supports BER performance close to that of an OFDM

system (case α = 1), but for 4QAM input symbols the TSVD equalizer-detector exhibits

performance that is dependent on α value.

Fig. 8.22 depicts the performance of the TSVD joint equalizer-detector in Channels 1,

2 and 3 for the cases of no CSI, PCE CSI, FCE CSI and perfect CSI. The figure shows
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Figure 8.21: BER performance of SEFDM for different number of subcarriers and α
values in Channel 3.
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Figure 8.22: BER performance of SEFDM system with 16 subcarrier, α = 0.8 with
4QAM input symbol for no equalization, FCE, PCE and perfect equalization in Chan-

nels 1, 2 and 3. Performance of SD is plotted for comparisons.
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that the BER performance with estimated CSI using PCE or FCE is close to the case of

perfect CSI. In addition, Fig. 8.22a and Fig. 8.22b show that the BER performance in

Channel 1 and 2 of the TSVD with perfect CSI is worse than SD with no CSI while for

Channel 3 Fig. 8.22c shows that the performance of the TSVD with any CSI is better

than SD with no CSI but worth than SD with FCE CSI. This indicates that significant

performance degradation is associated with the TSVD joint equalizer-detector even if

perfect CSI is available which in turn indicate further degradations if ZF or MMSE is

used.

8.7.4 The FSD

Linear equalizers are of low complexity, however, are limited in terms of equalization

efficiency. On the other hand ML equalization requires exponential complexity but

results in better BER performance. SD reduces the complexity requirement, yet has

variable decoding time. Therefore, in this section, it is proposed to use the FSD to jointly

equalize and detect the SEFDM signal in fading channel. The FSD equalizer-detector

restricts the SD search to solve equation (8.10) to examine w points at search level and

follows the same steps detailed in section 6.5.1 to estimate the originally transmitted

symbols starting from the ML problem in equation (8.9).

To assess the performance of the FSD equalizer-detector, numerical simulations are

conducted for different system parameters and Channels 1, 2 and 3 described in section

8.3. In all cases the maximum tree width is restricted to 64 nodes.

Fig. 8.23 presents the BER of the FSD equalizer-detector under Channel 1 conditions

and for the cases of no CSI, FCE and PCE estimated CSI and perfect CSI at the

receiver. The figure shows slight BER degradation when compared to the BER of the

SD equalizer-detector. Furthermore, the plots maintain the BER advantage of the PCE

over the FCE for the FSD equalizer-detector.

Fig. 8.24 displays the BER for FSD equalizer-detector under Channel 2 conditions.

When compared to the performance in Channel 1 in Fig. 8.23, degradations of the BER

performance due to the worsening channel conditions is observed under the different

CSI options. Nevertheless, the gap between the SD obtained solution is reduced and the

FSD algorithm provided near optimal performance.
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Figure 8.23: BER performance of FSD for a 16 subcarrier SEFDM system for α = 0.8
and 4QAM input symbols in Channel 1.
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Figure 8.24: BER performance of FSD for a 16 subcarrier SEFDM system for α = 0.8
and 4QAM input symbols in Channel 2.
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Figure 8.25: BER performance of FSD for a 16 subcarrier SEFDM system for α = 0.8
and 4QAM input symbols in Channel 3.

Fig. 8.25 depicts the BER performance of the FSD equalizer-detector under Channel 3

conditions. The BER performance for the different CSI options is within close vicinity

to that of the SD equalizer detector.

Fig. 8.26a and Fig. 8.26b depict the BER performance in Channel 2 with respect to the

number of subcarriers, and different bandwidth compression ratios, respectively. The

figures show that the BER performance degrades with the increase in the number of

subcarriers and the reduction in the bandwidth compression ratio.

8.7.5 The FSD-TSVD

To further improve the performance of the FSD joint equalizer-detector, it is proposed

to combine it with the TSVD as proposed previously for the system in AWGN channel

in chapter 6. The FSD-TSVD joint equalizer-detector starts with obtaining a TSVD

estimate, followed by an FSD search. However, the FSD is modified in a similar manner

as described in section 6.6.1 for SEFDM in AWGN channel.
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Figure 8.26: BER performance of SEFDM system in Channel 2 for a system with
4QAM input symbols
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Figure 8.27: BER performance of the FSD-TSVD vs that of the FSD for a 16 sub-
carrier SEFDM system for α = 0.8 and 4QAM input symbols in Channel 1.
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Figure 8.28: BER performance of the FSD-TSVD vs that of the SD for a 16 subcarrier
SEFDM system for α = 0.8 and 4QAM input symbols in Channel 1.

The performance of the FSD-TSVD joint equalizer-detector is investigated by numerical

simulations in Channels 1 and 2. In all cases the maximum tree width is restricted to

64 nodes. Fig. 8.27 depicts the BER of the FSD-TSVD equalizer-detector in Channel

1. The figure shows the BER advantage of the FSD-TSVD equalizer-detector over the

FSD. To highlight this advantage further, Fig. 8.28 shows the BER performance of the

FSD-TSVD alongside that of the SD. The figure shows that the FSD-TSVD performs

closer to the SD for Channel 1. This improvement is of greater impact in Channel 2, as

shown in Fig. 8.29 that the FSD-TSVD equalizer-detector performs almost the same as

the SD.

Fig. 8.30 depicts the BER performance for N = 24, 32 and α = 0.7−1 in Channels 1 and

2. The figure shows degradation in the performance with the increase in the bandwidth

compression level with less steepness in the case of Channel 2. In addition, Fig. 8.31

depicts the BER for different pairs of α and N values. The figure further confirms

the degradation associated with the increase in the number of subcarriers and/or the

bandwidth compression level. Nevertheless, the figure shows performance with good
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Figure 8.29: BER performance of the FSD-TSVD vs that of the SD for a 16 subcarrier
SEFDM system for α = 0.8 and 4QAM input symbols in Channel 2.
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Figure 8.30: Performance of FSD-TSVD in Channel 1 and 2 for different numbers of
subcarriers and α values for systems with 4QAM input symbols.
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Figure 8.31: Performance of FSD-TSVD in Channel 2 for different numbers of sub-
carriers and α values for systems with 4QAM input symbols.

vicinity to that of OFDM, noting that the FSD-TSVD complexity can be increased to

reduce the gap further. The numerical results indicate the advantage of combining the

TSVD principles with the FSD in improving the error performance. In cases, where lower

BER can be tolerated, this advantage can be translated to reduction in the complexity

of the FSD algorithm (i.e. reducing tree width).

8.8 Discussion and Conclusions

This chapter dealt with the SEFDM system in fading channels. The work covered

modelling the SEFDM system in fading channel, performance investigations and system

design improvements particular to channel estimation and equalization.

First the developed MF based demodulation proposed for the system in AWGN chan-

nel was extended to the system in fading channels. The suitability of this proposal

was verified for operation in fading channels by the investigations of an optimal joint

channel equalizer and symbol detector based on ML criteria. The proposal of the MF
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based demodulation facilitates substantial complexity reduction over original system

proposal where orthonormal bases are generated and used for signal demodulation. The

derivation and numerical investigations of the ML joint equalizer-detector confirmed no

performance penalty associated with the MF demodulator. In addition, the SD algo-

rithm was derived for the case of the MF demodulation. Numerical simulations of the

SD joint equalizer-detector in conjunction with MF based demodulator in static, quasi

static and time varying channels confirmed an identical error performance as that of the

system demodulation with orthonormal bases.

Then, the issue of channel estimation in the case of SEFDM system was addressed. A

new channel estimation for SEFDM system was proposed and evaluated. The estimator

relied on the characteristic of that a portion of SEFDM subcarrier can be mutually or-

thogonal. This was utilized in designing a pilot based channel estimation strategy that

can overcome the ill conditioning that arises in the SEFDM system with the increase

in the number of subcarriers and/or the bandwidth compression level. Different pilot

arrangements were discussed with a focus on their impact on the estimation accuracy

and the practical limitation in terms of the PAPR of the signal. Numerical results have

demonstrated that the developed Partial Channel Estimator (PCE) can achieve supe-

rior performance to estimation techniques relying on full estimation. Results further

suggested that the accuracy of the estimation is affected by the severity of the fading

process. Investigations of the error performance highlighted the impact of the estima-

tion accuracy. The results showed two dimensional improvement as the proposed PCE

technique facilitated error performance improvement and complexity reduction.

The chapter then focused on compensating the fading effects by investigating new equal-

izers for SEFDM system with their performance investigated by numerical simulations

adopting typical channel models and parameters. ZF and MMSE equalization were ex-

amined for SEFDM system. Numerical results have confirmed that the performance of

the ZF and MMSE is poor as expected.

In addition, equalization based on the TSVD was proposed. The TSVD equalizer showed

enhanced error performance when compared to ZF and MMSE, yet still poor except for

low bandwidth compression levels. Therefore, it is concluded that the TSVD gives

the best performance among the three linear equalizers, however, such performance is

restricted in terms of the supported bandwidth compression level and modulation level.
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Then, joint equalization and detection based on the FSD was considered. The FSD

equalizer improved the error performance at low and fixed complexity. Furthermore,

the combined FSD-TSVD joint equalizer-detector is proposed and evaluated. The FSD-

TSVD joint equalizer-detector showed performance improvement specially when com-

bined with PCE estimation.

Overall, the SEFDM system demonstrated performance comparable to that of OFDM for

bandwidth savings of 20% . The SD joint equalizer-detector provided best performance

at the cost of the variable complexity where the FSD-TSVD joint equalizer-detector

performed close to the SD, specially with worsening channel conditions in terms of

longer delays, at a fraction of the SD complexity.

Indeed, further investigations are deemed useful for a wider range of channel scenarios.

Investigations of the interblock interference and the applicability of cyclic prefix and

guard bands can be useful. Having covered channel estimation and equalization, the

work in this chapter, demonstrates the potential of the SEFDM system for operation in

realistic channel environments and highlights a road map towards further investigations

in wireless channels.



