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Chapter 1

Introduction

Queueing theory occupies a prominent role in the performance analysis of a wide range of

systems in computer-communications, logistics, and manufacturing. One of the pillars of

queueing theory is the fact that queues can often be modeled as continuous-time Markov

chains, making extensive use of generalizations of the exponential distribution such as

phase-type distributions. This class of distributions enables a tractable computation of

various characteristics of the queueing model.

However, recent findings have shown that the statistical assumptions underlying this

approach may not always be satisfied in practice. A crucial example is the empirical

finding that traffic in communication networks can exhibit phenomena like self-similarity

and long-range dependence. These phenomena are not present in queues in which all

distributions are phase-type; it has been shown that heavy-tailed distributions are more

appropriate. Similar observations have been made in insurance, a field that has given

rise to quite similar models and problems as queueing. In risk theory, the claim size

distribution is often not phase-type, but heavy-tailed. This monograph analyzes queueing

systems with heavy-tailed input.

This first introductory chapter serves as further background to motivate the study of

such queueing systems, and is organized as follows: In Section 1.1 we introduce long-

range dependence, self-similarity, and heavy tails, and discuss the

relevance of these concepts in modeling communication networks. Section 1.2 reviews the

standard queueing models, in particular the single-server queue and the fluid queue; both

are key objects of study in this monograph. The first two sections are tied together in

Section 1.3, where we argue that queueing models with heavy-tailed input are appropri-

ate for incorporating the phenomena discussed in Section 1.1. Section 1.4 is concerned

with the analysis of queues with heavy-tailed input, in particular with large-deviations

probabilities in the regime of large buffers. Section 1.5 gives an overview of several other

possible approaches. In particular, this section discusses other asymptotic approaches,

non-asymptotic approaches, and other traffic models. A more detailed exposition of the

contents of this monograph can be found in Section 1.6.

1



2 CHAPTER 1. INTRODUCTION

1.1 Long-range dependence, self-similarity and heavy

tails

In this section we give a short introduction to the occurrence of self-similarity and long-

range dependence in communication network traffic. More extensive treatments can be

found in e.g. Park & Willinger [223] and Adler et al. [11].

1.1.1 Traffic measurements

In recent years, it has become possible to collect large amounts of high-quality measure-

ment data on traffic in communication networks. Many of these data sets have been used

to validate the traditional statistical assumptions made when analyzing such networks.

These assumptions contain the premise that network traffic can be described by Marko-

vian models. This implies that autocorrelations in network traffic decay exponentially

fast. This kind of traffic behaves smoothly over long time scales.

It came as a shock when it was found that these traditional (Markovian) assumptions

are not always satisfied. A careful statistical analysis in Leland et al. [181] showed that

Ethernet LAN traffic at Bellcore exhibits properties like self-similarity and long-range

dependence (LRD). In particular, this traffic behaves extremely bursty on a wide range

of time scales.

This burstiness property is clearly illustrated by Figure 1.1 below (taken from [181]).

The left part of this figure shows actual traces of Ethernet LAN traffic. Starting with

a time unit of 100 seconds, each subsequent plot is obtained from the previous one by

increasing the time resolution by a factor of 10 and by zooming in on a randomly chosen

subinterval (a darker shaded area in the figure). The figure clearly shows that the observed

traffic trace is bursty on all time scales. This is in stark contrast with traffic simulated

from conventional traffic models. The right part of Figure 1.1 shows a trace obtained

by simulating a conventional traffic model (based on exponential assumptions) with the

same arrival intensity and average packet size. This traffic behaves smoothly on large

time scales.

Further statistical analysis of the correlation structure of measured network traffic shows

that its autocorrelation function decays extremely slowly. This property is closely related

to the notion of long-range dependence.

The properties of long-range dependence and self-similarity are defined as follows.

Long-range dependence

Let X = {X(t), t ≥ 0} be some strictly stationary stochastic process. Typically, X(t)

may be thought of as the rate of network traffic generated at time t. The cumulative

amount of traffic up to time t is given by T (t) =
∫ t
0
X(u)du. Define the autocorrelation
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4 CHAPTER 1. INTRODUCTION

function

c(t) = Cov{X(s), X(s+ t)}/Var{X(s)}.

The following definition is standard, see e.g. Cox [106].

Definition 1.1.1 X is short-range dependent if
∫∞
0
|c(t)|dt < ∞. If

∫∞
0
|c(t)|dt = ∞,

then X is long-range dependent.

There are other (strongly related) definitions of long-range dependence.

For example, cf. Beran [36], X is long-range dependent if the autocorrelation function

c(·) shows a particular type of power-law behavior:

c(t) ∼ c0t
−α, 0 < α < 1. (1.1)

(With f(x) ∼ g(x) we mean f(x)/g(x)→ 1 as x→∞.) Traditional assumptions typically

imply that c(t) decreases negative-exponentially in t: c(t) ∼ c0e
−γt. The above definition

of long-range dependence is intimately related to the behavior of the variance of the

cumulative traffic process T (t). The identity

Var{T (t)} = 2

∫ t

0

∫ u

0

c(v)dvdu, (1.2)

shows that the variance of T (t) behaves linear in t if X is short-range dependent, and

superlinear in t if X is long-range dependent. In particular, if (1.1) holds, then

Var{T (t)} ∼ c1t
2−α, (1.3)

where c1 can be expressed in terms of α and c0.

Self-similarity

A second key property is self-similarity, which is defined as follows (see e.g. Samorodnitsky

& Taqqu [246]).

Definition 1.1.2 A stochastic process X = {X(t), t ≥ 0} is (strictly) self-similar with

parameter H if {X(t), t ≥ 0} and {γ−HX(γt), t ≥ 0} have the same finite-dimensional

distributions for any γ > 0.

Note that a self-similar process is non-stationary. The concept of self-similarity became

popular due to the work of Mandelbrot, see e.g. [192, 193]. If X is self-similar with

parameter H, then

Var{X(t)} = t2HVar{X(1)}. (1.4)
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Any process X satisfying this property is called second-order self-similar. An even weaker

form of self-similarity is asymptotic second-order self-similarity (which is also defined for

discrete-time processes). X satisfies this property if a suitably centered and normalized

version of {X(γt), t ≥ 0} converges to a self-similar process when γ → ∞. A formal

definition may be found in Chapter 1 of [223].

The notions of self-similarity and long-range dependence are related in some examples,

but not equivalent. For instance, Brownian motion is self-similar (with H = 1
2
) but not

long-range dependent. Conversely, there are also long-range dependent processes which

are not self-similar, see [223].

If H > 1
2
, then the definitions of asymptotic self-similarity and long-range dependence

are equivalent, see Chapter 1 in [223]. For our purposes, it suffices to give an intuitive

explanation: If T (·) is self-similar with Hurst parameter H, then

Var{T (t)} ∼ c2t
2H . (1.5)

Hence, the variance of T (t) behaves superlinear in t if H > 1
2
, and the constants H and

α are related by the identity H = (2− α)/2. In view of this equivalence, we often refrain

from mentioning self-similarity explicitly and just speak of long-range dependence

(or even just use the acronym LRD).

1.1.2 Explaining long-range dependence via heavy tails

As mentioned earlier, there is now mounting statistical evidence that network traffic is

self-similar and long-range dependent.

Besides the paper [181], other studies confirm these properties. See e.g. Willinger et al.

[277] for traffic in Local-Area Networks, Paxson & Floyd [228] for traffic in Wide Area

Networks and Beran et al. [37] for VBR video traffic. More references can be found in

the recent monograph [223].

All these properties are examined at the packet level. A number of studies tried to explain

these results by examining quantities related to network traffic at a much higher level of

aggregation, particularly the application level. At this level, basic entities are file sizes,

connection times, transmission times, etc.

Several studies at this level indicate that long-range dependence may be caused by heavy-

tailedness of certain traffic characteristics. Crovella & Bestavros [108] show that file sizes

and transmission times of files in the Internet are power-tailed with infinite variance: Let

Y be a generic file size or transmission time. Then, typically,

P{Y > t} ∼ c3t
−α, 0 < α < 2. (1.6)

The infinite-variance property of various quantities in network traffic has been indepen-

dently confirmed by a number of other studies, see e.g. Crovella et al. [109], Willinger
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et al. [278], and references therein. Most of the above studies conclude that the mean of

the above quantities is finite, but this may not always be the case. Resnick & Rootzén

[237] statistically show that the mean of file sizes may also be infinite. Other character-

istics of network traffic which are heavy-tailed include CPU times, idle times, peak rates,

connection times and more; see again the monograph [223].

Heavy tails and LRD are intimately related. The canonical On-Off process for example

(to be introduced in Subsection 1.2.2), is LRD if and only if (iff) the On- or Off-time has

infinite variance, see Theorem 3.9 of Boxma & Dumas [67].

An important observation is that LRDmay be due to heavy-tailedness of basic user-related

characteristics (e.g., heavy-tailedness of files is a consequence of consumer demand), see

Crovella et al. [109] for a discussion. Besides user behavior, there may still be other

causes of LRD, such as traffic control mechanisms like the Transmission Control Protocol

(TCP) used in the Internet, see Figueredo et al. [132].

1.2 Queueing models

Queues naturally arise in situations where there is competition for some “scarce resource”.

A typical example of a queue is the counter at the supermarket or the post-office, where

customers are waiting until they receive their service. Congestion usually occurs because

customer arrivals are random in nature. In addition, the time it takes to serve a customer is

also often random. Apart from the counter-example above, queues also arise in situations

where the basic entities are not customers, but packets at a link in a communication

network, or jobs in a production system.

The queueing problems in this thesis are all motivated by problems in communication

networks. Queueing theory has been quite a successful tool in the performance analysis

of such networks. In fact, new results in queueing theory have often been inspired by new

technological advances in computer-communications.

A classical example is the celebrated Erlang loss model, first studied by A.K. Erlang [127]

in the beginning of the 20th century in the context of telephone networks. The Erlang loss

formula has been and still is applied in a wide variety of problems. Another successful

branch of queueing theory is the study of networks of queues motivated by computer-

communication systems evolving in the 60’s and 70’s, which led to milestones like Baskett

et al. [34] and Kelly [169].

Important monographs on queueing theory (and related subjects) include Asmussen [19],

Cohen [97], Kleinrock [174], and Tijms [266]. A recent book focusing on the role of queue-

ing theory in the performance analysis of computer-communication systems is Walrand

& Varaiya [270].

In the following two subsections, we further elaborate on the queueing models studied in

this thesis: (i) The single-server queue, and (ii) the fluid queue.
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1.2.1 The single-server queue

The most elementary queueing model is the single-server queue. In this model, customers

arrive at the queue one at a time. The time between the arrivals of two consecutive

customers is called the interarrival time. A common assumption is that the sequence

of interarrival times consists of independent and identically distributed (i.i.d.) random

variables.

There is one server, which works at a constant speed c whenever there are customers in

the system. Similarly to the interarrival times, the service times of customers are usually

assumed to form an i.i.d. sequence of random variables. Moreover, the sequences of

interarrival times and service times are independent. After a customer has received its

full service requirement, it leaves the system.

The above-described queueing model is usually called the G/G/1 queue. This notation

was introduced by Kendall [170]. The first G means that the interarrival time distribution

may be of a general form; the second G indicates the same for the service time distribution.

If one wishes to stress the independence of interarrival times and service times, then one

sometimes writes GI/GI/1 or GI/G/1. If the interarrival time distribution is exponential

(i.e., if the arrival process is Poisson), then one speaks of the M/G/1 queue (with M

abbreviating ‘memoryless’ or ‘Markovian’). Many extensions of this model exist. In

Chapter 4 for example, we consider a queue in which the total work in the system is

bounded by K; we shall refer to this system as the G/G/1/K queue.

As mentioned before, the server works at speed c as long as there is work in the system.

This information is enough to describe the evolution of the total amount of unfinished

work in the system (also called the buffer content or the workload). Other important

performance measures are the number of customers in the queue and the waiting and

sojourn times of customers. These processes are in addition governed by the service

discipline. The most common service discipline is First Come First Served, abbreviated

as FCFS. Other important service disciplines are Last Come First Served (LCFS) and

Processor Sharing (PS). If the server operates according to the PS discipline, then it

simultaneously serves all (say n) customers in the system at the same speed (c/n). PS

queues are investigated in Chapter 3 of this thesis.

The single-server queue is a central model in applied probability. Problems in, for example,

inventory and risk theory can often be reformulated as queueing problems (and vice versa).

A key example is the equivalence between waiting-time probabilities in the G/G/1 queue

with FCFS service and ruin probabilities in insurance risk models, see e.g. Asmussen

[19, 29].

1.2.2 The fluid queue

Traffic in today’s communication networks is heterogeneous in nature, not only consisting

of voice traffic, but also of video and data. In addition, network traffic is inherently bursty
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(as already stressed in Section 1.1). Traditional telephone networks are not flexible enough

to cope with this burstiness and heterogeneity, as they assign a fixed amount of capacity

(one channel) to each connection.

Hence, for these reasons, modern communication networks like ATM (Asynchronous

Transfer Mode) and IP (Internet Protocol) networks operate in a more flexible way. Basic

entities are not calls or connections, but packets.

Packet-switched networks can be studied on various time scales, see e.g. Hui [158] and

Roberts et al. [241]. The burstiness of network traffic is explicitly modeled on the burst

scale. On this time scale, traffic is modeled as a continuous fluid flow, thus neglecting the

discrete nature of relatively small packets. In particular, a popular way of modeling bursty

traffic is by means of an On-Off source. An On-Off source generates traffic at constant

rate during On-periods, and no traffic during Off-periods. This has motivated the study of

queueing models fed by a superposition of On-Off sources. From a queueing perspective,

the main difference with ordinary queues is that work does not arrive instantaneously,

but gradually over time.

The seminal paper which made the above fluid model the paradigm for modeling bursty

traffic is Anick, Mitra, & Sondhi [16], where an explicit expression for the steady-state

buffer content (workload) distribution is derived. The model considered in [16] was already

studied earlier in a series of papers by Kosten [178, 179], Cohen [91, 99], and others.

The papers [16, 178] both consider a queue fed by the superposition of several homoge-

neous On-Off sources with exponentially distributed On- and Off-periods. Subsequent

work extended the model in various directions, such as heterogeneous source characteris-

tics, several source states to account for various activity levels, or activity periods with

a general Markovian structure, see for instance Kosten [179], Mitra [210], and Stern &

Elwalid [261].

The buffer content in fluid queues with generally distributed On- and Off-periods is studied

by Cohen [91, 99]. Unfortunately, these papers make the assumption that a single On-

period is sufficient for the buffer to fill. In general, the service rate of the queue is so large

that several simultaneous On-periods are necessary for this to occur. Exact queueing

analysis appears to be very hard in this general case.

More references on fluid queues can be found in the survey paper of Kulkarni [180], see

also the thesis of Scheinhardt [250].

1.3 Long-range dependence and queues

In this section, we tie both previous sections together and incorporate LRD in a queueing

model. We propose to model network traffic by one of the traffic processes described

in the previous section. Indeed, from the queueing point of view, the most natural way

to incorporate LRD in a traffic model is by simply allowing the input into a queue to

have heavy-tailed characteristics. Other possible traffic models are briefly discussed in
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Section 1.5.3.

In Section 1.1 we already mentioned that statistical analysis at the application level

showed that various quantities, such as file sizes, have heavy-tailed distributions. In

the queueing context, this naturally translates into heavy-tailed interarrival and/or ser-

vice times in the single-server queue, or to heavy-tailed On- and/or Off-periods in the

fluid queue. For the On-Off model with generic On-time A and Off-time U , this im-

plies LRD: Heath et al. [152] have shown that the autocovariance function satisfies

c(t) ∼ c4t
1−min{αA,αU} if P{A > x} ∼ cAt

−αA and P{U > x} ∼ cU t
−αU . Hence, if

αA < 2 or αU < 2, then the On-Off process is LRD. A related result can be found in

Boxma & Dumas [67]. Other processes in (fluid) queues and queueing networks can also

be LRD. Anantharam [14] shows that LRD input may propagate through a queueing

network. Similar insights can be found in Boxma & Dumas [68], who consider the output

process (busy period) of a fluid queue (see also Chapter 5 in this monograph). It is shown

in [68] that the output of the fluid queue exhibits LRD if and only if the input process

does, see also Chapter 5 of this thesis. Similar conclusions hold for finite-buffer systems,

see Vamvakos & Anantharam [268]. A survey on the literature on (fluid) queues with

heavy-tailed input (up to 1998) can be found in Boxma & Dumas [67].

1.4 Queueing systems with heavy tails

In the previous sections we gave an introduction to the occurrence of LRD network traffic,

and described how this phenomenon can be attributed to heavy-tailedness of various

quantities like file sizes. These observations motivate the analysis of queueing systems

where some of the underlying variables (e.g. service times) are heavy-tailed. We are

not only interested in heavy tails with infinite variance as in (1.6), but in any kind of

tail which is heavier than a negative exponential; see Chapter 2 for convenient classes of

heavy-tailed distributions. In the remainder of this monograph the analysis of queueing

systems with heavy tails will play a central role.

The purpose of the present section is to elaborate upon our approach to analyze these

queueing systems. Almost all results in this thesis are asymptotic expansions for tail

probabilities in the large-buffer regime, as is described in Subsection 1.4.1. Further back-

ground and literature is provided in Subsection 1.4.2. Some limitations are discussed in

Subsection 1.4.3.

1.4.1 The asymptotic approach

In general, there are many ways to analyze queueing systems. For example, Cohen &

Boxma [98] make a distinction between the following approaches: (i) Exact analysis;

(ii) numerical analysis; (iii) (asymptotic) approximations; (iv) experimental analysis and

simulation.
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This thesis is mainly concerned with asymptotics. Suppose that X is some random vari-

able in a queueing model, e.g. the waiting time in a single server queue or the workload

in a fluid queue. The central topic of this thesis is the development of asymptotic approx-

imations for P{X > x} in the regime x→∞ for queues with heavy-tailed input.

The above topic can be viewed as classical in queueing theory, but has been considered

mostly for queueing systems with light-tailed input. Asymptotic results for queues with

heavy tails are limited, especially for fluid queues (see also Chapter 2). Many theoretically

challenging problems in this area are not well understood.

Besides the wish to tackle some of these problems, there are several reasons to consider

asymptotics. An exact analysis may be impossible or may lead to cumbersome expressions.

In this case, one needs to make some kind of approximation. This is especially the case

when heavy-tailed distributions are involved: As mentioned before, this prohibits the use

of phase-type distributions.

The reason for considering approximations in the regime x→∞ is motivated by Quality-

of-Service requirements in communication networks. These typically include loss probabil-

ities of the order 10−6 or less. Such small probabilities may be covered by the asymptotic

regime x→∞. Another benefit of studying asymptotics is that they often lead to simple

and important qualitative insights in how the event {X > x} occurs.

1.4.2 Background on asymptotics

Asymptotic analysis has a rich tradition in queueing and insurance. Classical is the work

of Cramèr [107] and Lundberg [191], see Asmussen [29] for a recent account from the

insurance risk viewpoint. The literature on asymptotics in (fluid) queues is voluminous,

see e.g. Asmussen [19, 29], Feller [131], Tijms [266], and more, e.g. the Ph.D theses of

Mandjes [194] and Van Ommeren [218].

There are several types of asymptotics which can be considered. If X is the waiting time

or workload in some (fluid) queue, then the typical result is of the form

P{X > x} ∼ Ce−θf(x). (4.1)

When the input is Markovian, one usually has f(x) = x, implying that the tail of X is

exponential. Most queueing papers assume f(x) to be linear. Note that X is power-tailed

if f(x) = log x. A thorough treatment of the case f(x) = x was given by Asmussen [18]

for waiting times in single-server queues and by the same author [20] for workloads in

fluid queues. These papers also contain further references.

The above result gives a description of the exact tail asymptotics of X. In many cases,

it is difficult to obtain the exact asymptotics and then one often considers logarithmic

asymptotics. These have the form

logP{X > x} ∼ −θf(x). (4.2)
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It is not surprising that logarithmic asymptotics (can be proven to) hold in considerably

greater generality than exact asymptotics. In the single-server queue for example, it is not

necessary to assume that the service times are independent for (4.2) to hold, see Glynn &

Whitt [138]. This important paper considers the light-tailed case f(x) = x. Results for

general f(x) can be found in Duffield & O’Connell [117].

A third type of asymptotic result, which can be viewed as an intermediate case between

exact and logarithmic asymptotics are (asymptotic) bounds, of the form

C−e
−θf(x) ≤ P{X > x} ≤ C+e

−θf(x). (4.3)

Bounds are useful when it is difficult to prove exact asymptotics, or when the pre-factor

C is too difficult to compute. Bounds for light-tailed fluid models can be found in e.g.

Gautam et al. [136], Palmowski & Rolski [220], and Palmowski [221]. Bounds for the

heavy-tailed case can be found in Dumas & Simonian [120], Likhanov [184], and Likhanov

& Mazumdar [185]. More exact asymptotics for the heavy-tailed regime can be found in

the next chapter.

1.4.3 Limitations

We now discuss some practical as well as nearly philosophical issues which may arise in

relation to the study of large-buffer asymptotics in queues with heavy tails.

In queues with phase-type service-time distributions, the accuracy of large-buffer asymp-

totics is usually good, since the speed of convergence of the asymptote to the true value

is exponentially fast. This is not the case when heavy-tailed distributions are considered.

Typically, the speed of convergence is linear, see Mikosch & Nagaev [207], but it can be

even worse [205, 207]. We refer to Abate & Whitt [2] and Kalashnikov [166] for illustrative

numerical examples. Thus, the asymptotic expansions as developed in this thesis should

be handled with care. Furthermore, these asymptotics tend to underestimate the true

value, see [2].

The justification of the regime underlying the asymptotic approximation is also of rele-

vance in practice. In some cases, other asymptotic regimes (like the many-sources regime

discussed below) may provide a more natural choice.

Another problem is the usual assumption that queues operate in steady state. When

one wishes to view the steady-state distribution as an approximation of the transient

distribution, one should realize that convergence of the transient distribution to steady

state can be quite slow in the heavy-tailed case, see Asmussen & Teugels [23].

1.5 Other approaches

The previous two sections reduced the study of congestion and LRD network traffic to

large-buffer asymptotics in queues with heavy tails. This section gives an overview of

several possible different ways to analyze LRD in communication networks.
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Since this thesis is about large-buffer asymptotics in queues with heavy tails, we divide

this section into four parts, which are ordered in increasing level of aggregation. In

the first subsection, we review some different asymptotic regimes (as opposed to large-

buffer asymptotics). The second subsection does not consider asymptotics, but other

approaches, like exact analysis, numerical analysis, and simulation; all in the context of

queueing theory. Subsection 1.5.3 does not consider queues, but other traffic models for

analyzing LRD in communication networks. Finally, the last subsection examines the

practical relevance of LRD in these networks.

1.5.1 Other asymptotic regimes

The asymptotics studied in this thesis are usually referred to as large-buffer asymptotics,

as they typically involve the build-up of a large buffer content. One may also consider

various other types of asymptotic regimes which are of interest to queueing theory and

performance analysis. Below, we mention a number of alternative asymptotic regimes,

with a view towards heavy tails.

Many-sources asymptotics

Consider the fluid queue with capacity c, fed by n identical On-Off sources. If a large

number of sources are multiplexed (which often occurs in practice), then it is natural to

consider what happens when the number of sources n tends to infinity. To get a non-trivial

limit, one needs to scale c proportionally in n: c = nc′, with c′ the capacity per source.

Thus, we consider a sequence of models. Let V (n) be the workload in the n-th model,

fed by n On-Off sources and with capacity nc′. Under certain regularity conditions the

following result holds,

lim
n→∞

1

n
logP{V (n) > nx} = −I(x),

for some function I(x) which is called the loss curve. The above limiting procedure was

originally proposed in Weiss [271] and has been popularized and generalized since then,

see e.g. Shwartz & Weiss [254], Botvitch & Duffield [62], Courcoubetis & Weber [105],

Mandjes & Ridder [197], and Wischik [279].

In the context of queues with heavy tails, an important breakthrough was made by

Likhanov & Mazumdar [183], who significantly relaxed the conditions under which the

above asymptotics hold. As is shown in Mandjes & Borst [195], these conditions are

satisfied by On-Off sources with heavy-tailed On-periods. Likhanov & Mazumdar also

strengthen the above limiting result by obtaining the exact asymptotics.

A disadvantage is that I(x) is not very explicit in general; it is the solution of some

variational problem. Several authors have studied properties of the function I(x). For the

case of On-Off sources with heavy-tailed On-periods, see Mandjes & Borst [195] (x→∞),

and Mandjes & Kim [196] (x ↓ 0).
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Important related work is that of Duffield [119] (see also Mandjes [198]), who considers

a class of fluid queues with M/G/∞ input (an infinite number of sources) and a limiting

regime which is similar to the many-sources scaling. This type of input is also considered

in this thesis, see Chapter 8.

Heavy-traffic limits

Consider the steady-state waiting-time distribution W in the single-server queue with

service speed 1. Let ρ be the mean amount of work offered to the system per time unit.

For convenience, index W = Wρ. If ρ ≥ 1, then the system is unstable and the steady-

state waiting-time distribution does not exist. However, it is possible to consider the

regime ρ ↑ 1, by properly scaling the workload Wρ. The typical result is: If the service-

time distribution has finite variance, then (1− ρ)Wρ converges to a random variable with

an exponential distribution, see e.g. Kingman [173], Borovkov [48], Iglehart [159], and

Whitt [272].

The above result does not hold if the service time distribution is regularly varying (see

Chapter 2) with infinite variance. This case was treated by Boxma & Cohen [71, 75],

Cohen [100, 102], Furrer et al. [135], and Resnick & Samorodnitksy [238]. The typical

result in these papers is that a properly scaled version of Wρ converges weakly to the

supremum of a an infinite variance stable Lévy motion. which has the Mittag-Leffler

distribution (cf. [135]) . A related result is that a suitably time-scaled and normalized

version of the transient workload process converges (in a carefully chosen topology) to a

Lévy process. It is important to note that the scaling is different from the finite-variance

case. If the service-time distribution is Pareto with index −ν, 1 < ν < 2 (see Chapter 2),

then the scaling factor is (1− ρ)
1

ν−1 .

If one considers the fluid queue with n On-Off sources, then there are two possible scalings

for the cumulative input process. A first option is to first scale time (t→∞) and then the

number of sources (n→∞). In this case the limiting process is an infinite variance stable

Lévy motion, see Taqqu et al. [264]. Another possible scaling is to first scale the number

of sources (n → ∞) and then time (t → ∞). This scaling leads to Fractional Brownian

Motion (FBM) and has already been known since Taqqu [263]. For On-Off sources, key

references are Willinger et al. [277] and Brichet et al. [79]. These results establish a

fundamental link between FBM and the On-Off model, and provide additional insight

into the relation between the observed self-similarity and heavy-tailedness in network

traffic.

The above two scalings lead to entirely different limiting processes. Mikosch et al. [206]

consider the case where n, t→∞ simultaneously. It is also possible to combine the heavy-

traffic limiting regimes with large-buffer or many-sources asymptotics, see e.g. Section 15

in Cohen [104], and Wischik [280].

Additional useful references on heavy traffic and heavy tails are Stegeman [259], and the

monographs of Samorodnitsky & Taqqu [246] and Whitt [275].
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1.5.2 Non-asymptotic approaches

Besides asymptotics, there are also several other approaches. These are partly motivated

by the issues mentioned in Subsection 1.4.3, but are also interesting from a mathematical

point of view.

Most of the approaches below are restricted to the waiting time W in the M/G/1 queue.

Since asymptotic expansions for P{W > x} may behave poorly for moderate values of x,

it is worth looking for more explicit solutions and exploring other approaches. Below we

will make a distinction between (i) Exact analysis; (ii) Bounds and multiterm asymptotic

expansions; (iii) Numerical analysis; (iv) Rare-event simulation.

Exact analysis

Consider the stationary waiting time W in the M/G/1 queue. An explicit expression for

the transform of W is well-known, but convenient expressions for the distribution of W

are in general restricted to phase-type service-time distributions.

An exception is provided by Boxma & Cohen [69], who found an explicit expression for

P{W > x} for a particular choice of the service time B. This result has been generalized

by Abate & Whitt [6]. Related results can be found in Gaver & Jacobs [137].

Multi-term expansions and bounds

To strike a balance between the difficulties in deriving exact expressions for P{W > x} and
the limited accuracy of the (single-term) asymptotic expansions for P{W > x}, several
authors have tried to find multiterm expansions for P{W > x}.
Willekens & Teugels [276] and Abate &Whitt [6] both obtain three-term expansions, using

entirely different (probabilistic vs. transform) methods. In the latter paper, a convenient

class of heavy-tailed distributions (Pareto mixtures of exponentials) is introduced, which

have a tractable transform. Boxma & Cohen [69] introduce another convenient class of

service time distributions with infinite variance and obtain a full series representation of

the waiting-time distribution. Related results may be found in e.g. Borovkov & Borovkov

[52].

All the results above are restricted to power-tailed service time distributions. Kalashnikov

[166] and Kalashnikov & Tsitsiashvili [167] derive lower and upper bounds for the waiting-

time distribution, which have the same asymptotic behavior. These bounds are valid for

a large class of service time distributions (including Weibull distributions as defined in

the next chapter).

Numerical analysis

There exist many tractable numerical algorithms for analyzing queueing systems. Most

of these algorithms assume light-tailed (phase-type) distributions. Numerical analysis
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of queues with heavy tails is still in its infancy; most algorithms are restricted to the

single-server queue.

In a series of papers, Abate & Whitt [2, 7, 8] extend their transform inversion approach

(cf. [1]) to heavy tails, and obtain tractable algorithms for the waiting-time distribution

in the M/G/1 queue. Their results are based on manageable expressions for transforms

of heavy-tailed distributions.

Another way to get computational results is to approximate a heavy-tailed distribution

with a hyperexponential distribution (which can have an arbitrarily large variance), see

e.g. Feldmann & Whitt [130] and Starobinski & Sidi [258]. Although this idea is generally

applicable, it has only been tested for theM/G/1 waiting-time distribution. Even for this

simple model, it seems difficult to give performance guarantees. Nevertheless, a related

approach (using truncated power tail distributions) is proposed in Schwefel & Lipsky [248]

and there applied to analyze the stationary buffer content distribution of a fluid queue

with heavy-tailed On-Off sources.

Rare-event simulation

Rare-event simulation aims to provide reliable estimates of small tail probabilities in e.g.

queueing and insurance risk models. A considerable body of theory exists for the light-

tailed case, see e.g. Asmussen [29], Mandjes [194], and references there. The available

literature in the heavy-tailed case is mainly concerned with ruin probabilities in insurance

risk models, or equivalently, with waiting times in single-server queues.

Asmussen et al. [30] describe several algorithms for the M/G/1 queue which all heavily

rely on the explicit random-sum representation of the M/G/1 waiting time. Boots &

Shahabuddin [46] develop an efficient algorithm for the GI/G/1 queue for Weibullian

service times. The results in [46] have been extended to a much wider class of risk models

in [47].

The most popular technique in rare-event simulation is importance sampling. Unfortu-

nately, the above studies show that severe problems arise when importance sampling is

applied to queues with heavy tails.

1.5.3 Other traffic models

Besides the traditional traffic models in queueing theory, a number of other models have

been proposed to model LRD network traffic. We give a brief overview of these traffic

models; a more thorough treatment can be found in the references cited below.

Chaotic maps

At the time when the performance analysis of systems with LRD input became popular,

there was some activity in the application of non-linear dynamics, see Erramilli et al.
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[128], and Pruthi [231]. Although chaotic maps allow for a concise description of traffic

phenomena (see [67] for some examples), only limited progress has been made so far in

the associated queueing analysis.

Time series

Black-box (ARIMA) time series modeling may also be applied to model network traffic.

There are two options to incorporate LRD or heavy tails. A first option is to allow

the innovations of the ARIMA process to be heavy-tailed. An alternative is to consider

Fractional ARIMA processes, see e.g. Brockwell & Davis [80].

These types of models have a strong tradition among statisticians, but their queueing

analysis is still in its infancy, in spite of a recent paper of Mikosch & Samorodnitsky

[208]. There are also statistically-oriented grounds for considering structural queueing

models instead of black-box models, see e.g. the reply of Paxson & Willinger in Resnick

[234].

Fractional Brownian motion

Another way of modeling LRD network traffic is by Fractional Brownian Motion (FBM)

or another Gaussian process exhibiting LRD. Such a process can then be used as input

process in a fluid queue to study its performance. This approach was proposed by Norros

[212, 213], and has been the subject of several investigations since then. For surveys, see

Debiçki & Rolski [114] and Norros [214].

FBM may also be seen as an approximation of the traffic offered by the superposition

of a large number of On-Off sources with heavy-tailed On-periods. This the canonical

example of the intimate relationship between heavy tails and long-range dependence and

provides a physical explanation of the detected statistical self-similarity. More on this

limiting procedure can be found in Section 1.5.1.

Multifractals

A key parameter in self-similar input traffic is the Hurst parameter H, which determines

the behavior of correlations over various time scales, see (1.4). However, it was found that

over short time scales (100 milliseconds and less) the behavior of network traffic may be

more complex. To account for this behavior, it was proposed to model the second-order

statistics of X as

E{[X(t+ τ)−X(t)]2} ∼ τ 2h(t), τ ↓ 0, t fixed

(with f(x)/g(x) → 1, x ↓ 0, we mean limx↓0 f(x)/g(x) = 1). This is an extension of

the standard self-similar case (1.4), in which case the equation above holds with h(t) =

H − 1. The analysis of multifractional processes is a fascinating new research area. We

confine ourself to mentioning the papers of Mannersalo et al. [199], Abry & Veitch [10],
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and Riedi & Willinger [240]. These papers are mainly concerned with the statistical

analysis of multifractional processes using wavelets; nothing seems to be known about the

performance of queues with multifractional input.

1.5.4 The relevance of LRD in performance analysis

An important practical issue is the impact of LRD on network performance. Conclusions

in the literature are mixed, and critically rely on the specific assumptions that are made.

For large or infinite buffer sizes, several studies indicate that LRD input leads to severe

performance degradation. Erramilli et al. [129] perform an experimental queueing analysis

with existing traffic traces and find that LRD has a significant influence on queueing

behavior. Resnick & Samorodnitsky [235] consider a G/M/1 queue with a dependent

sequence of interarrival times. They demonstrate that dependence in the

interarrival times can lead to a heavy-tailed waiting-time distribution. (Note that the

waiting-time distribution in the GI/M/1 queue is exponential, even if the interarrival time

distribution is heavy-tailed!) Other studies, mostly concerning large-buffer asymptotics

in queueing models with heavy-tailed input, give similar conclusions. The typical result is

that heavy-tailed service times in single-server queues and heavy-tailed On-times in fluid

queues lead to heavy-tailed waiting times and workloads. In particular, an infinite second

moment for the service time in the single-server queue implies an infinite mean for the

waiting time.

For moderate buffer sizes, the impact of LRD is not as pronounced, see Grossglauser &

Bolot [148], Heyman & Lakshman [154], Mandjes & Kim [196], and Ryu & Elwalid [244].

In addition, flow control mechanisms play a critical role in preventing badly-behaved

traffic from overwhelming the buffer content, see Arvidsson & Karlsson [17].

Besides the buffer size and the role played by feedback mechanisms, the performance

impact of LRD also crucially depends on the service discipline. In Chapter 3 of this thesis

it is shown for example that PS gives much better delay performance than FCFS. Borst

et al. [54, 55, 56, 57, 58] obtain similar conclusions for a class of (fluid) queues operating

under the Generalized Processor Sharing (GPS) policy. Another study on scheduling

strategies and LRD is Anantharam [15].

1.6 Overview of the thesis

This section gives an overview of the results in this thesis.

In Chapter 2 we give an introduction to heavy-tailed distributions, and review some

standard techniques and results for heavy-tailed queueing systems which are relevant

in this thesis. We also provide supporting intuitive arguments. The type of intuition is

illustrated with several examples. In particular, we provide an explanation of the waiting-

time asymptotics of Boxma et al. [70] for an M/G/2 queue with heterogeneous servers.



18 CHAPTER 1. INTRODUCTION

In Chapter 3 we derive the sojourn-time asymptotics in the M/G/1 queue with the PS

discipline. We approach this problem via the transform of the sojourn-time distribution,

for which we obtain a novel expression. This chapter is based on Zwart [285] and Zwart

& Boxma [287]. The main result we obtain is the following: We show that the tails of the

service- and sojourn-time distribution are equally heavy. This result radically differs from

the situation in the single-server queue with the FCFS discipline, where a heavy-tailed

service-time distribution leads to a waiting-time distribution which is even heavier-tailed

(see Chapter 2 for a precise result). The results in this chapter further suggest that a

large sojourn time of a customer is not caused by other customers, but by its own large

service time. This result continues to hold if other customers have an even heavier-tailed

service time distribution. This shows that PS-based disciplines are more effective than

FCFS in protecting individual customers, especially when service times are heavy-tailed.

Most models in this monograph assume an infinite buffer. An exception is made in

Chapter 4, where we study a fluid queue with a finite buffer. This chapter is based on

Zwart [286]. We are interested in the mean buffer content and the loss fraction as the

buffer size grows large. We obtain several exact results for the stationary distribution of

the fluid queue. In particular, we extend the well-known relationship of Kella & Whitt

[168] between ordinary queues and fluid queues to finite-buffer systems. Furthermore, we

show that the buffer content distributions of the finite- and infinite-buffer fluid queue are

proportional. This proportionality result is then applied to obtain asymptotics for the

loss fraction and mean buffer content. We show that these quantities are significantly

influenced by the fact that the input is heavy-tailed. We also show that the output of the

fluid queue is still long-range dependent, in spite of the fact that the buffer is finite.

Chapter 5, which is based on Zwart [289], investigates the tail behavior of the busy-period

distribution in the single-server queue. We extend a result of De Meyer & Teugels [202].

A major (methodological) contribution of this chapter is the new method of proof; this

method follows intuition quite closely. In particular, it is shown that a large busy period

is caused by a large cycle maximum. Another important result is that the tail of the

busy-period distribution is similar (up to a constant factor) to the tail of the service time

distribution. As a by-product, we obtain asymptotic results for the GI/G/1 LCFS queue.

