21 research outputs found

    Statistical multiplexing and connection admission control in ATM networks

    Get PDF
    Asynchronous Transfer Mode (ATM) technology is widely employed for the transport of network traffic, and has the potential to be the base technology for the next generation of global communications. Connection Admission Control (CAC) is the effective traffic control mechanism which is necessary in ATM networks in order to avoid possible congestion at each network node and to achieve the Quality-of-Service (QoS) requested by each connection. CAC determines whether or not the network should accept a new connection. A new connection will only be accepted if the network has sufficient resources to meet its QoS requirements without affecting the QoS commitments already made by the network for existing connections. The design of a high-performance CAC is based on an in-depth understanding of the statistical characteristics of the traffic sources

    Bits of Internet traffic control

    Get PDF
    In this work, we consider four problems in the context of Internet traffic control. The first problem is to understand when and why a sender that implements an equation-based rate control would be TCP-friendly, or not—a sender is said to be TCP-friendly if, under the same operating conditions, its long-term average send rate does not exceed that of a TCP sender. It is an established axiom that some senders in the Internet would need to be TCP-friendly. An equation-based rate control sender plugs-in some on-line estimates of the loss-event rate and an expected round-trip time in a TCP throughput formula, and then at some points in time sets its send rate to such computed values. Conventional wisdom held that if a sender adjusts its send rate as just described, then it would be TCP-friendly. We show exact analysis that tells us when we should expect an equation-based rate control to be TCP-friendly, and in some cases excessively so. We show experimental evidence and identify the causes that, in a realistic scenario, make an equation-based rate control grossly non-TCP-friendly. Our second problem is to understand the throughput achieved by another family of send rate controls—we termed these "increase-decrease controls," with additive-increase/multiplicative-decrease as a special case. One issue that we consider is the allocation of long-term average send rates among senders that adjust their send rates by an additive-increase/multiplicative-decrease control, in a network of links with arbitrary fixed routes, and arbitrary round-trip times. We show what the resulting send rate allocation is. This result advances the state-of-the-art in understanding the fairness of the rate allocation in presence of arbitrary round-trip times. We also consider the design of an increase-decrease control to achieve a given target loss-throughput function. We show that if we design some increase-decrease controls under a commonly used reference loss process—a sequence of constant inter-loss event times—then we know that these controls would overshoot their target loss-throughput function, for some more general loss processes. A reason to study the design problem is to construct an increase-decrease control that would be friendly to some other control, TCP, for instance. The third problem that we consider is how to obtain probabilistic bounds on performance for nodes that conform to the per-hop-behavior of Expedited Forwarding, a service of differentiated services Internet. Under the assumption that the arrival process to a node consists of flows that are individually regulated (as it is commonplace with Expedited Forwarding) and the flows are stochastically independent, we obtained probabilistic bounds on backlog, delay, and loss. We apply our single-node performance bounds to a network of nodes. Having good probabilistic bounds on the performance of nodes that conform to the per-hop-behavior of Expedited Forwarding, would enable a dimensioning of those networks more effectively, than by using some deterministic worst-case performance bounds. Our last problem is on the latency of an input-queued switch that implements a decomposition-based scheduler. With decomposition-based schedulers, we are given a rate demand matrix to be offered by a switch in the long-term between the switch input/output port pairs. A given rate demand matrix is, by some standard techniques, decomposed into a set of permutation matrices that define the connectivity of the input/output port pairs. The problem is how to construct a schedule of the permutation matrices such that the schedule offers a small latency for each input/output port pair of the switch. We obtain bounds on the latency for some schedulers that are in many situations smaller than a best-known bound. It is important to be able to design switches with bounds on their latencies in order to provide guarantees on delay-jitter

    Resource-Efficient Real-Time Scheduling Using Credit-Controlled Static-Priority Arbitration

    Full text link

    Queueing Systems with Heavy Tails

    Get PDF

    Simulation and analysis of adaptive routing and flow control in wide area communication networks

    Get PDF
    This thesis presents the development of new simulation and analytic models for the performance analysis of wide area communication networks. The models are used to analyse adaptive routing and flow control in fully connected circuit switched and sparsely connected packet switched networks. In particular the performance of routing algorithms derived from the L(_R-I) linear learning automata model are assessed for both types of network. A novel architecture using the INMOS Transputer is constructed for simulation of both circuit and packet switched networks in a loosely coupled multi- microprocessor environment. The network topology is mapped onto an identically configured array of processing centres to overcome the processing bottleneck of conventional Von Neumann architecture machines. Previous analytic work in circuit switched work is extended to include both asymmetrical networks and adaptive routing policies. In the analysis of packet switched networks analytic models of adaptive routing and flow control are integrated to produce a powerful, integrated environment for performance analysis The work concludes that routing algorithms based on linear learning automata have significant potential in both fully connected circuit switched networks and sparsely connected packet switched networks

    Wireless transmission protocols using relays for broadcast and information exchange channels

    No full text
    Relays have been used to overcome existing network performance bottlenecks in meeting the growing demand for large bandwidth and high quality of service (QoS) in wireless networks. This thesis proposes several wireless transmission protocols using relays in practical multi-user broadcast and information exchange channels. The main theme is to demonstrate that efficient use of relays provides an additional dimension to improve reliability, throughput, power efficiency and secrecy. First, a spectrally efficient cooperative transmission protocol is proposed for the multiple-input and singleoutput (MISO) broadcast channel to improve the reliability of wireless transmission. The proposed protocol mitigates co-channel interference and provides another dimension to improve the diversity gain. Analytical and simulation results show that outage probability and the diversity and multiplexing tradeoff of the proposed cooperative protocol outperforms the non-cooperative scheme. Second, a two-way relaying protocol is proposed for the multi-pair, two-way relaying channel to improve the throughput and reliability. The proposed protocol enables both the users and the relay to participate in interference cancellation. Several beamforming schemes are proposed for the multi-antenna relay. Analytical and simulation results reveal that the proposed protocol delivers significant improvements in ergodic capacity, outage probability and the diversity and multiplexing tradeoff if compared to existing schemes. Third, a joint beamforming and power management scheme is proposed for multiple-input and multiple-output (MIMO) two-way relaying channel to improve the sum-rate. Network power allocation and power control optimisation problems are formulated and solved using convex optimisation techniques. Simulation results verify that the proposed scheme delivers better sum-rate or consumes lower power when compared to existing schemes. Fourth, two-way secrecy schemes which combine one-time pad and wiretap coding are proposed for the scalar broadcast channel to improve secrecy rate. The proposed schemes utilise the channel reciprocity and employ relays to forward secret messages. Analytical and simulation results reveal that the proposed schemes are able to achieve positive secrecy rates even when the number of users is large. All of these new wireless transmission protocols help to realise better throughput, reliability, power efficiency and secrecy for wireless broadcast and information exchange channels through the efficient use of relays
    corecore