Chapter 9

Precoded SEFDM System

9.1 Introduction

The appealing bandwidth savings offered by the SEFDM system proposal is plagued

by the increased complexity due to the loss of orthogonality. All versions of spectrally

efficient multicarrier systems proposed so far employ complex detection algorithms to

extract the transmitted symbols out of the ICI. In this chapter, precoding the SEFDM

signal is proposed. Precoding techniques are proposed in the literature for different pur-

poses such as achieving channel capacity, targeted BER and transmit power in MIMO

systems [119], optimize signal design in the presence of interference in MC-CDMA [192]

and PAPR control in multicarrier systems [193, 165]. The common denominator in pre-

coding techniques is that the signal is manipulated prior transmission using transforms

that bring out desired attributes while adhering to system constraints such as total input

power. The proposed precoding strategy for SEFDM system facilitates simpler detection

for the same bandwidth savings as an equivalent uncoded SEFDM system. The strategy

is based on localizing the effects of the lost orthogonality in a portion of the transmit-

ted symbols. The receiver is in two parts where the detection of the “strong”1 channels

uses scalar division and slicing operation and the rest of the symbols are detected using

complex detectors such as the Maximum Likelihood (ML) or Sphere Decoder (SD). Re-

ceivers that employ hybrid systems have been investigated before for SEFDM detection

to reduce complexity as discussed in chapters 2 and 6 for AWGN channel and chapter

1In this chapter the words strong and weak are used to describe the channels with low and high signal
to interference ratio, respectively.

248
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8 for fading channels. The proposed system herein relies on precoding to localize the

effect of the lost orthogonality in a subset of the transmitted symbols. The dimension

of the complex part of the receiver is pre-determined and is smaller than the original

system. In addition, the coding adds immunity to the symbols against the noise. Simple

architecture of the precoded SEFDM system based on IDFT/DFT blocks for transmis-

sion and reception is proposed. The performance is investigated by extensive numerical

investigations in AWGN and fading channels.

9.2 The Precoded SEFDM Transmitter

The SEFDM transmitter modulates a block of N complex symbols denoted by S onto

the non-orthogonal carriers. In the precoded SEFDM system this block is first coded

based on the knowledge of the correlation coefficients matrix C derived in equation

(3.11) before the SEFDM modulation. As C is Hermitian, it can be diagonalized using

eigenvalue decomposition as

C = UΛU∗, (9.1)

where [·]∗ is the Hermitian transpose, U is a unitary matrix (i.e. U∗U = I) and Λ

is a diagonal matrix that contains the eigenvalues of C. Chapter 3 investigated the

properties of the C matrix. Particularly, it is shown that (1− α)N of the eigenvalues

of C are less than 1 as shown in Fig. 3.10.

The precoded SEFDM signal is designed by multiplying the input symbols S by U, prior

to the SEFDM modulation, as

S̃ = US. (9.2)

The coding matrix U is unitary, therefore the power of symbols is preserved as

∥∥∥S̃
∥∥∥
2
= S∗U∗US = ‖S‖2 , (9.3)

where ‖·‖ denotes the Euclidean norm of a vector. The signal at the output of the

transmitter will be

X = ΦS̃, (9.4)
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Figure 9.1: The Precoded SEFDM transmitter. The incoming symbols are grouped in
blocks of N , coded, SEFDM modulated and converted to the continuous time domain.

and can be equivalently expressed as

X [k] =
1√
α
F−1,ρN/α
k

{
Ŝ
}
, (9.5)

for Q samples where 0 ≤ k < Q−1, where F−1,ρN/α {A} is the ρN/α point IDFT of the

N long sequence A and ρ = Q/N . The SEFDM modulation of the precoded symbols

vector can follow any of the proposed transmitter structures proposed in chapter 4. Fig.

9.1 depicts the IDFT based precoded SEFDM transmitter. The incoming symbols are

first coded to adapt to the characteristics of the system. The IDFT block performs the

SEFDM modulation and the resultant time samples are converted to continuous time

domain by the D/C block.

9.3 The Precoded SEFDM Receiver

Assuming that the SEFDM signal is transmitted over AWGN channel, the received signal

y (t) will be

y (t) = x (t) + w (t) , (9.6)

where w (t) denotes the AWGN term. Now consider an SEFDM receiver that starts by

projecting the incoming signal onto the conjugates of the original SEFDM carriers. For
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Y a vector of the samples of y (t), the collected statistics vector R is obtained as:

R = Φ∗Y, (9.7)

= CS̃ +WΦ, (9.8)

where R is N × 1 vector of collected statistics of the projection of the vector Y onto the

conjugates of the SEFDM subcarriers, C denotes the cross correlation coefficient matrix

derived in section 3.3 and WΦ denotes the vector of the noise samples that are projected

onto the conjugate of the SEFDM subcarriers given by Φ∗. Pre-multiplying equation

(9.7) by U∗ leads to

U∗R = U∗CS̃ +UWΦ

RU∗ = ΛU∗S̃ +WUΦ, (9.9)

the last line is obtained by substitution from equation (9.1). Note that U∗ is unitary,

hence, multiplying with it maintains the same noise power. Substitution of equation

(9.2) in equation (9.9) yields

RU∗ = ΛS +WUΦ, (9.10)

whose elements can be written as

r̂i = λisi +wi, (9.11)

which in turn leads to

ŝi = br̂i/λie , (9.12)

where ŝi is the estimate of the ith transmitted symbol. The previous analysis decomposes

the SEFDM system into N parallel channels. The estimates of all transmitted symbols

are obtained as

ŜP =
⌊
RU∗Λ−1

⌉
. (9.13)

Estimation of the symbols requires scalar division followed by slicing operation. In

addition, if the input symbols are modulated using phase modulations schemes such as

QPSK and 4QAM, a slicing operation applied directly on RU∗ is sufficient to estimate
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transmitter symbols as Corollary 3.2 shows that all the eigenvalues of the C matrix are

positive and real. Furthermore, the estimation of individual symbols becomes directly

linked to the eigenvalue of the C matrix. The quality of the estimates ŝ depends on the

eigenvalues of C. If these eigenvalues diminish the effect from the noise in the system

will greatly obstruct the successful estimation of the transmitted symbols. This suggests

that all the channels that correspond to the relatively large eigenvalues will exhibit better

BER performance compared to the channels with small eigenvalues. This can be seen

by including the eigenvalues effects in the theoretical QPSK BER formula

Pe (i) = 0.5 ∗ erfc
(√

λi
Eb

N0

)
, (9.14)

where Pe (i) refers to the probability of error of the ith channel defined in equation 3.2

and erfc (·) is the complementary error function. The modified BER formula considers

the change in the signal to noise ratio for the decomposed channels that is created by

the multiplication with the eigenvalues. From the eigenvalues of the C matrix it is

noted that approximately αN of the transmitted symbols experience almost no power

drainage. Nevertheless, the number of the relatively large eigenvalues can be altered by

modifying the value of α used to generate the coding matrix U and is further discussed

in section 9.4.

Depending on the value of α used for the precoding, (1−α)N of the estimates obtained

from the scaling and slicing operation are discarded and re-estimated based on the

accepted αN estimates and a new set of statistics. The fresh set of statistics is obtained

by the projection of the received signal onto an orthonormal set of bases. The bases

are chosen so as to alleviate the effect of the precoding on the remaining channels.

In other words, the goal of the projection is to yield a linear model that boosts the

chance to detect correctly the remaining symbols. It is proposed here to generate this

set of bases by applying QR decomposition, which is equivalent to using Gram Schmidt

orthonormalization process, on a desired system generator matrix. The choice of the

system generator matrix will be clarified further with examples in next sections. An

orthogonal matrix Q is obtained from the QR decomposition

QR = C, (9.15)
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where Q is a unitary matrix, R is an upper triangular matrix and C is the system

generator matrix which includes the coding matrix U, thus given as C = ΦU. Thus, the

signal statistics denoted as RQ are obtained as

RQ = Q∗Y
′

, (9.16)

= MS +W, (9.17)

where Y
′
represent a shifted set of time samples of y (t), M represents the projection of

the SEFDM carriers onto the orthonormal set of bases represented by the columns of

Q and W denotes the projected noise term. Now express the vector of estimates of the

transmitted symbols in the precoded SEFDM as

Ŝ = ŜML ∪ ŜP , (9.18)

where ŜML is (1− α)N × 1 vector obtained by performing ML detection of the complete

set of transmitted symbols based on the knowledge of ŜP . The ML detection for the

remaining symbols is defined as

Ŝ = min
∥∥∥RQ −M

[
S : ŜP ∈ S

]∥∥∥
2
, (9.19)

which reads as the estimates vector Ŝ that minimizes the norm and contains the estimates

ŜP . The matrix M can be partitioned to M =
[
M̂ MP

]
, where

M̂ = M [1 : N, 1 : (1− α)N ]

and

MP = M [1 : N, (1− α)N + 1 : N ]

and Ŝ will be

Ŝ = min

{∥∥∥R− − M̂ŜML

∥∥∥
2
}
, (9.20)

where R− = RM − MP ŜP . From equation (9.20) it is clear that the dimension of the

ML detector will be G(1−α)N instead of GN where G is the constellation cardinality.
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Fig. 9.2 shows the architecture of the proposed SEFDM receiver which consists of two

reception streams. The first reception stream starts by projecting the incoming signal

onto the conjugate subcarriers as in equation (9.7) as it is the case with the MF based

demodulator proposed in chapter 6, therefore the projection is realized by the N/α point

DFT block according to the equation

R [k] =
1√
Q

Q−1∑

k=0

Y [k] exp

(−j2πnkα

Q

)

= FN/α
k {Y } for 0 ≤ k < Q, (9.21)

where FN/α {A} is the N/α point DFT of the N long sequence A. The DFT outputs are

then processed as in equation (9.9) to equation (9.12) in the Scalar Division and Slicing

Block which produces αN estimates that are taken forward as outputs and (1− α)N

estimates that are discarded. That is the symbols that receives apparent power boost are

kept and symbols that experience power depletion are discarded and re-estimated via the

second reception stream. The second reception path starts by collecting statistics of the

incoming signal in the Demodulator 2 block which is proposed to use orthonormal bases

in this work. Then, a detection algorithm that considers the αN symbols estimated in the

first reception stream to reduce the search space to (1− α)N . The detection algorithm

for the second path can be ML or SD with reduced search space, where simpler detection

arrangements are proposed in the next section.