Chapters 6–8 are all devoted to fluid queues with infinite buffers, fed by multiple heavy-

tailed On-Off sources. Chapter 6 treats a fluid queue fed by a superposition of light-tailed

and heavy-tailed On-Off sources. The system under consideration has the special feature

that the drift remains negative when all the heavy-tailed sources are On. Hence, in order to

cause a large workload, the light-tailed sources need to deviate from their normal behavior

as well. The main result in this chapter, which is based on Borst & Zwart [59], is derived

by combining light-tailed and heavy-tailed large deviations. In particular, we show that

the workload asymptotics are determined by the simultaneous occurrence of two events,

which are entirely different in nature: The heavy-tailed sources are all simultaneously On

for a long time, and the light-tailed input deviates from its mean by following a ‘twisted’
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distribution. The results in this chapter are improvements of previously obtained bounds

by Dumas & Simonian [120].

In Chapter 7 (based on Zwart et al. [288]), we obtain the exact tail asymptotics for the

workload distribution of the fluid queue fed by several heavy-tailed On-Off sources. The

problem in this chapter has been studied by many authors, see e.g. [12, 65, 66, 161, 243].

The common assumption in these studies is that a single heavy-tailed On-period is suf-

ficient for the buffer to fill. In practice, it is typically the case that the peak rate of an

On-Off source is significantly smaller than the service capacity. Thus, several simulta-

neous On-periods are needed for a large buffer-content to build up. This constitutes an

important open problem, and is solved in Chapter 7. So far, only asymptotic bounds were

known in this general case, see Dumas & Simonian [120].

The main results of Chapter 7 can be described as follows. Under reasonably mild as-

sumptions, we show that the workload is asymptotically equivalent to that in a reduced

system. The reduced system consists of a ‘dominant’ subset of the sources, with the

original service rate reduced by the mean rate of the other sources. It turns out that

the ‘dominant’ subset may be found from a simple knapsack formulation. The corre-

sponding set of sources may be interpreted as the most likely combination of sources to

cause a persistent positive drift in the workload. The analysis of the reduced system

involves a powerful probabilistic argument to characterize the most plausible scenario for

the workload to reach a large level, and can be viewed as an extension of the analysis in

Chapter 5.

Chapter 8 is related to Chapter 7, but now we study another class of input models, namely

M/G/∞ input (the number of active sessions is distributed as the number of customers

in an M/G/∞ queue). This class of input is more tractable than the superposition of

On-Off sources, which makes it possible to give a more detailed analysis.

The contribution of this chapter is comparable to that of Chapter 7. Fluid queues with

heavy-tailed M/G/∞ input have been studied in many papers, see e.g. [65, 161, 164,

184, 185, 187, 224, 225, 226, 227, 239]. Like in Chapter 7, the exact asymptotics in these

studies all rely on the assumption that a single long session is sufficient for the buffer to

fill. Chapter 8 solves the important case where a large workload may be due to multiple

long sessions. Besides obtaining the exact workload asymptotics in this system, we also

determine the distribution of the most probable time to overflow. In addition, we derive

asymptotic bounds for the transient workload distribution. This chapter is based on Borst

& Zwart [60].
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Chapter 2

Methodology

The first chapter of this thesis served as a general introduction to motivate the analysis

of queueing systems with heavy tails. This chapter is concerned with the mathematical

details involved in the study of such systems. In particular, the goals of this chapter are

to

• give an introduction to heavy-tailed distributions;

• treat some basic asymptotic results for queueing systems with heavy tails;

• give the reader insight in the intuition behind these results;

• explain how one may use this intuition for constructing a proof.

Understanding the intuition behind the proofs is crucial, as it will appear many times

in this thesis, sometimes in a complex form. In light-tailed situations, there is a well-

established intuition regarding the occurrence of ‘rare events’, see e.g. Shwartz & Weiss

[254] for a good discussion of the theory of large-deviations in light-tailed systems. Typ-

ically, the occurrence of a rare event can be explained by identifying a ‘most probable

scenario for the rare event to occur’. If several distributions in the queueing model are

heavy tailed however, then the nature of such scenarios can become entirely different.

We illustrate large-deviations arguments for heavy-tailed phenomena by treating several

queueing models. In particular, we discuss asymptotic results for the waiting-time dis-

tribution in an M/G/2 queue with heterogeneous servers. That discussion is based on

Boxma et al. [70]. The chapter is concluded by presenting a framework which may be

applied to use these heuristics in constructing a proof. This framework is used in Chapters

7 and 8.

The chapter is organized as follows. Section 2.1 gives an introduction to heavy tails.

Basic queueing results can be found in Section 2.2; these results are also explained in an

intuitive manner. The above-mentioned M/G/2 queue is treated in Section 2.3. Section

2.4 describes how one may strengthen intuition to formal proofs.

21
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2.1 Heavy-tailed distributions

In this section we introduce some basic definitions and results concerning heavy-tailed dis-

tributions. The previous chapter motivates to consider distributions with infinite variance.

However, we are not only interested in this class of distributions, but in all distributions

for which the tail decreases slower than exponentially. We make this more precise by

introducing several classes of heavy-tailed distributions.

LetX,Xi, i ≥ 1, be independent non-negative random variables with common distribution

function F (x) = P{X ≤ x}. Define F̄ (x) = 1−F (x). We make the following conventions.

Definition 2.1.1 F is heavy tailed if, for all ε > 0,

E{eεX} =∞,

or equivalently, if for all ε > 0,

P{X > x}
e−εx

→∞. (1.1)

A major subclass of heavy-tailed distributions is the class of long-tailed distributions,

defined by

Definition 2.1.2 F is long tailed if for any fixed y > 0 and x→∞,

P{X > x+ y | X > x} = F̄ (x+ y)

F̄ (x)
→ 1. (1.2)

The class of long-tailed distributions is denoted by L. We will often write X ∈ L instead

of F ∈ L. It can be shown that the convergence in (1.2) is uniform in y on compact

subintervals. The following lemma shows that y can also be random:

Lemma 2.1.1 If X ∈ L and Y is independent of X and non-negative, then

P{X − Y > x}
P{X > x} → 1.

The defining property of L is appealing: If X is long-tailed and X > x for some large x,

then it is likely that X exceeds any larger value as well. If X has finite mean, we define

the excess random variable Xr as a random variable with ‘integrated-tail’ distribution

P{Xr > x} = 1

E{X}

∫ ∞

x

P{X > u}du, x ≥ 0.

Another interesting property of long-tailed distributions is the following lemma.

Lemma 2.1.2 If X ∈ L, then Xr ∈ L and

P{Xr > x}
P{X > x} → ∞.
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Thus, if X ∈ L, then the tail of Xr is heavier than the tail of X. This result is in contrast

with case in which X is exponentially distributed. In this case the distributions of X and

Xr coincide, implying equally heavy tails.

The following two subsections are concerned with the two most important subclasses of

heavy-tailed distributions. We introduce subexponential distributions in Section 2.1.1.

Section 2.1.2 treats regularly varying distributions.

2.1.1 Subexponentiality

In this subsection we review some standard (see e.g. [126]) results and definitions.

Let F n∗ be the n-fold convolution of F , i.e.,

F n∗(x) =

∫ x

u=0

F (n−1)∗(x− u)dF (u).

The class of subexponential distribution functions, denoted by S, is defined as follows.

Definition 2.1.3 F is subexponential if

F̄ 2∗(x)

F̄ (x)
=

P{X1 +X2 > x}
P{X > x} → 2, x→∞.

The definition of subexponentiality can be weakened: It has been shown in Embrechts &

Goldie [124] that F ∈ S if

P{X1 + . . .+Xn > x} ∼ nP{X1 > x}
for some n ≥ 2. If F ∈ S, then this relation holds for all n ≥ 2. A characterization of S
which may be more appealing is the following.

Definition 2.1.4 F is subexponential if, for some n ≥ 2,

P{X1 + . . .+Xn > x} ∼ P{max{X1, . . . , Xn} > x}.
Intuitively, subexponentiality means that large sums are most likely caused by a large

value of a single summand; other summands do not make a significant contribution. This

makes subexponentiality a commonly-used paradigm in insurance mathematics, especially

in modeling catastrophes.

Subexponential distribution functions were introduced independently by Chistyakov [82]

and Chover et al. [84]. In these references, the framework of subexponential distribution

functions was used to derive asymptotic properties of branching processes, see also the

textbook of Athreya & Ney [31]. One of the first papers that recognized the usefulness of

the class of subexponential distributions is Teugels [265]. In the next section, we explain

why subexponentiality plays a key role in queueing theory and insurance. Subexponential-

ity has also connections with other topics in probability theory, such as infinite divisibility,

cf. [122].

Several well-known probability distributions are subexponential. Key examples are:



24 CHAPTER 2. METHODOLOGY

• Pareto,

P{X > x} =
(

a

a+ x

)ν

, a, ν > 0.

• Lognormal,

P{X > x} = P{eµ+σU > x}, µ ∈ R, σ > 0,

with U a standard-normal random variable.

• Weibull,

P{X > x} = e−ax
b

, a > 0, 0 < b < 1.

Subexponentiality of the above examples follows, for example, from a sufficient condition

for membership of S of Pitman [229]. The Pareto case will be thoroughly studied in the

next subsection.

We proceed by stating some results on subexponential distributions which are used in

this thesis. For more extensive surveys (and proofs), we refer to Embrechts et al. [126],

Goldie & Klüppelberg [139], Mikosch [205], and Sigman [256].

The next lemma is often useful in proofs, for example to justify the interchange of limits

and sums. The lemma seems to be due to Kesten, see [31].

Lemma 2.1.3 Let Xi ∈ S, i ≥ 1. Then, for all ε > 0 there exists a K <∞ such that for

all x ≥ 0, n ≥ 1,

P{X1 + . . .+Xn > x} ≤ K(1 + ε)nP{X1 > x}.

The class S is not closed under convolution, i.e., if X and Y are independent members

of S, then X + Y is not necessarily in S, see Leslie [182]. The next lemma gives some

sufficient conditions for X + Y to be subexponential.

Lemma 2.1.4 ([122]) Let X and Y be independent. If X ∈ S and P{Y > x} ∼ [K +

o(1)]P{X > x}, K ≥ 0, then X + Y ∈ S and P{X + Y > x} ∼ (1 + K)P{X > x}.
Moreover, if K > 0, then also Y ∈ S.

There are many other properties of subexponential distributions. For example, if X is

subexponential and Y is sufficiently well-behaved, then the product XY is subexponential

as well, see Cline & Samorodnitsky [87]. This property is used in this thesis in the special

case that X is regularly varying. Regular variation is the topic of the next subsection.
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2.1.2 Regular variation

In the previous subsection we gave three examples of subexponential distributions: Pareto,

lognormal, and Weibull. In this section, we study the class of regularly varying distribu-

tions. This class can be viewed as a generalization of the Pareto distribution. Regularly

varying distributions are all subexponential (see Lemma 2.1.8 below). We note that

Weibullian and lognormal distributions are not regularly varying.

Regular variation is a topic on its own, with applications in various fields, like complex

analysis, number theory, and probability theory. Within probability theory, regular varia-

tion plays a key role in extreme-value theory, central limit theorems, branching processes,

queueing theory, and more. An encyclopedic treatment of regular variation is Bingham

et al. [44]. Other key references are De Haan [149], Resnick [232, 233], and Embrechts et

al. [126].

This subsection is organized as follows. First, we define the class of regularly varying

functions and give some general results which are used in this thesis. Next, we treat some

basic properties of random variables which have a regularly varying distribution.

General results

All functions in this subsection are assumed to be measurable, non-negative and defined

on [x0,∞), x0 > 0.

Definition 2.1.5 f is regularly varying of index α ∈ R (f ∈ Rα), if for all y > 0,

f(yx)

f(x)
→ yα, x→∞.

If α = 0, then f is called slowly varying.

Slowly varying functions are usually denoted by L. Examples of slowly varying functions

are constants and (iterated) logarithms. The class of all regularly varying distributions

(∪α∈RRα) is denoted by R.

We now list some properties of regularly varying functions. All of these properties can be

found in Bingham et al. [44], see also Feller [131]. The following basic property for slowly

varying functions is often used without mention.

Lemma 2.1.5 Let L be a slowly varying function. Then, for all ε > 0, there exists a T

such that, if x > T ,

x−ε ≤ L(x) ≤ xε. (1.3)

The next lemma provides a useful bound for slowly varying functions, this bound is one

instance of the Potter bounds.
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Lemma 2.1.6 Let L be a slowly varying function. Then, for any fixed A > 1, δ > 0,

there exists a finite constant K such that for all x, y > K,

L(y)

L(x)
≤ Amax{(y/x)δ, (y/x)−δ}.

We now come to the first deep result of this subsection. The following lemma is part

of Karamata’s theorem, see Section 1.6 of [44], and shows that slowly varying functions

are precisely those functions which can be treated like a constant in the (asymptotic)

evaluation of integrals.

Lemma 2.1.7 Let L be locally bounded in {x : x ≥ T}. Let α > 1. The following are

equivalent:

1. L is slowly varying,

2.
∫∞
x
y−αL(y)dy ∼ 1

α−1x
1−αL(x).

Another beautiful result is Karamata’s Tauberian theorem, see Theorems 1.7.1 and 5.2.4

in [44], which relates the asymptotic behavior of a regularly varying function at infinity

to the behavior of its Laplace-Stieltjes transform (LST) near 0. The LST of a function f

is given by f̂(s) =
∫∞
0

e−sxdf(x).

Theorem 2.1.1 Let U be a non-decreasing and right-continuous function on R with

U(x) = 0 for all x < 0. Let Û be the LST of U . If L varies slowly and c ≥ 0 and

α > 0, the following are equivalent.

U(x) ∼ (c+ o(1))xαL(x)/Γ(1 + α), x→∞, (1.4)

Û(s) ∼ (c+ o(1))s−αL(1/s), s ↓ 0. (1.5)

Conversely, if U(x)/Û(1/x)→ 1
Γ(1+α)

, then U ∈ Rα and (1.4), (1.5) hold for some slowly

varying function L.

The reverse part is a Mercerian theorem, see Chapter 5 of [44]. An encyclopedic treatment

of Abelian and Tauberian theorems can be found in Chapter 4 of [44].

We now turn to random variables with regularly varying (tails of) distribution functions.
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Regularly varying distribution functions

A non-negative random variable X is called regularly varying of index −α, if

P{X > x} = F̄ (x) = L(x)x−α, α ≥ 0,

with L a slowly varying function. With a slight abuse of notation, we write X ∈ R−α.
We now state some basic properties of regularly varying distributions:

Lemma 2.1.8 Let P{X > x} = F̄ (x) = L(x)x−α. Then,

(i) X ∈ S.

(ii) E{Xθ} <∞ if θ < α, E{Xθ} =∞ if θ > α.

(iii) If α > 1, then Xr ∈ R1−α and

P{Xr > x} ∼ 1

(α− 1)E{X}L(x)x
1−α.

(iv) If Y is non-negative and independent of X such that P{Y > x} = L2(x)x
−α2, then

X + Y ∈ R−min{α,α2}, and

P{X + Y > x} ∼ P{X > x}+ P{Y > x}.

(v) If Y is non-negative and independent of X such that E{Y α+ε} < ∞ for some ε > 0

then XY ∈ R−α and

P{XY > x} ∼ E{Y α}P{X > x}.

Proof

Property (i) can be found in e.g. Feller [131]. (ii) follows from Lemma 2.1.5. (iii) follows

from Karamata’s theorem (Lemma 2.1.7). (iv) can be found in Feller [131], p. 271. Fi-

nally, property (v) is due to Breiman [78], see also [113, 123, 232]. 2

Karamata’s Tauberian theorem characterizes the asymptotic behavior of a regularly vary-

ing function in terms of its LST. This theorem is however not applicable to distribution

functions (which are regularly varying with negative index). Fortunately, there exists an-

other Tauberian theorem which is suitable for LST’s of random variables. This theorem

is due to Bingham & Doney [42], see also Theorem 8.1.6 in [44].

Let φ(s) be the LST of F . Suppose that X has finite first n moments µ1, ..., µn (and

µ0 = 1). Define

φn(s) := (−1)n+1

[
φ(s)−

n∑

j=0

µj
(−s)j
j!

]
.
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Theorem 2.1.2 Let n < ν < n+ 1, n ∈ N, C ≥ 0. Then, the following are equivalent.

φn(s) ∼ (C + o(1))sνL(1/s), s ↓ 0, s ∈ R, (1.6)

1− F (t) ∼ (C + o(1))
(−1)n

Γ(1− ν)
t−νL(t), t→∞. (1.7)

The case C > 0 is the Tauberian theorem as proven in [42]. The case C = 0 is Boxma

& Dumas [68], Lemma 2.2. For the more complicated case when ν is integer, we refer to

Theorem 8.1.6 and Chapter 3 of [44].

Bingham & Doney [42, 43] apply Theorem 2.1.2 to analyze asymptotic properties of –

again – various branching processes. More applications of regular variation in probability

theory can be found in Chapter 8 of [44].

Theorem 2.1.2 is a powerful tool for queueing theorists, as explicit expressions are available

for the LST of many random variables occurring in queueing models, see e.g. Cohen

[97]. We apply this theorem several times in this thesis, in particular in Chapter 3.

Limitations of Theorem 2.1.2 are the restriction to non-integer ν, and the fact that the LST

is sometimes unavailable. For example, the LSTs of the stationary workload distributions

in the fluid queues studied in Chapter 6–8 are all unavailable, except for some special

cases.

There exist many extensions of regular variation, which may be found in [44]. An extension

appearing in this thesis is intermediate regular variation, which has been introduced by

Cline [86]. This class of distributions is characterized by property (1.8) below. The

extension may look artificial, but sometimes its characterization is exactly the argument

needed in proofs, and therefore the class which should be considered.

Definition 2.1.6 X is of intermediate regular variation (X ∈ IRV) if X satisfies

lim
ε↓0

lim inf
x→∞

P{X > (1 + ε)x}
P{X > x} = 1. (1.8)

Lemma 2.1.9 ([86]) If X ∈ R, then X ∈ IRV. If X ∈ IRV, then X ∈ S and X ∈ L .

We now proceed with some basic results for queueing models with heavy tails.

2.2 Asymptotics for some basic queueing models

2.2.1 The single-server queue

In this section, we give some results for the stationary waiting time in the single-server

queue.
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We start by introducing some notation. Assume that the server works at speed c. Let

T, Ti, i ≥ 1, be an i.i.d. sequence of interarrival times and let B,Bi, i ≥ 1, be an i.i.d.

sequence of service times. Define the arrival rate by λ := 1/E{T}. It is well-known [189]

that the stationary waiting time W c exists as a proper random variable when E{B}
E{T} =: ρ <

c. Furthermore,

W c d
= sup

n≥1
Scn,

with Scn the random walk with step size Bi−cTi, and ‘
d
=’ denoting equality in distribution.

Hence, W c can be viewed as the supremum of a random walk with negative drift, so its

distribution can be studied using Wiener-Hopf theory, cf. Asmussen [19], Cohen [97], and

many others.

Computing asymptotics for P{W c > x} when x→∞ is a universal problem in queueing

theory. Crucial is the tail behavior of the service time distribution. The case of a regularly

varying service-time distribution has been treated by Borovkov [50] and Cohen [89]. The

following theorem covers the more general case of subexponential service times, and is

originally due to Pakes [219] and Veraverbeke [269], see also Embrechts & Veraverbeke

[125]. The version we state here is slightly more general and can be found in Korshunov

[177].

Theorem 2.2.1 Br ∈ S iff W c ∈ S iff

P{W c > x} ∼ ρ

c− ρ
P{Br > x}. (2.1)

The above theorem shows why subexponentiality is such a convenient concept for queueing

theory; it is precisely that class for which the asymptotics (2.1) hold: Subexponentiality

of Br is not only sufficient but also necessary! This deep result was proved earlier in [219]

for the M/G/1 case.

Theorem 2.2.1 is formulated in terms of the waiting time, but exactly the same result

holds for the stationary workload V c (complementary results for queue lengths may be

found in Asmussen et al. [27] and Foss & Korshunov [134]).

Theorem 2.2.2 If Br ∈ S then

P{V c > x} ∼ ρ

c− ρ
P{Br > x}. (2.2)

Proof

Combine the identity P{V c > x} = ρ
c
P{W c + Br > x} (see e.g. Asmussen [19] p. 189, or

Cohen [97] p. 296) with the previous theorem and Lemma 2.1.4. 2
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In the M/G/1 case, the above theorems immediately follow from PASTA and the well-

known Pollaczek-Khintchine formula for the waiting-time distribution:

P{W c > x} = (1− ρ/c)
∞∑

n=1

(ρ/c)nP{Br
1 + . . .+Br

n > x}, (2.3)

with Br
i , i ≥ 1, i.i.d. copies of Br. Interchanging the summation and the limit in

P{W c > x}/P{Br > x} is justified by Lemma 2.1.3.

Heuristics

Theorem 2.2.2 can be explained in a heuristic manner. Suppose that we observe the

system at time 0 and that V c > x, for x large. Assume for convenience that the arrival

process is Poisson. Our claim is that V c is large because at some time −t, t ≥ 0, a

customer entered the system, which had a large service time B. At that time, the waiting

time was O(1). After time −t, no exceptional things happen and the system simply drifts

with rate −(c − ρ). At time 0 the workload is then approximately B − (c − ρ)t. Hence,

in order for V c to be larger than x, the large service time B at time −t needs to exceed

x + (c − ρ)t. The intensity of occurrence of such an event is λP{B > x + (c − ρ)t}.
Integrating over all t we obtain

P{V c > x} ≈
∫ ∞

t=0

λP{B > x+ (c− ρ)t}dt.

This yields (2.2) after a straightforward computation.

The above heuristic argument essentially focuses on just one possible scenario for V c to

get large. The fact that the corresponding probability coincides with that in (2.2) shows

indirectly that the scenario is dominant, in the sense that the probability of all other

possible scenarios is negligible.

2.2.2 The fluid queue

The previous subsection focused on asymptotics for the waiting-time distribution in the

single-server queue. In this subsection, we review some results for the workload distribu-

tion in the fluid queue fed by single or multiple On-Off sources.

A single on-off source

Consider a fluid queue with capacity c, fed by a single On-Off source, indexed by i. As

described in Chapter 1, an On-Off source alternates between On- and Off-periods. When

the source is On (active), it sends input with rate ri > c. Generic activity and silence

(Off-) periods are denoted by Ai and Ui. Let pi :=
E{Ai}

E{Ai}+E{Ui} be the probability that the

On-Off source is active (in steady state). The mean amount of input generated per unit
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of time is denoted by ρi, ρi = piri. The stationary workload (buffer content) distribution

of a fluid queue with capacity c, fed by source i, is denoted by V c
i .

The following theorem, due to Jelenković & Lazar [161], yields the tail behavior of the

workload distribution.

Theorem 2.2.3 If Ar
i ∈ S, ρi < c < ri, then

P{V c
i > x} ∼ (1− pi)

ρi
c− ρi

P{Ar
i >

x

ri − c
}.

The proof of this theorem is simple: Kella & Whitt [168] express the distribution of V c
i

in terms of the waiting-time distribution of a certain single-server queue. Theorem 2.2.3

then immediately follows by combining this result with Theorem 2.2.1. The relationship

between fluid and single-server queues is also exploited in this thesis, see Chapter 4.

Theorem 2.2.3 can be explained in a similar manner as Theorem 2.2.2 above. In this case,

the event V c
i > x is caused by a single long activity period of the On-Off source; we omit

the details.

Reduced-load equivalence

The fluid queue considered above is quite simple, as it only involves a single On-Off

source. Several papers are concerned with the extension to multiple sources, see e.g.

Boxma [65, 66], Rolski et al. [243], Jelenković & Lazar [161], and Agrawal et al. [12].

In this section we assume that the fluid queue is fed by two sources. Source 1 is an On-

Off source with subexponential activity periods. Source 2 is some general ‘well-behaved’

source (e.g. a Markov-modulated fluid source; exact conditions may be found in [12]) with

mean rate ρ2. The stationary workload is denoted by V c
{1,2}.

A1 is called Weibullian with index α if P{A1 > x} ∼ c1e
−c2xα . The following result is

derived in Agrawal et al. [12].

Theorem 2.2.4 (Reduced-load equivalence) Suppose r1 + ρ2 > c > ρ1 + ρ2. If A1 is

of intermediate regular variation, lognormal, or Weibullian with index 0 < α < 1
3
, then

P{V c
{1,2} > x} ∼ P{V c−ρ2

1 > x}. (2.4)

If A1 is Weibullian with index α ≥ 1
2
, then (2.4) does not hold.

The most probable way for V c
{1,2} to get large is due to a single long activity period of

source 1; source 2 shows no abnormal behavior and just uses its mean service requirement

ρ2. Hence, the only influence of source 2 in the above scenario is that it reduces the

capacity of the fluid queue by its load from c to c− ρ2. This explains the term ‘reduced-

load equivalence’.
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These heuristics may sound plausible, but do not always hold: If the tail of A1 is not

heavy enough, then it may be the case that source 2 behaves ‘abnormally’ as well. This

case is not well understood yet. Another problem with the above theorem is the ‘gap’

between 1
3
and 1

2
. Results in Agrawal et al. [12] and Zwart [290] suggest that (2.4) can

be extended to Weibullian tails with index < 1
2
. The latter paper also contains results for

the case of a Weibullian tail with index ≥ 1
2
. Further evidence on the critical nature of

the value 1
2
may be found in Asmussen et al. [27] and Foss & Korshunov [134].

In this thesis, we do not consider Weibullian tails, and concentrate on tails of (interme-

diate) regular variation. (We make an exception to this rule in Chapter 4 though.) We

do extend Theorem 2.2.4 in another way, namely by removing the condition r1 + ρ2 > c

(see Chapter 6) and by allowing multiple heavy-tailed On-Off sources (see Chapters 6, 7

and 8).

If the activity period distribution is of intermediate regular variation, then the proof (due

to [161]) is quite straightforward. The asymptotic upper bound is established as follows.

The system will behave less efficient when it is split in two parts: Serve source 1 with

capacity c− ρ2 − ε and serve source 2 with capacity ρ2 + ε. Then,

P{V c
1,2 > x} ≤ P{V c−ρ2−ε

1 + V ρ2+ε
2 > x}

∼ P{V c−ρ2−ε
1 > x}

∼ (1− p1)
ρ1

c− ρ1 − ρ2 − ε
P{Ar

1 >
x

r1 − c+ ρ2 + ε
}.

The second step follows from the fact that V ρ2+ε
2 is light-tailed, the third step follows

from Theorem 2.2.3. The asymptotic upper bound then follows by letting ε ↓ 0. This is

allowed because Ar
1 is of intermediate regular variation (which is one reason that some-

times intermediate regular variation may be the most convenient class to consider). The

corresponding lower bound may be found by using a similar technique. We apply such

bounding techniques in Chapters 6–8.

2.3 A multi-server queue

The asymptotic results considered so far all relied on a reduction to the waiting time in

the single-server queue, or the workload in a fluid queue fed by a single On-Off source.

In general, such a reduction may not be possible. Two prominent models where that

is the case are the fluid queue with multiple heavy-tailed On-Off sources, considered in

Chapters 6–8 of this thesis, and the multi-server queue. The latter model is the subject

of the present section.

The tail behavior of the waiting-time distribution in the multi-server queue is unknown

in the heavy-tailed case. Its characterization is one of the current challenging problems

in queueing theory. Motivated by this, Boxma et al. [70] have studied a particular

multi-server queue with heterogeneous servers, for which an exact (transform) analysis is
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possible. It turns out that a (fairly complicated) expression for the LST of the waiting-

time distribution can be obtained. In this section, we only state the final asymptotic

results and concentrate on a heuristic interpretation. Depending on the traffic intensity,

the system shows two qualitatively different overflow scenarios. This section presents

heuristics in both cases; formal proofs may be found in [70].

The model under consideration can be described as follows. Customers arrive according

to a Poisson process with rate λ. The queueing discipline is FCFS, where we make the

additional convention that when a customer arrives and there is no other customer in the

system, he receives service from server 1 immediately. The service-time distribution of a

customer depends on the server involved. The service times at server 1 are exponentially

distributed with rate µ, and at server 2 they have a general distribution B(x) := P{B ≤
x} with mean β. The steady-state queue length and waiting-time distributions exist if

λ < µ + 1/β. In the sequel, we assume this condition to hold. Denote the probability

that server 2 is busy in steady state by P2.

Denote the stationary waiting time by W . The tail behavior of the waiting-time distri-

bution W (t) is determined by two scenarios, which correspond to the two cases λ < µ

and λ > µ. In the first case, to be discussed in Subsection 2.3.1, the exponential server is

capable of handling all incoming customers alone: The heavy-tailed server is not necessary

for stability. If λ > µ (discussed in Subsection 2.3.2) on the other hand, then the second

server is needed to ensure stability. We did not consider the delicate case λ = µ.

Several studies contain related (partial) results for multi-server queues. Scheller-Wolf &

Sigman [251], and Scheller-Wolf [252] obtain sufficient finite-moment conditions for the

waiting time in the GI/G/c queue. Asymptotic lower and upper bounds for P{W > x}
in the GI/G/c queue can be found in Foss & Korshunov [133] and Whitt [274]. These

studies all indicate that the qualitative tail behavior of the waiting-time distribution

crucially depends upon the value of the traffic intensity.

2.3.1 The case λ > µ

In case λ > µ, the exponential server alone cannot cope with all the traffic: The second,

‘ill-behaved’, server is necessary for stability of the system. This makes it plausible that

the heavy-tailed service times at the second server result in a heavy-tailed waiting time.

In fact, we have

Theorem 2.3.1 Suppose that λ > µ and that

P{B > x} ∼ x−νL(x), (3.1)

with ν ∈ (m,m+ 1),m ∈ N. Then

P{W > x} ∼ P2

1− λβ + µβ
P{Br >

λx

λ− µ
}. (3.2)
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Heuristics

First, we make two preliminary observations:

1. The long-term fraction of customers served by server 2 equals P2

λβ
(note that the

mean number of customers handled by server 2 per time unit equals P2

β
).

2. If both servers are busy, then the fraction of customers that go to server 1 equals
µ

µ+β−1 = βµ
1+βµ

. Hence, the workload then decreases at rate

λ

µ

βµ

1 + βµ
+ λβ

1

1 + βµ
− 2.

We now turn to the heuristic explanation of (3.2). Suppose a customer enters the system

in steady state at time τ (say) and is served by server 2. This happens with probability
P2

λβ
(due to PASTA and observation 1). Let the service time of this customer be equal to

B. Assume that the total workload in the system is very small compared to B. Then the

workload at the second server is roughly equal to B and the workload at server 1 is O(1).

This means that all incoming customers will be allocated to server 1, implying that the

workload at server 1 will increase linearly at rate ρ − 1 (with ρ = λ/µ). As no work is

allocated to the second server, the workload of server 2 decreases with at rate −1. This

continues until both workloads are the same, which happens at time τ +B/ρ, see Figure

2.1. After time τ + B/ρ, the waiting time decreases at rate 1− λ
µ+β−1 , by observation 2.

Hence, at time τ + B
(µ−λ)β+1

the effect of the large customer entering the system at time

0 has vanished, see again Figure 2.1.
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Figure 2.1: Evolution of the waiting time
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Suppose that we observe the system at time 0 and that W > x, x large. Our claim is

that the waiting time is large because at time τ = −y, a customer entered the system

and went to server 2. This customer had a large service time B. Keeping Figure 2.1 in

mind, there are two possible scenarios:

1. y < B/ρ. In this case, we are still in the first part of the excursion illustrated in

Figure 2.1 (where all incoming customers are sent to the first server). In order to

get W > x, we need y > x/(ρ− 1).

2. y > B/ρ. Using observation 2 (in order to determine the drift after time B/ρ in

Figure 2.1), we obtain the condition

x < B
ρ− 1

ρ
− 1 + (µ− λ)β

1 + µβ

(
y − B

ρ

)

=
B

1 + µβ
− 1 + (µ− λ)β

1 + µβ
y.

Together with the condition y > B/ρ, this can be rewritten into

B > (1 + µβ)x+ (1 + (µ− λ)β)y, y >
x

ρ− 1
.

To summarize, the event W > x occurs if at time y > x/(ρ − 1) a customer enters the

system which is sent to server 2 and has a service time B > (1 + µβ)x+ (1+ (µ− λ)β)y.

By observation 1, the probability that the customer is sent to server 2 equals P2

λβ
. We

conclude after a straightforward computation that

P{W > x} ≈
∫ ∞

x
ρ−1

P2

λβ
P{B > (1 + µβ)x+ (1 + (µ− λ)β)y}λdy

=
P2

1 + (µ− λ)β

1

β

∫ ∞

ρx
ρ−1

P{B > z}dz,

which is equal to (3.2).

2.3.2 The case λ < µ

We now turn to the case λ < µ. From an analytical (transform) perspective, this case is

more intricate, as is explained in [70]. A more advanced Tauberian theorem is necessary

in this case, in particular, the analysis in [70] relies on a theorem of Sutton [260]. Here,

we ignore this and concentrate on heuristics.

Let WM/M/1 be the steady state waiting time in an M/M/1 queue with arrival rate λ and

service rate µ. The precise conditions in the following theorem can be found in [70].
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Theorem 2.3.2 Suppose that λ < µ and that P{B > x} = L(x)x−ν, with ν non-integer.

Then

P{W > x} ∼ P2P{Br >
µx

µ− λ
}P{WM/M/1 > x}. (3.3)

This result has the following intuitive interpretation: A large waiting time W occurs as

a consequence of a large service time at server 2, which causes the system to behave as

an M/M/1 queue. It is well-known from standard large-deviations theory that the most

probable way for the workload in an M/M/1 queue (WM/M/1) to get large is in a linear

fashion, with a positive drift of µ/λ − 1 (see e.g. p. 276 of [254] or Anantharam [13]).

Hence, the amount of time it takes until WM/M/1 > x (given that this event occurs) is

equal to λx/(µ− λ).

In order for the deviant behavior of the M/M/1 queue to take place, server 2 needs to be

occupied (which has probability P2) and the past service time Bp of the customer must

be larger than λx/(µ− λ). Finally, the residual service time Br of the customer at server

2 must be larger than x. Standard renewal theory (see e.g. [97], p. 113) gives

P{Bp >
λx

µ− λ
,Br > x} = P{Br >

µx

µ− λ
}.

Combining all these observations yields (3.3). The above interpretation shows an inter-

esting feature of this model: A waiting time becomes very large by the simultaneous

occurrence of two events: A very long waiting time at the exponential server (M/M/1

large deviations) and one large service time of the heavy-tailed server. Another interest-

ing point is that the nature of these two events is qualitatively different: The latter is

heavy-tailed, the former light-tailed. A similar phenomenon can occur in fluid queues, see

Chapter 6.

2.4 How to make heuristics precise

In the previous two subsections we sketched some heuristic ideas for the single-server queue

and a particular M/G/2 queue. It turned out that these heuristic arguments provide the

correct answer, although their formal proofs rely on different (e.g. transform) methods;

they do not use the heuristic ideas at all.

The goal of this section is to give an outline of how to use these heuristic arguments in a

formal proof. As an underlying vehicle, we use the workload process in theM/G/1 queue.

The outline of this section may be viewed as a warming-up for Chapters 7 and 8, where

the most probable overflow scenarios are much more difficult to identify.

Starting point is the following representation for the stationary waiting-time distribution

in the M/G/1 queue with server speed c:

V c d
= sup

t≥0
{A(0, t)− ct}. (4.1)
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Here A(0, t) is the cumulative amount of traffic offered to the system between time 0

and time t. This type of representation (in terms of a supremum of some process) holds

quite generally, in particular for fluid queues (see Chapters 7 and 8). In the M/G/1 case

considered here, A(0, t) is simply a compound Poisson process with rate λ and generic

jump size B.

In terms of the representation (4.1), the heuristics for the single-server queue can be

rephrased as follows. Given V c > x, the process A(0, t) shows average behavior up to

time y, and simply jumps to a level > x at time y. At time y, we approximately have

A(0, y)− cy ≈ −(c− ρ)y, so the jump size should be at least x+ (c− ρ)y.

The probability of a jump of at least x+ (c− ρ)y at any time y ≥ 0 is given by

∫ ∞

0

λP{B > x+ (c− ρ)y}dy.

A straightforward computation then gives the desired value ρ
c−ρP{Br > x}.

2.4.1 Lower bound: Use the law of large numbers

It is not very difficult to use the above heuristics to get a lower bound. The above scenario

of a single large jump is a sufficient condition for the event V c > x to occur. The only

thing that needs to be shown is that at the same time t, A(0, t) is not much smaller than

ρt, but this follows from the law of large numbers.

More formally, we have that for any δ, ε > 0 there exists a finite tδ,ε such that P{A(0, t) >
(ρ− ε)t} > 1− δ if t ≥ tδ,ε. Thus, for any δ, ε > 0,

P{V c > x}

≥
∫ ∞

t=tδ,ε

λP{B > x+ (c− ρ)t+ εt}P{A(0, t) > (ρ− ε)t}dt

≥ (1− δ)

∫ ∞

t=tδ,ε

λP{B > x+ (c− ρ)t+ εt}dt

= (1− δ)
ρ

c− ρ+ ε
P{Br > x+ tδ,ε}

∼ (1− δ)
ρ

c− ρ+ ε
P{Br > x}.

The second step follows from the law of large numbers; the fourth step from the fact that

Br ∈ L. The desired lower bound now follows by letting ε, δ ↓ 0.

2.4.2 Upper bound (I): Isolate large jumps

As we saw above, it is not difficult to get a lower bound. Obtaining the corresponding

upper bound is a much more demanding task. The most difficult part is giving (and

proving) a formal version of the statement “overflow happens as a consequence of a single
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big jump”. Another difficulty is that one needs to show that other overflow scenarios do

not contribute to the asymptotics of the probability under consideration.

In order to prove formal statements, we need to introduce the notion of a large service

time. Given that we want to estimate P{V c > x} for x → ∞, we call a service time B

‘large’ if B > εx. We need to control the effect of jumps that are smaller than εx. This

can be achieved through the following extremely useful lemma, which is due to Resnick

& Samorodnitsky [236].

