89 research outputs found

    Cryptography and Its Applications in Information Security

    Get PDF
    Nowadays, mankind is living in a cyber world. Modern technologies involve fast communication links between potentially billions of devices through complex networks (satellite, mobile phone, Internet, Internet of Things (IoT), etc.). The main concern posed by these entangled complex networks is their protection against passive and active attacks that could compromise public security (sabotage, espionage, cyber-terrorism) and privacy. This Special Issue “Cryptography and Its Applications in Information Security” addresses the range of problems related to the security of information in networks and multimedia communications and to bring together researchers, practitioners, and industrials interested by such questions. It consists of eight peer-reviewed papers, however easily understandable, that cover a range of subjects and applications related security of information

    Envisioning the Future of Cyber Security in Post-Quantum Era: A Survey on PQ Standardization, Applications, Challenges and Opportunities

    Full text link
    The rise of quantum computers exposes vulnerabilities in current public key cryptographic protocols, necessitating the development of secure post-quantum (PQ) schemes. Hence, we conduct a comprehensive study on various PQ approaches, covering the constructional design, structural vulnerabilities, and offer security assessments, implementation evaluations, and a particular focus on side-channel attacks. We analyze global standardization processes, evaluate their metrics in relation to real-world applications, and primarily focus on standardized PQ schemes, selected additional signature competition candidates, and PQ-secure cutting-edge schemes beyond standardization. Finally, we present visions and potential future directions for a seamless transition to the PQ era

    Enhanced image security using residue number system and new Arnold transform

    Get PDF
    This paper aims to improve the image scrambling and encryption effect in traditional two-dimensional discrete Arnold transform by introducing a new Residue number system (RNS) with three moduli and the New Arnold Transform. The study focuses on improving the classical discrete Arnold transform with quasi-affine properties, applying image scrambling and encryption research. The design of the method is explicit to three moduli set {2n, 2n+1+1, 2n+1-1}. These moduli set includes equalized and shapely moduli leading to the effective execution of the residue to binary converter. The study employs an arithmetic residue to the binary converter and an improved Arnold transformation algorithm. The encryption process uses MATLAB to accept a digital image input and subsequently convert the image into an RNS representation. The images are connected as a group. The resulting encrypted image uses the Arnold transformation algorithm. The encrypted image is used as input at decryption using the anti-Arnold (Reverse Arnold) transformation algorithm to convert the picture to the original RNS (original pixel value). Then the RNS was used to retransform the original RNS to its binary form. Security analysis tests, like histogram analysis, keyspace, key sensitivity, and correlation coefficient analysis, were administered on the encrypted image. Results show that the hybrid system can use the improved Arnold transform algorithm with better security and no constraint on image width and size

    Secure Hardware Implementation of Post Quantum Cryptosystems

    Get PDF
    Solving a hard mathematical problem is the security basis of all current cryptographic systems. With the realization of a large scale quantum computer, hard mathematical problems such as integer factorization and discrete logarithmic problems will be easily solved with special algorithms implemented on such a computer. Indeed, only post-quantum cryptosystems which defy quantum attacks will survive in the post-quantum era. Each newly proposed post-quantum cryptosystem has to be scrutinized against all different types of attacks. Attacks can be classified into mathematical cryptanalysis and side channel attacks. In this thesis, we propose secure hardware implementations against side channel attacks for two of the most promising post-quantum algorithms: the lattice-based public key cryptosystem, NTRU, and the multivariate public key cryptosystem, Rainbow, against power analysis attacks and fault analysis attacks, respectively. NTRUEncrypt is a family of public key cryptosystems that uses lattice-based cryptography. It has been accepted as an IEEE P1363 standard and as an X9.98 Standard. In addition to its small footprint compared to other number theory based public key systems, its resistance to quantum attacks makes it a very attractive candidate for post quantum cryptosystems. On the other hand, similar to other cryptographic schemes, unprotected hardware implementations of NTRUEncrypt are susceptible to side channel attacks such as timing and power analysis. In this thesis, we present an FPGA implementation of NTRUEncrypt which is resistant to first order differential power analysis (DPA) attacks. Our countermeasures are implemented at the architecture level. In particular, we split the ciphertext into two randomly generated shares. This guarantees that during the first step of the decryption process, the inputs to the convolution modules, which are convoluted with the secret key polynomial, are uniformly chosen random polynomials which are freshly generated for each convolution operation and are not under the control of the attacker. The two shares are then processed in parallel without explicitly combining them until the final stage of the decryption. Furthermore, during the final stage of the decryption, we also split the used secret key polynomial into two randomly generated shares which provides theoretical resistance against the considered class of power analysis attacks. The proposed architecture is implemented using Altera Cyclone IV FPGA and simulated on Quartus II in order to compare the non-masked architecture with the masked one. For the considered set of parameters, the area overhead of the protected implementation is about 60% while the latency overhead is between 1.4% to 6.9%. Multivariate Public Key Cryptosystems (MPKCs) are cryptographic schemes based on the difficulty of solving a set of multivariate system of nonlinear equations over a finite field. MPKCs are considered to be secure against quantum attacks. Rainbow, an MPKC signature scheme, is among the leading MPKC candidates for post quantum cryptography. In this thesis, we propose and compare two fault analysis-resistant implementations for the Rainbow signature scheme. The hardware platform for our implementations is Xilinx FPGA Virtex 7 family. Our implementation for the Rainbow signature completes in 191 cycles using a 20ns clock period which is an improvement over the previously reported implementations. The verification completes in 141 cycles using the same clock period. The two proposed fault analysis-resistant schemes offer different levels of protections and increase the area overhead by a factor of 33% and 9%, respectively. The first protection scheme acquires a time overhead of about 72%, but the second one does not have any time overhead