9.3.1 Layered ZF and Iterative Cancellation (IC)

As discussed in previous section, (1− α)N of the transmitted symbols are estimated

based on the knowledge of αN of the symbols. The remaining symbols are described by

the equation

R− = M̂ŜML + Ŵ , (9.22)

where Ŵ denotes the noise after subtracting the strong channels. A simple approach to

estimate ŜML is by applying ZF principles as

ŜML =
⌊
M̂−1R−

⌉
. (9.23)
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Figure 9.2: The SEFDM receiver. Incoming signal is projected, demodulated and decoded. The discarded symbols are then re-estimated using
the detector block which can employ ML or SD or any other algorithm that accounts for the ICI in the system.



Chapter 9. Precoded SEFDM System 256

This is termed here Layered ZF as the symbols are detected in two steps; first the pre-

coded channels and then the remaining channels are estimated based on the knowledge

obtained from the first stage.

Furthermore, the triangular structure of the M̂, suggests that the estimation of the

symbols in ŜML can be realized iteratively in a similar approach as Iterative Cancellation

suggested in [57]. At the ith level the corresponding symbol is found as

Ŝi,ML =

R
−
i − 1

m̂i,i,

[
m̂i,i+1, · · · , m̂i,(1−α)N

]




Ŝi+1,ML

...

(1− α)Ni,ML







. (9.24)

The performance of the Layered ZF and IC detectors is investigated by means of nu-

merical simulations in section 9.5 alongside ML detection.

9.4 The Code Design and Precoding Effect

The precoding proposed here falls in the category of unitary transformations. Basically,

it is a transformation that maps the underlying system to itself while preserving its inner

product. Nevertheless, in order to optimize the design of the precoded system, an inves-

tigation of the effect of coding on the re-arranged system can be useful. The precoding

facilitates high performance for the relatively “strong” channels, thus the main concern

here is to improve the detectability of the “weak” channels. At this end, the conditioning

of the system describing the “weak” channels becomes crucial for its performance. In

particular, the effects of the precoding on the singularvalues/eigenvalues structure of the

system as the re-distribution of the energy may alter these values. The condition number

may be the same but for different values of the minimum and maximum eigenvalues.

Looking at the precoded demodulation only, it is clear that it results in performance

degradation for the “weak” channels, therefore, it becomes necessary to design the codes

so as to facilitate good performance for these channels through the second detection

path.

One way to improve the detectability of the “weak” channels is by applying a unitary

transform that results in a better re-structuring of the system. A key insight to design
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differentiated coding spaces rely on the observation that an SEFDM system with any

α value, contains the samples of any other systems with lower α value provided that

the systems have the same number of subcarriers and symbol duration. Theorem 9.1

provides the proof to this insight.

Theorem 9.1. The time domain signal of an SEFDM symbol with symbol duration of

T and bandwidth compression α1 contains the time domain signal (compressed in time)

of an SEFDM symbol with same number of subcarriers, symbol duration and bandwidth

compression α2 and carrying the same input symbols, if α1 > α2.

Proof. Express one SEFDM symbol for both systems as xα1 (t) and xα2 (t) as

xα1 (t) =
1√
T

N−1∑

n=0

sne
(j2πnα1t/T ), (9.25)

and

xα2 (t) =
1√
T

N−1∑

n=0

sne
(j2πnα2t/T ). (9.26)

Equation (9.26) can be written as

xα2 (t) =
1√
T

N−1∑

n=0

sne
(j2πnα1(α2/α1)t/T ), (9.27)

which leads to

xα2 (t) = xα1

(
α2

α1
t

)
. (9.28)

For α1 > α2, xα2 (t) is completely contained within xα1 (t).

This insight shows that the choice of the samples set for any SEFDM system can be

designed to reflect a different system with smaller bandwidth. This insight relies on the

duality of the time and frequency spaces and is directly linked to the signal generation

principles in SEFDM proposed in chapter 4 where the signal covers portions of the

unit circle of complex z-plane. Fig. 9.3 depicts the time domain signals of two SEFDM

systems to highlight the insight proved in Theorem 9.1. The figure plots the time samples

versus their respective indices within one SEFDM symbol transmission time for systems

with α = 1 and α = 0.5. For the case of α = 1, 20 time samples are shown whereas the

case of α = 0.5 shows 10 samples. Both systems are sampled uniformly in the interval
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Figure 9.3: Real and imaginary parts for time samples for system with α = 1 and
0.5, showing 20 and 10 samples per one SEFDM symbol respectively.

[0− T ]. The downgrade in the sampling rate is consistent with the reduction in the

bandwidth in the case of α = 0.5. The figure demonstrates that the real and imaginary

parts of the time samples have the same values but occur at different instants of time.

The outcome of the discussed insight is that the precoding system need not be restricted

to the exact value of α in the system. That is the precoding can be performed using

a different α value where the receiver needs to invoke the time signal (or samples)

corresponding to the coding αc in order to achieve the coding advantage revealed in

equation (9.12). Thus, the generalized coding matrix U is defined from

Ccode = UΛcodeU
∗, (9.29)

whereCcode is the correlation matrix of the subsystem corresponding to αc where αc ≤ α.

Examining the plots of the eigenvalues and singularvalues of the SEFDM system under

different coding arrangements, indicate that it is useful to use different coding space to

improve the error performance. Figs. 9.4 to 9.6 depict the eigenvalues and singular-

values to highlight the effects of the different precoding schemes. Fig. 9.4 depicts the

eigenvalues of an 8 subcarrier system with α = 0.85 under three different coding spaces

corresponding to equivalent systems with α = 0.85, 0.7 and 0.5. In this figure and sub-

sequent figures the values are connected with dashed faded lines to aid the visibility of

the points. The figure shows that coding with α = 0.5 results in fewer strong channels,

yet with highest peak values, whereas coding with the same system α = 0.85 resulted
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Figure 9.4: The eigenvalues of the precoded system for 8 subcarrier system with
α = 0.85. Three coding schemes are displayed corresponding to αc = 0.85, 0.7 and 0.5.
The legend shows the matrix whose eigenvalues are plotted and the corresponding αc.

in more moderately strong channels with the lowest peak values. The small eigenvalues

correspond to the “weak” channels that are detected through the other reception path

as explained in previous section. Fig. 9.5 depicts the diagonal elements of the matrix

M. These elements represent the singularvalues of the decomposed matrix. The figure

shows that coding with the same α maintains the same distribution of the singularval-

ues, therefore, the detection of the “weak” channels will suffer. However, coding with

a different code space (αc = 0.7, 0.5) resulted in a pattern of the singular values of the

“weak” channels similar to the system without coding. Coding with α = 0.5 resulted in

maximum singular values higher than the corresponding one in the original system.

To further highlight the different codes effects, Fig. 9.7 presents a map of the Euclidean

distance between all possible combinations of BPSK input symbols for 4 subcarrier

system with α = 0.8. Basically, the Euclidean distance between the SEFDM symbols is

the dominant factor in the performance of the ML detector and consequently an upper

bound for other detectors. Examining the map of the original and coded systems in Fig.
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Figure 9.7: Euclidean distance between the 42 possible SEFDM symbols for 4 sub-
carrier system, α = 0.8 carrying BPSK input symbols.

9.7a and 9.7b respectively, shows that the precoding results in increasing the distance

between some candidate SEFDM symbols and reduces the distance for neighbouring

symbols. Examining Fig. 9.7c shows that precoding with a different code space results

in a milder effect in terms of the increment or reduction of the distance between the

candidate solutions, thus indicates better immunity against noise.

Furthermore, the spectrum of the precoded signal is examined. Theoretically, multipli-

cation by a unitary matrix should not change the power spectral density of the signal.

Numerical verifications show that the spectrum of original SEFDM signal and the coded

one are very close, as shown in Fig.9.8. Nevertheless, it is noted that the peaks in the

precoded spectrum are less than the original one.
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Figure 9.9: Instantaneous power for SEFDM signal with and without the coding.

Finally the power of the modulated symbol in the case of coding is examined and com-

pared to the original system. Fig. 9.9a shows the instantaneous power for an SEFDM

symbols before and after the coding. The plot shows that the distribution of the power

within transmission time for the coded symbol is different. In addition, Fig. 9.9b shows

the peak and average power for 100 SEFDM symbols. It can be seen that in most cases

the peak power of the coded signal is less than the original. This observation is further

confirmed by examining the CCDF of the PAPR exceeding a threshold level γ depicted
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Figure 9.10: PAPR of SEFDM system with and without precoding for 10 subcarrier
system with 4QAM input symbols.

in Fig. 9.10 for the coded and original signal. The figure shows that the precoded

SEFDM exhibit lower PAPR than the original one.

9.5 Performance Investigations

Performance of the precoded SEFDM system was tested by extensive numerical sim-

ulations for systems carrying 4QAM modulated symbols for different values of α and

numbers of subcarriers. The simulations aimed to verify the expected BER reduction.

Fig. 9.11 shows the BER performance of the individual channels for different values of α,

obtained by performing direct slicing for the complete set of carriers based on equation

(9.13) and calculating the BER per channel based on statistics on the symbols estimated

at that channel index. Fig. 9.11 shows that a number of the individual channels can

experience BER that is lower than OFDM case. The number of the “strong” channels

and their BER performance is proportional to α. That is with the increase in α, the

BER rate per channel gets closer to an average value for the case of α = 1, which is

OFDM case, while the number of channels with lower BER decreases. The estimates

corresponding to the “strong” channels exhibited lower BER due to the apparent power

boost they receive from the discarded channels. Then the estimates corresponding to
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the “weak” channels are discarded and re-estimated by applying detection algorithm

on a fresh samples set from the incoming signal with the aid of the retained estimates

corresponding to the “strong” channels. Fig. 9.12shows the BER for the simulated

individual channels with respect to Eb/N0 and the corresponding BER performance

curves based on equation (9.14). It is worth emphasizing that the energy per bit is

calculated based on the input symbols prior to the coding and the SEFDM modulation.

