
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-26-2020

NewHope: A Mobile Implementation of a Post-Quantum NewHope: A Mobile Implementation of a Post-Quantum

Cryptographic Key Encapsulation Mechanism Cryptographic Key Encapsulation Mechanism

Jessica A. Switzler

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Switzler, Jessica A., "NewHope: A Mobile Implementation of a Post-Quantum Cryptographic Key
Encapsulation Mechanism" (2020). Theses and Dissertations. 3190.
https://scholar.afit.edu/etd/3190

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact richard.mansfield@afit.edu.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F3190&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholar.afit.edu%2Fetd%2F3190&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/3190?utm_source=scholar.afit.edu%2Fetd%2F3190&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

NewHope: A Mobile Implementation of a
Post-Quantum Crytographic Key Encapsulation

Mechanism

THESIS

Jessica A. Switzler

AFIT-ENG-MS-20-M-063

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENG-MS-20-M-063

NewHope: A Mobile Implementation of a Post-Quantum Crytographic Key

Encapsulation Mechanism

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Cyber Operations

Jessica A. Switzler, B.S.

March 26, 2020

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENG-MS-20-M-063

NewHope: A Mobile Implementation of a Post-Quantum Crytographic Key

Encapsulation Mechanism

THESIS

Jessica A. Switzler, B.S.

Committee Membership:

Laurence D. Merkle, Ph.D
Chair

Maj. Richard Dill, Ph.D
Member

Barry E. Mullins, Ph.D
Member

AFIT-ENG-MS-20-M-063

Abstract

NIST anticipates the appearance of large-scale quantum computers by 2036 [34],

which will threaten widely used asymmetric algorithms, National Institute of Stan-

dards and Technology (NIST) launched a Post-Quantum Cryptography Standardiza-

tion Project to find quantum-secure alternatives. NewHope post-quantum cryptog-

raphy (PQC) key encapsulation mechanism (KEM) is the only Round 2 candidate to

simultaneously achieve small key values through the use of a security problem with

sufficient confidence its security, while mitigating any known vulnerabilities.

This research contributes to NIST project’s overall goal by assessing the plat-

form flexibility and resource requirements of NewHope KEMs on an Android mobile

device. The resource requirements analyzed are transmission size as well as scheme

runtime, central processing unit (CPU), memory, and energy usage. Results from each

NewHope KEM instantiations are compared amongst each other, to a baseline appli-

cation, and to results from previous work. NewHope PQC KEM was demonstrated

to have sufficient flexibility for mobile implementation, competitive performance with

other PQC KEMs, and to have competitive scheme runtime with current key exchange

algorithms.

iv

Table of Contents

Page

Abstract . iv

List of Figures . viii

List of Tables . ix

I. Introduction . 1

1.1 Motivation . 1
1.2 Problem Background. 2
1.3 Research Objectives . 4
1.4 Approach . 5
1.5 Assumptions and Limitations . 6
1.6 Document Overview . 7

II. Background and Literature Review . 8

2.1 Chapter Overview . 8
2.2 Quantum Computers and Quantum Computing . 9
2.3 Effect of Popular Quantum Algorithms . 13
2.4 Post-Quantum Cryptography (PQC) . 15
2.5 NIST: PQC Standardization . 16
2.6 Implementations of PQC for IoT and Mobile Devices 19
2.7 NIST Round 2 PQC KEM’s . 23
2.8 Lattice-Based Cryptography . 26

2.8.1 Lattices . 28
2.8.2 Lattice Problems . 28

2.9 Cryptanalysis of Lattice-Based Cryptography . 35
2.9.1 Lattice-Basis Reduction . 35
2.9.2 Shortest Vector Problem . 37
2.9.3 Closest Vector Problem . 38
2.9.4 Learning with Errors Problem . 38
2.9.5 Ring Learning with Errors Problem . 39
2.9.6 Analysis of Cryptanalysis . 44

2.10 NewHope . 46
2.10.1 NewHope Cryptosystem . 47
2.10.2 NewHope KEM Types . 47
2.10.3 NewHope Cryptosystem Package . 48
2.10.4 NewHope Mitigating Attack Vectors . 49
2.10.5 NewHope Parameter Sets . 51
2.10.6 NewHope Key Encapsulation . 54

2.11 Java Native Interface (JNI) . 57

v

Page

2.11.1 JNI Basics . 58
2.11.2 JNI Within Android Studio . 59

2.12 Chapter Summary . 61

III. Methodology . 63

3.1 Chapter Overview . 63
3.2 Methodology Procedure Outline . 64
3.3 Choosing a KEM Algorithm . 65
3.4 Building the Original KEM Codebase . 66
3.5 Reverse Engineering NewHope KEM . 68
3.6 Analyzing Transmission Byte Requirement . 69
3.7 Creating a Baseline Application for Comparison . 71
3.8 Preparation for Mobile Implementation . 72
3.9 Creating NewHope Mobile Implementations . 75
3.10 Testing the KEM . 80

3.10.1 Android Profiler . 81
3.10.2 Data Collection Procedure . 82

3.11 Chapter Summary . 84

IV. Results and Analysis . 86

4.1 Chapter Overview . 86
4.2 Verification of Correctness . 87
4.3 Baseline JNI Application . 88
4.4 Verbose OnClick Event Condition . 89
4.5 Succinct OnClick Event Condition . 90
4.6 No Output OnClick Event Condition . 92
4.7 Comparing NewHope Implementations with Different

OnClick Event Conditions . 93
4.8 Performance Comparison of NewHope Configurations

and Baseline Application . 95
4.9 Statistical Analysis of NewHope Configurations and

Baseline Application . 97
4.9.1 Native Scheme Runtime T-Tests Between

NewHope Configurations . 98
4.9.2 CPU Average T-Tests Between NewHope

Configurations and Baseline Application . 100
4.9.3 CPU Average T-Tests Between NewHope

Configurations . 103
4.10 Comparison to Previous Work . 105
4.11 Chapter Summary . 109

vi

Page

V. Conclusions . 111

5.1 Chapter Overview . 111
5.2 Conclusions . 111
5.3 Future Work . 113
5.4 Contributions . 113

Appendix A. MainActivity.java . 114

Appendix B. MainActivityDriver.c . 119

Appendix C. Original api.h . 126

Appendix D. Original params.h . 127

Appendix E. CMakeLists.txt . 128

Appendix F. Application Build Gradle Settings . 130

Appendix G. Modified PQCgenKAT_kem.c . 132

Appendix H. NewHope Sample Tables . 140

Appendix I. Additional NewHope Implementation Tables 164

Acronyms . 167
Bibliography . 171

vii

List of Figures

Figure Page

1. A lattice with b1 and b2 basis vectors, and b3 is an
element of the lattice. Figure by Mariano et al. [74] 29

2. A lattice with b1 and b2 basis vectors, after lattice-basis
reductions b3 and b4 are new basis vectors. Figure by
Mariano et al. [74] . 30

3. A lattice where p and −p are the solution to the SVP
for some L(B). Figure by Mariano et al. [74] . 31

4. Vector t is the target vector, vector p is an element of
the lattice, and the solution to the CVP. Figure by
Mariano et al. [74] . 32

5. Implementation of a NewHope-CPA-KEM . 55

6. NewHope mobile application layout . 76

7. Box plots displaying native scheme runtimes for each
NewHope implementations with different OnClick event
conditions . 94

8. Box plots comparing CPU usage between each
NewHope implementations with different OnClick event
conditions and JNI baseline application . 95

9. Comparison of the total number of bytes sent to achieve
key establishment between NewHope mobile
implementation to the work by Malina et al. [73](*) 106

10. Comparison of the average runtime of schemes between
NewHope mobile implementation to the work by Malina
et al. [73](*) . 108

viii

List of Tables

Table Page

1. The effects large-scale quantum computers will have on
common cryptographic algorithms based on NIST PQC
Report [34] . 14

2. Each KEM in Round Two of NIST Standardization
Project . 24

3. NewHope parameters and derived high-level properties
based on Alkim et al. [8] . 52

4. NewHope’s intermediary parameters. Based on Alkim
et al. [8] . 53

5. Size of seeds, shared secret keys, public keys, secret
keys, and cipher texts of NewHope instantiations in bytes 70

6. Results from the modified Android Studio sample code
used to represent a baseline for a C/JNI application 88

7. Comparison of create key average times of NewHope
implementations with verbose OnClick function . 89

8. Comparison of Create Key average times of NewHope
implementations with a succinct OnClick function 91

9. Comparison of Create Key average times of NewHope
implementations with a no output OnClick function 93

10. Comparison of performance results from NewHope
implementations and modified Android Studio JNI code
example . 96

11. Comparison of average runtime native NewHope KEM
scheme of verbose OnClick event condition and succinct
OnClick event condition . 99

12. Comparison of average runtime native NewHope KEM
scheme of verbose OnClick event condition and no
output OnClick event condition . 99

13. Comparison of average runtime native NewHope KEM
scheme of succinct OnClick event condition and no
output OnClick event condition . 100

ix

Table Page

14. Comparison of average CPU usage of verbose OnClick
event condition and baseline application . 101

15. Comparison of average CPU usage of succinct OnClick
event condition and baseline application . 102

16. Comparison of average CPU usage of no output
OnClick event condition and baseline application 102

17. Comparison of average CPU usage of verbose OnClick
event condition and succinct OnClick event condition 103

18. Comparison of average CPU usage of verbose OnClick
event condition and no output OnClick event condition 104

19. Comparison of average CPU usage of succinct OnClick
event condition and no output OnClick event condition 104

20 Make Keys samples for for NewHope512-CCA with a
Verbose OnClick Function . 140

21 Make Keys samples for NewHope1024-CCA With a
Verbose OnClick Function . 142

22 Make Keys samples for NewHope512-CPA With a
Verbose OnClick Function . 144

23 Make Keys samples for NewHope1024-CPA With a
Verbose OnClick Function . 146

24 Make Keys samples for NewHope512-CCA With a
Succinct OnClick Function . 148

25 Make Keys samples for NewHope1024-CCA With a
Succinct OnClick Function . 150

26 Make Keys samples for NewHope512-CPA With a
Succinct OnClick Function . 152

27 Make Keys samples for NewHope1024-CPA With a
Succinct OnClick Function . 154

28 Results From Running Make Keys for
NewHope512-CCA With a No Output OnClick Function 156

x

Table Page

29 Make Keys samples for NewHope1024-CCA With a No
Output OnClick Function . 158

30 Make Keys samples for NewHope512-CPA With a No
Output OnClick Function . 160

31 Make Keys samples for NewHope1024-CPA With a No
Output OnClick Function . 162

32. NewHope512-CCA results from create keys test runs
with a verbose OnClick function . 164

33. NewHope1024-CCA results from create keys test runs
with a verbose OnClick function . 164

34. NewHope512-CPA results from create keys test runs
with a verbose OnClick function . 164

35. NewHope1024-CPA results from create keys test runs
with a verbose OnClick function . 165

36. NewHope512-CCA results from Create Keys sample
runs with A succinct OnClick function . 165

37. NewHope1024-CCA results from Create Keys sample
runs with a succinct OnClick function . 165

38. NewHope512-CPA results from Create Keys sample
runs with a succinct OnClick function . 165

39. NewHope1024-CPA results from Create Keys sample
runs with a succinct OnClick function . 165

40. NewHope512-CCA results from create keys sample runs
with a no output OnClick function . 166

41. NewHope1024-CCA results from create keys sample
runs with a no output OnClick function . 166

42. NewHope512-CPA results from create keys sample runs
with a no output OnClick function . 166

43. NewHope1024-CPA results from create keys sample
runs with a no output OnClick function . 166

xi

NewHope: A Mobile Implementation of a Post-Quantum Crytographic Key

Encapsulation Mechanism

I. Introduction

1.1 Motivation

The National Institute of Standards and Technology (NIST) anticipates that large-

scale quantum computers will become available by 2036 [34]. This raises an important

issue within the cryptographic community: through the use of those quantum com-

puters, the security of the most widely-used asymmetric cryptographic algorithms will

be undermined. This is because the underlying primitives are based on mathematical

problems that can be solved efficiently using quantum computing.

Since our current asymmetric cryptography will be insecure with the advent of

large-scale quantum computers, it has become important to find cryptographic algo-

rithms that are hardened against quantum attacks. In fact, switching to quantum-

proof cryptosystems could take precedence over transitioning our current cryptosys-

tems to higher bit-levels of security [34]. For this reason, post-quantum cryptogra-

phy (PQC) has become a prevalent area of research that considers the development

of algorithms that are thought to be able to withstand attacks from both classical

and quantum computers [34]. The algorithms used in PQC are often referred to as

quantum-proof, quantum-secure, or quantum-resistant.

Just like classical attacks, the quantum attack surface contains a variety of devices

ranging from desktop computers to internet of things (IoT) devices, industrial control

systems (ICS), mobile phones, and many more networked devices. Given the number

1

of devices that could potentially be targeted, it is important to consider and test

how these quantum-secure algorithms will be implemented on all devices. However, a

relatively small amount of research has been done on mobile phone implementations

of quantum-resistant cryptosystems. This is despite the fact that mobile phones

are considered to be the most common communication devices in history [4] and have

uses that range from personal to confidential communication. In order to secure these

communication avenues from the threat large-scale quantum computers present, this

gap within current research needs to be bridged.

1.2 Problem Background

As stated above, the security of the most widely-used asymmetric cryptographic

algorithms will be affected by the presence of large-scale quantum computers due to

the mathematical problems on which these algorithms are based. For example, the

security of the Rivest-Shamir-Adleman (RSA) algorithm is based on the apparent

difficulty of the integer factoring problem [34]. Other examples include the Diffie-

Hellman key exchange (DHKE) and elliptic-curve cryptography (ECC), both of which

obtain their security from the difficulty of the discrete logarithm problem over various

groups [34]. Through the use of Shor’s algorithms [97], large-scale quantum computers

will be able to solve each of these problems in polynomial time.

The risk that large-scale quantum computers present to asymmetric cryptography

is a driving force behind the need to finding quantum-secure alternatives to current

algorithms. Some of the most crucial communication protocols currently rely on

public-key encryption (PKE), digital signatures, and key exchange, all of which rely

in turn on asymmetric cryptographic algorithms [34].

The need to find PQC public-key algorithms was the impetus for NIST to start

their Post-Quantum Cryptography Standardization project [34]. The goal behind

2

NIST’s project is to standardize PQC asymmetric algorithms that will become pub-

licly available before the emergence of large-scale quantum computers. These al-

gorithms need to be designed and implemented to be interoperable with existing

networks and communication protocols [34]. Many different variations of PQC asym-

metric algorithms are being produced for this standardization effort, at the end of

which NIST will standardize at least one PKE scheme, one key encapsulation mech-

anism (KEM), and one digital signature algorithm from among those submitted [34].

The submitted algorithms need to be assessed with respect to a number of require-

ments. First, they need to be verified to function properly and have a mathematically

sound basis. Also, the cryptographic primitive for each algorithm should belong to a

cryptographic family that has presumed hardness against quantum attacks and has

undergone enough research to instill confidence in that presumed hardness. Next, the

security of each submitted cryptosystem needs to be tested against classical attacks

to expose any underlying vulnerability that might be exploited. Finally, each cryp-

tosystem needs to be analyzed for its efficiency and interoperability to ensure that it

will function given current communication protocols. NIST has addressed many of

these requirements by requiring that each submission include a document outlining

the cryptosystem and addressing the above specifications [83]. More detail about

NIST’s PQC Standardization Project is presented in Section 2.5.

Increasingly since the launch of the NIST PQC Standardization Project, research

has been undertaken on the implementation of quantum-secure algorithms. The re-

search efforts range from cryptanalysis of selected algorithms to specific device im-

plementations. However, there is little research in the field of quantum-secure mobile

devices. One exception is the work of Malina et al. [73], in which the authors imple-

ment two PQC KEM algorithms on an Android device: NewHope-Usenix [10] and

MSR LN16 [68]. The authors implement the former in pure Java and the latter using

3

a native C library and a Java Native Interface (JNI). They compare the transmis-

sion size and runtime requirements of the two implementations. A more detailed

description of this work is provided in Section 2.6.

The presumed security of both the NewHope-Usenix and MSR LN16 KEMs against

quantum attacks is based on the presumed hardness of the ring learning with errors

(RLWE) problem from the lattice-based cryptography family. This is also the case

for the NewHope KEM, which is the only one of the three in Round 2 of NIST’s

Standardization Project.

The NewHope cryptosystem is built into four different KEM instantiations: two

that are provably secure against chosen plaintext attack (CPA) and two that are prov-

ably secure against known chosen ciphertext attack (CCA). The four instantiations

are referred to as NewHope512-CCA-KEM, NewHope1024-CCA-KEM, NewHope512-

CPA-KEM, and NewHope1024-CPA-KEM, in which the 512 and 1024 parts of the

names indicate choices for the dimension parameter. The NewHope specifications

and documentation [8] justify that the 512 implementations are NIST security Level

1, whereas the 1024 implementations are Level 5. Section 2.10 provides a thorough

description of NewHope implementations and Section 2.5 provides more information

on NIST security levels.

1.3 Research Objectives

This research effort contributes to the current PQC research by assessing the

feasibility, performance, and resource constraints of mobile implementations of a PQC

KEM. The goal is to determine the extent to which current PQC KEMs can be used

to secure mobile phones. Of primary interest is determining whether any resource

constraints exist that might prohibit such use, including bandwidth, response time,

CPU time, memory, or energy. This necessitates the design development, testing,

4

and analysis of one or more PQC KEMs. The specific research questions that this

research effort addresses are:

1. How feasible is PQC KEM implementation on mobile devices?

2. How does NewHope1 compare qualitatively to other NIST PQC Standardization

Project Round 2 KEMs?

3. What performance tradeoffs and limitations are present among the NewHope

instantiations?

4. How does the amount of Java code implemented affect the runtime of the native

KEM scheme?

The question regarding performance tradeoffs and limitations is supported by

several specific hypotheses:

1. How does the native scheme runtime, OnClick runtime, CPU usage, and trans-

mission size differ between each NewHope instatiation?

2. How does average native scheme runtime and transmission size in bytes for

NewHope compare to available work?

3. What resource constraints, if any, are presented when implementing a PQC

KEM?

1.4 Approach

This section describes how the research objectives for this effort were accom-

plished. First, a KEM is selected from Round 2 of NIST Standardization Project.

Next, the original codebase was downloaded, built, and tested for correctness. The
1The NewHope cryptosystem was selected for implementation based on comparisons among the

PQC KEMs in Round 2 of the NIST PQC Standardization Project (see Section 2.7).

5

codebase was tested for correctness by comparing the output files to the known answer

tests (KAT) that were provided by NewHope creators. The decision to implement

the NewHope codebase as a native C library utilizing a JNI to call some NewHope

functions from within the created Java code was a design choice that was made.

This choice was made because the only available Java codebase was from NewHope-

Usenix [7] and since then the link provided to that codebase no longer works. The

next step was to modify the original NewHope codebase and to develop the Android

application. After the codebase is complete, the application was tested using Android

Profiler within Android Studio, and this allows for the evaluation of the usage of the

central processing unit (CPU), memory and energy. Also, the application was evalu-

ated using the transmission byte requirements as well as the runtime of the KEMs.

With these results all four of the NewHope implementations will be compared to each

other, and to those reported in the work by Malina et al. [73]. The comparison made

between implementation involved an evaluation of native scheme runtime, Java code

runtime, transmission byte requirements, and resource consumptions.

1.5 Assumptions and Limitations

This section outlines the assumptions and limitations present throughout this

research effort.

Throughout this research effort it is assumed that whatever actions are taken

for implementing one of the NewHope KEMs is also carried through to all the other

NewHope implementations. Another assumption made is that when referencing post-

quantum bit-level security, these security values are presumed and the calculations of

bit-level security cannot be concrete.

Something that is not within the scope of this research effort is networking the

produced Android application that implements the NewHope PQC KEMs. It is

6

assumed that this would not have an effect on the mobile implementation of NewHope

because these PQC KEMs are designed to interoperate with existing communication

protocols.

1.6 Document Overview

This section is designated to be a road-map to the contents within this document.

Chapter II provides the background information needed to understand this re-

search effort, and Chapter II contains relevant literature reviews. Chapter III contains

the methodology that this research effort follows along with the design choices that

were made. Chapter IV contains the test results from the mobile implementations

of NewHope, and an analysis of the test results along with comparisons to the work

done by Malina et al. [73]. Finally, Chapter V provides the conclusions achieved from

this research effort.

7

II. Background and Literature Review

2.1 Chapter Overview

This chapter outlines the preliminary research needed in order to understand post-

quantum cryptography (PQC), NewHope cryptosystems, implementations of PQC al-

gorithms, and C/Java Native Interface (JNI) Android implementations. Section 2.2

provides an overview of quantum computers and quantum computing. This is im-

portant background knowledge because the security of current asymmetric crypto-

graphic algorithms is anticipated to be effected by utilizing quantum computing on

a large-scale quantum computer. Also, this section provides a definition of the term

large-scale quantum computer, which is commonly used throughout this research field.

This is followed by Section 2.3, which provides two quantum algorithms and the effects

these algorithms will have on current cryptography when implemented on a large-scale

quantum computer. In Section 2.4, PQC is explained along with definitions of the

families from which PQC algorithms obtain their cryptographic primitives. NIST has

been a leading contributor to the study of PQC with the launch of their Post-Quantum

Cryptography Standardization project, an overview of this project is provided in Sec-

tion 2.5. Section 2.6 contains a literature review of available work focusing on PQC

implementations on mobile phones and internet of things (IoT) devices. This provides

important knowledge on how PQC algorithms can be implemented on these devices,

and provides knowledge into the ways of which implementation can be improved.

Ideally, this section would be dedicated solely to a literature review of PQC mobile

phone implementations but due to the lack of available literature it was expanded

to include IoT implementations as well. Section 2.7 provides an overview of all key

encapsulation mechanism (KEM)s that have been progressed to round two of NIST’s

Post-Quantum Cryptography Standardization project. This provides an important

8

overlook into the reasoning behind selecting the NewHope PQC KEM for implemen-

tation. Section 2.8 provides an overview of lattice-based cryptography along with the

lattice-based problems that are used as cryptographic primitives. Within this section

the ring learning with errors (RLWE) problem is defined which is the problem that is

the basis for NewHope. Section 2.9 provides a literature review on available research

on the cryptanalysis of lattice-based cryptosystems. This provides valuable infor-

mation into the possible vulnerabilities presented when implementing lattice-based

cryptosystems. Section 2.10 provides background knowledge on NewHope as well as

cryptosystem details. Finally, Section 2.11 provides information on JNIs because the

NewHope mobile implementations is achieved by creating a NewHope codebase as a

native C library and referencing the native library from Java utilizing a JNI.

2.2 Quantum Computers and Quantum Computing

When discussing post-quantum cryptography and how to achieve quantum-secure

cryptography, it is vital to provide a foundational overview of quantum computers

and quantum computing. Quantum computers have a negative impact on our crypto-

graphic algorithms and have some unknown uses where quantum algorithms are used

in order to speed up some current algorithms. This means that through quantum

speedup some current algorithms can be made more efficient and built to feasibly

break cryptographies. Quantum computers provide a machine that can be utilized to

complete computations that would be infeasible to run within a reasonable amount

of time on a classical computer. This section will be used to provide an overview

of quantum computers, provide a definition of large-scale quantum computers and

discuss the current state of quantum computers.

A quantum computer is defined as a machine that utilizes quantum mechanics to

carry out computations [38]. A quantum computer uses a bit known as a quantum

9

bit (qubit). Qubits are two-level quantum systems [95]. Some examples of two-level

quantum systems are the two states of a spin 1/2 particle, like the ground and excited

states of an atom [38]. These two-level quantum systems hold properties which exhibit

the power of a quantum computing.

Some of the most common quantum mechanics properties mentioned in quantum

computing are superposition, entanglement, and decoherence times. Superposition

refers to the ability of a qubit to exist in a combination of multiple states; it is not

until the qubit is measured that it is seen in a single state [82]. Entanglement is

the ability for the states of two qubits to become dependent meaning that if the

state of one qubit is measured there is knowledge gained about the state of the

entangled qubit [82]. Within quantum computing entanglement is a powerful property

because it can allow for many parallel operations to take place [82]. Decoherence

occurs when the quantum wave function (mathematical description of the quantum

systems quantum state) collapses, which means that the quantum properties, like

superposition or entanglement of the particle, would no longer be sustained within

the quantum system [38].

Quantum computers are built with the basis being generating and managing

qubits. Some quantum computers are built using superconducting circuits which

is achieved by cooling the circuit to temperatures low enough to allow for supercon-

ductivity. Devoret et al. [37] describe superconducting qubits as a combination of

two robust phenomena: superconductivity, a frictionless flow of electrical fluid (elec-

tric current where the flow cannot be resolved into individual electrons) through a

metal at a temperature below the superconducting phase transition, and the Joseph-

son effect, which endows the circuit with nonlinearity without introducing dissipation

or dephasing. IBM, Google, and Rigetti Computing utilize superconducting circuits

within their quantum computers [37]. Similiarly, ion traps can be utilized to build

10

quantum computers. According to DiVincenzo [38], the quantum computer holds the

qubits in pairs of energy levels of ions held in a linear electromagnetic trap. Finding

a well designed qubit that holds its coherence longer means that there is more time

for gate operations to occur and more computations can be accomplished before the

system decoheres [38].Since a basic understanding of a quantum computers has been

achieved the discussion can transition to how quantum computing works.

Quantum computing is accomplished by utilizing one of many different qubit

implementations where a quantum computer can encode information as 0’s, 1’s, or

both at the same time. It is through the use of this superposition phenomena and

other quantum mechanical phenomena, such as entanglement or tunneling, that allows

a quantum computer to manipulate many combinations of states simultaneously [82].

However, these quantum mechanic phenomena also present some challenges for

quantum computing. Due to decoherence, the collapsing of the wave function caused

by time or interference, in order for a calculation to be reliable the calculations must

be completed before the wave function decoheres [38]. This presents a time limit

for computation to take place, and this time limit presents a possible detrimental

constraint on quantum computers/quantum computing. Due to superposition, there

is no way to measure the state of the system without decohering the wave function;

this concludes that there is no method to measure qubits individually [82].

Despite these challenges, quantum computers possess a power that cannot be

matched by classic computers. Neilsen and Chuang [82] stated that quantum com-

puters offer an essential speedup advantage over classic computers. This speed up

is so significant that many researchers believe that no amount of progression made

in classical computation could overcome the power differential between a classic and

quantum computer [82]. This leaves endless possibilities for quantum computing:

from quantum speed-up of existing classic algorithms, which Grover’s search algo-

11

rithm [52] is conjectured to be useful for this, to the development of new quantum

algorithms that have the capacity to alter other aspects of cryptographies or solve

problems quicker than classical computers.

Due to the potential of quantum computers not being fully developed, it is un-

known to what extent or how much of an affect large-scale quantum computers will

have on our current cryptosystems. Due to uncertainties in how well large-scale

quantum computers will perform or advance, it makes it difficult to provide a bit-

level security on many of the PQC algorithms being developed [34]. Due to this

difficulty it can even become easy to underestimate or overestimate the security of

quantum-secure cryptosystems.

Currently, there is a significant amount of research being done to obtain advance-

ments for quantum computers. As of September 2019, IBM has a quantum computer

which possesses a 53 qubit processor [80] and Google has the Bristlecone quantum

computing processor which contains 72 qubits [61]. Also, D-Wave is anticipating that

by mid-2020, it will have a functioning 5,000 qubit quantum annealing computer [93].

D-Wave quantum computers are quantum annealing computers, which utilize

quantum annealing which is a metaheuristic for finding global minimum [60]. Typ-

ically when quantum computers are mentioned throughout literature they are refer-

encing a quantum computer that utilizes quantum gates to carry out computations,

which is not a quantum annealing computer. Annealing is much more limited in uses

than gate-based quantum computers. Specifically, quantum annealing computers will

never be utilized to run Shor’s algorithms [97] and is successful at solving optimization

problems [99]. The quantum computers by IBM and Google are quantum computers

know as universal quantum computers [99] which are gate-based quantum computers.

Often in literature, references are made to large-scale quantum computers, but

they are not formally defined within the literature. Through the examination of

12

references made to large-scale quantum computers, large-scale quantum computers

provide significant improvements in the number of qubits implemented to current

quantum computers. Providing more qubits allows for more calculations to be done

before the system decoheres, meaning quantum computations that are carried out

are more extensive. However, none of the literature is specific on the range of qubits

that might be needed to create a large-scale computer. IBM research released an

info-graphic on the three different types of quantum computing [60] and it states that

for a universal quantum computer it is anticipated by researchers that it will contain

more than 100, 000 physical qubits. In the work done by Harrow and Montanaro [55],

they stated that 4, 000 qubits would be required to factor a 2048-bit number. With

that in mind, a large-scale quantum computer is a quantum computer that contains

enough qubits to carry out useful quantum computations and is anticipated to con-

tain 4, 000 qubits, up to over 100, 000. However, like Dyakonov [41], there are still

researchers that believe large-scale quantum computers will never overcome the phys-

ical limitations of decoherence times.

2.3 Effect of Popular Quantum Algorithms

This section is dedicated to discussing some of the most commonly known quan-

tum computing algorithms, Shor’s algorithms [97] and Grover’s algorithm [52]. The

selection of these algorithms is due to popularity, but more importantly the role

these algorithms plays on the security of current cryptographic algorithms. Accord-

ing to NIST [34], the most crucial communication protocols rely on three core cryp-

tographic functionalities: public-key encryption (PKE), digital signatures, and key

exchange. The primary cryptosystems implementing these functionalities are Diffie-

Hellman key exchange (DHKE), Rivest-Shamir-Adleman (RSA), and elliptic curve

cryptosystems [34]. When utilized on a large-scale quantum computer, Shor [97]

13

proves that his algorithms render the most common public-key cryptosystems in-

secure. Shor’s algorithms break the security of all public-key algorithms that are

reliant on integer factorization and discrete logarithmic problems, which includes

DHKE, RSA, and elliptic-curve cryptography (ECC) [34]. Another algorithm that

will effect some cryptographic algorithms is Grover’s algorithm [52] that is proven to

offer a quadratic speed up of unstructured search problems. Although Grover’s algo-

rithm does not threaten to render any current cryptographic technologies obsolete,

it does require the use of larger keys for some current cryptosystems, including com-

mon symmetric key algorithms like Advanced Encryption Standard (AES). In NIST’s

Report on Post-Quantum Cryptography [34] there is a table provided that indicates

the effects large-scale quantum computers will have on current cryptographic algo-

rithms, a recreation can be seen in Table 1. Some acronyms that are not previously

mentioned but are needed to understand the table are Elliptic-Curve Diffie-Hellman

(ECDH) and elliptic-curve digital signature algorithm (ECDSA) which are ECC used

in asymmetric cryptosystems, as well as, digital signature algorithm (DSA).

Table 1: The effects large-scale quantum computers will have on common
cryptographic algorithms based on National Institute of Standards and Technology

(NIST) PQC Report [34]
Impact of Large-Scale Quantum Computers On Current Cryptography

Cryptographic Algorithm Type Purpose Impact

AES Symmetric Key Encryption Larger key sizes
needed

SHA-2, SHA-3 Hash Function Hashing Larger output
needed

RSA Public key Signatures,
key establishment No longer secure

ECDSA, ECDH (ECC) Public Key Signatures,
key exchange No longer secure

DSA (Finite Field
Cryptography) Public Key Signatures,

key exchange No longer secure

14

2.4 Post-Quantum Cryptography (PQC)

Since it has been proven that current cryptographic algorithms will be affected

with the advent of large-scale quantum computers, post-quantum cryptography has

become an important area of research. PQC refers to cryptographic algorithms that

are secure today but will remain secure when large-scale quantum computers and

practical quantum computing become a reality [84]. With the advancements being

made in the field of quantum computers, this reality could soon be realized as long as

the issue with decoherence times can be overcome. PQC creates quantum-resistant

hashes, signatures, symmetric and public-key cryptosystems. PQC algorithms have

gained most popularity for asymmetric cryptosystems, and that is due to the effect

large-scale quantum computers will have on public-key cryptosystems [34].

There are many known categories from which PQC algorithms originate but due

to the nature of the basis problems some of these categories are better suited for dif-

ferent uses. A description of some of the cryptographic families that PQC algorithms

obtained their cryptographic primitives follows.

Lattice-based cryptography is based on lattice problems, and the produced key

establishment algorithms are simple, efficient, and highly parallelizable [34]. However,

even with known cryptanalysis techniques it can be difficult to provide an accurate

security rating [34].

Code-based cryptography is based on error-correcting codes [34]. Although code-

based cryptography is proven to run quickly, it is hindered by its large-key sizes [34].

Code-based cryptography has been proven to have more success with signature schemes

than any of the other schemes [34].

Multivariate-polynomial cryptography schemes are based on the difficulty of solv-

ing systems of multivariate polynomials over finite fields [34]. Many of these schemes

have been broken [34]. Just like code-based cryptography, multivariate-polynomial

15

cryptography has been more successful with signature schemes [34].

Hash-based signatures are algorithms that produce a digital signature by using

an underlying hash function [34]. However, hash-based signatures have a downfall,

these schemes require an internal count of the number of signatures that are produced

because there is a limit for signatures these schemes can produce [34]. Although there

is a limit, that limit can be raised to be effectively unlimited but that comes with the

trade-off of larger signature sizes [34].