    High-Speed Hardware Architectures and FPGA Benchmarking of CRYSTALS-Kyber, NTRU, and Saber

    Get PDF
    Performance in hardware has typically played a significant role in differentiating among leading candidates in cryptographic standardization efforts. Winners of two past NIST cryptographic contests (Rijndael in case of AES and Keccak in case of SHA-3) were ranked consistently among the two fastest candidates when implemented using FPGAs and ASICs. Hardware implementations of cryptographic operations may quite easily outperform software implementations for at least a subset of major performance metrics, such as latency, number of operations per second, power consumption, and energy usage, as well as in terms of security against physical attacks, including side-channel analysis. Using hardware also permits much higher flexibility in trading one subset of these properties for another. This paper presents high-speed hardware architectures for four lattice-based CCA-secure Key Encapsulation Mechanisms (KEMs), representing three NIST PQC finalists: CRYSTALS-Kyber, NTRU (with two distinct variants, NTRU-HPS and NTRU-HRSS), and Saber. We rank these candidates among each other and compare them with all other Round 3 KEMs based on the data from the previously reported work

    NewHope: A Mobile Implementation of a Post-Quantum Cryptographic Key Encapsulation Mechanism

    Get PDF
    NIST anticipates the appearance of large-scale quantum computers by 2036 [34], which will threaten widely used asymmetric algorithms, National Institute of Standards and Technology (NIST) launched a Post-Quantum Cryptography Standardization Project to find quantum-secure alternatives. NewHope post-quantum cryptography (PQC) key encapsulation mechanism (KEM) is the only Round 2 candidate to simultaneously achieve small key values through the use of a security problem with sufficient confidence its security, while mitigating any known vulnerabilities. This research contributes to NIST project’s overall goal by assessing the platform flexibility and resource requirements of NewHope KEMs on an Android mobile device. The resource requirements analyzed are transmission size as well as scheme runtime, central processing unit (CPU), memory, and energy usage. Results from each NewHope KEM instantiations are compared amongst each other, to a baseline application, and to results from previous work. NewHope PQC KEM was demonstrated to have sufficient flexibility for mobile implementation, competitive performance with other PQC KEMs, and to have competitive scheme runtime with current key exchange algorithms

    Symmetry in Chaotic Systems and Circuits

    Get PDF
    Symmetry can play an important role in the field of nonlinear systems and especially in the design of nonlinear circuits that produce chaos. Therefore, this Special Issue, titled “Symmetry in Chaotic Systems and Circuits”, presents the latest scientific advances in nonlinear chaotic systems and circuits that introduce various kinds of symmetries. Applications of chaotic systems and circuits with symmetries, or with a deliberate lack of symmetry, are also presented in this Special Issue. The volume contains 14 published papers from authors around the world. This reflects the high impact of this Special Issue
    • …
    corecore