The modification of the theoretical BER formula is to reflect the signal to noise ratio

changes that appears after demodulation in the decomposed channels in the form of

multiplication with the eigenvalues of the C matrix. Again, the results in Fig. 9.12

confirmed that the BER performance of the individual channels is different as depicted

in Fig.9.12. Symbols corresponding to channels with the relatively high eigenvalues

exhibited low BER compared to the symbols corresponding to the “weak” channels as is

expected from the BER formula in equation (9.14) which is depicted in Fig. 9.12. .

Fig. 9.13 depicts the BER performance with respect to α. The figure shows that SEFDM
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Figure 9.12: BER per individual channel from simulation and formula.

systems with α ≥ 0.8 and 4, 8 subcarriers can outperform ML detected uncoded system

in terms of the BER, thus demonstrating the advantage of the coding. However, this ad-

vantage requires an increase in the receiver complexity over OFDM yet less than original

SEFDM requirement. For the SEFDM system with 4 subcarriers, BER performance,

superior to ML detected SEFDM and OFDM, can be achieved by simply utilizing a

shifted samples set as shown in Fig. 9.13a. Using different code space results in extend-

ing the improved BER performance to bandwidth savings of 30% as shown in Fig. 9.13b.

Meanwhile, Fig. 9.13c shows that this coding approach (i.e. shifted samples) is not suf-

ficient when the number of subcarriers is increased to 8. In this case, precoding with a

different coding space resulted in performance better than uncoded SD detect SEFDM

system with the same number of subcarriers as shown in Fig. 9.13d. In addition, the

figures depict the performance of the layered ZF and IC detectors. In particular, the

IC detector shows performance that approaches ML detection for the case of 4 subcar-

riers specially when using different coding space. With the increase of the number of

subcarriers the performance of the IC shows degradation specially when different coding

space is used. The figures show that for α ≥ 0.9 the layered ZF and IC achieve the same

ML performance. Furthermore, Fig. 9.14 depicts the error performance for 4, 8, 12 and
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Figure 9.13: BER of precoded SEFDM for 4 and 8 subcarriers for α = {0.6− 0.9},
α = 1 gives performance of uncoded OFDM system.

16 subcarriers. The figure indicates performance degradation with the increase in the

number of subcarriers

Fig. 9.15 depicts the performance of the precoded system with respect to Eb/N0. The

figure shows that for system with few subcarriers it is possible to achieve performance

that is better than OFDM for substantial bandwidth savings. With the increase in

the number of subcarriers and to maintain the improved error performance it is needed

to reduce bandwidth savings, however it is considered a development as it supported

close to ML performance to systems with number of subcarriers that are challenging to

implement or simulate.
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Chapter 9. Precoded SEFDM System 268

9.6 Complex Sphere Decoder (CSD)

The exhaustive ML detection poses a limitation on the achievable system size, despite

the improvement facilitated by the coding. Therefore, Sphere Decoder (SD) is proposed

to reduce complexity requirements. To suit the structure of the precoded SEFDM,

the Complex Sphere Decoder (CSD) is proposed to maintain the order of the symbols

estimated via the division and slicing operations whereas the real SD will require mixing

already decoded symbols with the ones to be decoded.

The complex sphere decoder (CSD) follows the same rule for SD in that it solves the ML

problem by examining the points that satisfy a radius constraint. The main advantage

of CSD is that there is no need for the real decomposition. Complex symbols denoted as

s = sRe + jsIm are decoded directly starting with QPSK and then by expressing higher

level symbols as combinations of scaled and rotated QPSK symbols [83, 194, 195, 36].

Starting from equation (9.20), the detection of the symbols ŜML is pursued using CSD

assuming 4QAM input symbols. The 4QAM input symbols can be expressed as

si = rejθi, θi ∈
{
π

4
,
3π

4
,
5π

4
,
7π

4

}
. (9.30)

The candidate points lie on the circle of a radius r =
√
2, thus the input symbols vector

S is equivalently expressed by its phase value as Θ = [θ1, · · · , θN ]. Based on equation

(9.20), the CSD algorithm solves the following equation

min
∥∥∥M̂

(
r̂ejΘ̂ − rejΘ

)∥∥∥
2
≤ g, (9.31)

where r̂ejΘ̂ is the representation of R−/M̂ in polar coordinates and g is the sphere

radius. Noting that M̂ is an upper triangular matrix, the Cholesky decomposition of

the RSD is eliminated and the CSD search starts from the ηth level, where η = (1− α)N

, by solving the inequality

∥∥∥r̂ηejθ̂η − rejθη
∥∥∥
2

≤ g

m̂2
η,η

, (9.32)

r̂2η + r2 − 2r̂ηr cos
(
θ̂η − θη

)
≤ g

m̂2
η,η

. (9.33)



Chapter 9. Precoded SEFDM System 269

or equivalently

cos
(
θ̂η − θη

)
≥ 1

2r̂ηr

[
r̂2η + r2 − g

m̂2
η,η

]
= κ. (9.34)

The value of κ, decides the existence of points within the search sphere [83]. If κ > 1,

there are no points within the search sphere and for κ < −1, the search sphere contains

all constellation points. For −1 < κ < 1 , the range of candidate points is given by

(
θ̂η − arccos (κ)

)
≤ θη ≤

(
θ̂η + arccos (κ)

)
. (9.35)

The bounds can be transformed to integer search by subtracting π/4 and multiplying

by 4/2π as

⌈
2π

4
θ̂η − arccos (κ)− π

4

⌉
≤ ϑη ≤

⌊
2π

4
θ̂η + arccos (κ)− π

4

⌋
, (9.36)

where ϑη ∈ [1, 2, 3, 4], ϑη = 2π
4 θη +

π
4 . This is designed for 4QAM constellation but can

be extended to other modulation levels that can expressed as combinations of 4QAM.

The search continues in the same manner as the RSD explained in section 5.5 where at

each level the candidate points are selected and the radius is updated accordingly.

9.7 CSD Results

Numerical simulations of precoded systems where the “weak” channels are estimated

using the CSD algorithm are conducted. Fig. 9.16 shows the performance with respect

to Eb/N0. The figure shows that near optimum performance can be achieved for sys-

tems with low bandwidth savings. In addition, the precoded system shows improved

performance for regions with low Eb/N0.

Fig. 9.17 shows the BER for different values of α. The figure shows that performance

better than OFDM can be achieved for systems supporting bandwidth reduction by

10% or less. Furthermore, the figure shows that the advantage of the use of the CSD

becomes clearer with the reduction in α whereas Layered ZF and IC provided the same

performance for bandwidth savings of 5% or less.

Fig. 9.17 shows the BER with respect to the number of subcarriers. The figure shows

that the performance degrades with the increase in the number of subcarriers as expected
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and discussed in chapter 3. In addition, the figure shows that the advantage of the use

of the CSD over Layered ZF and IC is increased with the increase in the number of

subcarriers.

9.8 Precoding in Fading Channel

The precoding concepts can be extended to fading channels. In this case, the code is

designed with considerations of the channel, therefore, channel state information (CSI)

at transmission side is needed. Such information is typically obtained in the form of

feedback from receiver. In systems with symmetric channels, a transceiver may use the

CSI obtained in the receiver part. In this case the coding is performed based on the

relationship

UΛU∗ = Φ∗H̃∗H̃Φ, (9.37)
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Figure 9.19: BER for precoded system in fading channel for α = 0.8, N = 4 in
Channel 1 and Channel 2. Precoding uses αc = 0.5.

where the matrix H̃ represent the CSI, thus it can be the exact channel matrix, an

estimate of the channel matrix or an identity matrix in case of no CSI or AWGN channel.

The receiver will have the same structure as the system in AWGN, where αcN of the

symbols are estimated using division and slicing operations and (1− αc)N are estimated

using joint channel equalizer and symbol detector based on ML or SD as derived for the

uncoded system in sections 8.5 and 8.5.1.

9.8.1 Numerical Results

As a proof of concept numerical simulations for precoding in fading channel are presented

using ML joint equalizer-detector for the discarded (1− αc)N symbols. The simulations

include precoding with perfect CSI, estimated CSI and no CSI at transmitter end. At

the reception side, perfect CSI is assumed in order to exclude any effects that may arise

due to equalization with some CSI inaccuracies. Fig. 9.19 shows the BER of a precoded

system detected with ML in Channel 1 and Channel 2 described in section 8.3, with

the parameters listed in Table. 8.2. Plots for both channels show that ignoring channel

effects in the precoding leads to performance degradations, whereas, using estimated

CSI led to performance close to the full CSI at transmitter case. Moreover, both figures

demonstrated the coding advantage by showing that the precoded system with full or

estimated CSI exhibited BER advantage equivalent to 1 dB power boost when compared

to uncoded system. Furthermore, performance in Channel 1 show that precoding with no

CSI resulted in performance better than uncoded system where performance in Channel
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Figure 9.20: BER for precoded system in fading channel for N = 8 subcarriers in
fading channel. Precoding uses αc = 0.5.

2 indicate that precoding with no CSI is the same as the uncoded system, which indicates

that the coding advantage in case of no CSI may be dependent on the channel conditions.

Fig. 9.20 depicts the performance for different values of α. The plots show the precoding

advantage in terms of improved BER performance over that of OFDM for bandwidth

savings up to 30%.

9.9 Conclusions

In this chapter a new precoding technique based on the knowledge of the intercarrier in-

terference is proposed for the SEFDM system. The coding adapts the SEFDM signal to

enable access to individual carriers by transforming the SEFDM modulation to parallel

independent channels. Depending on the value of α it is shown that the coding results

in that some of the channels experience amplification while some experience power de-

pletion. Detection of the symbols corresponding to the relatively “strong” channels was

achieved in the form of scalar division and/or slicing operations. Whilst, the rest of sym-

bols were estimated using a sophisticated detector such as Maximum Likelihood (ML) or

Sphere Decoder (SD) where the use of the Complex Sphere Decoder (CSD) is proposed

to support systems with more subcarriers and lower complexity. One main advantage

of the precoding is that the complexity of the detector is reduced due to the reduction
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of the size of the problem. An implementation of the system using the IDFT/DFT op-

eration was proposed which can be specially useful when considering systems that are

based on OFDM technology as the two systems employ many similar building blocks.