Another important area of research in PQC is the cryptanalysis of the crypto-

graphic families. A number of these PQC algorithms have been found to be vulnera-

bility to side-channel attack (SCA)s [34] and multi-key attacks; these vulnerabilities

will need to be addressed by the cryptographic creators before implementation of

these cryptosystems is considered. That is why PQC is a popular area of research

and one that could benefit from contests and challenges [74]. Opening up algorithms

for analysis and allowing the public to conduct cryptanalysis on these algorithms will

allow for the vulnerable algorithms to be reconsidered and improved [74]. In Sec-

tions 2.5 an outline of NIST’s Post-Quantum Cryptography Standardization effort is

provided where the purpose is to find quantum-secure public-key algorithms.

2.5 NIST: PQC Standardization

An important contributor in the research field of PQC algorithms is NIST, and

their PQC Standardization Project. This project plays an important role in choosing

a PQC algorithm for this research effort. For those reasons, this section outlines the

work by NIST and the algorithms within the PQC Standardization Project.

NIST is conducting a PQC standardization project, and have released a Report on

Post-Quantum Cryptography [34] where it provides a detailed motivation behind this

project. In an attempt to find suitable PQC algorithms submissions are accepted from

16

the public and narrow down the submissions in a competition-like fashion. The aim

of this project is to find public-key algorithms that are capable of protecting sensitive

U.S. government information into the foreseeable future, including into the quantum

computer era [34]. Ultimately this project is to update the public-key standards to

include at least one PKE scheme, one digital signature, and one key establishment al-

gorithm [34]. In February 2016, NIST announced their PQC Standardization project

at PQCrypto 2016 [5]. In NIST’s presentation there is an outline for the projects Call

for Submissions [79], and later released is a formal Call for Proposals [83]. The Call

for Proposals outlines the requirements for the algorithms, how the algorithms are

evaluated, and what the submitted packages must contain. The packages that were

submitted were required to contain thorough documentation on the algorithms, in-

cluding a complete written specification, detailed performance analysis, known answer

tests (KAT) values, a thorough description of the expected security strength, analysis

of the algorithm with respect to known attacks, and a statement of advantages and

limitations [83].

These packages are required to include two implementations, a reference imple-

mentation and an optimized implementation [83]. The goal of the reference imple-

mentation is to promote the understanding of how the algorithm works, which means

that the code should be well commented with references to the functions in the docu-

mentation [83]. Since clarity is emphasized in the reference implementation it is more

important that the code focus on readability rather than focusing on efficiency [83].

The optimized implementation is intended to demonstrate the performance of the

cryptosystem and should focus on optimization of the code [83]. Both implementa-

tions must be written in C.

Once the proper packages were submitted they are then evaluated by NIST and

the public is encouraged to conduct their own evaluations because public evaluations

17

are taken into consideration for which algorithms move onto the next round [83].

NIST will evaluate the packages on the following criteria: security, cost, algorithm

characteristics, and implementation characteristics [83].

The evaluation of security is completed by evaluating the submitted proofs of rel-

evant models and the security they add to protocols in which the algorithms will be

implemented [83]. The candidate PKE and KEM algorithms will be evaluated for

their security against chosen ciphertext attack (CCA) and chosen plaintext attack

(CPA) [83]. The candidate digital signature schemes will be evaluated on their un-

forgeability and security against adaptive chosen message attack (CMA)s [83]. Also,

evaluations are made as to the estimated security strengths of the candidate algo-

rithms and comparing the candidates in accordance with NIST security rankings [83].

Lastly, security will be evaluated base on the candidates ability to provide resistance

to misuse, SCA, and multi-key attacks [83].

The evaluation of cost is completed by evaluating the size of the produced keys,

ciphertexts, and signatures [83]. Also, the candidates will be evaluated by computa-

tional efficiency (speed of algorithms) of key generations and public and private key

operations [83]. Another aspect that is taken into consideration when evaluating the

cost is the probability of decryption failure [83]. NIST analyzed the performance of

candidate algorithms on the referrenced platform but encourages public to conduct

performance evaluations on addition platforms which is addressed by this research.

The evaluation of algorithm and implementation characteristic is completed by

the flexibility the candidates possess because algorithms that have flexibility have

the capability to be implemented on a range of devices [83]. NIST prefer simple

designs and will evaluate any factors that might hinder adoption of the candidate

algorithms [83].

The deadline for submissions happened at the end of November in 2017 [5]. During

18

the submission period 82 packages were submitted and evaluated. After the initial

submissions were evaluated, NIST selected 69 candidates to move on to Round 1

in late December 2017 [5]. The public and NIST conducted their evaluation of the

Round 1 candidate algorithms, and then NIST decided on 26 candidates to move

to Round 2 [5]. Of the 26 Round 2 candidates, 17 were PKE or key-establishment

schemes and 9 were digital signature schemes. An accurate timeline of NIST PQC

Standardization project has now been provided, it is important to take a look at the

upcoming timeline for the project.

As of January 2019, NIST is currently in Round 2 of the project, and have a rough

timeline for the rest of the project. NIST has allotted 2020 and 2021 to either begin

Round 3 of candidate selection or to select which algorithms to standardize [5]. NIST

anticipates that a draft of the new standards will be made available between 2022 and

2024 [5]. If the reader wishes to remain up-to-date with the project timeline they are

suggested to check-out NIST’s website because NIST will provide more information

as their timelines are formalized [5].

2.6 Implementations of PQC for IoT and Mobile Devices

Since the security of current cryptography is going to be affected by the devel-

opment of large-scale quantum computers, it is important to evaluate the implemen-

tation of quantum-resistant algorithms on resource constrained devices. A resource

constrained device is limited on power, memory, or CPU. This is becoming increas-

ingly more important because IoT devices and mobile phones are collectively growing

to become the largest number of devices connected to a network. According to Gart-

ner Research, the number of Internet-connected things expected to be in use by 2020

is 20 billion and outnumbering humans 4-to-1 [59]. This section focuses on outlining

the current implementations of PQC algorithms on IoT and mobile devices. Ideally

19

this section would be dedicated solely to examining current work on mobile imple-

mentations of PQC. However, due to the limited research in the field this section

also includes IoT devices which are typically more resource constrained than mobile

phones.

Ghosh et al. [50] contributed an implementation of the eXtended Merkle Sig-

nature(XMSS) scheme for extremely resource constrained IoT motes, small smart

sensors. They constructed a hardware-software implementation that allowed for hash-

based signatures to be produced with a small footprint (in terms of the amount of

hardware and code) and low latency for sign and verify operations [50]. Their im-

plementation provided 128-bit presumed security against quantum attacks [50], while

their main motivation was providing security against attacks on secure boot/update

and attestation. Ghosh et al. [50] provided documentation shows comparisons from

their implementation and existing solutions, demonstrating that they were able to

implement a quantum-secure public-key solutions for IoT devices [50]. Their im-

plementation performed better than NIST p-256 and NIST p-256 HW-SW in both

latency and resources, and ECC on 2131 in latency but did not outperform ECC on

2131 for resources required [50]. Their implementation did require the addition of

hardware to these IoT motes, and as they stated these devices are in rather remote

locations and stay in the field for years or even decades [50], which would make switch-

ing to this algorithm not only time consuming, but difficult to ensure that all IoT

motes got the required upgrades.

Strahl and Johansson [102] conducted research on implementing post-quantum

based Transport Layer Security (TLS) on a device and ran PQC algorithms on an

IoT device to determine if the device was able to support PQC algorithms [102]. The

authors were unable to get the PolarSSL library onto the intended IoT device due

to memory constraints, so the authors switched to using a Raspberry Pi 2 Model

20

B [102]. The Raspberry Pi was utilizing the post-quantum secure TLS, a modified

PolarSSL, and the performance of LATICEE a post-quantum key exchange was com-

pared to the performance of a standard implementation for key exchange [102]. This

paper does goes into great detail as to why the author chose LATICEE based on the

RLWE problem [102]. In this implementation the LATICEE scheme was compared

to DHKE. Overall, the results from his research was that not only did LATICEE

consume a significantly larger amount of random access memory (RAM) but it also

took a significantly larger amount of time [102]. Ultimately the author comes to the

conclusion that it is not, at this time, necessary to switch to post-quantum algorithms

considering that the post-quantum key exchange required more time and RAM us-

age [102]. However, this work was completed in 2016 and with the development of new

PQC algorithms that are more competitive with DHKE the opinions of the authors

could differ now.

Basu et al. [19] performed a series of test on NIST Round two PQC algorithms to

provide hardware-based comparisons of the algorithms. This was accomplished by uti-

lizing a high-level synthesis (HLS)-based hardware design methodology to map high-

level C specifications into field-programmable gate array (FPGA) and application-

specific integrated circuit (ASIC) implementations [102]. One of the important con-

tributions from this research was that in low-power IoT devices a PQC algorithm

should be selected with low-area and compact designs. The authors suggested for se-

curity level 1, HRSS and SPHINCS+ for FPGAs [102]. Basu et al. [19] also suggested

FrodoKEM and SPHINCS+ ASICS for IoT devices due to their small decapsulation

modules that consume less power [102]. Through the testing the authors found that

algorithms could be optimized for low-area by rewriting the code [102]. Basu et al. [19]

suggestion was to run HLS and utilize the flow representation to change aspects of

the code, making the code not only run faster but also consume less memory [102].

21

Malina et al. [73] implemented several PQC key exchanges on a variety of de-

vices. The first device was an Android phone with Qualcomm Snapdragon 801, and

the next was a single-board device with a 32-bit CPU running ARMv71. On the

Android devices they tested NewHope-Usenix and MSR LN16. Both PQC key ex-

change algorithms were based on lattice-based cryptography, but NewHope-Usenix

had a 206-bit post-quantum security level compared to the 128-bit post-quantum

security level of MSR LN16 [73]. In their results, MSR LN16 accomplished a key

exchange over 100 times faster than New Hope, and at a fraction of the time it

took the ECDH algorithms [73]. On the single board they ran the following key

exchanges/post-quantum bit level security: NewHope-Usenix/206, NTRU/128, BC-

NS/78, FrodoKEM/130, McBits/120 and SIDH/128 [73]. They are all lattice-based

key exchange algorithms with the exception of McBits which is code-based and SIDH

which is isogeny-based [73]. The results from these experiments were that NTRU

and NewHope-Usenix outperformed all of the other PQC KEMs. This was within

0.5ms of the ECDH implementation [73]. Their overall conclusion was that these

PQC schemes could be efficient and comparable with classic schemes.

In the work done by Routray et al. [91] and Cheng et al. [35], the authors sug-

gested alternatives to securing communication from quantum attacks. Respectively,

they suggested quantum communication and physically unclonable functions (PUF).

Cheng et al. [35] suggested using PUF that fingerprinted a unique way a device sends

signals; this approach is targeted for use by IoT devices, and could thwart a quantum

attack.

The work done by Strahl and Johansson [102] showed that implementation of

cryptographic libraries on constrained devices is ineffective and another approach

should be considered. However, the conclusion that Strahl and Johansson came to

was in 2016. This means that more effective algorithms may have been developed.

22

Additionally, their conclusions were derived from the use of a modified PolarSSL that

consumes a large amount of memory. This could be solved by looking at alternatives.

While the research by Malina et al. [73] showed that an algorithm that performs well

on one constrained device might not be the solution for all devices. In general, algo-

rithms that might perform well on mobile phones could not perform comparably on

IoT devices and it is difficult to compare PQC algorithms of different post-quantum

bit-level security. Lastly, implementing code on an Android device utilizing C/JNI ap-

pears to more effective than a pure Java implementation. The research done by Basu

et al. [19] and Ghosh et al. [50] showed that with optimization PQC algorithms can

be well suited for constrained devices. However, it would be better to find optimiza-

tion implementations that do not require hardware modification for the simplicity of

updating all devices to PQC algorithms.

A huge realization is that there is a lack of research being done on mobile phone

implementation of these PQC algorithms. This is important because mobile phones

are considered to be the most common communication devices in history [4]. Fur-

thermore, mobile phones are utilized for a multitude of different of things ranging

from sending SMS messages to utilizing mobile banking applications and for each

of these usages security, needs to be prioritized. It is especially important when it

comes to the security of communications of mobile devices that are used for classified

government purposes. It is for that reason ensuring these devices are quantum-secure

before large-scale quantum computers make their emergence is an impactful area of

research.

2.7 NIST Round 2 PQC KEM’s

As stated in Section 2.5, NIST has reached the second round of the PQC Stan-

dardization Project. Round two contains 26 PQC algorithms, in which 15 contain

23

a PQC KEM scheme. Table 2 shows all of the PQC KEMs that have progressed

to round two of NIST Standardization Project along with the underlying problems

that give security to their schemes. Some of the security problems that have not pre-

viously been mentioned are Module Learning With Errors (MLWE), Ring Learning

With Rounding (RLWR), Module Learning With Rounding (MLWR), MLWE, and

Ideal Rank Syndrome Decoding (IRSD).

Table 2: Each KEM in Round Two of NIST Standardization Project
NIST Round 2 Submitted PQC KEM

Algorithm name Primitive Security Level CCA or CPA
CRYSTALS-
KYBER [14]

MLWE 2, 3, 4 CCA

FrodoKEM [9] LWE 1, 3 Both
LAC [69] RLWE 1, 3, 5 CCA
NewHope [8] RLWE 1, 5 Both
NTRUPrime [24] RLWE 2, 3, 4 CCA
Round5 [15] RLWR 1, 3, 5 Both
Saber [106] MLWR 1, 3, 5 Both
Three Bears [54] MLWE 2, 4, 5 Both
Classical
McEliece [22]

code-based 5 CCA

NTS-KEM [6] code-based 1, 3, 5 CCA
BIKE [13] code-based 1, 3, 5 CPA
LEDAcrypt [18] code-based 1, 3, 5 both
ROLLO [76] code-based 1, 3, 5 both
RQC [75] IRSD 1, 3, 5 CCA
Sike [32] isogeny-based 1, 2, 3, 5 CCA

Through the use of NIST’s Status Report of First Round Submission [5] and each

KEMs documentation, a PQC KEM will be selected for mobile implementation for

this research effort.

These paragraph describes the PQC KEM algorithm selection for this research

effort. It is possible to eliminate LEDAcrypt [18] and NTS-KEM [6] from the possi-

bility of selection because the packages were not submitted with any KAT. Without

KAT, it is impossible to verify the mobile implementation for correctness. Next, it is

24

possible to eliminate Sike [32] and ROLLO [76] because they are built using security

problems that have not had their security studied as much as the other submitted

KEMs [5]. Also, Sike [32] performs an order of magnitude slower than all other sub-

mitted PQC KEMs [5]. RQC [75] takes a conservative approach where there is no

assumption made in the presumed security of the IRSD problem [5]. This conserva-

tive approach has a direct effect on the decryption speed and ciphertext size [5]. For

these reasons, RQC [75] will not be considered for mobile implementation. Another

submission that can be eliminated is BIKE [13] because it only implements a CPA-

secure KEM. Since there is no CCA-secure implementation, Aragon et al. [13] make

the assumption that this PQC KEM is only intended to be implemented when there is

a strict prohibition on key reuse in place [5]. Since there is no CCA implementation,

there is no added security against a CCA in the case of key reuse. The next KEM

that is eliminated is Classic McEliece, because it has large public-key values over one

million bytes [5]. The Classic McEliece system would benefit from adding additional

parameters sets that could reduce the size of the public-key values because otherwise

it limits the platforms that can realistically implement it. Three Bears [54] is not se-

lected for implementation because the provided documentation heavily relies on the

use of unpublished work for understanding. Since it is difficult to fully understand

how the Three Bears cryptosystem is built and implemented, it is not a good choice

for selection. Next, Saber [106] was not selected because NIST debated on whether

or not this cryptosystem is stretching the hardness of the MLWR problem [106].

Round5 [15] was not chosen for selection because according to the Status Report on

the First Round of NIST Post-Quantum Cryptography Standardization Process [5]

there are security concerns with how the Round5 algorithms calculate decryption and

decapsulation failure. Also, LAC [69] was not selected because there has been public

comments demonstrating a vulnerability to a CCA within its security level 5 param-

25

eter and also there is no SCA resistant implementation [34]. Lastly, FrodoKEM [9]

was not selected because it takes a conservative approach that increases the key sizes

in comparison to other lattice-based KEMs which makes other KEMs a more suited

fit when trying to limit the resources used.

The KEMs that were not selected for this research efforts mobile implementation

selection and that narrows it down to CRYSTALS-KYBER [14], NTRUPrime [24],

and NewHope [8]. Bernstein et al. [24] address the claims of some of these attacks

within their documentation. However, NTRUPrime [24] has more added lattice struc-

ture than that of NewHope [8] which does not present any additional known attacks.

If an attack is developed that takes advantage of the added structure of ideal lattices

NTRUPrime will be at even more risk than NewHope. Ultimately the decision to

implement NewHope was made, and this is based on the fact NIST acknowledged

potential risks within the other two KEMs but did not acknowledge any potential

risk within NewHope. It is also beneficial to select NewHope because available work

presents data points for mobile implementations of a NewHope-Usenix and the se-

lected NewHope scheme is a variant of NewHope-Usenix.

2.8 Lattice-Based Cryptography

Since latticed-based cryptography algorithms have hardness against quantum at-

tacks, these algorithms have gained attention within the PQC community [64]. How-

ever, like all cryptographies, lattice-based cryptography has its downfalls such as inef-

ficiency. These lattice-based cryptosystems can see a ciphertext expansion of a blowup

factor about 25, whereas the classic cryptosystems produces ciphertext that is equiv-

alent in size to the plaintext [78]. Lattice-based primitives are increasingly viewed as

offering the most promising post-quantum alternative to DHKE or RSA [98].

Lattice-based cryptography has gained a lot of popularity within the post-quantum

26

cryptographic community and this is due to its conjectured strength against quantum

attacks [74]. First, it is important to formally define lattice-based cryptography as

the construction of cryptographic algorithms whose security is based on the conjec-

tured intractability of computationally difficult lattice problems [77]; some of these

problems are discussed in Section 2.8.2. In cryptographic applications these algo-

rithms are typically required to be a one-way function that is computationally hard

to invert [77]. These cryptographic algorithms are used to build cryptosystems for

public-key cryptography, identity based encryption, fully homomorphic encryption,

hashes, and signatures [77].

The security of lattice-based cryptographic algorithms tend to have an advan-

tage on the security of classical algorithms. This is because classical algorithms are

typically based on average-case problems, but lattice-based cryptography is based

on worst-case problems [12]. The following is an oversimplified description of the

difference between average case and worst-case problems but it will suffice for the

purposes of this effort. Take the example of integer factorization, not all numbers are

equally as hard to factor, in fact some numbers are easier to factor, like even numbers,

but worst-case problems are difficult to solve [12]. Worst-case hardness implies that

breaking these lattice-based cryptographic constructions would be as hard as solving

several lattice problems, within polynomial factors, in the worst [20]. For example,

the RLWE problem requires solving, the closest vector problem (CVP) problem as

well as lattice-basis reduction. This is one reason why lattice-based cryptography is

being strongly considered to be a quantum-secure replacement for classical asymmet-

ric cryptographic algorithms. It defends against other mathematical breakthroughs

that might efficiently solve integer factorization or compute discrete logarithms [30].

27

2.8.1 Lattices

In this section, a brief overview of the mathematical lattice structure is provided.

For a more in depth understanding of the lattice structure the reader is directed to

Mariano et al. [74], Nguyen et al. [81], Regev & Oded [88], and Micciancio [77].

Lattices are discrete subgroups of the n-dimensional Euclidean space Rn, and

presents a strong periodic structure [81] [88]. Specifically, Zn ∈ Rn represents an

n -dimensional integer lattice in the n -dimensional Euclidean space. A set of linearly

independent vectors v1, . . . , vm ∈ Rn form the basis, B, of the lattice L [74]. An

integer latticed is formed by all integral linear combinations of the basis vectors,

using integer scalars [74]. More precisely,

L(B) =

x ∈ Rn : x =
m∑
i=1

uivi, u ∈ Zm

where m ≤ n in the rank of lattices [74]. In the case that m = n, L(B) is said to be

of full rank, and in the case that n ≥ 2, then L(B) has an infinite number of possible

bases [74]. An example of an integer lattice can be seen in Figure 1 and in this figure

b1, b2 are basis vectors that form a lattice which contains b3.

Non-integer lattices do exist, but integer lattices are usually used for lattice-based

cryptography because the problems are still hard enough to be cryptographically

secure and integer lattices are computationally easier to use [74]. Lattices have inter-

esting applications in both cryptanalysis and cryptography, and the discussions for

both follow.

2.8.2 Lattice Problems

This section provides a description to several hard lattice problems that provide

the underlying security to lattice-based cryptosystems. Additionally, this section dis-

28

Figure 1: A lattice with b1 and b2 basis vectors, and b3 is an element of the lattice.
Figure by Mariano et al. [74]

cusses and describes these problems briefly to provide a better basis of understanding

for the literature survey to follow. The lattice problems include lattice-basis reduc-

tion, the shortest vector problem (SVP), the CVP, the learning with errors (LWE)

problem, and the RLWE problem. These problems were selected for their prevalence

in cryptosystems, and since they are popularly used in cryptosystems, they are the

most relevant problems for lattice-based cryptanalysis. Out of scope are hard lattice

problems such as the shortest integer problem (SIS), decision shortest vector problem

(DSVP), unique shortest vector problem (USVP), etc. that can be found in the work

done by Laarhoven et al. [66].

2.8.2.1 Lattice-basis Reduction

Although it is not always mentioned throughout literature as a hard lattice-based

problem, lattice-basis reduction is frequently used in the cryptanalysis of lattice-based

cryptography and other cryptosystems. Some examples of lattice-basis reduction

being utilized in the cryptanalysis of other cryptosystems can be seen in the work

29

done by Wang et al. [107] and Bi et al. [27]. Given a basis, B, one can form the lattice,

L(B). Lattice-basis reduction is the process of transforming B into a new basis, B′,

such that L(B) = L(B′) [74]. The basis B′ should have vectors that are shorter and

more orthogonal than those of B [74]. An example of a lattice-basis reduction can be

seen in Figure 2.

Figure 2: A lattice with b1 and b2 basis vectors, after lattice-basis reductions b3 and
b4 are new basis vectors. Figure by Mariano et al. [74]

There are many algorithms that are used to reduce the bases of lattices and some

of them will be discussed in Section 2.9.

2.8.2.2 Shortest Vector Problem (SVP)

The SVP is commonly used in lattice-based cryptography; it involves finding the

shortest non-zero vector in the lattice which is measured by a norm [74]. More

specifically, given a basis, B, and its corresponding lattice, L(B), then the SVP is

defined by finding a non-zero vector, p ∈ L(B), such that

‖p‖ = min{‖x‖ : x ∈ L(B), ‖x‖ 6= 0} and ‖p‖ = λ(L(B))

30

[74]. An example for the SVP is provided in Figure 3.

Figure 3: A lattice where p and −p are the solution to the SVP for some L(B).
Figure by Mariano et al. [74]

However, this is a definition for the exact version of the SVP, and there is an

approximate version that is sometimes referred to as the γ-SVP [77]. The γ-SVP is

similar to the exact SVP except that the vector found is a factor bigger than the

exact shortest vector [77]. More formally, for γ ≥ 1 and a basis, B, the γ-SVP is

finding a non-zero vector p ∈ L(B) such that ‖p‖ ≤ γ ∗ λ(L(B)) [77]. When γ = 1

then the solution for the exact SVP is equal to that of the γ-SVP [77]. A part of

the reason that the SVP is difficult to solve is because typically the lattice basis is

comprised of long vectors that are significantly larger than the shortest vector. This

is why lattice-basis reduction is utilized to help solve the SVP [77]. It is difficult to

predict for which dimension of a lattice causes solving the SVP to be infeasible with

the computing power available today [88]. This makes it difficult to decide which

security parameters are needed for lattice-based cryptosystems.

31

2.8.2.3 Closest Vector Problem (CVP)

The CVP is an NP-Hard problem which was proven by Van Emde Boas [105]Ṫhe

CVP is described by trying to find a vector in the lattice that is closest to a vec-

tor v in vector space V [74]. To be more precise, give a basis, B, for lattice,

L(B), in the vector space, V . The CVP is to find a vector l ∈ L(B) ∈ V that

is closest to vector v ∈ V [74]. That is, ‖l − v‖ = min
{
‖p− v‖ : p ∈ L(B)

}
and

dist(v,L(B)) = ‖l − v‖ [74]. An example of the CVP can be seen in Figure 4.

Figure 4: Vector t is the target vector, vector p is an element of the lattice, and the
solution to the CVP. Figure by Mariano et al. [74]

In the CVP, the target vector does not have to be in the lattice. Additionally, just

like in the SVP there is an exact version and an approximate version. The above defi-

nition is the exact CVP, and the approximate version, γ-CVP, is described by the dis-

tance from the lattice vector, l, and the target vector, v, being a factor of γ away from

the exact distance [77]. To be more precise, for γ ≥ 1, vector l ∈ L(B), target vector

v in vector space V the goal is to find l such that ‖l − v‖ ≤ γ ∗ dist(v,L(B)) [77].

When γ = 1, the exact-CVP and γ-CVP are equal [77].

32

2.8.2.4 Learning With Errors (LWE) Problem

The LWE problem is a lattice-based hard problem introduced by Regev [89]. The

parameters of this problem are the dimension, n ≥ 1, an integer modulus, q ≥ 2, and

an error distribution, χ over Zq [74]. Typically the LWE error distribution is either

Gaussian or binomial centered around 0 [74]. The case when q = 2 is also known as the

learning parity with noise (LPWN) problem. For the LWE problem, vectors ai ∈ Zn
q

are generated uniformly at random and bi ∈ Zn
q is produced by bi = ai ∗ s+ ei mod q,

where ei ∈ Zq are small error values chosen from χ and s ∈ Zn
q is a fixed secret vec-

tor [74]. In the search variant of the LWE problem, the goal is to find a secret vector

s ∈ Zn
q , and with the decision version the goal is to determine if the samples (ai, bi)

are of the form described below [74].

Unlike SVP or CVP, it is not immediately apparent how the LWE problem is a

lattice-based problem, but Mariano et al. [74] provide a detailed description of the

relation. After collecting many samples, (ai, bi), the matrix A, is formed by using all

of the collected ai’s as the rows for A [74]. Also, the vector b is all the bi’s that are

collected, and can be seen by b = As+ e, where e is the vector of all ei’s (error values)

used [74]. In fact, b is a lattice vector, b = As+ e, for the lattice created from the

columns of A [74]. This means solving the difficult lattice problem CVP for target

vector b would imply finding As and it is then trivial to find s [74]. It is important

to note that in order to solve this problem enough transmission would need to be

captured to rebuild the correct lattice and the hard lattice problem CVP would need

to be solved.

Many cryptosystems are built with a security depending on the LWE problem.

Schemes based on the LWE problem are known as standard lattice-based schemes.

These scheme require matrix-vector multiplication, meaning these schemes require/use

a large amount of memory and have a quadratic complexity [62]. There are many

33

different variants of the LWE problem, and one that is mentioned throughout the

effort is the RLWE problem.

2.8.2.5 Ring Learning with Errors (RLWE) Problem

When discussing RLWE cryptosystems, it is important to understand an oversim-

plified definition of a ring. In abstract algebra, a ring is an algebraic system consisting

of a set, an identity element, two operations, and the inverse operation of the first

operation [42]. A ring, R, of integer polynomials modulo f(x), is described by the

following equation: R = Z[x]/〈f(x)〉 [74].

The LWE problems has caused a rise to many different variants of the problem to

be created because the inherent quadratic overhead when using the LWE problem [70].

The RLWE problem is an algebraic variant of the LWE problem that introduces the

use of rings of integer polynomials and cyclotomic polynomials [70]. A more formal

definition of a ring of integer polynomials is described as f(x) = xn + 1 ∈ Z[x] and a

ring of integer polynomials modulo f(x) such that R = Z[x]/〈f(x)〉 [70]. The elements

of R can be represented as polynomials less than n. Let q be a large prime. For the

RLWE, there is a set of small random and unknown polynomials in R such that ei(x)

is an element of that set [70]. Let s = s(x) ∈ Rq be uniformly random [70]. The

samples taken are in the form of (ai(x), bi(x)) where ai(x) is a set of random but known

polynomials and bi(x) = (ai(x) ∗ s(x)) + ei(x) [70]. Similar to the LWE problem,

there are two different versions- search and decision. The search version entails finding

the unknown polynomial s(x) given the sample (ai(x), bi(x)). The decision version

entails finding out if bi(x) was constructed by bi(x) = (ai(x) ∗ s(x)) + ei(x).

One of the main benefits of using RLWE cryptosystems over traditional LWE

cryptosystems and other lattice-based techniques is its superiority with efficiency in

both computation and key size [98]. The reason RLWE cryptosystems are efficient

34

is because the initial matrix is represented by a single row and all other rows of the

matrix can be derived from cyclic shifts of the first row [70]. This reduces matrix-

vector multiplication to polynomial multiplication and is memory and computation

efficient [62]. RLWE cryptosystems also provide strong security against classical and

quantum adversaries. In fact, research has be done to improve the efficiency of RLWE

cyptosystems, for example Tan et al. [103] and Alkrim et al. [8], and the work they

have done to improve RLWE cryptosystems through the use of a Number Theoretic

Transform (NTT).

2.9 Cryptanalysis of Lattice-Based Cryptography

This section provides an overview of the previous literature that has been produced

on the cryptanalysis of lattice-based cryptography. The section is broken up into

subsections based on the types of problems that specific algorithms intends to solve.

This is valuable to this research effort because it provides an in-depth look into

how a cryptosystem built from lattice-based cryptography could have its security

undermined.

2.9.1 Lattice-Basis Reduction

There are many algorithms that are used to accomplish lattice-basis reduction:

LLL, Block Korkine-Zolotarev (BKZ), random sampling reduction (RSR), and PDR [74].

However, the most commonly represented across the literature are LLL and BKZ. An-

other interesting set of lattice-basis reduction algorithms are those that use quantum

algorithms to speed up the reduction process, an example of one will be discussed

in this section. There is a plethora of literature about lattice-basis reduction algo-

rithms, techniques, optimizations, etc. Lattice-basis reduction is used throughout

many attacks to aid in solving the hard lattice problems.

35

The lattice-basis reduction algorithm, Lenstra-Lenstra-Lovász, known as the LLL

algorithm, has been applied to many areas of mathematics and computer science [110].

This algorithm generalizes the Lagrange-Gauss algorithm and exploits the Gram-

Schmidt orthogonalization [46]. There are algorithms that were produced to try and

optimize the LLL algorithm, like Backes et al. [17]; this produces a parallel variant

of LLL that utilizes POSIX threads. This algorithm is based on Schnorr-Euchner

algorithm, and it utilizes POSIX threads to make use of today’s multi-core computer

architectures [17].

Another lattice-basis reduction algorithm that is commonly seen is BKZ intro-

duced by Schnorr & Euchner [94]. According to Schnorr et al. [64], although LLL is

one of the most famous lattice reduction algorithms, the most promising according to

them is a combination of LLL and BKZ. BKZ uses local blocks to achieve reduction,

the size of these blocks are determined by an input parameter [64]. An improvement

in reduction can be accomplished through the use of larger block sizes [64]. This algo-

rithms starts by using LLL to reduce a given basis, B, of a lattice, L(B) [104]. After

L(B) has been LLL-reduced, the quality of the reduction is iteratively improved using

the local blocks [104]. Unlike LLL, there is not much literature on the parallelization

of BKZ. However, some literature does exist, Mariano et al. [74] provide a detailed

survey of the BKZ and LLL algorithms and the corresponding optimizations.

In 2003, Ludwig [1] proposed a lattice-reduction method, quantum search re-

duction (QSR), that speeds up the original RSR algorithm by utilizing a quantum

search. RSR is a good candidate for optimization through the use of implementing

a quantum search algorithm because the running time of RSR is controlled by the

exponential number of vectors that have to be sampled and discarded in order to

find a sufficiently small vector [1]. The original algorithm that chooses the samples

is random, and selects the samples with no inherent structure that would allow for a

36

speed up in the search process [1]. That is why Ludwig proposes the use of Grover’s

algorithm to speed up the search process for samples, and in return, speeding up the

process of finding a sufficiently short vector [1]. Bernstein [65] states that Ludwig

achieved an asymptotic speed up by replacing a random sampling from a big list with

a quantum search algorithm. Zhoe et al. [110], state that the results from Ludwig’s

experiment imply that quantum computers will negatively impact the security of

classical cryptosystems and lattice-based cryptosystems. Ludwig anticipates that the

post-quantum cryptosystem, NTRU, would need to double its security parameters in

order to remain secure [1]. To be more specific, it would need to be increased from

503 to 1277.

2.9.2 Shortest Vector Problem

There are two main families of SVP-solvers: enumeration and sieving. According

to Kuo et al. [64], although lattice enumeration has an exponential time-complexity,

it is the most efficient algorithm to solve SVP. According to Mariano et al. [74],

the most practical enumeration algorithms are ENUM [44] and SE++ [49]. These

algorithms could contain pruning techniques that minimize computation but these

techniques would decrease the probability of success. There have been efforts made

to try and optimize the ENUM and SE++ algorithm through the use of parallel

implementations [74]. The sieve algorithms improve the runtime of the algorithms,

but the improvement to the runtime comes at a cost of introducing randomization

and an increase in memory consumed [74]. Lattice sieve algorithms are not viewed

as effective due to their high exponential time and space complexity and the use of

randomization [74].

37

2.9.3 Closest Vector Problem

Similiar to the SVP, the two families of CVP-solvers are enumeration and sieve

algorithms. These algorithms face the same advantages and disadvantages as the

SVP-solver algorithms. However, unlike SVP, CVP has not gained much attention in

terms of practical assessments [74].

