
Secure Hardware Implementation of Post Quantum

Cryptosystems

Mouna Nakkar

A Thesis

in

The Concordia Institute

for

Information Systems Engineering

Presented in Partial Fulfillment of the Requirements
for the Degree of

Master of Applied Sciene (Information Systems Engineering) at
Concordia University

Montreal, Quebec, Canada

December 2017

c©Mouna Nakkar, 2017

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Mouna Nakkar

Entitled: Secure Hardware Implementation of Post Quantum

Cryptosystems

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Sciene (Information Systems Engineering)

complies with the regulations of this University and meets the accepted standards with respect
to originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Abdessamad Ben Hamza

External Examiner
Dr. Khaled Galal

Examiner
Dr. Jamal Bentahar

Thesis Supervisor
Dr. Amr Youssef

Approved by
Dr. Chadi Assi, Graduate Program Director

December 6th,2017
Dr. Amir Asif, Dean
Faculty of Engineering and Computer Science

ii

Abstract
Secure Hardware Implementation of Post Quantum

Cryptosystems

Mouna Nakkar

Concordia University, 2017

Solving a hard mathematical problem is the security basis of all current cryptographic systems.

With the realization of a large scale quantum computer, hard mathematical problems such as

integer factorization and discrete logarithmic problems will be easily solved with special algo-

rithms implemented on such a computer. Indeed, only post-quantum cryptosystems which defy

quantum attacks will survive in the post-quantum era. Each newly proposed post-quantum cryp-

tosystem has to be scrutinized against all different types of attacks. Attacks can be classified

into mathematical cryptanalysis and side channel attacks. In this thesis, we propose secure hard-

ware implementations against side channel attacks for two of the most promising post-quantum

algorithms: the lattice-based public key cryptosystem, NTRU, and the multivariate public key

cryptosystem, Rainbow, against power analysis attacks and fault analysis attacks, respectively.

NTRUEncrypt is a family of public key cryptosystems that uses lattice-based cryptog-

raphy. It has been accepted as an IEEE P1363 standard and as an X9.98 Standard. In addition

to its small footprint compared to other number theory based public key systems, its resistance

to quantum attacks makes it a very attractive candidate for post quantum cryptosystems. On

the other hand, similar to other cryptographic schemes, unprotected hardware implementations

of NTRUEncrypt are susceptible to side channel attacks such as timing and power analysis. In

iii

this thesis, we present an FPGA implementation of NTRUEncrypt which is resistant to first

order differential power analysis (DPA) attacks. Our countermeasures are implemented at the

architecture level. In particular, we split the ciphertext into two randomly generated shares.

This guarantees that during the first step of the decryption process, the inputs to the convolution

modules, which are convoluted with the secret key polynomial, are uniformly chosen random

polynomials which are freshly generated for each convolution operation and are not under the

control of the attacker. The two shares are then processed in parallel without explicitly com-

bining them until the final stage of the decryption. Furthermore, during the final stage of the

decryption, we also split the used secret key polynomial into two randomly generated shares

which provides theoretical resistance against the considered class of power analysis attacks.

The proposed architecture is implemented using Altera Cyclone IV FPGA and simulated on

Quartus II in order to compare the non-masked architecture with the masked one. For the con-

sidered set of parameters, the area overhead of the protected implementation is about 60% while

the latency overhead is between 1.4% to 6.9%.

Multivariate Public Key Cryptosystems (MPKCs) are cryptographic schemes based on

the difficulty of solving a set of multivariate system of nonlinear equations over a finite field.

MPKCs are considered to be secure against quantum attacks. Rainbow, an MPKC signature

scheme, is among the leading MPKC candidates for post quantum cryptography. In this thesis,

we propose and compare two fault analysis-resistant implementations for the Rainbow signa-

ture scheme. The hardware platform for our implementations is Xilinx FPGA Virtex 7 family.

Our implementation for the Rainbow signature completes in 191 cycles using a 20ns clock pe-

riod which is an improvement over the previously reported implementations. The verification

completes in 141 cycles using the same clock period. The two proposed fault analysis-resistant

schemes offer different levels of protections and increase the area overhead by a factor of 33%

and 9%, respectively. The first protection scheme acquires a time overhead of about 72%, but

the second one does not have any time overhead.

iv

Acknowledgments

I would like to extend my thanks and gratitude to my thesis supervisor, Professor Amr Youssef

for his continuous guidance and support. He gave me an opportunity to work on cryptography

research and contribute to the field, and he was always available for discussions and feedback.

The research projects we conducted for this thesis gave me an in-depth knowledge and experi-

ence of the developing research in cryptography. These projects are not only an integral part for

the completion of this thesis, but also a published contribution in the field of cryptography.

I would also like to thank Concordia Institute for Information Systems Engineering and

all the faculty. The courses I took and the projects I conducted gave me breadth knowledge in the

field of Information Security. Indeed, the course requirements for the completion of the Master’s

degree of Information Systems Security, MASc, significantly broadened my knowledge in the

area and gave me an insight of the new research trends in the field.

Finally, I would like to thank all my colleagues in the Crytpo Laboratory, and all those

who made the completion of this thesis possible.

MOUNA NAKKAR

v

Table of Contents

Abstract iii

Acknowledgments v

List of Figures ix

List of Tables x

List of Acronyms xi

Chapter 1 Introduction 1

1.1 Motivation . 1

1.2 Our Contribution . 5

1.2.1 NTRU Countermeasure Against Power Analysis Attack 5

1.2.2 Improved Rainbow Implementation 5

1.2.3 Rainbow Countermeasure Against Fault Analysis Attacks 6

1.3 Thesis Organization . 6

Chapter 2 Background and Literature Review 7

2.1 Introduction . 7

2.2 Quantum Computers and Shor’s Algorithm 8

2.3 Post Quantum Algorithms . 9

2.3.1 Code-based Cryptosystems . 9

2.3.2 Hash-based Cryptosystems . 11

2.3.3 Lattice-based Cryptosystems . 13

vi

2.3.4 Multivariate Public Key Cryptosystems 15

2.3.5 Supersingular Elliptic Curve Isogeny Cryptography 19

2.4 Side Channel Attacks . 19

2.4.1 SCA methodologies . 20

2.4.2 Power Analysis Attacks . 21

2.4.3 Fault Analysis Attacks . 21

2.5 Countermeasures Against Side Channel Attacks 22

Chapter 3 NRTU Cryptosystem 23

3.1 Introduction . 23

3.1.1 Convolution of Polynomial Rings . 24

3.2 Description of the NTRUEncrypt cryptosystem 25

3.2.1 Definitions . 25

3.2.2 Key Generation . 26

3.2.3 Encryption . 27

3.2.4 Decryption . 27

3.2.5 Parameter Selection, Security Levels, and Optimization 28

3.3 Related Work . 29

3.4 Proposed Countermeasures . 30

3.5 Proposed Decryption Architecture . 31

3.6 Results and Discussion . 35

Chapter 4 Rainbow Signature Scheme 39

4.1 Introduction . 39

4.1.1 Definitions . 39

4.1.2 Oil-Vinegar . 39

4.2 Overview of Rainbow Scheme . 40

4.3 Related Work . 42

4.4 Hardware Implementation of Rainbow . 43

4.4.1 Improved Architecture . 44

4.4.2 Signature Process . 44

vii

4.4.3 Verification Process . 45

4.4.4 Paralleled Gauss-Jordan Elimination 45

4.4.5 Affine Linear Transformation . 48

4.5 Proposed Fault Analysis Countermeasures . 49

4.6 Results . 50

Chapter 5 Conclusions 53

5.1 Summary and Conclusions . 53

5.2 Future Work . 54

Bibliography 56

viii

List of Figures

2.1 Code-based Public Key Encryption/Decryption 10

2.2 Merkle Hash Tree . 12

2.3 A Two-Dimensional Lattice . 14

2.4 Public and Private Key Construction for MPKCs Encryption/Signature 17

3.1 Top level view of the proposed masking scheme 33

3.2 Circuit for evaluating f ∗ e mod q . 36

3.3 Circuit for evaluating the convolution multiplication Fp ∗ b mod p 37

4.1 Top Level Rainbow Scheme . 43

4.2 Signature Block Diagram . 46

4.3 Verification Block Diagram . 47

4.4 Two Proposed Fault-resistant Schemes . 50

ix

List of Tables

3.2 Parameter set for NTRU [31] . 28

3.3 Decryption without masking . 36

3.4 Decryption with masking . 37

4.1 Private Keys (Secrets) of Rainbow . 45

4.2 Signature Comparison with Tang et al. [70] 51

4.3 Verification process Timings . 51

4.4 Number of slices and clock cycles for the fault-resistant implementations . . . 52

x

List of Acronyms

AES Advanced Encryption Standard

BF Big Filed

BLISS Bimodal Lattices Signature Scheme

CRT Chinese Remainder Theorem

DES Data Encryption Standard

DPA Differential Power Analysis

DSCA Differential Side Channel Attack

DH Diffie-Hellman

DSA Digital Signature Algorithm

DLP Discrete Logarithm Problem

DRAM Dynamic Random Access Memory

ECC Elliptic Curve Cryptosystem

EMA Electromagnetic Analysis

EC-DLP Elliptic Curve Discrete Logarithmic Problem

ET European Telecommunications

FPGA Field Programmable Gate Array

FLOPS Floating Point Operations Per Second

FSM Finite State Machine

GF Galois Field

HFE Hidden Field Equations

xi

HMC Hidden Monomial Cryptosystems

IFP Integer Factorization Problem

IETF Internet Engineering Task Force

IKE Internet Key Exchange

LWE Learning With Error

LFSR Linear Feedback Shift Register

LUT Look Up Table

MI Matsumoto-Imai

MSS Merkle Signature Scheme

MUX Multiplexer

MPKC Multivariate Public Key Cryptosystems

MQ Multivariate Quadratic polynomial

NIST National Institute of Standards & Technology

NSA National Security Agency

NTRU N-th Degree Truncated Polynomial Ring

NTRUEncrypt NTRU Encryption Algorithm

NTRUSign NTRU Digital Signature Scheme

NMR Nuclear Magnetic Resonance (NMR)

OV Oil-Vinegar

PQCRYTPO Post-Quantum Cryptography Group

RAM Random Access Memory

ROM Read Only Memory

Ring-LWE Ring-Learning With Error

RSA Rivest-Shamir-Adleman cryptosystem

SAFCRYPTO Secure Architectures of Future Emerging Cryptography

SSL Secure Socket Layer

SCA Side Channel Attack

xii

SSCA Simple Side Channel attack

SPA Simple Power Analysis

SRAM Static Random Access Memory

STS Stepwise Triangular System

TLS Transport Layer Security

UOV Unbalanced Oil-Vinegar

xiii

Chapter 1

Introduction

1.1 Motivation

Since the revolution of computers and the Internet, governments, financial institutes,

and private organizations, all shifted their services to computers with Internet based accesses.

Nowadays, most of the critical data and transactions are being accessed and transmitted over the

Internet or computer networks of some sort. Security of both stored and transmitted data has

been a concern since the early days of computer and Internet usage. Cybersecurity is the body

of technologies, processes and practices designed to protect networks, computers, programs

and data from attack, damage or unauthorized access. In early days, cybersecurity was the

concern of governments, financial institutes, and large organizations, but now it is the concern

of everyone who uses technology. The heart of cybersecurity is encryption where it provides

tools to change the form of transmitted or stored data. Cryptography is the study and practice of

securely communicating between two parties despite the presence of adversaries. Cryptography

and its related systems can provide several security services including privacy, confidentiality,

authentication, integrity, and nonrepudiation.

There are two types of cryptographic systems available, symmetric key cryptosystems

and asymmetric key cryptosystems. A symmetric crytposystem uses a key k chosen from a

1

space (i.e., a set) of possible keys K to encrypt a plaintext message m chosen from a space of

possible messages M , and the result of the encryption process is a ciphertext c belonging to a

space of possible ciphertexts C [30]. The key k is exchanged between two parties in a secure

channel, and it is used for both the encryption and the decryption processes. Asymmetric key

cryptography (also referred to as public key cryptography) is a class of algorithms which uses

a pair key for encryption and decryption: a public key and a private key. In asymmetric key

cryptosystems, we also have the same key space K, message space M , and ciphertext space C.

However, the key k is really a pair of private key and public key, k = (kpriv, kpub). The public

key is used to encrypt the data and the private key is used to decrypt it. Public key cryptography,

unlike symmetric key cryptography, allows communicating parties to establish a shared secret

without a secret channel, where this fundamental difference became a very attractive feature to

many communication protocols such as Internet Key Exchange (IKE) and TLS. In fact, since

its invention in late 1970s, public key cryptography has been an integral part of the current

communication networks. The class of asymmetric algorithms includes encryption and digital

signature where the latter has proven to be one of the most important applications in cryptog-

raphy. For example, the current SSL/TLS protocol relies on both public key cryptography and

digital signature for authenticating websites.