Lemma 2.4.1 Let Sn = X1 + . . . +Xn be a random walk with i.i.d. step sizes such that

E{X1} < 0 and E{(X+
1 )

p} < ∞ for some p > 1. Then, for any α < ∞, there exists an

ε∗ > 0 and a function φ(·) ∈ R−α such that for ε ∈ (0, ε∗],

P{Sn > x|Xj ≤ εx, j = 1, . . . , n} ≤ φ(x),

for all n and all x.

In the next subsection, we describe how to apply this result.

Remark 2.4.1

Exact asymptotics in the above setting, for both Sn and supn Sn and a regularly varying

right tail of X1, have been computed by Jelenković [163]. Note that if Xj can be repre-

sented as the difference of two non-negative independent random variables X1
j and X2

j ,

then the lemma remains valid if the Xj’s are replaced by X1
j .

2.4.3 Upper bound (II): Eliminate unlikely scenarios

We now give an outline of how to eliminate all scenarios that are unlikely, emphasizing the

main steps. In view of the lower bound, we may neglect all scenarios whose probabilities

can be bounded by a regularly varying function of arbitrarily negative index. This is

where Lemma 2.4.1 is brought into action.

The scheme presented below is applied to fluid queues in Chapters 7 and 8. A similar

scheme can be extracted from a recent study of Resnick & Samorodnitsky [239], who

consider a fluid queue with M/G/∞ input.

With N (Mx, εx), we denote the number of large jumps before time Mx.

• Overflow occurs in linear time.

When considering the process A(0, s)− cs, it is convenient to ignore extremely large

s. This is possible when sups≥0{A(0, s)− cs} ≈ sups∈[0,Mx]{A(0, s)− cs}. Formally,

one needs to show that

lim
M→∞

lim inf
x→∞

P{sups∈[0,Mx]{A(0, s)− cs} > x}
P{sups≥0{A(0, s)− cs} > x} = 1. (4.2)
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• There is at least one large jump in [0,Mx].

In this step, one needs to evaluate the probability that {sups∈[0,Mx]{A(0, s)− cs} >
x} occurs, while all service times are smaller than εx. This can be made sufficiently

small by invoking Lemma 2.4.1.

• There is at most one large jump in [0,Mx].

Here one needs to compute the asymptotic behavior of the probability that at least

two large jumps occur before timeMx. It is not difficult to show that this probability

is regularly varying of index 1 − 2ν > 1 − ν (use the fact that N (Mx, εx) has a

Poisson distribution). Thus, it can be neglected.

• The process A(0, s)− cs must reach level (1− δ)x when the large jump occurs.

This must be shown for every δ > 0. If A(0, s)− cs does not reach level (1− δ)x at

the time of the large jump, then it needs to increase at least δx more, by making

small jumps only. This event has negligible probability, which follows from another

application of Lemma 2.4.1.

Let τ(εx) > 0 be the time of the first large jump.

The above steps reduce the problem of evaluating P{V c > x} to the (asymptotic) com-

putation of

P{A(0, τ(εx))− cτ(εx) > (1− δ)x}.

This calculation is lengthy, but quite straightforward.

Of course, the machinery presented here is unnecessarily heavy for the M/G/1 queue (for

which much simpler proofs exist, see Section 2.2.1). Nevertheless, it gives detailed insights

in the overflow behavior of this system. Another advantage of the method discussed in

this section is that it is applicable to more complex models, as will be demonstrated in

Chapters 7 and 8.
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Chapter 3

Sojourn-time asymptotics in the

M/G/1 PS queue

3.1 Introduction

Processor Sharing (PS) queues first became popular by the work of Kleinrock [174], and

were originally proposed to analyze the performance of time sharing disciplines in com-

puter systems. Nowadays, PS has also become relevant in modeling (elastic) traffic in

communication networks, as is observed in e.g. Núñez-Queija [215] and Roberts [242].

In the PS discipline, the service capacity is always equally shared among all customers

present. Thus, if there are n customers present, then each one receives a fraction 1
n
of the

service capacity. From a probabilistic perspective, PS queues are interesting in view of

their connections with branching processes, see e.g. Yashkov [281] and Grishechkin [146].

An extensive overview on PS queues can be found in the surveys of Yashkov [282, 283].

This chapter contains various new results for the steady-state sojourn-time distribution of

theM/G/1 PS queue. In particular, we present explicit asymptotic expansions for the tail

of the sojourn-time distribution in case of a regularly varying service-time distribution.

The main result of this chapter, Theorem 3.4.1, states that the sojourn-time distribution is

regularly varying of index −ν (with ν > 1 and non-integer) iff the service-time distribution

satisfies the same property.

Theorem 3.4.1 reveals a crucial property of PS: It shows that the tail of the service-time

and sojourn-time distribution are equally heavy-tailed. This is in stark contrast with the

GI/G/1 FCFS queue. In this case, a result of Cohen [89] (see Theorem 2.2.1) implies

that the waiting-time distribution is regularly varying of index 1 − ν iff the service-time

distribution is regularly varying of index −ν. This implies that if the latter is the case,

also the sojourn time is regularly varying of index 1−ν. Thus, the tail of the sojourn-time

distribution is even fatter than the tail of the service-time distribution. This is due to the

FCFS discipline, in which short jobs can be held up by long jobs. Theorem 3.4.1 implies

that PS is more effective in handling heavy-tailed service times: Short jobs can overtake

41
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long jobs, so the influence of long jobs on the sojourn time of short jobs is limited.

These nice properties of PS are further exemplified by Theorem 3.4.2, which generalizes

Theorem 3.4.1 to the case of several customer classes. Theorem 3.4.2 implies that the tail

behavior of the sojourn-time distribution is not heavier than the tail of the service-time

distribution, even if service-time distributions of other customer classes are heavier-tailed.

The additional insight offered by Theorem 3.4.2 is the following: If a job has a long sojourn

time, this is due to the fact that its own service time is long, so the delay is not caused

by extremely long service times of other jobs.

In this respect, PS differs from LCFS (with pre-emption). The sojourn time of an arbitrary

customer in the LCFS case has (up to a constant) the same tail behavior as in the PS

case, but this tail behavior is the same for all types of customers (see e.g. Boxma & Cohen

[75] and Chapter 5 of this thesis).

The above-mentioned theorems are proven by means of an application of the Tauberian

theorem of Bingham & Doney [42] (stated in Chapter 2 as Theorem 2.1.2), and the

expression for the LST of the sojourn-time distribution given by Ott [217]. As a first step,

we rewrite the expression for the LST of the sojourn-time distribution. Known expressions

for the LST of the sojourn time (see also Schassberger [247], and Yashkov [281]) all contain

contour integrals which are inversion formulas of Laplace transforms. We show how to

get rid of these contour integrals and thus to obtain a more explicit formula. Using this

result, we show how the moments of the sojourn time can be calculated recursively and

prove that the k-th moment of the sojourn time is finite iff the k-th moment of the service

time is finite.

Apart from the tail behavior of the sojourn-time distribution, we also study some prop-

erties of the sojourn time in heavy traffic. It turns out that, in contrast to the FCFS case

(discussed in Chapter 1), it is not necessary to make a distinction between the cases of fi-

nite and infinite variance. We give a new proof of a heavy-traffic theorem due to Sengupta

[249] & Yashkov [284], and prove similar statements for the moments of the sojourn time

in heavy traffic. When the service time has a Pareto distribution, it is possible to give an

explicit formula for the heavy traffic limiting distribution. More generally, we show that

the heavy traffic limiting distribution is regularly varying of index −ν if the service-time

distribution is regularly varying of index −ν, ν > 1.

This chapter is organized as follows. Preliminary results are given in Section 3.2. In

Section 3.3, we derive a new expression for the LST of the sojourn-time distribution

and study the moments of the sojourn time. Section 3.4 establishes the above-mentioned

asymptotic results for the tail behavior of the sojourn-time distribution, and also contains

some additional upper bounds. The proofs of Theorems 3.4.1 and 3.4.2 are given in

Section 3.5. The heavy-traffic analysis is performed in Section 3.6. Section 3.7 contains

some concluding remarks.
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3.2 Preliminaries

This section contains some preliminary results for the multi-classM/G/1 PS queue. Since

we want to study one type of customer in isolation, it suffices to consider only two streams

(indexed by i = 1, 2), the second stream possibly being the aggregate of several arrival

streams.

Customers of type i enter the system according to a Poisson process with rate λi > 0.

The service time of a customer of type i is denoted by Bi, with distribution function

Bi(x), Bi(0+) = 0. The moments (if finite) and LST’s of these service times are given

by βi,k, k ≥ 1, (with βi,1 > 0) and βi(s), respectively. The traffic load offered by class i is

given by ρi := λiβi,1. We also consider the aggregate interarrival and service times. For

this purpose, we define ρ := ρ1 + ρ2, λ := λ1 + λ2, and

B(x) :=
λ1
λ
B1(x) +

λ2
λ
B2(x), x ≥ 0,

βk :=
λ1
λ
β1,k +

λ2
λ
β2,k, k ≥ 1,

β(s) :=
λ1
λ
β1(s) +

λ2
λ
β2(s), Re s ≥ 0.

We denote a random variable with distribution function B(.) by B and assume that

the system is stable, i.e. ρ < 1. (The server is assumed to work at unit speed.) The

distribution of the excess service time Br (see Chapter 2) and its LST are given by Br(.)

and

βr(s) =

∫ ∞

0

e−stdBr(t) =
1− β(s)

β1s
, Re s ≥ 0.

A similar definition holds for Br
i (t) and βri (s).

We are now in a position to describe the queue-length and sojourn-time distributions. A

well-known result, due to Sakata et al. [245] (see also Kelly [169]), is that the steady-

state distribution (Pn)n≥0 of the number of customers in the system is geometric, and

only depends on the service-time distribution through its mean:

Pn = (1− ρ)ρn.

In the multi-class case, we have for the steady-state distribution (Pi,j)i,j≥0 of the number

of customers of type 1 and 2, cf. Baskett et al. [34], Cohen [95],

Pi,j = (1− ρ)

(
i+ j

j

)
ρi1ρ

j
2.

The sojourn time of a customer (the time that a customer spends in the system) of type i

is denoted by Ri with LST ri(s). Of special interest is the conditional sojourn time R(τ),

defined as the sojourn time of a customer having processing time (service requirement) τ .
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It is not difficult to see that this random variable has the same distribution for all types

of customers, so we can omit the subscripts. Let r(s, τ) be the LST of R(τ). Obviously,

we have the identity

ri(s) =

∞∫

0

r(s, τ)dBi(τ), i = 1, 2. (2.1)

The sojourn time of an arbitrary customer is denoted by R, and has LST

r(s) =

∞∫

0

r(s, τ)dB(τ).

Contrasting with the simple product form of the queue-length distribution, the distri-

bution of the sojourn time has a fairly complex form. Yashkov [281] has derived an

expression for r(s, τ) by writing the sojourn time as a functional on a branching process.

Using the structure of the branching process, Yashkov found (and solved) a system of

differential equations determining r(s, τ). The analysis in [281] has been extended by Ott

[217]. Different approaches are followed in Van den Berg [38] and Schassberger [247].

The expression for r(s, τ) derived in [217] is the most suitable one for our purposes. It is

given by (see also [217], p. 367–368)

r(s, τ) =
1− ρ

(1− ρ)H1(s, τ) + sH2(s, τ)
, (2.2)

where the functions H1 and H2 are given by,

∞∫

0

e−xτdH1(s, τ) =
x− λ(1− β(x))

x− s− λ(1− β(x))
, Re x > 0, (2.3)

∞∫

0

e−xτdH2(s, τ) =
ρx− λ(1− β(x))

x(x− s− λ(1− β(x)))
, Re x > 0. (2.4)

Denote the k-th moment of R(τ) by r̄k(τ). The first moment of R(τ) is given by, cf. [174],

p. 168:

r̄1(τ) =
τ

1− ρ
. (2.5)

Note that r̄1(τ) is linear in τ. An immediate consequence of (2.5) (or of the expression

for (Pn)n≥0 and Little’s formula) is that the first moment of the sojourn time E{R} is

finite and equals β1

1−ρ if β1 < ∞. Similar statements hold for Ri, i = 1, 2. In Section 3.3,

we will show that a similar result holds for higher moments of the sojourn time. This

property contrasts with the FCFS service discipline, where finiteness of the mean sojourn

time requires β2 <∞. We come back to this in Section 3.4.
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3.3 Properties of the conditional sojourn-time distri-

bution

The goal of this section is to provide a novel expression for r(s, τ) that is suitable to analyze

the tail behavior of the sojourn-time distribution in the next section. In particular, we

show that r(s, τ)−1 can be written as a power series in s. It turns out that the expression

contains the LST of the waiting-time distribution W (.) in the M/G/1 FCFS queue, which

is given by the Pollaczek-Khintchine formula, i.e.

ω(s) :=

∞∫

0

e−sxdW (x) =
1− ρ

1− ρβr(s)
. (3.1)

It can easily be shown by inversion of ω(s)k that, for k ≥ 1 and x ≥ 0,

W k∗(x) = (1− ρ)k
∞∑

n=0

(
n+ k − 1

k − 1

)
ρnBr,n∗(x). (3.2)

We introduce some definitions before the main result of this section is presented. Define

the coefficients αk(τ), with k ≥ 0 and τ ≥ 0, by α0(τ) := 1, α1(τ) :=
τ

1−ρ , and for k ≥ 2,

αk(τ) :=
k

(1− ρ)k

τ∫

x=0

(τ − x)k−1W (k−1)∗(x)dx. (3.3)

Obviously we can write

αk(τ) =

(
τ

1− ρ

)k

− δk(τ), (3.4)

with δ0(τ) = δ1(τ) := 0, and

δk(τ) :=
k

(1− ρ)k

τ∫

0

(τ − x)k−1(1−W (k−1)∗(x))dx, k = 2, 3, .... (3.5)

The next theorem expresses r(s, τ)−1 as a power series in s with coefficients αk(τ)
k!

.

Theorem 3.3.1 For Re s ≥ 0, τ ≥ 0 :

r(s, τ) =

[ ∞∑

k=0

sk

k!
αk(τ)

]−1
. (3.6)

This theorem is proven below by analyzing the LST of r(s, τ)−1. It is also possible to prove

Theorem 3.3.1 without using transforms, starting from Formula (5.2) in [282]. However,

this proof is rather lengthy and therefore omitted. Instead, we give a short proof of

Theorem 3.3.1 with the aid of the following lemma.
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Lemma 3.3.1 For Re s ≥ 0 and Re x > 0 :

∞∫

0

e−xτdr(s, τ)−1 = 1 +
1

1− ρ

s

x

1

1− 1
1−ρ

s
x
ω(x)

. (3.7)

Proof

By (2.2)–(2.4) and (3.1) we have for Re x > 0:

∞∫

0

e−xτdr(s, τ)−1 =
x− λ(1− β(x))

x− s− λ(1− β(x))
+

s

1− ρ

ρx− λ(1− β(x))

x(x− s− λ(1− β(x)))

= 1 +
1

1− ρ

s− sλ(1− β(x))/x

x− s− λ(1− β(x))

= 1 +
1

1− ρ

s

x

1− ρβr(x)

1− ρβr(x)− s
x

= 1 +
1

1− ρ

s

x

1

1− 1
1−ρ

s
x
ω(x)

,

which proves the lemma.

2

Proof of Theorem 3.3.1

It is sufficient to show that the LST of the power series in the denominator of the right-

hand side of (3.6) has the same LST as r(s, τ)−1 for Re x > |s|+ λ. Using the expression

for ω(s), it is not difficult to show that
∣∣∣ sω(x)(1−ρ)x

∣∣∣ < 1 if Re x > |s|+ λ. Hence, we have by

Lemma 3.3.1 that

∞∫

0

e−xτdr(s, τ)−1 = 1 +
1

1− ρ

s

x

1

1− 1
1−ρ

s
x
ω(x)

= 1 +
∞∑

k=1

(
1

1− ρ

s

x

)k

ω(x)k−1. (3.8)

On the other hand, we have for k ≥ 1, cf. (3.3),

∞∫

0

e−xτdαk(τ) =
1

xk
k!

(1− ρ)k
ω(x)k−1,

which completes the proof. 2
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As a first application of Theorem 3.3.1 we show how the moments r̄k(τ) can be found

recursively. Note that all r̄k(τ) exist and are equal to (−1)k
(

∂k

∂sk
r
)
(0, τ), since Theorem

3.1 implies that r(s, τ) is analytic in s = 0. From Theorem 3.3.1 we obtain the identity

r(s, τ)
∞∑

n=0

sn

n!
αn(τ) = 1.

Differentiating both sides k times w.r.t. s and putting s = 0, we obtain the following

result (with r̄0(τ) := 1).

Corollary 3.3.1 For k ≥ 1 and τ ≥ 0,

r̄k(τ) = −
k∑

j=1

(
k

j

)
r̄k−j(τ)αj(τ)(−1)j. (3.9)

In particular, the variance of R(τ) is given by

Var{R(τ)} = δ2(τ), τ ≥ 0. (3.10)

This result is also obtained in Yashkov [281].

Remark 3.3.1

Besides being a tool in the proof of Theorem 3.3.1, Lemma 3.3.1 is also useful for the

determination of a tractable expression for r(s, τ). For example, if the service time is

exponentially distributed with parameter µ, it is possible to invert the right hand side of

(3.7) by partial fraction expansion, which yields the following expression for r(s, τ):

r(s, τ) =

[
s

1− ρ

µ+ λ− x1(s)

x1(s)x0(s)
ex1(s)τ − s

1− ρ

µ+ λ− x2(s)

x2(s)x0(s)
ex2(s)τ − 2ρ

1− ρ

]−1
,

with x0(s) = x1(s)− x2(s) and

x1(s) =
1

2

[
s+ λ− µ+

√
(s+ λ− µ)2 + 4µs

]
,

x2(s) =
1

2

[
s+ λ− µ−

√
(s+ λ− µ)2 + 4µs

]
.

The LST of the sojourn-time distribution in the M/M/1 PS queue was derived earlier by

Coffman et al. [88]. Agreement with the result in [88] can be established by noting that

x1(s) = λπ(s)− µ, where π(s) is the LST of the busy period distribution in the M/M/1

queue. We omit the details.

More generally, the right hand side of (3.7) can be inverted when the LST of the service-

time distribution is a rational function, since then also ω(s) and the right hand side of

(3.7) are rational functions.
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Remark 3.3.2

If β2 <∞, then we have the following two-term asymptotic expansion for r̄k(τ).

r̄k(τ) = r̄k1(τ) +
β2
2β1

ρ

1− ρ

k(k − 1)

(1− ρ)k
τ k−1 + o(τ k−1), τ →∞.

This result can be derived by analyzing the behavior of δk(τ) for τ →∞ by means of its

LST and Karamata’s Tauberian theorem (see Theorem 2.1.1). Then, use Corollary 3.3.1

and induction. We omit the details. The case k = 2 is similar to a result in [281].

If 1−B(x) = x−νL(x), 1 < ν < 2, then the results are different. We give the asymptotic

expansion for k = 2. With L we denote a slowly varying function, see Chapter 2.

r̄2(τ)− r̄21(τ) = Var{R(τ)} = δ2(τ) ∼
B(2, 2− ν)

(1− ρ)3
2λ

ν − 1
τ 3−νL(τ), (3.11)

where B(., .) is the Beta-function. This result can be derived from Equation (3.5), Kara-

mata’s theorem (see Lemma 2.1.7) and the asymptotics for 1 −W (x) which follow from

Theorem 2.2.1.

Using Corollary 3.3.1, it is not difficult to prove the following corollary, which states that

the k-th moment of the sojourn time R is finite iff the k-th moment of the service time

B is finite. A similar result holds for Ri, i = 1, 2.

Corollary 3.3.2 For integer k ≥ 1,

E{Rk} <∞ ⇔ βk <∞.

Proof

Since R ≥ B for any particular customer, ‘⇒’ is trivial. To prove ‘⇐’, fix k ≥ 1 and write

E{Rk} =
∞∫

0

r̄k(τ)dB(τ). (3.12)

Note that, cf. (3.3), for j ≥ 1,

αj(τ) ≤
τ j

(1− ρ)j
.

From this and Corollary 3.3.1, it is easily shown that

r̄k(τ) ≤
Ck

(1− ρ)k
τ k, (3.13)

with C0 = 1 and

Ck =
k−1∑

j=0

(
k

j

)
Cj, k ≥ 1. (3.14)
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The proof now follows from (3.12)–(3.14). 2

Corollary 3.3.2 indicates that the tail behavior of the service-time distribution and the

sojourn-time distribution is similar. In the next section, we will study this relation in the

case that the service-time distribution or the sojourn-time distribution has a regularly

varying tail of index −ν.

3.4 Main asymptotic results

In this section we present the main results of this chapter. Section 3.4.1 treats the tail

behavior of the sojourn time of an arbitrary customer. Section 3.4.2 presents extensions

to the multi-class case. Several complementing bounds for the sojourn-time distribution

are derived in Section 3.4.3.

3.4.1 The single-class case

In this subsection we present the first main result of this chapter, and establish an asymp-

totic equivalence between the tails of the service-time distribution and the sojourn-time

distribution.

Theorem 3.4.1 Let ν > 1, ν not an integer. The following are equivalent.

(i) P{B > x} ∼ x−νL(x), (4.1)

(ii) P{R > x} ∼ (1− ρ)−νx−νL(x). (4.2)

Both imply

P{R > x} ∼ P{B > (1− ρ)x}. (4.3)

The proof of Theorem 3.4.1 is deferred to Section 3.5.

Theorem 3.4.1 illuminates a crucial property of Processor Sharing. We explain this prop-

erty by a comparison with the FCFS discipline. Theorem 2.2.1 implies that the sojourn-

time distribution in the GI/G/1 FCFS queue is regularly varying of index 1 − ν iff the

service-time distribution is regularly varying of index −ν, ν > 1, a result originally due

to Cohen [89]. Thus, a heavy-tailed service time leads to an even heavier-tailed sojourn

time.

Theorem 3.4.1 shows that this is not the case in the M/G/1 PS queue: The sojourn time

is as heavy as the tail of the service time. This reveals a crucial property of PS: Long
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service times have a much smaller effect on the delay of other customers than in the case

of FCFS.

In addition, Theorem 3.4.1 provides insight in the most likely way that the sojourn time

of a customer becomes large. In particular, Equation (4.3) can be explained as follows.

When a tagged customer is in the system for a long time, the distribution of the total

number of customers is approximately equal to the steady-state distribution of the number

of customers in a PS queue with one permanent customer. This model is a special case

of the M/G/1 generalized processor sharing queue, as studied by Cohen [95]. Using the

results obtained in [95], it is possible to show that the mean service rate in steady state

for the tagged (permanent) customer equals 1− ρ. (Which is no surprise, since the non-

permanent customers require mean service rate ρ.) Hence, if a tagged customer has been

in the system for x time periods, with x large, one would expect that the amount of

attained service is roughly equal to x(1− ρ).

It must be emphasized that the above heuristics do not apply in general. For example,

(4.1) is not true if the service time is exponentially distributed, as can be shown from the

expression for P{R > x} in the M/M/1 PS queue given by Morrison [211]. An explana-

tion for this is that, when the service time distribution is exponential, the tagged customer

does not stay in the system long enough to reach the equilibrium situation sketched above.

Remark 3.4.1

Define the delay time Rd of a customer entering the system in steady state as the sojourn

time minus the size of the service request. The conditional delay time Rd(τ) is given by,

cf. [282],

Rd(τ) = R(τ)− τ. (4.4)

The LST’s of Rd and Rd(τ) are denoted by rd(s) and rd(s, τ). Note that

E{Rd(τ)} =
ρτ

1− ρ
, (4.5)

rd(s, τ) = esτr(s, τ). (4.6)

One can show that the k-th moment of Rd is finite iff the k-th moment of the service time

is finite. If the latter is the case, then this follows from Corollary 3.3.2 and the fact that

Rd ≤ R for any particular customer. If the former holds, then use Jensen’s inequality and

ρ > 0:

∞ > E{Rk
d} =

∞∫

0

E{Rd(τ)
k}dB(τ) ≥

(
ρ

1− ρ

)k
∞∫

0

τ kdB(τ) =

(
ρ

1− ρ

)k

βk.

If the service-time distribution is regularly varying of index −ν, 1 < ν < 2, it is possible

to show from (4.3)–(4.5), following a similar analysis as in the proof of Theorem 3.4.1 in

the next section, that for x→∞,

P{Rd > x} ∼ P{ ρ

1− ρ
B > x}.
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3.4.2 The multi-class case

In this subsection we present asymptotic results for the class-i sojourn-time tail P{Ri >

x}. Compared with the single-class case, we go one step further and show that the tail

of the sojourn-time distribution is as heavy as that of the service-time distribution, even

if another customer class possesses a service-time distribution with a heavier tail.

Theorem 3.4.2 If there exists a µ > 1 such that E{Bµ} < ∞, then the following are

equivalent for non-integer ν > 1,

(i) P{B1 > x} ∼ x−νL(x), (4.7)

(ii) P{R1 > x} ∼ (1− ρ)−νx−νL(x). (4.8)

Both imply

P{R1 > x} ∼ P{B1 > (1− ρ)x}. (4.9)

The condition E{Bµ} <∞ in Theorem 3.4.2 is made for technical reasons (for which we

refer to the proof in the next section); it is weak enough for all practical purposes. In

particular, Theorem 3.4.2 provides explicit asymptotics for the following case. Suppose

that we have N types of customers, with service times Bi and stationary sojourn times Ri.

We immediately obtain the following result (choose µ ∈ (1,mini νi) in Theorem 3.4.2).

Corollary 3.4.1 For i = 1, ..., N , and non-integer νi > 1, P{Bi > x} is regularly varying

of index −νi if and only if P{Ri > x} is regularly varying of index −νi. Both imply that

P{Ri > x} ∼ P{Bi > (1− ρ)x}, i = 1, . . . , N. (4.10)

To appreciate the implications of Theorem 3.4.2 and Corollary 3.4.1, we compare the

multi-class M/G/1 PS queue with other service disciplines. Suppose we have a stable

M/G/1 queue with N types of customers and suppose that the service time of customers

of type i is regularly varying of non-integer index −νi, with 1 < ν1 < ν2 < · · · < νN . Note

that the service time of an arbitrary customer is regularly varying of index −ν1. We are

interested in the tail behavior of the sojourn-time distribution of a customer under the

service disciplines FCFS, LCFS and PS.

For a customer of type i, the following holds. In the FCFS case, the tail of the customers

of type 1 dominates all other types, which leads to a regularly varying sojourn-time

distribution of index 1 − ν1 for all types. The index is increased by 1 since an arbitrary

customer has to wait with positive probability for a residual service-time period of a

customer of type 1. In Anantharam [15] it has been shown that this is the case for all

non-preemptive service disciplines where at most one customer is being served at the same

time.
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The situation under the LCFS pre-emptive regime is slightly better; in this case the

sojourn time of an arbitrary customer is regularly varying of index −ν1, see Boxma &

Cohen [75] and Chapter 5 of this thesis. However, the customers of type 1 still dominate

the sojourn time of a customer of type i. With positive probability, a customer of type

1 enters the system when a customer of type i is being served, so customers of type 1

dominate the tail of the sojourn-time distribution of type i.

Theorem 3.4.2 and Corollary 3.4.1 show that under the PS regime, the tail of the sojourn-

time distribution of a customer of type i is not dominated by a heavier tail of a customer

of another type, so that in this case, the sojourn-time distribution is regularly varying of

index −νi.

Remark 3.4.2

Theorem 3.4.2 and Corollary 3.4.1 show that the tail behavior of customer class i is (in

case of regular variation) the same as in the M/G/1 PS queue where (only) customers of

class i enter and where the server works at speed ρi/ρ.

3.4.3 Bounds

The results presented so far all rely on regular variation assumptions. In this section,

we derive some upper bounds for the tails of R(τ) and R1, without assuming regular

variation. We believe that these bounds provide some additional insight, but caution that

they might be rather crude.

The first result can be proven along the same lines as Theorem 3.4.2.

Proposition 3.4.1 If there exists a µ > 1 such that E{Bµ} <∞, then the following are

equivalent,

P{Ri > x} = o(x−α), ∀α > 0, (4.11)

P{Bi > x} = o(x−α), ∀α > 0. (4.12)

In words: The sojourn time distribution is lighter than any power tail iff the service

time distribution satisfies the same property. In particular, this result remains true if

the service-time distribution of another customer class is heavy-tailed. We can even go a

step further: Conditional upon its service requirement, the sojourn time R(τ) is always

light-tailed. Formally, we have

Proposition 3.4.2 For each γ > e− 1 and τ > 0,

P{R(τ) > x} = o(e−
1−ρ
γτ

x),

as x→∞.
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Proof

Using Corollary 3.3.1, it can easily be shown that the moments r̄k(τ) satisfy the inequality

r̄k(τ) ≤ k!

(
(e− 1)τ

1− ρ

)k

. (4.13)

This implies that r(s, τ) can be extended to Re s ≥ − 1−ρ
γτ

, γ > e− 1. 2

This qualitative result supports the conjecture that a large sojourn time is not due to

excessive behavior of other customers, but does not imply that R1 is always light-tailed

whenever B1 is. For example, when B1 has an exponential distribution, we only get a

Weibullian upper bound for P{R1 > x}.

Proposition 3.4.3 If B1 is exponentially distributed with rate µ, then

lim sup
x→∞

logP{R1 > x}√
x

≤ −
√

1− ρ

(e− 1)µ
. (4.14)

Proof

From Proposition 3.4.2, we conclude that for each γ > e − 1, there exists a constant C

such that

P{R(τ) > x} ≤ Ce−
1−ρ
γτ

x.

Thus,

P{R1 > x} =

∫ ∞

0

P{R(τ) > x}µe−µτdτ

≤ Cµ

∫ ∞

0

e−µτ−
1−ρ
γτ

xdτ

= Cµ
√
x

∫ ∞

t=0

e−(µt−
1−ρ
γt

)
√
xdt.

The transformation t = τ/
√
x in the last step has paved the way for applying the Laplace

method, see for example p. 80 in Olver [216]. Invoking Theorem 7.1 of [216], we conclude

that, for some constant C2,

∫ ∞

t=0

e−(µt−
1−ρ
γt

)
√
xdt ∼ C2x

− 1
4 e
−

√
1−ρ
γµ

x
. (4.15)

This holds for each γ > e− 1, yielding (4.14). 2
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3.5 Proof of Theorems 3.4.1 and 3.4.2

In this section we give a proof of the theorems in the previous section. We concentrate

on the most general multi-class case (Theorem 3.4.2), from which the single-class case

(Theorem 3.4.1) easily follows. The proof makes use of the Tauberian Theorem 2.1.2 and

the Expression (3.6) for the LST of the sojourn time distribution.

Before we give a proof of Theorem 3.4.2, we make some preparations in the following

three lemmas.

Lemma 3.5.1 If E{Bµ} < ∞ for some µ > 1, then there exists a δ > 0 such that for

every n ≥ 1,

r̄n(τ)− r̄n1 (τ) = o(τn−δ), τ →∞, (5.1)

√
Var{Rn(τ)} = o(τn−δ), τ →∞. (5.2)

Proof

From (3.1) and (3.5) we obtain for k ≥ 2,

∞∫

0

e−sτdδk(τ) =
1

sk
k!

(1− ρ)k
(
1− ωk−1(s)

)
. (5.3)

Since E{Bµ} <∞ for a µ > 1, it follows that, cf. p. 199 in [188],

β(s) = 1− β1s+O(|sµ|), s ↓ 0. (5.4)

This implies, using (3.1), for δ ∈ (0, µ− 1) and k ≥ 2,

ωk−1(s) = 1− o(sδ), s ↓ 0. (5.5)

Hence, from (5.3) it follows for k ≥ 2,

∞∫

0

e−sτdδk(τ) = o(sδ−k), s ↓ 0. (5.6)

Since the function δk(τ) is non-decreasing in τ , it follows from Karamata’s Tauberian

theorem (Theorem 2.1.1) that for k ≥ 2,

δk(τ) = o(τ k−δ), τ →∞. (5.7)

Equation (5.1) now follows by an inductive argument using (3.3), Corollary 3.3.1 and

(5.7). To prove (5.2), we have by using (5.1) for both r̄2n(τ) and r̄n(τ),

Var{Rn(τ)} = r̄2n(τ)− r̄2n(τ) = o(τ 2n−δ), τ →∞,
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which proves (5.2) with δ replaced by 1
2
δ. 2

Define

f(s, τ) := r(s, τ)− e−
sτ

1−ρ . (5.8)

We have the following useful lemma, controlling the behavior of f(s, τ) for small s and τ

not too large (i.e., τ ≤ K/s with K some large constant).

Lemma 3.5.2 If E{Bµ} <∞ for a µ > 1, then, for γ ∈ (0, 1), γ < µ− 1,

f(s, τ) = o(sγ), τ = O(1/s) , s ↓ 0.

Proof

Without loss of generality, it can be assumed that µ < 2. From Theorem 3.3.1 and (3.3)

we get

f(s, τ) =
e−

2sτ
1−ρ
∑∞

k=2
sk

k!
δk(τ)

1− e−
sτ

1−ρ
∑∞

k=2
sk

k!
δk(τ)

. (5.9)

It follows immediately from (4.9), using δk(τ) ≤ τk

(1−ρ)k , that for real s ≥ 0,

f(s, τ) ≤ 1

1 + sτ
1−ρ

e−
sτ

1−ρ

∞∑

k=2

sk

k!
δk(τ) ≤ e−

sτ
1−ρ

∞∑

k=2

sk

k!
δk(τ). (5.10)

We now derive an upper bound for δk(τ). In view of (3.5), we need an upper bound for

1 −W (k−1)∗(x). From (5.5) with k = 2 and Theorem 2.1.2 with C = 0, we obtain for

ε ∈ (0, µ− 1)

1−W (x) = o(x−ε), x→∞. (5.11)

Let (Wi)i≥1 be an i.i.d. sequence with distribution function W (x). Then, we have

1−W (k−1)∗(x) = P{W1 + · · ·+Wk−1 > x} ≤ P{∪k−1i=1 {Wi >
x

k − 1
}}

≤ (k − 1)P{W1 >
x

k − 1
}.

Combining this with (5.11) we get for x→∞,

1−W (k−1)∗(x) ≤ (k − 1)2o(x−ε), (5.12)

where o(x−ε) is independent of k ≥ 2. This implies, for Re s ≥ 0,

δk(τ) ≤ k(k − 1)2
(

τ

1− ρ

)k

o(τ−ε), (5.13)
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where τ →∞. Since τ = O(1/s), s→ 0, it follows that

f(s, τ) ≤ e−
sτ

1−ρ

∞∑

k=2

sk

k!
(k − 1)2k

(
τ

1− ρ

)k

o(τ−ε)

≤ o(τ−ε)e−
sτ

1−ρ

(
sτ

1− ρ

)2 ∞∑

k=0

k + 1

k!

(
sτ

1− ρ

)k

= o(τ−ε)

(
sτ

1− ρ

)2 [
1 +

(
sτ

1− ρ

)]

= o(τ−ε)

(
sτ

1− ρ

)2

(1 + O(1)) = o(sε).

Since this result applies for all ε ∈ (0, µ− 1), the lemma is proven. 2

The n-th derivative of f(s, τ) with respect to s is defined by

f (n)(s, τ) :=
∂n

∂sn
f(s, τ). (5.14)

The following upper bound for f (n+1)(s, τ) will be useful.

Lemma 3.5.3 For n ≥ 1, s ≥ 0, τ ≥ 0,

|f (n+1)(s, τ)| ≤ e−sτ
√

Var{Rn+1(τ)}+ r(s, τ)
(
r̄n+1(τ)− r̄n+1

1 (τ)
)
+

(
τ

1− ρ

)n+1

f(s, τ).

Proof

Using the probabilistic interpretation f(s, τ) = E{e−sR(τ)} − e−
sτ

1−ρ , we obtain

|f (n+1)(s, τ)| =

∣∣∣∣∣E{R
n+1(τ)e−sR(τ)} −

(
τ

1− ρ

)n+1

e−
sτ

1−ρ

∣∣∣∣∣
≤

∣∣E{Rn+1(τ)e−sR(τ)} − E{Rn+1(τ)}E{e−sR(τ)}
∣∣

+

∣∣∣∣∣E{R
n+1(τ)}E{e−sR(τ)} −

(
τ

1− ρ

)n+1

E{e−sR(τ)}
∣∣∣∣∣

+

∣∣∣∣∣

(
τ

1− ρ

)n+1

E{e−sR(τ)} −
(

τ

1− ρ

)n+1

e−
sτ

1−ρ

∣∣∣∣∣

= |Cov{Rn+1(τ), e−sR(τ)}|+ r(s, τ)

(
r̄n+1(τ)−

(
τ

1− ρ

)n+1
)

+

(
τ

1− ρ

)n+1

f(s, τ).
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The first term can be bounded by using the inequality of Cauchy-Schwarz and noting that

Var{e−sR(τ)} ≤ E{e−2sR(τ)} ≤ e−2sτ ,

since R(τ) ≥ τ .

2

Proof of Theorem 3.4.2

Recall that E{Bµ} < ∞ for some µ > 1. Let ν ∈ (n, n + 1). Without loss of generality,

we can assume that µ < min(ν, 2). By Theorem 2.1.2, it suffices to show that (i) or (ii)

in Theorem 3.4.2 implies that for real s ↓ 0,

r1(s)− β1

(
s

1− ρ

)
−

n∑

k=0

(−s)k
k!

(
E{Rk

1} −
β1,k

(1− ρ)k

)
= o(sνL(1/s)). (5.15)

Write

r1(s)− β1

(
s

1− ρ

)
−

n∑

k=0

(−s)k
k!