Cramer et al. [36] focus on recovering a short generator from any generator in

a RLWE cryptosystem. The fastest way to find a short generator is by solving the

CVP. Although it is not certain if the CVP of a long-unit lattice would recover a

sufficiently short generator. Cramer et al. [36] show that given the generator of an

ideal lattice, through the use of the naive "round-off" lattice-decoding algorithm, the

secret short generator can be recovered [67] [16]. This work demonstrates that it is

important for RLWE cryptosystems to have sufficiently large generators.

2.9.4 Learning with Errors Problem

In 2018, Wunderer et al. [108] show a successful hybrid attack on an instance of

a binary-LWE cryptosystem. The hybrid attack is a hybrid lattice reduction and

meet-in-the-middle attack, and it is currently known to be one of the best attacks on

lattice-based cryptosystems like NTRUPrime [23], R-BinLWEEnc [31], BLISS [39],

GLP [53], and NTRU [57]. However Wunderer et al. [108] restricted their studies

to a hybrid attack on the LWE problem with a binary error distribution. They also

state that the attacker must have access to a modern supercomputer [108]. Wunderer

et al. [108] present a highly scalable and configurable parallel version of the hybrid

attack on an instance of a binary-LWE cryptosystem. The multiple parallel instances

employing distributed processes allows for the low probability of success to be am-

plified increasing the probability [108]. They also were able to drastically reduce the

runtime of the guessing phase by implementing a shared memory parallelization tech-

38

nique [108]. However, there was a bottleneck presented within the shared memory

parallelization technique because it was limited by the high runtimes of the serial

BKZ [108]. The authors were able to utilize a parallel hybrid attack and their results

show that the parallel hybrid attack was significantly faster than the serial implemen-

tation. However, this means that the cryptosystems mentioned above can be broken

faster than previously estimated [108]. Due to the fact that the attacker has to have

access to a supercomputer and that the probability of success is still low implies this

attack does not present too much of a threat. However, LWE cryptosystems and

cryptosystems that are variants of the LWE problem should still mitigate attacks of

this nature to prevent from attacks of this nature.

Howe et al. [58] address the threat LWE signature schemes face from SCA and

more specifically fault attacks, by proposing several countermeasures to use within

the error samplers. The reason why the countermeasures are used within the error

samplers is because the errors that are chosen to secure the secret-key operations have

a statistically normal shape, which are usually Gaussian or binomial [74]. Specifically,

lattice-based signatures typically require Gaussian sampling [74]. The need to ensure

that these error samplers are operating correctly and are secure against SCA like

fault attacks is because Bindel et al. [29] showed that error sampling modules can

be targeted to obtain secret-key information. The results from the proposed coun-

termeasures showed that it is possible to protect against error sampler attacks while

having little to no effect on the efficiency of the module [58].

2.9.5 Ring Learning with Errors Problem

When it comes to RLWE cryptosystems, the literature differs on suggested pa-

rameter sizes for differing security levels, because for ideal lattices there are many

parameters that directly affect the security level. Also, there are not many attacks

39

that exploit the added ring structure of RLWE cryptosystems, but rather exploits

target the underlying LWE problem. In addition, if the attack does not exploit the

ideal lattice structure of the RLWE cryptosystem, it is likely that the attack would

also work against a LWE cryptosystem. This section describes some of the attacks

against RLWE cryptosystems from existing literature.

Fluhrer [45] shows that the RLWE problem is vulnerable to attack if there is a

reuse of keys. Fluhrer [45] shows that RLWE key agreement protocols can be broken

if the private keyshare is reused. If one party is reusing the same private-keyshare

then an attacker can send a series of messages to that party and analyze the response

to obtain the public-keyshare [45]. After the attacker performs the key establishment

protocol the attacker can guess the victims shared secret and generate the symmetric

keys based on that guess [45]. After the attacker generates the keys, the attacker will

send the keys to the victim. If the victim is able to decrypt the message based on those

keys, then it is highly likely that the attacker guessed the shared key correctly [45].

One place where this can potentially become an issue is in the use of TLS 1.3 draft [90]

that allows the server to declare a static keyshare. Currently, the TLS 1.3 draft uses

DHKE or ECDH. However, if DHKE or ECDH were to be replaced with a RLWE-

based key exchange it would no longer be secure [45]. Fluhrer [45] focuses on RLWE

and it is believed that this attack would also be effective on a LWE key agreement

protocol. RLWE/LWE cryptosystems are still believed to be secure as long as a fresh

keyshare is generated for every key agreement protocol. Attacks targeting keyshare

reuse have required for developed cryptosystems to contain CCA secure PQC KEMs

and these cryptosystems are designed to conain security when key reuse is not strictly

prohibited. If a PQC KEM claims to be CPA secure it is assumed that within the

implementation there is a strict prohibition on key reuse.

In 2015, the work by Bos et al. [30] replaced the traditional number-theoretic key

40

exchange in the TLS protocol with one based on the RLWE problem. Based on the

parameters selected for the RLWE problem, the authors discuss a possible classical

and quantum attack. Based on their simulation results their implementation would

remain secure against the classical attack [30]. It is valuable to discuss the classical

attack because if improvements are made to any of the algorithms or techniques

utilized, it could become an actual threat. The best classical attack is to solve the

LWE problem with a bounded distance decoding (BDD) problem and then reduce

the BDD to a USVP [30]. The next step is to implement the SVP oracle through

sieving. Bos et al. [30] mention a quantum attack would implement Grover’s search

algorithm in order to offer a speed-up of the classical attack [30]. Both algorithms,

the classical attack and the quantum attack, do not use the ideal lattice structure

of the RLWE. The attacks treat the cryptosystem as if they are based solely on the

LWE problem instead of targeting the added structure of the RLWE problem. This

is not uncommon, to date, there is no known attack on RLWE that take advantage

of the added structure of the RLWE cryptosystems but instead take advantage of the

LWE basis.

In the documentation for the NTRUPrime: Round 2 (round two for NIST’s Post-

Quantum Cryptography Standardization Project) [25], the introduction begins with

some warnings about previous attacks on cryptosystems. The NTRUPrime authors

acknowledge that Gentry’s original fully-homomorphic encryption (FHE) system [48]

is known to be broken in polynomial time by a quantum algorithm [25]. The purpose

the authors have for mentioning Gentry’s FHE was to illustrate attacks on ideal lat-

tices. The FHE system has standard cyclotomic choice of rings [25]. The weakness

discovered was not due to the ideal lattice-based scheme but instead the choice of

short generators for the ideal lattice-based schemes [25]. There is no known exploit

to attack Ideal-SVP/BDD. NTRUPrime authors outline the known cryptanalytic at-

41

tacks on small lattice-based encryption schemes, including Streamlined NTRU Prime

and NTRU LPRime.

Short generators paired with the structure of the principal ideal were the attack

surface for Gentry’s original FHE system. However, as discussed by Biasse et al. [28],

there are some cryptosystems that rely on the hardness of finding a short generator

of a principal ideal (short-PIP) of the cyclotomic ring R = Z[x]/(x2n). Campbell et

al. [33] conjectured that solving for the arbitrary generator of a principal ideal is

feasible in quantum polynomial time. They used the concept of a lattice fingerprint

to build their quantum attack [33]. The quantum attack was designed to find the

small generator of the principal ideal scheme [33]. Ultimately, their suggestion was

that cryptographic security should not be based on problems of finding hidden units

in a number field or hidden generators of a principal ideal [33]. They explained that

the mathematics behind cyclotomic number fields has cryptographic relevance for

RLWE schemes. However, this attack is just a conjecture and is not currently tested

or proven.

NTRU is a PQC PKE scheme where NTRU encrypt and NTRU sign use ring lat-

tice structures [109]. The original NTRU public-key cryptosystem was proven to be

vulnerable against a multiple transmission attack [109]. After the vulnerability sur-

faced, the designers proposed two countermeasure to the attacks [109]. In 2014, Xu et

al. [109] proved that both countermeasures proposed do not secure the cryptosystem

from the multiple transmission attack. The first countermeasure is accomplished by

appending some redundant information to the plaintext before encryption [109]. How-

ever, the authors show that the countermeasure is ineffective and the plaintext can be

recovered through a linearization attack technique [109]. They proved that the first

countermeasure was vulnerable against broadcast attacks too [109]. The second coun-

termeasure was accomplished by modifying the plaintext with random low-entropy

42

information and then encrypting it [109]. This countermeasure was proven insecure

against the multiple transmission attack because for a case with specific parameters

after performing lattice attack methods the plaintext can be obtained [109].

Multiple different research efforts show that RLWE cryptosystems are vulnerable

to SCA. It is important to consider physical attacks that may be launched while the

cryptographic schemes are being executed. The rest of this section is dedicated to

the literature that shows lattice-based cryptography is vulnerable to SCA.

Park et al. [85] propose a simple power analysis (SPA) attack on an unprotected

RLWE public-key scheme which was optimized by Roy et al. [92] by utilizing the

NTT and an 8-bit implementation. They chose a SPA attack because it was simple

and used lower traces than statistical analysis, such as differential power analysis [85].

Their implementation showed that through the use of a SPA attack they were able to

recover the secret key using only log2 q executions [85]. Also, they demonstrated the

modular addition operation is vulnerable against an SPA attack when using the 8-bit

implementation; thus it is advised to use the protected implementation when using

RLWE public-key scheme on 8-bit processors [85]. For that reason a cryptosystems

protection against SCA should be evaluated when analyzing RLWE cryptosystems.

In fact, Bindel et al. [29] show that lattice-based signature schemes are also vul-

nerable to side-channel attacks. The BLISS [39], ring-TESLA [3], and GLP [53] sig-

nature schemes were chosen to be analyzed against the attack due to their efficiency

superiority over other signature schemes. These signature schemes were analyzed

for vulnerability against randomization faults, skipping faults and zeroing faults [29].

All three schemes were found vulnerable again zeroing faults during the verification

and signing algorithm. Also these three schemes were found vulnerable to skipping

faults during the verification algorithm and the signature generation algorithm [29].

Moreover, the GLP scheme was vulnerable to some additional fault attacks [29]. An-

43

other important contribution of this paper was the analysis demonstrated that ideal

lattice-based schemes, for example RLWE, was more frequently vulnerable to zeroing

attack than standard lattice-based schemes LWE.

Lastly, Espitau et al. [43] presented two attacks that used SCA and a fault attack

that allowed the attacker to cause a loop inside the signature generation algorithm to

abort earlier than intended. The first attack targets BLISS [39], and the the authors

show how it extends to GLP [53], PASSSign [56], and Ring-TESLA [3]. The authors

inject a fault into the loop that generates a random "commitment value" and that

value was used to generated a polynomial coefficient by coefficient [43]. This means

that an early abort leads to an abnormally low degree polynomial, that implies the

protocol is no longer zero knowledge [43]. This produced a faulty signature which

was used to construct a point that was very close to a vector in an integer lattice

of moderate dimension. The difference is a subset of the signing key [43]. Lattice

reduction can then be used on the difference to recover the signing key [43]. The target

of the next attack was the GPV-based hash-and-sign signature scheme of Ducas et

al. [40]; against this signature scheme the early loop abort fault is used against the

discrete Gaussian sampling used in signature generation [43]. The result of aborting

the loop early is that when the signature generates, it is a linear combination of the

last few rows of the secret lattice [43]. If enough faulty signatures are collected it is

possible, through the use of lattice reduction, to rebuild the secret key [43].

2.9.6 Analysis of Cryptanalysis

This section provides an analysis of some aspects of the literature surveyed. This

provides an idea on the accuracy of the cryptanalysis of lattice-based cryptographies.

Also, common vulnerabilities for each problem can be exploited with a variety of

attacks and this is also discussed in this section.

44

A powerful tool in cryptanalysis is the use of challenges, as pointed out by Mariano

et al. [74]. By releasing challenges it allows for the community to try and expose any

vulnerabilities cryptosystems might possess. Mariano et al. [74] provide information

on the challenges available against lattice-based cryptographies.

It is important to analyze the usage of lattice-basis reduction throughout the crypt-

analysis of lattice-basis cryptography. In many of the attacks, the solution can be

found by reducing the problem down to a SVP, CVP, LWE problem, RLWE problem

to a lattice-basis reduction. Lattice-basis reduction can be used to attack cryptosys-

tems that are not built using lattice-based cryptography. Many of the lattice-basis

reduction algorithms have been improved upon, whether it be parallelization or the

use of a quantum search to accelerate the runtime. Some of the parallelization ef-

forts being made on SVP or CVP-solvers exhibit a bottleneck when it comes to

executing the lattice-basis reduction. This implies that when improvements are made

on the runtime of lattice-basis reduction algorithms the parallelization of SVP and

CVP-solvers could affect the parameter selection for lattice-based cryptography. This

means that if lattice-basis reduction is tremendously improved upon, it could affect

the security of lattice-based cryptography.

As with lattice-basis reduction, there has been focused research on using a quantum-

search algorithm within SVP or CVP-solvers to optimize runtime. CVP and SVP-

solvers have been used in attacks against the LWE and RLWE problems. The use

of quantum search algorithms to solve hard lattice-problems, shows that quantum

computers will not just affect current cryptosystems but they will also affect the se-

curity parameters chosen for post-quantum cryptosystems. This presents a problem,

because throughout the literature there is a consensus on the difficulty of estimating

security level against quantum attacks. Cryptanalysists are both overestimating and

underestimating the security level of cryptosystems against quantum attacks [34].

45

Many attacks against RLWE cryptosystems show that these cryptosystems are

attacked as if they are LWE cryptosystems because attempts to solve the RLWE and

LWE problems are approached in the same way. The added structure of RLWE cryp-

tosystems become favorable to LWE cryptosystems because the added ring structure

allowed for improvements in the efficiency of the cryptosystems without affecting the

security of the cryptosystems. Cryptanalysis of these systems becomes important to

research to determine if the added structure of the RLWE cryptosystems adds an ad-

ditional, unexposed, attack vector. However, only two attacks against the structure of

the ideal lattices were seen. One, is if a short generator is used for the structure. Two,

is a SCA where ideal-lattices are seen to be more vulnerable to zeroing attacks during

the sign algorithm; this was not strictly proven to take advantage of the additional

structure of the lattice.

2.10 NewHope

Since the PQC NewHope KEM cryptosystem was selected for this research, it

is important to discuss the NewHope cryptosystem. This section references the

NewHope Algorithm Specifications and Supporting Documentation document sub-

mitted to NIST by Alkim et al. [8]. NewHope proposed by Alkim et al. [8] is an

encryption based KEM that is based on NewHope-Simple. NewHope-Simple is a

variant of NewHope-Usenix with the main difference being that NewHope-Usenix is

a reconcilliation based scheme and NewHope-Simple is an encryption based scheme.

Within this section each of the following will be detailed: all four KEM types, the

difference between CCA and CPA algorithms, descrption of algorithms and supple-

mentary algorithms needed for functionality, parameter selection, the package sub-

mitted to NIST by the NewHope creators, how the submitted codebase works, and

how the KAT works.

46

2.10.1 NewHope Cryptosystem

NewHope is a post-quantum cryptosystem that has presumed quantum security

through the use of lattice-based cryptography and more specifically the RLWE prob-

lem. The NewHope KEM cryptosystem is packaged with a CPA-PKE scheme but

this encryption scheme is not intended for use outside of the KEM. Utilizing the CPA-

PKE scheme, NewHope is able to achieve two different styles of KEM’s, CCA-KEM

and CPA-KEM. Those different types are described in more detail in the next section.

The NewHope authors claim to achieve a quantum-resistant KEM which is simple to

implement, and due the use of the NTT, it is memory efficient. The authors do ac-

knowledge some limitations: The use of the RLWE problems could present a problem

if a vulnerability targeting the added structure of the ring is discovered. Lastly, the

parameter sets are restricted due to the usage of the NTT. However, the advantages

of using the NTT outweighs the downfall of parameter restrictions.

2.10.2 NewHope KEM Types

The NewHope cryptosystem contains four different kinds of KEM’s at different

NIST security levels. The NewHope cryptosystems are NewHope512-CCA-KEM,

NewHope1024-CCA-KEM, NewHope512-CPA-KEM, and NewHope1024-CPA-KEM.

Both NewHope512-CCA-KEM and NewHope512-CPA-KEM have a NIST security

level of 1, a better description of what this specific security level means can be seen de-

scribed in Section 2.5. NewHope512-CPA-KEM and NewHope1024-CPA-KEM have

a NIST security level of 5. These KEMs are accompanied by NewHope PKE scheme,

but unlike some of the other PKE schemes submitted to NIST this PKE scheme is

not intended to be used on its own. The NewHope PKE scheme is only used to

accomplish the key establishment.

Each cryptosystem is either CCA or CPA secure. The CPA cryptosystems are

47

built under the assumption that the public-key and private-key values are not reused

over multiple exchanges. However, the CCA cryptosystems are not built under the

same assumption. Since LWE key exchanges are known to be vulnerable under CCA

when one party is using the same key values for multiple exchanges. In order to

combat this the NewHope creators added extra security within their CCA implemen-

tations, to secure against these known CCA attacks. These added security measures

causes the CCA implementations to run slower, which will be tested throughout this

research as well. Since, the CCA implementations add extra security measures to

secure against the reuse of key values this KEM is best utilized in a system where not

many assumptions are being made. The CCA implementations also has the same se-

curity measures of the CPA implementations with the added security of private/public

value reuse. Later, if a vulnerability is found against a CPA then it is safe to assume

that the codebase for the NewHope-CPA implementations will have to be altered.

2.10.3 NewHope Cryptosystem Package

When the provided cryptosystems are built they produce an executable. When

that executable is ran it produces a request and response file. Each of those correspond

to a file provided within the KAT directory, that is used to verify the correctness of the

implementation. This can be seen in more detail in Section 3.4. The importance of

this is the ability to verify the implementation is done correctly. All of this is provided

within the package submitted to NIST. However, that is not all that is included in

the package. In fact, for each of the four KEM implementations there is a referenced

implementation and an optimized implementation. The referenced implementation

is commented thoroughly, that way the algorithm implementation can be identified

throughout the code and can be traced back directly to the documentation. However,

the optimized implementation is not written for direct comparison to the documented

48

algorithm, allowing it to be written in a more optimized fashion. They also included

an additional implementation folder which includes an implementation for the use of

vector extension. This implementation is not utilized for this research. Also included

is a directory containing Python scripts. This directory contains a PQsecurity.py

script that is utilized to analyze the cost of primal and dual attacks. This is then used

to analyze the bit level security for NewHope. The other scripts in this directory are

failure-512k8.py and failure-1024k8.py. These scripts are used to determine

the decryption failure rate of the NewHope512 and NewHope1024 KEMs. Through

the use of these scripts, the NewHope authors determined that the failure rate for

NewHope512 is less than 2−213 and less than 2−216 for NewHope1024. This failure

rate is important when analyzing it against an attack outlined in the paper written

by Fluhrer [45]. Also the authors outlined an attack that exploits failures in the CPA

NewHope KEM’s, in which about 4000 decryption requests need to be generated.

Alkrim et al. [8] state that the attack in Fluhrer’s paper [45] requires much larger

fail rates than defined by their protocol. The authors do mention that for CCA

implementions, Grover’s search algorithm could produce a failing ciphertext in time

2−216/2. However, that would require an adversary to determine offline whether a

ciphertext triggers a failure, which is impossible. This leads the authors to conclude

that decapsulation failure does not induce a weakness. The last directory included in

the submitted package is the supporting documentation, which outlines the NewHope

cryptosystem as well as addresses all requirements outlined by NIST.

2.10.4 NewHope Mitigating Attack Vectors

The NewHope authors addressed the attack detailed in Fluhrer’s paper [45]. That

was not the only attack addressed throughout the documentation. To protect against

attacks involving disclosure of randomness the PKE coins (random bytes used for

49

entropy), secrets are computed by hashing coins instead of using the coins directly.

Another common known attack utilizes vulnerable noise distributions. Not only are

timing attacks against discrete Gaussian samplers hard to protect against; they are

also difficult to implement and this can be seen in Bos et al [30] and Alkim et al [10].

Due to this, NewHope authors have chosen to use a centered binomial distribution.

Another concern that the NewHope cryptosystems address is the presence of constant

polynomials, which can be seen as the fixed system parameter a in Bos et al [30]. The

authors address this by utilizing a pseudorandom generator (PRNG) for the genera-

tion of the system parameter for every public-key. A more in-depth description of how

this parameter can be utilized in an attack can be seen in the NewHope documenta-

tion in an outline of the NTRU trapdoors seen in Hoffstein et al [57] and Stehlé et

al [101]. In the NewHope documentation is a description of another countermeasure

known as the "nothing-up-my-sleeve" process; however, even that countermeasure can

be partially abused as shown by Bernstein et al [21]. The authors state that when not

strictly required it seems preferable to avoid using this process. Another attack that

is addressed is the all-for-the-price-of-one attack; this attack is important to address

because even if the fixed system parameter is honestly generated the security of all

of connections rely on a single instance of a lattice problem. However, this is difficult

to do and would require an unforeseen cryptanalytic algorithm that would allow for

a costly lattice reduction to occur. Once this occurs, the lattice basis, that was once

good enough, can compromise all future communications using Babai’s decoding al-

gorithm [16]. This attack is similar to 512-bit "Logjam" data loss prevention (DLP)

attack seen by Adrian et al [2] which was possible within a set time due to the use

of fixed primes. The suggested mitigation is to avoid the use of fixed primes. All of

the mentioned pitfalls becomes avoidable through the authors suggestion to generate

a fresh a for each public-key. They suggest that if the computation of a fresh a for

50

each public-key is too expensive that it is possible to cache and use a2 for a limited

number of instances without weakening the security against all-for-the-price-of one

attacks. However, the authors have mitigated the performance impact by sampling

a uniformly directly in NTT format by transferring only a 256-bit seed for a. The

authors also addressed the idea of which primitive to use to accomplish a random

looking polynomial using a short seed. The authors acknowledge that in Galbraith’s

paper [47] it is shown that using a (non-programmable) random oracle model (ROM)

is overkill and the use of a PRNG should suffice, but the authors state that the use of

just a PRNG is not enough to argue security. In order to solidify the fact that it is not

enough to argue security, the use the NTRU assumption to show a legitimate PRNG

can still leave a scheme insecure. The authors decided to utilize a hash function,

Keccak [26], that became standardized as SHA3 in FIPS-202 [100]. Keccak offers

extendable-output functions (XOF) named SHAKE, that are utilized to avoid the

cost of an external iteration of a regular hash function, which fits the small overhead

needs of NewHope. More specificially, they have selected the use of SHAKE128 for

the generation of a. They selected SHAKE128 versus selecting SHAKE256 with a

small performance penalty because neither collisions or preimages lead to an attack

against their proposed scheme. Many of these attacks are avoided by not relying

a globally chosen public parameter a, this causes a slight efficiency disadvantage.

However, by doing so the creators are able to defend against backdoor attacks, allow

trusted generation of this value, and prevent attacks relying on a single instance of

the lattice problem similar to [2].

2.10.5 NewHope Parameter Sets

It is important to discuss the parameter selection for NewHope512 and NewHope1024,

shown in Figure ??. This is important because the parameter sets cannot be chosen

51

freely and must be chosen specifically for the design of the scheme. The parame-

ters in Table 3 fully define the parameters of NewHope and all other intermediary

parameters can be calculated from those parameters.

The intermediary parameters are shown in Table ??. As far as parameters not

being able to be freely selected there are several reasons behind this. The dimension

parameter, n, must be selected as an integer that is a power of two to support efficient

NTT algorithms and to maintain the security properties of RLWE. By selecting an

n that is an integer that is power of two, maintains the security properties of RLWE

because choosing one that is not comes with several complications that can be seen

in Lyubashevsky et al. [71] and Peikert et al. [87]. However, more specifically defining

polynomial of the ring cannot have the form Xn + 1 anymore. If n is not chosen to

be a power of two integer the scheme would be rendered insecure. That is not the

only limitations placed on the dimension parameter, n must also be greater than or

equal to 256 because of the encoding function that needs to encode a 256 bit message

into a n-dimensional polynomial in NewHope-CPA-PKE. Another parameter that is

limited for the support of efficient NTT algorithms is the modulus, q. The parameter

q is an integer prime that is selected such that q = 1 mod 2n. The noise parameter,

k, is selected so that the probability of decryption errors is negligible. The authors

go on to note that on a high-level the security of NewHope depends on (q, n, k) where

Table 3: NewHope parameters and derived high-level properties based on Alkim et
al. [8]

Parameter Set NewHope512 NewHope1024
Dimension (n) 512 1024
Modulus (q) 12289 12289

Noise Parameter (k) 8 8
NTT parameter (γ) 10968 7

Decryption error probability 2213 2216

Claimed post-quantum bit-level security 101 233
NIST security strength category 1 5

52

Table 4: NewHope’s intermediary parameters. Based on Alkim et al. [8]
Intermediary Parameters NewHope512 NewHope1024

γ =
√
w 10968 7

w 3 49
w−1 mod q 8193 1254
γ−1 mod q 3656 8778
n−1 mod q 12265 12277

a larger n and a larger k
q
leads to a higher security level. The parameter γ does not

directly affect the security of NewHope but it is needed for correctness and selected to

be the smallest possible value. A more precise look of how the NTT is implemented

effieciently is described in the NewHope documentation as:

The NTT defined in Rq can be implemented very efficiently if n is a
power of two and q is a prime for which it holds that q = 1 mod 2n.
This way a primitive n-th root of unity ω and its square root γ =

√
ω

mod q exist. By multiplying coefficient-wise by powers of γ before the
NTT computation and after the reverse by powers of γ−1 mod q, no zero
padding is required and an n-point NTT can be used to transform a
polynomial with n coefficients

The authors note that it is possible to select a different parameter value for q.

However, there is no belief that it will improve performance or improve the perfor-

mance/security trade-off. It is important to note that if a different value for q is

chosen then the value for k will also have to be adapted. Also, in general for RLWE

schemes q does not have to be chosen as a prime. However, since NewHope directly

uses a negacyclic NTT parameters must be chosen such that q is prime and q = 1

mod 2n. The authors note that a scheme without restriction to the q would look

significantly different than NewHope from an implementers standpoint.

The authors also mention a parameter set that the refer to as, NewHopeLudicrous.

This parameter set is unlikely to be needed, but is used when trying to achieve a

higher security level while maintaining confidence in the RLWE assumption. This

53

parameter set increases the dimension n to 2048 and k to 8. Choosing this parameter

set has the potential to double execution time and sizes of public-keys, ciphertexts,

and secret keys. It is also possible to increase the security of NewHope-CPA-KEM in

an empherical setting where decryption errors are less critical, to achieve this k could

be slightly increase to a value of k = 16.

2.10.6 NewHope Key Encapsulation

Utilizing one of the selected NewHope KEM’s a shared key can be created and dis-

tributed to the other party in the communication. This is done by utilizing NewHope’s

CCA-PKE inside of both the CCA-KEM and the CPA-KEM. This means that the

basis of the key encapsulation is the same. To demonstrate how a key encapsulation

process occurs Figure 5 was created. This figure is created using the NewHope CPA-

KEM because it is the more simple of the two. Also, NewHope CCA-KEM utilizes the

same functionality as NewHope CPA-KEM but with some added security measures

to protect against attacks targeting key reuse vulnerabilities.

NewHope KEM’s utilize SHAKE256 which is a strong hashing function that is

specified in [96]. The following variables in this figure â, s, ŝ, e, ê, b̂, s′, e′, e′′, t̂, û, v,

and v′ are all polynomials in a ring,Rq = Zq[x]/〈f(x)〉 such that f(x) = xn + 1 ∈ Z[x].

SHAKE256 takes two parameters, the first indicates the number of output bytes and

the second indicates the input data byte array. The rest of the functions seen in the

figure are all functions defined within the NewHope codebase. The GenA function

creates a polynomails in Rq from a given seed. The Sample function is utilized to

sample polynomials from a centered distribution, and its parameters are a seed and

a nonce that indicates domain separation. The nonce is an important feature as it

allows for multiple polynomials to be sampled with a single seed. The PolyBitRev

function reverse the bits of polynomial because the NTT function assumes that the

54

Figure 5: Implementation of a NewHope-CPA-KEM

passed parameter has its coefficients in bit-reversed order. The EncodePK function

is used to encode into a byte array using a polynomial in the ring and a seed. The

DecodePK function is used to decode the public-key back into the original byte array

and polynomial. The Encode function encodes a byte array into an element of the

polynomial ring, and Decode function decodes it back to a byte array. The Com-

press and Decompress functions perform coefficient-wise modulus switching between

modulus q and modulus 8 by multiplying by the new modulus and then performing

a rounding division by the old modulus. EncodeC is a function that encodes the

ciphertext (ct) into a byte array using a polynomial and compressed byte array. The

DecodeC function decodes the byte array into a polynomial and a byte array that

needs to be decompressed. Finally, the DecodePolynomial converts a byte array into

an element of Rq

Within Figure 5 it is assumed that Alice is initializing communication with Bob.

To begin Alice generates a seed, and this seed obtains its randomness from byte

55

arrays. It can be seen that the seed value is set utilizing a byte array with 32 values

in the range of 0 to 255. Next, the SHAKE256 function is called to obtain 64 random

bytes by utilizing the seed value as input. From those 64 bytes the first 32 are used

as the publicseed and the second half are set as the noiseseed. The public seed is

the utilized to generate a public polynomial, â. After, a polynomial, Ŝ, is created

using the noiseseed and a nonce of zero; This value will also serve as Alices secret

key. Then the polynomials bits are reversed and it passed in the NTT function. The

same procedure is done but with a nonce of one. The produced polynomials are then

utilized to create a polynomial in the for b̂ = â ◦ ŝ + ê, which is a common form

used within the RLWE problems. This polynomial and the publicseed value are then

passed into the EncodePK function to produces Alice’s public-key value. Alice then

sends her public-key value to Bob. Once received Bob can begin creating the shared

secret value, ss.

First Bob samples a byte array from a centered distribution and stores that value

into a coin parameter. From there the SHAKE256 function is called, with the coin as

a seed, to obtain 64 bytes. From the 64 bytes the first half is stored into a K value

and the second half will be stored in coin′. Bob then decodes Alice’s public-key using

the DecodePK. Using the same public-key as Alice, Bob then generates the same â

polynomial as Alice. From there he creates three polynomials, s′, e′, and e′′, and

then he reverses the bits to s′ and e′. Passing the s′ and e′ polynomials through the

NTT, he creates two new polynomials t̂ and m̂ which are the NTT(ŝ) and NTT(ê)

respectively. Following, Bob is able to create a new polynomial using polynomial

multiplication such that û = â ◦ t̂m̂. The message, µ=K, that is intended to be sent

is the encoded into a polynomial. After, Bob constructs a new polynomial which

equals the NTT−1 function on Alices public-key multiplied by the t̂ variable adding

an error polynomial and the encoded message. This is done so that Alice can use

56

Bob’s public-key, which he will send, and her secret key to obtain the shared secret

key. Then, Bob compresses that produced polynomial into a byte array. Finally, he

uses the EncodeC function to encode the ciphertext using the û polynomial and the

compressed v′ polynomial. He then sends the ciphertext to Alice so that she can

begin obtaining the shared secret key.

To obtain the shared secret key Alice starts by decoding the ciphertext. She then

decodes her secret key to obtain her original ŝ polynomial. Then by decompressing

the h byte array she can perform a series of reverse operations to obtain the message,

which is the encoded K value. Then Alice and Bob can both perform the SHAKE256

function with an output of 32 bytes to obtain a shared secret key that they both have.

As you can see from above, this follows the format of the RLWE problems, and if

Alice’s ŝ value is found then the messages could be intercepted and the shared secret

could be calculated. As stated in Section 2.8.2.5, solving the RLWE problem would

require that enough transmissions are captured to rebuild the lattice and then the

NP-hard CVP would need to be solved.

2.11 Java Native Interface (JNI)

Since NIST required the submitted code to be in C, it was then a question of how to

implement the C code on a mobile phone. The options were to rewrite the C codebase

to be a purely Java codebase or use a JNI to implement the native C functions in an

Android Package (APK). For this research effort, the decision was ultimately made

to implement the C codebase through the use of a JNI, this is similiar to how Malina

et al [73] implemented NewHope on their Android device. More reasoning behind the

selection of using a JNI versus rewriting the existing codebase in Java can be seen in

Section 3.9. Since a JNI was utilitzed, this section is dedicated to giving an overview

of how JNI’s work, how it is implemented in Android Studio, and what considerations

57

had to be made when using a JNI.

2.11.1 JNI Basics

This entire section is referencing the Oracle documentation on the Java Native

Interface Specification [72]. A JNI is a native programming interface that allows Java

code that runs inside a Java Virtual Machine (JVM) to interoperate with applications

and libraries written in other programming languages, such as C, C++, or Assembly.

Developers should consider the use of a JNI when they need to utilize the JNI to

write native methods to handle situations where an application cannot be written

entirely in Java. Within the documentation, Oracle outlines several reasons that

would require the use of a JNI. They include but are not limited to: Java alone does

not support the needs of the application, the standard Java class library does not

support the platform-dependent features needed by the application, or you already

have a library written in another language that the application needs to be accessible

to Java code through the JNI [72]. This research effort finds the need for a JNI due

to the fact that OpenSSL and the NewHope codebase implemented is written in C.

An important benefit of utilizing a JNI is that it does not add any impositions

on the JVM vendors to change the functionality of their underlying Virtual Machine

(VM). This means that JVM vendors can add support for the JNI without affecting

other aspects of their VM. This also means that a programmer can write a version of a

native application or library and expect it work on any JVM that supports JNI. This

is a tremendous benefit to have because when writing a native application or library

you are not confined to any specifications that would be JVM specific. Utilizing a

JNI gives programmers a multitude of options that are available to utilize on native

methods. Programmers can use native methods to create, inspect and update Java

objects, call Java methods, catch and throw exceptions, load classes and obtain class

58

information, and perform runtime type checking.