The most widely used asymmetric algorithms are RSA [63], ElGamal [25], Elliptic

Curve Cryptosystems (ECC) [40], and Deffie-Hellman (DH) [21]. RSA and DH, for exam-

ple, are heavily used in all versions of SSL/TLS network and communication protocols. These

algorithms and other current algorithms are considered to be secure, because they rely on the

difficulty of solving a hard mathematical problem. In fact, the security of RSA, DH, and ECC

stems from the difficulty of solving the Integer Factorization Problem (IFP), the Discrete Log-

arithmic Problem (DLP), and the Elliptic Curve Discrete Logarithmic Problem (EC-DLP), re-

spectively. Indeed, a brute-force attack is always a solution for breaking any algorithm, but a

large key size is almost impossible to break.

The situation is likely to change in the future, i.e. with the emergence of quantum com-

2

puting technology. Quantum computing, unlike digital computing, uses physical phenomenon,

such as superposition and entanglement, directly to perform operations on data. The research

in quantum computing is still in its infancy stage; just recently in May 2017, IBM unveiled a

17-qubit quantum computer [33]. Governments and research institutes are also supporting the

development of such systems due to its high efficiency projections. In 1997, Shor [67] pro-

posed a quantum computer algorithm that can efficiently find the prime factors of an integer

N . Therefore, if a large scale quantum computer is constructed and Shor’s algorithm is imple-

mented, then almost all the current cyprtosystems such as RSA, ECC, and DH will be broken.

In fact, breaking current cryptosystems will be faster than the speed of their encryption. Indeed,

there is a need for secure quantum algorithms for the next era of quantum computing. In the

academic world, studies of such cryptosystems and algorithms are referred to as post-quantum

crytpography [6].

Even though quantum computing research is still in its infancy and a full scale quantum

computing might be far off, the need for post-quantum and digital signatures standardization

is exponentially rising. This is due to the fact that if a quantum computer is ever built, all

current communication will be insecure which is a catastrophic scenario for the IT security.

Furthermore, attackers can save the current encrypted sensitive data for such days and then

break previously secured communications. Therefore, starting to secure communication with

post-quantum cryptosystems now is important to prevent any information leakage to sensitive

encrypted data in the future. In addition, every new technology requires time to update and

upgrade all its systems around the world. We have seen and experienced attacks performed due

to the existence of older outdated systems. On the other hand, the projection for the quantum

computing era is a mere 15 years from now which is a short time [15]. Thus, the need for

post-quantum standardization is a pressing issue to all Internet users and organizations such

as National Institute of Standards and Technology (NIST), Internet Engineering Task Force

(IETF), and the European Telecommunications (ET). In fact, in August 2015, NSA announced

its plan to transition to quantum-computing algorithms in the near future [17].

3

The post-quantum research is mainly classified into lattice-based cryptography, mul-

tivariate cryptography, hash-based cryptography, code-based cryptography, and supersingular

elliptic curve isogeny cryptography. The following chapter will give a brief explanation of the

most popular approaches. However, our focus in this thesis is based on proposing secure hard-

ware implementation for a lattice-based cryptography, NTRU [31,32], and a multivariate public

key cryptography signature, Rainbow [23].

The attacks on cryptosystems, including post quantum cryptosystems, can be classified

into three different categories: brute-force, mathematical cryptanalysis, and side channel at-

tacks. Brute-force is when the attacker exhaustively tries all possible combinations of private

keys to break the encryption. This has proven to be infeasible for large key sizes n such as 128

and 256 bits. This is due to the fact that a key with n bits can assume 2n different combina-

tions. Assuming the use of a supercomputer that can execute 10.51 pentaflops, i.e. 10.51× 1015

Floating Point Operations Per Second (FLOPS), a key size of 2128 requires 1.02 × 1018 years

to crack [2]. Indeed, this is a very long time; it is more than the age of the universe. Similarly,

in mathematical cryptanalysis the attacker tries to analyze the algorithm to find a mathematical

weakness to break through it. In traditional mathematical cryptanalysis, the attacker chooses

the input-output pairs of the cryptographic algorithm and exploits the inner structure of the

cipher to reveal the private key. Both brute-force and mathematical cryptanalysis study the the-

oretical weakness in the algorithm. Side channel attacks (SCAs), on the other hand, are the

types of attacks that target the hardware or software implementation of the cryptosystem that

inadvertently leak data. Specifically, it relies on collecting information from the physical im-

plementation of the algorithm during execution time [42]. Collecting the timing information,

power consumption, electromagnetic leaks, or acoustic information during execution time and

analyzing it to break into the system are all examples of side channel attacks. Many algorithms

are theoretically robust and hard to break, but their implementations can fail dramatically to

side channel attacks. For example, Data Encryption Standard (DES) and Advanced Encryption

Standard (AES) algorithms were broken by differential power analysis [42] and cache-timing

4

analysis [57], respectively. Similarly, asymmetric key cryptography can be target to side channel

attacks as well. The SCA techniques applied to symmetric cryptosystems can also be applied to

asymmetric public key cryptosystems such as RSA [41].

In this thesis, we propose secure hardware implementations for both NTRUEncrypt, a

lattice-based cryptosystem, and Rainbow, a multivariate cryptosystem, against power analysis

side channel attacks and general fault attacks, respectively.

1.2 Our Contribution

We present three major contributions. The first is a newly proposed countermeasure for

NTRU encryption system against power analysis attacks. The second is an improved implemen-

tation of Rainbow signature scheme. The third contribution is a proposal of two different fault

analysis attack countermeasures for Rainbow signature scheme. Some of the results presented

in this thesis are published in [53].

1.2.1 NTRU Countermeasure Against Power Analysis Attack

Unprotected implementations of NTRUEncrypt are vulnerable to side channel attacks

[41]. In this class of attacks, analyzing information inferred from running the algorithm on a

given hardware, such as timing, power consumption, or electromagnetic emanation, can leak

information about the secret key. In what follows, we present an FPGA implementation of

NTRUEncrypt which is resistant to first order differential power analysis (DPA) attacks.

1.2.2 Improved Rainbow Implementation

We present an efficient high speed implementation of Rainbow signature and verifica-

tion. Up to the author’s knowledge, hardware implementations of the verification algorithm

have not been reported in the literature before. Our signature implementation completes in 191

cycles which is an improvement over previously reported implementations [4, 10, 70] while our

5

verification process completes in 141 cycles. The techniques utilized in the signature imple-

mentations are the same as in the verification implementations which are based on schemes

previously proposed by Bogdanov et al. and Tang et al. [10,70]. We improve the throughput by

applying high level parallelism in both solving the Gaussian elimination and performing matrix

multiplications.

1.2.3 Rainbow Countermeasure Against Fault Analysis Attacks

Rainbow survived a range of attacks; however, Hashimoto et al. [29] presented a general

fault attack that can retrieve parts of the private keys. We propose two approaches for detecting

the changes in the private keys of different Rainbow layers. We compare the two proposed

schemes and make recommendation to use one of the them to prevent Hashimoto et al. fault

analysis attack.

1.3 Thesis Organization

This thesis is organized as follow. Section II provides a summary for the background

information used in this thesis where some of the post-quantum cyrptosystems are briefly visited

and explained. In addition, the concept of side channel attacks as well as relevant examples are

presented. In Section III, we review the algorithm description of NTRUEncrypt and present a

hardware implementation that resists first order power analysis attacks on the Altera Cyclone

IV FPGA chip. We show that our new hardware architecture protects against first order DPA

attacks. In Section IV, we move our focus to Rainbow signature scheme where we present

our hardware implementation of Rainbow as well as the proposed schemes for preventing fault

attack described in [29]. Our hardware implementation on the Xilinx FPGA Virtex 7 family

shows an improvement over previously reported work. Finally, in Section V, we present the

conclusion and future work.

6

Chapter 2

Background and Literature Review

2.1 Introduction

This section introduces relevant mathematical and background information for the secure

hardware implementation of the post-quantum cryptosystems proposed in this thesis: NTRUEn-

crypt and Rainbow signature scheme. In the first part of this section, we briefly review research

on post-quantum cryptosystems. In the second part, we present the currently used methods to

analyze the security of post-quantum cryptosystems which include mathematical cryptanalysis

and side channel attacks.

Perhaps one of the most important concepts to consider in building or proposing a new

cryptosystem is time complexity. It may not be obvious or relevant at first sight, but time

complexity which is generally referred to as running time is an important security parameter for

any algorithm. Expressed by Big O notation, running time is the amount of time taken for an

algorithm to run as a function of the length of the string representing the input. It is estimated by

counting the number of operations performed by an algorithm [68, 69]. Generally, complexity

can be classified as constant, linear, logarithmic, polynomial, and exponential. Perhaps, the

most promptly used terms are the last two.

An algorithm is said to be executed in polynomial time if the number of steps required

7

to solve the algorithm for a given input is O(nk) where k is a non-negative integer and n is the

complexity of the input. The algorithms in this category are accepted to be efficient. On the

other hand, an algorithm is said to be solvable in exponential time if T (n) is bounded byO(2nk
)

for some constant k; an example for an equation of exponential time is 2n.

2.2 Quantum Computers and Shor’s Algorithm

In 1997, Shor [67] proposed a quantum computing algorithm for solving the integer fac-

torization problem and the discrete logarithm problem in polynomial time. The algorithm was a

breakthrough and a motivator at the same time for both the quantum computing community and

the cryptography community. On one hand, researchers were motivated to accelerate the build-

ing of a quantum computer. In 2017, IBM unveiled a 17-qubit quantum computer through the

IBM Quantum Computing project [33]. On the other hand, other researches focused on demon-

strating Shor’s algorithm on the available quantum computer. For example, in 2001, Lieven et

al. [72] were able to factor a small number, 15, into 3 and 5 on the Nuclear Magnetic Resonance

(NMR) quantum computer implementation of 7-qubit. Later in 2012 [48], a larger number,

21, was factored using qubit recycling. More importantly, the security community realized that

breaking the current cryptosystems such as RSA, ElGamel, DH, and ECC is inevitable in the

quantum computing era. This realization led to the active developments of post-quantum cryp-

tosystems which focus on resisting quantum attacks; i.e. Shor’s algorithm executing on a large

scale quantum computer. The post-quantum research development is now heavily endorsed and

supported by governments, institutes, and organizations such as the European Commission and

the Japanese Society for the Promotion of Science to projects such as the SAFECRYPTO [64],

PQCRYPTO [6], CryptoMathCrest [20], and others.

8

2.3 Post Quantum Algorithms

Post quantum cryptosystems can be categorized as lattice-based cryptosystems, multi-

variate cryptosystems, hash-based crytpsystems, code based cryptosystems and isogenous su-

persingular elliptic curves-based cryptosystems [6,22]. The most promising post-quantum algo-

rithms include lattice-based cryptosystems, multivariate cryptosystems, code-based cryptosys-

tems, and hash-based cryptosystems. Thus, in this section we briefly look at the most promising

ones and give examples of each one of them.

2.3.1 Code-based Cryptosystems

This type of cryptography is related to algorithms that rely on error-correcting codes.

The first code-based cryptosystem was the McEliece algorithm developed in 1978 [50] using

random Goppa Code [5]. Though it did not gain acceptance in the cryptography community

at that time because of its large key size, it is now surfacing as a good candidate for quantum

computing era because of its resistance to Shor’s algorithm. In 2015, McEliece’s algorithm

was recommend by the Post-Quantum Cryptography (PQCRYPTO) Group sponsored by the

European Commission as a candidate for long term protection against quantum attacks.

The security of the McEliece’s algorithm is based on the hardness of decoding a general

linear code. Similar to any asymmetric cryptosystem, McEliece’s algorithm has a private key

and public key where the private key is generated from an error-correcting code with the ability

of correcting t errors. The public key is selected from the private key by disguising the selected

code as a general linear code. Figure 2.1 shows the encryption and decryption processes of

McEliece’s original code-based public key cryptosystem. The plaintext goes through a linear

expansion where a generator matrix representing the public key allows everyone to encrypt. The

encryption process uses a carefully selected binary Goppa code word with randomly chosen

errors to produce a ciphertext. The decryption process is the reverse of the encryption process

where only a legitimate user who knows the trapdoor can remove the errors and recover the

9

Plaintext

Code Word

Ciphertext

Linear

expansion

Add

errors

Invert

expansion

Remove

errors

encryption

decryption

Public, reversible

Public

Public, one-way

Trapdoor

Figure 2.1: Code-based Public Key Encryption/Decryption

original text. The trapdoor in this case allows the legitimate receiver to have a polynomial

time decoding algorithm which enables the removal of previously added noise and recovery

of the plaintext. The security basis of McEliece revolves around two facts: recovering the

decoding polynomial is considered a hard problem and the public key generator matrix is hardly

distinguishable from any random matrix [65].

Niederreiter cryptosystem [56] is a spin-off from the McEliece cryptosystem where both

are considered to have the same level of security [65]. The advantages of using Niederre-

iter scheme is efficiency where its encryption is much faster than McEliece’s algorithm [65].

In addition, it can be used to construct a digital signature and zero-knowledge authentication

protocol. However, the signature scheme is complex, uses large public keys, and not scale-

10

able [65]. Though the security of McEliece’s algorithm is well understood where it resisted

several cryptoanalysis for a long time, it is considered impractical. This is due to its complexity

and its large public key size that is in the order of megabytes. The digital signature scheme is

also considered impractical. However, researchers are constantly proposing enhancements and

modifications to the original McEliece’s and Niederreiter’s to address issues such as complex-

ity and efficiency. In 2008, Berstien et al. published an attack as well as a fix to prevent this

attack [8] where they showed that security of the original proposed algorithm can be broken

in 1, 400 days with a single 2.4GHz Core 2 Quad CPU. Thus, they proposed new parameters

for both McEliece and Niederreiter’s schemes for added security. Other attacks have failed and

the McEliece code-based cryptosystem is still considered a strong candidate for post-quantum

cryptography.