BER simulations confirmed performance superior to other detection strategies for SEFDM

system and similar and in some cases superior to OFDM. For bandwidth savings of 10%

or less, the precoded system showed improved BER performance over OFDM with min-

imal increase in complexity. The numerical results showed that this advantage can be

achieved for systems with relatively large numbers of subcarriers ≥ 20. For systems with

few subcarriers (˜4), it is shown that the precoded system can deliver improved BER

performance over OFDM for substantial bandwidth savings (∼ 30%) . This enhance-

ment is facilitated by the coding which effectively redistributes the power of the symbols

such that some of the symbols suffer less from the AWGN and then these symbols are

used to estimate the highly attenuated symbols.

The concepts of precoding were extended to fading channel conditions. Numerical inves-

tigations of ML joint equalization and detection for the “weak” channels were conducted.

Results demonstrated the advantage of precoding in fading channels. Nevertheless, the

ML joint equalizer-detector restricted the dimension of the problem. Future work may

consider using CSD to test the concepts for larger systems.

Last, the precoding strategy proposed here also allows for the trade off between com-

plexity and BER performance by altering the coding space which in turn decides the

size of the two reception streams.



Chapter 10

Conclusions

This thesis investigated the Spectrally Efficient FDM system (SEFDM) which proposes

enhanced spectrum utilization relative to Orthogonal Frequency Division Multiplexing

(OFDM) system. Spectral efficiency is increased by relaxing the orthogonality condition

while maintaining the same transmission rate per individual channel, hence, for the

same bandwidth allocation SEFDM offers higher throughput than OFDM. SEFDM, as

a concept, is relatively new with some disconnected historical pointers, therefore, many

issues remain open and untackled. In general, the loss of orthogonality brings along

many design and implementation challenges. Previous work indicated that the SEFDM

signal exhibited some characteristics that needed further modelling. The generation of

the signal remained complicated while the reception followed complex algorithms that

can be challenging to realize in hardware. All these issues required attention in order

to assess and then realize the potential of the SEFDM system. To address these points,

the work in this thesis was conducted in two main parts; firstly the concept of non-

orthogonal communications with its transmitter and the receiver design were addressed

in order to first establish the needed foundation and then to propose realistic alternatives

to the transmission and reception problem. To achieve that, mathematical modelling,

system design and assessment were carried under the assumption of AWGN channel.

The second part, addressed practical limitations in terms of the Peak to Average Power

Ratio (PAPR) and how to control it, the performance of the SEFDM system in fading

channels with a focus on equalization and channel estimation and finally the precoding

of the SEFDM signal.

275
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As a starting point, the SEFDM signal was mathematically modelled and studied. The

work started by building a discrete model of the system. Based on this model, the In-

tercarrier Interference (ICI) created by the loss of orthogonality was derived with closed

form formulas. The structure and behaviour of the ICI terms were identified and used

in the development of the receiver in subsequent work. Following that, the mathemat-

ical model of the received SEFDM signal was constructed and was shown to rely on

the same parameters irrespective of the use of correlation receiver or matched filtering.

The characteristic of the SEFDM received signal was proved to be dependent on the

ICI matrix, as such the properties of the system can be examined by investigating this

matrix. Investigations of the ICI matrix proved that although the system will not be

singular, it can appear singular due to the finite resolution of computation machines. In

addition, the conditioning of the SEFDM system was investigated through investigating

the conditioning of the ICI matrix. The conditioning of the system was proved to deteri-

orate significantly with the increase in the number of subcarriers and/or the bandwidth

compression level.

Secondly, the generation of the SEFDM system was addressed. Based on the discrete

SEFDM signal model, an efficient framework for the realization of such signal using

the standard Inverse Discrete Fourier Transform (IDFT) was proposed. The frame-

work resulted in the design of three transmitter structures that relied on standard IDFT

operations, where each can be efficiently implemented with the IFFT algorithm. The

proposed transmitters substantially reduces the complexity of SEFDM signal genera-

tion. The complexity of the SEFDM generation approaches that of OFDM and the

transmitter structures employ building blocks similar to OFDM. Furthermore, the de-

signed algorithm can facilitate the IDFT design for any Frequency Division Multiplexed

(FDM) signal with arbitrary subcarrier spacing such as the MASK OFDM system. Hard-

ware realizations of the transmitters based on the proposed designs have already been

developed and tested at UCL.

The work progressed to focus on the reception side and the demodulator which is the

first of the two components of the receiver was addressed. The use of demodulation

based on Matched Filtering (MF) was proposed. The MF based demodulator uses the

same subcarrier structure and as such was designed following the principles developed

for the transmission end, using standard Discrete Fourier Transform (DFT) operations.
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The introduction of the MF based demodulation led to the elimination of the orthonor-

malization step and the standardization of the correlation stage which requires a custom

designed bank of multipliers and adders which are now achieved with the DFT with a

similar complexity as that of the transmitter. That is, the significance of the DFT de-

modulator is not only the reduction of complexity but also the standard operation, thus

the system becomes well suited for implementation. The optimal solution for the MF

demodulated signal in AWGN channel was derived. This solution aims to minimize the

probability of error and was designed to include the effect of the colouring of the noise

which occurs due to the non-orthogonal frames used at the demodulation stage (i.e. the

non-orthogonal subcarriers). The optimal solution follows Maximum Likelihood (ML)

criteria. Numerical investigations of the derived solution using an exhaustive search

algorithm demonstrated that the same error performance of an SEFDM system with

orthonormal bases is achieved. This proved that the MF demodulator achieves sub-

stantial complexity reduction at no premium at performance. To further reduce the

complexity of the detection, the Sphere Decoder (SD) algorithm was proposed to solve

the derived optimal solution. Numerical investigations again demonstrated the same

error performance and complexity requirement for the SD detector as for an SEFDM

system with orthonormal bases. The outcome of this work is that the complexity that

used to be associated with the demodulation stage of SEFDM receiver, in the form of

orthonormalization operations and the system specific bank of correlators, is eliminated

with no effects on performance. This stage now uses standard DFT operations where

three arrangements with different sizes and numbers of DFT blocks were proposed to

offer flexibility. At this point, all additional complexity associated with the SEFDM

system when compared to the OFDM system is localized at the detection end.

The issue of the detection was addressed by proposing low complexity detectors with im-

proved performance. In particular, the design of improved linear detectors was achieved.

Design of the Truncated Singular Value Decomposition (TSVD) based detector led to

improved error performance at the same complexity as for ZF detection. The use of

TSVD for SEFDM detection was motivated by the findings of the mathematical study

of the system. As the SEFDM system is classified as an ill conditioned system, the pro-

posal of TSVD came to address this issue and alleviate the effects of the ill conditioning

on the generated estimates. The TSVD detector was shown to provide substantially
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improved performance over ZF and MMSE as expected and to support large number of

subcarriers without further performance deterioration.

Furthermore, another linear detection algorithm was designed and termed Selective

Equalization (SelE). The introduction of the SelE detector was motivated by the fact

that the ICI in the system is in inverse proportion to the distance between the subcar-

riers in frequency. Therefore, the SelE detector is designed to account for selected ICI

contributions that exceed a pre-determined level. Numerical investigations of the SelE

detector have shown improved performance over ZF and MMSE for BPSK and 4QAM

symbols and over TSVD for BPSK symbols. The SelE is simpler than the TSVD as

it does not require the SVD operation and relies on inversion of the matrix containing

the selected ICI contributions where all proposed detection techniques, save the ML,

require matrix inversion. However, when the inverse of a matrix is realized with an SVD

operation, the TSVD and SelE require the same complexity.

Despite the substantial BER performance improvement over ZF and MMSE, the TSVD

and SelE linear detectors do not provide the same quality of communications as ML and

SD. On the other hand, the use of SD is plagued by the variable complexity that renders

the implementation task to be overly demanding in terms of size and computational re-

source utilization, therefore, the use of the Fixed Sphere Decoder (FSD) was proposed.

Numerical investigations have shown that the FSD provided improved sub-optimal per-

formance over linear detectors with fixed complexity and allowed a trade off between

performance and complexity. In addition, it was proposed to combine the FSD with the

TSVD detector to bridge the performance gap. The FSD-TSVD detector achieved near

optimum performance for bandwidth savings of 25% and imposed an acceptable 2.5 dB

power penalty for savings of 35% at BER of 10−3 with fixed and substantially reduced

complexity.

The outcome of the first part of the thesis is in the proposal of different options for an

end to end SEFDM system in AWGN channel. The proposed system requires minimal

complexity increment at transmission end compared to OFDM. Demodulation is of sim-

ilar complexity to the transmitter where all the effort is localized at the detection stage.

Reduced complexity alternatives that facilitate a trade off between error performance

and complexity were proposed and shown to provide near optimum performance with

low and fixed complexity.
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The second part of the thesis commenced with investigations of the PAPR of the SEFDM

system. It was found that in the SEFDM system the PAPR decreases with the band-

width compression factor α. Clipping was investigated to provide an insight into the

performance of SEFDM system without controlling the PAPR. Clipping increased the

out of band emission, while the in band distortion caused by clipping led to a significant

increase in the BER where the SD detector exhibited 4 dB power penalty at a BER as

high as 2%. Therefore, the control of the PAPR was addressed by applying Selective

Mapping (SLM) and Partial Transmit Sequence (PTS). Both systems were found to

achieve PAPR reduction. Moreover, a new technique termed SLiding Window (SLW)

PAPR control technique was designed for PAPR control in SEFDM system. The tech-

nique was based on the fact that the SEFDM signal is periodic with a period greater

than the actual symbol period. Hence, the transmitted symbol can be chosen by apply-

ing a sliding time window of the SEFDM symbol duration over the total signal period.