The Oracle JNI documentation [72] has a section that addresses native method

programmers. The documentation states that native programmers should program

to the JNI, this will protect the programmers from unknowns that might affect the

end user, such as the vendors VM the end user might be running. Programmers

conforming to the JNI standards will give the native library the best chance to run

on any given VM.

2.11.2 JNI Within Android Studio

This section describes how to create a native C library which can be utilized

from within Java code within Android Studio. Android Studio utilizes a Native

Development Kit (NDK), CMake, and Gradle to achieve a JNI. The Android NDK

is a set of tools that allows for the use of C/C++ within Android and it provides

platform libraries that can be used to manage native activities and access physical

device components [11]. The NDK uses CMake to compile the C/C++ code within

the application. CMake is an open-source set of tools that is used to build the

C/C++ code by utilizing its compiler to generate native makefiles from independent

configuration files to build the native library [63]. Gradle is an advance open-source

build tool that manages dependencies and allows the user to define custom build

logic [51].

The first step in creating a JNI environment is to build a native library. In order

to create a native library, it is required to have an independent configuration file that

indicates how the native library should be built. Within Android Studio the default

file name is CMakeLists.txt. Within this text file the add_library function will be

utilized to name the native library and indicate which source files will be utilized

to build the native library. It is also possible to define paths that the native code

59

might need to access (i.e., dependencies required to compile the code). In this file, the

native library can also be linked to other required libraries needed for compilation.

For example, NewHope requires the OpenSSL crypto library and within this file the

native library will be linked to the OpenSSL library. These libraries can either be

explicitly defined or the find_library function can be utilized to locate the desired

library.

After defining how the native library needs to be built, the application Gradle

build settings need to modified. There are a number of different Gradle build scripts

throughout the project but the one that will need to modified to specify how to

build the native library is the application Gradle build settings. Within this Gradle

file the external native build settings need to be added to contain the CMake path

variable and the cmake version. The CMake path variable will be set to the path of

the CMakeLists.txt file and the CMake version needs to be set to the appropriate

CMake version. Also, within this file it is possible to set flag variables to be used for

C/C++ compilation.

The last step is to utilize the JNI within the Android codebase. To access the

native library from within the Java code the native library has to be loaded into

Java code and the native functions that are used have to be declared within the

Java code. After, the Java code is able to call native C/C++ functions. In order

for the C/C++ functions to be able to modify the Java environment or return Java

variables the C/C++ functions will have to be declared with the Java environment

and Java object parameters. More in depth examples can be seen in Appendix A for

the Android Java code and Appendix B.

60

2.12 Chapter Summary

In Section 2.2, a brief overview of quantum computers and quantum computing

was provided. This section resulted in the definition of large-scale quantum computers

and provided an insight in the quantum mechanic properties that could present an

issue on the successful creation of large-scale quantum computers. In Section 2.3,

a look into how Grover’s and Shor’s algorithms will affect current cryptographic

methods. In Section 2.4, an overview of post-quantum cryptography was provided.

This section also contains the motivation into PQC research efforts.

In Section 2.5, an overview and timeline of NIST PQC Standardization Project

was provided. This section provided valuable insight into a project that is contributing

the the development of quantum-secure cryptosystems.

Section 2.6 provided a literature review of IoT and mobile device implementations

of quantum-resistant algorithms. Examining the available literature provided valuable

insight into known complications and expectations for PQC implementations.

Section 2.7 provided a table of PQC KEMs that have progressed to the current

round of NIST’s PQC Standardization Project. This section will be utilized in the

following chapter for the selection of a PQC KEM to implement on an Android device.

In Section 2.8, background knowledge was provided on lattice-based cryptogra-

phy because NewHope’s presumed quantum hardness is a derivative of lattice-based

cryptography.

In Section 2.9, an in-depth literature review of the available literature on crypt-

analysis of lattice-based cryptographies was provided. This is important to under-

standing the types of vulnerabilities NewHope might be vulnerable to. An important

take away from this section, is that there is currently no known attack that takes

advantage of the added structure a ring adds to a lattice, but instead all attacks on

the RLWE problems took advantage of the underlying RLWE problem.

61

In Section 2.10, background knowledge for the NewHope cryptosystem is pro-

vided. This section provides necessary details into understanding how to accomplish

an implementation of NewHope. An important product from this section is Figure 5

which gives visual representation as to how the underlying NewHope-CPA-KEMs are

accomplished.

Lastly, in Section 2.11 knowledge into a JNI was provided along with how a JNI

environment can be achieved within Android Studio. This is pertinent to this research

effort because the design choice was made to implement NewHope as a native C library

that is interacted with through the use of a JNI.

62

III. Methodology

3.1 Chapter Overview

This chapter describes the methodology used throughout this research effort.

Section 3.2 outlines the methodology procedure for this research effort. This

section provides a step-by-step view of the methodology approach.

Section 3.3 provides the justification for choosing the NewHope key encapsulation

mechanism (KEM) and the criteria that was used to select the algorithm. KEM se-

lection was achieved by using National Institute of Standards and Technology (NIST)

post-quantum cryptography (PQC) Standardization project, and the documentation

of each Round 2 KEM candidate algorithm.

Section 3.4 outlines the steps taken to build and execute the NewHope codebase.

The NewHope codebase was built to verify the correctness of the codebase and allow

for reverse engineering of the codebase. Section 3.5 outlines the steps that were

taken to reverse engineer the NewHope KEM scheme. Throughout this effort reverse

engineering refers to the process of using a codebase to understand the KEM scheme

and the transmission requirements. Section 3.6 provides details about transmission

byte requirements, key, and ciphertext sizes for the NewHope KEMs. This data will

be used when comparing NewHope implementations to the available work by Malina

et al. [73].

Section 3.8 provides a description of the preparation required to complete the

mobile implementation of the KEM. The preparatory steps include device selection,

installing any software that is required, building Android specific OpenSSL libraries,

and creating a Java Native Interface (JNI) environment to achieve NewHope KEM

mobile implementation.Section 3.9 provides an overview of how a mobile NewHope

C/JNI codebase was created and a description of how the implementation was achieved.

63

In addition, this section provides code functionality that was added to create a code-

base that was more indicative of real world use than the original codebase.

Lastly, Section 3.10 provides details on Android Studios Android Profiler and the

efficiency tests that were ran on the NewHope KEM mobile implementations. Also,

this section provides a testing procedure and a description of what comparisons were

used to analyze the data that was collected.

3.2 Methodology Procedure Outline

This section provides a step-by-step procedure on the methodology approach used

for this research effort.

1. A PQC KEM was selected

2. The NewHope codebase was obtained and built for correctness

3. The codebase was reverse engineered to obtain a full understanding of trans-

mission requirements for the NewHope KEM scheme

4. From the NewHope codebase the NewHope transmission byte requirements, key

and ciphertext sizes was obtained

5. Using a modified Android Studio C/JNI example a JNI baseline was created to

be used in comparison

6. Steps were taken to ensure a proper environment to complete a NewHope mobile

implementations

7. NewHope codebases were created for each NewHope KEM scheme

8. The created NewHope codebases were implemented on a Google Pixel

64

9. Using Android Profiler within Android Studio the NewHope mobile implemen-

tations were tested for CPU, energy, and memory usage. More details about

the testing procedure is outlined in Section 3.10.2

10. Comparisons to available work, the created JNI baseline, and comparisons be-

tween NewHope KEM schemes are made using the data that was collected from

each NewHope mobile implementation

3.3 Choosing a KEM Algorithm

When choosing a quantum-secure KEM for mobile implementation several con-

siderations were made, the algorithm had to work well on a mobile phone and had to

have a presumed quantum-secure cryptographic primitive. After NIST posted their

call for proposals for their PQC Standardization Project, and received several sub-

missions. NIST narrowed their selections down using competition-like rounds and

this was detailed in Section 2.5. NIST is currently in Round 2 of selections, that was

the starting place for looking for PQC KEM algorithms to be considered for mobile

phone implementation.

Based on current literature one of the most promising post-quantum public-key

encryption (PKE) and KEM schemes are based on lattice-based cryptography, more

specifically the ring learning with errors (RLWE) problem, which is described in

detail in Section 2.8.2.5. This is due to RLWE cryptosystem having small keys and

ciphertext values due to the added structure of the ideal lattice. As seen in Section 2.9,

the only attacks that are known to take advantage of the added structure of an

ideal lattice target the use of short generators in lattice construction. If RLWE

cryptosystems use a sufficiently large generator they are not known to be vulnerable,

and they should be considered over learning with errors (LWE) cryptosystems because

RLWE cryptosystems have better time and computationally efficiency.

65

Utilizing NIST Status Report on Round 2 Submissions [5] and the documentation

for each submitted candidate KEM, selection eliminations were made based on key

sizes, known attacks, or security concerns. Section 2.7 provided more specifics on the

selection of NewHope.

This led to the selection of NewHope KEM algorithms. The authors of NewHope

claim that NewHope is fast in software and achieve simplicity in terms of implementa-

tion [8]. Also, they claim that implementations on ARM devices are fast; this makes

the NewHope cryptosystem a good choice for mobile phone implementation with a

targeted device of a Google Pixel with an ARM64 processor [8]. Some of the dis-

advantages that are acknowledged by NewHope creators are parameter restrictions

due to the use of Number Theoretic Transform (NTT) and RLWE cryptosystems

having more structure compared to LWE cryptosystems [8]. As stated in Section 2.9,

there is no known attack that targets the added structure of RLWE cryptosystems.

So this disadvantage has yet to be proven to be a hindrance. The NewHope KEM

cryptosystem is described in more depth in Section 2.10.

3.4 Building the Original KEM Codebase

Each NewHope KEM codebase that was submitted to NIST was downloaded

and built to ensure the correctness of the codebase. The NewHope code base was

verified for correctness using the known answer tests (KAT) provided to NIST by the

NewHope creators.

In order to properly build the NewHope codebase, OpenSSL was required. More

specifically, the Crypto library from OpenSSL was needed to build each version of

the NewHope KEM; this was identified in each NewHope makefile. Within the

makefile the build flag -lcrypto was used and refers to the use the OpenSSL crypto

library.

66

After properly building and installing OpenSSL, it was possible to build the each

NewHope codebase. This was done by following the make commands outlined within

the makefile, simply run make if this was the first time building the executable and

run make clean if the executable was previously built. Each provided NewHope

makefile was modified to enable the make clean command to remove the request

file, response file, and the executable. Additionally, each NewHope makefile had to

be modified to include the correct path for the C compiler.

The built executable produced two files, a request file and response file. The

produced files are intended to be identical to the provided KAT. Within the request

file there was 100 produced seeds. The response file contained a count to label the

seed values to 100, the seed, and empty values for private key, public key, ciphertext,

and shared key. The response file was produced by reading in the seed value from the

request file and using the seed value to produce the corresponding private key, public

key, ciphertext, and shared key values. To create the full response file this was done

iteratively for all 100 seed values in the request file. The original functionality of the

NewHope codebase was not indicative of real-world use because the key values were

not produced directly after generation of a random seed. Also, the original codebase

pulled seed values from a file which, for security purposes, is not a viable solution

when creating the mobile implementation.

The request and response files created when running each executable was com-

pared to the provided KAT. An example comparison can be seen in Figure ?? and it

shows the count, seed, and shared key where each of these values originate from the

response files. Comparison of these files was done by using the cmp unix command

because the produced files, when built correctly, will be the same as the KAT files.

The cmp command will output the first line that the files differ and if the files are

identical, nothing will be output. if the files differ in any way and return the number

67

of the first line that the files differ. Figure ?? shows an example of this unix command

on the produced NewHope512-CCA-KEM response and request files compared to the

corresponding KAT files. For each NewHope KEM no differences was returned and

the files produced were the same as those provided for the KAT.

Each NewHope KEM was built, executed, and tested for correctness. The exe-

cutables produced files that were identical to the KAT; it was concluded that each

NewHope codebase was correct and could be used as a basis to build each NewHope

mobile implementation. The original codebase could not just be placed on the phone

and used because it was not applicable for the intended purpose of creating a singu-

lar shared key. However, there are some source files and functionalities that could be

utilized within the new codebase.

3.5 Reverse Engineering NewHope KEM

After building and verifying the correctness of the original codebase it was re-

quired to revers engineer the original codebase. Within this research effort reverse

engineering refers to the analysis and dissection of a codebase to gain a complete

understanding of how the algorithms and schemes within the codebase are imple-

mented. The NewHope codebase was accompanied with documentation that outlines

algorithms but does not provide codebase and transmission requirement specifics.

Therefore, reverse engineering the codebase was required.

After building the NewHope codebase, it was required to parse through the source

code to identify the purpose of each submitted source file as this was not outlined

throughout documentation. This had to be done in order to determine which files

could be utilized in the mobile implementation, and which files had to be recreated.

The only file that was not usable for the mobile codebases was the driving source

file, PQC_genKAT_kem.c. This was an indicator that, most of the functions provided

68

in the NewHope codebase could be reused. More specifically, the files that were

able to be reused built the underlying RLWE structure of the KEM, PKE schemes,

chosen plaintext attack (CPA) schemes, chosen ciphertext attack (CCA) schemes,

hashing algorithms, and NTT. However, the driving file had to be rewritten to use

the remaining functionality from the original codebase and additional functions to

achieve a shared key.

Throughout the reverse engineering process it was realized the transmission re-

quirements between parties and how the transmitted data is created. Section 2.10.6

explains the results from reverse engineering the NewHope codebase. Figure 5 was

a created transmission diagram between two parties, Alice and Bob. This diagram

was created utilizing algorithms defined within the NewHope documentation [8]. The

first portion of the diagram shows Alice computing her public key and secret key,

this was seen in the documentation as the CPA-PKE key generation algorithm [8].

Alice then sends her encoded public key to Bob, the next portion of the diagram is

Bob’s computation. Bobs computations are a combination of NewHopes CPA-KEM

encapsulation and CPA-PKE encryption algorithms [8]. After sending the encoded

ciphertext to Alice, she then begins her final computations which are a combination

of NewHopes CPA-KEM decapsulation and CPA-PKE decryption algorithms [8].

Through the use of reverse engineering it was possible to identify source files

that could be reused in a mobile implementation and which files would have to be

rewritten for the new codebases. Also, reverse engineering the codebase was required

to understand the transmission requirements between the two parties, Alice and Bob.

3.6 Analyzing Transmission Byte Requirement

Although the bytes that are transmitted to establish a shared key is constant,

dependant on the selection of NewHope KEM variation, it is important to examine

69

the number of bytes that need to be transmitted because the set of constraints a

device possesses. In Table 5, the KEM-specific values can be seen. These values

were obtained from the api.h and params.h source files from within the original

codebases, an example from the NewHope512-CCA-KEM codebase can be found in

Appendix C and Appendix D respectively. The definition for these value sizes was

found by first examining api.h to see what the values are being mapped to within

params.h. Then within params.h a definition of each of these values was located and

calculated. These values all differ depending on which NewHope KEM is selected for

implementation and Table 5 indicates the byte sizes for each.

Table 5: Size of seeds, shared secret keys, public keys, secret keys, and cipher texts
of NewHope instantiations in bytes

Size of Values Used in NewHope Instantiations in Bytes
Parameter Set seed |ss| |pk| |sk| |ct|
NewHope512-CPA-KEM 48 32 928 869 1088
NewHope1024-CPA-KEM 48 32 1824 1792 2176
NewHope512-CCA-KEM 48 32 928 1888 1120
NewHope1024-CCA-KEM 48 32 1824 3680 2208

First, these values can be utilized to examine the constraints of the target device

and decide which NewHope KEM variation is most suitable. So if the target devices

are extremely constrained on memory and are used in a ephemeral setting, public/pri-

vate keys are freshly generated for key generation, then a CPA version of NewHope

would be preferred because it has smaller values and does not require the added se-

curity against key reuse attacks. Another constraint that should be examined is the

bandwidth on which these devices will be communicating. As seen in Section 2.10.6,

the values that would initially need to be exchanged between Alice and Bob is Al-

ice’s public key value followed by Bob’s response of the calculated ciphertext. So,

when choosing which NewHope KEM to implement one should evaluate the intended

bandwidth and the amount of bytes needed for key establishment. Those are just a

70

few examples of how these values can affect the choice of which KEM to implement,

and becomes more important when implementing on a more constrained device than

the modern day mobile phone. With that being said, these values did not affect this

mobile phone implementation due to the increasing resources that are available in

current mobile phones.

3.7 Creating a Baseline Application for Comparison

Due to the lack of available research on mobile phone implementations of PQC

KEM, some additional data was desired to compare how the NewHope KEM mo-

bile implentations run to other applications. This prompted the need for a C/JNI

application to compare the NewHope test results to. In order to get an application

that would be suitable for comparison to a NewHope mobile implementation, an ap-

plication that utilizes a JNI was selected. To be more specific, an Android Studio

JNI example code, HelloJNI found in Android Studio example repository, was down-

loaded and modified to provide an baseline JNI application. The example code was

modified to contain a native function call within an OnClick event. The native C

function obtains the application binary interface (ABI) of the device and creates a

string using the ABI and a random number. The OnClick event then prints this string

to the textview. Although this application does not require any heavy computations,

it was still valuable to use in comparing consumed resources because it was used to

conclude if the additional computations made throughout the native NewHope code-

bases caused an increase in resource consumption. This codebase was sampled using

the same testing procedure outline in Section 3.10.2. The results from testing the

JNI baseline are compared to the NewHope implementations by using a two-sample

two-tailed T test.

71

3.8 Preparation for Mobile Implementation

After selecting NewHope KEM for implementation there were some preliminary

preparatory steps that had to occur. Including downloading and installing soft-

ware that was needed: Android Studio, Android Native Development Kit (NDK),

OpenSSL, NewHope codebases, and NDK toolchains for x86 and ARM 64 architec-

tures. These were required to achieve a mobile implementation of the NewHope PQC

KEM schemes.

First, a mobile device had to be chosen for implementation and despite being

selected because of availability; it was a good choice for implementation because, as

of the end of 2018, it was the number three selling premium smartphone in the United

States [86]. Specifications for the Google Pixel are as follows: OS: Android 9 (Pie),

chipset: Qualcomm MSM8996 Snapdragon 821 (14 nm), CPU: Quad-core (2x2.15

GHz Kryo & 2x1.6 GHz Kryo), GPU: Adreno 530, and memory: 32 GB of memory

with 4 GB of RAM.

Next, there was a design choice that had to made of which programming language

to use to implement the NewHope KEM schemes. The full NewHope Round 2 sub-

mission package was downloaded from NIST PQC Standardization Project website,

and more information on the NewHope package can be found in Section 2.10. The

codebase for NewHope was written using C. Since this research effort was to put

NewHope on an Android mobile device, the desired codebase would need to utilize

Java. Alkrim et al. [7] mentioned an open source Java implementation of NewHope-

Usenix. However, since publication the codebase mentioned by Alkrim et al. [7] was

either removed or relocated. However, if the codebase was found, significant code

changes would be required in order to achieve a NewHope implementation instead of

a NewHope-Usenix implementation. Therefore, the choice was made to implement

the NewHope KEMs using a native C library through the use of a JNI.

72

The JNI is accomplished by using Android Studio, NDK, Gradle, and CMake.

Section 2.11.2 provides more specific information on the use of a JNI. The JNI allows

for the use of some of the NewHope C code that was submitted to NIST as native

functions in a native library. Within Android Studio the submitted code was placed

in a cpp directory. When the project was built, the folder was compiled into a

native library that Gradle would package into the final Android Package (APK).

The written Java code could make function calls to functions contained in the native

library through the use of JNI. The choice to use Android Studio is based on usability

and the application testing tools available within Android Studio. NDK, Gradle, and

CMake were chosen because this software is required to accomplish a JNI within

Android Studio.

In order to build the codebase for a Google Pixel it was necessary to build OpenSSL

for the specific Android architecture while designating an APK level. In order to build

OpenSSL for Android devices additional NDK toolchains were needed. Two different

toolchains needed to be created, one for x86 devices and one for ARM 64 devices.

OpenSSL was needed for an x86 Android device for debugging purposes because there

is no Android Studio x86 emulated device at the required API level. Additionally,

OpenSSL was needed for an ARM 64 device because that is the targeted architure of

the Google Pixel. To create the x86 and ARM 64 NDK toolchains the following com-

mands were used, respectively: ./build/tools/makestandalonetoolchain.sh -

toolchain=i686linux and ./build/tools/makestandalonetoolchain.sh toolchain=arm-

linuxandroideabi4.8. Both of these commands produced directories that contained

the 32 bit and 64 bit toolchains.

After building the correct toolchains, OpenSSL was built for the Android devices.

To build OpenSSL the Android build instructions were followed, modifying paths and

environment variables.

73

Building OpenSSL produced two libraries libssl.a/so and libcrypto.a/.so.

The libcrypto library was needed for the NewHope codebases. This means that

the library needed to be added to the project for the native code to access. This

was accomplished by adding several lines to the CMakeLists.txt file; for a look

into a well-commented CMakeLists.txt file see Appendix E. Section 2.11.2 provides

descriptions of the uses of the CMakeLists.txt, CMake, and Gradle.

Within CMakeLists.txt the directories that the native files need additional de-

pendencies from must be added; this is done by using an include_directories

function and providing a path to the directories to be added to the project. Next,

using an add_library function a shared native library utilizing the native C source

files was created.

Next, in the CMakeLists.txt, the OpenSSL crypto library is added. This was ac-

complished using two functions, an add_library function and a set_target_properties

function. The add_library function allows a definition for a static imported library

and the set_target_properties function is used to declare the path to the library

being imported.

After adding the OpenSSL Crypto library within CMakeLists.txt, it was neces-

sary to find the log library, log-lib, included in the Android NDK to use logging

capabilities throughout the mobile application. This was done using a find_library

function. It was possible to add the OpenSSL library by using the find_library

function. However, this could of presented issues because there were OpenSSL li-

braries in multiple locations. For example, OpenSSL libraries was installed within

the system but there were Android-specific libraries located within the Android NDK

home directory.

Next, it was time to link both the log library and the OpenSSL Crypto library to

the native library in CMakeLists.txt. To accomplish this the target_link_libraries

74

function. The target_link_libraries function links the imported-crypto-lib and

the found log-lib to the native-lib that was built from the created NewHope

codebase. To see all the CMakeLists.txt source with the thorough comments see

Appendix E.

After the CMakesList.txt was created, the build.gradle application settings

was modified; Gradle builds the native library using the CMakesList.txt as an inde-

pendent configuration file. This was accomplished by adding a line to the build.gradle

applications settings that specifies the path for the CMakeList.txt file and indicates

which version of CMake was used.

The last modification to the application settings, was to specify the architecture of

the target device, this must match the architecture used to build the linked OpenSSL

Crypto library. This was completed by adding an ABI filter within the build.gradle

application settings. The full build.gradle application settings file can be seen in

Appendix F.

3.9 Creating NewHope Mobile Implementations

In order to build an APK for an Android device, a JNI was used. As discussed

above when the original codebase was run, the PQCgenKAT_kem.c acted as the

main source file. Within this file, two files were created a request file and a response

file. These files, if the implementation is done correctly, will match the provided

KAT. However, this meant that in order to build an Android implementation this file

had to be modified within the JNI implementation to run as wanted. The desired

Android implementation will not just create two files that correspond to the KAT

results; instead the desired implementation was meant to be as indicative to real-

world application as possible. With that being said, the original implementation was

not indicative to real world application for a number of different reasons. The desired

75

implementations will not be accomplished by reading produced seed values from a file

in order to produce the the shared key and the implementation will not create 100

key values by producing 100 keys then the corresponding 100 shared key values.

To produce a mobile implementation of the NewHope KEM schemes, the layout

of this mobile application contains three different buttons, and a singular textview.

The mobile application layout is shown in Figure 6. The first button, Create Keys,

is used to create the keys from a random seed. This button will modify the textview

based on the OnClick functionality that is chosen. The Clear Keys button was used

to clear the textview of all text; repressing the Create Keys button will clear the

textview automatically and adjust the textview accordingly. The last button was a

Test For Correctness button; this button is used to verify the correctness of the

mobile implementation through the utilization of the KAT. Below is a description of

how these functions are accomplished.

Figure 6: NewHope mobile application layout

The MainActivity.Java file contains hardcoded array values. These are the values

76

that are obtained from the KAT, and they were obtained by modifying the original

main source file for each codebase of NewHope, this modified PQCgenKAT_kem.c file

can be seen in Appendix G. The modifications made to this file was to produce

console output that would be directed to a file such that the outputted values would

mimic array initialization notation. The produced array values were verified to be

identical to the values contained in the KAT. These hardcoded array values did take

up memory that was not indicative of a real-world scenario; however, for the purpose

of demonstrating correctness of this implementation it was necessary. Next within the

file, there are several Java variables that were declared and set to match the values

that resulted from the native C functions for use throughout the Java code. These

variables will be discussed later in the section. Additionally within this file, were

function calls made to load the native library and declare the used native functions.

This had to be done in order for the Java code to properly interface with the native

library and native functions. The code used to load the native library was

stat ic {

System . loadLibrary (" nat ive−l i b ") ;

}

and the code that was used to declare the native functions was

public native void RequestStr ing () ;

public native void Correctnes sTest (S t r ing []

rece ivedSeedValues , S t r ing [] rece ivedPkValues ,

S t r ing [] rece ivedSkValues , S t r ing []

rece ivedCtValues , S t r ing [] r e ce ivedSsVa lue s) ;

Also, within the MainActivity.Java file there are several different definitions for

buttons along with their associated OnClick functions. The first OnClick event was for

the Create Keys button; within this OnClick event the native function RequestString

77

is called and the textview was updated. This OnClick function was implemented in

three different ways a verbose, succinct, and no output OnClick events. The verbose

OnClick event displayed all the key and ciphertext values to the textview. The

succinct OnClick function only displayed the calculated shared key value within the

textview. Where as the no output OnClick event created the shared key without

displaying anything in the textview.

The next OnClick event that was defined was for the Clear Keys button. In this

event, the textview was set to an empty sting.

The last OnClick event that was declared was for the Test For Correctness

button; in this OnClick event the native CorrectnessTest function was called, this

function took several arrays as parameters. The purpose of this OnClick event was

to verify the correctness of the mobile KEM implementation by comparing returned

arrays to the hard-coded KAT arrays. If all of the values are equal, then the textview

was set to indicate that the correctness check had passed. However, if the values were

not equal a helper function was called that iterated through each array element and

displayed each array index and which key or ciphertext values differed.

Next, the functionality of the MainActivityDriver.c source file will be explained.

This source file contained two functions that were called from within the Java code,

RequestString and CorrectnessTest. The functions had to be declared within

the native library according the JNI standards meaning that The parameters must

include the Java environment and an instance of the JObject class. Additional Java

variables could be passed as parameters and that is the case for the CorrectnessTest

function. For example, the native C RequestString function was declared using the

following format:

JNIEXPORT void JNICALL

Java_com_example_newhope512cca_MainActivity_RequestString

78

(JNIEnv ∗env , j o b j e c t t h i s) {

//NATIVE CODE GOES HERE

}

In this example code the function declaration is done such that Java_com_example_newhope1024

refers to the Java package the native function interfaced with, MainActivity refers

to the Java class the function is called from and RequestString is the name of the

native function.

The RequestString function had to use helper functions. The first helper function

converted a string to a hexadecimal string. The next, obtained a Java variables field

id and set the Java variable to a value that was calculated from within the native C

function. Within the RequestString function, the KEM was completed by creating a

seed and then using a NewHope PKE with the seed as a parameter the users public-key

and secret-key was created. After the public-key and secret-key values were created,

these values were used to set corresponding Java variables. Within the C code, after

the public key and secret key values were created, the public-key value was used to

calculate the ciphertext and shared secret value. Again, these values were used to

set the appropriate Java variables. After that was completed the secret-key was used

to decrypt the message, decode the ciphertext, and calculate the shared secret key.

Comparing this explanation to Figure 5, it is shown that they are equivalent but the

actual code implementation happens at a higher level of abstraction due to the use

of NewHope PKE and NewHope KEM functions.

The CorrectnessTest function follows the logic of the original NewHope code-

base executable. This function created a 100 requests followed by the corresponding

response values; there are a 100 response and requests because this function produced

values to be compared to the KAT. The KAT contain 100 entries for both response

and request. To accomplish this, 100 seed values were created and appended to its

79

corresponding Java array. Then, iteratively, the Java seed array was accessed to

obtain the next seed in the Java array, then that seed was utilized to create the

private-key, secret-key, ciphertext, and shared secret values. Those values were then

appended to their corresponding Java arrays. These arrays are compared to the hard-

coded values described earlier to verify correctness of each NewHope implementation.

It is demonstrated that the CorrectnessTest function follows the same logic as the

original NewHope executable, described in Section 3.4, but instead of using files this

function utilizes interfaced Java arrays to achieve the same results.

After the codebase was complete the APK was compiled and built in Android

Studio. Then the APK was placed on the Google Pixel and ran. After the APK was

placed on the mobile phone, the correctness of all NewHope implementations was

tested and verified using the Test For Correctness button.

3.10 Testing the KEM

After the NewHope implementation was placed onto the Google Pixel and tested

for correctness, a series of efficiency and time-space complexity tests were performed

to analyze each NewHope implementation. Through the use of Android Studio’s

Android Profiler, each NewHope KEM was analyzed for CPU, energy, and memory

usage.

Analyzing the CPU usage indicated the applicability of this KEM for mobile

implementation. If the KEM application consumed too much CPU it could cause

other applications not to work properly or even cause too much latency in the delivery

of a key for it to be reasonable to use. The data obtained from the CPU Profiler was

used for analysis and could be used for code optimization.

Similarly, analyzing the energy usage was used to indicate whether the native

NewHope library caused an increase in energy. Through analysis of energy usage it

80

was determined if the application would cause an effect on battery life.

The trace produced from the Memory Profiler indicated if the NewHope native

library consumed too much memory to be implemented on a memory constrained

mobile device. Memory constraint is device specific and each device would need to

be analyzed. However, if the amount of memory consumption is low enough it would

increase the number of platforms that NewHope could be feasibly implemented on.

3.10.1 Android Profiler

To use Android Profiler within Android Studio, the phone need to be connected

to a laptop running Android Studio and was used to see the specified profiler running

on the placed APK in real time. After selecting the specified profiler a trace could be

recorded for the session and the profiler data collected from the application was saved.

After an overall trace was recorded the usage of CPU, memory, and energy can be

seen. In addition, two different CPU traces were recorded, the Java Methods trace and

the C/C++ Native Functions trace. From each of those, the runtime of each function

can be obtained. Within the Java Methods trace the runtime of OnClick functions

and native functions were obtained by analyzing the function call chart. The Java

Methods trace does not calculate the runtime of each function called within the native

source, it only calculates the runtime of native C functions that were interfaced with

the Java code. However, the C/C++ Native Function trace calculates the runtime of

each function being utilized within the native source.

Using the Energy Profiler it was possible to evaluate the energy usage of the

application and by analyzing the data it could allow for optimizations to the appli-

cation, to either eliminate system calls or manage the usage of specific components

which appear to be utilizing the most amount of energy. There is not any anticipated

system calls that could affect the usage of the KEM. However, the Energy Profiler

81

allowed for an analysis of the amount of energy consumed on application startup and

runtime. Also, this allowed for an analysis of how much energy the native call and

OnClick events require. The energy analysis of the application is important because

while the application is running, if it utilizes too much energy and causes the appli-

cation to either run slowly or causes the device to run out of battery unusually fast

then the feasibility of actually implementing this KEM onto a mobile device will be

reconsidered.

The Memory Profiler allowed for analysis of how much memory the application

consumed. Within the memory trace an analysis of the total amount of memory

consumed on application startup and through runtime was completed. Within the

memory trace it indicated if the memory being used came from the Java code, native

code, the stack, and how much memory was being utilized by the graphics. However,

that was one advantage to utilizing a KEM, once the key is obtained and in use there

should not be a need to rerun the process to obtain another key until a new session

is created. A new key will need to be generated at the start of each communication

session, and should not be reused even if the two users had a session prior. This

means that the resources consumed will only happen once per session.

3.10.2 Data Collection Procedure

Each NewHope mobile implementation had a profile trace recorded with 50 ver-

bose OnClick events, 50 succinct OnClick events, and 50 no output OnClick events.

The reason 50 samples was recorded was to collect enough data points to analyze

statistical relevance. This was repeated for both the Java Methods Trace as well as

the C/C++ Native Functions Trace. After all the data was collected it was compiled

into tables and can be seen in Appendix H. From those results, the averages, min-

imum and maximums, and standard deviations was calculated using all of the data

82

points. Finally, the range of values on startup and throughout the entire runtime was

sampled and analyzed. All of the test results and comparisons will be presented in

Chapter IV.

The procedure that was used in testing the mobile implementations of NewHope

KEMs was as follows:

1. Selected KEM and OnClick codebase to obtain samples from

2. Mobile application was placed onto the Google Pixel

3. Android Profiler starts trace capture on application startup

4. Began recording Java method CPU trace

5. Within the NewHope KEM application, the Create Keys button was pressed 50

times

6. Began recording C/C++ native CPU trace

7. Within the NewHope KEM application, the Create Keys button was pressed 50

times

8. Recorded runtimes of each OnClick and native function

9. Recorded runtimes of highest CPU percentage from within the OnClick event

10. Repeated for each NewHope KEM with every form of OnClick events

When recording the CPU traces the memory and energy traces were generated as

well.