2.3.2 Hash-based Cryptosystems

From its name, hash-based cryptography is based on the security of hash functions, and

thus far it is limited only to the digital signature schemes. The first hash-based signature scheme

is the Merkle Signature Scheme (MSS) proposed in the late 1970s by Merkle [51, 52]. It has

been developed significantly since then, but the original idea is based on one-time signature

schemes and hash-trees. Specifically, many one-time signature key pairs are combined into a

tree like structure. The hash-tree is a hierarchical data structure that is composed of leaf nodes.

Every leaf node is associated with data block, and the non-leaf nodes are the hashes of the leaf

node as depicted in Figure 2.2. The hash values are all concatenated to form a tree structure

where the final signature is the repeated hashes of the sub-nodes. A one-time signature scheme

is a stand-alone miniature digital signature where it can be used only once for a given key pair.

Its security relies on the security of the hash function it is using. This one-time signature scheme

is used as the template of hash-based schemes, and the structure of hash-based schemes remains

the same with the varying hash functions. Merkle’s original scheme uses a large number of one-

time signature key pairs. This is because the use of only one-time signature scheme requires

11

Data Blocks-

L1

Data Blocks-

L2

Data Blocks-

L3

Data Blocks-

L4

Hash L1 Hash L2 Hash L3 Hash L4

Hash {Hash

L1, Hash L2}

Hash {Hash

L3, Hash L4}

Hash {Hash {Hash L1, Hash L2},

Hash {Hash L3, Hash L4}}

Figure 2.2: Merkle Hash Tree

a new key pair for each new signature which is impractical. Thus, Merkle combines a large

number of one-time signature key pairs into one single structure where the public and private

keys are constructed from these many key pairs.

Merkle’s signature has been accepted by the community to be a good alternative to the

traditional signature schemes such as RSA Signature and Digital Signature Algorithm (DSA).

The security advantage of the Merkle’s Signature is its resistance to quantum attacks, but the

scheme depends highly on the security of the hash function it uses.

Lamprot’s signature is another hash-based cryptosystem that combines a one-time signa-

ture with Merkle’s hash-tree structure for multiple and more efficient signing scheme [43]. Lam-

port’s signature is built from the cryptographic one-way hash function. Similar to the Merkle’s

12

signature, Lamport’s signature is believed to withstand quantum attacks. A more recent hash-

based cryptosystems are the XMSS [14] and SPHINCS [7] schemes.

2.3.3 Lattice-based Cryptosystems

Lattice-based cryptosystem is the generic term for cyrptosystems that involves lattices

in its construction. Algorithms belong to the lattice-based cryptosystems have proved to be

good candidates for both classical and post-quantum computer era. The security of such sys-

tems stems from the assumption that many lattice-based construction are based on certain well-

studied computational lattice problems that cannot be solved efficiently, even on a quantum

computer. In addition, the hardware implementations of lattice-based systems tend to be faster

and more efficient than other post-quantum cryptosystems. Types of this cryptosystems in-

clude Learning With Error (LWE) [61], Ring-Learning With Error (Ring-LWE) [47], NTRU-

Encrypt [31, 32], NTRUSign [54, 55], homomorphic encryption schemes [12, 26], and Bimodal

Lattices Signature Scheme (BLISS) [24]. Among all the lattice-based cryptographic systems,

NTRUEncrypt has proved to be the most practical and efficient to implement. In addition, its

security has been studied for years without any feasible attack. To appreciate the security prim-

itives of NTRUEncrypt, the following subsections will look into lattices as well as their hard

problems.

A vector space, V is a subset of Rm with the property that

α1v1 + α2v2 ∈ V for all v1,v2 ∈ V and all α1, α2 ∈ R (2.1)

Equivalently, a vector space is a subset of Rm that is closed under addition and under scalar

multiplication by elements of R [31]. A lattice is similar in definition to a vector space except

that the multiplication is restricted to an integer. A lattice L is a discrete subset of the real vector

space Rm. Every lattice in Rm can be generated from a basis for the vector space by forming

all linear combinations with integer coefficients. One can imagine an Euclidean space, where a

13

Figure 2.3: A Two-Dimensional Lattice

random set of linearly independent vectors is chosen, and the lattice consists of all points that

are integer linear combinations of these vectors.

Formally [30], let v1, · · · , vn ∈ Rm be a set of linearly independent vectors. The lattice

L generated by v1, · · · , vn is the set of linear combinations of v1, · · · , vn with coefficients in Z,

L = {a1v1 + a2v2 + · · ·+ anvn : a1, a2, · · · , an ∈ Z} (2.2)

A basis for L is any set of independent vectors that generates L where any two sets have

the same number of elements. The dimension of L is the number of vectors in a basis for L. A

lattice has many bases. Two possible bases, {v1, v2} and {v′1, v′2} for a two dimensional lattice

are shown in Figure 2.3. A lattice is integral if it is contained in n-dimensional integer vector

space Zn and it is called rational if it is contained in Qn, where Q denote the set of rational

numbers . Zn is a simple example of a lattice in Rn.

14

Hard Problems in Lattices

The two fundamental hard problems in lattice-based cryptography are the Shortest Vector

Problems (SVP) and the Closest Vector Problems (CVP). The latter problem is finding a lattice

point closest to the specified target point with respect to a lattice basis. SVP, on the other hand,

is finding the shortest vector in a lattice given an arbitrary basis with very long vectors in very

large dimensions. Both of these problems are considered hard mathematical problems which

are the security grounds of lattice-based cryptography.

Hoffstien et al. stated that [30], given a vector w ∈ Rm that is not in L, CVP problem

is to find a vector v ∈ L that is closest to w, i.e., to find a vector v ∈ L that minimizes the

Euclidean norm ‖w − v‖. NTRUEncrypt is based on the CVP where the encryption is the task

of selecting a target point and decryption is the task of mapping this target point back to the

closet lattice point.

2.3.4 Multivariate Public Key Cryptosystems

The term Multivariate Public Key Cryptosystems is the generic term for cryptographic

systems based on the primitive of multivariate polynomials over a finite field, K. Algorithms

of this type proved to be very good candidates for the post-quantum era. Though this type of

cryptosystem includes both asymmetric public encryption systems and signature schemes, it is

more successful with the latter due to the output size of the signature. Primarily, the multivariate

signature schemes provide the shortest signature among other post-quantum signature schemes.

MPKC schemes were first introduced by Matsumoto et al. [49] and Tsujii et al. [71] in the

mid 1980s. Although both these systems were broken by Patarin et al. [59] and Hasegawa

et al., respectively, the idea was the foundation of this class of cryptography. Later on, several

systems were developed such as the Hidden Monomial Cryptosystems (HMC) and Hidden Field

Equations (HFE) [60], and Rainbow [23].

15

Construction of MPKCs

The security aspect of MPKCs stems from the difficulty of solving a set of multivari-

ate equations over a finite field, K. If the set of polynomials has a degree of two, the system is

referred to as multivariate quadratics. For efficiency reasons, most of the described MPKCs sys-

tems are quadratic polynomials in several variables over a small finite field, K with q equations

as shown in the following set of equations.

p(1)(x1, · · · , xn) =
∑n

i=1 p
(1)
ij xi · xj +

∑n
i=1 p

(1)
i xi + p

(1)
0 ,

p(2)(x1, · · · , xn) =
∑n

i=1 p
(2)
ij xi · xj +

∑n
i=1 p

(2)
i xi + p

(2)
0 ,

· · · ,

p(m)(x1, · · · , xn) =
∑n

i=1 p
(m)
ij xi · xj +

∑n
i=1 p

(m)
i xi + p

(m)
0 .

(2.3)

Given the m quadratic polynomials p(1)(x), · · · , p(m)(x) as shown in Equation 2.3 in the n

variables x1, · · · , xn, the multivariate quadratic polynomial (MQ) problem is the task of finding

a vector x̂ = (x̂1, · · · , x̂n) such that p(1)(x̂) = · · · = p(m)(x̂) = 0. This task is considered the

hard problem of the MPKCs, and thus this is the security basis of such systems.

The public key in MPKCs is given by simple quadratic map F : kn → km called the

central map which represents a map from kn field to km field. To hide the mapping structure in

the central map, F is placed between two linear transformations, L1 and L2 in the kn and km

fields, respectively. The final public key is the composed map of P = L1 ◦ F ◦ L2. The private

key, on the other hand, consists of the three maps L1, F , and L2. Incidentally, this process is

standard for both the encryption and the signature scheme as shown in Figure 2.4. To encrypt

a message z ∈ kn, the public key is evaluated through the mapping process P and generates

a ciphertext w = P (z) ∈ km. To decrypt the generated ciphertext, w ∈ kn, the mapping

process is reversed where the message can be retrieved by the map z = L−12 ◦ F−1 ◦ L−11 .

Here, evaluating F−1(x) requires finding a solution of the polynomials under the central map.

Usually, this is equivalent to finding the solution of the set of polynomials by using Gaussian

elimination process as shown in Chapter 4 for Rainbow signature. For the encryption scheme,

16

Decryption/signature generation

Encryption/signature verification

Figure 2.4: Public and Private Key Construction for MPKCs Encryption/Signature

m is chosen to be greater than or equal to n, m ≥ n, to ensure that the decryption process

outputs a unique plaintext, z ∈ kn [22].

The signature scheme is similar in principle to the encryption scheme. They both have

the same central map; however, the parameters m and n are chosen such that m ≤ n to ensure

that one can sign any document [22]. To generate a signature, the message, d, is hashed through

a secure hash function such that w = H(d) ∈ km. The hash is then fed into the reverse mapping

process as shown in Figure 2.4. Similar to the encryption process, the signed message is z ∈ kn.

To verify the signature and check for authenticity, the hash of the message, d, is computed to

get w = H(d) ∈ km, then the public key is used to compute w′ = P (z) ∈ km. If w′ = w holds,

then the signature is valid and thus accepted; otherwise, it is rejected.

17

Classifications of MPKCs

MPKCs algorithms are classified into four different classes according to their central

map construction: Big Filed (BF) Matsumoto-Imai Scheme (MI) [49], Hidden Field Equations

(HFE) [60], Stepwise Triangular Systems (STS) [66, 71], and Unbalanced Oil and Vinegar sys-

tems (UOV) [23, 38]. In the Big Field type, the central map, F , is given by the extension of

the original field, k. Let N be a divisor of gcd(n,m) and K an algebraic extension of k with

[K; k] = N . The central map F is given by F = ψ ◦ F ◦ φ, where φ : kn → Kn/N and

ψ : Km/N → km are the one-to-one maps and F : Kn/N → Km/N is a map given by polyno-

mials over K as shown in Equation 2.4.

F : kn
φ−→ Kn/N F−→ Km/N ψ−→ km (2.4)

The Big Field scheme was first developed by Matsumoto-Imai in the late 1980s [49], and it

was considered a breakthrough in the filed of MPKCs. MI was broken by Patarin et al. [59];

however, he later developed an improvement of the original MI scheme and called it Hidden

Field Equation (HFE) where the mapping function F is computed by the Berlekamp algorithm.

Kipnis-Shamir [39] developed an attack to recover the two linear transformation keys by the

MinRank attacks [28]. The STS types, on the other hand, were developed independently for

both encryption and signature schemes by Tsujii [71] and Shamir [66]. For these two types,

attacks to recover part of the key were proposed by [19] and others. The Unbalanced Oil-

Vinegar (UOV) signature scheme [38] from the Oil-Vinegar (OV) family has sustained attacks

for 15 to 20 years. The Oil-Vinegar family can be classified as balanced Oil-Vinegar, unbalanced

Oil-Vinegar, and Rainbow. In the next chapter, a detailed explanation of the Rainbow signature

scheme is presented.

18

2.3.5 Supersingular Elliptic Curve Isogeny Cryptography

This type of cryptography is considered fairly new; it was introduced only 10 years ago.

Although it has not been standardized yet, it is considered a good candidate for post-quantum

computing era. This type is now being proposed in many crytpographic protocols, signature

schemes, and key exchange methods [34, 44]. It is based on replacing the widely used Diffie-

Hellman and elliptic curve Diffie-Hellman key exchange methods with one that uses properties

of supersingular elliptic curves to resist quantum attacks. It also claims to offer forward secrecy

which is an important property for securing communication protocols. Forward secrecy protects

past session keys from being compromised if the long term key got compromised.

2.4 Side Channel Attacks

The security analysis for each proposed post-quantum algorithm is critical to its sur-

vival. Each proposed algorithm is studied and analyzed for weaknesses and vulnerabilities.