(
E{Rk

1} −
β1,k

(1− ρ)k

)
=

∞∫

0

fn(s, τ)dB1(τ),

with fn(s, τ) the residual term of the n-term Taylor expansion of f(s, τ) in s = 0, i.e.

fn(s, τ) = f(s, τ)−
n∑

k=0

sk

k!
f (k)(0, τ). (5.16)

Since f(s, τ) is analytic in s = 0, we can apply Taylor’s theorem, which gives, for s in a

neighborhood of 0,

|fn(s, τ)| =

∣∣∣∣∣∣

s∫

0

(s− u)n

n!
f (n+1)(u, τ)du

∣∣∣∣∣∣
≤ sn

s∫

0

∣∣f (n+1)(u, τ)
∣∣ du. (5.17)

Using Lemma 3.5.3 and (5.17) we obtain

∞∫

0

|fn(s, τ)| dB1(τ)

≤ sn
∞∫

0

√
Var{Rn+1(τ)}

s∫

0

e−uτdudB1(τ)

+ sn
∞∫

0

(
r̄n+1(τ)− r̄n+1

1 (τ)
)

s∫

0

r(u, τ)dudB1(τ)

+ sn
∞∫

0

r̄n+1
1 (τ)

s∫

0

f(u, τ)dudB1(τ) =: I + II + III.
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This implies that the proof of Theorem 3.4.2 is complete once we have shown that all

three integrals (I, II and III) on the right hand side are of o(sνL(1/s)) for s ↓ 0. Thus,

the remainder of the proof is split up in three parts (I,II, and III). Suppose that (i) in

Theorem 3.4.2 holds with equality (which is no restriction, since the class of regularly

varying distributions is closed under tail equivalence).

Part I

It is convenient to split the integral in two parts. Using Part (ii) of Lemma 3.5.1 for τ

large we get for a δ > 0 and a finite constant M :

sn
∞∫

0

√
Var{Rn+1(τ)}

s∫

0

e−uτdudB1(τ) (5.18)

≤ Msn
s−1∫

0

τn+1−δ
s∫

0

e−uτdudB1(τ) +Msn
∞∫

s−1

τn+1−δ
s∫

0

e−uτdudB1(τ).

The first part of (5.18) can be bounded by using e−uτ ≤ 1 and τ ≤ s−1:

Msn
s−1∫

0

τn+1−δ
s∫

0

e−uτdudB1(τ) ≤Msn+1

s−1∫

0

τn+1−δdB1(τ)

≤ Msν+
1
2
δ

s−1∫

0

τ ν−
1
2
δdB1(τ) ≤ME{Bν− 1

2
δ

1 }sν+ 1
2
δ.

To bound the second integral in the right-hand side of (5.18), use
s∫
0

e−uτdu ≤ 1
τ
and apply

partial integration:

Msn
∞∫

s−1

τn+1−δ
s∫

0

e−uτdudB1(τ)

≤ −Msn
∞∫

s−1

τn−δd(1−B1(τ))

= M(1−B1(1/s))s
δ +M(n− δ)sn

∞∫

s−1

τn−1−δ(1−B1(τ))dτ

= Msν+δL(1/s) +M(n− δ)sn
∞∫

s−1

τn−1−δ−νL(τ)dτ.

It follows from Karamata’s theorem (Lemma 2.1.7) that the expression in the right-hand

side behaves proportionally to sν+δL(1/s) for real s ↓ 0, which completes the proof of
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Part I.

Part II

Identical to Part I, using Part (i) of Lemma 3.5.1, and r(s, τ) ≤ e−sτ .

Part III

We split the leftmost integral in III again up in two parts, namely 0 ≤ τ ≤ T/s for some

finite T , and τ ≥ T/s. Using Lemma 3.5.2 and a similar calculation as in the first part

of the proof of Part I, we can conclude that the first integral is o(sν+ε), for an ε > 0 and

s ↓ 0. This result holds for each finite T . Bounding the second integral is more difficult

than in Part I and II. It follows from the first inequality in (5.10) and δk(τ) ≤
(

τ
1−ρ

)k
,

k ≥ 2, that f(s, τ) ≤ 1/(1 + sτ
1−ρ). This implies that

s∫

0

f(u, τ)du ≤
s∫

0

1

1 + uτ
1−ρ

du =
1− ρ

τ
ln

(
1 +

sτ

1− ρ

)
.

Note that for every γ > 0 we have for large T that ln
(
1 + sτ

1−ρ

)
≤ (sτ)γ if τ ≥ T/s. The

second integral can now be handled by using partial integration, with γ ∈ (0, ν − n):

sn
∞∫

T/s

(
τ

1− ρ

)n+1
s∫

0

f(u, τ)dudB1(τ)

≤ sn+γ
∞∫

T/s

τn+γdB1(τ)

= sn+γ(T/s)n+γ(1−B1(T/s)) + (n+ γ)sn+γ
∞∫

T/s

(1−B1(τ))τ
n+γ−1dτ

= sνL(1/s)T n+γ−ν + (n+ γ)sn+γ
∞∫

T/s

τn+γ−1−νL(τ)dτ

∼ sνL(1/s)T n+γ−ν
(
1 +

n+ γ

ν − n− γ

)
, s ↓ 0. (5.19)

The last result holds for for every T > 0 by another application of Karamata’s theorem.

Part III is then completed by choosing T arbitrarily large.

We conclude that (5.15) holds, which implies (ii) of Theorem 3.4.2 by invoking Theo-

rem 2.1.2. If Part (ii) of Theorem 3.4.2 holds with equality, the proofs of I, II, and III

(and hence that of (i) of Theorem 3.4.2) follow similarly, using the stochastic dominance

1−B1(τ) ≤ P{R1 > τ} = (1− ρ)−ντ−νL(τ); we omit the details.
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3.6 Heavy traffic and heavy tails

In this section we give a new proof of a heavy-traffic theorem (due to [249, 284]) based

on Theorem 3.4.1. We will show that the ‘contracted’ moments of the sojourn times

converge to the moments of the limiting distribution. Finally, we give both explicit and

asymptotic results for the sojourn-time distribution in heavy traffic when the service-time

distribution has a regularly varying tail.

3.6.1 General results

We present a new proof for the following result, see [249, 284].

Theorem 3.6.1 If β1 <∞, then

lim
ρ→1

v(s(1− ρ), τ) =
1

1 + sτ
, Re s ≥ 0, τ ≥ 0, (6.1)

lim
ρ→1

P{(1− ρ)R(τ) ≤ x} = 1− e−
x
τ , x ≥ 0, τ ≥ 0. (6.2)

A heavy-traffic theorem for the GI/G/1 PS queue is also known, see Grishechkin [147].

Note that it is only required that the first moment of the service-time distribution is finite,

which is not the case in the FCFS service discipline, as discussed in Chapter 1.

Proof

Note that (6.1) and (6.2) are equivalent. Since

r(s(1− ρ), τ) =

[
1 + sτ +

∞∑

k=2

sk

k!
(1− ρ)kαk(τ)

]−1
,

it suffices to show that, for k ≥ 2,

lim
ρ→1

(1− ρ)kαk(τ) = 0. (6.3)

This follows immediately from (3.3) and the fact that limρ→1W (x) = 0 for x ≥ 0. Indeed,

when β2 < ∞ this follows from the standard heavy-traffic limit, which can be found in

e.g. Cohen [97], p. 597. If β2 = ∞, then it must hold that Br(x) < 1. Hence, since

Br,n∗(x) ≤ Bn(x),

W (x) = (1− ρ)
∞∑

n=0

ρnBr,n∗(x) ≤ 1− ρ

1− ρBr(x)
→ 0,

when ρ→ 1. 2

Since r(s(1 − ρ), τ) ≤ 1, we have by dominated convergence and Theorem 3.6.1 the

following heavy-traffic limit for the unconditional sojourn-time distribution.
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Corollary 3.6.1 For Re s ≥ 0,

lim
ρ→1

r(s(1− ρ)) =

∞∫

0

1

1 + sτ
dB(τ), (6.4)

and

lim
ρ→1

r(s(1− ρ)) =

∞∫

0

e−xβ(sx)dx. (6.5)

Proof

Equation (6.4) follows from Theorem 3.6.1 and bounded convergence. Equation (6.5)

follows easily from (6.4) since

∞∫

0

1

1 + sτ
dB(τ) =

∞∫

0

∞∫

0

e−x−sτxdxdB(τ) =

∞∫

0

e−xβ(sx)dx.

2

This result has also been obtained by Sengupta [249]. Note that (6.5) is the LST of a

random variable Y := XB, where B is equal to the service time and X is exponentially

distributed with mean 1 and independent of B. A similar interpretation is given in [249],

where it serves as a basis for approximations for the sojourn-time distribution in the

GI/G/1 PS queue.

The above results remain of course true in the multi-class case. In this case, (1−ρ)Ri con-

verges weakly to XBi. Hence, in heavy traffic, the sojourn-time distribution of a customer

is completely determined by its own service-time distribution. To state it differently: PS

provides perfect isolation between customer classes in heavy traffic.

We now turn to convergence of the moments of the sojourn time in heavy traffic. It will

be shown that the moments of the contracted sojourn time converge to the corresponding

moments of the heavy-traffic limiting distribution. Instead of using arguments concerning

uniform integrability, cf. [41] p. 338, after which Theorem 3.6.2 below readily follows from

(6.2), we follow another approach by using Corollary 3.3.1.

Theorem 3.6.2 If β1 <∞, then

lim
ρ→1

E{((1− ρ)R(τ))k} = k!τ k, τ ≥ 0, k ≥ 1.
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Proof

We apply induction w.r.t. k. Fix τ ≥ 0. By (2.4), the result holds for k = 1. Suppose the

result is true for k = 1, . . . , n, n > 1. By Corollary 3.3.1 we have

(1− ρ)n+1r̄n+1(τ) = −
n+1∑

j=1

(
n+ 1

j

)
(1− ρ)n+1−j r̄n+1−j(τ)(1− ρ)jαj(τ)(−1)j.(6.6)

The result follows after some simple calculations for k = n+ 1 by the induction hypoth-

esis, (6.3), and (1− ρ)α1(τ) ≡ τ . 2

A similar result holds for the unconditional moments of the sojourn time, whenever they

exist.

Corollary 3.6.2 If βk <∞, k ≥ 1, then

lim
ρ→1

E{((1− ρ)R)k} = k!βk.

Proof. The same idea is used as in the proof of Corollary 3.3.2. Write

E{((1− ρ)R)k} =
∞∫

0

(1− ρ)kr̄k(τ)dB(τ).

Note that, cf. (3.3),

(1− ρ)kαk(τ) ≤ τ k. (6.7)

From (6.6), (6.7) and by induction w.r.t. k, it is trivially seen that (1− ρ)krk(τ) ≤ Ckτ
k,

with C0 = 1 and

Ck =
k−1∑

j=0

(
k

j

)
Cj, k ≥ 1.

The result follows by dominated convergence and Theorem 3.6.2.

2

Van den Berg [38] (Chapter 4) has proven Theorem 3.6.2 and Corollary 3.6.2 in the case

k = 2. Numerical results in [38] indicate that the heavy-traffic approximation for the

second moment of the sojourn time performs well.

Remark 3.6.1

Abate & Whitt [5] perform a heavy-traffic analysis for the waiting time in the M/G/1

LCFS system. They prove a heavy-traffic theorem for the moments of the waiting time
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under additional assumptions to meet uniform integrability conditions. The latter concept

can also be applied in our case without making any additional assumptions. Note that

in our case the k-th moment of the heavy-traffic limiting distribution is equal to k!βk if

βk <∞.

3.6.2 An explicit expression for the limiting distribution

Let RHT be a random variable with a distribution equal to the heavy-traffic limit, i.e.

P{RHT ≤ x} := lim
ρ→1

P{(1− ρ)R ≤ x}.

If the service time has a Pareto distribution, given by

1−B(τ) =

(
r − 1

r

)r

τ−r, τ ≥ r − 1

r
, (6.8)

(B(τ) = 0 otherwise), then an explicit expression for P{RHT ≤ x} can be found if r is

integer-valued and a multi-term asymptotic expansion is available for P{RHT ≤ x} if r is

non-integer. A similar result holds if we consider finite mixtures of (6.8).

To show this, we exploit results of Abate & Whitt [2]. They define the class of Pareto

Mixtures of Exponentials (PME) as follows. A distribution function F is a PME if

1− F (x) =

∫ ∞

0

e−
x
τ dB(τ), x ≥ 0, (6.9)

with B(.) given by (6.8). From this definition and (6.2) we can conclude that the heavy-

traffic limiting distribution is a PME if the service-time distribution is Pareto. We get,

cf. [2],

P{RHT > x} =

∫ ∞

0

e−
x
y dB(y)

=

∫ ∞

r−1
r

e−
x
y r

(
r − 1

r

)r

y−r−1dy

= r

(
r − 1

r

)r ∫ r
r−1

0

e−yxyr−1dy.

This expression is (up to a multiplicative constant) equal to the incomplete Gamma

function. Applications of well-known results for the incomplete Gamma function (see

Abramovitz and Stegun [9], (4.2.55) and §6.5) give the following results. For integer

r ≥ 2 we have,

P{RHT > x} =
(
r − 1

r

)r
r!

xr

[
1− e−

rx
r−1

r−1∑

k=0

1

(r − 1− k)!

(
xr

r − 1

)r−1−k
]
. (6.10)

And, for non-integer r > 1:

P{RHT > x} =
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(
r − 1

r

)r
r

xr

[
Γ(r)−

(
rx

r − 1

)r−1
e−

rx
r−1

[
1 +

r − 1
rx
r−1

+
(r − 1)(r − 2)
(
rx
r−1
)2 + · · ·

]]
.(6.11)

It is not difficult to obtain an explicit expression for P{RHT > x} when the service-

time distribution is a mixture of Pareto distributions as given in (6.8). In that case, the

distribution of RHT is a mixture of PME’s, which readily leads to an extension of (6.10)

and (6.11).

Both (6.10) and (6.11) indicate that a one-term asymptotic expansion for the heavy-

traffic limiting distribution will behave quite accurately since the residual terms decrease

exponentially fast if x → ∞ (cf. the observation in [2] p. 321). Another interesting

observation is that the one-term expansion for P{RHT > x} behaves like Γ(r+1)P{B > x},
x → ∞. In the next subsection, we will show that this property still holds if we only

assume that the service-time distribution is regularly varying.

3.6.3 Tail behavior

In this subsection we study the behavior of P{RHT > x} for x large in the case that

the service-time distribution is regularly varying. In particular, it will be shown that the

heavy-traffic approximation

P{R > x} ≈ P{RHT > (1− ρ)x}

for the sojourn time overestimates the true sojourn-time distribution for large x.

Theorem 3.6.3 If 1−B(x) = x−νL(x) with ν > 1, then

P{RHT > x} ∼ Γ(ν + 1)P{B > x}.

Proof

Since RHT
d
= Y B, with Y exponentially distributed with mean 1 and B the service time

independent of Y , Theorem 6.3 immediately follows from Proposition 3 in [78], which is

stated only for 0 < ν < 1, but can easily be extended to ν > 0 (see also [113, 123, 232]).

2

Remark 3.6.2

Using a result of Cline & Samorodnitsky [87], we can conclude that RHT is subexponential

when B is subexponential. However, it is not possible to give a general characterization

of the tail behavior of RHT , see [87] (and also Schmidli [253]) for a discussion.



3.7. CONCLUDING REMARKS 65

Remark 3.6.3

It is possible to get more refined asymptotics for P{RHT > x}. Suppose 1−B(x) is given

by

1−B(x) =
N∑

i=1

pix
−νi + o(x−νN ), x→∞, (6.12)

with 1 < ν1 < · · · < νN , and pi > 0. Applying (6.10), (6.11), and Theorem 3.6.3, we get

P{RHT > x} =
N∑

i=1

piΓ(νi + 1)x−νi + o(x−νN ), x→∞. (6.13)

Remark 3.6.4

By Theorems 3.6.3 and 3.4.1, we have the following interesting result:

lim
x→∞

lim
ρ→1

P{(1− ρ)R > x}
P{B > x} = Γ(ν + 1) > 1 = lim

ρ→1
lim
x→∞

P{(1− ρ)R > x}
P{B > x} . (6.14)

Hence, the heavy-traffic approximation for P{R > x} overestimates the true value when

x is large. This indicates that the approximations for the waiting-time distribution asso-

ciated with Theorems 3.4.1 and 3.6.3 will behave differently.

3.7 Concluding remarks

In this chapter, we have investigated asymptotic properties of the sojourn time distribu-

tion in the M/G/1 PS queue. Our main results (Theorems 3.4.1 and 3.4.2) show that

the sojourn-time distribution and the service-time distribution are equally heavy-tailed.

More precisely, in the case of regular variation, we have P{R1 > x} ∼ P{B1 > (1− ρ)x}.
The ‘if’ part of Theorem 3.4.1 has recently been generalized by Núñez-Queija [215] (Theo-

rem 5.2.3) to the class of intermediately regularly varying distributions. Chapter 5 of [215]

also contains similar results for related service disciplines, such as foreground-background

PS, shortest remaining processing time first, and PS with a varying service rate. The ex-

tension of Theorem 3.4.1 to the more general class of subexponential distributions remains

a challenging open problem.

The results in this chapter confirm the viewpoint in Kleinrock [174] that PS is a ‘fair’

service discipline. PS offers protection for short jobs against the long ones, and for well-

behaved customer classes against odd-behaved ones. Similar insights for the class of

Generalized Processor Sharing queues have recently been obtained in a series of papers

by Borst et al. [54, 55, 56, 57, 58].
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Chapter 4

A fluid queue with a finite buffer

4.1 Introduction

Most of the early papers on fluid queues with heavy-tailed input assume an infinite buffer

size, see e.g. Boxma [65, 66], Jelenković & Lazar [161], and Rolski et al. [243]. The results

in [65, 66, 243] are based on a distributional equivalence between the stationary buffer

content in the fluid queue and the waiting time in the GI/G/1 queue. A systematic

treatment of this equivalence has been developed by Kella & Whitt [168], and is applied

in Boxma & Dumas [67] to derive asymptotics for fluid queues from Theorem 2.2.1; see

also the discussion accompanying Theorem 2.2.3.

Besides the above relation between queues with instantaneous and gradual input, there

is sometimes also a relation between queues with finite and infinite buffer size. A clas-

sical example is the equivalence between the stationary waiting-time distributions of the

M/G/1 queue with finite and infinite buffer size. These distributions are proportional,

see Equation (3.6) below. This proportionality relation has already been known since

Takács [262].

In this chapter, we analyze a fluid queue with finite buffer size K. We provide useful

relations between this model and other models, like the fluid queue with infinite buffer

size, and the single-server queue with finite capacity K (the finite dam). In particular, we

extend the results of Kella & Whitt [168] to the finite buffer case, and we prove that the

stationary buffer-content distributions in the fluid queue with finite and infinite buffer size

are proportional, see Theorem 4.5.2 below. These results are then applied to investigate

the influence of heavy-tailed input characteristics on performance measures like the loss

fraction and the mean buffer content.

The asymptotic expansions that are derived for these performance measures indicate that

heavy-tailed input characteristics can have a significant influence on the performance of

the fluid queue. In particular, loss fractions decay less than exponentially fast to zero when

the buffer size gets large. This implies that very large buffers are needed to guarantee a

small loss fraction, which differs from the case where Cramèr-type conditions are satisfied.

67



68 CHAPTER 4. A FLUID QUEUE WITH A FINITE BUFFER

In the latter case, the loss fraction is known to behave negative exponentially as function

of the buffer size. Another performance measure which is influenced by heavy-tailed input

is the mean buffer content. When the activity periods of the On-Off sources have infinite

second moments, the mean buffer content may behave like a (positive) power of the buffer

size when the latter gets large. Complementing results have been obtained by Heath et

al. [151, 153], Resnick & Samorodnitsky [236], who investigate the (asymptotic behavior

of the) expected time to buffer overflow.

This chapter is organized as follows. In Section 4.2, we introduce the fluid model and

indicate its relation to the finite dam with instantaneous input. We present some new

results for the latter model in Sections 4.3 and 4.4. The main results for the fluid model can

be found in Section 4.5. The results obtained in Sections 4.3–4.5 are applied in Section 4.6,

where the fluid queue fed by a number of On-Off sources is discussed. Section 4.7 treats

the case of overloaded queues. An alternative proof of Theorem 4.5.2 can be found in the

Appendix.

4.2 Preliminaries

In this section we describe the dynamics of the fluid model introduced by Kella & Whitt

[168], and extend this description to a fluid queue with a finite buffer. There are four

elements governing the dynamics of the fluid model: Two collections of random variables

{Ak : k ≥ 1} and {Uk : k ≥ 1}, and two collections of stochastic processes {{Bk(t) :

t ≥ 0} : k ≥ 1}, and {{Tk(t) : t ≥ 0} : k ≥ 1}, both classes having right-continuous

sample paths with left limits. In the terminology of [168], Ak and Uk can be interpreted

as successive down- and up-times respectively, a terminology motivated by queues with

service interruptions.

Fluid in the buffer increases according to {Bk(t) : t ≥ 0} during the k-th downtime (of the

server), and fluid in the buffer decreases by the stochastic process {Tk(t) : t ≥ 0} during

the k-th uptime. Therefore we use a different terminology, which is motivated by fluid

queues: We call Ai an activity period (of a global fluid source) and Ui a silence period.

Define

τk = A1 + U1 + · · ·+ Ak + Uk, k ≥ 1, (2.1)

and τ0 = 0. The buffer content of the fluid queue with infinite buffer size at time t is

denoted by V (t), and is given by, cf. [168],

V (τk+1−) = max{V (τk−) +Bk+1(Ak+1−)− Tk+1(Uk+1−), 0}, (2.2)

V (t) = V (τk−) +Bk+1(t− τk−), τk ≤ t < τk + Ak+1,

V (t) = max{V (τk−) +Bk+1(Ak+1−)− Tk+1(t− τk − Ak+1), 0},
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τk + Ak+1 ≤ t < τk+1. (2.3)

In this chapter we assume that the main independence assumption stated in [168] holds,

i.e. {(Ak, Uk, {Bk(t) : t ≥ 0}, {Tk(t) : t ≥ 0}) : k ≥ 1} is an i.i.d. sequence. Moreover,

it is assumed that the moments E{A1}, E{U1}, E{B1(A1−)}, and E{T1(U1−)} are finite.

Then, under the condition E{B1(A1−)}/E{T1(U1−)} < 1, it is shown in [168] that V (τk−)
converges in distribution to a random variable (tentatively denoted by) W as k → ∞.

Moreover, when A1, U1, and A1 + U1 are non-lattice, the buffer-content process V (t)

converges in distribution to a random variable V .

It is obvious that W corresponds to the waiting-time of the G/G/1 queue with service

times B1(A1−) and interarrival times T1(U1−). One of the main contributions of Kella &

Whitt [168] is to relate the distribution of V to the stationary waiting-time distribution

in a G/G/1 queue, see Theorems 4–6 in [168].

Next, we introduce the fluid model with finite buffer size K > 0. For each K, the buffer

content V K(t) at time t can be described by V K(0) = V K(τ0) = 0, and

V K(τk+1−) = max{min{V K(τk−) +Bk+1(Ak+1−), K} − Tk+1(Uk+1−), 0}, (2.4)

V K(t) = min{V K(τk−) +Bk+1(t− τk−), K}, τk ≤ t < τk + Ak+1,

V K(t) = max{min{V K(τk−) +Bk+1(Ak+1−), K} − Tk+1(t− τk − Ak+1), 0},

τk + Ak+1 ≤ t < τk+1. (2.5)

The dynamics of the finite-buffer model are the same as those of the infinite-buffer model,

except that when the buffer content reaches level K, all the excess amount of fluid offered

to the buffer during the remaining activity period will be lost.

It is easily shown that V K(τk+1−) can be identified with the waiting time of the (k+1)-st

customer in the G/G/1 queue with finite capacity K, in which the interarrival times and

service times are distributed as T1(U1−) and B1(A1−). Under the condition P{T1(U1−) =
B1(A1−)} < 1, it is shown in Section III.5.3 of [97] that V K(τk+1−) converges in distri-

bution to a limiting random variable WK as k →∞.

We wish to extend the results of [168] to finite buffer queues; we will establish a rela-

tionship between the stationary distribution of the finite buffer model and the stationary

distribution of the G/G/1 queue with a buffer having finite capacity K. The latter model

is also known as the finite dam, see Chapter III.5 in [97].

Define the environment indicator process by

I(t) = I{τk≤t<τk+Ak+1 for some k≥1},

so I(t) = 1 if the global fluid source is active at time t. The amount of time the global

fluid source is active (resp. silent) up to time t, t ≥ 0, is defined by

Ca(t) =

t∫

0

I(x)dx, (2.6)
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Cs(t) = t− Ca(t). (2.7)

The inverse processes of Ca and Cs are defined by

C−1a (t) = inf
x≥0
{Ca(x) > t}, (2.8)

C−1s (t) = inf
x≥0
{Cs(x) > t}. (2.9)

Since the random variables Ai and Ui are finite a.s., we may assume that Cs(t) → ∞ if

t→∞ everywhere. So the following processes are well-defined,

V K
a (t) = V K(C−1a (t)), t ≥ 0, (2.10)

V K
s (t) = V K(C−1s (t)), t ≥ 0. (2.11)

Note that V K
s (U1) = V K(A1+U1+A2). We similarly define Va(t) and Vs(t) for the infinite

buffer model. Cf. [168], we define the r.v. B1(A
r
1) (which is non-trivial since B1 and A1

are dependent in general) by

P{B1(A
r
1) > x} =

1

E{A1}
E{

A1∫

0

1{B1(t)>x}dt} (2.12)

=

∞∫

0

P{B1(t) > x | A1 > t}dP{Ar
1 ≤ t}.

We are now ready to give the main result of this section, which can be viewed as an

extension of Theorem 4 in [168]. Note that no assumptions on the traffic load are needed,

since the state space is bounded.

Theorem 4.2.1 Suppose that the main independence assumption holds, that A1, U1, and

A1 + U1 are non-lattice, and that P{T1(U1−) = B1(A1−)} < 1. Then there exist r.v.’s

V K
s , V K

a , V K, and I such that, when t→∞,

1. V K
a (t)⇒ V K

a
d
= min{WK +B1(A

r
1), K},

2. V K
s (t)⇒ V K

s ,

3. [V K(t), I(t)]⇒ [V K , I].

Here B1(A
r
1) is independent of WK, V K

s
d
= (V K | I = 0), V K

a
d
= (V K | I = 1), and

P{V K > x} = (1− p)P{V K
s > x}+ pP{V K

a > x}, (2.13)

where

p = P{I = 1} = E{A1}
E{A1}+ E{U1}

. (2.14)
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Proof

The proof is almost identical to the proof of Theorem 4 in [168]. The processes [V K(t), I(t)],

V K
a (t) and V K

s (t) are all regenerative with the exit times of state [0, 0], resp. 0 (i.e. the end

of idle periods) as regeneration points. The regeneration cycles are non-lattice when U1,

A1, and U1+A1 are non-lattice, due to the main independence assumption. Since all state

spaces are finite, it is trivially seen that all regeneration cycles have finite means. The

convergence of the processes [V K(t), I(t)], V K
a (t) and V K

s (t) now follows by the results on

pp. 125–127 of [19].

By a result of Green [143], we can study the sequences of activity periods and silence pe-

riods separately. This gives the relationship between the limiting distributions of [V K , I],

V K
a , and V K

s , and the characterization of the distribution of V K
a . 2

Remark 4.2.1

The non-lattice conditions can be omitted if U1 is exponentially distributed and indepen-

dent of A1 and {B1(t)}. In Theorem 4.2.1, the condition on U1 +A1 is imposed since U1

and A1 are allowed to be dependent.

If the outflow from the buffer is constant during silence periods, then it is also possible

to specify the limiting distribution V K
s .

Theorem 4.2.2 Suppose the assumptions stated in Theorem 4.2.1 hold and that

T1(t) ≡ t.

Then {V K
s (t), t ≥ 0} is distributed as the workload process in the finite dam with capacity

K, interarrival times U1, and service times B1(A1−).

Proof

Similar to the proof of Theorem 2 in [168]. Both processes have reflecting barriers in the

origin and K, decrease linearly at rate 1, and have jumps of size Bk+1(Ak+1−) at times

U1 + · · ·+ Uk. 2

One can apply Theorems 4.2.1 and 4.2.2 to compute (characteristics of) the distribution of

V K when the steady-state distribution for the G/G/1 finite dam is sufficiently tractable,

which is the case for the M/G/1 and G/M/1 finite dams, see [97, 209]. In Section 4.5, we

further specify the distribution of V K by using Theorems 4.2.1 and 4.2.2. Both theorems

indicate a clear relationship between the fluid model with gradual input and the G/G/1

finite dam with instantaneous input; we will study the latter model in the next two

sections.
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In the remainder of the chapter, we assume that the buffer content declines linearly during

silence periods, i.e., we assume that T1(t) ≡ t. In this case, the fluid model can process

one unit of fluid per unit of time. The amount of fluid offered to the system per unit of

time, given by ρ, equals (with E{U1} = 1/λ)

ρ =
E{B1(A1−)}+ E{A1}

λ−1 + E{A1}
.

4.3 The stationary distribution of the finite dam

The distribution of the random variable WK in the previous section corresponds to the

stationary waiting-time distribution in the finite dam having capacity K. The relation

between the models with gradual and instantaneous input will turn out to be useful in

the rest of the chapter. In this section, we give some new results for the finite dam. In

particular, we give a relationship between the virtual and actual waiting time which is

very similar to the relationship in the infinite-buffer case. The latter is well-known, see

the references below.

First, we introduce some notation in the traditional queueing setting. Customers arrive

at a single-server queue (which is initially empty) with interarrival times Tn, n ≥ 1.

These customers have service times Bn, n ≥ 1. It is assumed that the interarrival times

and service times are all independent of each other and have the same distributions as

random variables T and B, respectively. The means of T and B are denoted by λ−1 and

β, respectively. The distribution function of the service time is denoted by B(.). The

traffic load ρ̂ is given by ρ̂ := λβ and is assumed to be strictly positive.

The waiting time of the n-th customer is given by WK
n . When WK

n + Bn exceeds K, a

quantity of WK
n + Bn −K is lost (so we consider partial overflow). Hence, WK

n is given

by WK
0 = 0 and (see e.g. Chapter III.5 in [97]),

WK
n+1 = max{min{WK

n +Bn, K} − An+1, 0}. (3.1)

Denote the stationary waiting-time by WK (cf. Section 4.2, with Bn ≡ Bn(An−) and

Tn ≡ Un). We also consider the amount of work present in the system at time t, given

by V K
q (t); its stationary distribution is denoted by V K

q . Finally, the long-run fraction of

work lost is defined by Lq,K .

4.3.1 General results

The loss fraction Lq,K can be obtained by a simple renewal argument:

Lq,K =
E{max{WK +B −K, 0}}

E{B} = P{WK +Br > K}. (3.2)

The second equality, which is quite useful for further analysis as is shown below, can be

obtained by partial integration. For the virtual waiting time Vq and the actual waiting
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time W in the GI/G/1 queue (with ρ̂ < 1), it is well-known that (see e.g. Asmussen [19]

p. 189, and Cohen [93], [97] p. 296)

Vq | Vq > 0
d
= W +Br. (3.3)

The following result is very similar to (3.3) and appears to be new.

Theorem 4.3.1 For all ρ̂ > 0 and 0 < K <∞,

V K
q | V K

q > 0
d
= (WK +Br) | WK +Br ≤ K, (3.4)

P{V K
q > x} = ρ̂ P{x < WK +Br ≤ K}. (3.5)

Proof

The results can be obtained in a similar way as for the infinite-buffer queue, namely by a

level-crossing argument, see [93]. Following the same lines as in [93], we obtain for almost

every 0 < v < K,

d

dv
P{V K < v} = ρ̂

v∫

0

1− P{B < v − u}
β

dP{WK < u}.

Hence, for 0 < x < K,

P{V K
q < x} = P{V K = 0}+ ρ̂

x∫

0

x−u∫

0

P{B > w}
β

dwdP{WK < u}

= P{V K
q = 0}+ ρ̂P{WK +Br < x}.

By Little’s law for a busy server (see e.g. Example 4.3 in Whitt [273]) and (3.2), we have

P{V K
q = 0} = 1− ρ̂(1− Lq,K) = 1− ρ̂P{WK +Br ≤ K}.

Hence, for 0 < x < K,

P{V K
q < x} = 1− ρ̂(P{WK +Br ≤ K} − P{WK +Br < x})

= 1− ρ̂P{x ≤ WK +Br ≤ K}.
This expression is also valid for x ↓ 0 and x = K, which yields (3.5), since Br has a

continuous distribution. It is easily shown from (3.5) that

P{0 < V K
q ≤ x} = ρ̂P{WK +Br ≤ x}.

Hence,

P{V K
q ≤ x | V K

q > 0} =
P{0 < V K

q ≤ x}
P{V K

q > 0} =
ρ̂P{WK +Br ≤ x}
ρ̂P{WK +Br ≤ K}

= P{WK +Br ≤ x | WK +Br ≤ K}.
This proves (3.4).

2
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4.3.2 Exponentially distributed interarrival times

If the interarrival times are exponentially distributed, then the following proportionality

relation holds, see Takács [262], Cohen [92, 97], Hooghiemstra [156], and many others:

P{WK ≤ x} = P{W ≤ x}
P{W ≤ K} , (3.6)

for 0 ≤ x ≤ K. Proportionality relations like (3.6) have been applied in a number of stud-

ies to determine loss probabilities, see e.g. Daley [110], Stanford [257], Gouweleeuw [140,

141], Boots & Tijms [45] and references therein. The main idea applied in these studies

is to combine the proportionality result with Little’s formula for a busy server (see e.g.

Example 4.3 in Whitt [273]). Applying the latter together with PASTA to the finite- and

infinite-buffer queue, we obtain for 0 < ρ̂ < 1 and ρ̂ > 0 respectively,

P{W = 0} = 1− ρ̂, (3.7)

P{WK = 0} = 1− ρ̂(1− Lq,K). (3.8)

Using the proportionality relation

P{WK = 0}
P{W = 0} =

P{WK ≤ K}
P{W ≤ K} =

1

P{W ≤ K} ,

we obtain from (3.7) and (3.8), for 0 < ρ̂ < 1,

Lq,K =
1− ρ̂

ρ̂

(
1

P{W ≤ K} − 1

)
=

1− ρ̂

ρ̂

P{W > K}
P{W ≤ K} . (3.9)

Remark 4.3.1

By PASTA, we have that V K
q

d
= WK . Using this and the proportionality relation, it is

also possible to derive (3.9) from (3.2) and (3.5).

Remark 4.3.2

Another performance measure is the probability that the work offered by a customer

(entering the system in its stationary regime) cannot be completely accepted; denote this

probability by Pq,K . For the GI/G/1 finite dam, we have

Pq,K = P{WK +B > K}. (3.10)

(Note that Pq,K = Lq,K in the GI/M/1 finite dam.) When ρ̂ < 1, we have the following

remarkable relation for theM/G/1 finite dam. It follows from the proportionality relation

that

Pq,K =
P{W +B > K} − P{W > K}

P{W ≤ K} . (3.11)
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But this quantity can be identified with P{Cmax > K}, where Cmax is the maximal content

in the infinite dam during a busy cycle, see e.g. Section 3.3 in [92] or [97], p. 297, and p.

618, so we conclude that

Pq,K = P{Cmax > K} = 1

λ

d
dK

P{W ≤ K}
P{W ≤ K} . (3.12)

4.4 Asymptotic results for the finite dam

For the case ρ̂ < 1, we are interested in the asymptotic behavior of Lq,K when K →
∞, in particular when the service-time distribution is subexponential. In the case of

exponentially distributed silence periods, it is possible to apply Theorem 2.2.1 for the

single-server queue with infinite buffer size.

Theorem 4.4.1 If ρ̂ < 1, Br is subexponential, and if the interarrival times are expo-

nentially distributed, then

Lq,K ∼ P{Br > K}, K →∞. (4.1)

Proof

Using Theorem 2.2.1 we have, if Br is subexponential,

P{W > x} ∼ ρ̂

1− ρ̂
P{Br > x}, x→∞. (4.2)

Theorem 4.4.1 now follows directly from (3.9) and (4.2). 2

When the interarrival times have a general distribution, the proportionality relation does

not hold, so it is not possible to apply results for the infinite dam directly. However, it

is still possible to extend Theorem 4.4.1 to the case of generally distributed interarrival

times. This is established in the following theorem, under the additional assumption that

the service-time distribution is regularly varying.

Theorem 4.4.2 For generally distributed interarrival times and ρ̂ < 1, (4.1) holds if the

service-time distribution is regularly varying of index −ν, ν > 1.

Proof

Note that Lq,K ≥ P{Br > K}, so it suffices to show that

lim sup
K→∞

P{WK +Br > K}
P{Br > K} ≤ 1. (4.3)

Let φ(K) be a function such that φ(K)→∞ and φ(K)/K → 0 if K →∞, and let ε > 0.

Write

P{WK +Br > K} = P1,K + P2,K + P3,K , (4.4)
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with

P1,K = P{WK +Br > K;WK ≤ εK}, (4.5)

P2,K = P{WK +Br > K; εK < WK ≤ K − φ(K)}, (4.6)

P3,K = P{WK +Br > K;WK > K − φ(K)}. (4.7)

Since P1,K ≤ P{Br > (1− ε)K} and since Br is regularly varying of index 1− ν, we have

lim sup
K→∞

P1,K

P{Br > K} ≤
(

1

1− ε

)ν−1
, ∀ε > 0. (4.8)

We can bound P2,K using that WK is stochastically dominated by W :

P2,K ≤ P{Br ≥ φ(K)}P{WK > εK} ≤ P{Br ≥ φ(K)}P{W > εK}.

Using (4.2) for the GI/G/1 queue and the fact that Br is regularly varying we obtain for

each ε > 0,

lim
K→∞

P{W > εK}
P{Br > K} =

ρ̂

1− ρ̂
ε1−ν ,

which implies, since φ(K)→∞ if K →∞,

lim sup
K→∞

P2,K

P{Br > K} = 0, ∀ε > 0. (4.9)

Finally, we deal with the last term. Note that

P3,K ≤ P{WK ≥ K − φ(K)}. (4.10)

We make some additional definitions. Define the random walk (Sn)n≥0 by S0 = 0, and for

n ≥ 1,

Sn =
n∑

i=1

(Bi − Ti). (4.11)

Note that this random walk has negative drift β − λ−1. We also define the sequence of

random variables (W̄K
n )n≥0 by W̄K

0 = 0, and W̄K
n+1 = min{max{W̄K

n +Bn− Tn+1, 0}, K}.
Denote the stationary solution of this recursion by W̄K . From the construction of both

WK and W̄K it is clear that P{WK ≥ x} ≤ P{W̄K ≥ x}, 0 ≤ x ≤ K. Hence,

P3,K ≤ P{W̄K > K − φ(K)}. (4.12)

We now use a representation of the distribution of W̄K in terms of an absorption probabil-

ity of the random walk (Sn), which seems to be due to Lindley [186], see also Loynes [190].