After collecting all of the samples and data points, they were used in comparison

between each NewHope implemention, the JNI baseline application, and the avail-

able work by Malina et al. [73]. All collected data points were used when comparing

83

NewHope implementations amongst each other. The averages of runtimes were uti-

lized in comparing NewHope implementations to the created JNI baseline, but more

importantly the CPU usage will be compared. The runtimes of the native NewHope

KEM scheme and transmission byte requirements are used in comparison to the work

available by Malina et al. [73]. Additionally, the averages and standard deviations

are utilized when completing t-tests to test for mean equivalence.

3.11 Chapter Summary

Section 3.2 provided an overview of the methodology procedure that was used

throughout this research effort. This procedure was presented in a step-by-step fash-

ion.

Section 3.3, presented the reasoning behind selecting the NewHope PQC KEM.

Also within this section, was a brief overview of the advantages and limititions of

NewHope.

Section 3.4 was an overview of how to build and verify the original NewHope

codebase for correctness. Also Section 3.4 described the functionality of the original

codebase and provided insight into which portions of the NewHope codebase was

able to reused when building mobile implementations of NewHope KEMs. Section 3.5

provided details on the process of reverse engineering the original NewHope codebase.

Also, the need for reverse engineering was explained.

Section 3.6 detailed the analysis of transmission byte requirements. The trans-

mission byte requirements were obtained by evaluating the NewHope codebase, and

the results are used when comparing NewHope to the available work by Malina et

al. [73].

Section 3.7 explained the process used to create a JNI baseline application that

was used in comparing the NewHope KEM mobile implementations. Section 3.8 was

84

a description of any preparatory steps that were taken for mobile implementation to

occur. These steps included outlining the software that was needed and the steps

that were taken to set up a JNI environment.

Section 3.9 was a description of how mobile implementation was achieved. This

section went into details about creating the NewHope codebase and into specifics

about the functionality of the codebase. Additionally, this section provided an in-

depth outline on how the mobile applications were tested for correctness utilizing the

KAT

Section 3.10 was the details about how the NewHope KEMs are tested. The

NewHope KEMs were tested for CPU, memory, and energy usage using Android

Profiler in Android Studio. This section provided an procedure for how each NewHope

mobile implementation was tested. Each NewHope implementation and OnClick

combination was tested using this outlined procedure.

85

IV. Results and Analysis

4.1 Chapter Overview

This chapter is dedicated to outlining and analyzing the results found from testing

the NewHope implementations. The results in this chapter were achieved utilizing

Android Studios Android Profiler, which allows for an in-depth look at the applica-

tions CPU, memory, and energy usage.

In order to verify that each NewHope implementation was done correctly, the

mobile implementations were tested for correctness. This is required to ensure the

scheme that is being implemented worked as intended by the creators. This process

is outlined withing Section 4.2.

Section 4.3 is dedicated to sharing the results for the created Java Native Interface

(JNI) baseline. The results from the baseline are important in demonstrating the

performance of an application implementing a post-quantum cryptography (PQC) key

encapsulation mechanism (KEM) scheme compared to an application implementing

a simple JNI.

Each NewHope implementation was tested using a three different OnClick event

conditions: verbose, succinct, and no output. The verbose OnClick condition printed

the keys and ciphertext values to the applications textview. The succinct OnClick

condition printed a statement indicating that a shared key was created and appended

the shared key to the textview. Finally, the no output OnClick condition did not

display any values to the textview and created the shared key. The results from

the verbose, succinct, and no output OnClick event conditions are described in Sec-

tion 4.4, Section 4.5, and Section 4.6 respectively.

All the results from each NewHope implementation with each OnClick description

are compared in Section 4.7. The comparisons made utilized the data sampled from

86

average scheme runtime and CPU usage. The data is displayed in two different

box plots. The CPU box plots used the JNI baseline for comparison as well. The

baseline was not utilize for comparison for runtime due to the incapability of obtaining

individual runtime values from within Android Profiler.

Utilizing Android Profiler, the performance of succinct NewHope implementations

and the JNI baseline were compared during application startup and during application

runtime. The results were obtained by evaluating memory, CPU, and energy usage

and are discussed in Section 4.8.

Section 4.9 outlines the statistical analysis that was performed on the data points

gained. In this section the test results were examined and a series of hypotheses were

formed and tested. These hypotheses were evaluated using T-tests and the results

are provided.

Lastly, Section 4.10 the results obtained from this research effort is compared to

the result found in the work done by Malina et al. [73]. Malina et al. [73] implemented

PQC KEM’s on an ARM board and on an Android device, more information about

their research effort was provided in Section 2.6.

4.2 Verification of Correctness

After all the four NewHope KEM implementations were placed on the mobile

device and the applications were tested by utilizing the correctness check button

described in Section 3.9. Within the Java code there was hardcoded arrays that that

were equivalent to the values of the known answer tests (KAT). The KEM scheme

was ran 100 times, to produce values that could be stored into Java arrays. The

hardcoded KAT Java array were used to verify that the Java arrays created from the

native C KEM scheme produced the same values. Using these comparisons all the

NewHope implementations were verified to be implemented correctly and returned

87

the correct KAT values.

4.3 Baseline JNI Application

In this section the results from the JNI baseline are provided. The baseline

OnClick event was sampled 50 times. From the samples the average native func-

tion time, OnClick function time, and the highest CPU usage were recorded into

Table 6.

Table 6: Results from the modified Android Studio sample code used to represent a
baseline for a C/JNI application
Baseline Average Results

Native Function Time(ms) 0.021266
OnClick Function Time(ms) 0.849467
Highest CPU Usage(%) 13.184

The table shows the native function and OnClick function times in milliseconds

(ms) because the results from all the NewHope implementations are shown in ms; So

for consistency these values were recorded ms versus microseconds. Table 6 will be

referenced throughout the remainder of this chapter for comparison purposes.

All the other KEM samplings have the full tables with all 50 entries within Ap-

pendix H. However, the baseline implementation cannot be seen within the appendix

due to Android Profiler not displaying the function times under 1 ms within the func-

tion call chart. Only the total function time during execution, the total amount of

runtime for each function over the 50 samples, could be obtained and this was caused

by the function runtimes being too small. This means it was possible to sample the

50 highest CPU percentages but it was only possible to obtain the total function time

of all 50 samples for the native and OnClick functions.

88

4.4 Verbose OnClick Event Condition

This section provides the results from profiling all the NewHope implementations

with an OnClick function that displays all the values used to obtain the shared key to

the applications textview. This provided valuable information on how the application

performed with an increase of Java code. This allows for an analysis on whether or

not a more Java resource consuming application might have an effect on the native

function runtime. For each of the following tables the application was profiled and 50

samples for native function time, OnClick function time, and highest CPU usage was

recorded. The tables displaying all individual samples can be found in Appendix H.

The tables displaying the averages, minimum, and maximum for each NewHope im-

plementation can be found in Appendix I, and are referenced as follows: results from

NewHope512-CCA-KEM are in Table 32, results from NewHope1024-CCA-KEM are

in Table 33, results from NewHope512-CPA-KEM are in Table 34, and results from

NewHope1024-CPA-KEM are in Table 35.

In Table 7, the averages for all values for each NewHope implementations are

displayed.

Table 7: Comparison of create key average times of NewHope implementations with
verbose OnClick function

Average Results From Create Key Test Runs
with Verbose OnClick Function

512-CCA 1024-CCA 512-CPA 1024-CPA
Native Function

Time(ms) 6.941 11.691 4.588 8.267

OnClick Function
Time(ms) 89.034 155.644 70.447 119.616

Highest CPU
Usage(%) 21.13 25.35 19.78 23.42

Within Table 7 it is shown that the NewHope-CCA implementations had longer

89

function times and higher CPU usage values than the NewHope-CPA implementa-

tions. This was expected to happen due to the extra security measures added against

key reuse attacks within the chosen ciphertext attack (CCA) implementations. Along

with that, the OnClick function times and CPU usage of the NewHope1024 imple-

mentations are higher than NewHope512 implementations, due to the size differential

between the public key, secret key, ciphertext, and shared secret.

Comparing the results from Table 7 to the baseline averages in Table 6, it is shown

that the average runtime of the native NewHope scheme was longer than the average

baseline native function call. This was to be expected due to the amount of code being

executed in the native functions. This can also be said for the OnClick functions;

this OnClick function set and display five large strings within the textview. For those

reasons, it was anticipated that average CPU usage of the native NewHope KEM

schemes would be larger than that of the baseline. This was proven to be correct

using a Two-Sample One-Tailed T test and the results are shown in Table 14

4.5 Succinct OnClick Event Condition

Within this section the results from profiling all four NewHope mobile implemen-

tations with a succinct OnClick function are displayed; the succinct OnClick function

only displays a string indicating that the shared key has been created and prints

the corresponding value within the textview. Per the data collection procedure in

Section 3.10.2, 50 samples were obtained and the table displaying all of these values

can be seen in Appendix H. Appendix I provides tables that show the averages of

native function times, OnClick function times, and highest CPU usages for all im-

plementations. The tables in the appendix can be referenced as follows: results from

NewHope512-CCA-KEM are in Table 36, results from NewHope1024-CCA-KEM are

in Table 37, results from NewHope512-CPA-KEM are in Table 38, and results from

90

NewHope1024-CPA-KEM are in Table 39.

In Table 8, the averages of all values are shown along with their corresponding

NewHope implementations.

Table 8: Comparison of Create Key average times of NewHope implementations
with a succinct OnClick function

Table Of All Average Results From Create Key Test Runs
with Succinct OnClick

512-CCA 1024-CCA 512-CPA 1024-CPA
Native Function

Time(ms) 6.658 11.900 5.158 7.816

OnClick Function
Time(ms) 13.653 18.694 11.899 13.843

Highest CPU
Usage(%) 13.500 14.054 13.514 13.396

In Table 8, it is shown that the OnClick function times and highest CPU usage

within this table are smaller than those found in Table 7. This is due to the difference

in the values that were set to the textview during the OnClick function. Comparison

between these two tables revealed that the native function times appeared to remain

the same and this shows that the amount of work being done within the Java code

does not effect the performance of the native function call. This hypothesis was tested

using a two-sample two-tailed T-test in Section 4.9.1 This is important knowledge

when implementing a NewHope KEM within an application because no matter how

labor intensive the application, it can be anticipated that key creation would not be

affected. So long as the Java code does not cause the CPU usage to become too high

such that the application starts to run slower.

Comparing the results from Table 8 to the baseline table, Table 6, it can be

seen that function times for the baseline implementations faster. However, the CPU

usages between the baseline and NewHope implementations are close in values. More

specifically, NewHope512-CCA-KEM, NewHope512-CPA-KEM, and NewHope1024-

91

CPA-KEM are all less than 0.5% higher than the baseline and NewHope1024-CCA-

KEM is less than 1% higher. These results coupled with the CPU trace of the C/C++

functions done by profiling the application indicates that the native functions do not

have an impact on the average CPU usage. This was tested using a two-sample

one-tailed t-test and can be seen in Section 4.9.2.

4.6 No Output OnClick Event Condition

This section provides the results from testing the NewHope implementations with

a no output OnClick event. This testing procedure differed from the testing of

NewHope implementations under verbose and succinct OnClick event conditions be-

cause this OnClick event was tested with the Google Pixel in airplane mode. All

other aspects of the testing procedure was identical, including taking 50 samples.

The samples that were collected were organized into different tables. The first set of

tables shows the minimum, maximum, and average for the native scheme runtime,

OnClick function runtime, and CPU usage. These tables are found in Appendix I;

NewHope512-CCA is shown in Table 40, NewHope1024-CCA is shown in Table 41,

NewHope512-CPA is shown in Table 42, and NewHope1024-CPA is shown in Table 43.

Table 9 shows the averages of native scheme runtime, OnClick function runtime,

and CPU usage for all NewHope implementations.

In this table, it is shown that the average native scheme runtime is within at least

0.03 ms of the OnClick event runtime. This is due to the fact that the no output

OnClick function did not set any text to the textview. Within the samples obtained

there a maximum of one instance per NewHope implementation where the OnClick

runtime was greater than the native scheme runtime.

92

Table 9: Comparison of Create Key average times of NewHope implementations
with a no output OnClick function

Table Of All Average Results From Create Key Test Runs
with No Output OnClick
512-CCA 1024-CCA 512-CPA 1024-CPA

Native Function
Time(ms) 6.5146 12.2486 4.5224 7.7744

OnClick Function
Time(ms) 6.5388 12.2486 4.5502 7.8398

Highest CPU
Usage(%) 12.68 12.82 11.896 12.372

4.7 Comparing NewHope Implementations with Different OnClick Event

Conditions

By using each sample set collect from each NewHope implementations with each

OnClick event conditions and the baseline two figures displaying box plots from each

was produced. These box plots include the average, dotted line within the boxs, and

the standard deviation, the dotted line diamond centered around the average. Also,

the box plots indicate which data points are considered to be outliers, solid points,

and potential outliers, empty points.

Figure 7 includes the box plots that were produced utilizing the native scheme

runtime of each NewHope implementations. Within this figure the box plots are

grouped by NewHope implementation displaying the different OnClick event condi-

tions. From this figure, a hypothesis was made, the average runtime of the native

NewHope scheme is uneffected by the amount of Java code being executed in the

mobile application. This is shown by the indicated averages for each NewHope im-

plementation, and how they are approximately the same. In Section 4.9.1 provides

the results from testing this hypothesis.

Figure 8 includes the box plots that were produced using the CPU usage samples

obtained from each NewHope implementations with each OnClick event condition

93

Figure 7: Box plots displaying native scheme runtimes for each NewHope
implementations with different OnClick event conditions

and the baseline JNI application. Through analysis of this figure a few hypotheses

can be drawn. The baseline and the NewHope implementations with succinct and no

output OnClick event conditions are always lowerer than the verbose OnClick imple-

mentations. This indicated that the amount of Java code executed in the NewHope

implementations effected the CPU usage of the application. The next hypothesis

made was that the native NewHope schemes have no effect on the CPU usage of an

application. This hypothesis was made by examining the CPU usage between the

baseline and the NewHope implementations with succinct and no output OnClick

event conditions. These hypotheses are addressed in Section 4.9.3 and Section 4.9.2.

94

Figure 8: Box plots comparing CPU usage between each NewHope implementations
with different OnClick event conditions and JNI baseline application

4.8 Performance Comparison of NewHope Configurations and Baseline

Application

So far in this chapter each NewHope implementation had a sample of 50 Create

Key functions evaluated and the results were show. This section is dedicated to

analyzing the largest amount of resources consumed on application start up, as well as

the range of resources used throughout the runtime of the application. The NewHope

implementations with a succinct OnClick function were used for these comparisons.

Table 10 displays the results as well as the baseline results for comparison.

Analyzing the resource usage upon application startup demonstrates that the

NewHope implementations use less than 5% more CPU and uses the same amount of

95

Table 10: Comparison of performance results from NewHope implementations and
modified Android Studio JNI code example
Performance Comparison of Succinct
NewHope Implementations to Baseline

Highest Performance Measurement On Application Start
512-CCA 1024-CCA 512-CPA 1024-CPA Baseline

CPU
Usage(%) 65.0 62.8 63.0 63.0 60.9

Memory
Usage(MB) 176.0 170.6 157.8 166.4 159.8

Energy
Usage medium medium medium medium medium

Performance Range During Application Runtime
512-CCA 1024-CCA 512-CPA 1024-CPA Baseline

CPU
Usage(%) 11.0 - 20.0 11.0 - 20.9 10.0 - 20.0 9.0 - 18.0 10.0 - 21.0

Memory
Usage(MB) 63.3 - 76.2 69.8 - 83.7 62.5 - 74.4 65.0 - 83.6 53.0 - 69.1

Energy
Usage light - none light - none light - none light - none light - none

energy. However, the memory that was used varies. The difference between the mem-

ory consumption on application startup between NewHope and the baseline are as

follows: NewHope512-CPA-KEM consumed 2 Megabytes (MB) less, NewHope512-

CCA-KEM consumed 16.2 MB more, NewHope1024-CPA-KEM consumed 6.6 MB

more, and NewHope1024-CCA-KEM consumed 10.8 MB more than the baseline.

These differences were expected due to the differences in the size of codebases and

the size of the native library that had to be loaded within the application. An-

droid Profiler describes energy usage as either low, medium, or high. On startup,

all NewHope implementations use approximately the same amount of energy as the

baseline.

Next, was the analysis of how the application used resources throughout runtime.

The range of CPU usage between NewHope implementations and the baseline demon-

strated that the same amount of CPU was being utilized throughout the application.

96

This exhibits that utilizing NewHope within an application does not alter the amount

of CPU usage being used anymore than any other native functions would. The same

can be said for energy usage. It is shown that the applications used a light amount

of energy or no energy at all depending on the time between function samplings.

However, the amount of memory being utilized by the application differed but not by

an unpredictable amount. According to the memory trace, the difference in memory

usage came from the amount of code that was place on the phone and the number

of variables that had been declared. This showed that NewHope did not create an

over-consumption of memory.

4.9 Statistical Analysis of NewHope Configurations and Baseline Appli-

cation

Through the analysis of the data samples collect several hypotheses were made

and this section is dedicated to testing them. The hypotheses made are:

1. The average runtime of native code was not effected by the amount of Java code

being executed within the mobile application

2. The average CPU usage of NewHope implementations is effected by the amount

of Java code being executed within the mobile application

3. The average CPU usage is not effected by implementing a NewHope KEM

scheme

These hypotheses are tested using either a two-sample two-tailed T-test or a two-

sample one-tailed T-test. The first hypothesis is tested by performing two-sample

two-tailed T-tests using native NewHope scheme runtimes among all of the NewHope

implementations with each OnClick variation. The following hypothesis is tested

97

by performing two-sample one-tailed T-tests using CPU usage against NewHope im-

plementations with a verbose OnClick function to the other implementations with

succinct and no output OnClick functions. The last hypothesis is tested using CPU

usages and a combination of two-sample T-tests of all NewHope implementations

with each OnClick variation to the JNI baseline.

In this section there a few variables that are used and need to be defined. Through-

out this section H0 and HA refer to the null hypothesis and the alternative hypothesis,

respectively. There are also average variables where Mb, Mv, Ms, and Mn refer to the

averages for the baseline, and NewHope OnClick verbose, succinct, and no output

variations, respectively.

4.9.1 Native Scheme Runtime T-Tests Between NewHope Configura-

tions

Table 11 shows the p-values that resulted from running a two-sample two-tailed T-

test on the runtimes of NewHope native schemes with a verbose and succinct OnClick

functions. This T-test is designed such that the

H0 :Mv =Ms

HA :Mv 6=Ms

. This table shows that for a significance value, α = 0.05 all of the average native

scheme runtimes were shown to be statistically equal. Also, with a higher signif-

icance level all NewHope implementations, excluding NewHope512-CPA, were still

demonstrated to be statistically equal.

The next test ran was a two-sample two-tailed T-test between the verbose and

no output onclick functions for each NewHope implementation. The resulting p-

98

Table 11: Comparison of average runtime native NewHope KEM scheme of verbose
OnClick event condition and succinct OnClick event condition

Two-Sample Two-Tailed T-test Results
Between Verbose and Succinct Average NewHope Scheme Runtime
NewHope Implementation p-values

NewHope512-CCA-KEM 0.4957
NewHope1024-CCA-KEM 0.8152
NewHope512-CPA-KEM 0.0533
NewHope1024-CPA-KEM 0.2329

values are shown in Table 12. This T-test was completed with the following null and

alternative hypotheses.

H0 :Mv =Mn

HA :Mv 6=Mn

The resulting p-values indicated that the average native scheme runtimes were sta-

tistically equal.

Table 12: Comparison of average runtime native NewHope KEM scheme of verbose
OnClick event condition and no output OnClick event condition

Two-Sample Two-Tailed T-test Results
Between Verbose and No Output Average NewHope Scheme Runtime
NewHope Implementation p-values

NewHope512-CCA-KEM 0.3560
NewHope1024-CCA-KEM 0.1002
NewHope512-CPA-KEM 0.8294
NewHope1024-CPA-KEM 0.2212

The last two-sample two-tailed T-test that was done using native scheme runtimes

of succinct and no output OnClick NewHope implementations. This test was done

with the following hypothesis:

H0 :Ms =Mn

HA :Ms 6=Mn

99

The resulting p-values are displayed in Table 13. The p-values indicate that for a

significance value of α < .05 all the NewHope implementations are shown to have

statistically equal averages.

Table 13: Comparison of average runtime native NewHope KEM scheme of succinct
OnClick event condition and no output OnClick event condition

Two-Sample Two-Tailed T-test Results
Between Succinct and No Output Average NewHope Scheme Runtime
NewHope Implementation p-values

NewHope512-CCA-KEM 0.7034
NewHope1024-CCA-KEM 0.3136
NewHope512-CPA-KEM 0.0461
NewHope1024-CPA-KEM 0.9077

Through these T-tests it was proven that the average native scheme runtime is

not effected by the amount of Java code being implemented in the mobile application.

This was accomplished by statistically comparing the native runtimes with NewHope

mobile implementations that contained varying amounts of Java code.

4.9.2 CPU Average T-Tests Between NewHope Configurations and

Baseline Application

To compare the CPU averages between the verbose OnClick event condition and

the baseline application a two-sample one-tailed t-test was selected with the following

hypotheses:

H0 :Mb =Mv

HA :Mb < Mv

The results from the comparison between the verbose OnClick event condition and the

baseline application are displayed in Table 14. Within this table, it can be seen that

regardless of significance value selection H0 will be rejected and HA will be accepted;

this implies that the average CPU usage of the baseline application was less than

100

the average CPU usage of the verbose OnClick event condition. This indicated that

the NewHope verbose implementation consumes more CPU than the JNI baseline

application. However, with this information it was not possible to draw a conclusion

on if the native NewHope KEM scheme was impacting CPU usage.

Table 14: Comparison of average CPU usage of verbose OnClick event condition
and baseline application

Two-Sample One-Tailed T-test Results
Between Verbose and Baseline Average CPU Usages
NewHope Implementation p-values

NewHope512-CCA-KEM <0.0001
NewHope1024-CCA-KEM <0.0001
NewHope512-CPA-KEM <0.0001
NewHope1024-CPA-KEM <0.0001

The next T-test that was ran was cpu usage two-sample two-tailed T-test under

the hypotheses

H0 :Ms =Mb

HA :Ms 6=Mb

The results from this test are displayed in Table 15. The resulted p-values indicate

that the average CPU consumption between succinct NewHope implementations and

baseline application are statistically equal given a significance level α = 0.01. A

higher significance level would indicate that all NewHope implementations excluding

NewHope1024-CCA would still have statistically equal CPU usages. This gave con-

fidence that the CPU usage of the verbose implementations were higher due to the

amount of Java code and not caused by the NewHope scheme. The test results also

indicated that the CPU consumption is equal to an application implementing a JNI

and the NewHope native scheme is not causing any additional use of the CPU.

To gain more confidence that the NewHope native scheme does add any additional

usage of the CPU than other application using a JNI a two-sample two-tailed T-test

101

Table 15: Comparison of average CPU usage of succinct OnClick event condition
and baseline application

Two-Sample One-Tailed T-test Results
Between Succinct and Baseline Average CPU Usages
NewHope Implementation p-values

NewHope512-CCA-KEM 0.4767
NewHope1024-CCA-KEM 0.0488
NewHope512-CPA-KEM 0.4328
NewHope1024-CPA-KEM 0.6191

was ran using the CPU usage of the baseline and no output NewHope implementa-

tions. This test was ran with the following null and alternative hypothese

H0 :Mn =Mb

HA :Mn 6=Mb

Table 16 provides the p-values that resulted from the T-test. The p-values that

resulted indicated that for a significance level, α = 0.01, three of the NewHope

implementations were shown to have statistically equal average CPU usage. The

two NewHope implementations with a p-value less than 0.1, NewHope512-CPA and

NewHope1024-CPA, have average CPU usages that are less than the baseline average

CPU usage.

Table 16: Comparison of average CPU usage of no output OnClick event condition
and baseline application

Two-Sample One-Tailed T-test Results
Between No Output and Baseline Average CPU Usages
NewHope Implementation p-values

NewHope512-CCA-KEM 0.2205
NewHope1024-CCA-KEM 0.3993
NewHope512-CPA-KEM 0.0028
NewHope1024-CPA-KEM 0.0379

These tests were used to show that the NewHope scheme does not cause any

102

additional consumption of the CPU resource than any other JNI application.

4.9.3 CPU Average T-Tests Between NewHope Configurations

A series of T-tests were performed to compare the CPU usages between each

NewHope implementations with varying OnClick functions. These results were all

accomplished using a two-tailed one-tailed T-test using the CPU usages.

The first test was done using the succinct and verbose NewHope implementations

with the following hypotheses

H0 :Mv =Ms

HA :Ms < Mv

. The results are displayed in Table 17 and the p-values that are displayed indicated

that the average CPU usage of the succinct NewHope implementations are less than

the verbose implementations.

Table 17: Comparison of average CPU usage of verbose OnClick event condition
and succinct OnClick event condition

Two-Sample One-Tailed T-test Results
Between Verbose and Succinct Average CPU Usages
NewHope Implementation p-values

NewHope512-CCA-KEM <0.0001
NewHope1024-CCA-KEM <0.0001
NewHope512-CPA-KEM <0.0001
NewHope1024-CPA-KEM <0.0001

The next T-test was accomplished using the verbose and no output NewHope

implementations with the hypotheses

H0 :Mv =Mn

HA :Mn < Mv

103

The resulting p-values are displayed in Table 18. The resulting p-values indicated

that the average CPU usages of no output implementations are statistically proven

to be less than the verbose implementations.

Table 18: Comparison of average CPU usage of verbose OnClick event condition
and no output OnClick event condition

Two-Sample One-Tailed T-test Results
Between Verbose and No Output Average CPU Usages
NewHope Implementation p-values

NewHope512-CCA-KEM <0.0001
NewHope1024-CCA-KEM <0.0001
NewHope512-CPA-KEM <0.0001
NewHope1024-CPA-KEM <0.0001

The final T-test that was ran was comparing the CPU usage of succinct and no

output implementations. This test was done under the following hypotheses

H0 :Ms =Mn

HA :Mn < Ms

. The resulting p-values are displayed in Table 19. The p-values indicated that the

average CPU usage of the no output implementations is statistically lower than the

succinct implementations.

Table 19: Comparison of average CPU usage of succinct OnClick event condition
and no output OnClick event condition

Two-Sample One-Tailed T-test Results
Between Succinct and No Output Average CPU Usages
NewHope Implementation p-values

NewHope512-CCA-KEM 0.020985
NewHope1024-CCA-KEM 0.001973
NewHope512-CPA-KEM 0.000044
NewHope1024-CPA-KEM 0.002473

104

These T-tests helped solidify the conclusion that the native NewHope schemes did

not have a negative effect on the CPU usage of the application. This indicated that

when implementing NewHope on a mobile application there was no impact on CPU

usage and did not display any CPU resource constraints. In fact, it was displayed that

the amount of Java code implemented in the NewHope mobile implementation had

more of an impact on the consumption of CPU resources than the native NewHope

scheme.

4.10 Comparison to Previous Work

The work done by Malina et al. [73] yielded several results that was used for com-

parison to the results that were obtained throughout this research effort. However, it

is important to preface this section with the differences between their NewHope im-

plementation and the succinct NewHope implementations built for this effort. Malina

et at. [73] implemented NewHope-Usenix on an Android mobile device with a 32-bit

processor. However, this implementation was done using NewHope which is based

on NewHope-Simple. New-Hope-Simple is a variant of NewHope-Usenix, but instead

of using a reconciliation-based approach of the ring learning with errors (RLWE)

scheme it utilizes an encryption-based approach. Another difference is that the An-

droid device selected for this effort had a 64-bit processor. Malina et al. [73] utilized

a Java codebase referenced in [10]. Since its publication in 2018, access to the code-

base has either been removed or relocated. This differs from the implementations

achieved throughout this paper being that this implementation was done using a

C/JNI codebase. Another significant difference is that the NewHope implementation

by Malina et al. [73] claims to have a 206 bit-level security. However, in this effort

the NewHope512 and NewHope1024 implementations are claimed to achieve a 201

bit-level security and a 233 bit-level security, respectively. With all the differences

105

aside, the results by Malina et al. [73] were still used for comparison; Due to the lack

of available research on PQC KEMs being implemented on mobile phones. Ideally, a

more similar implementation would be used for comparison if available.

The first results that were examined were the total number of bytes that needed to

be sent in order achieve key establishment. Malina et al. [73] provided a comparison

between all of the PQC KEMs that they implemented, it displays the number of

bytes that need be transmitted to achieve key creation. Using Malina et al. [73]

data a comparison between their implementation and this research efforts NewHope

implementations is provided in Figure 9.

Figure 9: Comparison of the total number of bytes sent to achieve key establishment
between NewHope mobile implementation to the work by Malina et al. [73](*)

It can be seen through examination of Figure 9 that the NewHope-Usenix imple-

mented by Malina et al. [73] achieves a claimed 206 bit-level security by transmitting

a total of 3872 bytes and it was one of the lowest number in comparison to their

other PQC KEM’s. The only KEM that had a lower total number of bytes was

SIDH with a total of 1152 bytes and a 128-bit level security. This mobile implemen-

106

tation achieved a 101-bit level security through 2016 or 2048 bytes, and a 233-bit

level security through 4000 or 4032 bytes. The total transmission byte requirement

differences between the NewHope-Usenix implementation and this research efforts

NewHope implementations was either 128 bytes or 160 bytes depending on bit-level

security. Malina et al. [73] implementation achieved a lower bit-level security, which

makes it hard to compare. However, within the NewHope documentation [8] they ad-

dressed the difference in bytes transmitted between NewHope-Usenix and NewHope.

Within this documentation they state that since the bandwidth requirement differ-

ence is small and complexity to implement a reconciliation-based scheme is high the

use of a less complex encryption-based scheme would be the ideal selection [8]. It

is also important to notice that NewHope1024 achieved a claimed higher bit-level

security compared to all the PQC KEM’s referenced in Figure 9, and does so with

less bandwidth than all but three (including NewHope-Usenix).

Malina et al. [73] also provide data on the runtime of the two PQC KEM schemes

that were implemented on a mobile device. Using that data and the data on the

runtime of the NewHope schemes seen in this research effort Figure 10. In this figure,

it is shown that the MSR LN16 scheme, with a presumed post-quantum 128-bit level

security, completed in a total of 1.72 ms, which is significantly faster than that of

their NewHope-Usenix implementation. Also, comparing these results to the succinct

NewHope implementations it was shown that NewHope completes its KEM scheme at

least 90 ms faster than NewHope-Usenix. While achieving a higher claimed bit-level

security, these NewHope implementations also complete their scheme within less than

11 ms of MSR LN16. The differences between the scheme completion time of MSR

LN16 and NewHope are as follows: NewHope512-CCA-KEM is slower by 4.932 ms,

NewHope1024-CCA-KEM is slower by 3.438 ms, NewHope512-CPA-KEM is slower

by 10.18 ms, and NewHope1024-CPA-KEM is slower by 6.096 ms.

107

Figure 10: Comparison of the average runtime of schemes between NewHope mobile
implementation to the work by Malina et al. [73](*)

Finally, Malina et al. [73] provide a comparison between NewHope-Usenix and

two Elliptic-Curve Diffie-Hellman (ECDH) key exchange schemes. Figure 10 shows

that the runtime of NewHope-Usenix was slower than both ECDH key exchanges.

NewHope schemes complete their runtime faster than NewHope-Usenix and ECDH-

p256. Also, NewHope512-CPA-KEM on average completed 0.048 ms slower then

ECDH-25519. This demonstrates that NewHope is comparable to classic key estab-

lishment schemes such as ECDH schemes.

Ultimately, NewHope appeared to outperform NewHope-Usenix when implemented

on a mobile device. However, it is important to consider that when implemented on an

Android device with a 64-bit processor, significant improvements could be achieved.

Also, NewHope could have performed better due to the chosen language. If NewHope-

Usenix was implemented using a C/JNI codebase that could also improve its results.

108

Throughout this section it was demonstrated that NewHope has a competitive

bandwidth compared to other PQC KEM’s, has a superior or comparable runtime to

other PQC KEM’s and classic key exchange schemes, and has a variety of different

implementations that when chosen properly could better fit implementation needs.

The conclusions that have been achieved in this section are similar to the conclusions

that Malina et al. [73] came to about NewHope-Usenix.

4.11 Chapter Summary

Section 4.2, the results from all of the correctness tests were given. All four

NewHope KEM mobile implementations were verified to be implemented correctly.

Section 4.3 provided the test results from the JNI baseline. These results were

utilized to determine that implementation of the NewHope PQC KEM scheme does

not cause an application to consume more CPU than a basic JNI application.

Section 4.4, Section 4.5, and Section 4.6 provided the results for verbose, suc-

cinct, and no output NewHope implementations respectively. These results were

displayed and compared in Section 4.7. These results were important for comparing

the succinct and no output NewHope implementations to the verbose NewHope im-

plementations to determine if the amount of Java code effected the amount of CPU

that was consumed by the application. Additionally, the runtime results were utilized

in determining that the scheme runtime remained consistent despite the amount of

Java code being implemented.

In Section 4.8 all NewHope KEM mobile implementations with succinct OnClick

functions were compared to the baseline results based on the amount of resources

used on application startup and throughout application runtime. Ultimately, the

conclusion is that the usage of central processing unit (CPU) and energy of NewHope

KEMs are approximately equal to the JNI baseline. The only resource usage that was

109

not equal was memory usage but, as described in this section, this is to be expected

based on the amount of code and the amount of computations that occur.