Unlike mathematical cryptanalysis, SCAs are the types of attacks concerned with finding vul-

nerabilities in the implementation of the algorithm rather than finding theoretical weaknesses in

the algorithm itself. Insecure hardware implementation of cryptographic algorithms has proven

to be a critical issue and a security threat. If algorithms are not implemented carefully, they

can be susceptible to SCAs. This is because SCA specifically analyzes the physical leaked in-

formation such as sound, power consumed, electromagnetic, and other physical phenomenon

occurring during run-time. Strong algorithms such as AES and DES have been broken by

SCA [16, 41, 42]. With the deployment of cryptographic algorithms within embedded devices,

SCAs are becoming essential part of the security measure for the implementation of any algo-

rithm. Cryptography is no longer limited to communication protocols; instead, cryptography is

now widely used in TV set-top boxes, cellar phones, bank cards, and prepaid cards which are

easily accessible to attackers. Insecure implementations can be as damaging as weak cryptosys-

tems.

19

2.4.1 SCA methodologies

In order to carry out a side channel attack, the attacker must be able to control the com-

putation process, access the crytographic module, and analyze the data. In turn, there are two

ways to control the computation process in SCA where the attacker can be active or passive.

In passive attacks, the attacker does not interfere with the computation process. The attacker

is assumed to be able to collect the needed information from the module without interfering in

its behavior. In active attacks, on the other hand, it is assumed that the attacker can affect the

behavior of the targeted module.

The task of accessing the module can be classified into three categories invasive, semi-

invasive, and non-invasive [1]. Invasive attacks require a direct access to the internals of the

device by using proper probing equipment. This will allow the attacker to monitor data buses or

internal registers. In contrast, with the semi-invasive attacks, the attacker does not need to have

a direct access to internal nodes; instead, the attacker changes the contents of internal nodes

such as memory and or internal registers by inducing a fault using external equipment such as

ionized laser beam. The adversary then monitors the output based on this change and collects

its output to recover the secret key or parts of it. Non-invasive attacks require no interference

of the physical device at all. In these types of attacks, the adversary takes advantage of the

unintentionally leaked information during execution time. An example for this non-invasive is

the timing attack where the adversary takes advantage of the time taken to execute the algorithm

to retrieve information about the secret key.

There are two ways to analyze the sampled data to fully recover the private key or parts

of it, and they are Simple Side Channel attack (SSCA) and Differential Side Channel Attack

(DSCA). In SSCA, the output is analyzed directly according to a single trace of the leaked data

in order to retrieve the full private key or parts of it. In DSCA, on the other hand, the attacker

collects numerous traces of leaked data and statistically analyze them. The attacker exploits the

correlation between these collected traces to retrieve the full private key or parts of it.

There are several types of implementation dependent attacks considered in literature as

20

mentioned above. SCAs are based on analyzing physical properties such as time, time-cached,

electromagnetic properties, power consumption, acoustic effects, and others. In this thesis, we

focus on Differential Power Analysis (DPA) attacks for NRTUEncrypt system. We also focus

on fault analysis attacks for Rainbow signature scheme.

2.4.2 Power Analysis Attacks

Power analysis attacks [41] are categorized into Simple Power Analysis (SPA), Differ-

ential Power Analysis (DPA) which can also be sub-categorized into first order and higher order

DPA, and Correlation Power Analysis (CPA) [13]. SPA leaks information about operations be-

ing executed by observing a single power trace. On the other hand, DPA and CPA require the

collection of a large number of traces using the same key for statistical analysis. CPA uses

similar techniques to DPA, but with more refined statistical analysis. With DPA, after collecting

a large number of power traces with the same key, the attacker makes a guess on bits of the

secret key. Knowing the ciphertext and the algorithm, the attacker computes values of internal

registers pertaining to this guess. The power traces are then partitioned based on the computed

values and the guess is accepted if there is a significant statistical difference between partitioned

traces and original ones.

2.4.3 Fault Analysis Attacks

Fault analysis attacks are physical attacks where the attacker is assumed to be able to

inject faults in the targeted device and analyze the outcome of the faulty computations in order

to retrieve partial or full information about the private key. The faults in this class of attacks are

injected by subjecting the device to unexpected environmental conditions such as high temper-

ature, voltage surge above the operating range, induced magnetic field, excessive clocking, or

ionized radiation. The induced conditions are assumed to influence the processed data and cor-

rupt the output. This incorrect results and data corruption may allow the attacker to gain some

information about the private key or gain information about internal status of the device. Fault

21

analysis attacks were first introduced by Boneh et al. [11] where they showed that extracting

part of the RSA decryption/signing keys can be easily done by inducing errors in the Chinese

Remainder Theorem (CRT) implementation of the RSA algorithm and observing its faulty out-

puts. Other research followed the same concept to break cryptosystems such as NTRUEncrypt

and others (e.g., see [35], [18], [36]).

2.5 Countermeasures Against Side Channel Attacks

Perhaps the best countermeasures against side channel attacks is building secure hard-

ware devices especially for the SCAs that rely on hardware implementations such as differential

power analysis and fault analysis. For these two types, a secure hardware architecture is suf-

ficient for protecting the hardware and not leaking information during execution time. In this

thesis, we propose a secure hardware implementation for NRTUEncrypt against DPA where we

split the ciphertext into two shares and process them in parallel. The internal processed data

are always coupled with randomly generated polynomials which makes it hard to trace the data

or internal states of the registers. This is because the consumed power is paired with randomly

freshly generated shares in each decryption. For the Rainbow signature, we propose two solu-

tions to detect changes in the private keys. If any change is detected, the signature process is

halted.

22

Chapter 3

NRTU Cryptosystem

3.1 Introduction

Since its introduction in 1996, NTRUEncrypt (also known as NTRU), has proven to be a

very efficient public key cryptosystem. NTRUEncrypt is an asymmetric public key crytposys-

tem, and it provides faster and lighter hardware implementations compared to the traditional

number theory based public key cryptosystems such as Diffie-Hellman, RSA, and elliptic curve

based cryptosystems. The efficiency of NTRUEncrypt is due to the fact that the most complex

operation in NTRU is the polynomial multiplication which is faster than the other cryptosystems

such as RSA, Deffie-Hellman, ElGamal, and elliptic curve. On the other hand, the security of

NTRU is based on the difficulty of finding the shortest vector problem in a lattice and stems

from the interaction of polynomial systems with the independence of the reduction modulus

of two numbers p and q [31, 32]. The encryption process is based on polynomial ring arith-

metic modulo two primes (integer or polynomial) while the decryption process is the reverse

of the encryption process using an elementary probability theory with a chance of failure. In

addition to its small footprint compared to other number theory based public key systems, its

resistance to quantum attacks based on Shor’s algorithm makes it a very attractive candidate for

post quantum cryptosystems.

23

3.1.1 Convolution of Polynomial Rings

Rings are algebraic objects that have two operations, addition and multiplication, which

are connected through the distributive law. NTRUEncrypt is based on the convolution polyno-

mial rings with degree ofN−1 and integer coefficients. The basic two operations for NTRUEn-

crypt are addition and multiplication. Addition is a straightforward task of adding two polyno-

mials where the coefficients of a similar degree are added together as shown in Equation 3.1. In

the addition operation, the resultant polynomial will remain within N − 1 degree. However, the

multiplication operation over a polynomial rings is different. The number of coefficients will

be doubled because new terms, with degree higher than N-1, are created. The modulo operation

on this intermediate result will reduce all XN terms to 1 respecting the XN ≡ 1 modulo rule.

Higher degree terms will reduce; for example, XN+1 will reduce to X , XN+2 will reduce to

X2, and so forth. As for the coefficients, the general rule is that the kth coefficient ck is the dot

product of the coefficients a and b where the coefficients of b are reversed and rotated k + 1

coefficients [31] as shown in the following set of equations.

a+ b = (a0 + b0) + (a1 + b1)X + · · ·+ (aN−1 + bN−1)X
N−1

a ∗ b = c0 + c1X + c2X
2 + · · ·+ cN−2X

N−2 + cN−1X
N−1

ck = a0bk + a1bk−1 + · · ·+ akb0 + ak+1bN−1 + ak+2bN−2 + · · ·+ aN−1bk+1

(3.1)

The multiplication over polynomial ring is referred to NTRU cyclic convolution over

polynomial ring and is denoted by Z[X]/XN − 1 where Z[X] represents a polynomial ring

with integer coefficients and the division of XN − 1 represents the reduction of the polynomial.

24

3.2 Description of the NTRUEncrypt cryptosystem

3.2.1 Definitions

The NTRU encryption algorithm is parameterized by the following parameters.

N The degree parameter. N is prime, and it defines the degree of poly-

nomials used in the polynomial convolution ring, R.

q Large modulo. It is mostly used to reduce the convolution operation

in the polynomial ring.

p Small modulo. It is used to reduce the random generation compo-

nents in the encryption process to reduce message space.

df An integer value fixes the form of the private key polynomial, f . The

number of positive ones in f is df , while the number of negative ones

is df − 1.

dg An integer value fixes the form of the public key polynomial, g. The

number of positive ones in g is dg, also the number of negative ones

is dg.

dr An integer value fixes the form of the random polynomial, r. The

number of positive ones in r is dr, also the number of negative ones

is dr. The random polynomial, r, is used in the encryption process.

dm An integer value fixes the form of the message polynomial, m, to be

encrypted.

The following properties are important for NTRUEncrypt cryptosystem:

• the parameters (N, p, q) are public,

• p and q are relatively prime, gcd(p, q) = 1, and

• q is much larger than p, p << q.

25

In this thesis, we focus on the case where q is in the form of 2n because this allows us to

perform the modular operations efficiently by simply truncating the results to n bits. Further-

more, we also restrict our focus to the case p = 3 since it allows more efficient implementation

of the convolution circuits in both the decryption and encryption algorithms.

Let R, Rp, and Rq be the polynomial rings

R =
Z[x]
xN − 1

, Rp =
Z/pZ[x]
xN − 1

, Rq =
Z/qZ[x]
xN − 1

.

The product of two polynomials a(x), b(x) ∈ R is given by

a(x) ∗ b(x) = c(x)

where

ck =
k∑
i=0

aibk−i +
N−1∑
i=k+1

aibN+k−i =
∑

j=k−i (mod N)

aibj. (3.2)

For any positive integers d1 and d2, let τ(d1, d2) denote the set of ternary polynomials

given by a(x) ∈ R :

a(x) has d1 coefficients equal to 1,

a(x) has d2 coefficients equal to -1,

all other coefficients equal to 0

In what follows, we summarize the three main operations in the NTRUEncrypt cryp-

tosystem [31, 32].

3.2.2 Key Generation

For the public key, the user:

• selects a private f(x) ∈ τ(df , df − 1) that is invertable in Rq and Rp,

26

• selects a random polynomial g(x) ∈ τ(dg, dg),

• computes the inverse of fq(x) = f−1(x) in Rq and Fp(x) = f−1(x) in Rp, and

• evaluates h(x) = fq(x) ∗ g(x) in Rq.

The polynomial h(x) is the user’s public key and the corresponding private key is the pair

(f(x), Fp(x)).

3.2.3 Encryption

The encryption for plaintext m(x) ∈ Rp is performed as follows. The user:

• selects an ephemeral key r(x) ∈ τ(dr, dr), and

• evaluates the ciphertext e(x) = pr(x) ∗ h(x) +m(x) mod q.

The encrypted message is the encrypted message e(x).

3.2.4 Decryption

The decryption procedure requires the following three steps. The user:

• evaluates a(x) = f(x) ∗ e(x) mod q,

• evaluates b(x) = Centerlift(a(x)) such that its coefficients lie in the interval (−q/2, q/2],

and

• evaluates m = Fp(x) ∗ b(x) mod p.

The last step of the decryption process requires the user to compute the inverse of the polynomial

Fp of the secret f mod p. The result of the decryption process will recover the original message

m.

27

Table 3.2: Parameter set for NTRU [31]

Security Level N p q df dg dr

Moderate security 167 3 128 61 20 18

High security 263 3 128 50 24 16

Highest security 503 3 256 216 72 55

3.2.5 Parameter Selection, Security Levels, and Optimization

The parameter selection of (N, p, q) and df , dg, dr defines the different security levels

of NTRUEcrypt cryptosystem. The (N, p, q) parameters are public, while df , dg, and dr define

different spaces. The set of spaces for defined df , dg, and dr will be as follows

Lf (df , df − 1), Lg(dg, dg), Lr(dr, dr)

where f ∈ Lf , g ∈ Lg, and r ∈ Lr. It is important to select p and q not to have a common

divisor, i.e. gcd(p, q) = 1, in order to compute the inverse of a certain polynomial. The pa-

rameter selection has been changed over the years and is susceptible to change in the future.

However, for our project, we chose parameters similar to those suggested in the original NTRU

proposal [31] as shown in Table 3.2. Typical parameter sets that yield security levels similar

to 1024-bit RSA and 4096-bit RSA are (N, p, q) = (251, 3, 128) and (N, p, q) = (503, 3, 256),

respectively.

One of the objectives of developing NTRUEncrypt cryptosystem is high speed and low

memory requirements. Hoffistein et al. [31] proposed NTRU as an efficient replacement of

the most popular encryption algorithm RSA. In addition to its inherent high speed algorithm,

there are efficient implementation practices that can be taken to achieve optimal performance.

For example, during the last step of the decryption process, we multiply the inverse of the secret

key, Fp(x) with the intermediate polynomial b(x) in order to obtain the original message, m, i.e.

m = Fp(x)∗b(x). In this step, if we choose the private key of the form of f = 1+p∗F , where F

is a random polynomial with dF non-zero coefficients, we can accelerate performance. This is

28

because obtaining the inverse of this form of polynomial, Fp = f−1 mod p eliminates the final

convolution multiplication in the final step of the decryption process thus increases performance.

