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ABSTRACT  

The orthogonal frequency division multiplexing system (OFDM) is one of the most 

important components for the multicarrier waveform design in the wireless 

communication standards. Consequently, the OFDM system has been adopted by 

many high-speed wireless standards. However, the high peak-to-average- power ratio 

(PAPR) is the main obstacle of the OFDM system in the real applications because of 

the non-linearity nature in the transmitter. Partial transmit sequence (PTS) is one of 

the effective PAPR reduction techniques that has been employed for reducing the 

PAPR value 3 dB; however, the high computational complexity is the main drawback 

of this technique. This thesis proposes novel methods and algorithms for reducing the 

high PAPR value with low computational complexity depending on the PTS technique. 

First, three novel subblocks partitioning schemes, Sine Shape partitioning scheme (SS-

PTS), Subsets partitioning scheme (Sb-PTS), and Hybrid partitioning scheme (H-PTS) 

have been introduced for improving the PAPR reduction performance with low 

computational complexity in the frequency-domain of the PTS structure. Secondly, 

two novel algorithms, Grouping Complex iterations algorithm (G-C-PTS), and Gray 

Code Phase Factor algorithm (Gray-PF-PTS) have been developed to reduce the 

computational complexity for finding the optimum phase rotation factors in the time 

domain part of the PTS structure. Third, a new hybrid method that combines the 

Selective mapping and Cyclically Shifts Sequences (SLM-CSS-PTS) techniques in 

parallel has been proposed for improving the PAPR reduction performance and the 

computational complexity level. Based on the proposed methods, an improved PTS 

method that merges the best subblock partitioning scheme in the frequency domain 

and the best low-complexity algorithm in the time domain has been introduced to 

enhance the PAPR reduction performance better than the conventional PTS method 

with extremely low computational complexity level. The efficiency of the proposed 

methods is verified by comparing the predicted results with the existing modified PTS 

methods in the literature using Matlab software simulation and numerical calculation. 

The results that obtained using the proposed methods achieve a superior gain in the 

PAPR reduction performance compared with the conventional PTS technique. In 

addition, the number of complex addition and multiplication operations has been 
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reduced compared with the conventional PTS method by about 54%, and 32% for the 

frequency domain schemes, 51% and 65% for the time domain algorithms, 18% and 

42% for the combining method. Moreover, the improved PTS method which combines 

the best scheme in the frequency domain and the best algorithm in the time domain 

outperforms the conventional PTS method in terms of the PAPR reduction 

performance and the computational complexity level, where the number of complex 

addition and multiplication operation has been reduced by about 51% and 63%, 

respectively. Finally, the proposed methods and algorithms have been applied to the 

OFDM and Filtered-OFDM (F-OFDM) systems through Matlab software simulation, 

where F-OFDM refers to the waveform design candidate in the next generation 

technology (5G).  
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ABSTRAK 

Sistem multipleks pembahagian frekuensi ortogon (OFDM) adalah salah satu 

komponen penting untuk rekabentuk gelombang berbilang pembawa di dalam 

piawaian komunikasi wayarles. Akibatnya, sistem OFDM telah diterimapakai oleh 

kebanyakan piawaian wayarles berkelajuan tinggi. Walau bagaimanapun, nisbah 

kuasa-puncak-kepada-purata (PAPR) merupakan halangan utama sistem OFDM di 

dalam aplikasi sebenar kerana sifat bukan lelurus penghantar. Jujukan penghantaran 

sebahagian (PTS) ialah salah satu teknik pengurangan PAPR berkesan yang telah 

digunakan untuk mengurangkan nilai PAPR 3 dB; namun begitu, kerumitan pengiraan 

yang tinggi merupakan kelemahan utama teknik ini. Tesis ini mencadangkan kaedah 

novel dan algoritma untuk mengurangkan nilai PAPR yang tinggi dengan kerumitan 

pengiraan yang rendah bergantung kepada teknik PTS. Pertama, tiga novel skima 

pembahagian subblok, skima pembahagian Bentuk Sinus (SS-PTS), skima 

pembahagian Subset (Sb-PTS), dan skima pembahagian Hibrid (H-PTS) telah 

diperkenalkan untuk memperbaiki prestasi pengurangan PAPR dengan kerumitan 

pengiraan yang rendah dalam domain frekuensi pada struktur PTS. Kedua, dua novel 

algoritma, algoritma lelaran Kompleks Kumpulan (G-C-PTS), dan algoritma Faktor 

Fasa Kod Gray (Gray-PF-PTS) telah dibangunkan untuk mengurangkan kerumitan 

pengiraan bagi mencari faktor putaran fasa optimum dalam domain masa pada struktur 

PTS. Ketiga, satu kaedah hibrid baru yang menggabungkan teknik pemetaan Terpilih 

dan Jujukan Anjakan Berkitar (SLM-CSS-PTS) secara selari telah diperkenalkan 

untuk memperbaiki prestasi pengurangan PAPR dan aras kerumitan pengiraan. 

Berdasarkan kepada kaedah-kaedah yang dicadangkan, satu kaedah PTS terbaik yang 

menggabungkan skima pembahagian subblok terbaik dalam domain frekuensi dan 

algoritma kerumitan rendah terbaik dalam domain masa telah diperkenalkan bagi 

meningkatkan prestasi pengurangan PAPR berbanding kaedah PTS lazim dengan aras 

kerumitan pengiraan yang sangat rendah. Keberkesanan kaedah yang dicadangkan 

telah disahkan melalui perbandingan keputusan jangkaan dengan kaedah PTS 

terubahsuai sedia ada dalam kesusasteraan menggunakan simulasi perisian MATLAB 
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dan pengiraan berangka. Keputusan yang diperolehi menggunakan kaedah yang 

dicadangkan mencapai kebaikan yang unggul dalam prestasi pengurangan PAPR 

berbanding dengan teknik PTS lazim. Tambahan lagi, bilangan penambahan kompleks 

dan operasi pendaraban telah dibandingkan dengan kaedah PTS lazim sebanyak 54%, 

dan 32% untuk skima domain frekuensi, 51% dan 65% untuk algoritma domain masa, 

18% dan 42% untuk kaedah penggabungan. Selain itu, kaedah PTS terbaik yang 

menggabungkan skima terbaik dalam domain frekuensi dan algoritma terbaik dalam 

domain masa menewaskan kaedah PTS lazim dari segi prestasi pengurangan PAPR 

dan aras kerumitan pengiraan, di mana bilangan penambahan kompleks dan operasi 

pendaraban telah dikurangkan masing-masing sebanyak 51% dan 63%. Akhirnya, 

kaedah yang dicadangkan bersama algoritma telah digunakan pada OFDM dan sistem 

OFDM tertapis (F-OFDM) menerusi simulasi perisian MATLAB, di mana F-OFDM 

merujuk kepada calon rekabentuk gelombang bagi teknologi generasi seterusnya (5G). 
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