The statistical analysis done on the results was provided in Section 4.9. In this

section, hypotheses were created by comparing the NewHope implementations. This

section addressed those hypotheses through a series of T-tests. Ultimately, it was

concluded that the native scheme runtime was not effect by the amount of Java

code that was implemented in the mobile application and the amount of Java code

caused an increase in CPU usage. The final conclusion was that the CPU usage of

succinct and no output NewHope implementations had average CPU usages that were

statistically equal to the JNI baseline; this implies that implementing the NewHope

PQC KEM consumes the same amount of CPU as an application implementing a

JNI.

Lastly, in Section 4.10 each NewHope KEM implementations are compared to the

work done by Malina et al. [73]. Through these comparisons it is concluded that

NewHope KEMs are comparable to other PQC KEMs and to current key exchange

cryptosystems. Additionally, the NewHope PQC KEM performed better than Malina

et al. [73] NewHope-Usenix mobile implementation. However, there are some daunting

differences between implementations that make these comparisons carry less weight.

110

V. Conclusions

5.1 Chapter Overview

This chapter is dedicated to presenting the conclusions obtained from this research

effort. Section 5.2 outlines the main conclusions achieved. Section 5.3 presents the

future work that could stem from this research effort. Lastly, Section 5.4 outlines the

contributions this research has for the current research field.

5.2 Conclusions

Throughout this effort all the NewHope PQC KEMs were implemented on a mo-

bile phone with three different OnClick conditions. NewHope was selected from the

group of Round 2 National Institute of Standards and Technology (NIST) PQC Stan-

dardization Project due to its small key sizes and simple implementation. It was also

selected because it gains its hardness from the RLWE problem which is a crypto-

graphic primitive that gained concrete hardness in its underlying problem.

The NewHope implementations were achieved through the utilization of a native

C library and a JNI. The NewHope implementations performed as anticipated, due to

the NewHope-CCA KEM’s adding extra security, against the known CCA targeting

key reuse, it was anticipated that the NewHope-CCA implementations would utilize

more resources and take longer to complete. So, when it comes to comparing which

NewHope implementation is better for mobile implementation, it is important to

evaluate the target devices requirements and the constraints that are present. With

a target device of a google pixel, NewHope KEMs perform well and only need to be

questioned on which NewHope implementation best fits the cryptographic purposes

needed.

Through statistical analysis of the results obtained from each NewHope instanti-

111

ation conclusions about average CPU usage and scheme runtimes were made. It was

proven that the average native scheme runtime was not effected by the amount of Java

code being implemented within the application. The average scheme runtimes were

tested amongst all NewHope implemntation through the use of multiple two-sample

two-tailed T-test to demonstrate that all had equal average scheme runtimes. This

implies that the average scheme runtimes are anticipated to run consistently at the

same rate. This could be effected dependant on device constraints, but a device simi-

lar to a Google Pixel could anticipate scheme runtimes similiar to this research effort.

Additionally, the native NewHope KEM scheme did not cause any additional CPU

consumption than implementing a JNI. This was done by comparing CPU usages

from all NewHope implementations to the JNI baseline through two-sample T-tests.

The results from the T-tests demonstrated that average CPU usage of NewHope im-

plementations with graphics usage similiar to the baseline, had average CPU usages

that were equal to those of the baseline. Finally, these T-tests also demonstrated that

implementation of more Java code did lead to an increase in average CPU usage.

The NewHope Implementations completed quickly and were comparable to the

runtimes of the schemes presented in the work by Malina et al. [73]. However, the

NewHope implementations runtimes did not compare to the baseline but that was

expected based on the amount computations that have to be completed. When evalu-

ating the CPU usage and energy usage of the NewHope KEMs, they were comparable

the tested baseline both on startup and during application runtime.

Overall, mobile implementations of PQC KEMs are feasible to implement and

perform well through the use of a native C library and a JNI. The NewHope im-

plementations did not overly consume any of the devices resources and acted in a

predicted manner. These implementations have exhibited that PQC KEM are fea-

sible and competitive when implemented on devices. When compared to the work

112

done by Malina et al. [73] it was demonstrated that NewHope implementations have

the ability to be competitive not only against other PQC schemes but it is also com-

petitive with current cryptography.

5.3 Future Work

Due to the scope of the project and continued research available in the field, the

following is a list of future work:

• Provide a more in-depth analysis of the C/C++ function traces to analyze the

amount of scheme runtime spent on each individual algorithm

• Utilizing the produced C/JNI NewHope codebase, network the NewHope mobile

implementation to further test the performance of the scheme

• Implement other Round 2 PQC KEM submissions on a mobile device to analyze

and fully assess the performance of the second round PQC submissions

• Implement NewHope with a Java implementation to test the best method of

implementation for PQC algorithms

• Implement and test NewHope KEMs on other platforms to further assess the

flexibility of the NewHope PQC KEM

5.4 Contributions

This research effort contributed meaningful analysis on the feasibility and imple-
mentation expectations that can be expected when implementing a PQC KEM on
a mobile device. Also, contributions were made on the analysis of the PQC KEMs
currently in Round 2 of NIST’s Standardization Project and the limitations or secu-
rity risks they might present when implemented on a mobile phone. This research
effort also contributed a detailed look into how PQC KEMs can be implemented in an
Android application through a native C library using a JNI. This effort also produced
important data benchmarks that can be used to compare other PQC KEM algorithms
to.

113

Appendix A. MainActivity.java

package com.example.newhope512cca;

import androidx.appcompat.app.AppCompatActivity;

import android.os.Bundle;
import android.text.method.ScrollingMovementMethod;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.TextView;
import java.util.Arrays;

public class MainActivity extends AppCompatActivity {
//Declaring the KAT values into the arrays

//Hard coded KAT Array values goes here
//However they are too large to be formatted correctly

//Loading the 'native-lib' library on application startup.
static {

System.loadLibrary("native-lib");
}
//Setting current KEM values from C code
private int count;
private String seed = "";
private String ct = "";
private String ss = "";
private String pk = "";
private String sk = "";

//Creating new arrays to store the 100 values in to test correctness
private String[] receivedSeedValues = new String[100];
private String[] receivedPkValues = new String[100];
private String[] receivedSkValues = new String[100];
private String[] receivedCtValues = new String[100];
private String[] receivedSsValues = new String[100];

//Declaring output string to avoid the use of passing hardcoded
string to TextView
private String outputString;
//Defining onCreate function
@Override

114

protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

//Initializing the app buttons
Button createKey = findViewById(R.id.createKey);
Button clearKeys = findViewById(R.id.clearKeys);
final Button correctnessTest = findViewById(R.id.correctnessTest);

//Initializing the app TextView
final TextView textView = findViewById(R.id.keyText);
//Adding Scrolling capabilities to TextView
textView.setMovementMethod(new ScrollingMovementMethod());

OnClickListener setKeyText = new OnClickListener() {
@Override
public void onClick(View v) {

RequestString();

outputString = "key creation complete\n SS :" + ss;
textView.setText(outputString);

}
};
createKey.setOnClickListener(setKeyText);

OnClickListener clearKeyText = new OnClickListener() {
@Override
public void onClick(View v) {

textView.setText("");
}

};
clearKeys.setOnClickListener(clearKeyText);

OnClickListener correctnessTestText = new OnClickListener() {
@Override
public void onClick(View v) {

correctnessTest(receivedSeedValues, receivedPkValues,
receivedSkValues, receivedCtValues, receivedSsValues);

115

Boolean seedValuesCorrect = Arrays.equals(seedValues,
receivedSeedValues);
Boolean pkValuesCorrect = Arrays.equals(pkValues,
receivedPkValues);
Boolean skValuesCorrect = Arrays.equals(skValues,
receivedSkValues);
Boolean ctValuesCorrect = Arrays.equals(ctValues,
receivedCtValues);
Boolean ssValuesCorrect = Arrays.equals(ssValues,
receivedSsValues);
if(seedValuesCorrect && pkValuesCorrect &&
skValuesCorrect && ctValuesCorrect &&

ssValuesCorrect)
{

outputString = "\nCorrectness Check Passed\n";
textView.append(outputString);

}
else
{

outputString = "Correctness check failed\n";
textView.append(outputString);
if(!seedValuesCorrect){

textView.append("Differences in seeds at: \n");
findArrayDifferences(textView, seedValues,
receivedSeedValues);

}
else
{

textView.append("Seed values are correct!\n");
}
if(!pkValuesCorrect){

textView.append("Differences in pk's at: \n");
findArrayDifferences(textView, pkValues,
receivedPkValues);

}
if(!skValuesCorrect){

textView.append("Differences in sk's at: \n");
findArrayDifferences(textView, skValues,
receivedSkValues);

}
if(!ctValuesCorrect){

textView.append("Differences in ct's at: \n");
findArrayDifferences(textView, ctValues,

116

receivedCtValues);
}
if(!ssValuesCorrect){

textView.append("Differences in ss's at: \n");
findArrayDifferences(textView, ssValues,
receivedSsValues);

}
}

}
};
correctnessTest.setOnClickListener(correctnessTestText);

}
public void findArrayDifferences(TextView view, String[] array1,
String[] array2)
{

if(array1.length == 0 || array2.length == 0)
{

view.append("Empty array --> no values received \n");
}
else if(array1.length == array2.length)
{

for(int i = 0; i < array1.length; i++)
{

if(array1[i] != array2[i])
{

view.append("count: " + i + "\n");
}

}
}
else
{

view.append("Arrays not same length\n");
}

}

/**
* A native method that is implemented by the 'native-lib' native
library,
* which is packaged with this application.
*/

public native void RequestString();

117

public native void correctnessTest(String[] receivedSeedValues,
String[] receivedPkValues, String[] receivedSkValues, String[]
receivedCtValues, String[] receivedSsValues);

}

118

Appendix B. MainActivityDriver.c

This appendix contains the MainActivityDriver.c from the NewHope512-CCA-
KEM mobile implementation. All other NewHope mobile implementations contain
this same source file but with a different kTag variable.
//
// Created by Jessica Switzler on 2020 -01 -14.
//
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include "rng.h"
#include "api.h"
#include <jni.h>
#include <android/log.h>
#include <time.h>

// Defining the log statements to use when running/testing code
static const char* kTAG = "NewHope512CCA";
#define LOGI (...) \

((void)__android_log_print(ANDROID_LOG_INFO , kTAG , __VA_ARGS__))
#define LOGW (...) \

((void)__android_log_print(ANDROID_LOG_WARN , kTAG , __VA_ARGS__))
#define LOGE (...) \

((void)__android_log_print(ANDROID_LOG_ERROR , kTAG , __VA_ARGS__))

// Declaring functions that are defined below their use
void setString(JNIEnv *env , jobject this , const char *fieldName ,

const char *outputString);
void string2hexString(unsigned char* input , unsigned char* output ,

unsigned long long len);
int getDigitValue(char digit);
int getPairValue(char digit1 , char digit2);
void hexStrToStr(unsigned char *dst , const char *src , int size);

// Java function used to create a singular key
JNIEXPORT void JNICALL
Java_com_example_newhope512cca_MainActivity_RequestString(JNIEnv

*env , jobject this)
{

unsigned char seed [48];
unsigned char entropy_input [48];
unsigned char ct[CRYPTO_CIPHERTEXTBYTES],

ss[CRYPTO_BYTES],
ss1 [CRYPTO_BYTES];

unsigned char pk[CRYPTO_PUBLICKEYBYTES],
sk[CRYPTO_SECRETKEYBYTES];

int ret_val;

119

// Creating temporary values to be utilized in copying values to
Java

unsigned char seedCopy [48];
unsigned char ssCopy[CRYPTO_BYTES];
unsigned char ctCopy[CRYPTO_CIPHERTEXTBYTES];
unsigned char pkCopy[CRYPTO_PUBLICKEYBYTES];
unsigned char skCopy[CRYPTO_SECRETKEYBYTES];

//Used to create a random value to feed in for the randombytes
so the seed doesn't always come

//out the same
srand(time (0));

// Initialize the entropy input for seed creation
for (int i=0; i<48; i++)
{

entropy_input[i] = rand() %256;
}

// Initialize the buffer that will be used to get the seed
randombytes_init(entropy_input , NULL , 256);

//Get 48 bytes off of the randombytes buffer to be used as a
seed

randombytes(seed , 48);

//Set the Java seed value to be the same as the C seed value so
it may be used in java application

string2hexString(seed , seedCopy , 48);
setString(env , this , "seed", (const char*) seedCopy);

// Intialize the randombytes buffer using the seed created for
key creation

//Note if the seed is the same the key will be the same , seed
needs to be randomized for security

randombytes_init(seed , NULL , 256);

// Generate the public/private keypair
if ((ret_val = crypto_kem_keypair(pk, sk)) != 0) {

LOGE("crypto_kem_keypair returned <%d>\n", ret_val);
LOGE("KAT_CRYPTO_FAILURE");

}

//Set the java PK and SK values so it may be utilized in
application

string2hexString(pk , pkCopy , CRYPTO_PUBLICKEYBYTES);
setString(env , this , "pk", (const char*) pkCopy);
string2hexString(sk , skCopy , CRYPTO_SECRETKEYBYTES);
setString(env , this , "sk", (const char*) skCopy);

if ((ret_val = crypto_kem_enc(ct , ss, pk)) != 0) {
LOGE("crypto_kem_enc returned <%d>\n", ret_val);

120

LOGE("KAT_CRYPTO_FAILURE");
}

if ((ret_val = crypto_kem_dec(ss1 , ct, sk)) != 0) {
LOGE("crypto_kem_dec returned <%d>\n", ret_val);
LOGE("KAT_CRYPTO_FAILURE");

}

if (memcmp(ss , ss1 , CRYPTO_BYTES)) {
LOGE("crypto_kem_dec returned bad 'ss' value\n");
LOGE("KAT_CRYPTO_FAILURE");

}

LOGI("KAT_SUCCESS");

//Set the java CT and SS value so it may be utilized in
application

string2hexString(ct , ctCopy , CRYPTO_CIPHERTEXTBYTES);
setString(env , this , "ct", (const char*) ctCopy);
string2hexString(ss , ssCopy , CRYPTO_BYTES);
setString(env , this , "ss", (const char*) ssCopy);

}

// Java function used to run the correctness test to verify the
correctness
of implementation

JNIEXPORT void JNICALL
Java_com_example_newhope512cca_MainActivity_correctnessTest(

JNIEnv *env ,jobject this ,
jobjectArray receivedSeedValues ,
jobjectArray receivedPkValues ,
jobjectArray receivedSkValues ,
jobjectArray receivedCtValues ,
jobjectArray receivedSsValues)

{
unsigned char seed [48];
unsigned char entropy_input [48];
unsigned char ct[CRYPTO_CIPHERTEXTBYTES],

ss[CRYPTO_BYTES],
ss1[CRYPTO_BYTES];

unsigned char pk[CRYPTO_PUBLICKEYBYTES],
sk[CRYPTO_SECRETKEYBYTES];

int ret_val;

// Temporary values utilized to create java arrays to check
application for correctness

unsigned char tempSeed [48];
unsigned char tempSk[CRYPTO_SECRETKEYBYTES];
unsigned char tempPk[CRYPTO_PUBLICKEYBYTES];
unsigned char tempCt[CRYPTO_CIPHERTEXTBYTES];
unsigned char tempSs[CRYPTO_BYTES];

121

// Comments for similiar lines of code will not be repeated , look
at function above prior to

// looking at this function to fully understand the code

for (int i=0; i<48; i++)
entropy_input[i] = i;

// Obtaining arraylength to ensure loop iterates through the
number of KAT values

jsize arrayLen = (*env)->GetArrayLength(env , receivedSeedValues)
;

randombytes_init(entropy_input , NULL , 256);
for (int i=0; i<arrayLen; i++)
{

randombytes(seed , 48);

// Setting the Java receivedSeedValues array for comparison
to the hardcoded KAT values

string2hexString(seed , tempSeed , 48);
jstring seedArrayValues = (*env)->NewStringUTF(env ,

(const char*) tempSeed);
(*env)->SetObjectArrayElement(env , receivedSeedValues , i,

seedArrayValues);
}

for(int i=0; i<arrayLen; i++)
{

// Initialize a jsize value so that it may be used in the
GetObjectArrayElement function

jsize javaLoop = i;
//Get the seed value and convert it to back to its original

string
jstring javaArrayElement = (*env)->GetObjectArrayElement(

env ,receivedSeedValues , javaLoop);
const char *seedFromArray = (*env)->GetStringUTFChars(

env , javaArrayElement , NULL);
hexStrToStr(tempSeed , seedFromArray , strlen(seedFromArray));

randombytes_init(tempSeed , NULL , 256);

// Generate the public/private keypair
if ((ret_val = crypto_kem_keypair(pk, sk)) != 0) {

LOGE("crypto_kem_keypair returned <%d>\n", ret_val);
LOGE("KAT_CRYPTO_FAILURE");

}

if ((ret_val = crypto_kem_enc(ct , ss, pk)) != 0) {

122

LOGE("crypto_kem_enc returned <%d>\n", ret_val);
LOGE("KAT_CRYPTO_FAILURE");

}

if ((ret_val = crypto_kem_dec(ss1 , ct, sk)) != 0) {
LOGE("crypto_kem_dec returned <%d>\n", ret_val);
LOGE("KAT_CRYPTO_FAILURE");

}

if (memcmp(ss , ss1 , CRYPTO_BYTES)) {
LOGE("crypto_kem_dec returned bad 'ss' value\n");
LOGE("KAT_CRYPTO_FAILURE");

}

LOGI("KAT_SUCCESS");
//Add PK and SK values to their respective arrays for

comparison
string2hexString(pk , tempPk , CRYPTO_PUBLICKEYBYTES);
jstring str = (*env)->NewStringUTF(env ,(const char*) tempPk);
(*env)->SetObjectArrayElement(env , receivedPkValues , i, str)

;

string2hexString(sk , tempSk , CRYPTO_SECRETKEYBYTES);
str = (*env)->NewStringUTF(env ,(const char*) tempSk);
(*env)->SetObjectArrayElement(env , receivedSkValues , i,

str);

//Add CT and SS values to their respective arrays for
comparison

string2hexString(ct , tempCt , CRYPTO_CIPHERTEXTBYTES);
str = (*env)->NewStringUTF(env ,(const char*) tempCt);
(*env)->SetObjectArrayElement(env , receivedCtValues , i,

str);
string2hexString(ss , tempSs , CRYPTO_BYTES);
str = (*env)->NewStringUTF(env ,(const char*) tempSs);
(*env)->SetObjectArrayElement(env , receivedSsValues , i,

str);
}

}

// JNI helper function used to set java values using c value
void setString(JNIEnv *env , jobject this , const char *fieldName ,

const char *outputString)
{

jclass thisClass = (*env)->GetObjectClass(env , this);
jfieldID stringField = (*env)->GetFieldID(env , thisClass ,

fieldName , "Ljava/lang/String;");
jstring javaString = (*env)->GetObjectField(env , this ,

stringField);

123

const char *newString = (*env)->GetStringUTFChars(env ,
javaString , NULL);

(*env)->ReleaseStringUTFChars(env , javaString , newString);
javaString = (*env)->NewStringUTF(env , outputString);
(*env)->SetObjectField(env , this , stringField , javaString);

}

// Helper function used to create a hex string from a string
void string2hexString(unsigned char* input , unsigned char* output ,

unsigned long long len)
{

int loop = 0;
int i = 0;
while(loop < len)
{

sprintf ((char*)(output+i),"%02X", input[loop]);
loop +=1;
i+=2;

}
}

// Helper function used to convert a hex string to string
int getDigitValue(char digit)
{

int n = digit -'0';
if (n>=0 && n<10) { return n; }
if (digit =='A') { return 10; }
if (digit =='B') { return 11; }
if (digit =='C') { return 12; }
if (digit =='D') { return 13; }
if (digit =='E') { return 14; }
if (digit =='F') { return 15; }
return -1;

}

// Helper function used to convert a hex string to string
int getPairValue(char digit1 , char digit2)
{

int v1 = getDigitValue(digit1);
int v2 = getDigitValue(digit2);
return (v1==-1 || v2==-1) ? -1 : v1 * 16 + v2;

}

// Function to convert a hex string to string , used for seed so only
an int is needed for size

void hexStrToStr(unsigned char *dst , const char *src , int size)
{

int isGood = 0;
if (size % 2 == 0) {

isGood = 1;
for (int i=0; i<size; i+=2) {

124

int pv = getPairValue(src[i], src[i+1]);
if (pv==-1) { isGood = 0; break; }
*dst = pv;
dst ++;

}
}
*dst = 0;

}

125

Appendix C. Original api.h

This appendix contains the api.h file from the original NewHope codebase and
was used to find the key and ciphertext sizes.
#ifndef API_H
#define API_H

#include "params.h"

#define CRYPTO_SECRETKEYBYTES NEWHOPE_CCAKEM_SECRETKEYBYTES
#define CRYPTO_PUBLICKEYBYTES NEWHOPE_CCAKEM_PUBLICKEYBYTES
#define CRYPTO_CIPHERTEXTBYTES NEWHOPE_CCAKEM_CIPHERTEXTBYTES
#define CRYPTO_BYTES NEWHOPE_SYMBYTES

#if (NEWHOPE_N == 512)
#define CRYPTO_ALGNAME "NewHope512 -CCAKEM"
#elif (NEWHOPE_N == 1024)
#define CRYPTO_ALGNAME "NewHope1024 -CCAKEM"
#else
#error "NEWHOPE_N must be either 512 or 1024"
#endif

int crypto_kem_keypair(unsigned char *pk , unsigned char *sk);

int crypto_kem_enc(unsigned char *ct , unsigned char *ss , const
unsigned char *pk);

int crypto_kem_dec(unsigned char *ss , const unsigned char *ct, const
unsigned char *sk);

#endif

126

Appendix D. Original params.h

This appendix contains the params.h file from the original NewHope codebase
and was used to find the key and ciphertext sizes.
#ifndef PARAMS_H
#define PARAMS_H

#ifndef NEWHOPE_N
#define NEWHOPE_N 512
#endif

#define NEWHOPE_Q 12289
#define NEWHOPE_K 8 /* used in noise sampling */

#define NEWHOPE_SYMBYTES 32 /* size of shared key , seeds/coins ,
and hashes */

#define NEWHOPE_POLYBYTES ((14* NEWHOPE_N)/8)
#define NEWHOPE_POLYCOMPRESSEDBYTES ((3* NEWHOPE_N)/8)

#define NEWHOPE_CPAPKE_PUBLICKEYBYTES (NEWHOPE_POLYBYTES +
NEWHOPE_SYMBYTES)

#define NEWHOPE_CPAPKE_SECRETKEYBYTES (NEWHOPE_POLYBYTES)
#define NEWHOPE_CPAPKE_CIPHERTEXTBYTES (NEWHOPE_POLYBYTES +

NEWHOPE_POLYCOMPRESSEDBYTES)

#define NEWHOPE_CPAKEM_PUBLICKEYBYTES NEWHOPE_CPAPKE_PUBLICKEYBYTES
#define NEWHOPE_CPAKEM_SECRETKEYBYTES NEWHOPE_CPAPKE_SECRETKEYBYTES
#define NEWHOPE_CPAKEM_CIPHERTEXTBYTES

NEWHOPE_CPAPKE_CIPHERTEXTBYTES

#define NEWHOPE_CCAKEM_PUBLICKEYBYTES NEWHOPE_CPAPKE_PUBLICKEYBYTES
#define NEWHOPE_CCAKEM_SECRETKEYBYTES (NEWHOPE_CPAPKE_SECRETKEYBYTES

+ NEWHOPE_CPAPKE_PUBLICKEYBYTES + 2* NEWHOPE_SYMBYTES)
#define NEWHOPE_CCAKEM_CIPHERTEXTBYTES (

NEWHOPE_CPAPKE_CIPHERTEXTBYTES + NEWHOPE_SYMBYTES) /* Second
part is for Targhi -Unruh */

#endif

127

Appendix E. CMakeLists.txt

This appendix contains the which is the configuration file that Gradle uses to
build native source makefiles.
Sets the minimum version of CMake required to build the native

library.
cmake_minimum_required(VERSION 3.4.1)

Includes directories that source files might require as
dependencies

include_directories (/ Users/jessicaswitzler/Library/Android/Sdk/ndk/
openssl -1.1.1c/include /)

include_directories (/ Users/jessicaswitzler/Library/Android/Sdk/ndk/
openssl -1.1.1c/)

Creates and names a library , sets it as either STATIC
or SHARED , and provides the relative paths to its source code.
You can define multiple libraries , and CMake builds them for you.
Gradle automatically packages shared libraries with your APK.
add_library(

Sets the name of the library.
native -lib
Sets the library as a shared library.
SHARED
Provides a relative path to your source file(s).
cpapke.c fips202.c kem.c ntt.c poly.c precomp.c reduce.c
rng.c verify.c MainActivityDriver.c)

add_library(
imported -crypto -lib
STATIC
IMPORTED)

set_target_properties(
Specifies the target library.
imported -crypto -lib
Specifies the location to import the library from
PROPERTIES IMPORTED_LOCATION
Provides the path to the library you want to import.
/Users/jessicaswitzler/Library/Android/Sdk/ndk/
openssl -1.1.1c/libcrypto.a)

Searches for a specified prebuilt library and stores the path as a
variable. Because CMake includes system libraries in the search

path by
default , you only need to specify the name of the public NDK

library
you want to add. CMake verifies that the library exists before
completing its build.
find_library(

Names the library
log -lib

128

Specifies the name of the NDK library that
you want CMake to locate.
log)

Specifies libraries CMake should link to your target library. You
can link multiple libraries , such as libraries you define in this
build script , prebuilt third -party libraries , or system libraries.
target_link_libraries(

Specifies the target library.
native -lib
Links the target library to the log library
included in the NDK.
imported -crypto -lib
${log -lib})

129

Appendix F. Application Build Gradle Settings

apply plugin: 'com.android.application '

android {
compileSdkVersion 28
buildToolsVersion "29.0.2"
defaultConfig {

applicationId "com.example.newhope512cca"
minSdkVersion 23
targetSdkVersion 24
versionCode 1
versionName "1.0"
testInstrumentationRunner "androidx.test.runner.

AndroidJUnitRunner"
externalNativeBuild {

cmake {
cppFlags ""
cFlags ""

}
}
sourceSets {

main {
jniLibs.srcDirs '/home/switzbeats/Android/Sdk/ndk/

openssl -1.1.1c/lib/x86'
}

}
defaultConfig {

ndk {
abiFilters 'arm64 -v8a'

}
}

}
buildTypes {

release {
minifyEnabled false
proguardFiles getDefaultProguardFile('proguard -android -

optimize.txt'), 'proguard -rules.pro'
}

}
externalNativeBuild {

cmake {
path "src/main/cpp/CMakeLists.txt"
version "3.10.2"

}
}

}

dependencies {
implementation fileTree(dir: 'libs', include: ['*.jar'])
implementation 'androidx.appcompat:appcompat :1.1.0 '
implementation 'androidx.constraintlayout:constraintlayout :1.1.3

130

'
testImplementation 'junit:junit :4.12 '
androidTestImplementation 'androidx.test.ext:junit :1.1.1 '
androidTestImplementation 'androidx.test.espresso:espresso -core

:3.2.0 '
}

131

Appendix G. Modified PQCgenKAT_kem.c

This appendix contains the modified PQCgenKAT_kem.c file that was used to con-
struct the hardcoded Java arrays containing the KAT values. These hardcoded arrays
were utilized to verify the correctness of each mobile implementation.

//
// PQCgenKAT_kem.c
//
// Created by Bassham , Lawrence E (Fed) on 8/29/17.
// Copyright Âľ 2017 Bassham , Lawrence E (Fed). All rights reserved

.
//
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include "rng.h"
#include "api.h"

#define MAX_MARKER_LEN 50
#define KAT_SUCCESS 0
#define KAT_FILE_OPEN_ERROR -1
#define KAT_DATA_ERROR -3
#define KAT_CRYPTO_FAILURE -4

int FindMarker(FILE *infile , const char *marker);
int ReadHex(FILE *infile , unsigned char *A, int Length ,

char *str);
void fprintBstr(FILE *fp , char *S, unsigned char *A, unsigned

long long L);
void printBstr(char *S, unsigned char *A, unsigned long long L);
void string2hexString(unsigned char* input , char* output ,

unsigned long long len);

int
main()
{

char fn_req [32], fn_rsp [32];
FILE *fp_req , *fp_rsp;
unsigned char seed [48];
unsigned char entropy_input [48];
unsigned char ct[CRYPTO_CIPHERTEXTBYTES], ss[CRYPTO_BYTES

], ss1[CRYPTO_BYTES];
int count;
int done;
unsigned char pk[CRYPTO_PUBLICKEYBYTES], sk[

CRYPTO_SECRETKEYBYTES];
int ret_val;

//ADD TEMP VARIABLES TO STORE OUTPUT
//TEMP VALUES ARE CHAR* BECAUSE IT IS NEEDED FOR sprintf

132

char tempSeed [48];
char tempCt[CRYPTO_CIPHERTEXTBYTES], tempSs[

CRYPTO_BYTES], tempPk[CRYPTO_PUBLICKEYBYTES], tempSk[
CRYPTO_SECRETKEYBYTES];

//END ADD TEMP VARIABLES TO STORE OUTPUT

// Create the REQUEST file
sprintf(fn_req , "PQCkemKAT_%d.req", CRYPTO_SECRETKEYBYTES);
if ((fp_req = fopen(fn_req , "w")) == NULL) {

printf("Couldn 't open <%s> for write\n", fn_req);
return KAT_FILE_OPEN_ERROR;

}
sprintf(fn_rsp , "PQCkemKAT_%d.rsp", CRYPTO_SECRETKEYBYTES);
if ((fp_rsp = fopen(fn_rsp , "w")) == NULL) {

printf("Couldn 't open <%s> for write\n", fn_rsp);
return KAT_FILE_OPEN_ERROR;

}

for (int i=0; i<48; i++)
entropy_input[i] = i;

randombytes_init(entropy_input , NULL , 256);
for (int i=0; i <100; i++) {

fprintf(fp_req , "count = %d\n", i);
randombytes(seed , 48);

fprintBstr(fp_req , "seed = ", seed , 48);
fprintf(fp_req , "pk =\n");
fprintf(fp_req , "sk =\n");
fprintf(fp_req , "ct =\n");
fprintf(fp_req , "ss =\n\n");

//NOTE: THROUGHOUT THIS EDITED MAIN THERE ARE MULTIPLE
SECTIONS THAT ARE REQUIRED TO BE COMMENTED OUT
SELECTIVELY TO COMPARE THE OUTPUT TO THE REQUEST

//AND RESPONSE FILES. IN ORDER TO SELECT WHICH ONES SHOULD
BE COMMENTED OUT IT THE KAT REQ AND RSP FILES SHOULD BE
EVALUATED. ON TOP OF THAT WHEN RUNNING

//THE PRODUCED EXECUTABLES SHOULD BE RAN AND THE CONSOLE
OUTPUT SHOULD BE SAVED TO A FILE FOR A TERMINAL CMP
COMMAND TO BE RAN TO COMPARE THE TWO FILES AND

//CHECK FOR EQUIVALENCY. THE SAME PROCEDURE SHOULD BE
FOLLOWED TO PRODUCE THE ARRAY VALUES FOR THE JAVA CODE TO
WORK FOR THE TEST CORRECTNESS BUTTON.