Define the stopping times

τ(K) = inf{n : Sn ≥ K − φ(K)}, τ ′(K) = inf{n : Sn ≤ −φ(K)}.



4.4. ASYMPTOTIC RESULTS FOR THE FINITE DAM 77

Then, from [186, 190],

P{W̄K > K − φ(K)} = P{τ(K) < τ ′(K)}. (4.13)

Rewriting this yields

P{W̄K > K − φ(K)} = P{S1, ..., Sτ(K)−1 > −φ(K) | τ(K) <∞}P{τ(K) <∞}.

Since supn Sn can be identified with W , and τ(K) < ∞ iff supn Sn > K − φ(K), this

equals

P{S1, ..., Sτ(K)−1 > −φ(K) | τ(K) <∞}P{W > K − φ(K)}.

Using φ(K)/K → 0, we have by (4.2) that

P{W > K − φ(K)}/P{Br > K} → ρ̂

1− ρ̂
, K →∞.

Thus, we can conclude that P3,K = o(P{Br > K}) if

P{Sτ(K)−1 > −φ(K) | τ(K) <∞} → 0, K →∞. (4.14)

For this we use a theorem of Asmussen & Klüppelberg, see Theorem 1.1 in [21]. This

result provides the following conditional limit theorem for Sτ(K)−1 (which is the last value

of Sn before making a jump to levelK−φ(K)). Define a(u) =
∫∞
u
(1−B(z))dz/(1−B(u)).

Then,

lim
K→∞

P{−Sτ(K)−1/a(K) > x | τ(K) <∞} = (1 + x/(ν − 1))1−ν , x ≥ 0. (4.15)

Note that a(K) ∼ K/(ν − 1) if K →∞, so φ(K)/a(K)→ 0 if K →∞. Hence,

P{Sτ(K)−1 > −φ(K) | τ(K) <∞} = P{−Sτ(K)−1/a(K) < φ(K)/a(K) | τ(K) <∞} → 0.

This proves (4.14). Hence, we have for each ε > 0 that

lim sup
K→∞

Lq,K/P{Br > K} ≤
(

1

1− ε

)ν−1
, (4.16)

which implies (4.3) by letting ε→ 0. 2

In Section 4.6, we apply the above results to obtain asymptotics for the loss fraction and

mean buffer-content in the fluid queue.
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4.5 The stationary distribution of the fluid queue

In this section, we study the distribution of the steady-state buffer-content V K in the

fluid queue. Under certain assumptions, we express the distribution of V K completely in

terms of WK , thereby extending the results in [168] to the finite-buffer case. In a special

case, it is also possible to express the distribution of V K in terms of V , by showing that

the two probability measures are proportional.

Theorem 4.5.1 For ρ > 0 and 0 ≤ x < K,

P{V K > x} = pP{WK +B1(A
r
1) > x}+ (1− p)ρ̂P{K ≥ WK +Br

1(A1) > x}. (5.1)

In particular, if the silence periods are exponentially distributed, then

P{V K > x} = pP{WK +B1(A
r
1) > x}+ (1− p)P{WK > x}, (5.2)

with p given by (2.14).

Proof

In view of Theorem 4.2.1, we only need to specify the distribution of V K
s . By Theo-

rem 4.2.2, we have V K
s

d
= V K

q . The first part of the theorem now follows from Theo-

rem 4.3.1 and the second part can be obtained using PASTA. 2

In the case that U1 has an exponential distribution and ρ < 1, one can establish the follow-

ing relation between the distributions of V K , V , and W . Recall that W can be identified

with the waiting-time distribution of the GI/G/1 queue with service time B1(A1−) and
interarrival time U1.

Theorem 4.5.2 If U1 is exponentially distributed and if ρ < 1, then, for 0 ≤ x < K,

P{V K ≤ x} = P{V ≤ x}
P{W ≤ K} . (5.3)

Proof

Use the second part of the previous theorem, the proportionality relation (3.6), and

P{V ≤ x} = pP{W +B1(A
r
1) ≤ x}+ (1− p)P{W ≤ x}, (5.4)

cf. [168]. 2

Note that (5.3) is not valid for x = K and note the appearance of the term P{W ≤ K}
(and not P{V ≤ K}) in (5.3). An implication of this is that the probability that the buffer



4.5. THE STATIONARY DISTRIBUTION OF THE FLUID QUEUE 79

is full (P{V K = K}) is strictly positive. This is not the case when input is instantaneous,

cf. (3.6).

In the proof of Theorem 4.5.2, we used the relation between the models with gradual

and instantaneous input (Theorem 4.5.1 and (5.4)), and the proportionality relation (3.6)

between the two models with instantaneous input. It is also possible to prove Theo-

rem 4.5.2 directly (without using connections with models with instantaneous input) by

a regenerative argument, for which we refer to the appendix.

In the remainder of this section, we will study two important performance measures: The

long-run fraction of fluid lost, denoted by LK , and the mean buffer content.

Theorem 4.5.3 For all ρ > 0,

LK =
E{B1(A1−)}

E{A1}+ E{B1(A1−)}
Lq,K , (5.5)

where Lq,K = P{WK +Br
1(A1−) > K}.

Proof

We can establish a relation between the fluid model and the finite dam in the following

manner. Suppose that both models are fed by the same input process. The amount of

fluid lost during the k-th activity (and silence) period in the fluid model is identical to the

work lost of the k-th customer in the finite buffer queue. However, the amount of fluid

offered during the k-th activity period is Bk(Ak−) + Ak, whereas the amount of work

offered by the k-th customer equals Bk(Ak−). The result now follows by the renewal

reward theorem, see e.g. Tijms [266]. 2

Finally, we investigate the mean buffer content E{V K}. We restrict ourself to the case

ρ < 1 and exponentially distributed silence periods.

Theorem 4.5.4 Under the conditions of Theorem 4.5.2,

E{V K} = 1

P{W ≤ K}

K∫

0

P{V > x}dx− KP{W > K}
P{W ≤ K} .

Proof

Use the representation E{V K} =
∫ K−

0
P{V K > x}dx, and the identity

P{V K > x} = P{V > x} − P{W > K}
P{W ≤ K} ,

which follows easily from Theorem 4.5.2. 2
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Remark 4.5.1

Using the proportionality relations (3.6) and (5.3), it is possible to formulate heavy traffic

limit theorems for WK and V K , based on heavy-traffic limits for the M/G/1 queue.

Suppose that silence periods are exponentially distributed, that ρ < 1 (hence ρ̂ < 1),

and that a function ∆(ρ̂) exists such that ∆(ρ̂)W converges in distribution to a random

variable WHT if ρ̂→ 1. This holds quite generally, see Section 1.4.2 for references.

Under these assumptions, we can formulate a heavy-traffic limit for WK by letting ρ̂→ 1

and K →∞ such that K∆(ρ̂) = c for some constant c. Using (3.6), it is not difficult to

see that, if ρ̂→ 1 and ∆(ρ̂)K ≡ c,

P{∆(ρ̂)WK ≤ x} → P{WHT ≤ x}
P{WHT ≤ c} , (5.6)

for 0 ≤ x ≤ c. By (5.4), ∆(ρ̂)V converges to the same heavy-traffic limit as ∆(ρ̂)W .

Hence, ∆(ρ̂)V K has the same heavy-traffic limit as ∆(ρ̂)WK using (5.2) or (5.3).

For a similar result for the G/G/1 queue with uniformly bounded actual waiting time

(Chapter III.4 in [97]), see Kennedy [171] and references therein. More results can be

found in the monograph of Whitt [275].

4.6 Asymptotic results for the fluid queue

In this section, we apply the results derived in the previous sections to obtain asymptotic

expansions for various performance measures, in particular the loss fraction and the mean

buffer content. We concentrate on the case where A1 and B1(A1−) have a subexponential

tail.

The general case will be treated in Subsection 4.6.1. In Subsection 4.6.2 we study the

simplest possible fluid model, namely the case of a single On-Off source. The last Sub-

section 4.6.3 treats the case of multiple On-Off sources.

4.6.1 General input

We start with the case of general input, where we assume that B1(A1−) has a subexpo-

nential distribution. The following result follows immediately from Theorem 4.5.3 and

the results in Section 4.4.

Theorem 4.6.1 Under the conditions of Theorem 4.4.1 or 4.4.2,

LK ∼
E{B1(A1−)}

E{A1}+ E{B1(A1−)}
P{Br

1(A1−) > K}, K →∞. (6.1)

Asymptotics for the mean buffer content are more difficult to obtain in general. Such a

result would involve the tail behavior of B1(A
r
1) (cf. Theorem 3.15 in [66] and (2.12)), for

which no results are available.
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4.6.2 A simple On-Off source

Suppose that the fluid queue is fed by a single On-Off source. When the source is active, it

sends input at rate r > 1 during a period of A1. Off-periods are exponentially distributed

with parameter λ. In terms of the model in the previous sections, this implies that B1(t) ≡
(r−1)t. In the terminology of [168], this is the linear fluid model with random disruptions,

with the additional assumption that the idle periods are exponentially distributed.

We first derive the asymptotics for the loss fraction.

Proposition 4.6.1 If the distribution of Ar
1 is subexponential and if the Off-periods are

exponentially distributed, then, for ρ < 1 and K →∞,

LK ∼
r − 1

r
P{Ar

1 >
K

r − 1
}. (6.2)

If the off-periods are generally distributed and P{A1 > x} = L(x)x−ν, ν > 1, then

LK ∼
(r − 1)ν

r(ν − 1)E{A1}
L(K)K1−ν , K →∞. (6.3)

Proof

Equation (6.2) follows immediately from Theorem 4.6.1 (or alternatively, use Theorem 4.5.3,

(3.9), and Theorem 2.2.1). Equation (6.3) follows from Theorem 4.6.1, Theorem 2.2.3,

and Karamata’s theorem (Lemma 2.1.7). 2

Remark 4.6.1

Awater ([32], p. 131) has suggested the following approximation for the fraction of fluid

lost,

LK,app =
(1− ρ)P{V > K}
1− ρP{V > K} .

Numerical experiments in [32] that LK,app can be a good approximation for LK . Variants

of LK,app have been shown to be exact in various other cases like the loss probability of

a customer in the MX/G/1/B queue (see [140]) and the M/M/c queue with impatient

customers (see [45]).

If we evaluate the performance of LK,app in the simplest possible case B1(t) ≡ (r−1)t, then

it is easily shown from Proposition 4.6.1 and (6.4) that the asymptotic behavior of LK,app

is not entirely correct: Under the conditions of Proposition 4.6.1, LK/LK,app converges to

a constant which is positive and finite, but not equal to one. The same conclusion can be

drawn if the activity periods are exponentially distributed.

We now turn to the mean buffer content, where we restrict ourself to the (important)

special case of activity periods with infinite second moments (corresponding to long-

range dependent input, see Chapter 1). It is also assumed that the silence periods are

exponentially distributed.
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Proposition 4.6.2 If P{A1 > x} = L(x)x−ν, 1 < ν < 2 and if the conditions in Theo-

rem 4.5.2 hold, then

E{V K} ∼ ρ

1− ρ

(r − 1)ν−1

(ν − 1)E{A1}

[
1− p

2− ν
− r − 1

r

]
L(K)K2−ν , (6.4)

if K →∞.

Proof

We will obtain an asymptotic expansion for both terms in the formula for E{V K} given

in Theorem 4.5.4:

E{V K} = 1

P{W ≤ K}

K∫

0

P{V > x}dx− KP{W > K}
P{W ≤ K} . (6.5)

For the second term we have, by (6.3) and the identity ρ̂
1−ρ̂ = ρ

1−ρ
r−1
r
,

KP{W > K}
P{W ≤ K} ∼ ρ

1− ρ

(r − 1)ν

r(ν − 1)E{A1}
L(K)K2−ν , (6.6)

if K → ∞. The tail behavior for V follows straightforwardly from that of Ar
1, which

follows by applying Karamata’s theorem (Lemma 2.1.7). This gives for x→∞,

P{V > x} ∼ (1− p)
ρ

1− ρ

(r − 1)ν−1

(ν − 1)E{A1}
L(x)x1−ν . (6.7)

Applying Karamata’s theorem once more to the first term in the right-hand side of (6.5),

we get

K∫

0

P{V > x}dx ∼ (1− p)(r − 1)ν−1

(ν − 1)E{A1}
ρ

1− ρ

1

2− ν
K2−νL(K). (6.8)

The proof follows by combining (6.6) and (6.8), thereby noting that the constant in (6.8)

is larger than the constant appearing in (6.6). This follows from ρ = λ(r − 1)E{A1} < 1

and 1 < ν < 2, which implies (1− p)/(2− ν) > 1− p > (r − 1)/r. 2

Loosely speaking, the mean buffer content behaves like a positive power of the buffer size

in case of long-range dependent input. This shows once more that the impact of long-

range dependence on the performance of fluid queues can be quite substantial – even if

buffers are finite.

Remark 4.6.2

For the model with a single On-Off source it is also possible to obtain multi-term asymp-

totic expansions or even explicit results for the loss fraction. The classes of (heavy-tailed)
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service-time distributions introduced in Boxma & Cohen [69] and Abate & Whitt [6] lead

to explicit results for the waiting-time distribution in the M/G/1 queue. These results

may also be used to obtain more refined asymptotics and explicit results for the mean

buffer content.

4.6.3 A superposition of N On-Off sources

The characteristics of this model can be described as follows. When source i, 1 ≤ i ≤ N ,

is On, it transmits fluid at rate ri ≥ 1 during a generic activity period A1i having mean

αi. The silence periods U1i are exponentially distributed with parameter λi.

We have to make the restrictive assumption ri ≥ 1 in order to apply the framework

developed in the previous sections: The general activity period A1 now corresponds to

the period where at least one on-off source is on. During this period, the buffer content

is non-decreasing (its increments are the same as that of B1(.)).

The stationary probability of silence psi equals 1/(1 + αiλi), the mean offered load per

unit of time offered by source i is denoted by ρi and equals ri
λiαi

1+λiαi
. Note that in our

setting, ρ = ρ1+ · · ·+ ρN , λ = λ1+ · · ·+λN , and p
s =

∏
i p

s
i . Using this, it is not difficult

to calculate E{A1} and E{B1(A1−)}. The following result is part of Theorem 4.6 in [67],

see also Theorem 2.2.4 in this thesis.

Lemma 4.6.1 Assume that the activity periods of the sources 2,...,N are exponentially

distributed and assmue that

P{A11 > x} = L(x)x−ν ,

for ν > 1. Assume that ρ < 1 and define c = 1−∑N
i=2 ρi. Then, the following asymptotics

hold for x→∞:

P{W > x} ∼ λ1(r1 − c)α1

c− λ1(r1 − c)α1

P{(r1 − c)Ar
11 > x}, (6.9)

P{V > x} ∼ ps1
ρ1

c− ρ1
P{(r1 − c)Ar

11 > x}. (6.10)

Lemma 4.6.1 leads to the following results for the loss fraction and the mean buffer content

in the finite buffer case.

Theorem 4.6.2 Assume that the conditions stated in Lemma 4.6.1 are satisfied. Then,

for K →∞,

LK ∼MP{(r1 − c)Ar
11 > K}, (6.11)

where M is given by

M =
1− ρ

ρ

λ1(r1 − c)α1

c− λ1(r1 − c)α1

.
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If 1 < ν < 2, the mean buffer content satisfies for K →∞,

E{V K} ∼ (r − c)ν−1

(ν − 1)α1

[
ps1

ρ1
1− ρ1

1

2− ν
− ρ

1− ρ
M

]
L(K)K2−ν . (6.12)

Proof

The first part follows easily from Lemma 4.6.1, Theorem 4.3.1, and Theorem 4.5.3, or

alternatively, from Theorem 4.6.1 and the tail behavior of B1(A1−), which is given in

Theorem 4.6 of [66]. The proof of the second part follows the same lines as the proof of

Proposition 4.6.2 and is therefore omitted. 2

The asymptotics for LK have recently been extended by Jelenković & Momčilović [165] (see

also Jelenković [162]) to the case of multiple heavy-tailed On-Off sources. The methods

in [165] do not require the assumption ri ≥ 1, see Chapter 7 for more discussion.

4.7 Overloaded queues

In this section we consider (for completeness) the case when the traffic load is at least 1,

i.e., when ρ ≥ 1 (equivalently ρ̂ ≥ 1). If the silence periods are exponentially distributed,

then it is possible to use the results for the M/G/1 queue with finite capacity K given in

Section III.5 of [97]. For this model we develop asymptotic expansions for the loss fraction,

which can easily be applied to the fluid model by means of Theorem 4.5.3. Starting point

of our analysis is the following expression for P{WK = 0}, given on p. 535 of [97], which

is, just as (3.3), valid for all ρ̂ > 0.

P{WK = 0} =


 1

2πi

i∞+ε∫

s=−i∞+ε

esK

s− λ+ λβ(s)
ds



−1

, (7.1)

where β(s) is the LST of the service time B (which will equal B1(A1−) when applied to

the fluid model). ε must be chosen such that all zeroes of s − λ + λβ(s) have real part

smaller than ε. If ρ̂ ≤ 1, any ε > 0 suffices. Note that the LST of P{WK = 0}−1 with

respect to K is given by, for Re s > ε,

∞∫

0

e−sKd
[
P{WK = 0}−1

]
=

s

s− λ+ λβ(s)
. (7.2)

We now apply Equation (7.2) to derive asymptotic expressions for the loss probability

when ρ ≥ 1. Define βk as the k-th moment of the service time B. We first consider the

case ρ = 1 (and hence ρ̂ = 1).
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Proposition 4.7.1 Let ρ̂ = 1.

1. If β2 <∞, then

Lq,K ∼
β2
2β1

1

K
, K →∞.

2. If P{B > x} = L(x)x−ν, 1 < ν < 2, then

Lq,K ∼
1

β1

π

sin(π(ν − 1))
L(K)K1−ν , K →∞.

Proof

Both assertions will be proven by the use of Tauberian theorems. Since ρ̂ = 1, (3.8)

reduces to

Lq,K = P{WK = 0}. (7.3)

First, we prove Part 1. Since β2 <∞, we have

β(s) = 1− β1s+
1

2
β2s

2 + o(s2), s ↓ 0. (7.4)

Inserting (7.4) in (7.2) yields

∞∫

0

e−sKd
[
P{WK = 0}−1

]
=

2β1
β2s

+ o(1/s), s ↓ 0,

which gives Part 1 of Proposition 4.7.1 by using Theorem 2.1.1, and Theorem 4.3.1.

We now turn to Part 2. If P{B > x} = L(x)x−ν , 1 < ν < 2, β(s) satisfies (in view of

Theorem 2.1.2)

β(s)− 1 + β1s ∼ −Γ(1− ν)sνL(1/s), s ↓ 0. (7.5)

This gives, since ρ̂ = 1,

∞∫

0

e−sKd
[
P{WK = 0}−1

]
∼ β1
−Γ(1− ν)

s1−ν/L(1/s), s ↓ 0. (7.6)

Applying Theorem 2.1.1, we get for K →∞,

P{WK = 0}−1 ∼ β1
−Γ(ν)Γ(1− ν)

Kν−1/L(K). (7.7)

Part 2 now follows from Γ(ν)Γ(1− ν) = π/ sin(πν) and sin(a) = − sin(a− π).

2
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Remark 4.7.1

We refrain from discussing the case where P{B > x} = L(x)x−2 (and β2 = ∞). The

Tauberian theorems are now much more delicate, see e.g. Theorem 8.1.6 in [44].

Remark 4.7.2

Although the asymptotic formula for the loss probability in case ρ̂ < 1 (given in Theo-

rems 4.4.1 and 4.4.2) is independent of ρ̂, it is not valid for ρ̂ = 1, as Proposition 4.7.1

shows. However, note that the asymptotic behavior of the loss probability in the heavy-

tailed (infinite-variance) case is the same for ρ̂ < 1 and ρ̂ = 1, apart from a constant.

Since sin x < x for x > 0, π/ sin(π(ν − 1)) > 1/(ν − 1), so the constant in the asymptotic

approximation for Lq,K is strictly larger for ρ̂ = 1 than for ρ̂ < 1.

When ρ̂ > 1, it follows immediately that P{WK = 0} → 0 as K →∞, which gives

Lq,K → 1− 1

ρ̂
. (7.8)

Using a result of Cohen [94], it is easy to derive the rate of convergence.

Proposition 4.7.2 If ρ̂ > 1, then we have for the M/G/1 queue with finite capacity K,

Lq,K −
ρ̂− 1

ρ̂
∼ −δβ̃′(δ)e−δK , K →∞, (7.9)

where β̃(s) = 1−β(s)
β1s

, β̃′(s) is the derivative of β̃(s), and δ is the unique positive real

solution of

ρ̂β̃(s) = 1. (7.10)

Proof

Follows immediately from (3.8) and Part (iii) of Theorem 2.3 in [94]. 2

Appendix

4.A An alternative proof of Theorem 4.5.2

In this section we give an alternative proof of the proportionality result Theorem 4.5.2,

which we believe is of independent interest. It is an extension of the proof of Hooghiemstra

[156] for the proportionality result (3.6) for the M/G/1 finite dam. We start with two

preliminary observations.
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1. Let C and CK be the length of a busy cycle for the infinite-buffer model and the

model with finite buffer K, respectively. Then, the distributions of V and V K are

given by, cf. [19, 92]:

P{V ≤ x} = 1

E{C}E{
C∫

0

1{V (t)≤x}dt},

P{V K ≤ x} = 1

E{CK}E{
CK∫

0

1{V K(t)≤x}dt}.

2. Let x < K <∞ and suppose that a downcrossing at level x occurs for the process

V K(t) for some t, so that the environment process I(t) = 0. Then, since U1 is

exponentially distributed, the time that elapses until I(t) reaches 1 is distributed as

U1, due to the memoryless property of the silence periods.

We now construct a stochastic process V̂ K(t) directly from V (t). Consider an arbitrary

sample path of V (t), e.g. the sample path in Figure 4.1.
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Figure 4.1: Construction of a sample path of V̂ K(t) from V (t).
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The corresponding sample path for V̂ K(t) is constructed as follows. The parts of the

sample path of V (t) below level K remain unchanged. Consider the parts of the sample

path of V (t) between an upcrossing and a consecutive downcrossing of level K. Each

of these parts can be divided into two sub-parts. The first sub-part is defined as the

remaining activity period and the second sub-part as the remainder of the part. Now

delete the second sub-part and truncate the first sub-part to level K, cf. Figure 4.1.

Since the silence periods in the infinite-buffer model are exponentially distributed, the

same holds for the silence periods in the process {V̂ K(t) : t ≥ 0}, by Observation 2. It

follows immediately from the construction of {V̂ K(t)} that the durations of the activ-

ity periods in {V̂ K(t)} have the same distribution as A1, and are all independent and

independent of the silence periods. Finally, the trajectories during activity periods kan

be chosen identically (in distribution) and independent from each other according to the

stochastic process {B1(t) : t ≥ 0}. Hence, the dynamics of {V̂ K(t)} satisfy the same

dynamics as the process {V K(t)} as defined by Equations (2.4) and (2.5). This proves

that {V̂ K(t) : t ≥ 0} has the same law as {V K(t) : t ≥ 0}.
To simplify the notation, we now define the process V K(t) as

V K(t) := V̂ K(t), t ≥ 0.

It follows immediately from the construction of V K(t) from V (t) that the number of

downcrossings from level x ≤ K is the same for their respective sample paths, which

implies that the number of downcrossings at level x ≤ K of the process V K(t) during a

busy cycle has the same distribution as that of V (t) for any K ∈ (0,∞).

A second implication of the construction carried out is that

CK∫

0

1{V K(t)≤x}dt =

C∫

0

1{V (t)≤x}dt,

for 0 ≤ x < K. This implies the proportionality between the stationary distributions of

V K(t) and V (t), by Observation 1: Define γ := E{C}
E{CK} .

We relate γ to the loss fraction LK by using variants of Little’s formula, see also Sec-

tion 4.3. The amount of work brought into the system per unit of time equals ρ in the

infinite-buffer model and ρ(1−LK) in the finite-buffer model. Hence, we have by Little’s

formula that

P{V = 0} = 1− ρ,

and, for K ≥ 0,

P{V K = 0} = 1− ρ(1− LK).
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Consequently,

γ =
1− ρ(1− LK)

1− ρ
.

A straightforward computation (use (3.9) and Theorem 4.5.3) shows that γ = 1/P{W ≤
K}.
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Chapter 5

Busy-period asymptotics in

single-server queues

5.1 Introduction

The GI/G/1 queue with heavy-tailed service-time distribution has been the subject of

many studies. Most of them focus on the tail of the waiting-time distribution, see e.g.

the list of references accompanying Theorem 2.2.1. The subject of investigation in the

present chapter is the tail behavior of the busy-period distribution. Besides its intrinsic

interest, the (tail behavior of the) busy period has applications to various other problems,

like (networks of) fluid queues (Boxma [68]), Generalized Processor Sharing (Borst et

al. [57, 58]), priority queues (Abate & Whitt [4]), and convergence rates in queueing and

ruin problems (Asmussen & Teugels [23]). Another motivation for studying the busy-

period distribution, is that it coincides with the sojourn-time distribution of a customer

in the GI/G/1 queue with the LCFS service discipline with pre-emption.

The tail behavior of the busy-period distribution in the M/G/1 queue has been studied

earlier in [4] under Cramèr-type assumptions. Two main references for the heavy-tailed

case are De Meyer & Teugels [202], where the case of regularly varying service times is

treated, and Asmussen et al. [27]. In the latter paper, it is shown that the result proven in

[202] cannot be true for the entire class of subexponential distributions, thereby giving a

negative answer to a conjecture posed in [202, 23]. Although the approaches in [202] and

[27] are quite different, they are both based on the special branching structure (see e.g.

Cohen [97], Section II.5) of the busy period in the M/G/1 queue, which heavily depends

on the Poisson nature of the arrival stream. In this chapter, we look at the busy period

from a different perspective: We show that the occurrence of a large busy period is related

to the occurrence of a large cycle maximum, and then exploit asymptotic results for the

latter random variable. These are known for the GI/G/1 queue with subexponential

service times, see Asmussen [24].

The main result in this chapter (Theorem 5.3.1) is an extension of the result in [202], where

91
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the M/G/1 queue is considered. Our main result is valid for renewal arrival streams. The

assumption on the service-time distribution is weakened as well (to intermediate regular

variation, see Remark 5.3.1). The general subexponential case left unanswered in [27]

is not solved here. However, we give a partial result by showing an asymptotic lower

bound, which coincides with the exact tail behavior under the conditions of Theorem

5.3.1. Finally, we give some counter-intuitive results for the busy period in the null-

recurrent M/G/1 queue: It is shown (by analytic methods) that a heavier tail of the

service time distribution can give rise to a lighter tail of the busy-period distribution.

We note that, in addition to the references mentioned above, several related results can

be found in the random walk literature, see e.g. Doney [116], Bertoin & Doney [39, 40],

and Baltrunas [35].

The chapter is organized as follows. In Section 5.2, we state some preliminary results

and give a very short proof of the logarithmic asymptotics. The main result is proven

in Section 5.3. This section also contains some additional remarks on the extension of

Theorem 5.3.1 to other classes of (heavy-tailed) distributions. The null-recurrent case is

treated in Section 5.4.

5.2 Preliminaries

5.2.1 The GI/G/1 queue

Suppose that the first customer enters an empty system at time 0. The service time of

customer i is denoted by Bi and the time between the arrivals of customers i and i + 1

is denoted by Ti. It is assumed that Ti, i ≥ 1, and Bi, i ≥ 1, are i.i.d. sequences and

that both sequences are independent of each other. The traffic load ρ equals E{B}/E{T}
(with T

d
= T1 and B

d
= B1). Unless specified otherwise, it is assumed that ρ < 1.

Let V (t) be the amount of work in the system at time t. The busy period P is then

defined as

P := inf{t > 0 : V (t) = 0}.

The number of customers served during the busy period will be denoted by N . If ρ < 1,

the process {V (t), t ≥ 0}, is positive recurrent and the means of P and N are finite. We

note that (using Wald’s lemma) E{P} = E{B}E{N}. An expression for E{N} is given

on p. 279 of [97] and we repeat it here for later use. Define Sn =
∑n

i=1(Bi − Ai). Then,

E{N} = exp{
∞∑

n=1

1

n
P{Sn > 0}}. (2.1)
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5.2.2 The cycle maximum

A random variable which will play a crucial role in the next sections is the cycle maximum

Cmax, given by

Cmax := sup{V (t), 0 ≤ t ≤ P}.
Asmussen [24] has obtained the tail behavior of the maximum waiting time Wmax during

a busy cycle for subexponential B. In particular,

P{Wmax > x} ∼ E{N}P{B > x}.
Heath et al. [151] have shown that subexponentiality of B implies P{Cmax > x} ∼
P{Wmax > x}, see Corollary 2.2 in [151]. Together, these results imply that, if B has a

subexponential distribution,

P{Cmax > x} ∼ E{N}P{B > x}. (2.2)

We also need the first passage time of level x, so we define

τ(x) := inf{t ≥ 0 : V (t) ≥ x}.
Note that Cmax ≥ x iff τ(x) < P .

5.2.3 An upper bound and crude asymptotics

As a preliminary result, we give a qualitative upper bound for the tail of P , which shows

that P{P > x} = O(P{B > x}). This result readily follows from general upper bounds

for the distribution tails of stopping times which are given in Borovkov [52]. With L(.),

we denote a slowly varying function.

Proposition 5.2.1 If P{B > x} = L(x)x−ν, there exists a finite constant C such that

P{P > x} ≤ CL(x)x−ν .

Proof

Theorem 43.3 of [52] guarantees the existence of a constant C1 such that P{N > x} ≤
C1L(x)x

−ν . Next, use the representation P = B1 + · · ·+BN and apply Theorem 42.2 of

[52], noting that N is a stopping time w.r.t. the filtration generated by (An, Bn)n≥1. 2

Together with the trivial lower bound P{P > x} ≥ P{B > x}, Proposition 5.2.1 implies

(if P{B > x} is regularly varying of index −ν):

lim
x→∞

logP{P > x}
log x

= −ν. (2.3)

In view of the generality of the results in [52], we expect this result to be true more

generally (e.g. by relaxing independence assumptions), but we will not pursue this here,

since we are primarily interested in the exact asymptotics.
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5.3 Main result

In this section we prove the following theorem.

Theorem 5.3.1 If the service-time distribution is regularly varying of index −ν, ν > 1,

then,

P{P > x} ∼ E{N}P{B > x(1− ρ)}. (3.1)

This result is a generalization of [202], where it was assumed that the interarrival times

are exponential. Note that, in that case, E{N} = 1
1−ρ .

Before giving a proof of Theorem 3.1 we provide some heuristic arguments. When the

busy period is large, there is probably a large cycle maximum within that busy period.

In view of the results and arguments in the works of Asmussen (see [24, 26]), this is most

likely due to one early large service time. After this early large service time, things go

back to normal and the workload goes to zero with negative rate −(1−ρ). Hence, if Cmax

is large, then one would expect that

P ≈ Cmax

1− ρ
.

Together with the tail behavior (2.2) of Cmax, this yields (3.1).

A strongly related performance measure is the longest service time in a busy period,

denoted by Bmax. Results of Boxma [63, 64] imply that P{Bmax > x} ∼ E{N}P{B > x}
for any service-time distribution (see Asmussen [24] for an alternative proof). Thus, a

large busy period and a large cycle maximum are both caused by a single large service

time in the beginning of the busy period.

Theorem 5.3.1 will be proven by providing lower and upper bounds, which asymptoti-

cally coincide. The derivation of these bounds is strongly related to the framework of

Section 2.4. The lower bound formally shows that a large cycle maximum is sufficient

for a large busy period to occur. In particular, the lower bound follows from the law of

large numbers for renewal processes. The proof of the upper bound is more involved. In

particular, we need the truncation Lemma 2.4.1.

5.3.1 Lower bound

Proposition 5.3.1 Assmue that the service-time distribution is regularly varying. Then

lim inf
x→∞

P{P > x}
E{N}P{B > x(1− ρ)} ≥ 1. (3.2)
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Proof

For all ε > 0, we have, when x is large enough,

P{P > x} ≥ P{P > x,Cmax > x(1− ρ+ ε)}
= P{P > x | τ(x(1− ρ+ ε)) < P}P{Cmax > x(1− ρ+ ε)}
≥ P{P − τ(x(1− ρ+ ε)) > x | τ(x(1− ρ+ ε)) < P} ×

P{Cmax > x(1− ρ+ ε)}. (3.3)

Note that

P{P − τ(x(1− ρ+ ε)) > x | τ(x(1− ρ+ ε)) < P} = (3.4)
∞∫

x(1−ρ+ε)

P{P − τ(x(1− ρ+ ε)) > x | τ(x(1− ρ+ ε)) < P, V (τ(x(1− ρ+ ε))) = y}

dP{V (τ(x(1− ρ+ ε))) ≤ y | τ(x(1− ρ+ ε)) < P}.

The probability inside the integral equals

P{P − τ(x(1− ρ+ ε)) > x | V (τ(x(1− ρ+ ε))) = y}
= P{V (t) > 0; 0 ≤ t ≤ x | V (0) = y}.

Note that the right-hand side is increasing in y. Taking y as small as possible (i.e., take

y = x(1− ρ+ ε)) and combining this with (3.3) and (3.4), we obtain

P{P > x} ≥ P{V (s) > 0; 0 ≤ s ≤ x | V (0) = x(1− ρ+ ε)}P{Cmax > x(1− ρ+ ε)}.

The right-hand side is lower bounded by

(1− δ)P{Cmax > x(1− ρ+ ε)}

for each δ, ε > 0 and x large enough. This follows from the strong law of large numbers for

renewal processes (see also the proof of Proposition 4.2 in [26]). After dividing P{P > x}
by P{Cmax > x(1 − ρ)}, the result follows using (2.2), letting x → ∞, and then letting

ε, δ ↓ 0. 2

5.3.2 Upper bound

Proposition 5.3.2 Assume that the service-time distribution is regularly varying of index

−ν, ν > 1. Then

lim sup
x→∞

P{P > x}
E{N}P{B > x(1− ρ)} ≤ 1. (3.5)
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Proof

First, we note that it suffices to prove the proposition for the case that the interarrival

times are bounded by a finite constant M . If this is not the case, then truncate all

interarrival times (this does not decrease the length of the busy period and does not

violate stability as long as M is chosen large enough). It is clear that the workload ρM
of the modified system converges to ρ, since E{min(T,M)} → E{T}, when M →∞. We

also have to show that the expected number of customers served during a busy period in

the modified system converges to E{N} when M →∞.

We give a simple proof of this result (since we found no direct reference), using the

expression for E{N} given in Section 5.2.1. When the interarrival times are truncated at

M , then the expected number of customers served in a busy period is given by

exp{
∞∑

n=1

1

n
P{

n∑

i=1

Bi >
n∑

i=1

min(Ti,M)}}.

Since the main sum in the exponent is decreasing inM , and finite whenM is large enough,

the desired result follows from a straightforward application of the dominated convergence

theorem. Finally, the result follows easily since

lim
M→∞

lim
x→∞

P{B > x(1− ρ)}
P{B > x(1− ρM)} = 1, (3.6)

because the tail of B is regularly varying.

Henceforth, it will be assumed that the interarrival times are bounded by M . For δ > 0,

we get

P{P > x} = P{P > x,Cmax > x(1− ρ− δ)}+ P{P > x,Cmax ≤ x(1− ρ− δ)}
≤ P{Cmax > x(1− ρ− δ)}+ P{P > x,Cmax ≤ x(1− ρ− δ)}.

Hence, using (2.2), it suffices to show that, for all δ > 0,

lim sup
x→∞

P{P > x,Cmax ≤ x(1− ρ− δ)}
P{Cmax > x(1− ρ)} = 0. (3.7)

Let ε > 0. Write

P{P > x,Cmax ≤ x(1− ρ− δ)}
= P{P > x,Cmax ≤ εx}+ P{P > x, εx < Cmax ≤ x(1− ρ− δ)}
= I + II.

We start with the first term. Recall that the service and interarrival times of customer

i are given by Bi and Ti. Under Cmax ≤ εx, it must hold that Xi := Bi − Ti ≤ εx for

i = 1, . . . , N . Hence,

P{P > x,Cmax ≤ εx} ≤ P{P > x,Bi − Ti ≤ εx; i = 1, . . . , N}. (3.8)
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Denote the integer part of a by [a]. Since the interarrival times are bounded by M , the

number of customers who have entered the system between time 0 and x is at least [x/M ]

(and in particular N ≥ [x/M ]). It follows easily that

P{P > x,Xi ≤ εx; i = 1, . . . , N}

≤ P{
[x/M ]−1∑

i=1

Xi > 0, Xi ≤ εx; i = 1, . . . , [x/M ]− 1}

≤ P{
[x/M ]−1∑

i=1

Xi > 0 |Xi ≤ εx; i = 1, . . . , [x/M ]− 1}

= P{
[x/M ]∑

i=1

(Xi −
1

2
E{X1}) >

1

2
E{X1}(1− [x/M ]) |Xi ≤ εx; i =≤ [x/M ]− 1}.

We now apply the truncation Lemma 2.4.1 of Resnick & Samorodnitsky. This lemma

guarantees that, for ε small enough, the above probability can be upper bounded by

φ(1
2
(E{−X1})[x/M ]) = o(P{B > x}). This completes the estimation of Term I. We now

turn to Term II.

If we condition on Cmax > εx, then we obtain

II = P{P > x,Cmax ≤ x(1− ρ− δ) | Cmax > εx}P{Cmax > εx}. (3.9)

Since P{Cmax > εx} = O(P{B > x}), it suffices to show that

P{P > x,Cmax ≤ x(1− ρ− δ) | Cmax > εx} → 0, x→∞. (3.10)

Observe that V (τ(εx)) ≤ Cmax when Cmax > εx. Hence, we can bound (3.10) by

P{P > x, V (τ(εx)) ≤ x(1− ρ− δ) | Cmax > εx}.