A transmitter design incorporating the SLW was proposed. Performance simulations

confirmed that SLW achieves PAPR reduction up to 4 dB compared to 2-3 dB in the

literature.

The SEFDM signal in fading channel was then studied. As a starting point, the pro-

posal of matched filtering for SEFDM demodulation was extended to the case of fading

channel and the corresponding optimal solution was derived. The MF was matched to

the SEFDM generator system without including the channel. The derived optimal joint

channel equalizer and symbol detector in this case was based on ML criteria. Then, the

use of SD for joint channel equalization and symbol detection is extended to the MF de-

modulation case. Numerical investigations confirmed that the MF based demodulation

joint equalizer-detector in the form of ML and SD achieved the same error performance

as systems with orthonormalization. This way the complexity reduction achieved in the

case of the system in AWGN was extended to the fading channel case. Furthermore,

the channel estimation in the SEFDM system was considered. The findings about the

conditioning and the ICI in the system from the mathematical framework were utilized

to design an enhanced channel estimator, termed Partial Channel Estimator (PCE). The

PCE achieved more accurate estimates and thus facilitated improved error performance

and complexity reduction. Furthermore, joint channel equalization and symbol detection

with linear detectors was studied in detail. Particularly, ZF, MMSE and TSVD were

investigated with TSVD achieving best performance of the three yet still sub-optimal.



Chapter 10. Conclusions 280

Then, the FSD joint equalizer-detector was investigated to benefit from the fixed com-

plexity and later combined with the TSVD. Numerical results have shown that the FSD

provided improved BER performance over linear joint equalizer-detectors, whereas the

FSD-TSVD resulted in near optimum performance when combined with the use of PCE

for channel estimation. The conducted investigations indicated that there is good poten-

tial for the SEFDM signal in wireless communications. The signal maintained the same

error performance trends as in AWGN in terms of performance degradation with the

increase in bandwidth compression levels. Nevertheless, the deviation from the OFDM

case was less than in AWGN channel, indicating that the adverse effects of the loss of

orthogonality may not be dominant in the presence of fading conditions.

Finally, manipulations of the SEFDM signal prior to transmission was attempted to

boost error performance and reduce complexity. Precoding of the SEFDM signal was

proposed. The codes were designed so that on the reception side the effects of the loss

of orthogonality were localized in a subset of the transmitted subchannels that require

complex detection in the form ML or Complex Sphere Decoder (CSD) with the rest of

the symbols detected with simple linear detector. In addition, precoding in the case

of fading channel was addressed. Numerical investigations have shown that the use of

precoding improves the performance for specific values of bandwidth compression levels.

Two important improvements of this arrangement are error performance boost for some

of the channels and the reduction of the complexity of the overall system.

To summarize, the appealing SEFDM concept is challenged by the loss of orthogonality

that complicates the required transmitter and receiver tasks and degrades performance.

The work presented in this thesis tackled both complexity and performance issues. The

combined outcome is in different end to end system options that address both complex-

ity reduction and performance enhancement. Regarding the complexity, the transmitter

and demodulator designs presented in this work substantially reduced the complexity

to a point close to OFDM. The heavy complexity demand is localized at the detec-

tor end with four detection alternatives requiring lower complexity being proposed and

evaluated. Regarding performance, the work maintained the same performance while

achieving transmitter and demodulator complexity reduction. The proposed linear de-

tectors achieved improved performance and the proposal of the FSD-TSVD achieved

near optimum performance while satisfying complexity reduction goal. The design and
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evaluation of the PAPR control techniques, channel estimators and equalizers, and pre-

coded system demonstrated the potential of SEFDM in practical settings.

10.1 Ongoing Related Work

The research reported in this thesis has led to the development of related work that is

in progress at UCL in the form of two Engineering Doctorate (EngD) projects and two

MSc projects. As an interim step towards realizing the proposed techniques in hardware,

models of the system are being built using Advanced Design System (ADS). Designs of

the single block IDFT based transmitter are achieved and are being used to study the

performance of the system. In addition, models of the DFT based demodulator are being

finalized and are used in conjunction with ZF and direct slicing. Precoded systems were

also modelled with ADS [196]. The aim of these models is to provide platforms for

further performance investigations that incorporate the typical restrictions in hardware

design.

In addition, hardware implementation of the transmitter and receiver is underway.

FPGA based transmitters using the multiple IDFT blocks have been built and tested

[132]. The FPGA system reported was structured to allow for different modulation for-

mats, bandwidth compression and number of subcarriers and allowed reconfigurability

through the use of a modified Ethernet stack [133]. The work is progressing towards the

implementation of the transmitter as an Application Specific Integrated Circuit (ASIC)

[131, 129]. In addition, the hardware design of the DFT based MF demodulator was

addressed in conjunction with ZF and TSVD based detectors [136].

10.2 Future Work

The SEFDM system still remains an open research topic and many issues need further

investigation. In addition, the work in this thesis has opened new research directions

which show potential improvements and advances, therefore, the author wish to propose

the following points for future work:
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techniques at transmission and reception ends place the system on a path for an

end to end implementation. Yet, the implementation is faced with challenges.

One challenge for the transmitter design is the choice of system parameters that

matches available hardware requirements. It is recommended to study the effects

of approximations of the parameters of the SEFDM signal. Another work around

the components choice issue is to perform backward designs where the number of

subcarriers is adjusted to achieve a given bandwidth utilization for a given set of

component. This is also applicable to the demodulator and solving this issue will

automatically answer the demodulation problem. In addition, it will be useful to

implement the single IDFT transmitter as it requires less complexity than that of

the design using multiple IDFTs. Furthermore, implementations of SLW can be

pursued based on the single IDFT transmitter designs. For the detection imple-

mentation, the FSD and FSD-TSVD are the best candidates. Implementations

of the FSD for MIMO systems have been reported [148, 145], however, designs

for SEFDM need to consider the relatively large number of subcarriers. It is also

considered useful to implement the SelE sub-optimal detector for three reasons:

it requires low complexity, provides better BER and is more suited to the limited

precision of hardware than ZF. Finally, implementations of ML and SD detectors

for small sized systems, (∼ 8 subcarriers and BPSK), may be considered which will

not require huge complexity specially benefiting from the developments in MIMO

system [137].� Channel estimation. The PCE concept is flexible and can be extended to design

a completely orthogonal structure within the SEFDM system bandwidth with any

resolution. That is, to design a new subcarriers set for the estimator block where

the number of subcarriers is chosen to satisfy orthogonality principles. In this

case, the estimator block will be based on OFDM principles. If OFDM based

PCE estimator is used, the system can use comb type estimation where pilots

are interleaved with information symbols. All findings for OFDM estimation will

automatically apply to this concept [178, 179, 180, 181]. For instance, with the

addition of a cyclic prefix to the pilot symbol, the demodulation of the pilots can

follow OFDM principles. The drawback is that the system will not be using the
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same frequency contents of SEFDM for which the estimation is used, therefore,

may require interpolation.� Precoding of the SEFDM signal covering:

– Investigations of alternative code designs that invest in the observed changes

of the Euclidean distance maps in Fig. 9.7. One possible direction to inves-

tigate is the use of differential modulation and differential encoding and/or

to impose constraints on the transmitted symbols so that the close symbols

constellation occurs only under controlled conditions. In addition, the fact

that the close Euclidean distances are restricted to few symbols around the

desired one, suggests that a confined ML search can achieve the same per-

formance as a complete one. This suggests that investigations of the use of

pruned ML [90] or SD [91] search can lead to further complexity reduction.

– Extension of the objectives of precoding of the SEFDM to include further

performance improvements in terms of system capacity, better resilience to in-

terference and fading channels. Precoding concepts are used in many commu-

nications systems to achieve different objectives, such as to maximize MIMO

channel capacity [119] and optimize signal design in the presence of inter-

ference in MC-CDMA [192]. It is considered useful to design the codes for

SEFDM system that incorporate a multitude of objectives.

– Investigations of SEFDM precoding for OFDM system. To study the potential

and challenges of applying SEFDM precoding concepts on OFDM and assess

the impact on the performance of the precoded OFDM in AWGN and fading

channels. Theorem 9.1 showed that the OFDM signal contains all possible

SEFDM coding spaces, therefore, precoding of the OFDM signal can then be

pursued using coding spaces corresponding to any fractional spacing value.

Nevertheless, the implication of the coding on the detectability of the OFDM

signal needs to be addressed. Such study should identify any potential for

BER improvement and assess the required complexity.� Investigate the effects of synchronization and timing errors on the per-

formance of the SEFDM signal. In OFDM systems, synchronization errors

destroy the orthogonality between the subcarriers, therefore can severely degrade
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the successful symbol detection [43]. Nevertheless, the effects of the synchroniza-

tion and timing errors in SEFDM are not expected to pose the same challenge as

for OFDM. The system will have ICI in all cases; the difference is that the ICI is

not predefined. The work in SelE suggests that it can be advantageous to account

for truncated ICI contributions, however, SelE gives sub-optimal performance and

the impact of these offsets needs to be assessed for the optimal detection. It is

considered necessary to study the effects of such errors on the performance of the

system. Such study may also cover the effect of generation of the SEFDM signal

with approximate IFFT operations which can be treated as deterministic frequency

shifts, thus can be incorporated in the detector design.� Investigate the potential of applying SEFDM concepts and developed techniques

to other communication systems. In particular to apply the designed TSVD and

FSD-TSVD algorithm on other detection problems that suffer from ill conditioning.