In addition, this selection will save computational energy, circuits area, and memory storage.

Additional practices can be implemented to gain high speed, but are not listed in this thesis.

3.3 Related Work

The literature is rich with countermeasures against DPA attacks including solutions at

the algorithm level, circuit level, and gate level. Example of solutions at the algorithm level

is masking which makes the secret independent of processed data [9, 58]. Examples of gate

level approaches are those solutions that target the power consumption of the gate and make it

independent of the original data by introducing noise and other leakage to equalize the power

consumption.

While NTRU implementations with claimed resistance to power analysis attacks have

been proposed, almost all these implementations are based on heuristic protection measure and

do not provide well-founded assurance regarding the resistance of the implementation against

this class of attacks. Furthermore, our proposal is the first countermeasure for hardware imple-

mentation of NRTU.

Several unprotected hardware implementations of NTRUEncrypt were previously pre-

sented (e.g., see [36], [3], [46], [73]). Techniques to strengthen hardware implementations of

NTRUEncrypt against fault analysis attacks were presented in [37]. Lee et al. [45] presented

power analysis attacks on software implementations of NTRUEncrypt where they presented two

attacks, SPA and CPA, and proposed several countermeasures. They used a common convolu-

tion algorithm to calculate a(x) = f(x)∗e(x) where f(x) is the secret and e(x) is the ciphertext.

The basic operations of the algorithm are shift and add. In their algorithm, the accumulation

registers are all initialized to zero. To conduct an attack, they assume a difference in power

consumption between addition with non-zero operands such as: x + y, x, y 6= 0 and addition

29

with zero operands such as: x+0 or 0+y. Because the attacker can control the ciphertext poly-

nomial in the chosen ciphertext attack scenarios, the attacker can set the ciphertext polynomial

to have all nonzero coefficients. This will enforce all addition operations in the first iteration

of the convolution algorithm to have addition with zeros which allows the attacker to recover

secret key information by observing the power consumption of this process. To defend against

SPA, Lee et al. proposed to initialize all registers to non-zero values; however, initializing to

a fixed value remains vulnerable. Therefore, their only solution is to initialize the registers to

random values at each run of the algorithm. In their CPA attack, the attacker relies on the cor-

relation between processed data and power consumption. The proposed countermeasure to the

CPA attacks involves randomizing the temporary data stored in accumulator registers (similar

to the SPA countermeasure), blinding public data, and randomizing the secret data. Lee et al.

also investigated several shortcomings of each approach.

3.4 Proposed Countermeasures

The IEEE P1363.1 standard presents a few typical parameter sets for NTRU. In this

thesis, we focus on the set of parameters where q is in the form of 2n because of the simplicity

of the modular operations for such choices of q , where the effect of the modular operation can

be achieved by simply truncating the results to n bits. Table 3.2 shows the (N, p, q) parameters

presented in the original NTRU proposal [31, 32]. Throughout our implementation, we utilize

the Mersenne primes method (see Algorithm 1) to calculate a(x) mod p. In this method, a(x)

can be split into sections where each has a length of log2(p + 1) bits, and the addition of these

sections is the a(x) mod p.

Algorithm 1 Modular reduction using Mersenne primes algorithm
Input: an integer a, a Mersenne prime p
Output: b = a mod p

1: b = a
2: do while b > p
3: split b into sections si|si−1|...|si|s0 each of length log2(p+ 1) bits
4: b = si + si−1 + ...+ s1 + s0

30

Note that in order to increase the efficiency of the decryption implementation, we choose

f = 1+pF which is computed in one convolution for the entire decryption process as explained

in the previous subsection. We also chose NTRUEncrypt parameters presented in [31] as shown

in 3.2.

3.5 Proposed Decryption Architecture

Similar to other public key cryptosystems, since the secret key is not used in the en-

cryption process, the encryption process does not need to be protected against power analysis

attacks. Consequently, in what follows, we focus on protecting the decryption process.

Our proposed countermeasures for NTRU decryption are inspired from traditional mask-

ing schemes (e.g., see [62]). However, unlike other algorithms, masking for NTRUEncrypt

cannot be carried out linearly due to the nature of NTRU and the complexity of interaction be-

tween two different polynomial rings, Rp and Rq. For example, for typical choices of p and

q, we cannot perform the decryption by splitting the secret f(x) into two uniform shares over

Rp because the first convolution operation in the decryption process is performed in Rq. In

other words, for f ′(x), f ′′(x) ∈ Rp, f ′(x) + f ′′(x) mod p = f(x) does not guarantee that

((f ′(x)∗e+f ′′(x))∗e) mod p = (f(x)∗e) mod p because this convolution operation is per-

formed in Rq and interchanging the order of the mod p and mod q operations leads to the wrong

result. Furthermore, if we split the shares over Zq, i.e., if we choose f ′(x), f ′′(x) ∈ Rq such

that f ′(x) + f ′′(x) mod q = f(x), then we cannot ensure the uniformity of the shares because

the coefficients of f(x) are chosen to be very small (e.g., usually we have fi ∈ {+1, 0,−1} for

p = 3). In addition, when f ′(x), f ′′(x) ∈ Rq we lose the advantage of being able to efficiently

implement the convolution associated with first operation in the decryption process since in this

case, the coefficients of f ′(x), f ′′(x) ∈ Zq instead of {1,−1, 0}.

On the other hand, it should be noted an attacker who measures the power consumption

associated with the convolution operation cannot derive useful information about one input to

31

the convolution module if the second input is a uniformly generated random polynomial which

is freshly generated for each convolution operation and is not under the control of the attacker.

More precisely, if the attacker measures one trace of power consumption associated with the

operation f(x)∗e(x) then the attacker cannot derive information about f(x) if e(x) is a random

input chosen uniformly from Rq and changes after each convolution operation. Thus, in our

implementation we split the ciphertext into two random shares e′, e′′ ∈ Rq such that the addition

of these shares mod q yields the original ciphertex, i.e., e′ + e′ = e ∈ Rq. The two ciphertext

shares are then processed in parallel using the secret key to produce a′ = f(x) ∗ e′(x) and

a′′ = f(x) ∗ e(x)′′.

In the second step of the decryption process, we avoid computing a(x) = (a′(x) +

a′′(x)) ∈ Rq and then centerlifting the results to obtain b(x) ∈ Rp. The main reason for not

doing this is that while the two shares e′(x) and e′′(x) cannot be controlled by the attacker,

a′(x) + a′′(x) = f(x) ∗ (e′(x) + e′′(x)) = f(x) ∗ e(x) and e(x) is still under the control

of the attacker who can manipulate the choice of e(x) to maximize the information obtained

by measuring the power consumption associated with the step of evaluating a(x) mod q. To

avoid this problem, we continue the computation along both branches of the decryption process

performing the computation in Rp. However, in general if y, z ∈ Zq then ((y + z) mod q)

mod p 6= ((y mod p) + (z mod p)) mod p. The following Lemma is used in order to allow

us to overcome this problem.

Lemma 1 Let y, z ∈ Zq. Then we have

((y + z) mod q) mod p =

((y mod p) + (z mod p)) mod p, y + z < q

((y mod p) + (z mod p) + (q mod p)) mod p, y + z ≥ q.

32

����

������� ��

��� �� � ���� �� �

���� ��

���� ����� ��

���� ����� ��

��� 		
�� ���

���� �
��� �

����

Figure 3.1: Top level view of the proposed masking scheme

Proof. The proof follows by noting that for y, z ∈ Zq, we have y < q and z < q. Hence we have

y + z mod q =

y + z y + z < q

y + z + q y + z ≥ q.

33

Fig.3.1 shows a top level view of our proposed architecture. As mentioned above, in the

first stage of convolution, the ciphertext is arithmetically split into two random shares, e′ and e′′

in Rq where e = e′ + e′′ mod q. The first two stages of the decryption process are computed

with these shares as follows:

a′(x) = e′(x) ∗ f(x) mod q

a′′(x) = e′′(x) ∗ f(x) mod q
(3.3)

Then we proceed to calculate b(x) ∈ Rp without calculating a(x) ∈ Rq as follows:

b′(x) = a′(x) mod p

b′′(x) = a′′(x) mod p

b(x) = b(x)′ + b′′(x) + γ(x) mod p

(3.4)

where γ(x) ∈ Rp is a correction polynomial evaluated using Lemma 1. More precisely, γi

is set to −q mod p if b′i + b′′i ≥ q, and is set to zero otherwise, i = 0, 1, · · · , N − 1. In

order to avoid revealing the coefficients of γ(x) in the last step of equation (4.2) above by

observing the difference in power consumption for the case of adding a zero versus adding −q

mod p, this step is performed using lookup tables (LUTs), where the inputs to each LUT are

the corresponding coefficients of b′, b′′, and a binary input denoting whether γ(x) = 0 or −q

mod p. Thus, each LUT can be indexed by (2× dlog2(p)e+ 1) bits.

To evaluate γ(x), we need to test whether a′i(x) + a′′i (x) > q for i = 0, 1, · · · , N − 1.

In order to do so without explicitly evaluating a′i(x) + a′′i (x), we use the traditional carry-look-

ahead method. Let a′ij , a
′′
ij

denote the jth bit in the ith coefficient of a′(x) and a′′(x), respectively.

Then, for i = 0, 1, · · · , N − 1, and j = 0, 1, · · · , (log2(q)− 1), we evaluate:

cj+1 = gj ∨ (pj · cj),

gj = a′ij · a
′′
ij

pj = a′ij ∨ a
′′
ij

(3.5)

34

where cj is the carryout of the jth bit. If clog2(q) = 1, then we conclude that a′i + a′′i > q and we

need to add the correction factor.

In order to recover the message, Fp(x) is also split into two different sharesF ′p(x), F
′′
p (x) ∈

Rp such that F ′p(x) + F ′′p (x) = Fp(x) mod p. Then the two shares are convoluted with b(x) to

generate d′(x) and d′′(x), respectively as follows:

d′ = F ′p(x) ∗ b(x) mod p

d′′ = F ′′p(x) ∗ b(x) mod p
(3.6)

Finally, the message is recovered by adding d′(x) and d′′(x) as follows:

m(x) = d′(x) + d′′(x) mod p (3.7)

It should also be noted that our protection countermeasures are also applicable to other

variants of NTRUEncrypt where the secret key f(x) is chosen in the form f(x) = 1 + pF (x).

In this case, the last step of the decryption process is eliminated because Fp = 1 and hence

m(x) = b(x).

3.6 Results and Discussion

The proposed decryption architecture is implemented in hardware using Altera FPGA

Cyclcone IV chip with Quartus II and ModelSim software. Cyclone IV EP4CE115F29C7 is

chosen as the target device in the provided implementation.

Figures 3.2 and 3.3 show the hardware architecture for the convolution operations in Rq

and Rp, respectively. It takes N clock cycles to calculate both a′(x) and a′′(x) and one clock

cycle to calculate b′(x) and b′′(x). Finally, it takes N clock cycles to calculate d′(x), d′′(x)

and then calculating m(x). Thus, this architecture requires 2N + 1 clock cycles to decrypt the

ciphertext. Throughout our implementation, we utilize the Mersenne primes method [73] to

35

. . .

 0
 ()

Add/sub

0 1

 ()

Add/sub

0 1

 ()

Add/sub

0 1

Figure 3.2: Circuit for evaluating f ∗ e mod q

Table 3.3: Decryption without masking

(N, p, q) #LE #RE #CC FMAX (MHZ) Latency (µsec)

(1167, 3, 128) 6, 142 3, 459 335 113.86 2.94

(263, 3, 128) 9, 556 5, 359 527 108.45 4.86

(503, 3, 256) 20, 512 11, 165 1, 007 90.65 11.11

calculate a(x) mod p.

The post-synthesis simulation results for decryption without any masking are shown in

Table 3.3 where LE denotes the number of Logical Elements used in the device, RE denotes the

number of registers, and CC denotes the number of clock cycles.

Table 3.4 shows the corresponding results for the protected implementation. As shown

36

 ()

. . .

 () ()

t0 t1 t(n-1)

 Fp[1]

Figure 3.3: Circuit for evaluating the convolution multiplication Fp ∗ b mod p

Table 3.4: Decryption with masking

(N, p, q) #LE #RE #CC FMAX (MHZ) Latency (µsec)

(1167, 3, 128) 10, 071 (64%) 3, 893 335 112.37 2.98 (1.4%)

(263, 3, 128) 15, 452 (61.7%) 6, 009 527 105.59 4.99 (2.7%)

(503, 3, 256) 32, 282 (57.4%) 12, 298 1, 007 84.79 11.88 (6.9%)

in this table, the latency is slightly affected by the protection measures, where it is increased

by about 1.4%, 2.7% and 6.9% for the three considered set of parameters. On the other hand,

the area overhead varies between 64%, to 57.4% for these parameters, which emphasizes the

37

nontrivial cost associated with protecting this class of cryptosystems against power analysis

attacks.

38

Chapter 4

Rainbow Signature Scheme

4.1 Introduction

Rainbow is an MPKC public signature scheme from the Oil-Vinegar family which is

based on solving multivariate equations over a finite field. The Oil-Vinegar family can be classi-

fied as balanced Oil-Vinegar, unbalanced Oil-Vinegar, and Rainbow. Rainbow is a construction

of unbalanced multi-layer Oil-Vinegar for added security and efficiency [23].