Choose γ > 0 such that (1−ρ−δ)/(1−γ) < 1−ρ, i.e. choose γ < δ/(1−ρ). If P > τ(εx),

then P > x implies that either τ(εx) > γx or P − τ(εx) > (1− γ)x. Hence,

P{P > x, V (τ(εx)) ≤ x(1− ρ− δ) | Cmax > εx}
≤ P{τ(εx) > γx, V (τ(εx)) ≤ x(1− ρ− δ) | Cmax > εx}
+ P{P − τ(εx) > (1− γ)x, V (τ(εx)) ≤ x(1− ρ− δ) | Cmax > εx}
= IIa+ IIb.

We start with IIb. Using a similar argument as in the proof of the lower bound in the

previous subsection, we get

IIb ≤ P{V (s) > 0; 0 ≤ s ≤ (1− γ)x | V (0) = x(1− ρ− δ)}, (3.11)

which converges to zero by the law of large numbers.
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Note that

IIa =
P{V (τ(εx)) ≤ x(1− ρ− δ), γx < τ(εx) < P}

P{τ(εx) < P} ≤ P{γx < τ(εx) < P}
P{τ(εx) < P} .

To deal with IIa, we need to prove that

P{γx < τ(εx) < P} = o(P{B > x}). (3.12)

Let x0 be large, but not larger than εx. Then

P{γx < τ(εx) < P}
= P{γx < τ(εx) < P, τ(εx) > τ(x0)}
+ P{γx < τ(εx) < P, τ(εx) = τ(x0)}
= IIa1 + IIa2.

A useful fact is Lemma 4.4 from Asmussen & Möller [25], which implies

lim
x0→∞

lim sup
x→∞

P{τ(x0) < τ(x) < P}
P{B > x} = 0. (3.13)

This controls term IIa1. The second term can be bounded as follows:

P{γx < τ(εx) < P, τ(εx) = τ(x0)} ≤ P{P > γx, τ(x0) > γx}.

The probability on the right hand side equals

P{0 < V (s) < x0; 0 ≤ s ≤ γx}.

Since the interarrival times are bounded by M , at least [γx/M ] customers must have

entered the system by time γx. All these customers have a service time which is at most

x0. Hence,

P{0 < V (s) < x0; 0 ≤ s ≤ γx} ≤ P{Bi < x0; i = 1, . . . , [γx/M ]} = P{B < x0}[γx/M ],

which decays exponentially fast in x. The proof of the theorem now follows by first letting

x→∞, then x0 →∞, then γ ↓ 0 and finally δ, ε ↓ 0 (and eventually M →∞).

2

Remark 5.3.1

Theorem 5.3.1 remains true if the service-time distribution is of intermediate regular vari-

ation. The only non-trivial change in the proof is the treatment of Term I. Under the

assumption E{Bθ} <∞ for some θ > 1, we can use the fact [86] that C−1x−γ1 ≤ P{B >

x} ≤ Cx−γ2 , where γ1 ≥ γ2 > 1 and C > 1. This makes Lemma 2.4.1 applicable.
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Remark 5.3.2

The proof of the lower bound can be extended to the case where B is subexponential and

(logP{B > x})/√x → ∞: Instead of the law of large numbers, apply the central limit

theorem, starting with the inequality P{P > x} ≥ P{P > x,Cmax ≥ x(1 − ρ) +K
√
x},

with K large. Note that (3.1) does not hold if logP{B > x} = o(
√
x), cf. [27]. Bal-

trunas [35] considers a related random walk problem. The results in [35] can be used to

obtain exact asymptotics for P{N > x} for the case (logP{B > x})/√x→∞ and some

additional regularity conditions.

Remark 5.3.3

The relationship between the busy period and the cycle maximum as provided by (the

proof of) Theorem 5.3.1 is entirely different when the service times are light-tailed. Results

in Hooghiemstra [155] and Cohen & Hooghiemstra [96] indicate that a (light-tailed) busy

period of size x implies a cycle maximum of O (
√
x).

5.4 On the critical case

In this final section we derive the tail behavior of the busy-period distribution in the case

that the workload ρ = 1. It will be assumed that the interarrival time distribution is

exponential, so let the arrival process be a Poisson process with intensity λ. It is well-

known that the distribution of P is still proper but has infinite mean when ρ = 1. It is

difficult to develop intuition for this boundary case ρ = 1. In that respect, the –surprising–

result of the present section may be helpful.

Our method of proof requires Laplace-transform techniques. Let π(s) be the LST of P

and let β(s) be the LST of the service-time distribution. It is well-known that π(s) is the

unique solution (when ρ ≤ 1) of

π(s) = β(s+ λ− λπ(s)), Re s ≥ 0,

with |π(s)| ≤ 1. Define β1 = E{B}.

Theorem 5.4.1 If β2 = E{B2} <∞, then

P{P > x} ∼ 1

λ

√
β1

2πβ2
x−

1
2 . (4.1)

If P{B > x} ∼ Cx−ν , C > 0, 1 < ν < 2, then

P{P > x} ∼ 1

CΓ(1− 1/ν)

(
β1

−Γ(1− ν)

) 1
ν

x−
1
ν , (4.2)

with Γ(.) being the Gamma function.
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Hence, we can conclude in the case ρ = 1 that the heavier the tail of the service time

distribution, the lighter the tail of the busy-period distribution.

Proof

First, assume that β2 <∞. Then we can write for s ↓ 0,

β(s) = 1− β1s+
1

2
β2s

2 + o(s2).

Combining this with the functional equation for π(s), we obtain after using λ = 1/β1,

s = o(1− π(s)) and 1− π(s) = o(1),

1− π(s) ∼ 1

λ

√
2β1
β2

√
s, s ↓ 0.

The result now follows from Theorem 2.1.2, noting that −Γ(− 1
2
) = 2

√
π.

Next we assume that P{B > x} ∼ Cx−ν , C > 0, 1 < ν < 2. According to Theorem 2.1.2

we can write in this case

β(s) = 1− β1s+ (−Γ(1− ν))Csν + o(sν), s ↓ 0.

After some tedious but straightforward computations we obtain

1− π(s) ∼ 1

C

(
β1

−Γ(1− ν)

) 1
ν

s
1
ν , s ↓ 0.

The result now follows from yet another application of Theorem 2.1.2.

2



Chapter 6

The fluid queue I: Reduced-peak

6.1 Introduction

The central subject of investigation of the present and the next chapter is the fluid queue

fed by a finite number of On-Off sources with heavy-tailed On- and/or Off-periods, and

possibly some additional light-tailed input. Both chapters focus on the asymptotic be-

havior of the workload distribution. In particular, we extend the results for the fluid

queue considered in Subsection 2.2.2 to the case of multiple heavy-tailed On-Off sources.

Furthermore, we remove the assumptions on the peak rates imposed by previous studies,

see again Subsection 2.2.2.

It turns out that the workload asymptotics crucially depend on whether or not activity of

heavy-tailed sources alone is sufficient for severe congestion to arise. First results in this

realm are asymptotic bounds obtained by Dumas & Simonian [120]. These bounds show

a sharp dichotomy in the qualitative tail behavior of the workload, depending on whether

the mean rate of the light-tailed input plus the aggregate peak rate of the heavy-tailed

sources exceeds the link rate (service capacity) or not. In case the link rate is smaller, the

workload distribution has heavy-tailed characteristics, whereas the link rate being larger

results in light-tailed characteristics.

The asymptotic bounds in [120] as well as results of Agrawal et al. [12] (see also Section 2.2

of this thesis) indicate that in the former case one can often identify a ‘dominant’ heavy-

tailed source or a set of such sources. As far as tail behavior is concerned, all other

sources can be accounted for by subtracting their aggregate traffic intensity from the

service capacity. This may formally be phrased in terms of a ‘reduced-load equivalence’,

implying that the workload is asymptotically equivalent to that in a reduced system.

The reduced system consists only of the set of dominant sources, served at the link rate

reduced by the mean rate of all other sources. This suggests that the most likely way for

overflow to occur is for the sources in the dominant subset to experience extremely long

On-periods, while all other sources show roughly average behavior. These phenomena are

studied in great detail in Chapter 7.
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In the present chapter, we focus on the opposite case where the peak rate of the heavy-

tailed sources plus the mean rate of the light-tailed sources is smaller than the link rate.

Thus, the overflow scenario described above cannot occur, and now the light-tailed sources

too must deviate from their ‘normal’ behavior in order for the queue to grow. Our results

will show in detail how a conjunction of extreme activity of the light-tailed and heavy-

tailed sources, both in their own characteristic ways, results in a large queue building

up.

We will find that the workload distribution is asymptotically equivalent to that in a

somewhat ‘dual’ reduced system, multiplied with a certain pre-factor. The reduced system

now consists of only the light-tailed sources, served at the link rate reduced by the peak

rate of the heavy-tailed sources, hence the phrase ‘reduced-peak equivalence’. The pre-

factor represents the probability that the heavy-tailed sources have sent at their peak rate

for more than a certain amount of time. This amount of time may be interpreted as the

‘time to overflow’ for the light-tailed sources in the reduced system. This suggests that the

most likely way for overflow to occur is for the light-tailed sources to show temporarily

similar ‘abnormal’ behavior as is the typical cause of overflow in the reduced system.

During that time period, the heavy-tailed sources constantly send at their peak rate.

Loosely stated, the heavy-tailed sources must send at their peak rate long enough for the

light-tailed sources to be able to cause overflow. The subtle combination of light-tailed and

heavy-tailed large deviations is similar to that for an M/G/2 queue with heterogeneous

servers as described in Section 2.3 of this thesis.

The remainder of the chapter is organized as follows. In Section 6.2 we present a detailed

model description and give an important preliminary result. We determine the exact

asymptotics of the workload distribution in Section 6.3. The ‘reduced-peak equivalence’

involves some new results for light-tailed input, which may be of independent interest.

In Section 6.4 we show that our assumptions regarding the light-tailed input are satisfied

for two important traffic scenarios: (i) Markov-modulated fluid input; (ii) instantaneous

input.

6.2 Model description

We first present a detailed model description. We consider N traffic sources sharing a

link of unit rate. Denote by Ai(s, t) the amount of traffic generated by source i during the

time interval (s, t]. We assume that the process Ai(s, t) has stationary increments. Let

I = {1, . . . , N} index the sources. For any E ⊆ I, denote by AE(s, t) :=
∑
i∈E

Ai(s, t) the

aggregate amount of traffic generated by the sources i ∈ E during (s, t]. In particular,

A(s, t) := AI(s, t) is the total amount of traffic generated during (s, t].

Denote by ρi the traffic intensity of source i (as will be defined in detail below). For any

E ⊆ I, define ρE :=
∑
i∈E

ρi as the aggregate traffic intensity of the sources i ∈ E.
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For any c ≥ 0, E ⊆ I, define V c
E(t) := sup

0≤s≤t
{AE(s, t)− c(t− s)} as the workload at time t

in a queue of capacity c fed by the sources i ∈ E (assuming V c
E(0) = 0). For c > ρE, let

V c
E be a random variable with the limiting distribution of V c

E(t) for t → ∞ (assuming it

exists). In particular, V (t) := V 1
I (t) is the total workload at time t, and V is a random

variable with the limiting distribution of V (t) for t→∞. Note that

V
d
= sup

t≥0
{A(−t, 0)− t}.

We now describe the traffic scenario that we consider. We assume that the sources may

be partitioned into two sets; I1 is the set of ‘light-tailed’ sources; I2 is the set of ‘heavy-

tailed’ sources. For the sources in I1, we make the (weak) assumption that the input

process AI1(s, t) satisfies a large-deviations principle. In particular, we follow Glynn &

Whitt [138] and assume the following:

Assumption 6.2.1 There exist positive constants θ∗ = θ∗(c) and ε∗ such that

t−1 logE{exp{θ(AI1(0, t)− ct)}} → φc(θ)

as t→∞, for |θ − θ∗| ≤ ε∗, such that φc(θ
∗) = 0, φ′c(θ

∗) > 0, and

E{exp{θ∗AI1(0, t)}} <∞
for all t > 0.

Assumption 6.2.1 and a stability condition yield the following large-deviations estimate

(cf. Theorem 4 of [138]):

lim
x→∞

x−1 logP{V c
I1 > x} = −θ∗. (2.1)

For a more elaborate discussion on Assumption 6.2.1 and its connections with classical

large-deviations theory, we refer to [138] and references therein.

For the sources in I2, we assume that each source i generates traffic according to a

semi-Markov process on a finite state space {1, . . . , ni}. Note that this process is a gen-

eralization of the On-Off source to multiple activity states. While source i is in state j,

it generates traffic at rate rij, with ri1 > ri2 > . . . > rini = 0. Define ri ≡ ri1 as the

peak rate of source i. For any E ⊆ I2, denote by rE :=
∑
i∈E

ri the aggregate peak rate

of the sources i ∈ E. The time that source i stays in state j before jumping to another

state has some general distribution Aij(·) with finite mean αij. The state transitions are

governed by some irreducible Markov chain (we assume self-transitions are not possible).

The fraction of time that source i spends in state j is denoted by pij, with pi ≡ pi1 the

fraction of time that source i sends at its peak rate. Note that

ρi =

ni∑

j=1

pijrij =

ni−1∑

j=1

pijrij.
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An important special case is ni = 2. In this case, source i behaves as an On-Off source,

and we have pi =
αi1

αi1+αi2
as the fraction of On-time and ρi = piri.

Let Ai be a random variable with distribution Ai(·) ≡ Ai1(·), i.e., the amount of time that

source i stays in state 1 (sends at its peak rate). Denote by Ar
i (·) the distribution of the

residual lifetime of Ai, i.e., A
r
i (x) :=

1
E{Ai}

x∫
0

(1 − Ai(y))dy. Let Ar
i be a random variable

with distribution Ar
i (·).

We now give an important preliminary result, which (besides of independent interest)

will be used in establishing our main theorem in the next sections. In the special case of

On-Off sources, the result is due to Jelenković & Lazar [161], see Theorem 2.2.3.

Theorem 6.2.1 If Ai(·) ∈ L, Ar
i (·) ∈ S, ρi < c, and ri2 < c < ri = ri1, then

P{V c
i > x} ∼ pi

ri − ρi
c− ρi

P{Ar
i >

x

ri − c
}.

Proof

The condition ri2 < c < ri = ri1 ensures that the workload process falls within the

framework of Kella & Whitt [168], see also Chapter 4. In particular, the stationary

distribution has the following representation:

P{V c
i > x} = piP{W c

i + (ri − c)Ar
i > x}+ (1− pi)P{W c

i + (ri − c)Ai − Ti(U
r
i ) > x}.

The exact form of Ti(U
r
i ) is not relevant for our purposes. The random variable W c

i

represents the waiting time in a GI/G/1 queue of capacity 1 with service times (ri−c)Ai.

The interarrival times are equal to the decrease in the workload during the time that

source i spends in states {2, . . . , ni} between two successive visits to state 1. Like in

Chapter 4, we denote such a decrease (with a slight abuse of notation) by Ti(Ui), and the

corresponding time interval by Ui. Note that Ti(Ui) ≡ cUi in case ni = 2.

From Theorem 2.2.1, we have

P{W c
i > x} ∼ ρ̃i

1− ρ̃i
P{(ri − c)Ar

i > x},

with ρ̃i =
(ri−c)E{Ai}

E{Ti(Ui)} . Using standard properties of long-tailed and subexponential distri-

bution functions, we obtain

P{V c
i > x} ∼

(
ρ̃i

1− ρ̃i
+ pi

)
P{(ri − c)Ar

i > x}.

The statement now follows after a straightforward computation, using the expression for ρ̃i
and the identities

pi =
E{Ai}

E{Ai}+ E{Ui1}
, ρi = piri + (1− pi)

(
c− E{Ti(Ui)}

E{Ui}

)
.

2
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6.3 Asymptotic analysis

In this section we analyze the tail behavior of the workload distribution P{V > x}. As

mentioned in Section 6.1, asymptotic bounds in Dumas & Simonian [120] show a sharp

dichotomy in the qualitative tail behavior, depending on the value of ρI1 + rI2 (i.e. the

mean rate of the light-tailed sources plus the peak rate of the heavy-tailed sources) rel-

ative to the link rate. In case ρI1 + rI2 > 1, the workload distribution has heavy-tailed

characteristics (to be treated in Chapter 7), whereas ρI1 + rI2 < 1 implies light-tailed

characteristics. In this section we determine the exact asymptotics of P{V > x} in the

latter case. Results for the boundary case ρI1 + rI2 = 1 can be found in Zwart [290].

To put the main result of this chapter in perspective, we first provide a heuristic derivation

of the tail behavior of P{V > x} in the case ρI1+rI2 > 1. Large-deviations theory suggests

that, given that a ‘rare event’ occurs, with overwhelming probability ‘it happens in the

most likely way’. In the asymptotic regime considered here (‘large buffers’), the most likely

way usually consists of a linear build-up of the workload, due to temporary instability of

the system. In case of heavy-tailed distributions, the temporary instability typically arises

from a ‘minimal set’ of potential causes. The minimal set corresponds to the minimal

number of causes when these are homogeneous in nature. In general however, when the

potential causes have heterogeneous characteristics, not only the number of them matters,

but also their relative likelihood, and their relative contribution to the occurrence of the

rare event under consideration.

Translated to our situation, temporary instability is most likely caused by a ‘minimal set’

of sources generating an extreme amount of traffic, while all other sources show roughly

average behavior. These considerations give rise to the following characterization of the

tail behavior of P{V > x}:

P{V > x} ∼ P{V cS∗
S∗ > x},

with S∗ representing the ‘minimal set’, and cS∗ := 1 − ρI\S∗ the service rate subtracted

by the aggregate traffic intensity of all other sources. In the next chapter, we will pro-

vide a proof of the above equivalence relation, and determine the asymptotic behavior of

P{V > x} as x→∞.

We now turn to the case ρI1 + rI2 < 1. Before formulating our main theorem, we first

provide a heuristic derivation of the tail behavior of P{V > x}. The overflow scenario

described above for the case ρI1 + rI2 > 1 cannot occur, and now the light-tailed sources

too must deviate from their ‘normal’ behavior in order for the queue to grow. Specifi-

cally, large-deviations results suggest that the light-tailed sources must behave as if their

aggregate traffic intensity is temporarily increased from ρI1 to, say, ρ̂I1 . During that

time period, all heavy-tailed sources constantly send at their peak rate, leaving capacity
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1− rI2 for the sources in I1. (Notice that, for a given workload level to be reached, any

alternative behavior of the sources in I2 would have to be compensated for by the sources

in I1 showing even greater anomalous activity.)

To summarize, our claim is as follows: a large workload level x occurs as a consequence

of two rare events:

1. The sources in I1 show similar ‘abnormal’ behavior as is the typical cause of overflow

when served in isolation, thus behaving as if their aggregate traffic intensity is

increased from ρI1 to ρ̂I1 for a period of time x/(ρ̂I1 + rI2 − 1).

2. During that time period, all sources in I2 constantly send at their peak rate, leaving

capacity 1− rI2 for the sources in I1.

These considerations lead to the following asymptotic characterization of P{V > x}:

P{V > x} ∼ P{V 1−rI2
I1 > x}

∏

j∈I2
pjP{Ar

j >
x

ρ̂I1 + rI2 − 1
}. (3.1)

Thus, the workload distribution is asymptotically equivalent to that in a reduced system,

but now multiplied with a pre-factor. The reduced system consists of only the light-tailed

sources, served at the link rate reduced by the peak rate of the heavy-tailed sources. The

pre-factor essentially represents the probability that the heavy-tailed sources have sent at

their peak rate long enough for the light-tailed sources to be able to cause overflow. The

conjunction of light-tailed and heavy-tailed large deviations is reminiscent of that for the

M/G/2 queue with heterogeneous servers as described in Section 2.3.

To prove (3.1), we now give two preliminary results, which may be of independent interest.

The proofs are given in Appendices 6.A and 6.B.

Proposition 6.3.1 If Assumption 6.2.1 holds, then, for any α > 0,

lim inf
x→∞

P{V c
I1(

(1+α)x
ρ̂I1

−c ) > x}
P{V c

I1 > x} = 1, (3.2)

where ρ̂I1 := φ′c(θ
∗(c)) + c.

Proposition 6.3.2 If Assumption 6.2.1 holds, then

θ∗(c+ ε) = θ∗(c) + ε
θ∗(c)

ρ̂I1 − c
+ o(ε), ε ↓ 0,

where ρ̂I1 is the same as in Proposition 6.3.1.

In particular, for any α > 0, there exists an εα > 0 such that

lim sup
x→∞

xβP{V c+ε
I1 >

ρ̂I1
−c−ε(1−α)
ρ̂I1

−c x}
P{V c

I1 > x} = 0 (3.3)

for all ε ∈ (0, εα) and β > 0.
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The first proposition is related to the folk theorem that a large workload level in the

large-buffer regime is due to a temporary change in the traffic intensity from ρI1 to ρ̂I1 .

The second proposition will be used to show that the two rare events mentioned above

are the only contributing factors to the tail distribution of the workload.

We now state our main theorem. We note that the result actually holds for any light-tailed

input process for which (3.2), (3.3) are satisfied.

Theorem 6.3.1 (Reduced-peak equivalence)

Suppose that the input process AI1(s, t) satisfies Assumption 6.2.1. If ρI1 + rI2 < 1 and

Ar
j(·) ∈ IRV for all j ∈ I2, then

P{V > x} ∼ P{V 1−rI2
I1 > x}

∏

j∈I2
pjP{Ar

j >
x

ρ̂I1 + rI2 − 1
}.

Proof

The proof consists of the derivation of a lower bound and an upper bound which asymp-

totically coincide.

We start with the lower bound. For any α > 0, we have

P{V > x} = P{sup
t≥0
{A(−t, 0)− t} > x}

≥ P{ sup
0≤t≤ (1+α)x

ρ̂I1
+rI2

−1

{A(−t, 0)− t} > x}

≥ P{ sup
0≤t≤ (1+α)x

ρ̂I1
+rI2

−1

{AI1(−t, 0)− (1− rI2)t} > x,

AI2(−u, 0) ≥ rI2u for all u ∈
[
0,

(1 + α)x

ρ̂I1 + rI2 − 1

]
}

= P{ sup
0≤t≤ (1+α)x

ρ̂I1
+rI2

−1

{AI1(−t, 0)− (1− rI2)t} > x,

Aj(−u, 0) ≥ rju for all u ∈
[
0,

(1 + α)x

ρ̂I1 + rI2 − 1

]
, j ∈ I2}

= P{V 1−rI2
I1 (

(1 + α)x

ρ̂I1 + rI2 − 1
) > x}

∏

j∈I2
pjP{Ar

j >
(1 + α)x

ρ̂I1 + rI2 − 1
}.

Thus,

P{V > x}
P{V 1−rI2

I1 > x} ∏
j∈I2

pjP{Ar
j >

x
ρ̂I1

+rI2
−1}

≥

P{V 1−rI2
I1 ( (1+α)x

ρ̂I1
+rI2

−1) > x}
P{V 1−rI2

I1 > x}
∏

j∈I2

P{Ar
j >

(1+α)x
ρ̂I1

+rI2
−1}

P{Ar
j >

x
ρ̂I1

+rI2
−1}

.
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Using Proposition 6.3.1, we find that

lim inf
x→∞

P{V > x}
P{V 1−rI2

I1 > x} ∏
j∈I2

pjP{Ar
j >

x
ρ̂I1

+rI2
−1}

≥
∏

j∈I2
lim inf
x→∞

P{Ar
j >

(1+α)x
ρ̂I1

+rI2
−1}

P{Ar
j >

x
ρ̂I1

+rI2
−1}

=

∏

j∈I2
lim inf
x→∞

P{Ar
j > (1 + α)x}

P{Ar
j > x} .

Letting α ↓ 0 and using the fact that Ar
j(·) ∈ IRV for all j ∈ I2 then completes the proof

of the lower bound.

We now turn to the upper bound. Notice that V is stochastically smaller (in fact sample

path wise) than V
1−rI2
I1 as well as V

1−rI2
+rj

I1∪{j} for all j ∈ I2. The latter random variable can

be dominated by V
1−rI2

+ε

I1 + V
rj−ε
j . Hence,

P{V > x} ≤ P{V 1−rI2
I1 > x, V

1−rI2
+ε

I1 + V
rj−ε
j > x for all j ∈ I2}

≤ P{V 1−rI2
I1 > x, V

1−rI2
+ε

I1 > (1− δ)x or V
rj−ε
j > δx for all j ∈ I2}

≤ P{V 1−rI2
+ε

I1 > (1− δ)x or V
1−rI2
I1 > x, V

rj−ε
j > δx for all j ∈ I2}

≤ P{V 1−rI2
+ε

I1 > (1− δ)x}+ P{V 1−rI2
I1 > x}

∏

j∈I2
P{V rj−ε

j > δx}.

Thus,

P{V > x}
P{V 1−rI2

I1 > x} ∏
j∈I2

pjP{Ar
j >

x
ρ̂I1

+rI2
−1}

≤ P{V 1−rI2
+ε

I1 > (1− δ)x}
P{V 1−rI2

I1 > x} ∏
j∈I2

pjP{Ar
j >

x
ρ̂I1

+rI2
−1}

+
∏

j∈I2

P{V rj−ε
j > δx}

pjP{Ar
j >

x
ρ̂I1

+rI2
−1}

.

Now take δ = ε(1−α)
ρ̂I1

+rI2
−1 .

P{V > x}
P{V 1−rI2

I1 > x} ∏
j∈I2

pjP{Ar
j >

x
ρ̂I1

+rI2
−1}

≤
P{V 1−rI2

+ε

I1 >
ρ̂I1

+rI2
−1−ε(1−α)

ρ̂I1
+rI2

−1 x}
P{V 1−rI2

I1 > x} ∏
j∈I2

pjP{Ar
j >

x
ρ̂I1

+rI2
−1}

+
∏

j∈I2

P{V rj−ε
j > ε(1−α)

ρ̂I1
+rI2

−1x}
pjP{Ar

j >
x

ρ̂I1
+rI2

−1}
.
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Because Ar
j(·) ∈ IRV for all j ∈ I2, there exists a β such that

lim
x→∞

xβ
∏

j∈I2
P{Ar

j > x} =∞. (3.4)

Using Theorem 6.2.1 we get

lim sup
x→∞

P{V > x}
P{V 1−rI2

I1 > x} ∏
j∈I2

pjP{Ar
j >

x
ρ̂I1

+rI2
−1}

≤ 1∏
j∈I2

pj

∏

j∈I2
lim sup
x→∞

P{Ar
j > x}

P{Ar
j >

x
ρ̂I1

+rI2
−1}

lim sup
x→∞

1

xβ
∏
j∈I2

P{Ar
j > x} ×

lim sup
x→∞

xβP{V 1−rI2
+ε

I1 >
ρ̂I1

+rI2
−1−ε(1−α)

ρ̂I1
+rI2

−1 x}
P{V 1−rI2

I1 > x}

+
∏

j∈I2
lim sup
x→∞

P{V rj−ε
j > ε(1−α)

ρ̂I1
+rI2

−1x}
pjP{Ar

j >
x

ρ̂I1
+rI2

−1}
.

The first term is seen to converge to zero by using the fact that Ar
j(·) ∈ IRV for all

j ∈ I2, Equation (3.4), and Proposition 6.3.2. The second term equals, by Theorem 6.2.1,

∏

j∈I2
lim sup
x→∞

pj
rj−ρj
rj−ε−ρj P{A

r
j >

(1−α)x
ρ̂I1

+rI2
−1}

pjP{Ar
j >

x
ρ̂I1

+rI2
−1}

=
∏

j∈I2

rj − ρj
rj − ε− ρj

lim sup
x→∞

P{Ar
j >

(1−α)x
ρ̂I1

+rI2
−1}

P{Ar
j >

x
ρ̂I1

+rI2
−1}

=
∏

j∈I2

rj − ρj
rj − ε− ρj

lim sup
x→∞

P{Ar
j > (1− α)x}
P{Ar

j > x} .

Letting ε ↓ 0 and then α ↓ 0 and using the fact that Ar
j(·) ∈ IRV for all j ∈ I2 then

completes the proof of the upper bound. 2

6.4 Examples

We now apply Theorem 6.3.1 to obtain a complete characterization of the tail behavior of

the workload distribution P{V > x} for two important traffic scenarios for the light-tailed

sources: (i) Markov-modulated fluid input; (ii) instantaneous input.
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6.4.1 Markov-modulated fluid input

In this subsection we check that Assumption 6.2.1 is satisfied in case the light-tailed

sources are Markovian On-Off sources. We follow Asmussen [20], and assume that the

input process AI1(s, t) can be represented as follows. Let J(t) be an irreducible continuous-

time Markov process on a finite state space J with Q-matrix Λ. J(t) converges in distri-

bution to the random variable J. If J(t) = j, then AI1(t, t+ dt) = rjdt. Thus,

AI1(s, t) =

∫ t

s

rJ(u)du.

We introduce some additional notation, following [20]. Define the matrix polynomial

Kc(s) = Λ + s(R− cI),

where R is a diagonal matrix with elements rj, and I is the identity matrix. Kc(s) has

a simple and unique eigenvalue with maximal real part. Denote this eigenvalue by κc(s).

A simple computation shows that φc(s) = κc(s). From [20] we know that the equation

κc(s) = 0 has a unique solution θ∗(c) > 0 and that all other conditions of Assumption 6.2.1

are satisfied as well.

In this special case, the exact asymptotics of P{V c
I1 > x} are available: Corollary 4.9

in [20] yields

P{V c
I1 > x} ∼ Dce−θ

∗(c)x. (4.1)

An explicit, but quite elaborate expression for the pre-factor Dc may be found in [20].

Together, Theorem 6.3.1 and Equation (4.1) provide a complete characterization of the

tail behavior of P{V > x}. As mentioned above, the pre-factor Dc is quite complicated in

general. However, that is not the case when the input process AI1(s, t) is the superposition

of several statistically identical On-Off sources with exponentially distributed On- and

Off-periods, see Anick, Mitra & Sondhi [16].

Example 6.4.1 As an illustrating example, consider the following special case of two On-

Off sources. Source 1 has exponentially distributed On- and Off-periods with parameters µ

and λ, respectively. While On, the source generates traffic at rate r1, so that ρ1 =

λr1/(λ + µ). Source 2 has On-periods which are regularly varying of index −ν < −1,
i.e., P{A2 > x} = L(x)x−ν , with L(·) a slowly varying function. Thus P{Ar

2 > x} ∼
1/((ν − 1)E{A2})L(x)x1−ν . Some calculations show that for ρ1 < c,

P{V c
1 > x} =

λ

λ+ µ

r1
c
exp

{
−
(

µ

r1 − c
− λ

c

)
x

}
,

ρ̂1 =
µ

µ+ λ
(
r1−c
c

)2 r1.
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Taking c = 1− r2, Theorem 6.3.1 implies that for ρ1 + r2 < 1 (see also Chapter 7),

P{V > x}

∼ λ

λ+ µ

r1
1− r2

p2
(ν − 1)E{A2}

L(x)

(
x

ρ̂1 + r2 − 1

)1−ν
×

exp

{
−
(

λ

1− r2
− µ

r1 + r2 − 1

)
x

}
.

In contrast, reduced-load equivalence (see Theorem 2.2.4 and Chapter 7), combined with

Theorem 6.2.1, gives for ρ1 + r2 > 1 > ρ1 + ρ2,

P{V > x} ∼ P{V 1−ρ1
2 > x} (4.2)

∼ r2 − ρ2
1− ρ1 − ρ2

p2
(ν − 1)E{A2}

L(x)

(
x

ρ1 + r2 − 1

)1−ν
.

6.4.2 Instantaneous input

In this subsection we assume that the input process of the light-tailed sources is that of

a GI/G/1 queue. Observe that in terms of total workload, the model may equivalently

be viewed as a GI/G/1 queue with several service speeds (depending on which of the

heavy-tailed sources are active). The assumption ρI1 + rI2 < 1 implies that the queue

is stable, even when served at the lowest possible speed 1 − rI2 . We refer to Boxma &

Kurkova [73] for related results.

Instead of showing the validity of Assumption 6.2.1, we take a more direct approach

and use results from Asmussen [18] to show that (3.2), (3.3) hold (which is sufficient

for Theorem 6.3.1 to hold). If one wishes to stay within the general large-deviations

framework, one should invoke additional regularity conditions, in particular Equations

(1.23)–(1.26) in [138].

We assume i.i.d. interarrival times Tn and i.i.d. service times Bn, n = 1, 2, . . . . We follow

[18], and impose the following two technical conditions:

1. The distribution of B1 − cT1 is non-lattice,

2. There exists a θ∗(c) > 0 such that E{eθ∗(c)(B1−cT1)} = 1 and

E{|B1 − cT1| eθ∗(c)(B1−cT1)} <∞.

Let α(·), β(·) be the LSTs of T1, B1, respectively. We define the ‘twisted’ (also called

associated, cf. [18]) random variables T̂ and B̂ through their transforms

E{e−sT̂} = α̂(s) =
α(s+ cθ∗(c))

α(cθ∗(c))
, E{e−sB̂} = β̂(s) =

β(s− θ∗(c))

β(−θ∗(c)) .

Like in the previous subsection, it is possible to refine the logarithmic asymptotics in (2.1):

The exact asymptotic behavior of P{V c
I1 > x} is given by

P{V c
I1 > x} ∼ Dce−θ

∗(c)x. (4.3)
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An expression for the pre-factor Dc is specified on page 158 of [18].

We now show that (3.2), (3.3) are satisfied with the definition ρ̂I1 := E{B̂}
E{T̂} . Equation (3.2)

is a direct consequence of Theorem 6.2 in [18]. To check (3.3), we compute the derivative

of θ∗(c) using the implicit function theorem. A straightforward computation yields

d

dc
θ∗(c) =

θ∗(c)

ρ̂I1 − c
.

This yields (3.3), see Appendix 6.B.

Together, Theorem 6.3.1 and Equation (4.3) determine the exact asymptotics of P{V >

x}.

Example 6.4.2 To illustrate our results, consider the following example with two sources.

The traffic model of source 1 is that of an M/M/1 queue with arrival rate λ and service

rate µ, so that ρ1 = λ/µ. Source 2 is an On-Off source with regularly varying On-periods

of index −ν < −1, i.e., P{A2 > x} = L(x)x−ν , with L(x) a slowly-varying function. As

mentioned in the beginning of the subsection, in terms of total workload, the model may

be viewed as an M/M/1 queue with two service speeds, c1 = 1 and c2 = 1− r2, regulated

by the activity of source 2. For the ordinary M/M/1 queue we have, for any c > ρ1,

P{V c
1 > x} =

λ

cµ
e−(µ−

λ
c
)x,

ρ̂1 =
cµ

λ
.

Taking c = c2 − 1− r2, Theorem 6.3.1 yields for ρ1 < c2,

P{V > x} ∼ λ

c2µ

p2
(ν − 1)E{A2}

L(x)

(
x

ρ̂1 − c2

)1−ν
e
−(µ− λ

c2
)x
.

For ρ1 > c2, the tail behavior is identical to that when source 1 is an On-Off source with

mean rate ρ1 as given in Equation (4.2).
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Appendix

6.A Proof of Proposition 6.3.1

Proposition 6.3.1 If Assumption 6.2.1 is satisfied, then, for any α > 0,

lim inf
x→∞

P{V c
I1(

(1+α)x
ρ̂I1

−c ) > x}
P{V c

I1 > x} = 1,

where ρ̂I1 := φ′c(θ
∗(c)) + c.

Proof

Note that V c
I1(t) has the same distribution as sup

0≤s≤t
{ĀI1(0, s) − cs}, with ĀI1 the time-

reversed version of AI1 , i.e., ĀI1(s, t) = AI1(−t,−s). Define τ(x) := inf{ĀI1(0, t) − ct ≥
x}. For integer i and n, we define Xi := ĀI1(i, i + 1) − c and Sn := X1 + . . . + Xn =

ĀI1(0, n)− cn. Following [138], we define the ‘twisted’ probability measures P∗n{·} by

P∗n{dx1, . . . , dxn} := eθ
∗

∑n
i=1 xi−φn(θ∗)P{dx1, . . . , dxn},

where φn(θ) = logE{exp{θSn}}. Note that P∗n and ρ̂I1 are independent of the system ca-

pacity c. To prove the proposition, we use similar arguments as in the proof of Theorem 2

of [138]. It suffices to show that

P{∞ > τ(x) > x(1 + α)/(ρ̂I1 − c)} = o(P{V c
I1 > x}), x→∞.

Define m(x) = [x(1 + α)/(ρ̂I1 − c)] (with [y] the entier of y), and write

P{∞ > τ(x) > x(1 + α)/(ρ̂I1 − c)} ≤
∞∑

j=m(x)

P{j − 1 ≤ τ(x) < j}

≤
∞∑

j=m(x)

P{Sj−1 ≤ x, Sj > x− c}.

We need some auxiliary results which are also stated in the proof of Theorem 4 in [138].

The following bounds are valid for some η < 1 when x and j are large enough:

φj(θ
∗) < −1

2
j log η,

P∗j{Sj−1 ≤ x} ≤ ηj, j ≥ m(x).

Both bounds rely on Theorem 7 of [138], which basically shows that the speed of con-

vergence of Sn/n is exponentially fast under P∗n{·}. The first bound is Equation (2.6)
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in [138], while the second bound is derived on page 147 of [138]. From these bounds, we

obtain

P{Sj−1 ≤ x, Sj > x− c}
= E∗j{exp{−θ∗Sj + φj(θ

∗)};Sj−1 ≤ x;Sj > x− c}
≤ eθ

∗ce−θ
∗xeφj(θ

∗)P∗j{Sj−1 ≤ x}
≤ eθ

∗ce−θ
∗x(
√
η)j.

Combining all results, we obtain, for some finite constant C,

P{∞ > τ(x) > x(1 + α)/(ρ̂I1 − c)} ≤ Ce−θ
∗x(
√
η)m(x),

which is negligible compared to P{V c
I1 > x} according to Equation (2.1).

2

6.B Proof of Proposition 6.3.2

Proposition 6.3.2 If Assumption 6.2.1 is satisfied, then

θ∗(c+ ε) = θ∗(c) + ε
θ∗(c)

ρ̂I1 − c
+ o(ε), ε ↓ 0,

where ρ̂I1 is the same as in Proposition 6.3.1.

In particular, for any α > 0, there exists an εα > 0 such that

lim sup
x→∞

xβP{V c+ε
I1 >

ρ̂I1
−c−ε(1−α)
ρ̂I1

−c x}
P{V c

I1 > x} = 0

for all ε ∈ (0, εα) and β > 0.