//ADDED PRINT STATEMENT TO TEST OUTPUT FOR CORRECTNESS
// printf ("count = %d\n", i);
// string2hexString(seed , tempSeed , 48);
// printf ("seed = %s\n", tempSeed);
// printf ("pk =\n");
// printf ("sk =\n");
// printf ("ct =\n");

133

// printf ("ss =\n\n");
//CAN PRODUCE OUTPUT FOR ARRAYS BY COMMENTING OUT THE ABOVE

string2hexString STATEMENT AND UNCOMMENTING OUT THE CODE
BELOW SELECTIVELY

// printf ("\"%s\", \n", tempSeed);
//END OF ADDED PRINT STATEMENT

}
fclose(fp_req);

// Create the RESPONSE file based on what's in the REQUEST file
if ((fp_req = fopen(fn_req , "r")) == NULL) {

printf("Couldn 't open <%s> for read\n", fn_req);
return KAT_FILE_OPEN_ERROR;

}

fprintf(fp_rsp , "# %s\n\n", CRYPTO_ALGNAME);

//ADDED PRINT STATEMENT TO TEST OUTPUT FOR CORRECTNESS
// printf ("# %s\n\n", CRYPTO_ALGNAME);
//END OF ADDED PRINT STATEMENT

done = 0;
do {

if (FindMarker(fp_req , "count = "))
fscanf(fp_req , "%d", &count);

else {
done = 1;
break;

}
fprintf(fp_rsp , "count = %d\n", count);

//ADDED PRINT STATEMENT TO TEST OUTPUT FOR CORRECTNESS
// printf ("count = %d\n", count);
//END OF ADDED PRINT STATEMENT

if (!ReadHex(fp_req , seed , 48, "seed = ")) {
printf("ERROR: unable to read 'seed' from <%s>\n",

fn_req);
return KAT_DATA_ERROR;

}
fprintBstr(fp_rsp , "seed = ", seed , 48);

//ADDED PRINT STATEMENT TO TEST FOR CORRECTNESS
// printBstr ("seed = ", seed , 48);
//END OF ADDED PRINT STATEMENT

randombytes_init(seed , NULL , 256);

// Generate the public/private keypair
if ((ret_val = crypto_kem_keypair(pk, sk)) != 0) {

printf("crypto_kem_keypair returned <%d>\n", ret_val);
return KAT_CRYPTO_FAILURE;

134

}
fprintBstr(fp_rsp , "pk = ", pk, CRYPTO_PUBLICKEYBYTES);
fprintBstr(fp_rsp , "sk = ", sk, CRYPTO_SECRETKEYBYTES);

//ADDED PRINT STATEMENT TO TEST OUTPUT FOR CORRECTNESS
// string2hexString(pk , tempPk , CRYPTO_PUBLICKEYBYTES);
// printf ("pk = %s\n", tempPk);
//CAN PRODUCE OUTPUT FOR ARRAYS BY COMMENTING OUT THE ABOVE

string2hexString STATEMENT AND UNCOMMENTING OUT THE CODE
BELOW SELECTIVELY

// printf ("\"%s\", \n", tempPk);
//END OF ADDED PRINT STATEMENT

//ADDED PRINT STATEMENT TO TEST OUTPUT FOR CORRECTNESS
// string2hexString(sk , tempSk , CRYPTO_SECRETKEYBYTES);
// printf ("sk = %s\n", tempSk);
//CAN PRODUCE OUTPUT FOR ARRAYS BY COMMENTING OUT THE ABOVE

string2hexString STATEMENT AND UNCOMMENTING OUT THE CODE
BELOW SELECTIVELY

// printf ("\"%s\", \n", tempSk);
//END OF ADDED PRINT STATEMENT

if ((ret_val = crypto_kem_enc(ct , ss, pk)) != 0) {
printf("crypto_kem_enc returned <%d>\n", ret_val);
return KAT_CRYPTO_FAILURE;

}
fprintBstr(fp_rsp , "ct = ", ct, CRYPTO_CIPHERTEXTBYTES);
fprintBstr(fp_rsp , "ss = ", ss, CRYPTO_BYTES);
fprintf(fp_rsp , "\n");

// NORMALLY WOULD PUT TEST OUTPUT FOR VALUES CT AND SS AND
CREATE ARRAY HERE. HOWEVER , THERE IS AN ISSUE WITH
PLACING THE string2hexstring(ct) HERE IT

//WOULD CAUSE AN ERROR IN THE PROGRAMMING EXITING WITH "
crypto_kem_dec returned bad 'ss' value\n", DESPITE THE
STRINGS BEING EQUIVALENT TO THOSE OF THE

// ORIGINAL PROGRAM , 'cmp'ing ALL OUTPUT VALUES TO THOSE OF
THE KAT PROVIDED THAT THERE WAS NO VALUES DIFFERENT IT
WASN'T UNTIL THE ERROR THAT THERE WAS A

// DIFFERENCE IN STRING VALUES. I THOUGHT IT MIGHT BE CAUSED
BY ADDING A NULL TERMINATED TO THE END OF THE char *.
HOWEVER , NONE OF THE OTHER STRINGS HAD

//HAVE CAUSED AN ERROR. ALSO THE ERROR ONLY APPEARED WITH
string2hexstring(ct) NOT ANY OF THE OTHER
string2hexstring () CALLS. IT IS FOR THAT REASON THAT THE

// VALUES ARE PRINTED AT THE END. THIS DOESN'T CHANGE THE
CORRECTNESS OF THE IMPLEMENTATION , WHEN ADDING IT TO THIS
LOCATION THE OUTPUT IS IDENTICAL TO THAT

//OF THE KAT FILE.

135

if ((ret_val = crypto_kem_dec(ss1 , ct, sk)) != 0) {
printf("crypto_kem_dec returned <%d>\n", ret_val);
return KAT_CRYPTO_FAILURE;

}

if (memcmp(ss , ss1 , CRYPTO_BYTES)) {
printf("crypto_kem_dec returned bad 'ss' value\n");
printBstr("\n\nFAILED ss: ", ss, CRYPTO_BYTES);
printBstr("\nFAILED ss1: ", ss1 , CRYPTO_BYTES);
return KAT_CRYPTO_FAILURE;

}

//ADDED PRINT STATEMENT TO TEST OUTPUT FOR CORRECTNESS
// string2hexString(ct , tempCt , CRYPTO_CIPHERTEXTBYTES);
// printf ("ct = %s\n", tempCt);
//CAN PRODUCE OUTPUT FOR ARRAYS BY COMMENTING OUT THE ABOVE

string2hexString STATEMENT AND UNCOMMENTING OUT THE CODE
BELOW SELECTIVELY

// printf ("\"%s\", \n", tempCt);
//END OF ADDED PRINT STATEMENT

//ADDED PRINT STATEMENT TO TEST OUTPUT FOR CORRECTNESS
// string2hexString(ss , tempSs , CRYPTO_BYTES);
// printf ("ss = %s\n", tempSs);
//CAN PRODUCE OUTPUT FOR ARRAYS BY COMMENTING OUT THE ABOVE

string2hexString STATEMENT AND UNCOMMENTING OUT THE CODE
BELOW SELECTIVELY

// printf ("\"%s\", \n", tempSs);
//END OF ADDED PRINT STATEMENT

//ADDED PRINT STATEMENT TO TEST OUTPUT FOR CORRECTNESS
// printf ("\n");
//END OF ADDED PRINT STATEMENT

} while (!done);

fclose(fp_req);
fclose(fp_rsp);

return KAT_SUCCESS;
}

//
// ALLOW TO READ HEXADECIMAL ENTRY (KEYS , DATA , TEXT , etc.)
//
//
// ALLOW TO READ HEXADECIMAL ENTRY (KEYS , DATA , TEXT , etc.)
//
int
FindMarker(FILE *infile , const char *marker)
{

char line[MAX_MARKER_LEN];

136

int i, len;
int curr_line;

len = (int)strlen(marker);
if (len > MAX_MARKER_LEN -1)

len = MAX_MARKER_LEN -1;

for (i=0; i<len; i++)
{

curr_line = fgetc(infile);
line[i] = curr_line;
if (curr_line == EOF)

return 0;
}

line[len] = '\0';

while (1) {
if (!strncmp(line , marker , len))

return 1;

for (i=0; i<len -1; i++)
line[i] = line[i+1];

curr_line = fgetc(infile);
line[len -1] = curr_line;
if (curr_line == EOF)

return 0;
line[len] = '\0';

}

// shouldn 't get here
return 0;

}

//
// ALLOW TO READ HEXADECIMAL ENTRY (KEYS , DATA , TEXT , etc.)
//
int
ReadHex(FILE *infile , unsigned char *A, int Length , char *str)
{

int i, ch, started;
unsigned char ich;

if (Length == 0) {
A[0] = 0x00;
return 1;

}
memset(A, 0x00 , Length);
started = 0;
if (FindMarker(infile , str))

while ((ch = fgetc(infile)) != EOF) {
if (!isxdigit(ch)) {

if (!started) {

137

if (ch == '\n')
break;

else
continue;

}
else

break;
}
started = 1;
if ((ch >= '0') && (ch <= '9'))

ich = ch - '0';
else if ((ch >= 'A') && (ch <= 'F'))

ich = ch - 'A' + 10;
else if ((ch >= 'a') && (ch <= 'f'))

ich = ch - 'a' + 10;
else // shouldn 't ever get here

ich = 0;

for (i=0; i<Length -1; i++)
A[i] = (A[i] << 4) | (A[i+1] >> 4);

A[Length -1] = (A[Length -1] << 4) | ich;
}

else
return 0;

return 1;
}

void
fprintBstr(FILE *fp, char *S, unsigned char *A, unsigned long long L

)
{

unsigned long long i;

fprintf(fp, "%s", S);

for (i=0; i<L; i++)
fprintf(fp, "%02X", A[i]);

if (L == 0)
fprintf(fp, "00");

fprintf(fp, "\n");
}

//ADDED FUNCTION TO ALTER fprintBstr () SO THAT IT WORKS FOR CONSOLE
OUTPUT

//COULD USE JUST THIS FUNCTION FOR ARRAY VALUE CREATIONS HOWEVER TO
ALTER STRINGS WOULD NEED TO OUT 1 MORE PARAMETER

// ALTERED VERSION FOR ARRAY CREATION WOULD LOOK LIKE void printBstr(
char *S, unsigned char *A, unsigned long long L, char *E)

138

//WHERE char *E WOULD BE FOR ENDING CHARACTERS NEEDING TO BE ADDED.
HOWEVER , THIS FUNCTION WONT WORK IN JNI TO CREATE JAVASTRINGS

//SINCE IT DOESNT PRODUCE A SINGLUAR STRING INSTEAD IT PRODUCES
CONSOLE OUTPUT

void printBstr(char *S, unsigned char *A, unsigned long long L)
{

unsigned long long i;

printf("%s", S);

for(i=0; i<L; i++)
{

printf("%02X", A[i]);
}

if(L==0)
{

printf("00");
}

printf("\n");

}

//ADDED FUNCTION TO CREATE HEX STRING FOR OUTPUT VALUES
void string2hexString(unsigned char* input , char* output , unsigned

long long len)
{

int loop = 0;
int i = 0;
// printf ("\n\nINPUT STRING INTO STRING TO HEX STRING BEFORE LOOP

IS: %s \n", input);
while(loop < len)
{

sprintf ((char*)(output+i),"%02X", input[loop]);
loop +=1;
i+=2;

}
// insert NULL at the end of the output string
output[i++] = '\0';
// printf ("\ nINPUT STRING INTO STRING TO HEX STRING AFTER LOOP IS

: %s\n\n", input);
}
//END ADDED FUNCTION

139

Appendix H. NewHope Sample Tables

Table 20: Make Keys samples for for NewHope512-CCA with a Verbose OnClick
Function

NewHope512-CCA Results With a Verbose OnClick Function
Native Function

Time(ms)
OnClick Function

Time(ms)
Highest CPU
Usage(%)

6.15 105.96 21.0%
13.26 111.53 26.0%
4.66 91.51 28.7%
7.34 103.11 25.0%
5.55 91.45 22.9%
8.32 111.16 26.8%
6.28 87.71 24.8%
6.09 88.24 22.0%
5.47 77.68 20.9%
6.71 86.46 24.9%
6.16 89.36 16.0%
5.92 81.03 16.0%
9.66 88.30 18.9%
8.81 84.11 17.0%
17.37 96.95 18.0%
6.16 79.60 17.0%
2.83 68.01 18.0%
5.19 78.45 18.9%
5.29 69.52 20.0%
6.25 93.68 21.9%
6.39 76.47 16.0%
4.00 77.66 18.9%
6.26 74.27 19.9%
8.90 100.07 19.0%
8.70 85.42 22.9%
8.54 96.16 21.9%
6.37 87.5 19.9%
6.88 80.57 23.9%
5.71 92.25 19.0%
4.91 88.07 21.9%
7.86 83.57 19.9%
8.27 86.46 21.9%
8.77 86.06 22.9%

Continued on next page

140

Table 20 – continued from previous page
Native Function

Time(ms)
OnClick Function

Time(ms)
Highest CPU
Usage(%)

6.45 79.77 20.0%
6.24 78.80 21.0%
7.51 84.67 22.8%
2.47 83.30 17.9%
7.83 79.06 17.9%
10.74 93.68 20.9%
4.78 86.53 21.8%
6.68 111.13 22.0%
4.74 109.50 19.9%
5.29 98.99 27.8%
4.71 91.70 23.0%
8.54 99.78 20.0%
6.76 85.34 23.9%
5.16 85.25 21.9%
7.12 112.52 23.9%
11.11 97.35 20.9%
5.91 75.96 18.0%

141

Table 21: Make Keys samples for NewHope1024-CCA With a Verbose OnClick
Function

NewHope1024-CCA Results With a Verbose OnClick Function
Native Function

Time(ms)
OnClick Function

Time(ms)
Highest CPU
Usage(%)

11.51 193.72 23.9%
11.83 182.68 30.7%
9.62 206.13 25.5%
7.63 142.59 30.0%
14.19 168.74 18.9%
12.33 166.07 24.8%
10.07 154.82 28.8%
10.61 154.04 26.0%
12.36 160.99 30.3%
11.79 138.23 22.9%
11.64 152.54 27.7%
9.43 144.4 25.6%
10.04 145.54 24.4%
10.55 142.9 23.8%
9.90 130.09 24.9%
15.82 152.83 25.0%
9.09 142.09 29.9%
14.39 153.27 29.0%
13.53 158.81 18.0%
13.03 142.51 21.0%
10.69 152.92 26.0%
9.63 158.44 22.0%
9.94 144.71 28.0%
17.75 166.32 28.9%
11.49 157.31 27.0%
12.12 147.64 27.0%
12.01 160.17 18.0%
10.57 147.2 27.0%
11.27 151.15 22.0%
18.98 160.19 26.9%
10.02 148.54 27.9%
9.45 146.14 20.0%
11.69 146.57 24.0%
9.00 145.09 25.0%
16.06 159.19 21.9%

Continued on next page

142

Table 21 – continued from previous page
Native Function

Time(ms)
OnClick Function

Time(ms)
Highest CPU
Usage(%)

10.76 135.57 24.0%
13.02 145.21 19.0%
11.63 151.88 26.9%
10.5 143.13 20.0%
13.85 159.68 22.0%
13.12 149.65 24.9%
11.61 136.54 18.0%
16.55 168.08 25.9%
9.75 140.61 27.0%
10.57 143.86 21.0%
10.35 195.42 34.7%
11.25 189.62 29.8%
11.31 185.14 34.9%
9.32 159.82 26.8%
14.38 153.41 29.9%

143

Table 22: Make Keys samples for NewHope512-CPA With a Verbose OnClick
Function

NewHope512-CPA Results With a Verbose OnClick Function
Native Function

Time(ms)
OnClick Function

Time(ms)
Highest CPU
Usage(%)

6.50 99.15 27.0%
5.56 84.07 24.9%
6.39 94.10 28.0%
4.46 66.22 23.9%
3.94 72.50 19.0%
3.65 62.69 21.9%
7.31 82.25 24.8%
4.91 66.50 18.0%
5.30 77.89 24.0%
2.59 62.99 20.0%
6.00 68.12 17.9%
4.32 68.20 20.0%
3.65 73.04 19.9%
4.31 82.87 21.0%
3.83 62.69 17.0%
4.70 67.69 20.0%
4.09 73.79 20.9%
3.62 60.81 17.9%
4.20 68.67 20.9%
7.27 71.86 18.0%
4.28 61.67 23.8%
3.96 59.15 19.0%
4.21 64.21 21.9%
4.24 65.69 19.9%
5.60 109.53 25.9%
5.26 72.04 12.9%
4.77 65.77 20.9%
2.52 65.11 18.0%
3.75 83.53 21.9%
3.63 61.6 19.0%
3.98 69.36 15.0%
4.22 66.25 23.9%
4.51 59.92 16.0%
2.54 64.13 19.9%
6.73 72.11 20.9%

Continued on next page

144

Table 22 – continued from previous page
Native Function

Time(ms)
OnClick Function

Time(ms)
Highest CPU
Usage(%)

3.78 58.27 15.9%
3.03 59.23 17.9%
5.72 73.69 13.0%
3.45 62.43 17.0%
4.10 58.51 17.0%
4.28 66.69 16.0%
4.32 67.99 18.9%
8.17 71.3 18.9%
6.57 69.64 18.9%
5.26 73.48 19.9%
2.69 60.01 15.0%
1.47 64.53 18.0%
3.61 60.42 17.9%
4.47 85.81 23.9%
7.69 84.11 17.0%

145

Table 23: Make Keys samples for NewHope1024-CPA With a Verbose OnClick
Function

NewHope1024-CPA Results With a Verbose OnClick Function
Native Function

Time(ms)
OnClick Function

Time(ms)
Highest CPU
Usage(%)

10.79 159.01 26.9%
10.65 127.79 27.9%
7.82 118.67 22.9%
6.34 119.88 26.0%
12.15 136.43 26.9%
6.79 116.12 27.8%
8.42 119.63 26.0%
9.76 125.71 25.9%
6.63 108.7 23.9%
7.50 113.22 24.9%
6.41 115.81 17.0%
12.97 120.23 18.0%
6.86 108.48 20.0%
11.36 121.71 23.8%
8.53 122.25 22.9%
10.73 121.01 22.5%
11.03 114.97 19.0%
7.20 116.29 24.9%
8.43 118.82 19.9%
6.46 112.09 24.0%
7.43 109.18 21.9%
6.17 120.09 23.8%
7.08 106.11 19.0%
6.53 109.05 18.0%
8.23 105.3 20.9%
5.28 112.06 24.9%
4.82 112.62 24.0%
9.68 119.80 25.0%
8.10 111.55 23.0%
6.29 123.56 23.9%
7.68 115.13 25.0%
9.49 115.99 25.9%
6.99 111.28 22.9%
5.88 110.36 23.8%
8.57 114.56 18.0%

Continued on next page

146

Table 23 – continued from previous page
Native Function

Time(ms)
OnClick Function

Time(ms)
Highest CPU
Usage(%)

6.65 115.39 16.9%
7.20 108.33 22.9%
7.10 118.78 21.9%
7.61 111.11 21.8%
8.27 124.24 22.9%
6.07 109.12 23.0%
9.83 113.67 23.0%
10.98 116.75 21.9%
7.97 121.57 24.9%
6.99 116.22 22.9%
7.37 174.38 28.9%
10.96 145.46 25.0%
6.74 132.17 25.9%
14.89 137.71 30.9%
9.65 122.46 26.9%

147

Table 24: Make Keys samples for NewHope512-CCA With a Succinct OnClick
Function

NewHope512-CCA Results With a Succinct OnClick Function
Native Function

Time(ms)
OnClick Function

Time(ms)
Highest CPU
Usage(%)

5.90 18.59 16.0
6.72 12.77 20.0
4.78 10.85 14.0
8.64 15.47 12.0
7.67 18.71 13.0
6.19 12.84 13.0
6.10 14.77 13.0
7.42 18.05 12.0
7.39 12.44 12.0
6.64 12.14 12.0
5.66 12.57 16.0
8.36 17.08 14.0
6.42 16.65 13.0
9.86 18.95 13.0
6.48 11.97 15.0
6.94 12.16 13.0
5.91 13.24 15.0
6.42 13.04 14.0
6.40 10.23 18.0
2.71 8.23 11.0
7.00 12.26 11.0
6.36 13.30 11.0
8.95 17.58 14.0
6.54 11.91 13.0
11.08 20.74 12.0
7.21 18.08 12.0
9.19 15.70 15.0
8.33 13.78 12.0
8.44 14.71 12.0
7.26 17.72 12.0
6.11 15.18 17.0
6.56 10.40 20.0
5.18 10.36 11.0
6.95 14.03 16.0
2.71 11.71 16.0

Continued on next page

148

Table 24 – continued from previous page
Native Function

Time(ms)
OnClick Function

Time(ms)
Highest CPU
Usage(%)

8.16 16.45 13.0
6.77 10.55 13.0
6.81 12.33 12.0
6.31 11.88 12.0
7.22 14.64 13.0
5.65 11.21 12.0
7.24 11.62 12.0
6.09 11.18 17.0
5.24 12.70 13.0
3.58 12.37 12.0
7.47 11.62 12.0
5.29 12.58 13.0
6.13 9.84 12.0
6.28 13.05 12.0
4.18 12.42 14.0

149

Table 25: Make Keys samples for NewHope1024-CCA With a Succinct OnClick
Function

NewHope1024-CCA Results With a Succinct OnClick Function
Native Function

Time(ms)
OnClick Function

Time(ms)
Highest CPU
Usage(%)

11.72 19.76 15.0
15.08 17.73 14.0
15.02 19.40 15.9
13.81 22.99 16.0
3.95 9.27 15.0
14.77 24.96 17.0
14.51 26.10 14.0
16.40 21.66 16.9
13.98 21.25 12.0
11.52 18.39 14.0
15.91 21.31 13.0
15.71 21.31 15.0
6.31 13.02 16.0
13.43 18.65 17.0
10.12 15.76 15.0
14.92 20.09 13.0
12.07 19.89 14.0
9.75 16.07 17.0
10.05 17.94 20.9
14.35 20.55 13.0
5.13 15.8 16.0
14.60 19.74 14.0
10.10 15.41 12.0
10.17 15.85 12.0
11.18 17.33 15.0
11.47 21.52 11.0
13.36 21.41 11.0
9.36 19.00 12.0
10.8 17.87 14.0
7.18 12.60 13.0
9.34 13.89 11.0
10.41 17.22 13.0
12.16 17.58 12.0
12.56 22.51 12.0
6.99 10.32 14.0

Continued on next page

150

Table 25 – continued from previous page
Native Function

Time(ms)
OnClick Function

Time(ms)
Highest CPU
Usage(%)

15.47 19.63 16.0
17.06 26.58 15.0
15.68 19.75 11.0
17.70 25.25 13.0
11.85 17.26 13.0
4.73 11.70 12.0
11.85 19.08 17.0
10.36 17.29 15.0
14.27 25.37 17.0
10.46 15.87 15.0
11.35 16.51 13.0
3.87 10.91 12.0
20.13 25.35 14.0
11.78 19.27 13.0
10.26 20.84 11.0

151

Table 26: Make Keys samples for NewHope512-CPA With a Succinct OnClick
Function

NewHope512-CPA Results With a Succinct OnClick Function
Native Function

Time(ms)
OnClick Function

Time(ms)
Highest CPU
Usage(%)

6.96 14.32 13.0
6.65 16.88 14.9
3.93 7.88 15.0
6.43 11.32 16.0
4.50 11.89 14.0
3.48 10.75 11.0
4.32 9.87 13.9
3.75 14.70 15.0
3.68 12.17 13.0
9.02 14.23 13.0
3.60 13.90 15.0
3.93 11.76 13.0
4.08 9.48 14.0
4.84 11.59 17.0
5.29 8.71 16.0
2.70 11.32 15.0
3.94 11.05 15.0
4.77 10.38 20.0
4.41 8.18 12.0
5.41 15.14 13.0
3.46 9.26 15.0
6.83 11.76 12.0
7.59 13.61 13.9
7.62 15.47 12.0
7.26 12.6 12.0
6.15 11.48 14.0
7.32 12.69 12.0
5.06 10.27 12.0
5.12 9.22 11.0
4.60 9.09 12.0
5.44 10.93 13.0
4.24 10.02 14.0
5.28 13.43 13.0
5.33 16.80 14.0
5.19 14.41 14.0

Continued on next page

152

Table 26 – continued from previous page
Native Function

Time(ms)
OnClick Function

Time(ms)
Highest CPU
Usage(%)

4.66 10.19 15.0
6.92 11.18 13.0
4.45 14.07 10.0
3.06 8.85 14.0
3.83 8.05 11.0
6.36 17.36 18.0
3.70 7.58 12.0
8.42 22.55 14.0
4.93 8.87 11.0
5.72 11.28 13.0
3.02 9.50 14.0
4.52 10.1 11.0
7.96 12.17 13.0
3.65 18.13 11.0
4.53 8.50 13.0

153

Table 27: Make Keys samples for NewHope1024-CPA With a Succinct OnClick
Function

NewHope1024-CPA Results With a Succinct OnClick Function
Native Function

Time(ms)
OnClick Function

Time(ms)
Highest CPU
Usage(%)

8.58 17.15 14.0
7.49 13.16 14.0
8.73 11.95 13.0
6.00 11.45 13.0
8.48 12.22 15.0
7.01 12.10 12.0
6.97 11.96 15.9
9.94 15.61 17.0
7.91 14.67 13.0
7.85 15.30 13.0
7.59 13.49 14.0
6.70 12.36 12.0
9.81 16.68 14.0
7.76 10.51 17.0
7.39 11.30 14.0
7.55 16.23 13.0
7.73 13.02 19.0
8.41 12.15 11.0
8.36 13.70 13.0
7.30 12.56 11.0
6.17 11.39 15.0
10.77 16.33 11.0
7.40 17.28 15.9
6.49 11.88 13.0
7.21 11.55 11.0
6.61 13.57 12.0
6.75 14.11 15.0
7.44 16.04 12.0
8.66 12.63 14.0
6.09 11.53 18.0
10.10 13.98 14.0
6.99 12.28 13.0
8.53 16.22 13.0
8.37 21.15 14.0
5.53 10.62 12.0

Continued on next page

154

Table 27 – continued from previous page
Native Function

Time(ms)
OnClick Function

Time(ms)
Highest CPU
Usage(%)

7.41 13.03 14.0
6.83 12.83 14.0
6.41 13.16 11.0
6.08 16.56 12.0
12.18 20.26 15.0
7.49 12.66 12.0
12.14 17.4 13.0
5.39 12.38 12.0
9.59 17.21 15.0
4.24 11.34 14.0
7.10 11.07 13.0
8.32 12.34 10.0
11.79 18.77 14.0
8.75 14.55 9.0
6.40 10.44 11.0

155

Table 28: Results From Running Make Keys for NewHope512-CCA With a No
Output OnClick Function

NewHope512-CCA Results With a No Output OnClick Function
Native Function

Time(ms)
OnClick Function

Time(ms)
Highest CPU
Usage(%)

8.48 8.48 15
6.22 6.22 16
6.54 6.54 11
5.59 5.59 16
4.78 4.78 11
7.09 8.3 15
7.88 7.88 17
1.34 1.34 14
7.68 7.68 13
4.86 4.86 13
7.24 7.24 14
8.74 8.74 14
7.37 7.37 11
7.01 7.01 15
8.8 8.8 13
3.7 3.7 13
6.62 6.62 14
2.94 2.94 11
6.52 6.52 12
5.3 5.3 14
6.31 6.31 13
8.3 8.3 14
2.78 2.78 11
5.85 5.85 10
9.08 9.08 11
2.49 2.49 12
9.25 9.25 13
8.78 8.78 11
6.98 6.98 13
5.38 5.38 8
8.67 8.67 13
5.55 5.55 12
8.89 8.89 12
4.97 4.97 12
5.35 5.35 15

Continued on next page

156

Table 28 – continued from previous page
Native Function

Time(ms)
OnClick Function

Time(ms)
Highest CPU
Usage(%)

5.21 5.21 11
7.24 7.24 15
5.16 5.16 10
5.15 5.15 12
2.6 2.6 11
6.22 6.22 14
11.31 11.31 12
10.06 10.06 11
7.54 7.54 11
5.61 5.61 11
10.36 10.36 12
7.04 7.04 12
9.07 9.07 13
5.26 5.26 12
4.57 4.57 14

157

Table 29: Make Keys samples for NewHope1024-CCA With a No Output OnClick
Function

NewHope1024-CCA Results With a No Output OnClick Function
Native Function

Time(ms)
OnClick Function

Time(ms)
Highest CPU
Usage(%)

13.15 13.15 20
16.16 16.16 14
11.84 11.84 14
12.93 12.93 14
12.74 12.74 12
15.07 15.07 14
10.64 10.64 14
14.9 14.9 16
13.51 13.51 16
11.35 11.35 12
11.19 11.19 12
9.88 9.88 13
15.3 15.3 12
12.34 12.34 17
15.81 15.81 15
10.85 10.85 11
9.85 9.85 17
15.66 15.66 12
8.09 8.09 12
11.12 11.12 12
15.91 15.91 11
12.17 12.17 12
10.91 10.91 12
8.8 8.8 12
8.61 8.61 11
12.74 12.74 14
13.57 13.57 13
10.49 10.49 13
12.49 12.49 11
14.66 14.66 11
11.27 11.27 13
13.27 13.27 11
13.47 13.47 14
11.79 11.79 14
10.74 10.74 10

Continued on next page

158

Table 29 – continued from previous page
Native Function

Time(ms)
OnClick Function

Time(ms)
Highest CPU
Usage(%)

9.53 9.53 14
12.83 12.83 11
14.77 14.77 12
9.45 9.45 13
14.51 14.51 10
11.03 11.03 12
13.26 13.26 10
9.7 9.7 12

12.62 12.62 11
12.31 12.31 12
12.27 12.27 13
14.65 14.65 12
10.63 10.63 11
10.56 10.56 11
11.04 11.04 16

159

Table 30: Make Keys samples for NewHope512-CPA With a No Output OnClick
Function

NewHope512-CPA Results With a No Output OnClick Function
Native Function

Time(ms)
OnClick Function

Time(ms)
Highest CPU
Usage(%)

7.49 7.49 16
5.09 5.09 14
7.19 7.19 12
4.82 4.82 14
4.2 4.2 12
2.78 2.78 11
2.7 2.7 14
6.07 6.07 14
5.31 5.31 15
5.01 5.01 11
4.84 4.84 12
4.01 4.01 12
4.2 4.2 11
2.77 2.77 10
3.94 3.94 12
3.53 3.53 11
2.76 4.15 15
5.15 5.15 19
3.9 3.9 11
3.75 3.75 12
3.45 3.45 10
4.43 4.43 10
5.2 5.2 10
6.31 6.31 14
4.65 4.65 11
4.28 4.28 10
3.84 3.84 11
4.88 4.88 11
5.62 5.62 10
4.02 4.02 12
4.02 4.02 12
5.11 5.11 11
4.03 4.03 12
3.8 3.8 11
2.47 2.47 11

Continued on next page

160

Table 30 – continued from previous page
Native Function

Time(ms)
OnClick Function

Time(ms)
Highest CPU
Usage(%)

3.97 3.97 12
5.21 5.21 12.9
3.8 3.8 10
2.82 2.82 14
3.61 3.61 8
12.26 12.26 12
7.15 7.15 11
2.65 2.65 12
3.71 3.71 10
2.43 2.43 11
4.11 4.11 14
3.02 3.02 12
6.06 6.06 10
4.89 4.89 11.9
4.81 4.81 10

161

Table 31: Make Keys samples for NewHope1024-CPA With a No Output OnClick
Function

NewHope1024-CPA Results With a No Output OnClick Function
Native Function

Time(ms)
OnClick Function

Time(ms)
Highest CPU
Usage(%)

7.22 7.22 15
7.28 7.28 13
9.84 9.84 13
2.74 6.01 14
5.69 5.69 13
7.55 7.55 12
10.46 10.46 13
6.15 6.15 15
9.01 9.01 13
7.7 7.7 12
6.75 6.75 11
12.44 12.44 14
7.26 7.26 12
8.83 8.83 14
6.65 6.65 14
8.9 8.9 11
6.87 6.87 16
10.7 10.7 13
6.39 6.39 15
8.27 8.27 13
9.01 9.01 12
4.17 4.17 11
6.11 6.11 13
11.81 11.81 13
8.35 8.35 11
10.21 10.21 12.9
8.13 8.13 11
4.92 4.92 11
8.45 8.45 14
7.15 7.15 12
6.75 6.75 14
6.4 6.4 11.9
6.97 6.97 14
6.83 6.83 11
8.29 8.29 11

Continued on next page

162

Table 31 – continued from previous page
Native Function

Time(ms)
OnClick Function

Time(ms)
Highest CPU
Usage(%)

9.32 9.32 12
7.52 7.52 9
6.64 6.64 13
6.21 6.21 10
7.39 7.39 12
7.3 7.3 11
9.15 9.15 11
8.96 8.96 11
4.79 4.79 10
10.15 10.15 12
10.03 10.03 11
5.86 5.86 12
5.88 5.88 11.9
10.09 10.09 13.9
9.18 9.18 10

163

Appendix I. Additional NewHope Implementation Tables

All of the NewHope mobile implementations were tested using three different
OnClick functions. The tables within this appendix display the average, minimum,
and maximum for OnClick event runtime, native NewHope scheme runtime, and
highest CPU usage.

First, the results from the verbose OnClick event are shown.

Table 32: NewHope512-CCA results from create keys test runs with a verbose
OnClick function

NewHope512-CCA Create Key Results With Verbose OnClick
Average Minimum Maximum

Native Function Time(ms) 6.941 2.47 13.26
OnClick Function Time(ms) 89.034 68.01 111.53
Highest CPU Usage(%) 21.13 16.0 28.7

Table 33: NewHope1024-CCA results from create keys test runs with a verbose
OnClick function

NewHope-1024-CCA Create Key Results With Verbose OnClick
Average Minimum Maximum

Native Function Time(ms) 11.691 7.63 18.98
OnClick Function Time(ms) 155.644 130.09 206.13
Highest CPU Usage(%) 25.35 18.0 34.9

Table 34: NewHope512-CPA results from create keys test runs with a verbose
OnClick function

NewHope-512-CPA Create Key Results With Verbose OnClick
Average Minimum Maximum

Native Function Time(ms) 4.588 2.52 8.17
OnClick Function Time(ms) 70.447 58.27 109.53
Highest CPU Usage(%) 19.782 13.0 28.0

Next, the results from the succinct OnClick event are shown.
Finally, the results from the no output OnClick event are shown.