4.1.1 Definitions

The finite field used is GF (28), and it is denoted by k. The letters o and v represent

the number of Oil and Vinegar variables respectively. Rainbow is a multiple layer Oil-Vinegar

where the number of layers is denoted by u. Throughout the thesis the use of u represents

the total number of layers used while l refers to a specific layer. The message (or hash of the

message) is denoted by Y , and the signature is denoted by X . The signature size is n.

4.1.2 Oil-Vinegar

The key construction in the Oil-Vinegar family is a map F from ko+v to ko. This map

is hidden between two affine linear transformations L1 and L2 as shown in the following set of

39

equations. L1 and L2 are on ko and ko+v fields, respectively. The map

F = L1 ◦ F ◦ L2 (4.1)

where
F (x1, ..., xo, x

′
1, ..., x

′
v)

= (F1(x1, ...xo, x
′
1,, x

′
v),, Fo(x1, ...xo, x

′
1,, x

′
v))

(4.2)

and each Fl is in the form of

Fl(x1, ..., xo, x
′
1, ..., x

′
v)

=Σal,i,jxix
′
j +Σbl,i,jx

′
ix
′
j +Σcl,ixi +Σdl,jx

′
j + el

(4.3)

where xi, i = 1,, o are the Oil variables and x′j, j = 1,, v are the Vinegar variables in the

finite field k as shown in [23].

In Equation 4.3, there are terms where the Oil and Vinegar variables do not mix; this

inspired the Oil-Vinegar name. The balanced Oil-Vinegar is when v = o. However, it was

broken by Kipnis and Shamir [39]. The unbalanced Oil-Vinegar, on the other hand, is when

v > o; however, to ensure security the size of v and o has to be carefully selected [23]. Rainbow

is a construction of unbalanced Oil-Vinegar in multiple layers for added security and efficiency.

The number of Oil variables in the ith layer, oi, and the number of Vinegar variables, vi,

are related as follows: vi+1 = oi + vi. This relation means that Vinegar variables in the next

ith+1 layer is the concatenation of the previous layer of Oil and Vinegar variables. The lth layer

consists of ol polynomials where {xi |∈ Ol} denotes the set of Oil variables and {x′j |∈ Sl}

denotes to the set of Vinegar polynomials. The private secrets are al,i,j, bl,i,j, cl,i, dl,j , and el,

which means that each layer and each polynomial has its own sets of secrets.

4.2 Overview of Rainbow Scheme

In this section, we provide an overview of the Rainbow signature scheme [23].

40

Public Key

The public key of Rainbow consists of the n− v1 polynomial components of F and the

field structure of k.

Private Key

The private key consists of the maps L1, L2, and F .

Signature Generation

To sign a document, which is an element Y = (y1, y2,, yn−v1) ∈ kn−v1 , we find the

solution of the following equation

L1 ◦ F ◦ L2(x1, ..., xn) = F (x1, ..., xn) = Y (4.4)

Then we apply the inverse of L1 to get the following equation

F ◦ L2(x1, ..., xn) = L−11 Y = Y (4.5)

Next we invert F by solving the equation

F (x1, ..., xn) = Y = (y1, ..., yn−v1) (4.6)

The values x1, ..., xv1 are randomly chosen and plugged into the first layer of ol equations given

by

F 1 = (y1, ..., yo1) (4.7)

The solution is plugged into the second layer of polynomials which will produce o2 equations.

The procedure is repeated until a solution is found. If at any layer, a solution is not found, we

start from the beginning again by choosing another set of values for x1, ..., xv1 . We finally apply

41

the inverse of L2, to obtain a signature of Y denoted by X = (x1, ..., xn)

Signature Verification

The verification is done by checking if the following equation holds

F (X) = Y (4.8)

Parameters for Rainbow

The parameters used in this work are similar to [23, 70]. We use a two layer Rainbow,

u = 2, where the security level is above 280. The message size is n = 24 bytes while the

signature size is 42 bytes. In the first layer, we use 17 Vinegar variables and 12 Oil variables

while in the second layer we use 30 Vinegar variables and 12 Oil variables. One extra random

Vinegar variable is generated to complete the set of 30 Vinegar variables in the second layer.

4.3 Related Work

The cryptanalysis for Rainbow has been considered since its introduction. Rainbow,

unlike others, survived several known attacks such as the Grobner basis attacks [27], the rank

attacks [39], and the differential analysis attacks [60]. In [29], Hashimoto et al. described a fault

attack scheme that recovers parts of the secrets (private keys) in Rainbow by inducing a fault in

the central map, F . The generated signature is a faulty signature named F ′. The sparseness of

F − F ′ reveals some information about the private key. Another fault is injected into another

element of F to get another faulty signature, F ′′. Again, the sparseness of F −F ′′ reveals other

information about the private keys. The process is repeated several times to recover parts of

the private key. In this thesis, we propose two approaches to protect against this type of fault

analysis attack.

42

Message

Affine Transformation -

Linear Equation Generation

 Solving Linear Equations

Affine Transformation -

Layer 2?

Yes

No

Signature

(a) Signature Flowchart

Signature

Affine Transformation -

Polynomial Evaluation

Message

Affine Transformation -

Layer 2?

Yes

No

(b) Verification Flowchart

Figure 4.1: Top Level Rainbow Scheme

4.4 Hardware Implementation of Rainbow

The top level overview of Rainbow’s signature and verification is shown Figure 4.1. The

flowcharts show three major blocks: affine linear transformation, polynomial evaluation, and

solving linear equations using the Gaussian elimination method. The hardware efficiency of the

three blocks depends highly on the GF (28) multiplication and partial multiplicative inversion.

Similar to [70], in this work, we implement the GF (28) operations using the irreducible

polynomial x8+x6+x3+x2+1 in order to improve the efficiency of theGF (28) multiplication.

The following subsections explain both schemes along with the improved implementation.

43

4.4.1 Improved Architecture

As mentioned above, both the signature and verification schemes depend highly on

GF (28) multiplication and inversion operations. We use a Look-Up Table (LUT) for the in-

verse and a generic implementation of Shift/Add for the multiplication process. We use highly

parallel architecture for all units in the design: linear transformations L−11 and L−12 , polynomial

evaluation, and Gaussian elimination process. In designing the latter, we base our implemen-

tation on methods used in [10, 70]. However, we noticed that the critical path is in the linear

equations generation unit; the unit that generates linear equations from substituting the set of

Vinegar variables in Equation 4.3. For this unit, we use highly parallel architecture where we

compute the multiplications of independent vectors simultaneously. We only use this paral-

lelism in the critical path which is the computation of components a and b and not c and d.

Contemplating on the results, one sees that our Gaussian elimination process does not outper-

form Tang et al. implementation, but because of our improved linear equation generation unit

design, we achieve a higher overall performance.

4.4.2 Signature Process

The block diagram of the signature process is shown in Figure 4.2. The controller unit

controls the flow of data according to the flowchart. There are two layers in our Rainbow

scheme, and each layer generates a set of 12 linear equations. Each one of these equations is

generated with its own set of private keys. The total number of keys is shown in Table 4.1. The

total number of secrets to protect in the central map, F , is = 21, 912. Once the linear equations

are generated, we forward them into the Gaussian elimination unit. The controller first solves

layer 1 equations. If a solution exists, the solution (a set of Oil variables) is concatenated

with the set of Vinegar variables, along with one randomly generated variable, and forwarded

to the second layer. Otherwise, i.e. if no solution is found, another set of random Vinegar

variables is chosen and the process is repeated. The 30 new Vinegar variables are substituted

into Equation 4.3 to get another set of 12 linear equations. Layer 2 equations are solved and

44

Table 4.1: Private Keys (Secrets) of Rainbow

Type Matrix Size Total Number
L1 Transformation 42× 42 1, 764

Layer 1 Polynomials o = 12, v = 17 6, 276

Layer 2 Polynomials o = 12, v = 30 15, 636

L2 Transformation 24× 24 576

a solution is generated. The solution is forwarded to the linear transformation stage. In this

linear transformation, we use highly parallel architecture where we compute the multiplications

of independent vectors simultaneously, similar to the linear equation generation unit.

4.4.3 Verification Process

The verification process, as shown in Figure 4.3, is a direct implementation of Equation

4.1. Linear transformation L1 is followed by the two layers evaluations of Equation 4.3 and

another linear transformation L2. The same techniques of improving the critical path’s perfor-

mance used in the linear equation generation unit are applied to the polynomial evaluation unit.

4.4.4 Paralleled Gauss-Jordan Elimination

The systematic repetitive process of Gaussian elimination makes it easy to implement in

hardware. Our implementation is based on highly parallel architecture where several tasks are

executed in the same cycle. The process is composed of two steps: obtaining the upper triangle

matrix and back substitution. The algorithm used is similar to Tang et al. [70] which is based

on Bogdanov et al. [10]. The size of matrix is only 12 × 12 because o = 12. The solution is

obtained by performing: pivoting, inversion, normalization, and elimination for each row, i, of

the matrix. The algorithm presented below is designed to complete in 2× n cycles as shown in

the next section.

The first step in solving a 12× 12 matrix is pivoting which is the process of fetching the

45

Controller &

Other Logic

MUX

Gaussian Elimination Solver

17

 Vinegar

Equation - 1

▪

▪

Equation - 2

Equation - 3

Equation - 12

Layer1 Equation

Generation

Message

1 extra

 Vinegar

12 Oil

Signature

24

12

12x13 12x13

12

42

12 Oil

30 Vinegar

42 Yes
No

Equation - 1

▪

▪

▪

Equation - 2

Equation - 3

Equation - 12

Layer2 Equation

Generation

12 Oil
No

Layer 2?

Figure 4.2: Signature Block Diagram

46

Controller &

Other Logic

Polynomial - 1

▪

▪

▪

Polynomial - 2

Polynomial - 3

Polynomial - 12

Layer 2 Polynomial

Evaluation

Signature

Message

42

 12 Oil

24

24

30 Vinegar

Polynomial - 1

▪

▪

▪

▪

Polynomial - 2

Polynomial - 3

Polynomial - 12

Layer 1 Polynomial

Evaluation

12 Oil

17 Vinegar

Concatenation

12 12

Figure 4.3: Verification Block Diagram

47

Algorithm 2 Gaussian Elimination Algorithm
1: for i = 1 to 12 do
2: Pivoting(i)
3: Partial Inversion(i)
4: Normalization(i)
5: Elimination(i)
6: end for
7: return Solution

leading non-zero element in the pivoting column of the matrix. Knowing that aij is an element

in the ith row and jth column, the first column in the matrix is the pivoting column for i = 0.

Once, the pivot element is recognized, we swap the matrix rows to ensure the pivot element is

in the leading ith row of the ith iteration.

The inversion process is important for the followed elimination and normalization steps

where the inverse of the pivot element aij is computed to obtain 1/aij . We use a LUT for the

finite field inversion of the size of 256 bytes which is 8 × 256 = 2, 048 bits since each of the

256 GF elements occupies 8 bits.

Normalization is the process of dividing the leading row, i.e., the ith row, of the ith

iteration by the pivot element. This is done by multiplying the pivot row by the inverse value

of aij . To obtain the triangle upper matrix, normalization and elimination are repeated for each

row after pivoting.

Elimination is performed for each row of the matrix after normalization. Each subse-

quent row following the normalized row is subtracted from it to obtain an upper triangle matrix.

The described four processes are all repeated for each row of the matrix, i.e., for 12

iterations. Once the upper triangle matrix is obtained, the back substitution process is computed

in one cycle using a highly parallel architecture of vectors multiplication and addition.

4.4.5 Affine Linear Transformation

The linear transformations L−11 and L1 for the signature and verification respectively are

transformations in the same field k24 to k24, while the transfer L−12 and L2 are from k42 to k42.

Both transformations are computed using highly parallel architecture of vectors multiplications

48

and additions.

4.5 Proposed Fault Analysis Countermeasures

The fault attack presented in [29], as described Section I above, succeeds if the attacker

is able to inject a fault in the central map, F . This fault causes a faulty signature F ′ to occur. The

sparseness of the original signature and the faulty signature F − F ′ reveals information about

the private key. By repeating this process, the attacker can gradually reveal more information

about the secret key. To protect against this attack, we first considered a spacial redundancy

solution where two parallel signatures are implemented side by side on the same chip. If both

signatures match, then we output the signature; otherwise, the chip output is disabled. Because

this approach is very expensive in terms of area, we abandoned it and moved to other solutions.

Similarly, we did not implement the straightforward temporal redundancy scheme, where the

signature operation is repeated twice and the output of the two runs are compared, because of

the large time overhead.

The most intuitive approach to detect faults in the Rainbow signature algorithm is to

have a verification unit checking the results of the signature process on the same chip. We call

this approach, the signature verification scheme, see Figure 4.4a. In this approach, we feed the

output of the signature process into the verification unit and compare the results with the original

message. If the original message is retrieved, i.e. Equation 4.8 holds, then we can safely assume

that no tampering of the private secrets occurred under the assumption that the attacker cannot

inject a fault al,i,j in the same layer or the same linear transformation in both the signature and

verification units. Indeed, this full verification countermeasure protects against all sorts of faults

that can be injected in the signature process including the ones that can occur in the central map

F as presented in [29].