Proof

First, we show that

θ∗(c+ ε) = θ∗(c) + ε
θ∗(c)

ρ̂I1 − c
+ o(ε), ε ↓ 0.

Using Taylor’s theorem, it suffices to compute the derivative of θ∗(c) w.r.t. c. Note that

φc+ε(θ) = φc(θ)− εθ.

Combining this with the implicit function theorem, we obtain

d

dc
θ∗(c) = −

d
dc
φc(s)|s=θ∗(c)

d
ds
φc(s)|s=θ∗(c)

=
θ∗(c)

φ′c(θ
∗(c))

.
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Finally, we prove the second part of Proposition 6.3.2. We may write

P{V c
I1 > x} = fc(x)e

−θ∗(c)x,

with fc(x) = o(eδx) and 1/fc(x) = o(eδx) for any δ > 0 and x → ∞. We obtain, for any

fixed α and ε small enough,

lim sup
x→∞

xβP{V c+ε
I1 >

ρ̂I1
−c−ε(1−α)
ρ̂I1

−c x}
P{V c

I1 > x}

= lim sup
x→∞

fc+ε(x)

fc(x)

xβe
−θ∗(c+ε)

ρ̂I1
−c−ε(1−α)

ρ̂I1
−c

x

e−θ∗(c)x

= lim sup
x→∞

fc+ε(x)

fc(x)

xβe
−θ∗(c)x(1+ ε

ρ̂I1
−c

+o(ε))(1− ε(1−α)
ρ̂I1

−c
)

e−θ∗(c)x

= lim sup
x→∞

fc+ε(x)

fc(x)
xβe

−θ∗(c)x( εα
ρ̂I1

−c
+o(ε))

= 0.

2
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Chapter 7

The fluid queue II: Reduced-load

7.1 Introduction

In this chapter we revisit the fluid queue introduced in the previous chapter. As already

mentioned there, asymptotic bounds in Dumas & Simonian [120] show a sharp dichotomy

in the qualitative tail behavior of the workload distribution, depending on whether the

mean rate of the light-tailed sources plus the peak rate of the heavy-tailed sources exceeds

the link rate or not. In case the link rate is larger, the workload distribution has light-tailed

characteristics (see Chapter 6), whereas the link rate being smaller results in heavy-tailed

characteristics. The latter case will be studied in the present chapter.

The bounds in [120] indicate that one can usually identify a ‘dominant’ set, which is a

minimal set of sources that can cause a positive drift in the buffer. As far as bounds is

concerned, all other sources can essentially be accounted for by subtracting their aggregate

mean rate from the link rate. Exact asymptotics however, have remained elusive for all

but a few special cases. Results of Agrawal et al. [12] show that the dominance principle

described above in fact extends to the exact asymptotics in the case of a single dominant

source. This may be expressed in terms of a ‘reduced-load equivalence’, implying that the

workload is asymptotically equivalent to that in a reduced system. The reduced system

consists only of the dominant source, with the link rate subtracted by the aggregate mean

rate of all other sources, see Subsection 2.2.2 for a more elaborate discussion and further

references. This extends results of Boxma [65], Jelenković & Lazar [161], and Rolski et

al. [243] for multiplexing a single (intermediately) regularly varying source with several

exponential sources.

In the present chapter we determine the exact asymptotics for the case where several On-

Off sources must be active for the buffer to fill (under the assumption that the distribution

of the On-periods is regularly varying). From a practical perspective, this case appears

particularly relevant, as the peak rate of a single source is usually substantially smaller

than the link rate. However, the rather subtle interaction of several sources that is involved

in filling the buffer drastically complicates the analysis. We start with extending the

117
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reduced-load equivalence to the case of a reduced system consisting of several sources,

using sample-path arguments. We then build on a qualitative understanding of the large-

deviations behavior to obtain the exact asymptotics for the reduced system. A stylized

version of our approach for the M/G/1 queue can be found in Section 2.4.

The remainder of the chapter is organized as follows. In Section 7.2, we present a detailed

model description. In Section 7.3, we give a broad overview of the main results of the

chapter, and describe how the dominant set may be determined from a simple knapsack

formulation. Section 7.4 gives some preliminary results. The reduced-load equivalence

result is established in Section 7.5. Section 7.6 develops the detailed probabilistic argu-

ments involved in deriving the tail asymptotics for the reduced system. In Section 7.7, we

discuss the relationship between the asymptotic regime considered here (‘large buffers’)

and a many-sources regime.

7.2 Preliminaries

The model under consideration is similar to the model introduced in Chapter 6. Again,

we assume that the sources may be partitioned into two sets: I1 is the set of ‘light-tailed’
sources; I2 is the set of ‘heavy-tailed’ sources. The precise assumptions on these sets are

somewhat different from those in the previous chapter. For the sources i ∈ I1 we make

the following assumption.

Assumption 7.2.1 For any c > ρI1, µ > 0,

lim
x→∞

xµP{V c
I1 > x} = 0.

The above assumption is quite weak; it is satisfied by the light-tailed input considered in

the previous chapter. However, (superpositions of) On-Off sources of which the activity

period has a Weibull distribution satisfy Assumption 7.2.1 too. Instantaneous renewal

input of which the tail of the jump sizes (bursts) is lighter than any power tail is covered

by Assumption 7.2.1 as well.

We assume that the sources in I2 generate traffic according to independent On-Off pro-

cesses (which is a stronger assumption than made in the previous chapter, where we con-

sidered semi-Markov sources). The Off-periods of source i are generally distributed with

mean 1/λi. The On-periods Ai have a heavy-tailed distribution Ai(·) with mean αi <∞.

While On, source i produces traffic at constant rate ri, so the mean burst size is αiri. The

fraction of time that source i is On is

pi =
αi

1/λi + αi
=

λiαi
1 + λiαi

.
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Thus the traffic intensity of source i is

ρi := piri =
λiαiri
1 + λiαi

.

For each source i ∈ I2, we assume that the On-period distribution is regularly varying of

index −νi, i.e., Ai(·) ∈ R−νi for some νi > 1.

We now give a convenient representation for the stationary workload V c
E, with E ⊆ I2

an arbitrary set of heavy-tailed On-Off sources. We start from the definition V c
E(t) :=

sup
0≤s≤t

{AE(s, t) − c(t − s)} (assuming V c
E(0) = 0), see also Chapter 6. Since the process

AE(·, ·) has stationary and reversible increments, we have

sup
0≤s≤t

{AE(s, t)− c(t− s)} d
= sup

0≤s≤t
{AE(0, s)− cs}.

In the sequel, we simply use the latter expression as the definition of V c
E(t). Accordingly,

for c > ρE, the stationary workload as t→∞ may be represented as

V c
E := sup

t≥0
{AE(0, t)− ct}.

Recall (see Chapter 6) that V (t) := V 1
I (t) is the total workload at time t, and V is a

random variable with the limiting distribution of V (t) for t → ∞ (like in Chapter 6, we

assume that ρI = ρ < 1).

Explicit constructions of Ai(0, t) (satisfying the stationarity condition) may be found

in Dumas & Simonian [120] and Heath et al. [152]. For completeness, we review the

construction in [152] which will be extensively used in Section 7.6.

Let {Aim,m ≥ 0} be a sequence of i.i.d. random variables representing On-periods of

source i. Similarly, let {Uim,m ≥ 1} be Off-periods. Define three additional random

variables Ar
i0, U

r
i0, and Ii such that Ar

i0
d
= Ar

i , U
r
i0

d
= U r

i , and

P{Ii = 1} = E{Ai1}
E{Ai1}+ E{Ui1}

= 1− P{Ii = 0}.

Note that Ii = 1 corresponds to source i being On (in stationarity).

To obtain a stationary alternating renewal process, we define the delay random variable

Di0 by

Di0 = IiA
r
i0 + (1− Ii)(U

r
i0 + Ai0).

Then the delayed renewal sequence

{Zin, n ≥ 0} = {Di0, Di0 +
n∑

m=1

(Uim + Aim), n ≥ 1}

is stationary.
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Next, we define the process {Ii(t), t ≥ 0} as follows. Ii(t) is the indicator of the event

that source i is On at time t. Formally, we have

Ii(t) = Ii1{t<Ar
i0} + (1− Ii)1{Ur

i0≤t<Ur
i0+Ai0} +

∞∑

n=0

1{Zin+Ui,n+1≤t<Zi,n+1}.

The On-Off process {Ji(t), t ≥ 0} is strictly stationary, see Theorem 2.1 of [152]. The

process {Ai(0, t), t ≥ 0} is defined by

Ai(0, t) := ri

∫ t

0

Ii(u)du.

Finally, note that the number of elapsed Off-periods during [0, t] which started after time 0

is given by

NA
i (t) := max{n : Zi,n−1 + Uin ≤ t}. (2.1)

We conclude this section by introducing two notational conventions. With f(x)
<∼ g(x) we

denote lim supx→∞ f(x)/g(x) ≤ 1. Similarly, f(x)
>∼ g(x) denotes lim infx→∞ f(x)/g(x) ≥

1.

7.3 Overview of the results

We now give a broad overview of the main results of the chapter. As mentioned in

Section 7.1, asymptotic bounds in Dumas & Simonian [120] show a sharp dichotomy in

the qualitative behavior of P{V > x}, depending on the value of ρI1 + rI2 (i.e. the mean

rate of the light-tailed sources plus the peak rate of the heavy-tailed sources) relative

to the service rate. In case ρI1 + rI2 < 1, the workload has light-tailed characteristics,

whereas ρI1 + rI2 > 1 implies heavy-tailed characteristics. In the present chapter we

determine the exact asymptotics of P{V > x} in the latter case; see Section 6.3 for some

intuitive arguments.

Before we state our main result, we first introduce some helpful notions. For any subset

S ⊆ I2, define cS := 1 − ρI\S as the service rate subtracted by the aggregate traffic

intensity of all other sources j ∈ I \ S. Observe that the stability condition implies

ρS < cS for any S ⊆ I2.
For any subset S ⊆ I2, denote by rS :=

∑
j∈S

rj the aggregate peak rate of the sources

j ∈ S. Define dS := rS − cS = rS + ρI\S − 1 as the net input rate (i.e. the drift) when all

sources in S are On and all other sources show average behavior.

A set S ⊆ I2 is called (strictly) critical if dS ≥ (>)0, i.e., if

rS + ρI\S ≥ (>)1.
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Thus, when all sources in a (strictly) critical set are On, the workload has a (strictly)

positive drift. A critical set S is termed minimally-critical if no proper subset of S is

critical, i.e., dS < min
j∈S
{rj − ρj}.

For any subset S ⊆ I2, denote µS :=
∑
j∈S

(νj − 1). A strictly critical set S ⊆ I2 is said to

be (weakly) dominant if µS < (≤)µU for any other critical set U ⊆ I2. Observe that for a

set S ⊆ I2 to be dominant, it must be minimally-critical (because otherwise the defining

property would be violated for any critical subset U ⊂ S).

The quantity µS may be interpreted as a measure for the ‘cost’ associated with a tem-

porary drift dS: the probability of all sources in S being On for a time of the order x in

steady state is roughly equal to x−µS . Thus, a set S is (weakly) dominant if the sources

in S being On causes the drift to be positive in the cheapest possible way.

In case of light-tailed distributions, the cost minimization is usually not so simple; one

then also needs to consider how long a certain positive drift must be maintained in order

for a given workload level x to be reached. This issue does not arise in case of regularly

varying On periods, since P{Ar
i > ax} is of the same order of magnitude (up to a constant)

as P{Ar
i > x} for any constant a > 1. This implies that the value of the temporary drift

is not relevant as long as it is positive.

7.3.1 Tail behavior of the workload distribution

We now state our main theorem.

Theorem 7.3.1 (Reduced-load equivalence)

Suppose the set of sources S∗ ⊆ I2 is dominant. If Aj(·) ∈ R for all j ∈ I2, then

P{V > x} ∼ P{V cS∗
S∗ > x}, (3.1)

with

P{V cS∗
S∗ > x} ∼

(
∏

j∈S∗
pj

)
∑

J0⊆S∗
PJ0(x), (3.2)

where PJ0(x) is given by (with J1 = S∗ \ J0, and dS∗ = rS∗ − cS∗ as defined earlier)

PJ0(x) =
1∏

i∈J1

E{Ai}

∫

yi∈(0,∞),i∈J1

∏

i∈J1

P{dS∗Ai >
∑

j∈J1

yj(rj − ρj)− dS∗yi + x} (3.3)

∏

i∈J0

P{dS∗Ar
i >

∑

j∈J1

yj(rj − ρj) + x}
∏

i∈J1

dyi.

In particular, P{V > x} and PJ0(x) are regularly varying of index −µS∗ = −
∑
j∈S∗

(νj − 1).
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The proof of the above theorem may be found in Subsection 7.5.1 (Equation (3.1)) and

Section 7.6 (Equations (3.2) and (3.3) and the regular variation property).

Note that in case the reduced system consists of just a single source, i.e., S∗ = {i∗},
the tail asymptotics follow directly from Theorem 2.2.3. This is in fact the reduced-

load equivalence established in Agrawal et al. [12] (under somewhat weaker distributional

assumptions), see also Section 2.2.2. Note that in this case the right hand side of (3.2)

takes the form pi∗ [P∅(x) + Pi∗(x)], with

Pi∗(x) = P{Ar
i∗ >

x

ri∗ − ci∗
},

and (after a straightforward calculation)

P∅(x) =
ri∗ − ci∗

ci∗ − ρi∗
P{Ar

i∗ >
x

ri∗ − ci∗
},

so that

pi∗ [P∅(x) + Pi∗(x)] = (1− pi∗)
ρi∗

ci∗ − ρi∗
P{Ar

i∗ >
x

ri∗ − ci∗
},

which is consistent with Theorem 2.2.3.

In case the reduced system consists of several sources, the tail asymptotics cannot be

obtained from known results. In fact, the analysis of the reduced system then poses

a major challenge because of the rather subtle mechanics involved in reaching a large

workload level. By definition though, the reduced system has the special feature that all

sources must be On for the drift in the workload to be positive, i.e., rS∗ −min
j∈S∗

{rj − ρj} <
cS∗ < rS∗ . In Section 7.6 we determine the exact asymptotics for systems satisfying this

property, yielding the integral expression given in Theorem 7.3.1.

7.3.2 Knapsack formulation for determining a dominant set

We now describe how a dominant set may be determined from a simple knapsack formu-

lation. Recall that the On-period distributions of the sources i ∈ I2 are regularly varying

of index −νi.
For a strictly critical set S ⊆ I2 to be dominant, it must necessarily solve the optimization

problem

min
S⊆I2

∑

j∈S
(νj − 1)

sub
∑

j∈S
rj +

∑

j∈I2\S
ρj > 1− ρI1 .
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Note that the constraint is equivalent to dS > 0. If we define θi := ri − ρi for all i ∈ I2,
then the above problem may be expressed in the standard knapsack form as

max
U⊆I2

∑

j∈U
(νj − 1)

sub
∑

j∈U
θj ≤ ρI1 + rI2 − 1− ε,

with U = I2 \ S and ε some small positive number. The above problem may not always

have a unique solution. In case it does, the corresponding set S is dominant, except for the

case when some set T exists which is critical but not strictly critical (i.e. rT + ρI\T = 1),

with µT ≤ µS (see the definition of a dominant set). Although intriguing, this ‘critical

case’ is not further considered in the present chapter. In this case, the temporary drift

may be zero for a long period of time during the path to overflow. Partial results for this

case have been obtained in [290].

In case the knapsack problem has several solutions, the corresponding sets are weakly

dominant (except for the critical case again). The next theorem extends the reduced-load

equivalence to the case of weakly dominant sets.

Theorem 7.3.2 (Generalized reduced-load equivalence; weakly dominant sets)

Let Υ ⊆ 2I2 be the collection of all weakly dominant sets. If Aj(·) ∈ R for all j ∈ S,

S ∈ Υ, then

P{V > x} ∼
∑

S∈Υ
P{V cS

S > x}, (3.4)

with P{V cS
S > x} as in (3.2), (3.3).

7.3.3 Homogeneous On-Off sources

We briefly consider the case of homogeneous On-Off sources as an important special case

with weakly dominant sets. Assume that the sources i ∈ I2 have identical characteristics.
With some minor abuse of notation, let A(·) := Ai(·), ν := νi, ρ := ρi, r := ri, p := pi.

Define N ∗ := argmin{N : Nr + (|I2| − N)ρ > 1 − ρI1}. (Observe that the assumption

ρI1 + rI2 > 1 ensures N ∗ ≤ |I2|.) To exclude the critical case, assume that (N ∗ − 1)r +

(|I2| −N ∗ + 1)ρ < 1− ρI1 , so that the drift remains negative (and cannot be zero) when

only N ∗ − 1 sources are On.

Corollary 7.3.1 If A(·) ∈ R, then

P{V > x} ∼
( |I2|

N∗

)
P{V̄ > x},
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with

P{V̄ > x} ∼ pN
∗
N∗∑

n=0

(
N∗

n

)
P{1,...,n}(x),

where P{1,...,n}(x) is given by (3.3). In particular, P{V > x} and P{1,...,n}(x) are regularly

varying of index −N ∗(ν − 1).

7.3.4 K heterogeneous classes

We finally consider the important special case where each On-Off source in I2 belongs

to one of K heterogeneous classes. We will show how an approximate solution to the

knapsack problem may be obtained using a simple index rule. The approximation is in

fact asymptotically exact in the many-sources regime.

Specifically, consider the superposition of n On-Off sources, each belonging to one of

K heterogeneous classes. Let ak be the fraction of sources of class k ∈ {1, . . . , K}, with
peak rate rk, mean rate ρk, and an On-period distribution which is regularly varying

of index −νk. Let the service rate be n (instead of 1), and let V (n) be the stationary

workload. The knapsack problem then takes the form

min
nk∈{0,...,nak}

K∑

k=1

nk(νk − 1)

sub
K∑

k=1

nkrk +
K∑

k=1

(nak − nk)ρk > n.

Unfortunately, the above problem cannot be easily solved due to the integrality con-

straints. Intuitively however, one may expect that as n grows large, the integrality con-

straints should have a negligible effect, so that a continuous relaxation with nk ∈ [0, nak]

should give a good approximate solution.

This relaxation may be solved using a simple index rule. Index the K classes in non-

decreasing order of the ratios

γk := (νk − 1)/(rk − ρk).

For any k ∈ {1, . . . , K}, define σk :=
k−1∑
m=1

amrm +
K∑

m=k

amρm. Determine the (unique)

index ` such that 1 ∈ (σ`−1, σ`]. Then take n∗k = nak for all classes k < `, n∗k = 0 for all

classes k > `, and n∗` = n(1− σ`−1)/(r` − ρ`).

This yields the (crude) approximation

P{V (n) > x} ≈ x−nµ, (3.5)

with µ :=
`−1∑
k=1

ak(νk − 1) + (1− σ`−1)γ`. In Section 7.7 we prove that the above approxi-

mation is logarithmically exact in the many-sources regime. In particular, one may show

that the limits for x→∞ and n→∞ commute if one considers logarithmic asymptotics.
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Theorem 7.3.3 (Robustness of logarithmic asymptotics)

lim
n→∞

lim
x→∞

1

n

logP{V (n) > nx}
log x

= lim
x→∞

lim
n→∞

1

n

logP{V (n) > nx}
log x

.

The proof of the above theorem may be found in Section 7.7. Although logarithmically

exact, the approximation (3.5) may not be appropriate from a practical perspective. In

particular, it is shown in Section 7.7 that an analogue of Theorem 7.3.3 cannot hold if

one considers exact asymptotics. This ‘negative’ result is reminiscent of a phenomenon

occurring in heavy-traffic theory where two limiting regimes lead either to stable Lévy

motion or to fractional Brownian motion, see e.g. Mikosch et al. [206] and references

therein.

7.4 Bounds

In this section we collect some preliminary results (mostly lower and upper bounds) which

will be used in later sections.

We first derive some simple bounds for the workload distribution P{V c
S > x} for subsets

S ⊆ I2. For any subset S ⊆ I2, c < rS, define

P c
S(x) :=

∏

j∈S
pjP{Ar

j >
x

rS − c
}.

The next lemma gives a lower bound for P{V c
S > x} which may also be found in Choudhury

& Whitt [83].

Lemma 7.4.1 Let S ⊆ I2. For c < rS,

P{V c
S > x} ≥ P c

S(x).

Proof

Consider the event that at some arbitrary time t all sources j ∈ S have been On since

time t − x
rS−c or longer. This event occurs with probability P c

s (x), and implies that the

workload at time t is larger than rSx
rS−c −

cx
rS−c = x.

2

For any subset S ⊆ I2, c < rS, define

Kc
S :=

∏

j∈S

rj − ρj
rj − ρj + c− rS

.

The next lemma establishes an asymptotic upper bound for P{V c
S > x} for the case where

S is a minimally-critical set with respect to the capacity c.
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Lemma 7.4.2 Let S ⊆ I2. If c ∈ (rS −min
j∈S
{rj − ρj}, rS), and Ar

j(·) ∈ S for all j ∈ S,

then

P{V c
S > x} <∼ Kc

SP
c
S(x).

Proof

For any i ∈ S, denote di := c − rS + ri. Observe that di > ρi since c > rS − (ri − ρi).

We apply the usual technique to obtain an upper bound: split the capacity. Formally, we

have the sample-path upper bound

V c
S (t) ≤ V di

i (t) + V
rS\{i}
S\{i} (t) = V di

i (t) (4.1)

for all i ∈ S.

In the stationary regime, using Theorem 2.2.3,

P{V c
S > x} ≤ P{V dj

j > x for all j ∈ S}
=

∏

j∈S
P{V dj

j > x}

∼
∏

j∈S
(1− pj)

ρj
dj − ρj

P{Ar
j >

x

rj − dj
}

=
∏

j∈S
pj

rj − ρj
rj − ρj + c− rS

P{Ar
j >

x

rS − c
}

= Kc
SP

c
S(x).

2

Corollary 7.4.1 Let S ⊆ I2. If c ∈ (rS −min
j∈S
{rj − ρj}, rS), and Ar

j(·) ∈ S for all j ∈ S,

then

P c
S(x) ≤ P{V c

S > x} <∼ Kc
SP

c
S(x).

Proof

The proof follows directly by combining Lemmas 7.4.1 and 7.4.2.

2

Corollary 7.4.2 Let S ⊆ I2. If Ar
j(·) ∈ IRV for all j ∈ S, then for any closed interval

T ⊆ (rS −min
j∈S
{rj − ρj}, rS) there exist constants K(1), K(2) independent of c, such that

for all c ∈ T ,

K(1)PS(x)
<∼ P{V c

S > x} <∼ K(2)PS(x),

with

PS(x) :=
∏

j∈S
P{Ar

j > x}.
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Proof

The statement follows directly from Corollary 7.4.1 and the fact that Ar
j(·) ∈ IRV ⊂ S

for all j ∈ S when observing that Ar
j(·) ∈ IRV , j ∈ S implies that

lim sup
x→∞

P c1
S (x)

P c2
S (x)

<∞,

if c1, c2 ∈ T .

2

We now derive some general bounds for the total workload distribution P{V > x} which

will be crucial in establishing the reduced-load equivalence.

For any c ≥ 0, E ⊆ I, define Zc
E(t) := sup

0≤s≤t
{c(t − s) − AE(s, t)}. For c < ρE, let Z

c
E be

a random variable with the limiting distribution of Z c
E(t) for t→∞. Let Ω ⊆ 2I2 be the

collection of all minimally-critical sets.

We first present a lower bound. The idea is as follows: V cE
E being large for some minimally-

critical set E ∈ Ω basically implies that V must be large too, unless the other sources

j 6∈ E persist in below-average behavior. Excluding such below-average behavior (reflected

in large values of Zc
I\E) from the event {V > x} yields the following lower bound for

P{V > x}.

Lemma 7.4.3 Let Λ ⊆ Ω. Then for any δ > 0 and y ≥ 0,

P{V > x} ≥
∑

E∈Λ
P{V cE+δ

E > x+ y}P{ZρI\E−δ
I\E ≤ y}

−
∑

E1,E2∈Λ,E1 6=E2

∏

j∈E1∪E2

P{V ρj+δ
j > x}.

Proof

Sample-path wise,

V (t) = sup
0≤s≤t

{A(s, t)− (t− s)}

= sup
0≤s≤t

{AE(s, t) + AI\E(s, t)− (cE + δ)(t− s)− (ρI\E − δ)(t− s)}

≥ sup
0≤s≤t

{AE(s, t)− (cE + δ)(t− s)}+ inf
0≤s≤t

{AI\E(s, t)− (ρI\E − δ)(t− s)}

= sup
0≤s≤t

{AE(s, t)− (cE + δ)(t− s)} − sup
0≤s≤t

{(ρI\E − δ)(t− s)− AI\E(s, t)}

= V cE+δ
E (t)− Z

ρI\E−δ
I\E (t)

for all E ∈ Λ.
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In the stationary regime, for any δ > 0 and y ≥ 0, using the independence of V cE+δ
E and

Z
ρI\E−δ
I\E ,

P{V > x}
≥ P{V cE+δ

E − Z
ρI\E−δ
I\E > x for some E ∈ Λ}

≥ P{V cE+δ
E > x+ y, Z

ρI\E−δ
I\E ≤ y for some E ∈ Λ}

≥ P{V cE+δ
E > x+ y, Z

ρI\E−δ
I\E ≤ y for exactly one E ∈ Λ}

=
∑

E∈Λ
P{V cE+δ

E > x+ y, Z
ρI\E−δ
I\E ≤ y}

−
∑

E1,E2∈Λ,E1 6=E2

P{V cE1
+δ

E1
> x+ y, Z

ρI\E1
−δ

I\E1
≤ y, V

cE2
+δ

E2
> x+ y, Z

ρI\E2
−δ

I\E2
≤ y}

≥
∑

E∈Λ
P{V cE+δ

E > x+ y}P{ZρI\E−δ
I\E ≤ y}

−
∑

E1,E2∈Λ,E1 6=E2

P{V cE1
+δ

E1
> x, V

cE2
+δ

E2
> x}. (4.2)

As in (4.1),

V cE+δ
E (t) ≤ V

cE−rE\{i}+δ

i (t) + V
rE\{i}

E\{i} (t) = V
cE−rE\{i}+δ

i (t) (4.3)

for all i ∈ E.

Note that cE − rE\{i} > ρi for all i ∈ E, E ∈ Λ, since E is minimally-critical.

Hence,

V cE+δ
E (t) ≤ V ρi+δ

i (t)

for all i ∈ E, E ∈ Λ.

Thus,

P{V cE1
+δ

E1
> x, V

cE2
+δ

E2
> x} (4.4)

≤ P{V ρj+δ
j > x for all j ∈ E1, V

ρj+δ
j > x for all j ∈ E2}

= P{V ρj+δ
j > x for all j ∈ E1 ∪ E2}

=
∏

j∈E1∪E2

P{V ρj+δ
j > x}. (4.5)

Substituting (4.5) into (4.2) completes the proof.

2

We now provide a corresponding upper bound, which is somewhat more involved. The

idea is as follows: V being large essentially means that V cE
E must be large for some

minimally-critical set E ∈ Λ too, unless the other sources j 6∈ E exhibit above-average
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behavior. Extending the event {V > x} with possible above-average behavior of the

sources j 6∈ E (manifesting itself in large values of V
ρI\E+δ

I\E ) leads to the following upper

bound for P{V > x}.

Lemma 7.4.4 Let Λ ⊆ Ω. Then for any δ, ε > 0 sufficiently small and y,

P{V > x} ≤
∑

E∈Λ
P{V cE−δ

E > x− y}+ P{V ρI1
+ε

I1 > x/N}

+
∑

E∈Λ
P{V ρI\E+δ

I\E > y}
∏

j∈E
P{V ρj+ε

j > x/N}

+
∑

E∈Ω\Λ

∏

j∈E
P{V ρj+ε

j > x/N},

with N := |I| denoting the total number of sources.

Proof

As before, we divide the capacity to obtain the sample-path upper bound

V (t) ≤ V cE−δ
E (t) + V

ρI\E+δ

I\E (t)

for all E ∈ Λ.

In addition, for ε > 0 sufficiently small, V (t) > x implies V
ρI1

+ε

I1 (t) > x/N , or there exists

a minimally-critical set S ∈ Ω such that V
ρj+ε
j (t) > x/N for all j ∈ S.

This may be seen as follows: Suppose that it were not the case, i.e., V
ρI1

+ε

I1 (t) ≤ x/N ,

and for every minimally-critical set S ∈ Ω there exists a j (depending on S) such that

V
ρj+ε
j (t) ≤ x/N . Then the set J (t) := {j ∈ I2 : V

ρj+ε
j (t) > x/N} does not contain any

minimally-critical set, hence rJ (t) + ρI\J (t) < 1. This means that ρI\J (t) +Nε ≤ 1− rJ (t)

for ε > 0 sufficiently small. Thus, noting that ρI\J (t) = ρI1 + ρI2\J (t),

V (t) ≤ V
rJ (t)

J (t) (t) + V
1−rJ (t)

I\J (t) (t)

= V
1−rJ (t)

I\J (t) (t)

≤ V
ρI\J (t)+Nε

I\J (t) (t)

≤ V
ρI1

+ε

I1 (t) +
∑

j∈I2\J (t)

V
ρj+ε
j (t)

≤ |I \ J (t)| x/N
≤ x,

contradicting the initial supposition.

In the stationary regime, for any δ, ε > 0 sufficiently small and y, using independence,

P{V > x} ≤ P{V cE−δ
E + V

ρI\E+δ

I\E > x for all E ∈ Λ,

V
ρI1

+ε

I1 > x/N or V
ρj+ε
j > x/N for all j ∈ S for some S ∈ Ω}
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≤ P{V cE−δ
E > x− y or V

ρI\E+δ

I\E > y for all E ∈ Λ,

V
ρI1

+ε

I1 > x/N or V
ρj+ε
j > x/N for all j ∈ S for some S ∈ Ω}

≤
∑

E∈Λ
P{V cE−δ

E > x− y}+ P{V ρI1
+ε

I1 > x/N}+
∑

S∈Ω
P{V ρj+ε

j > x/N for all j ∈ S, V
ρI\E+δ

I\E > y for all E ∈ Λ}

≤
∑

E∈Λ
P{V cE−δ

E > x− y}+ P{V ρI1
+ε

I1 > x/N}+
∑

E∈Λ
P{V ρj+ε

j > x/N for all j ∈ E, V
ρI\E+δ

I\E > y}+
∑

E∈Ω\Λ
P{V ρj+ε

j > x/N for all j ∈ E}

≤
∑

E∈Λ
P{V cE−δ

E > x− y}+ P{V ρI1
+ε

I1 > x/N}+
∑

E∈Λ
P{V ρI\E+δ

I\E > y}
∏

j∈E
P{V ρj+ε

j > x/N}

+
∑

E∈Ω\Λ

∏

j∈E
P{V ρj+ε

j > x/N}.

2

We conclude this section with the following lemma.

Lemma 7.4.5 Let S ⊆ I2. If Aj(·) ∈ R for all j ∈ S and c ∈ (rS −min
j∈S
{rj − ρj}, rS),

then

lim
M→∞

lim sup
x→∞

P{supt≥Mx{AS(0, t)− (c− ε)t} > x}
P{V c

S > x} = 0,

for any ε ∈ [0, rS − c).

Proof

For t ≥Mx, write

AS(0, t)− (c− ε)t = AS(0,Mx)− (c− ε)Mx+ AS(Mx, t)− (c− ε)(t−Mx),

and observe that AS(Mx, t)
d
= AS(0, t−Mx) since the process AS(0, t) is stationary.

Thus, for δ > 0 sufficiently small,

P{ sup
t≥Mx

{AS(0, t)− (c− ε)t} > x}

= P{ sup
t≥Mx

{AS(0,Mx)− (c− ε)Mx+ AS(Mx, t)− (c− ε)(t−Mx)} > x}
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= P{AS(0,Mx)− (c− ε)Mx+ sup
t≥Mx

{AS(Mx, t)− (c− ε)(t−Mx)} > x}

≤ P{AS(0,Mx)− (c− ε)Mx > −δ(c− ε)Mx}+
P{ sup

t≥Mx
{AS(0, t−Mx)− (c− ε)(t−Mx)} > (1 + δ(c− ε)M)x}

= P{AS(0,Mx) > (1− δ)(c− ε)Mx}+
P{ sup

t≥Mx
{AS(0, t−Mx)− (c− ε)(t−Mx)} > (1 + δ(c− ε)M)x}

≤ P{sup
t≥0
{AS(0, t)− (1− 2δ)(c− ε)t} > δ(c− ε)Mx}+

P{sup
t≥0
{AS(0, t)− (c− ε)t} > (1 + δ(c− ε)M)x}

= P{V (1−2δ)(c−ε)
S > δ(c− ε)Mx}+ P{V c−ε

S > (1 + δ(c− ε)M)x}
≤ 2P{V (1−2δ)(c−ε)

S > δ(c− ε)Mx}.

Using Corollary 7.4.2, we then obtain for δ > 0 sufficiently small,

P{supt≥Mx{AS(0, t)− (c− ε)t} > x}
P{V c

S > x} ≤ 2
K(2)PS(δ(c− ε)Mx)

K(1)PS(x)
.

Now let x→∞ and then M →∞ (use the fact that PS(·) is of regular variation).
2

7.5 Reduced-load equivalence

In this section we provide the proofs of the various reduced-load equivalence results stated

in Section 7.3. The proofs of the complementing results for the reduced system are

presented in Section 7.6. In Subsection 7.5.1, we consider the case of a single dominant set,

resulting in a proof of Equation (3.1), which is repeated as Theorem 7.5.1. Subsection 7.5.2

treats the case of several weakly dominant sets, culminating in a proof of Equation (3.4),

see Theorem 7.5.2. In Subsection 7.5.3 we extend the results to the case of additional

instantaneous, heavy-tailed input.

7.5.1 Single dominant set

In this subsection we prove the reduced-load equivalence result (3.1) for cases with a single

dominant set.

Theorem 7.5.1 (Reduced-load equivalence)

Suppose S∗ ∈ Ω satisfies Assumptions 7.5.1-7.5.5 as listed below with c = cS∗. Then

P{V > x} ∼ P{V cS∗
S∗ > x}.
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Assumption 7.5.1 For any y and δ > 0,

F c
S(δ) := lim inf

x→∞
P{V c+δ

S > x+ y}
P{V c

S > x} ,

is independent of y. In addition, limδ↓0 F c
S(δ) = 1.

Assumption 7.5.2 For any y and δ > 0,

Gc
S(δ) := lim sup

x→∞

P{V c−δ
S > x− y}

P{V c
S > x} ,

is independent of y. In addition, limδ↓0Gc
S(δ) = 1.

Assumption 7.5.3 For any ε > 0,

lim
x→∞

P{V ρI1
+ε

I1 > x/N}
P{V c

S > x} = 0.

Assumption 7.5.4 For any ε > 0,

Hc
S(ε) := lim sup

x→∞

∏
j∈S

P{V ρj+ε
j > x/N}

P{V c
S > x} <∞.

Assumption 7.5.5 For any E ∈ Ω, E 6= S, for any ε > 0,

lim
x→∞

∏
j∈E

P{V ρj+ε
j > x/N}

P{V c
S > x} = 0.

Proof of Theorem 7.5.1

The proof consists of deriving a lower bound and an upper bound which asymptotically

coincide.

Lower bound

From Lemma 7.4.3, taking Λ = {S∗}, for any δ > 0 and y,

P{V > x} ≥ P{V cS∗+δ
S∗ > x+ y}P{ZρI\S∗−δ

I\S∗ ≤ y}.

Thus, using Assumption 7.5.1,

lim inf
x→∞

P{V > x}
P{V cS∗

S∗ > x} ≥ P{ZρI\S∗−δ
I\S∗ ≤ y} lim inf

x→∞
P{V cS∗+δ

S∗ > x+ y}
P{V cS∗

S∗ > x}
= F cS∗

S∗ (δ)P{ZρI\S∗−δ
I\S∗ ≤ y}.

Letting y →∞, then δ ↓ 0,

lim inf
x→∞

P{V > x}
P{V cS∗

S∗ > x} ≥ 1,
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which completes the proof of the lower bound.

Upper bound

From Lemma 7.4.4, taking Λ = {S∗}, for any δ, ε > 0 sufficiently small and y,

P{V > x} ≤ P{V cS∗−δ
S∗ > x− y}+ P{V ρI1

+ε

I1 > x/N}
+ P{V ρI\S∗+δ

I\S∗ > y}
∏

j∈S∗
P{V ρj+ε

j > x/N}

+
∑

E∈Ω,E 6=S∗

∏

j∈E
P{V ρj+ε

j > x/N}.

Thus, using Assumptions 7.5.2-7.5.5,

lim sup
x→∞

P{V > x}
P{V cS∗

S∗ > x} ≤ lim sup
x→∞

P{V cS∗−δ
S∗ > x− y}

P{V cS∗
S∗ > x} + lim sup

x→∞

P{V ρI1
+ε

I1 > x/N}
P{V cS∗

S∗ > x}

+ P{V ρI\S∗+δ

I\S∗ > y} lim sup
x→∞

∏
j∈S∗

P{V ρj+ε
j > x/N}

P{V cS∗
S∗ > x}

+
∑

E∈Ω,E 6=S∗
lim sup
x→∞

∏
j∈E

P{V ρj+ε
j > x/N}

P{V cS∗
S∗ > x}

= GcS∗
S∗ (δ) +HcS∗

S∗ (ε)P{V ρI\S∗+δ

I\S∗ > y}.

Letting y →∞, then δ ↓ 0,

lim sup
x→∞

P{V > x}
P{V cS∗

S∗ > x} ≤ 1,

which completes the proof.

2

In order to complete the proof of the reduced-load equivalence result (3.1), it remains to

be shown that a dominant set S∗ ⊆ I2 with Aj(·) ∈ R for all j ∈ S∗ satisfies Assump-

tions 7.5.1-7.5.5. That is done in the following two propositions for S = S∗.

Proposition 7.5.1 Let S ⊆ I2. If Aj(·) ∈ R for all j ∈ S, then Assumptions 7.5.1

and 7.5.2 are satisfied for any c ∈ (rS −min
j∈S
{rj − ρj}, rS).