In particular, MIMO systems suffer from ill conditioned channels [149], therefore

there is a potential to investigate the TSVD performance in such channels. In

addition, recalling that the use of the FSD was initially suggested for MIMO

systems [144], it can be useful to investigate the performance of the FSD-TSVD

algorithm for the cases where the MIMO channel is ill conditioned.� From the work presented in this thesis, the author would like to generalize the

concepts of non-orthogonal multicarrier system. Orthogonality is a state and is

defined in time and frequency. This dual requirement leads to the existence of

non-orthogonal systems within orthogonal one. For instance, depending on the

sampling of an OFDM system, an SEFDM system with specific number of subcar-

riers and α can be identified (i.e. taking N samples from the first half of OFDM

samples leads to an N subcarrier SEFDM system with α = 0.5). The significance

of this argument relies in the fact that non-orthogonal samples carry some form of

diversity. This diversity can be invoked when part of the transmission is corrupted

or merely for added guarantee of performance. The importance of this concept re-

lies on specifying methods to identify the inherent diversity within orthogonal and

non-orthogonal systems and hence exploit this knowledge to improve performance.� Many other ideas including: SEFDM with pulseshaping where different pulses

are explored and their respective performance is assessed, export the concepts of
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SEFDM to access techniques and propose SEFDMA and investigate the poten-

tial of combining SEFDM with diversity techniques to alleviate the performance

degradation observed in SEFDM system.

Overall, this thesis has provided newmethods and techniques for realizable non-orthogonal

and spectrally efficient multicarrier system. It is hoped that the research in this thesis

will pave the way to realistic use of such systems in practical settings.
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Illustration of Theorem 3.1

Theorem 3.1 shows that there can be orthogonal subcarriers within the SEFDM subcar-

riers. In this section, this theorem is illustrated by examples. For α = b/c and b ≤ c,

Table. A.1 presents the possible orthogonal subsets of the subcarriers. The table in-

dicates that for a given number of subcarriers, increasing the value of α leads to the

existence of more subsets of orthogonal subcarriers but with fewer subcarriers in each

subset. In general, for a system with N subcarriers and α = 1/c, a subset of k orthogonal

subcarriers can be defined by the indices

(a0, a0 + c, a0 + 2c, · · · , a0 + c (k − 1)) . (A.1)

b 1 2 3 4
c

(1, 3, 5, 7, 9, 11, 13, 15) (1, 4, 7, 10, 13, 16) (1, 5, 9, 13)
1 All (2, 4, 6, 8, 10, 12, 14, 16) (2, 5, 8, 11, 14) (2, 6, 10, 14)

(3, 6, 9, 12, 15) (3, 7, 11, 15)
(4, 8, 12, 16)

(1, 4, 7, 10, 13, 16) (1, 5, 9, 13)
(2, 5, 8, 11, 14) (2, 6, 10, 14)

2 All (3, 6, 9, 12, 15) (3, 7, 11, 15)
(4, 8, 12, 16)
(1, 5, 9, 13)
(2, 6, 10, 14)

3 All (3, 7, 11, 15)
(4, 8, 12, 16)

4 All

Table A.1: Orthogonal subsets within SEFDM system for α = b/c , b ≤ c and N
subcarriers where N = 16. The numbers denote the subcarrier index starting from 1.
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By definition the highest possible index is N , hence

a0 + c (k − 1) ≤ N, (A.2)

which leads to

k ≤ N − a0
c

− 1. (A.3)

Equation A.3 shows that there are three cases that lead to the reduction of the number

of the orthogonal subcarriers within a subset: the first two affect all the subsets in the

system and occur with the reduction of the value of α for a given N and a0 or the number

of subcarriers, N , for a given c and a0values. The third case may affect some of the

subsets and occur with the increase in value of a0, that the number of the orthogonal

subcarriers for a subset depends on the index of its first subcarrier. The equation also

shows that the number of orthogonal subsets equals c.
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Derivations of Lemma 3.1

In these lines all the steps followed to simplify the angular term of the determinant in

Lemma 3.1 are provided, starting from the expression of the angular term in equation

3.47:

∠ {det (Φ)} =
∏

0≤i<k≤N−1
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jπα(k+i)

N

= (−j)N(
N−1

2 )
N−1∏

k>1

e
jπαk
N

k−1∏

i ≥ 0

e
jπαi
N

= (−j)N(
N−1

2 )
N−1∏

k>1

e
jπαk
N e

jπα
∑k−1

0
i

N

= (−j)N(
N−1

2 )
N−1∏

k>1

e
jπαk
N e

jπαk( k−1
2 )

N

= (−j)N(
N−1

2 )
N−1∏

k>1

e
jπαk(k+1)

2N

= (−j)N(
N−1

2 ) e
jπα

∑N−1
1

k(k+1)

2N . (B.1)

The exponent term
∑N−1

1 k (k + 1) is simplified as

288
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N−1∑

1
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k2 +
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Thus, the angular term becomes

∠ {det (Φ)} = (−j)N(
N−1

2 ) e
jπα(N2−1)

6 . (B.3)
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[154] R. Bäuml, R. F. H. Fischer, and J. B. Huber, “Reducing the peak-to-average power

ratio of multicarrier modulation by selected mapping,”Electronics Letters, vol. 32,

pp. 2056–2057, 1996.

[155] S. H. Muller and J. B. Huber, “OFDM with reduced peak-to-average power ratio

by optimum combination of partial transmit sequences,” vol. 33, no. 5, 1997, pp.

368–369.

[156] T. May and H. Rohling, “Reducing the peak-to-average power ratio in OFDM

radio transmission systems,” in Proc. 48th IEEE Vehicular Technology Conference

VTC 98, vol. 3, 1998, pp. 2474–2478 vol.3.

[157] J. Tellado and J. M. Cioffi, “Efficient algorithms for reducing PAR in multicarrier

systems,” in Proc. IEEE International Symposium on Information Theory, Aug.

16–21, 1998, p. 191.

[158] S.-W. Kim, J.-K. Chung, and H.-G. Ryu, “PAPR reduction of the OFDM signal

by the SLM-based WHT and DSI method,” in Proc. TENCON 2006. 2006 IEEE

Region 10 Conference, Nov. 14–17, 2006, pp. 1–4.

[159] X. Yang, J. Wang, and D. Li, “Selected mapping in correlatively coded OFDM,”

in Proc. Second International Conference on Communications and Networking in

China CHINACOM ’07, Aug. 22–24, 2007, pp. 1121–1125.

[160] S. Y. Le Goff, S. S. Al-Samahi, B. K. Khoo, C. C. Tsimenidis, and B. S. Sharif,

“Selected mapping without side information for PAPR reduction in OFDM,” IEEE

Transactions on Wireless Communications, vol. 8, no. 7, pp. 3320–3325, Jul. 2009.

[161] L. Yang, R. Chen, K. Soo, and Y. Siu, “An efficient sphere decoding approach for

PTS assisted PAPR reduction of OFDM signals,”AEU - International Journal of

Electronics and Communications, vol. 61, pp. 684–688, 2007.

[162] J. Cimini, L.J. and N. Sollenberger, “Peak-to-average power ratio reduction of an

OFDM signal using partial transmit sequences,” IEEE Communications Letters,

vol. 4, no. 3, pp. 86–88, 2000.

[163] P. Boonsrimuang and T. Paungma, “Proposal of improved PTS method for OFDM

signal in the multi-path fading channel,” in Proc. 5th International Conference on



List of References 306

Electrical Engineering/Electronics, Computer, Telecommunications and Informa-

tion Technology ECTI-CON 2008, vol. 1, May 14–17, 2008, pp. 401–404.

[164] K. G. Paterson and V. Tarokh, “On the existence and construction of good codes

with low peak-to-average power ratios,” IEEE Transactions on Information The-

ory, vol. 46, no. 6, pp. 1974–1987, Sep. 2000.

[165] S. Slimane, “Reducing the peak-to-average power ratio of OFDM signals through

precoding,” IEEE Transactions on Vehicular Technology, vol. 56, no. 2, pp. 686–

695, 2007.

[166] D. Guel and J. Palicot, “Analysis and comparison of clipping techniques for OFDM

Peak-to-Average Power Ratio reduction,” in Proc. 16th International Conference

on Digital Signal Processing, Jul. 5–7, 2009, pp. 1–6.

[167] D. Wulich, N. Dinur, and A. Glinowiecki, “Level clipped high-order OFDM,” IEEE

Transactions on Communications, vol. 48, no. 6, pp. 928–930, Jun. 2000.

[168] J. D. Parsons, The Mobile Radio Propagation Channel, 2nd ed. John Wiley &

Sons Ltd, 2000.

[169] M. Patzold, Mobile Fading Channels. John Wiley & Sons Ltd, 2002.

[170] A. Aguiar and J. Gross, “Wireless channel models,” Technical University Berlin,

TKN Technical Report TKN-03-007, April, 2003.

[171] A. F. Molisch, Wireless Communications. Wiley, IEEE, 2011.

[172] P. Bello, “Characterization of randomly time-variant linear channels,” Communi-

cations Systems, IEEE Transactions on, vol. 11, no. 4, pp. 360 –393, december

1963.

[173] M. C. Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation of Communications

Systems. Kluwer Academic/Plenum Publishers, 2000.

[174] W. H. Tranter, K. S. Shanmugan, and T. S. Rappaport, Communication systems

simulation with wireless applications. Prentice Hall, 2003.

[175] C. B. Rorabaugh, Simulating Wireless Communication Systems. Prentice Hall,

2004.



List of References 307

[176] E. J. P. M. G. Linnartz. Wireless communication. Web resource. [Online].

Available: www.WirelessCommunication.NL

[177] X. Wang, P. Ho, and Y. Wu, “Robust channel estimation and ISI cancellation

for OFDM systems with suppressed features,” IEEE Journal on Selected Areas in

Communications, vol. 23, no. 5, pp. 963–972, 2005.

[178] M. Morelli and U. Mengali, “A comparison of pilot-aided channel estimation meth-

ods for OFDM systems,” IEEE Transactions on Signal Processing, vol. 49, no. 12,

pp. 3065–3073, 2001.

[179] L. Harjula, A. Mammela, and Z. Li, “Comparison of channel frequency and impulse

response estimation for space-time coded OFDM systems,” in Proc. VTC 2002-Fall

Vehicular Technology Conf. 2002 IEEE 56th, vol. 4, 2002, pp. 2081–2085.

[180] L. Tong, B. M. Sadler, and M. Dong, “Pilot-assisted wireless transmissions: general

model, design criteria, and signal processing,” IEEE Signal Processing Magazine,

vol. 21, no. 6, pp. 12–25, 2004.