In contrast to our signature verification scheme where we verify the entire signature

process, if one aims only to protect the signature algorithm against the fault attack in Hashimoto

49

Message

Signature

Process

Verification

Process

Zeros

1 0

Mux

=?

Signature

(a) Signature Verification

Message

Zeros

1 0

Mux

=?

Signature

Stored Check-sum of

Computed Check-sum

Layer 1

Signature Process

 =?

Computed Check-sum

Layer 2

Stored Check-sum of

(b) Matrix Check-sum Verification

Figure 4.4: Two Proposed Fault-resistant Schemes

et al. [29] which injects one fault at a time in the central map keys, then protecting central map

keys F only is sufficient to prevent this attack. We propose protecting the central map keys, F

by computing the check-sum of each row and each column of the matrices corresponding to the

secret coefficients in Equation 4.3. We call this approach, the check-sum verification scheme,

see Figure 4.4b. If the computed check-sum results match the stored ones, we conclude that no

fault attacks occurred under the assumption that the attacker cannot inject a fault into the private

keys and its corresponding stored check-sum matrices.

4.6 Results

The signature, verification, and check-sum are all implemented on Xilinx Vertix 7 fam-

ily, XC7V X980T . The signature and verification are compared to Tang et al. [70] because of

50

Table 4.2: Signature Comparison with Tang et al. [70]

Steps Components Clock Cycle
Tang et al. [70] Ours

1 L−12 Transformation 5 16

2 The first 12 polynomials evaluations 45 38

3 The first round of solving system linear equations 12 25

4 The second 12 polynomials evaluations 111 64

5 The second round of solving system linear equations 12 25

6 L−11 Transformation 13 23

Total 198 191

Table 4.3: Verification process Timings

Steps Components Clock Cycles
1 L1 Transformation 24

2 The first 12 polynomials evaluations 64

3 The second 12 polynomials evaluations 38

4 L2 Transformation 15

Total 141

the same Rainbow parameters and clock frequency. We both use a 20ns clock period; however,

their implementation is based on a Xilinx Startix II chip while we use a Vertix 7 family chip.

The latter is a bigger chip and can contain the signature unit as well as the proposed countermea-

sures. Indeed, our implementation is a slight improvement of their implementation as shown in

Table 4.2 especially in the linear equation generation stages. Even though our Gaussian elimi-

nation unit executes in 2 × n cycles and Tang at al. [70] executes in only n cycles, our overall

performance is better than theirs. This is due to the improved parallel architecture in the critical

paths. For the verification process, our results are summarized in Table 4.3.

The results of fault attack-resistant schemes are listed in Table 4.4. The signature ver-

ification approach increases the required area by about 33% while the check-sum verification

increases the area by 9%. The number of cycles presented in Table 4.2 and Table 4.4 are based

on finding Gaussian elimination solutions from the very first attempt, which will happen with

51

Table 4.4: Number of slices and clock cycles for the fault-resistant implementations

Scheme #Slices (% of chip) Clock Cycle
Signature alone L−12 ◦ F ◦ L−11 78, 837(51%) 200

Verification alone L1 ◦ F ◦ L2 39, 486(25%) 141

Signature Verification Scheme 105, 202(68%) 344

Check-sum Verification Scheme 85, 630(55%) 200

a very high probability given the chosen set of parameters [23]. Furthermore, the number of

cycles for the signature alone is listed to be 200 while it is listed 191 in Table 4.3. The extra

cycles are mainly due to the time taking to generate the random variables, which we perform

using a set of LFSRs. In a more secure hardware implementation, this step should be performed

using on-chip true random number generators. The signature verification fault analysis-resistant

scheme adds area and time to the design while the check-sum verification scheme adds only area

to the design.

52

Chapter 5

Conclusions

5.1 Summary and Conclusions

This section briefly summarizes the accomplished work and the major contributions of

our thesis. In chapters 1, 2, the essential background, mathematical assumptions, and motivation

for this work were presented.

In chapter 3, we presented a masking scheme to protect NTRUEncrypt from first order

differential power analysis attacks. It should also be noted that our protection countermeasures

are applicable to other variants of NTRUEncrypt where the secret key f(x) is chosen in the form

f(x) = 1 + pF (x). In this case, the last step of the decryption process is eliminated because

Fp = 1. However, there will be a slight increase in the cost of implementing the convolution

circuit that computes e(x) ∗ f(x) because in this case the coefficients of f(x) ∈ {1,−1, 0, 2}

In an unprotected NTRUEncrypt decryption, the recovered plaintext is computed by first

performing convolution polynomial multiplication on the secret key modulo q and then perform-

ing convolution polynomial multiplication on secret inverse modulo p. We mask the polynomial

operations by splitting the ciphertext polynomial and Fp polynomial into two random shares for

each; and continuing in the masking each step of the decryption process until recovery of plain-

text. Thus, the masking scheme keeps all intermediates in the masked domain.

53

In chapter 4, we presented an improved hardware implementation of the Rainbow scheme

along with two fault analysis countermeasures. The first approach protects the private keys of

both linear transformations and central map, F , of the Rainbow scheme under the assumption

that the attacker cannot inject the same fault in both the signature and verification units. The

second approach, on the other hand, protects only the central map keys under the assumption

that the attacker cannot inject faults into both private key matrices and its corresponding check-

sum matrices. We compared both implementations and showed that signature verification fault

analysis-resistant approach increases time by a factor of 72% while the check-sum verification

approach does not add any time overhead. In addition, the area penalty for the first is 33% while

the area penalty of the latter is only 9%.

5.2 Future Work

In what follows we list some of the topics that can be a future extension to the projects

shown in this thesis.

• We can investigate more options to achieve a secure hardware implementation for the

NTRUEncrypt. For example, we can consider the circuit level solutions for preventing

DPA attacks such as the threshold implementation.

• The proposed countermeasures for Rainbow can be suitable for other post-quantum algo-

rithms. Thus, we can apply these ideas to other cryptosystems.

• Rainbow signature scheme is very well studied, and proved to be secure. The presented

hardware implementation in this thesis is not optimal, because the focus of this thesis is to

propose secure hardware schemes to prevent fault analysis attack presented in Hashimoto

et al. and not to present an efficient hardware implementation. A more efficient hardware

implementation can be researched and studied.

• Side Channel Attacks target the hardware implementation of an algorithm for inadvertent

54

leakages during running time. A recent research in the field of leakage-resilient cryp-

tography focuses on the design of cryptographic primitives resistant to arbitrary SCAs.

In SCAs, the attacker collects large amount of information on the private key. However,

these large amount of information are bounded by some parameter. A future work will be

to study the leakage-resilient cryptography and find methodologies to achieve bounded

leakage.

• For the NTRUEncrypt we can explore other approaches, such as the use of threshold

implementations, to enhance the area overhead and reduce time penalty.

55

Bibliography

[1] R. Anderson, M. Bond, J. Clulow, and S. Skorobogatov. Cryptographic Processors-A

Survey. Proceeding of the IEEE, 94(2):357–369, Feburary 2006.

[2] M. Arora. How secure is AES against brute force attacks? https://www.eetimes.

com/document.asp?doc_id=1279619, Novemeber, 2013. EE Times.

[3] D. V. Bailey, D. Coffin, A. Elbirt, J. H. Silverman, and A. D. Woodbury. NTRU in Con-

strained Devices. In International Workshop on Cryptographic Hardware and Embed-

ded Systems CHES 2001: Cryptographic Hardware and Embedded Systems CHES 2001,

volume 2162 of Lecture Notes in Computer Science, pages 262–272, Springer, Berlin,

Heidelberg, 2001. Springer.

[4] S. Balasubramanian, A. Bogdanov, A. Rupp, J. Ding, and H. W. Carter. Fast Multivariate

Signature Generation in Hardware: The Case of Rainbow. In 16th International Sympo-

sium on Field-Programmable Custom Computing Machines. FCCM ’08, pages 281–282.

IEEE, April 14-15 2008.

[5] E. R. Berlekamp. Goppa Codes. IEEE Transactions on information theory, IT-19(5):

773–776, September 1973.

[6] D. J. Bernstein, J. Buchmann, and E. Dahmen. Post-Quantum Cryptography. Springer,

USpringer-Verlag Berlin Heidelberg, 2009.

[7] D. J. Bernstein, D. Hopwood, A. Hülsing, T. Lange, R. Niederhagen, L. Pa-

56

pachristodoulou, M. Schneider, P. Schwabe, and Z. Wilcox-O’Hearn. SPHINCS: Practical

Stateless Hash-Based Signatures. In Annual International Conference on the Theory and

Applications of Cryptographic Techniques EUROCRYPT 2015: Advances in Cryptology –

EUROCRYPT 2015, volume 9056 of Lecture Notes in Computer Science, pages 368–397,

Springer, Berlin, Heidelberg, 2015. Springer.

[8] D. J. Bernstein, T. Lange, and C. Peters. Attacking and defending the McEliece cryp-

tosystem. In International Workshop on Post-Quantum Cryptography PQCrypto 2008:

Post-Quantum Cryptography, volume 5299 of Lecture Notes in Computer Science, pages

31–46, Springer, Berlin, Heidelberg, 2008. Springer.

[9] J. Blömer, J. Guajardo, and V. Krummel. Provably Secure Masking of AES. In Interna-

tional Workshop on Selected Areas in Cryptography SAC 2004: Selected Areas in Cryp-

tography, volume 3357 of Lecture Notes in Computer Science, pages 69–83, Springer,

Berlin, Heidelberg, 2004. Springer.

[10] A. Bogdanov, M. Mertens, C. Paar, J. Pelzl, and A. Rupp. A Parallel Hardware Archi-

tecture for fast Gaussian Elimination over GF(2). In 14th Annual IEEE Symposium on

Field-Programmable Custom Computing Machines, pages 237–248. IEEE, April 24-26

2006.

[11] D. Boneh, R. A. DeMillo, and R. J. Lipton. On the Importance of Checking Cryptographic

Protocols for Faults. In International Conference on the Theory and Applications of Cryp-

tographic Techniques: Advances in Cryptology EUROCRYPT 97, volume 1233 of Lecture

Notes in Computer Science, pages 37–51. Springer, 1997.

[12] J. W. Bos, K. Lauter, J. Loftus, and M. Naehrig. Improved Security for a Ring-Based Fully

Homomorphic Encryption Scheme. In IMA International Conference on Cryptography

and Coding IMACC 2013: Cryptography and Coding, volume 8308 of Lecture Notes in

Computer Science, pages 45–64, Springer, Berlin, Heidelberg, 2013. Springer.

57

[13] E. Brier, C. Clavier, and F. Olivier. Correlation Power Analysis with a Leakage Model. In

International Workshop on Cryptographic Hardware and Embedded Systems CHES 2004:

Cryptographic Hardware and Embedded Systems - CHES 2004, volume 3156 of Lecture

Notes in Computer Science, pages 16–29, Springer, Berlin, Heidelberg, 2004. Springer.

[14] J. Buchmann, E. Dahmen, and A. Húlsing. XMSS - A Practical Forward Secure Signature

Scheme Based on Minimal Security Assumptions. In Annual International Cryptology

Conference CRYPTO 2001: Advances in Cryptology (CRYPTO 2001), volume 7071 of

Lecture Notes in Computer Science, pages 117–129, Springer, Berlin, Heidelberg, 2001.

Springer.

[15] D. Butin. Hash-Based Signatures: State of Play. IEEE Security & Privacy, 15(4):37–43,

August 2017.

[16] S. Chari, C. S. Jutla, J. R. Rao, and P. Rohatgi. Towards Sound Approaches to Counteract

Power-Analysis Attacks. In Annual International Cryptology Conference CRYPTO 1999:

Advances in Cryptology (CRYPTO 99), volume 1666, pages 398–412, Springer, Berlin,

Heidelberg, 1999. Springer.

[17] L. Chen. Cryptography Standards in Quantum Time: New Wine in an Old Wineskin?

IEEE Security & Privacy, 15(4):51–57, August 2017.

[18] M. Ciet and M. Joye. Elliptic Curve Cryptosystems in the Presence of Permanent and

Transient Faults. Designs, Codes and Cryptography, 36(1), July 2005.

[19] D. Coppersmith, J. Stern, and S. Vaudenay. Attacks on the Birational Permutation Signa-

ture Schemes. In Annual International Cryptology Conference CRYPTO 1993: Advances

in Cryptology (CRYPTO’93), volume 773 of Lecture Notes in Computer Science, pages

435–443, Springer, Berlin, Heidelberg, 1993. Springer.

[20] CrytoMathCREST. Mathematical Modeling for Next-Generation Cryptography. https:

//cryptomath-crest.jp/english/, 2014. Online.

58

[21] W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions on Infor-

mation Theory, 22(6):664–654, November 1976.

[22] J. Ding and A. Petzoldt. Current State of Multivariate Cryptography. IEEE Security &

Privacy, 15(4):28–36, August 2017.

[23] J. Ding and D. Schmidt. Rainbow, a New Multivariable Polynomial Signature Scheme.

In International Conference on Applied Cryptography and Network Security ACNS 2005:

Applied Cryptography and Network Security pp 164-175, volume 3531 of Lecture Notes

in Computer Science, pages 164–175. Springer, 2005.