164

Table 35: NewHope1024-CPA results from create keys test runs with a verbose
OnClick function

NewHope-1024-CPA Create Key Results With Verbose OnClick
Average Minimum Maximum

Native Function Time(ms) 8.267 4.82 12.97
OnClick Function Time(ms) 119.616 105.30 174.38
Highest CPU Usage(%) 23.42 17.0 27.9

Table 36: NewHope512-CCA results from Create Keys sample runs with A succinct
OnClick function

NewHope512-CCA Create Key Results With Succinct OnClick
Average Minimum Maximum

Native Function Time(ms) 6.658 2.71 11.08
OnClick Function Time(ms) 13.653 8.23 20.74
Highest CPU Usage(%) 13.500 11.00 20.00

Table 37: NewHope1024-CCA results from Create Keys sample runs with a succinct
OnClick function

NewHope1024-CCA Create Key Results With Succinct OnClick
Average Minimum Maximum

Native Function Time(ms) 11.900 3.87 20.13
OnClick Function Time(ms) 18.694 9.27 26.58
Highest CPU Usage(%) 14.054 11.00 20.90

Table 38: NewHope512-CPA results from Create Keys sample runs with a succinct
OnClick function

NewHope512-CPA Create Key Results With Succinct OnClick
Average Minimum Maximum

Native Function Time(ms) 5.158 2.70 9.02
OnClick Function Time(ms) 11.899 7.88 22.55
Highest CPU Usage(%) 13.514 10.00 20.00

Table 39: NewHope1024-CPA results from Create Keys sample runs with a succinct
OnClick function

NewHope1024-CPA Create Key Results With Succinct OnClick
Average Minimum Maximum

Native Function Time(ms) 7.816 4.24 12.18
OnClick Function Time(ms) 13.843 10.44 21.15
Highest CPU Usage(%) 13.396 9.00 18.00

165

Table 40: NewHope512-CCA results from create keys sample runs with a no output
OnClick function

NewHope512-CCA Create Key Results With No Output OnClick
Average Minimum Maximum

Native Function Time(ms) 6.5146 1.34 11.31
OnClick Function Time(ms) 6.5388 1.34 11.31
Highest CPU Usage(%) 12.68 8.00 17.00

Table 41: NewHope1024-CCA results from create keys sample runs with a no
output OnClick function

NewHope1024-CCA Create Key Results With No Output OnClick
Average Minimum Maximum

Native Function Time(ms) 12.2486 8.09 16.16
OnClick Function Time(ms) 12.2486 8.09 16.16
Highest CPU Usage(%) 12.82 10.00 20.00

Table 42: NewHope512-CPA results from create keys sample runs with a no output
OnClick function

NewHope512-CPA Create Key Results With No Output OnClick
Average Minimum Maximum

Native Function Time(ms) 4.5224 2.43 12.26
OnClick Function Time(ms) 4.5502 2.43 12.26
Highest CPU Usage(%) 11.896 8.00 19.00

Table 43: NewHope1024-CPA results from create keys sample runs with a no output
OnClick function

NewHope1024-CPA Create Key Results With No Output OnClick
Average Minimum Maximum

Native Function Time(ms) 7.7744 2.74 12.44
OnClick Function Time(ms) 7.8398 4.17 12.44
Highest CPU Usage(%) 12.372 9.00 16.00

166

Acronyms

ABI application binary interface. 71, 75

AES Advanced Encryption Standard. 13

APK Android Package. 57, 72, 73, 80, 81

ASIC application-specific integrated circuit. 21

BDD bounded distance decoding. 40

BKZ Block Korkine-Zolotarev. 35, 36, 38

CCA chosen ciphertext attack. 4, 18, 24, 40, 46, 47, 68, 89, 111

CMA chosen message attack. 18

CPA chosen plaintext attack. 4, 18, 24, 40, 46, 47, 68

CPU central processing unit. iv, 5, 109, 1

CVP closest vector problem. viii, 27, 28, 31, 32, 33, 38, 45, 57

DHKE Diffie-Hellman key exchange. 2, 13, 20, 26, 40

DLP data loss prevention. 49

DSA digital signature algorithm. 13

DSVP decision shortest vector problem. 28

ECC elliptic-curve cryptography. 2, 13, 20

ECDH Elliptic-Curve Diffie-Hellman. 13, 21, 40, 107

167

ECDSA elliptic-curve digital signature algorithm. 13

FHE fully-homomorphic encryption. 41, 42

FPGA field-programmable gate array. 21

HLS high-level synthesis. 21

ICS industrial control systems. 1

IoT internet of things. 1, 8, 19, 20, 21, 22, 61

IRSD Ideal Rank Syndrome Decoding. 23, 24

JNI Java Native Interface. 3, 5, 8, 57, 58, 59, 60, 62, 63, 71, 72, 75, 78, 83, 84, 86,

87, 88, 93, 100, 101, 102, 109, 110, 111, 112, 113

JVM Java Virtual Machine. 58

KAT known answer tests. 5, 16, 24, 46, 66, 67, 68, 75, 76, 78, 79, 85, 87, 132

KEM key encapsulation mechanism. iv, v, ix, 2, 3, 4, 5, 6, 8, 18, 21, 23, 24, 26, 40,

46, 47, 48, 61, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 76, 78, 79, 80, 81, 82, 83,

84, 85, 86, 87, 90, 97, 98, 99, 100, 105, 106, 107, 109, 110, 111, 112, 113, 1

LPWN learning parity with noise. 32

LWE learning with errors. 28, 32, 33, 34, 38, 39, 40, 43, 45, 47, 65, 66

MB Megabytes. 95

MLWE Module Learning With Errors. 23

MLWR Module Learning With Rounding. 23, 24

168

ms milliseconds. 88, 107

NDK Native Development Kit. 59, 71, 72, 73, 74

NIST National Institute of Standards and Technology. iv, ix, 1, 2, 3, 4, 5, 14, 47,

63, 65, 66, 72, 111, 113, 1

NTT Number Theoretic Transform. 34, 43, 46, 52, 55, 66, 68

PKE public-key encryption. 2, 13, 16, 18, 42, 47, 49, 65, 68, 79

PQC post-quantum cryptography. iv, v, ix, 1, 2, 3, 4, 5, 6, 8, 12, 14, 15, 16, 19, 20,

21, 22, 23, 24, 26, 40, 42, 46, 60, 61, 63, 64, 65, 71, 72, 84, 86, 87, 105, 106, 107,

109, 110, 111, 112, 113, 1

PRNG pseudorandom generator. 49

PUF physically unclonable functions. 22

QSR quantum search reduction. 36

RAM random access memory. 20

RLWE ring learning with errors. 4, 8, 20, 27, 28, 33, 34, 38, 39, 40, 42, 43, 45, 46,

52, 53, 57, 61, 65, 66, 68, 105, 111

RLWR Ring Learning With Rounding. 23

ROM random oracle model. 49

RSA Rivest-Shamir-Adleman. 2, 13, 26

RSR random sampling reduction. 35, 36

SCA side-channel attack. 16, 18, 24, 39, 43, 44, 45

169

SIS shortest integer problem. 28

SPA simple power analysis. 43

SVP shortest vector problem. viii, 28, 30, 31, 32, 37, 40, 45

TLS Transport Layer Security. 20, 40

USVP unique shortest vector problem. 28, 40

VM Virtual Machine. 58, 59

XOF extendable-output functions. 49

170

Bibliography

1. A faster lattice reduction method using quantum search, author=Ludwig,

Christoph, in International Symposium on Algorithms and Computation,

Springer, 2003, pp. 199–208.

2. D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green,

J. A. Halderman, N. Heninger, D. Springall, E. Thomé, L. Valenta,

et al., Imperfect forward secrecy: How Diffie-Hellman fails in practice, in Pro-

ceedings of the 22nd ACM SIGSAC Conference on Computer and Communica-

tions Security, ACM, 2015, pp. 5–17.

3. S. Akleylek, N. Bindel, J. Buchmann, J. Krämer, and G. A. Marson,

An efficient lattice-based signature scheme with provably secure instantiation, in

International Conference on Cryptology in Africa, Springer, 2016, pp. 44–60.

4. S. H. Al-Bakri, M. Mat Kiah, A. Zaidan, B. Zaidan, and G. M.

Alam, Securing peer-to-peer mobile communications using public key cryptog-

raphy: New security strategy, International Journal of the Physical Sciences, 6

(2011), pp. 930–938.

5. G. Alagic, G. Alagic, J. Alperin-Sheriff, D. Apon, D. Cooper,

Q. Dang, Y.-K. Liu, C. Miller, D. Moody, R. Peralta, et al., Status

report on the first round of the NIST post-quantum cryptography standardiza-

tion process, US Department of Commerce, National Institute of Standards and

Technology, 2019.

6. M. Albrecht, C. Cid, K. Paterson, C. Tjhai, and M. Tomlinson, NTS-

KEM, 2019, https://nts-kem.io.

171

https://nts-kem. io

7. E. Alkim, R. Avanzi, J. Bos, L. Ducas, A. de la Piedra, T. Pöppel-

mann, P. Schwabe, and D. Stebila, Newhope-algorithm Specifications and

Supporting Documentation, Second Round NIST PQC Project Submission Doc-

ument, (2019).

8. E. Alkim, R. Avanzi, J. Bos, L. Ducas, A. de la Piedra, T. Pop-

pelmann, P. Schwabe, D. Stebila, M. R. Albrecht, E. Orsini,

et al., NewHope: algorithm specifications and supporting documenta-

tion, https://csrc.nist.gov/projects/post-quantum-cryptography/

round-2-submissions, (2018).

9. E. Alkim, J. W. Bos, L. Ducas, P. Longa, I. Mironov, M. Naehrig,

V. Nikolaenko, C. Peikert, A. Raghunathan, D. Stebila, et al.,

FrodoKEM, 2019.

10. E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe, Post-quantum key

exchange - a new hope, in 25th USENIX Security Symposium USENIX Security

16), 2016, pp. 327–343.

11. Android, Getting Started with the NDK: Android NDK: Android Developers.

https://developer.android.com/ndk/guides, 2020.

12. B. Applebaum, Cryptographic hardness of random local functions, Computa-

tional complexity, 25 (2016), pp. 667–722.

13. N. Aragon, P. S. Barreto, S. Bettaieb, F. Worldline, L. Bidoux,

O. Blazy, P. Gaborit, T. Güneysu, C. A. Melchor, R. Misoczki,

et al., Bike: Bit Flipping Key Encapsulation Round 2 Submission.

14. R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky,

J. M. Schanck, P. Schwabe, G. Seiler, and D. Stehlé, CRYSTALS-

172

https://csrc. nist. gov/projects/post-quantum-cryptography/round-2-submissions
https://csrc. nist. gov/projects/post-quantum-cryptography/round-2-submissions
https://developer.android.com/ndk/guides

Kyber Algorithm Specifications And Supporting Documentation, Submission to

the NIST post-quantum project, 9 (2017), p. 11.

15. H. Baan, S. Bhattacharya, S. Fluhrer, O. Garcia-Morchon,

T. Laarhoven, R. Player, R. Rietman, M.-J. O. Saarinen, L. Tol-

huizen, J. L. Torre-Arce, et al., Round5: KEM and PKE based on (ring)

learning with rounding, Round5 submission to NIST PQC standardization (Sec-

ond Round), (2019).

16. L. Babai, On Lovász lattice reduction and the nearest lattice point problem,

Combinatorica, 6 (1986), pp. 1–13.

17. W. Backes and S. Wetzel, A parallel LLL using POSIX threads, Department

of computer science, Stevens Institute of Technology, (2008).

18. M. Baldi, A. Barenghi, F. Chiaraluce, G. Pelosi, and P. Santini,

LEDAcrypt: Low-density parity-check code-based cryptographic systems, NIST

round, 2 (2019).

19. K. Basu, D. Soni, M. Nabeel, and R. Karri, NIST Post-Quantum

Cryptography-A Hardware Evaluation Study.

20. D. J. Bernstein, Introduction to post-quantum cryptography, in Post-quantum

cryptography, Springer, 2009, pp. 1–14.

21. D. J. Bernstein, T. Chou, C. Chuengsatiansup, A. Hülsing, E. Lam-

booij, T. Lange, R. Niederhagen, and C. Van Vredendaal, How to

Manipulate Curve Standards: A White Paper for the Black Hat, in International

Conference on Research in Security Standardisation, Springer, 2015, pp. 109–

139.

173

22. D. J. Bernstein, T. Chou, T. Lange, R. Misoczki, R. Niederhagen,

E. Persichetti, P. Schwabe, J. Szefer, and W. Wang, Classic McEliece:

conservative code-based cryptography, (2019).

23. D. J. Bernstein, C. Chuengsatiansup, T. Lange, and C. van Vre-

dendaal, NTRU Prime: reducing attack surface at low cost, in International

Conference on Selected Areas in Cryptography, Springer, 2017, pp. 235–260.

24. D. J. Bernstein, T. Lange, and C. van Vredendaal, NTRU Prime.

25. D. J. Bernstein, T. Lange, and C. van Vredendaal, NTRU Prime:

round 2, (2019).

26. G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, Keccak, in

Advances in Cryptology – EUROCRYPT 2013, T. Johansson and P. Q. Nguyen,

eds., Berlin, Heidelberg, 2013, Springer Berlin Heidelberg, pp. 313–314.

27. J. Bi, X. Meng, and L. Han, Cryptanalysis of two knapsack-type public-key

cryptosystems, in 2010 International Conference on Computer Application and

System Modeling (ICCASM 2010), vol. 9, IEEE, 2010, pp. V9–623.

28. J.-F. Biasse and F. Song, Efficient quantum algorithms for computing class

groups and solving the principal ideal problem in arbitrary degree number fields,

in Proceedings of the twenty-seventh annual ACM-SIAM symposium on Discrete

algorithms, Society for Industrial and Applied Mathematics, 2016, pp. 893–902.

29. N. Bindel, J. Buchmann, and J. Krämer, Lattice-based signature schemes

and their sensitivity to fault attacks, in 2016 Workshop on Fault Diagnosis and

Tolerance in Cryptography (FDTC), IEEE, 2016, pp. 63–77.

174

30. J. W. Bos, C. Costello, M. Naehrig, and D. Stebila, Post-quantum

key exchange for the TLS protocol from the ring learning with errors problem,

in 2015 IEEE Symposium on Security and Privacy, IEEE, 2015, pp. 553–570.

31. J. Buchmann, F. Göpfert, T. Güneysu, T. Oder, and T. Pöppel-

mann, High-performance and lightweight lattice-based public-key encryption, in

Proceedings of the 2nd ACM International Workshop on IoT Privacy, Trust,

and Security, ACM, 2016, pp. 2–9.

32. M. Campagna, C. Costello, B. Hess, A. Jalali, B. Koziel, B. LaMac-

chia, P. Longa, M. Naehrig, J. Renes, D. Urbanik, et al., Supersingu-

lar Isogeny Key Encapsulation, (2019).

33. P. Campbell, M. Groves, and D. Shepherd, Soliloquy: A cautionary tale,

in ETSI 2nd Quantum-Safe Crypto Workshop, vol. 3, 2014, pp. 1–9.

34. L. Chen, S. Jordan, Y.-K. Liu, D. Moody, R. Peralta, R. Perlner,

and D. Smith-Tone, Report on post-quantum cryptography, US Department

of Commerce, National Institute of Standards and Technology, 2016.

35. C. Cheng, R. Lu, A. Petzoldt, and T. Takagi, Securing the Internet

of Things in a quantum world, IEEE Communications Magazine, 55 (2017),

pp. 116–120.

36. R. Cramer, L. Ducas, C. Peikert, and O. Regev, Recovering short gener-

ators of principal ideals in cyclotomic rings, in Annual International Conference

on the Theory and Applications of Cryptographic Techniques, Springer, 2016,

pp. 559–585.

37. M. H. Devoret and R. J. Schoelkopf, Superconducting circuits for quan-

tum information: an outlook, Science, 339 (2013), pp. 1169–1174.

175

38. D. P. DiVincenzo, The physical implementation of quantum computation,

Fortschritte der Physik: Progress of Physics, 48 (2000), pp. 771–783.

39. L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky, Lattice signa-

tures and bimodal Gaussians, in Annual Cryptology Conference, Springer, 2013,

pp. 40–56.

40. L. Ducas, V. Lyubashevsky, and T. Prest, Efficient identity-based en-

cryption over NTRU lattices, in International Conference on the Theory and

Application of Cryptology and Information Security, Springer, 2014, pp. 22–41.

41. M. Dyakonov, When will useful quantum computers be constructed? Not in the

foreseeable future, this physicist argues. Here’s why: The case against: Quantum

computing, IEEE Spectrum, 56 (2019), pp. 24–29.

42. C. Easttom, An Analysis of Leading Lattice-Based Asymmetric Cryptographic

Primitives, in 2019 IEEE 9th Annual Computing and Communication Workshop

and Conference (CCWC), IEEE, 2019, pp. 0811–0818.

43. T. Espitau, P.-A. Fouque, B. Gerard, and M. Tibouchi, Loop-abort

faults on lattice-based signature schemes and key exchange protocols, IEEE

Transactions on Computers, 67 (2018), pp. 1535–1549.

44. U. Fincke and M. Pohst, Improved methods for calculating vectors of short

length in a lattice, including a complexity analysis, Mathematics of computation,

44 (1985), pp. 463–471.

45. S. R. Fluhrer, Cryptanalysis of ring-LWE based key exchange with key share

reuse, IACR Cryptology ePrint Archive, 2016 (2016), p. 85.

46. S. D. Galbraith, Mathematics of public key cryptography, Cambridge Univer-

sity Press, 2012.

176

47. S. D. Galbraith, Space-efficient variants of cryptosystems based on learning

with errors, https://www.math.auckland.ac.nz/~sgal018/compact-LWE.

pdf, (2013).

48. C. Gentry and S. Halevi, Implementing gentryâĂŹs fully-homomorphic en-

cryption scheme, in Annual international conference on the theory and applica-

tions of cryptographic techniques, Springer, 2011, pp. 129–148.

49. A. Ghasemmehdi and E. Agrell, Faster recursions in sphere decoding, IEEE

Transactions on Information Theory, 57 (2011), pp. 3530–3536.

50. S. Ghosh, R. Misoczki, and M. R. Sastry, Lightweight Post-Quantum-

Secure Digital Signature Approach for IoT Motes.

51. Gradle, Inc., Community Home. https://docs.gradle.org/current/

userguide/what_is_gradle.html#five_things.

52. L. K. Grover, A fast quantum mechanical algorithm for database search, arXiv

preprint quantum, (1996).

53. T. Güneysu, V. Lyubashevsky, and T. Pöppelmann, Practical lattice-

based cryptography: A signature scheme for embedded systems, in International

Workshop on Cryptographic Hardware and Embedded Systems, Springer, 2012,

pp. 530–547.

54. M. Hamburg, Post-quantum cryptography proposal: ThreeBears, NIST Post-

Quantum Cryptography Standardization, (2019).

55. A. W. Harrow and A. Montanaro, Quantum computational supremacy,

Nature, 549 (2017), pp. 203–209.

177

https://www.math.auckland.ac.nz/~ sgal018/compact-LWE.pdf
https://www.math.auckland.ac.nz/~ sgal018/compact-LWE.pdf
https://docs.gradle.org/current/userguide/what_is_gradle.html#five_things
https://docs.gradle.org/current/userguide/what_is_gradle.html#five_things

56. J. Hoffstein, J. Pipher, J. M. Schanck, J. H. Silverman, and

W. Whyte, Practical signatures from the partial Fourier recovery problem,

in International Conference on Applied Cryptography and Network Security,

Springer, 2014, pp. 476–493.

57. J. Hoffstein, J. Pipher, and J. H. Silverman, NTRU: A ring-based pub-

lic key cryptosystem, in International Algorithmic Number Theory Symposium,

Springer, 1998, pp. 267–288.

58. J. Howe, A. Khalid, M. Martinoli, F. Regazzoni, and E. Oswald,

Fault Attack Countermeasures for Error Samplers in Lattice-Based Cryptogra-

phy, in 2019 IEEE International Symposium on Circuits and Systems (ISCAS),

IEEE, 2019, pp. 1–5.

59. M. Hung, Leading the IoT, gartner insights on how to lead in a connected world,

Gartner Research, (2017), pp. 1–29.

60. IBM, Three Types of Quantum Computing - IBM Infographic. https://www.

flickr.com/photos/ibm_research_zurich/22963781794, 2015.

61. J. Kelly, A Preview of Bristlecone - Google’s New Quantum Processor. https:

//ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.

html, 2019.

62. A. Khalid, C. Rafferty, J. Howe, S. Brannigan, W. Liu, and

M. OâĂŹNeill, Error Samplers for Lattice-Based Cryptography-Challenges,

Vulnerabilities and Solutions, in 2018 IEEE Asia Pacific Conference on Circuits

and Systems (APCCAS), IEEE, 2018, pp. 411–414.

63. Kitware, Overview. https://cmake.org/overview/.

178

https://www.flickr.com/photos/ibm_research_zurich/22963781794
https://www.flickr.com/photos/ibm_research_zurich/22963781794
https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
https://ai.googleblog.com/2018/03/a-preview-of-bristlecone-googles-new.html
https://cmake.org/overview/

64. P.-C. Kuo and C.-M. Cheng, Lattice-based cryptanalysisâĂŤHow to estimate

the security parameter of lattice-based cryptosystem, in 2014 IEEE International

Conference on Consumer Electronics-Taiwan, IEEE, 2014, pp. 53–54.

65. T. Laarhoven, M. Mosca, and J. Van De Pol, Finding shortest lattice vec-

tors faster using quantum search, Designs, Codes and Cryptography, 77 (2015),

pp. 375–400.

66. T. Laarhoven, J. van de Pol, and B. de Weger, Solving Hard Lattice

Problems and the Security of Lattice-Based Cryptosystems, IACR Cryptology

EPrint Archive, 2012 (2012), p. 533.

67. A. K. Lenstra, Lattices and factorization of polynomials over algebraic number

fields, in European Computer Algebra Conference, Springer, 1982, pp. 32–39.

68. P. Longa and M. Naehrig, Speeding up the number theoretic transform for

faster ideal lattice-based cryptography, in International Conference on Cryptology

and Network Security, Springer, 2016, pp. 124–139.

69. X. Lu, Y. Liu, D. Jia, H. Xue, J. He, Z. Zhang, Z. Liu, H. Yang,

B. Li, and K. Wang, LAC: Lattice-based Cryptosystems, URL: https://csrc.

nist. gov/projects/post-quantum-cryptography/round-2-submissions. Citations

in this document, 1.

70. V. Lyubashevsky, C. Peikert, and O. Regev, On ideal lattices and learn-

ing with errors over rings, in Annual International Conference on the Theory

and Applications of Cryptographic Techniques, Springer, 2010, pp. 1–23.

71. V. Lyubashevsky, C. Peikert, and O. Regev, A toolkit for ring-LWE

cryptography, in Annual International Conference on the Theory and Applica-

tions of Cryptographic Techniques, Springer, 2013, pp. 35–54.

179

72. A. T. M. Watari and S. Ano, Documentation, Java Native Interface Speci-

fication.

73. L. Malina, L. Popelova, P. Dzurenda, J. Hajny, and Z. Marti-

nasek, On Feasibility of Post-Quantum Cryptography on Small Devices, IFAC-

PapersOnLine, 51 (2018), pp. 462–467.

74. A. Mariano, T. Laarhoven, F. Correia, M. Rodrigues, and G. Fal-

cao, A practical view of the state-of-the-art of lattice-based cryptanalysis, IEEE

Access, 5 (2017), pp. 24184–24202.

75. C. A. Melchor, N. Aragon, S. Bettaieb, L. Bidoux, O. Blazy, A. Cou-

vreur, J.-C. Deneuville, P. Gaborit, A. Hauteville, and G. Zémor,

Rank Quasi-Cyclic (RQC).

76. C. A. Melchor, N. Aragon, S. Bettaieb, L. Bidoux, O. Blazy, J.-C.

Deneuville, P. Gaborit, A. Hauteville, O. Ruatta, J.-P. Tillich,

et al., ROLLO-Rank-Ouroboros, LAKE LOCKER, (2019).

77. D. Micciancio, CSE206A: Lattices algorithms and applications (spring 2014),

2014, http://cseweb.ucsd.edu/classes/sp14/cse206A-a.

78. A. W. Mohsen, A. M. Bahaa-Eldin, and M. A. Sobh, Lattice-based cryp-

tography, in 2017 12th International Conference on Computer Engineering and

Systems (ICCES), IEEE, 2017, pp. 462–467.

79. D. Moody, Post-Quantum Cryptography Standardization: Announcement and

outline of NIST’s Call for Submissions, 2016.

80. C. Nay, IBM Opens Quantum Computation Center in New York; Brings

World’s Largest Fleet of Quantum Computing Systems Online, Unveils New

180

http://cseweb. ucsd. edu/classes/sp14/cse206A-a

53-Qubit Quantum System for Broad Use. https://newsroom.ibm.com/

2019-09-18-IBM-Opens-Quantum-Computation-Center-in-New-York, 2019.

81. P. Q. Nguyen and J. Stern, The two faces of lattices in cryptology, in Inter-

national Cryptography and Lattices Conference, Springer, 2001, pp. 146–180.

82. M. A. Nielson and I. L. Chuang, Quantum computation and quantum in-

formation, (2000).

83. NIST, Call for Post-Quantum Standardization Project Algorithms. https:

//csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/

documents/call-for-proposals-final-dec-2016.pdf, 2019.

84. M. O’Neill et al., Insecurity by design: Today’s IoT device security problem,

Engineering, 2 (2016), pp. 48–49.

85. A. Park and D.-G. Han, Chosen ciphertext simple power analysis on software

8-bit implementation of Ring-LWE encryption, in 2016 IEEE Asian Hardware-

Oriented Security and Trust (AsianHOST), IEEE, 2016, pp. 1–6.

86. T. Pathak, Apple Maintains Lead in Premium Smartphone Segment, OnePlus

Enters Top Five Brands for the First Time in 2018 - Counterpoint Research.

http://bit.ly/2VMSHQP, 2019.

87. C. Peikert, O. Regev, and N. Stephens-Davidowitz, Pseudorandomness

of ring-LWE for any ring and modulus, in Proceedings of the 49th Annual ACM

SIGACT Symposium on Theory of Computing, ACM, 2017, pp. 461–473.

88. O. Regev, Lattice-based cryptography, in Annual International Cryptology Con-

ference, Springer, 2006, pp. 131–141.

181

https://newsroom.ibm.com/2019-09-18-IBM-Opens-Quantum-Computation-Center-in-New-York
https://newsroom.ibm.com/2019-09-18-IBM-Opens-Quantum-Computation-Center-in-New-York
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
http://bit.ly/2VMSHQP

89. O. Regev, On lattices, learning with errors, random linear codes, and cryptog-

raphy, Journal of the ACM (JACM), 56 (2009), p. 34.

90. E. Rescorla, The Transport Layer Security (TLS) Protocol Version 1.3–draft-

ietf-tls-tls13-05, 2015.

91. S. K. Routray, M. K. Jha, L. Sharma, R. Nyamangoudar, A. Javali,

and S. Sarkar, Quantum cryptography for IoT: APerspective, in 2017 Inter-

national Conference on IoT and Application (ICIOT), IEEE, 2017, pp. 1–4.

92. S. S. Roy, F. Vercauteren, N. Mentens, D. D. Chen, and I. Ver-

bauwhede, Compact ring-LWE cryptoprocessor, in International Workshop on

Cryptographic Hardware and Embedded Systems, Springer, 2014, pp. 371–391.

93. J. Sanders, TechRepublic: D-Wave announces 5,000-qubit fifth generation

quantum annealer, 2019.

94. C.-P. Schnorr and M. Euchner, Lattice basis reduction: Improved practical

algorithms and solving subset sum problems, Mathematical programming, 66

(1994), pp. 181–199.

95. B. Schumacher, Sending entanglement through noisy quantum channels, Phys-

ical Review A, 54 (1996), p. 2614.

96. N. Sha, standard: Permutation-based hash and extendable-output functions,

2015, DOI, 3AD, (3).

97. P. W. Shor, Polynomial-time algorithms for prime factorization and discrete

logarithms on a quantum computer, SIAM review, 41 (1999), pp. 303–332.

182

98. V. Singh and A. Chopra, Even More Practical Key Exchanges for the Inter-

net using Lattice Cryptography, IACR Cryptology ePrint Archive, 2015 (2015),

p. 1120.

99. R. Srivastava, I. Choi, T. Cook, and N. U. E. Team, The commercial

prospects for quantum computing, Networked Quantum Information Technolo-

gies, (2016).

100. D. E. Standard, National Institute of Standards and Technology, FIPS PUB

46-2 (December 1993), http://www.itl.nist.gov/fipspubs/fip46-2.html.

101. D. Stehlé and R. Steinfeld, Making NTRU as secure as worst-case prob-

lems over ideal lattices, in Annual International Conference on the Theory and

Applications of Cryptographic Techniques, Springer, 2011, pp. 27–47.

102. T. Strahl and R. Johansson, Post-quantum Secure Communication on a

Low Performance IoT Platform, (2016).

103. T. N. Tan and H. Lee, High-Secure Fingerprint Authentication System using

Ring-LWE Cryptography, IEEE Access, 7 (2019), pp. 23379–23387.

104. K. und Computeralgebra, The BKZ Simulation Algorithm, (2013).

105. P. van Emde Boas, Another NP-complete problem and the complexity of com-

puting short vectors in a lattice, Tecnical Report, Department of Mathmatics,

University of Amsterdam, (1981).

106. I. F. Vercauteren, SABER: Mod-LWR based KEM (Round 2 Submission).

107. B. Wang, H. Liu, and Y. Hu, Cryptanalysis of a knapsack public key cryp-

tosystem, in 2009 Fifth International Conference on Information Assurance and

Security, vol. 2, IEEE, 2009, pp. 49–52.

183

http://www. itl. nist. gov/fipspubs/fip46-2. html

108. T. Wunderer, M. Burger, and G. N. Nguyen, Parallelizing the Hybrid

Lattice-Reduction and Meet-in-the-Middle Attack, in 2018 IEEE International

Conference on Computational Science and Engineering (CSE), IEEE, 2018,

pp. 185–193.

109. J. Xu, L. Hu, S. Sun, and Y. Xie, Cryptanalysis of countermeasures

against multiple transmission attacks on NTRU, IET Communications, 8 (2014),

pp. 2142–2146.

110. S. Zhou, C. Yin, and H. Xu, Research progress of lattice bases reduction algo-

rithms, in 2012 International Conference on Computer Science and Electronics

Engineering, vol. 1, IEEE, 2012, pp. 550–553.

184

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

26–03–2020 Master’s Thesis Sept 2018 — Mar 2020

NewHope: A Mobile Implementation of a Post-Quantum Crytographic
Key Encapsulation Mechanism

Jessica A. Switzler GS-11

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENG-MS-20-M-063

Intentionally Left Blank

DISTRIBUTION STATEMENT A:
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

NIST anticipates the appearance of large-scale quantum computers by 2036 [34], which will threaten widely used
asymmetric algorithms, NIST launched a Post-Quantum Cryptography Standardization Project to find quantum-secure
alternatives. NewHope PQC KEM is the only Round 2 candidate to simultaneously achieve small key values through the
use of a security problem with sufficient confidence its security, while mitigating any known vulnerabilities.
This research contributes to NIST project’s overall goal by assessing the platform flexibility and resource requirements of
NewHope KEMs on an Android mobile device. The resource requirements analyzed are transmission size as well as
scheme runtime, CPU, memory, and energy usage. Results from each NewHope KEM instantiations are compared
amongst each other, to a baseline application, and to results from previous work. NewHope PQC KEM was
demonstrated to have sufficient flexibility for mobile implementation, competitive performance with other PQC KEMs,
and to have competitive scheme runtime with current key exchange algorithms.

post-quantum cryptographic key encapsulation mechanism, mobile device security, lattice-based cryptography,
asymmetric cryptography

U U U UU 197
Dr. Laurence D. Merkle, AFIT/ENG

(937)255-3636 x4526; laurence.merkle@afit.edu

	NewHope: A Mobile Implementation of a Post-Quantum Cryptographic Key Encapsulation Mechanism
	Recommended Citation

	Abstract
	List of Figures
	List of Tables
	Introduction
	Motivation
	Problem Background
	Research Objectives
	Approach
	Assumptions and Limitations
	Document Overview

	Background and Literature Review
	Chapter Overview
	Quantum Computers and Quantum Computing
	Effect of Popular Quantum Algorithms
	Post-Quantum Cryptography (PQC)
	NIST: PQC Standardization
	Implementations of PQC for IoT and Mobile Devices
	NIST Round 2 PQC KEM's
	Lattice-Based Cryptography
	Lattices
	Lattice Problems

	Cryptanalysis of Lattice-Based Cryptography
	Lattice-Basis Reduction
	Shortest Vector Problem
	Closest Vector Problem
	Learning with Errors Problem
	Ring Learning with Errors Problem
	Analysis of Cryptanalysis

	NewHope
	NewHope Cryptosystem
	NewHope KEM Types
	NewHope Cryptosystem Package
	NewHope Mitigating Attack Vectors
	NewHope Parameter Sets
	NewHope Key Encapsulation

	Java Native Interface (JNI)
	JNI Basics
	JNI Within Android Studio

	Chapter Summary

	Methodology
	Chapter Overview
	Methodology Procedure Outline
	Choosing a KEM Algorithm
	Building the Original KEM Codebase
	Reverse Engineering NewHope KEM
	Analyzing Transmission Byte Requirement
	Creating a Baseline Application for Comparison
	Preparation for Mobile Implementation
	Creating NewHope Mobile Implementations
	Testing the KEM
	Android Profiler
	Data Collection Procedure

	Chapter Summary

	Results and Analysis
	Chapter Overview
	Verification of Correctness
	Baseline JNI Application
	Verbose OnClick Event Condition
	Succinct OnClick Event Condition
	No Output OnClick Event Condition
	Comparing NewHope Implementations with Different OnClick Event Conditions
	Performance Comparison of NewHope Configurations and Baseline Application
	Statistical Analysis of NewHope Configurations and Baseline Application
	Native Scheme Runtime T-Tests Between NewHope Configurations
	CPU Average T-Tests Between NewHope Configurations and Baseline Application
	CPU Average T-Tests Between NewHope Configurations

	Comparison to Previous Work
	Chapter Summary

	Conclusions
	Chapter Overview
	Conclusions
	Future Work
	Contributions

	MainActivity.java
	MainActivityDriver.c
	Original api.h
	Original params.h
	CMakeLists.txt
	Application Build Gradle Settings
	Modified PQCgenKAT_kem.c
	NewHope Sample Tables
	Additional NewHope Implementation Tables
	Acronyms
	Bibliography