[181] S. Werner, M. Enescu, and V. Koivunen, “Combined frequency and time domain

channel estimation in mobile MIMO-OFDM systems,” in Proc. IEEE International

Conference on Acoustics, Speech and Signal Processing ICASSP 2006, vol. 4, 2006,

pp. IV–IV.

[182] J.-J. van de Beek, O. Edfors, M. Sandell, S. K. Wilson, and P. O. Borjesson, “On

channel estimation in OFDM systems,” in Proc. IEEE 45th Vehicular Technology

Conf, vol. 2, 1995, pp. 815–819.

[183] Y. Li, J. Cimini, L. J., and N. R. Sollenberger, “Robust channel estimation for

OFDM systems with rapid dispersive fading channels,” IEEE Transactions on

Communications, vol. 46, no. 7, pp. 902–915, 1998.

[184] G. Dona and W. A. Krzymien, “MMSE channel estimation using two-dimensional

filtering in rapid time-variant environments,” in Proc. VTC 2005-Spring Vehicular

Technology Conf. 2005 IEEE 61st, vol. 1, 2005, pp. 490–494.

[185] S.-Y. Leong, J. Wu, C. Xiao, and J. C. Olivier, “Fast time-varying dispersive chan-

nel estimation and equalization for an 8-PSK cellular system,” IEEE Transactions

on Vehicular Technology, vol. 55, no. 5, pp. 1493–1502, 2006.

www.WirelessCommunication.NL


List of References 308

[186] K.-H. Chang and C. N. Georghiades, “Iterative joint sequence and channel esti-

mation for fast time-varying intersymbol interference channels,” in Proc. IEEE Int

Communications ICC ’95 Seattle, ’Gateway to Globalization’ Conf, vol. 1, 1995,

pp. 357–361.

[187] L. Mazet, V. Buzenac-Settineri, M. de Courville, and P. Duhamel, “An EM based

semi-blind channel estimation algorithm designed for OFDM systems,” in Proc.

Conf Signals, Systems and Computers Record of the Thirty-Sixth Asilomar Conf,

vol. 2, 2002, pp. 1642–1646.

[188] A. Zia, J. P. Reilly, and S. Shirani, “Channel identification and tracking using

alternating projections,” in Proc. IEEE Workshop Statistical Signal Processing,

2003, pp. 430–433.

[189] M.-X. Chang and Y. T. Su, “Blind and semiblind detections of OFDM signals

in fading channels,” IEEE Transactions on Communications, vol. 52, no. 5, pp.

744–754, 2004.

[190] V. K. Jones and G. C. Raleigh, “Channel estimation for wireless OFDM sys-

tems,” in Proc. Bridge to Global Integration. IEEE Global Telecommunications

Conf. GLOBECOM 98, vol. 2, 1998, pp. 980–985.

[191] R. J. Baxley, J. E. Kleider, and G. T. Zhou, “Pilot design for OFDM with null

edge subcarriers,” IEEE Transactions on Wireless Communications, vol. 8, no. 1,

pp. 396–405, 2009.

[192] C. Masouros and E. Alsusa,“A hybrid MC-CDM precoding scheme employing code

hopping and partial beamforming,” in Proc. IEEE Int. Conf. Communications ICC

’09, 2009, pp. 1–5.

[193] N. Hathi, I. Darwazeh, and J. O’Reilly, “Peak-to-average power ratio performance

comparison of different spreading code allocation strategies for MC-CDMA and

MC-DS-CDMA,” Electronics Letters, vol. 38, no. 20, pp. 1219–1220, 2002.

[194] R. S. Mozos and M. J. F.-G. Garcia, “Efficient complex sphere decoding for MC-

CDMA systems,” IEEE Transactions on Wireless Communications, vol. 5, no. 11,

pp. 2992–2996, 2006.



List of References 309

[195] L. Zhang, H. Lei, X. Zhang, and D. Yang, “Efficient complex sphere decoding

framework for linear dispersion space-time block codes,” in Proc. IEEE 18th Int.

Symp. Personal, Indoor and Mobile Radio Communications PIMRC 2007, 2007,

pp. 1–4.

[196] A. Arrazi, “Modelling and performance assessment of spectrally efficient frequency

division multiplexing,” Master’s thesis, Univesity College London, Sep 2010.


	Statement of Originality
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Glossary and Abbreviations
	I SEFDM System: Characteristics, Transmitter and Receiver Design
	1 Introduction
	1.1 Aim and Motivation
	1.2 Thesis Organization
	1.3 Main Contributions
	1.4 List of Publications

	2 The SEFDM System
	2.1 Orthogonal Frequency Division Multiplexing (OFDM)
	2.2 Non-orthogonal Multicarrier Communications
	2.3 Spectrally Efficient FDM (SEFDM)
	2.4 SEFDM Transmitter
	2.5 SEFDM Receiver
	2.6 Demodulation and Orthonormalization 
	2.7 Detection
	2.7.1 SEFDM Optimal Detector in AWGN Channel
	2.7.2 Simple SEFDM Detectors
	2.7.3 Sphere Decoder
	2.7.4 Semidefinite Programming
	2.7.5 Hybrid Detectors
	2.7.6 Detection Limitations

	2.8 Other Spectrally Efficient Systems
	2.9 Review Outcome and Conclusions

	3 Mathematical Properties of SEFDM Signals
	3.1 Introduction
	3.2 The Discrete SEFDM Signal 
	3.2.1 The Carriers Matrix

	3.3 Characterizing the ICI in the SEFDM System
	3.4 The Discrete SEFDM Receiver
	3.4.1 The Matched Filter (MF)
	3.4.2 The Correlation Receiver

	3.5 SEFDM Solution Determinants
	3.5.1 Singularity Investigation
	3.5.2 Conditioning of the SEFDM System

	3.6 Discussion and Conclusions

	4 SEFDM Transmitter Design
	4.1 Introduction
	4.2 The IDFT Design of SEFDM Signals
	4.3 SEFDM IDFT Based Transmitters
	4.3.1 Proportional Inputs IDFT Transmitter
	4.3.2 The IDFT Transmitter for Rational 
	4.3.3 SEFDM as a Sum of Multiple IDFT

	4.4 Performance Analysis
	4.4.1 Design Comparisons
	4.4.2 Complexity Analysis

	4.5 Hardware Signal Generation
	4.6 Discussion and Conclusions

	5 The SEFDM Receiver
	5.1 Introduction
	5.2 The SEFDM Demodulator
	5.3 The DFT Based MF Demodulator
	5.4 The Optimal Detection for the SEFDM Signal
	5.4.1 Orthonormal Bases
	5.4.2 MF Demodulation
	5.4.3 Numerical results

	5.5 Sphere Decoder (SD) for the MF Based System
	5.5.1 Note on SD Application to DFT Bases Demodulation
	5.5.2 Numerical Results

	5.6 Hardware Implementation of the MF Demodulator
	5.7 Discussion and Conclusions

	6 Low Complexity Detectors for SEFDM System
	6.1 Introduction
	6.2 The Truncated Singular Value Decomposition (TSVD)
	6.2.1 The TSVD Truncation Index

	6.3 The Selective Equalization (SelE) 
	6.4 TSVD and SelE Detectors Performance Assessment
	6.5 The Fixed Sphere Decoder (FSD)
	6.5.1 FSD Application to SEFDM System
	6.5.1.1 Complexity Analysis

	6.5.2 FSD Design Concepts 
	6.5.3 Performance Investigations

	6.6 Hybrid SEFDM Detectors 
	6.6.1 The FSD-TSVD Detector
	6.6.2 Performance Investigations

	6.7 Hardware Implementation of SEFDM Receivers
	6.8 Discussion and Conclusions


	II Practical Limitations and System Enhancements
	7 SEFDM Peak to Average Power Ratio (PAPR): Studies and Routes to Mitigation
	7.1 Introduction
	7.2 Evaluation of the PAPR of SEFDM Signals
	7.3 Overview of Conventional PAPR Reduction Techniques
	7.4 PAPR Reduction in SEFDM System  
	7.4.1 Clipping
	7.4.2 Selective Mapping (SLM)
	7.4.3 Partial Transmit Sequence (PTS)

	7.5 SLiding Window (SLW) PAPR Reduction Technique
	7.5.1 Sliding the SEFDM Signal
	7.5.2 The IDFT Implementation of SLW
	7.5.3 Sliding Mechanism: Fixed Sliding vs Dynamic Sliding
	7.5.4 Performance Evaluation

	7.6 Conclusions

	8 SEFDM in Fading Channels, Performance, Channel Estimation and Equalization
	8.1 Introduction
	8.2 The Wireless Channel: Preliminaries
	8.2.1 Modelling the Multipath Channel

	8.3 Design and Assessment Methodology
	8.4 Modelling the SEFDM System in Discrete Multipath Fading Channel
	8.5 Optimal Joint Channel Equalization and Symbol Detection
	8.5.1 Sphere Decoder (SD)

	8.6 Channel Estimation
	8.6.1 The Partial Channel Estimator (PCE)
	8.6.2 Channel Estimation Numerical Results

	8.7 Reduced Complexity Joint Channel Equalization and Symbol Detection
	8.7.1 Zero Forcing (ZF) and Minimum Mean Square Error (MMSE)
	8.7.2 The TSVD
	8.7.3 Numerical Results for Linear Equalizers
	8.7.4 The FSD
	8.7.5 The FSD-TSVD

	8.8 Discussion and Conclusions

	9 Precoded SEFDM System
	9.1 Introduction
	9.2 The Precoded SEFDM Transmitter 
	9.3 The Precoded SEFDM Receiver
	9.3.1 Layered ZF and Iterative Cancellation (IC)

	9.4 The Code Design and Precoding Effect
	9.5 Performance Investigations
	9.6 Complex Sphere Decoder (CSD)
	9.7 CSD Results
	9.8 Precoding in Fading Channel
	9.8.1 Numerical Results

	9.9 Conclusions

	10 Conclusions
	10.1 Ongoing Related Work
	10.2 Future Work

	A Illustration of Theorem 3.1
	B Derivations of Lemma 3.1
	List of References