[24] L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky. Lattice Signatures and Bimodal

Gaussians. In Annual International Cryptology Conference CRYPTO 2013: Advances in

Cryptology (CRYPTO 2013), volume 8042 of Lecture Notes in Computer Science, pages

40–56, Springer, Berlin, Heidelberg, 2013. Springer.

[25] T. ElGamal. A public key cryptosystem and a signature scheme based on discrete loga-

rithms. IEEE Transactions on Information Theory, 31(4):469–472, July 1985.

[26] J. Fan and F. Vercauteren. Somewhat Practical Fully Homomorphic Encryption. In IACR

Cryptology ePrint Archive, https://eprint.iacr.org/2012/144, 2012. IACR.

[27] J. C. Faugére. A New Efficient Algorithm for Computing Gröbner Bases F4. Journal of

Pure and Applied Algebra, 139(1):61–88, 1999.

[28] J. C. Faugére, F. coise Levy-dit Vehel, and L. Perret. Cryptanalysis of MinRank. In

Annual International Cryptology Conference CRYPTO 2008: Advances in Cryptology

(CRYPTO2008), volume 5157 of Lecture Notes in Computer Science, pages 280–296,

Springer, Berlin, Heidelberg, 2008. Springer.

[29] Y. Hashimoto, T. Takagi, and K. Sakurai. General Fault Attacks on Multivariate Public Key

Cryptosystems. In IEICE Transactions on Fundamentals of Electronics, Communications

59

and Computer Sciences, volume E96-A of Lecture Notes in Computer Science, pages 196–

205. Springer, January 2013.

[30] J. Hoffstein, J. Pipher, and J. Silverman. An Introduction to Mathematical Cryptography.

Undergraduate Texts in Mathematics. Springer, Springer-Verlag New York, 2008.

[31] J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU: A Ring-based Public Key Cryptosys-

tem. In International Algorithmic Number Theory Symposium ANTS 1998, volume 1423

of Lecture Notes in Computer Science, pages 267–288. Springer, 1998.

[32] J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU: A public key cryptosystem. Avilable

at http://grouper.ieee.org/groups/1363/lattPK/ submissions/ntru.pdf, 1999.

[33] IBM Press. IBM Builds Its Most Powerful Universal Quantum Computing Pro-

cessors. https://www-03.ibm.com/press/us/en/pressrelease/52403.

wss, May, 2017. IBM, Yorktown Heights, N.Y.

[34] D. Jao and L. D. Feo. Towards Quantum-Resistant Cryptosystems from Supersingular

Elliptic Curve Isogenies. In International Workshop on Post-Quantum Cryptography

PQCrypto 2011: Post-Quantum Cryptography, volume 7071 of Lecture Notes in Com-

puter Science, pages 19–34, Springer, Berlin, Heidelberg, 2011. Springer.

[35] M. Joye, A. K. Lenstra, and J.-J. Quisquater. Chinese Remaindering Based Cryptosystems

in the Presence of Faults. Journal of Cryptology, 12(4), September 1999.

[36] A. Kamal and A. M. Youssef. An FPGA Implementation of The NTRUEncrypt Cryp-

tosystem. In Proceedings of the International Conference on Microelectronics (ICM’09),

pages 209–212, Marrakech, Morocco, 2009. IEEE.

[37] A. Kamal and A. M. Youssef. Strengthening hardware implementations of NTRUEncrypt

against fault analysis attacks. Cryptographic Engineering, 3(4):227–240, November 2013.

60

[38] A. Kipnis, J. Patarin, and L. Goubin. Unbalanced Oil and Vinegar Signature Schemes.

In International Conference on the Theory and Applications of Cryptographic Techniques

EUROCRYPT 1999: Advances in Cryptology EUROCRYPT 99, volume 1592 of Lecture

Notes in Computer Science, pages 206–222, Springer, Berlin, Heidelberg, 1999. Springer.

[39] A. Kipnis and A. Shamir. Cryptanalysis of the HFE Public Key Cryptosystem by Re-

linearization. In Annual International Cryptology Conference CRYPTO 1999: Advances

in Cryptology (CRYPTO99), volume 1666 of Lecture Notes in Computer Science, pages

19–30, Springer, Berlin, Heidelberg, 1999. Springer.

[40] N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48(177):203–209,

1987.

[41] P. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In Annual International

Cryptology Conference CRYPTO 1999: Advances in Cryptology (CRYPTO 99), volume

1666 of Lecture Notes in Computer Science, pages 388–397, Springer, Berlin, Heidelberg,

1999. Springer.

[42] P. C. Kocher. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and

Other Systems. In Annual International Cryptology Conference CRYPTO 1996: Advances

in Cryptology (CRYPTO’96), volume 1109 of Lecture Notes in Computer Science, pages

104–113, Springer, Berlin, Heidelberg, August 1996. Springer.

[43] L. Lamport. Constructing digital signatures from a one-way function. Technical Report

SRI-CSL-98, 1, October 1979.

[44] K. Lauter. Postquantum Opportunities: Lattices, Homomorphic Encryption, and Super-

singular Isogeny Graphs. IEEE Security & Privacy, 15(4):22–27, August 2017.

[45] M. Lee, J. E. Song, D. Choi, and D.-G. Han. Countermeasures against Power Analysis

Attacks for the NTRU Public Key Cryptosystem. IEICE Transactions on Fundamentals of

61

Electronics, Communications and Computer Sciences, Volume E93.A, Issue 1, pp. 153-163

(2010)., E93.A(1):153–163, 2010.

[46] B. Liu and H. Wu. Efficient Architecture and Implementation for NTRUEncrypt System.

In 2015 IEEE 58th International Midwest Symposium on Circuits and Systems (MWSCAS),

pages 1–4, Fort Collins, CO, USA, 2-5 August 2015. IEEE.

[47] V. Lyubashevsky, C. Peikert, and O. Regev. On Ideal Lattices and Learning with Errors

over Rings. In Annual International Conference on the Theory and Applications of Cryp-

tographic Techniques EUROCRYPT 2010: Advances in Cryptology – EUROCRYPT 2010,

volume 6110 of Lecture Notes in Computer Science, pages 1–23, Springer, Berlin, Heidel-

berg, 2010. Springer.

[48] E. Martı́n-López, A. Laing, T. Lawson, R. Alvarez, X.-Q. Zhou, and J. L. O’Brien. Ex-

perimental Realization of Shor’s Quantum Factoring Algorithm using qubit Recycling.

International Workshop on Post-Quantum Cryptography PQCrypto 2008: Post-Quantum

Cryptography, 6:773–776, February 2012.

[49] T. Matsumoto and H. Imai. Public Quadratic Polynomial-Tuples for Efficient Signature-

Verification and Message-Encryption. In Workshop on the Theory and Application of of

Cryptographic Techniques EUROCRYPT 1988: Advances in Cryptology EUROCRYPT

88, volume 330 of Lecture Notes in Computer Science, pages 419–453, Springer, Berlin,

Heidelberg, 1988. Springer.

[50] R. J. McEliece. A Public-Key Cryptosystem Based On Algebraic Coding Theory. DSN

Progress Report, 42(44), Januray and Feburary 1978.

[51] R. C. Merkle. Secrecy, Authentication and Public Key Systems / A Certified Digital Signa-

ture. PhD thesis, Dept. of Electrical Engineering, Stanford University, 1979.

[52] R. C. Merkle. A Certified Digital Signature. In Annual International Cryptology Con-

62

ference CRYPTO 1989: Advances in Cryptology (CRYPTO 89), volume 435 of Lecture

Notes in Computer Science, pages 218–238, Springer, New York, NY, 1989. Springer.

[53] M. Nakkar, M. Mahmoud, and A. Youssef. Fault Analysis-resistant Implementation of

Rainbow Signature Scheme. In Proceedings of the 29th International Conference on Mi-

croelectronics, Beirut, Lebanon, 2017. IEEE.

[54] P. Q. Nguyen and O. Regev. Learning a Parallelepiped: Cryptanalysis of GGH and NTRU

Signatures. In Annual International Conference on the Theory and Applications of Cryp-

tographic Techniques EUROCRYPT 2006: Advances in Cryptology – EUROCRYPT 2006,

volume 4004 of Lecture Notes in Computer Science, pages 271–288, Springer, Berlin,

Heidelberg, 2006. Springer.

[55] P. Q. Nguyen and O. Regev. Learning a Parallelepiped: Cryptanalysis of GGH and NTRU

Signatures. Journal of Cryptography, 22(2):139–160, April 2009.

[56] H. Niederreiter. Knapsack Type Cryptosystems and Algebraic Coding Theory. Problems

of Control and Information Theory, 15(2):159–166, 1986.

[57] D. A. Osvik, A. Shamir, and E. Tromer. Cache Attacks and Countermeasures: The Case of

AES. In Cryptographers Track at the RSA Conference CT-RSA 2006: Topics in Cryptology

CT-RSA 2006, volume 3860 of Lecture Notes in Computer Science, pages 1–20, Springer,

Berlin, Heidelberg, 2006. Springer.

[58] E. Oswald, S. Mangard, N. Pramstaller, and V. Rijmen. A Side-Channel Analysis Resistant

Description of the AES S-Box. In International Workshop on Fast Software Encryption

FSE 2005: Fast Software Encryption, volume 3557 of Lecture Notes in Computer Science,

pages 413–423, Springer, Berlin, Heidelberg, 2005. Springer.

[59] J. Patarin. Cryptanalysis of the Matsumoto and Imai Public Key Scheme of Eurocrypt88.

In Annual International Cryptology Conference CRYPTO 1999: Advances in Cryptol-

63

ogy (CRYPTO 95), volume 963 of Lecture Notes in Computer Science, pages 248–261,

Springer, Berlin, Heidelberg, 1995. Springer.

[60] J. Patarin. Hidden Fields Equations (HFE) and Isomorphisms of Polynomials(IP): Two

New Families of Asymmetric Algorithms. In Proceedings of the International Conference

on the Theory and Application of Cryptographic Techniques (EUROCRYPT’96), volume

1070 of Lecture Notes in Computer Science, pages 33–48, Springer, Berlin, Heidelberg,

1996. Springer.

[61] O. Regev. On Lattices, Learning With Errors, Random Linear Codes, and Cryptogra-

phy. In STOC ’05 Proceedings of the thirty-seventh annual ACM symposium on Theory of

computing, pages 84–93, Baltimore, MD, USA, May 22-24 2005. ACM.

[62] O. Reparaz, S. S. Roy, F. Vercauteren, and I. Verbauwhede. A Masked Ring-LWE Im-

plementation. In International Workshop on Cryptographic Hardware and Embedded

Systems CHES 2015: Cryptographic Hardware and Embedded Systems – CHES 2015,

volume 9293, pages 683–702, Springer, Berlin, Heidelberg, September 2015. Springer.

[63] R. L. Rivest, A. Shamir, and L. M. Adleman. A Method for Obtaining Digital Signatures

and Public-key Cryptosystems. Communications of the ACM, 21(2):120–126, Feburary

1978.

[64] SAFECRYPTO. Secure Architectures of Future Emerging Cryptography (SAFECrytpo).

https://www.safecrypto.eu/, April, 2016. Online.

[65] N. Sendrier. Code-Based Cryptography: State of the Art and Perspectives. IEEE Security

& Privacy, 15(4):44–50, August 2017.

[66] A. Shamir. Efficient Signature Schemes Based on Birational Permutations. In An-

nual International Cryptology Conference CRYPTO 1993: Advances in Cryptology

(CRYPTO’93), volume 773 of Lecture Notes in Computer Science, pages 1–12, Springer,

Berlin, Heidelberg, 1993. Springer.

64

[67] P. Shor. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on

a Quantum Computer. SIAM Journal on Computing, 26(5):1484–1509, Oct. 1997.

[68] A. Singh. Polynomial vs. Exponential Running Time. http://www.

superwits.com/library/design-analysis-of-algorithm/

course-content-daa/polynomialvsexponentialrunningtime, Nove-

meber, 2013. Online.

[69] M. Sipser. Introduction to the Theory of Computation. Course Technology Inc, ISBN

0-619-21764-2., 2006.

[70] S. Tang, H. Yi, J. Ding, H. Chen, and G. Chen. High-Speed Hardware Implementation

of Rainbow Signature on FPGAs. In International Workshop on Post-Quantum Cryptog-

raphy PQCrypto 2011: Post-Quantum Cryptography, volume 7071 of Lecture Notes in

Computer Science, pages 228–243, Springer, Berlin, Heidelberg, 2011. Springer.

[71] S. Tsujii, T. Itoh, A. Fujioka, K. Kurosawa, and T. Matsumoto. Public-key cryptosystem

based on the difficulty of solving a system of nonlinear equations. Electronics Letters, 23

(11):558–560, May 21 1987.

[72] L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, and I. L.

Chuang. Experimental realization of shor’s quantum factoring algorithm using nuclear

magnetic resonance. International Workshop on Post-Quantum Cryptography PQCrypto

2008: Post-Quantum Cryptography, 414:883–887, Decemeber 2001.

[73] K. Wilhelm. Aspects of Hardware Methodologies for the NTRU Public Key Cryptosystem.

Master’s thesis, Kate Gleason College of Engineering, Rochester Institute of Technology,

Rochester, NY, USA, 2008.

65