Proof

We first prove that Assumption 7.5.2 is satisfied. It follows from Theorem 7.6.4 (see also

Corollary 7.6.1; it is important to note here that the results in Section 7.6 do not rely

on the results of this section) that if Aj(·) ∈ R for all j ∈ S, then P{V c
S > x} ∈ IRV .
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Since IRV ⊂ L (see Lemma 2.1.9), it suffices to prove that the assumption is satisfied

for y = 0.

Let ε ∈ [0, rS − c), and let δ ∈ (0, ε]. Then

P{V c−δ
S > x}

= P{sup
t≥0
{AS(0, t)− (c− δ)t} > x}

≤ P{ sup
t≤xδ−1/2

{AS(0, t)− (c− δ)t} > x}+ P{ sup
t≥xδ−1/2

{AS(0, t)− (c− δ)t} > x}

≤ P{ sup
t≤xδ−1/2

{AS(0, t)− ct} > (1− δ1/2)x}+ P{ sup
t≥xδ−1/2

{AS(0, t)− (c− ε)t} > x}.

Thus,

lim sup
x→∞

P{V c−δ
S > x}

P{V c
S > x} ≤ lim sup

x→∞

P{V c
S > (1− δ1/2)x}
P{V c

S > x}

+ lim sup
x→∞

P{supt≥xδ−1/2{AS(0, t)− (c− ε)t} > x}
P{V c

S > x} .

The fact that P{V c
S > x} ∈ IRV implies that the first term tends to 1 as δ ↓ 0, while

Lemma 7.4.5 (with M = δ−1/2) shows that the second term then goes to 0.

The proof that Assumption 7.5.1 holds is similar, and therefore omitted.

2

Proposition 7.5.2 Let S ⊆ I2. If Aj(·) ∈ R for all j ∈ S, then Assumptions 7.5.3

and 7.5.4 are satisfied for any c > ρS. If in addition S is a dominant set, then Assump-

tion 7.5.5 is satisfied as well.

Proof

Using Lemma 7.4.1,

P{V c
S > x} ≥

∏

j∈S
pjP{Ar

j >
x

rS − c
}.

Assumption 7.5.3 then follows from combining Assumption 7.2.1 and the assumption that

Aj(·) ∈ R for all j ∈ S.

Theorem 2.2.3 gives

P{V ρj+ε
j > x/N} ∼ (1− pj)

ρj
ε

P{Ar
j >

x/N

rj − ρj − ε
}

for all j ∈ I2.
Assumption 7.5.4 then follows from the assumption that Aj(·) ∈ R for all j ∈ S, and so

does Assumption 7.5.5 in case S is a dominant set.

2
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7.5.2 Several weakly dominant sets

In the previous subsection we considered a scenario with a single dominant set S∗ ⊆ I2.
In this subsection we prove the reduced-load equivalence result (3.4) for cases where

no unique dominant set may exist. Recall that Υ denotes the collection of all weakly

dominant sets, and that Ω represents the collection of all minimally-critical sets.

We first define a slightly modified version of Assumption 7.5.5.

Assumption 7.5.6 For any pair of sets S ∈ Υ, E ∈ Ω \Υ, for any ε > 0,

lim
x→∞

∏
j∈E

P{V ρj+ε
j > x/N}

P{V c
S > x} = 0.

Theorem 7.5.2 (Generalized reduced-load equivalence; weakly dominant sets)

Suppose the sets S ∈ Λ satisfy Assumptions 7.5.1-7.5.4 and Assumption 7.5.6. Then

P{V > x} ∼
∑

S∈Λ
P{V cS

S > x}.

Proof

As before, the proof consists of a lower bound and an upper bound which asymptotically

coincide. For compactness, denote Q(x) :=
∑
S∈Λ

P{V cS
S > x}.

(Lower bound) From Lemma 7.4.3, for any δ > 0 and y ≥ 0,

P{V > x} ≥
∑

S∈Λ
P{V cS+δ

S > x+ y}P{ZρI\S−δ
I\S ≤ y}

−
∑

S1,S2∈Λ,S1 6=S2

∏

j∈S1∪S2

P{V ρj+ε
j > x/N}.

Note that if S1, S2 ∈ Λ, S1 6= S2, then S1 ∪ S2 cannot be a minimally-critical set, so that

S1 ∪ S2 6∈ Λ.

Thus, using Assumptions 7.5.1, 7.5.4, and the inequality
∑

i ai∑
i bi

≥ min
i

ai
bi

for ai, bi > 0, we obtain

lim inf
x→∞

P{V > x}
Q(x)

≥ lim inf
x→∞

∑

S∈Λ
P{ZρI\S−δ

I\S ≤ y}P{V cS+δ
S > x+ y}
Q(x)

−
∑

S1,S2∈Λ,S1 6=S2

lim sup
x→∞

∏
j∈S1∪S2

P{V ρj+ε
j > x/N}

Q(x)

≥ lim inf
x→∞

min
S∈Λ

P{ZρI\S−δ
I\S ≤ y}P{V cS+δ

S > x+ y}
P{V cS

S > x}
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≥ min
S∈Λ

P{ZρI\S−δ
I\S ≤ y} lim inf

x→∞
P{V cS+δ

S > x+ y}
P{V cS

S > x}
= min

S∈Λ
F cS
S (δ)P{ZρI\S−δ

I\S ≤ y}.

Letting y →∞, then δ ↓ 0, we obtain

lim inf
x→∞

P{V > x}
Q(x)

≥ 1,

which completes the proof of the lower bound.

(Upper bound) From Lemma 7.4.4, for any δ > 0 and y,

P{V > x} ≤
∑

S∈Λ
P{V cS−δ

S > x− y}+ P{V ρI1
+ε

I1 > x/N}

+
∑

S∈Λ
P{V ρI\S+δ

I\S > y}
∏

j∈S
P{V ρj+ε

j > x/N}

+
∑

E∈Ω\Λ

∏

j∈E
P{V ρj+ε

j > x/N}.

Thus, using Assumptions 7.5.2-7.5.4, 7.5.6, and the inequality
∑

i ai∑
i bi

≤ max
i

ai
bi

for ai, bi > 0,

P{V > x} ≤ lim sup
x→∞

∑

S∈Λ

P{V cS−δ
S > x− y}
Q(x)

+ lim sup
x→∞

P{V ρI1
+ε

I1 > x/N}
Q(x)

+
∑

S∈Λ
P{V ρI\S+δ

I\S > y} lim sup
x→∞

∏
j∈S

P{V ρj+ε
j > x/N}

Q(x)

+
∑

E∈Ω\Λ
lim sup
x→∞

∏
j∈E

P{V ρj+ε
j > x/N}

Q(x)

≤ lim sup
x→∞

max
S∈Λ

P{V cS−δ
S > x− y}

P{V cS
S > x}

+
∑

S∈Λ
P{V ρI\S+δ

I\S > y} lim sup
x→∞

∏
j∈S

P{V ρj+ε
j > x/N}

P{V cS
S > x}

≤ max
S∈Λ

lim sup
x→∞

P{V cS−δ
S > x− y}

P{V cS
S > x} +

∑

S∈Λ
HS(ε)P{V ρI\S+δ

I\S > y}

= max
S∈Λ

GcS
S (δ) +

∑

S∈Λ
HS(ε)P{V ρI\S+δ

I\S > y}.
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Letting y →∞, then δ ↓ 0, we obtain

lim sup
x→∞

P{V > x}
Q(x)

≤ 1,

which completes the proof.

2

In order to complete the proof of the reduced-load equivalence result (3.4), it remains to be

shown that the collection of all weakly dominant sets S ∈ Υ satisfies Assumptions 7.5.1-

7.5.4 and Assumption 7.5.6. As shown in Proposition 7.5.1, any strictly critical set S with

Aj(·) ∈ R for all j ∈ S satisfies Assumptions 7.5.1 and 7.5.2. Proposition 7.5.2 shows

that any set S with Aj(·) ∈ R for all j ∈ S also satisfies Assumptions 7.5.3 and 7.5.4.

Thus it suffices to prove that Assumption 7.5.6 is satisfied, which may be done in a similar

fashion as for Assumption 7.5.5 (see Proposition 7.5.2).

7.5.3 Additional instantaneous input

So far we have considered a scenario with only fluid heavy-tailed input. We now extend the

reduced-load equivalence to the case with additional instantaneous , heavy-tailed input.

We thus allow for an additional subset of sources I3 ⊆ I which generate instantaneous

traffic bursts according to independent renewal processes. The interarrival times between

bursts of source i are generally distributed with mean 1/λi. The burst sizes Bi have a

heavy-tailed distribution Bi(·) with mean βi < ∞. Thus the traffic intensity of source i

is ρi := λiβi.

For each source i ∈ I3, we assume that the burst size distribution is regularly varying of

index −νi, i.e., Bi(·) ∈ R−νi for some νi > 1.

In order to formulate the results, we need to extend the concept of dominance introduced

in Section 7.3. A source i ∈ I3 is said to (weakly) dominate a source j ∈ I3 if νi < (≤)νj.
A source i ∈ I3 is said to (weakly) dominate a critical set S ⊆ I2 if νi−1 < (≤)∑

j∈S
(νj−1).

A critical set S ⊆ I2 is said to (weakly) dominate a source i ∈ I3 if νi−1 > (≥)∑
j∈S

(νj−1).

A source i ∈ I3 is called (weakly) dominant if it (weakly) dominates all other sources

j ∈ I3 as well as all critical sets S ⊆ I2. A critical set S ⊆ I2 is called (weakly) dominant

if it (weakly) dominates any other critical set U ⊆ I2 as well as all sources j ∈ I3.
Theorem 7.5.3 Let K ⊆ I3 and Υ ⊆ 2I2 be the collection of all weakly dominant sources

and all weakly dominant sets, respectively. If Bi(·) ∈ R for all i ∈ K, and Aj(·) ∈ R for

all j ∈ S, S ∈ Υ, then

P{V > x} ∼
∑

i∈K
P{V ci

i > x}+
∑

S∈Υ
P{V cS

S > x}, (5.1)

with P{V ci
i > x} and P{V cS

S > x} as in Theorem 2.2.1 and (3.2), (3.3), respectively.
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The proof of the above theorem is similar to that of Theorem 7.5.2 after a few modifica-

tions to Lemmas 7.4.3 and 7.4.4.

It may be worth mentioning that Theorem 7.5.3 continues to hold under the condition

Br
i (·) ∈ S for all i ∈ K, provided there are no weakly dominant sets of On-Off sources (the

concept of dominance may be extended to subexponential distributions in a straightfor-

ward way). In particular, when there are simply no On-Off sources at all, one obtains the

extension of Theorem 2.2.2 to the single-server queue fed by a superposition of renewal

processes (which is not a renewal process). This result was obtained as Theorem 4.1 in

Asmussen et al. [28], using a different approach.

Theorem 7.5.3 also provides an extension of a recent result in Boxma & Kurkova [73], who

study an M/G/1 queue with two different speeds of service. They derive an expression

for the transform of the workload distribution, which is then exploited to obtain the tail

behavior of the workload using a Tauberian theorem.

A queue with two service speeds fits into our framework as follows. Consider a queue of

unit capacity fed by two input sources:

(i) Instantaneous input with generic burst size B and mean rate ρ1;

(ii) Fluid input with generic On-period A, peak rate r2, and mean rate ρ2.

The above model is equivalent to a GI/GI/1 queue with service times B, two service

speeds (sh := 1 and sl := 1 − r2), the high-speed periods being generally distributed,

and low-speed periods A. Assume that the distributions of A and B are both regularly

varying (with respective indices −ν1 and −ν2) and that ρ1 6= sl (to exclude the critical

case).

Theorem 7.5.3 then implies that the tail behavior of the workload distribution is deter-

mined by three different scenarios:

(i) ν1 < ν2 or ν1 ≥ ν2 and ρ1 < sl: In this case the instantaneous input (source 1) is

dominant, yielding

P{V > x} ∼ P{V 1−ρ2
1 > x};

(ii) ρ1 > sl and ν1 > ν2: In this case, the fluid input (source 2) is dominant, implying

P{V > x} ∼ P{V 1−ρ1
2 > x};

(iii) ρ1 > sl and ν1 = ν2: Now both input sources are weakly dominant, which gives

P{V > x} ∼ P{V 1−ρ2
1 > x}+ P{V 1−ρ1

2 > x}.

The tail behavior of P{V 1−ρ2
1 > x} and P{V 1−ρ1

2 > x} is given by Theorems 2.2.2 and 2.2.3,

respectively.
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7.6 Tail asymptotics for the reduced system

In this section we derive the tail asymptotics for the reduced system. In particular, we

give a proof of Equations (3.2) and (3.3).

For notational convenience, let c be the capacity of the reduced system, let the set of

sources be indexed as J = {1, . . . , N}, and denote r := rJ and A(0, t) := AJ (0, t). By

definition, the reduced system satisfies the following two properties:

(i) The On-period distribution of source i is regularly varying of index −νi < −1, i.e.,
Ai(·) ∈ R−νi ;

(ii) All sources must be On for the drift of the workload process to be positive, i.e.,

c ∈ (r − min
i=1,...,N

{ri − ρi}, r).

We now state our main theorem.

Theorem 7.6.1 Consider a queue of capacity c fed by N On-Off sources. If c ∈ (r −
min

i=1,...,N
{ri − ρi}, r) with r =

N∑
i=1

ri, and Aj(·) ∈ R−νj , νj > 1, for all j = 1, . . . , N , then

P{V c > x} ∼
(

N∏

j=1

pj

)
∑

J0⊆{1,...,N}
PJ0(x),

where PJ0(x) is given by (with J1 = {1, . . . , N} \ J0)

PJ0(x) (6.1)

=
1∏

i∈J1

E{Ai}

∫

yi∈(0,∞),i∈J1

∏

i∈J1

P{(r − c)Ai >
∑

j∈J1

yj(rj − ρj)− (r − c)yi + x}

∏

i∈J0

P{(r − c)Ar
i >

∑

j∈J1

yj(rj − ρj) + x}
∏

i∈J1

dyi.

An asymptotic characterization of PJ0(x) which may be useful for further analysis is

provided in Subsection 7.6.4. This characterization also shows that P{V c > x} and

PJ0(x) are regularly varying, and gives an expression for the pre-factor in the asymptotic

expansion of P{V c > x}.
With the framework provided in Section 2.4 in mind, we organize this section as follows:

Detailed heuristic arguments are given in Subsection 7.6.1. In Subsection 7.6.2, we prove

some preliminary results on the most probable behavior of the process {A(0, t)−ct}. The
proof of Theorem 7.6.1 is then completed in Subsection 7.6.3. Subsection 7.6.4 deals with

the asymptotic behavior of PJ0(x).



140 CHAPTER 7. THE FLUID QUEUE II: REDUCED-LOAD

7.6.1 Heuristic arguments

The proof of Theorem 7.6.1 is quite lengthy. Nevertheless, it is based on a simple intuitive

argument: the most likely way for V c ≡ sup
t≥0
{A(0, t)− ct} to reach a large value is that all

sources have been simultaneously On for a long time. Specifically, each source is likely to

contribute through exactly one ‘long’ On-period; apart from these long On-periods, the

sources show typical behavior.

The above heuristic argument may be used for computing sup
t≥0
{A(0, t) − ct}. Let us say

that the long On-period of source i begins at time si and ends at time si + ti. Define

t∗ := min
i=1,...,N

{si + ti},

as the time epoch at which the first of the long On-periods finishes. One may also interpret

t∗ as the time epoch at which the process {A(0, t) − ct} reaches its largest value. Note

that Ai(0, si) ≈ ρisi, Ai(si, si+ ti) = riti, and Ai(si+ ti, si+ ti+ t) ≈ ρit, t ≥ 0. One thus

obtains, using the fact that c ∈ (r − min
i=1,...,N

{ri − ρi}, r),

sup
t≥0
{A(0, t)− ct} ≈ A(0, t∗)− ct∗

≈
N∑

i=1

[ρisi + ri(t
∗ − si)]− ct∗

=
N∑

i=1

(ρi − ri)si + (r − c)t∗. (6.2)

The problem is thus reduced to calculating

P{
N∑

i=1

(ρi − ri)si + (r − c) min
i=1,...,N

{si + ti} > x}. (6.3)

Although the proof is based on the representation V c ≡ sup
t≥0
{A(0, t)− ct}, it is useful to

keep the original workload process sup
0≤s≤t

{A(s, t)−c(t−s)} in mind as well. Figure 7.1 shows

a typical scenario leading to a large workload level (so small fluctuations are ignored) in

the case of two On-Off sources.

At a certain time ω0, the first long On-period begins. Before that time, both sources show

average behavior. The queue starts to build (at rate r1 + r2 − c) at time ω1 when the

second long On-period begins, and reaches its largest level at time ω3. Level x is crossed

at time ω2.

Between times ω3 and ω4, the queue drains at rate c − r1 − ρ2: source 1 is still in its

long On-period, and source 2 shows average behavior (remember small fluctuations are

neglected). The process is still above level x between times ω4 and ω5. However, here



7.6. TAIL ASYMPTOTICS FOR THE REDUCED SYSTEM 141

¡
¡
¡
¡
¡
¡
¡
¡
¡
¡
¡
¡
¡
¡
¡HHH

@
@
@
@
@
@
@
@
@
@
@
@
@@

x

0

V c(t)

ω0 ω1 ω2 ω3 ω4 ω5 t

Figure 7.1: Typical overflow scenario for two On-Off sources

both sources show average behavior again, causing a negative drift c− ρ1 − ρ2.

The figure illustrates why the analysis of the reduced system is still quite complicated:

• Although the long On-periods must significantly overlap, the difference between

the finishing times of these On-periods can be quite large (of order x, hence not

negligible);

• Given that the observed workload is larger than x, it is not necessarily the case

that all sources are in their long On-periods. In Figure 7.1, this is only the case

in the time interval (ω2, ω3). In fact, for any given source, its long On-period may

have finished a long time ago. Consequently, there are 2N different possibilities

(corresponding to which sources are still in their long On-periods). Sample-path

wise, there are N + 1 different time intervals in which the workload may be larger

than x (depending on how many of the sources are still in their long On-periods);

• Specifically, given that the observed workload is larger than x, it may still have

been even larger at an earlier time epoch. In Figure 7.1, this is the case in the time

intervals (ω3, ω4) and (ω4, ω5).

These complications do not arise if one considers a related problem, which concerns the

overflow probability in a fluid queue with a finite buffer of size x. As is shown in a

recent paper of Jelenković & Momčilović [165], the analysis of the reduced system is then
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considerably simpler. It suffices to use bounds which are similar to Lemma 7.4.1 and

Lemma 7.4.2, and to combine these with the asymptotic results for a single On-Off source

in Jelenković [162] and Zwart [286].

7.6.2 Characterization of most probable behavior

In this subsection we prove some preliminary results characterizing the most probable

behavior of the process {A(0, t) − ct} given that it reaches a large value. In particu-

lar, we formalize the following two heuristic statements, resulting in a formal version of

Equation (6.2).

(i) Each source contributes to sup
t≥0
{A(0, t)− ct} through exactly one ‘long’ On-period;

(ii) Apart from these long On-periods, the sources show typical behavior.

An On period is referred to as ‘long’ when larger than εx, with ε some small, but positive

constant. In order to formalize the above statements, we need to keep track of how many

long On-periods occur.

With that in mind, we define Ni(A,B), for intervals A,B ⊆ [0,∞), as the number of

On-periods of source i of which the length is contained in A and of which the beginning

is contained in B. If B contains 0, this number includes the possible activity period at

time 0 (if its length is contained in A).

For compactness, denote

Ni(u, t) ≡ Ni((u,∞), [0, t]).

We now proceed with a few preparatory lemmas.

First we show how to obtain an upper bound for the workload process in terms of a

simple random walk. As in (4.1), we have V c(t) ≤ V di
i (t) for all i = 1, . . . , N , with

di := c−rI\{i} = c−r+ri. Recall that V
di
i (t)

d
= sup

0≤s≤t
{Ai(0, s)−dis}. Now let, for fixed i,

Sin := Xi1+ . . .+Xin be a random walk with step sizes Xim := (ri−di)Aim−diUim, with

Aim and Uim i.i.d. random variables distributed as the On- and Off-periods of source i,

respectively.

Since c ∈ (r− min
i=1,...,N

{ri−ρi}, r), we have ρi < di for all i = 1, . . . , N , so that E{Xi1} < 0,

i.e., the random walk has negative drift. Because of the saw-tooth nature of the process

Ai(0, s)− dis, we have

sup
0≤s≤t

{Ai(0, s)− dis} ≤ (ri − di)(IiA
r
i0 + (1− Ii)Ai0) + sup

n≤NA
i (t)

Sin,

with NA
i (t) denoting the number of Off-periods of source i elapsed during [0, t] which

started after time 0 (for a formal definition see Equation (2.1)).

The above observations are summarized in the following auxiliary lemma.
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Lemma 7.6.1 For all ε > 0, t and x,

P{V c(t) > x,Ni(εx, t) = 0} ≤ P{ sup
n≤NA

i (t)

Sin > x(1− ε(ri − di)),Ni(εx, t) = 0}.

Proof

We have

P{V c(t) > x,Ni(εx, t) = 0}
≤ P{V di

i (t) > x,Ni(εx, t) = 0}
≤ P{(ri − di)(IiA

r
i0 + (1− Ii)Ai0) + sup

n≤NA
i (t)

Sin > x,Ni(εx, t) = 0}

≤ P{ sup
n≤NA

i (t)

Sin > x(1− ε(ri − di)),Ni(εx, t) = 0}.

The last inequality follows from the fact that Ar
i0 and Ai0 must be smaller than εx if

Ni(εx, t) = 0.

2

To obtain upper bounds for probabilities as in Lemma 7.6.1, we will frequently apply the

truncation Lemma 2.4.1, given in Section 2.4.

The final preparatory lemma is a simple consequence of Corollary 7.4.2, which will be

used several times in combination with Lemma 2.4.1 to show that probabilities of certain

events are of o(P{V c > x}). Define P (x) :=
N∏
j=1

P{Ar
j > x} ∈ R−µ, µ :=

N∑
j=1

(νj − 1).

Lemma 7.6.2 lim sup
x→∞

P (x)

P{V c > x} <∞,

We now show that, with overwhelming probability (as x→∞), the rare event {V c > x}
occurs as follows.

(i) The process {A(0, t)− ct} reaches level x before time Mx for some large M ;

(ii) Up to timeMx, each source generates exactly one long On-period, i.e., Ni(εx,Mx) =

1 for i = 1, . . . , N .
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Proposition 7.6.1 lim
M→∞

lim inf
x→∞

P{V c(Mx) > x}
P{V c > x} = 1.

Proof

By definition,

P{V c > x} = P{sup
t≥0
{A(0, t)− ct} > x}

≤ P{ sup
0≤t≤Mx

{A(0, t)− ct} > x}+ P{ sup
t≥Mx

{A(0, t)− ct} > x}

= P{V c(Mx) > x}+ P{ sup
t≥Mx

{A(0, t)− ct} > x}.

Thus, it suffices to show

lim
M→∞

lim sup
x→∞

P{supt≥Mx{A(0, t)− ct} > x}
P{V c > x} = 0,

which however follows directly from Lemma 7.4.5.

2

Now suppose that the workload reaches level x. By the previous proposition, we may

assume that this occurs before time Mx (for M sufficiently large). The next two propo-

sitions show that we may restrict the attention to a scenario where each source initiates

exactly one long On-period before time Mx.

The first proposition indicates that each source has at least one long On-period.

Proposition 7.6.2 For all i, there exists an ε∗ > 0 such that for all ε ∈ (0, ε∗] and all M ,

P{V c(Mx) > x,Ni(εx,Mx) = 0} = o(P{V c > x}),

as x→∞.

Proof

Define NU
i (t) := max{n :

n∑
j=1

Uij ≤ t}+ 1. Note that NA
i (t) ≤ NU

i (t).

Using Lemma 7.6.1, taking t = Mx,

P{V c(Mx) > x,Ni(εx,Mx) = 0}
≤ P{ sup

n≤NA
i (Mx)

Sin > x(1− ε(ri − di)),Ni(εx,Mx) = 0}

≤ P{ sup
n≤NA

i (Mx)

Sin > x(1− ε(ri − di))|Ni(εx,Mx) = 0}

= P{ sup
n≤NA

i (Mx)

Sin > x(1− ε(ri − di))|Aij < εx, j = 1, . . . , NA
i (Mx)}
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= P{ sup
n≤NA

i (Mx)

Sin > x(1− ε(ri − di))|Aij < εx, j ≥ 1}

≤ P{ sup
n≤NU

i (Mx)

Sin > x(1− ε(ri − di))|Aij < εx, j ≥ 1}

= P{ sup
n≤NU

i (Mx)

Sin > x(1− ε(ri − di))|Aij < εx, j = 1, . . . , NU
i (Mx)}

≤ P{ sup
n≤M2x

Sin > x(1− ε(ri − di))|Aij < εx, j ≥ 1}+ P{NU
i (Mx) > M2x}.

The second term decays exponentially fast in x if M2 > λiM . The first term can be

bounded by

M2x∑

m=1

P{Sim > x(1− ε(ri − di))|Aij ≤ εx, j = 1, . . . ,m}.

According to Lemma 2.4.1, there exists an ε∗ > 0 and a function φ(·) ∈ R−β with

β > µ+ 1, such that for ε ∈ (0, ε∗] the last quantity is upper bounded by M2xφ(x). The

latter function is regularly varying of index 1 − β < −µ. Invoking Lemma 7.6.2 then

completes the proof. 2

The next proposition shows that each source has at most one long On-period.

Proposition 7.6.3 For all i, all M and all ε > 0,

P{V c(Mx) > x,Ni(εx,Mx) ≥ 2} = o(P{V c > x}),

as x→∞.

Proof

Without loss of generality we may take i = 1. By Proposition 7.6.2 it suffices to show

that

P{V c(Mx) > x,N1(εx,Mx) ≥ 2,Ni(εx,Mx) ≥ 1, i ≥ 2} = o(P{V c > x}).

Note that the left hand side is bounded by

P{N1(εx,Mx) ≥ 2}
N∏

i=2

P{Ni(εx,Mx) ≥ 1}.

Thus, invoking Lemma 7.6.2 it suffices to show that:

(i) P{Ni(εx,Mx) ≥ 1} is bounded by a function which is regularly varying of index 1−νi;
(ii) P{Ni(εx,Mx) ≥ 2} = o(P{Ni(εx,Mx) ≥ 1}).
We will prove both assertions for i = 1. For assertion (i), note that

P{N1(εx,Mx) ≥ 1} ≤ p1P{Ar
1 ≥ εx}+ P{#{j ∈ {1, . . . , NU

1 (Mx)} : A1j ≥ εx} ≥ 1}.
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The first term is in R1−ν1 . By conditioning upon NU
1 (Mx), the second term can be

bounded by E{NU
1 (Mx)}P{A1 ≥ εx}, which is also regularly varying of index 1− ν1. To

prove assertion (ii), note that

P{N1(εx,Mx) ≥ 2} ≤ p1P{Ar
1 ≥ εx}P{N1((εx,∞), (0,Mx]) ≥ 1}

+ P{N1((εx,∞), (0,Mx]) ≥ 2}.
Using P{N1((εx,∞), (0,Mx]) ≥ 1} ≤ P{N1(εx,Mx) ≥ 1} and assertion (i), it follows

that the first term is of o(P{N1(εx,Mx) ≥ 1}). To bound the second term, condition

(again) on NU
1 (Mx). This yields

P{N1((εx,∞), (0,Mx)) ≥ 2} ≤ E{NU
1 (Mx)2}P{A1 ≥ εx}2.

Finally, note that E{NU
1 (Mx)2} is quadratic in x for x→∞.

2

We have now shown that, with overwhelming probability, each source contributes to a

large value of sup
t≥0
{A(0, t) − ct} through exactly one long On-period. We thus proceed

with the second statement (as indicated at the beginning of this subsection), implying

that apart from these long On-periods, the sources show typical behavior. In order to

formalize that statement, we need to introduce some notation. Define

τ(y) := inf{t ≥ 0 : A(0, t)− ct = y}
as the first time at which the process {A(0, t)− ct} reaches level y.

For fixed ε > 0 and x, let τs,i(εx) and τf,i(εx) be the respective starting and finishing

times of the first On-period of source i exceeding length εx. Denote

τs(εx) := max
i=1,...,N

τs,i(εx)

and

τf (εx) := min
i=1,...,N

τf,i(εx).

Note that all sources are in the middle of their long On-periods between times τs(εx)

and τf (εx). We will show that the fluctuations of the process {A(0, t) − ct} away from

the mean before time τs(εx) and after time τf (εx) can be neglected.

More formally, the next two propositions show that, given that the workload reaches

level x before time Mx, there exists for any small δ > 0 an εδ such that for all ε ∈ (0, εδ),

τs(εx) ≤ τ(δx) < τ((1− δ)x) ≤ τf (εx).

Thus, the workload remains small up to time τs(εx), and reaches a level close to x before

time τf (εx), as depicted in Figure 7.2.

The first proposition indicates that it is most unlikely that the process {A(0, t) − ct}
reaches level δx before time τs(εx).
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xδ

1 - δ( ) x

τs xε( ) τ (δ x ) τf xε( )τ ((1 - δ ) x )

A (0 , t ) - c t

t

Figure 7.2: Typical path to overflow

Proposition 7.6.4 For any δ > 0, there exists an ε∗ > 0 such that for all ε ∈ (0, ε∗],

P{τ(δx) < τs(εx)} = o(P{V c > x}).

Proof

For compactness, denote τs ≡ τs(εx), τs,i ≡ τs,i(εx). Then

P{τ(δx) < τs} = P{V c(τs) > δx} ≤
N∑

i=1

P{V c(τs,i) > δx}.

We bound each term in the last summation.

Define Ni(εx) := NA
i (τ

−
s,i) as the number of On-periods initiated by source i before the

first On-period exceeding length εx. Note that Ni(εx) + 1 is geometrically distributed

with parameter P{Ai > εx}.
Using Lemma 7.6.1, taking t = τs,i,

P{V c(τs,i) > δx}
= P{V c(τs,i) > δx,Ni((εx,∞), [0, τs,i)) = 0}
≤ P{ sup

n≤Ni(εx)

Sin > x(δ − ε(ri − di)), Aij ≤ εx, j = 1, . . . , Ni(εx)}

≤
∞∑

m=1

P{Ni(εx) = m}P{sup
n≤m

Sin > x(δ − ε(ri − di)), Aij ≤ εx, j = 1, . . . ,m}
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≤
∞∑

m=1

P{Ni(εx) = m}P{sup
n≤m

Sin > x(δ − ε(ri − di))|Aij ≤ εx, j = 1, . . . ,m}.

According to Lemma 2.4.1, there exists an ε∗ > 0 and a function φ(·) ∈ R−β with

β > 2ν + 1, such that for ε ∈ (0, ε∗) the last quantity is upper bounded by

E{Ni(εx)}φ(x) =
φ(x)P{Ai ≤ εx}

P{Ai > εx} ,

which is regularly varying of index νi − β < µ+ 1− (2µ+ 1) = −µ.
Invoking Lemma 7.6.2 then completes the proof.

2

The next proposition shows that, given that the process {A(0, t) − ct} reaches level x

before time Mx, most probably level (1− δ)x is crossed before time τf (εx).

Proposition 7.6.5 For any δ > 0, there exists an ε∗ > 0 such that for all ε ∈ (0, ε∗) and

M <∞,

P{τ((1− δ)x) > τf (εx), V
c(Mx) > x} = o(P{V c > x}).

Proof

For conciseness, denote τf ≡ τf (εx), τf,i ≡ τf,i(εx). By Propositions 7.6.2 and 7.6.3, it

suffices to show that

P{τ((1− δ)x) > τf , V
c(Mx) > x,Ni(εx,Mx) = 1 for all i = 1, . . . , N}

= o(P{V c > x}).

Note that

P{τ((1− δ)x) > τf , V
c(Mx) > x,Ni(εx,Mx) = 1 for all i = 1, . . . , N}

= P{V c(τf ) > (1− δ)x, V c(Mx) > x,Ni(εx,Mx) = 1 for all i = 1, . . . , N}

≤
N∑

i=1

P{V c(τf,i) > (1− δ)x, V c(Mx) > x,Ni(εx,Mx) = 1}.

As before, we bound each term in the last summation.

P{V c(τf,i) > (1− δ)x, V c(Mx) > x,Ni(εx,Mx) = 1}
≤ P{ sup

0≤t≤τf,i
{A(0, t)− ct} < (1− δ)x,

sup
0≤t≤Mx

{A(0, t)− ct} > x,Ni((εx,∞), (τf,i,Mx]) = 0}

≤ P{ sup
τf,i≤t≤Mx

{A(τf,i, t)− c(t− τf,i)} > δx,Ni((εx,∞), (τf,i,Mx]) = 0}

≤ P{ sup
τf,i≤t≤Mx

{Ai(τf,i, t)− di(t− τf,i)} > δx,Ni((εx,∞), (τf,i,Mx]) = 0}.
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The first inequality follows from the definitions. The second inequality follows from

properties of the sup operator, and the last inequality is obtained by assuming that all

sources but i are On between times τf,i and Mx.

Note that the last probability is upper bounded by

P{ sup
Ni(εx)+2≤n≤NA

i (Mx)

Sin − Si,Ni(εx)+1 > δx,Aj ≤ εx,Ni(εx) + 2 ≤ j ≤ NA
i (Mx)}.

The latter probability can be upper bounded by a function which is regularly varying of

index −β < −µ in a similar fashion as in the proof of Propositions 7.6.2 and 7.6.4.

The proof is completed by invoking Lemma 7.6.2.

2

Propositions 7.6.4, 7.6.5 may be used to obtain the following result.

Corollary 7.6.1 If Aj(·) ∈ R for all j = 1, . . . , N , then P{V c > x} ∈ IRV.

The above result suffices to prove the reduced-load equivalence (see Section 7.5, in partic-

ular Proposition 7.5.1, for the details). However, determining the exact asymptotic behav-

ior of P{V c > x} requires further analysis, to be found in Subsections 7.6.3 and 7.6.4. In

particular, the analysis in Subsection 7.6.4 will lead to a sharper version of Corollary 7.6.1,

showing that P{V c > x} ∈ R (which is a strict subset of IRV).
Nevertheless, we sketch a direct proof of Corollary 7.6.1 which we believe is of independent

interest. For the formal proof details we refer to Appendix 7.A.

Sketch of proof

The idea of the proof is as follows. If V c > x, then Propositions 7.6.4 and 7.6.5 show

that the process {A(0, t) − ct} reaches the level (1 − δ)x after all sources have been On

for at least (1−2δ)x
r−c time units. Since Aj(·) ∈ R ⊆ IRV for all j = 1, . . . , N , with high

probability, all sources remain On for at least 2δx
r−c more time units. This yields

lim
δ↓0

lim inf
x→∞

P{V c > (1 + δ)x|V c > x} = 1,

implying the desired statement (by definition).

2

7.6.3 Proof of Theorem 7.6.1

In this subsection we give a proof of Theorem 7.6.1. First we consolidate the key results

from the previous subsection in the following theorem.
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Theorem 7.6.2 For any δ > 0, there exists an ε∗ > 0 such that for all ε ∈ (0, ε∗),

P{A(0, τf (εx))− cτf (εx) > x} ≤ P{V c > x} <∼ P{A(0, τf (εx))− cτf (εx) > (1− δ)x}.

Proof

The lower bound is trivial. The upper bound follows from Propositions 7.6.1, 7.6.4,

and 7.6.5.

2

In order to obtain tight bounds for the probabilities in Theorem 7.6.2, we condition

upon τs,i for all i. Hence, for any J0 ⊆ J , define the event DJ0(εx) by

DJ0(εx) := {τs,i(εx) = 0 for all i ∈ J0; τs,i(εx) > 0 for all i 6∈ J0}.

The event DJ0(εx) implies that the sources i ∈ J0 started their long On-period before

time 0 (remember that we consider the system in stationarity). The sources i ∈ J1 start

their long On-period at a later time epoch.

Denote PJ0{·} = P{·|DJ0(εx)}. The following two lemmas will be useful for providing

tight upper and lower bounds for the probabilities in Theorem 7.6.2.

Lemma 7.6.3 (Upper bound) For any δ > 0, there exists an εδ > 0 such that for all

ε ∈ (0, εδ)

PJ0{A(0, τf (εx))− cτf (εx) > (1− δ)x}
∏

i∈J0

P{Ar
i > εx} <∼ PJ0((1− δ)x)

∏

i∈J1

pi,

with PJ0((1− δ)x) as in (6.1).

Lemma 7.6.4 (Lower bound) There exists an ε > 0 such that

PJ0{A(0, τf (εx))− cτf (εx) > x}
∏

i∈J0

P{Ar
i > εx} >∼ PJ0(x)

∏

i∈J1

pi,

with PJ0(x) as in (6.1).

The proofs of these lemmas are quite technical, and are deferred to Appendices 7.B

and 7.C. A brief sketch of the proofs is given at the end of this subsection.

We now have gathered all the ingredients for the proof of Theorem 7.6.1.

Proof of Theorem 7.6.1

The lower bound in Theorem 7.6.2 may be written as

P{A(0, τf (εx))− cτf (εx) > x}
=

∑

J0⊆{1,...,N}
PJ0{A(0, τf (εx))− cτf (εx) > x}P{DJ0(εx)}.
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Note that

P{DJ0(εx)} ∼
∏

i∈J0

piP{Ar
i > εx}.

Using Lemma 7.6.4, we then obtain

P{A(0, τf (εx))− cτf (εx) > x} >∼
(

N∏

j=1

pj

)
∑

J0⊆{1,...,N}
PJ0(x).

Similarly, using Lemma 7.6.3,

PJ0{A(0, τf (εx))− cτf (εx) > (1− δ)x} <∼
(

N∏

j=1

pj

)
∑

J0⊆{1,...,N}
PJ0((1− δ)x).

Theorem 7.6.2 then gives
(

N∏

j=1

pj

)
∑

J0⊆{1,...,N}
PJ0(x)

<∼ P{V c > x} <∼
(

N∏

j=1

pj

)
∑

J0⊆{1,...,N}
PJ0((1− δ)x),

which implies Theorem 7.6.1, since PJ0(x) ∈ R as will be shown in Theorem 7.6.3.

2

In preparation for the proofs of Lemmas 7.6.3 and 7.6.4, we give a convenient representa-

tion for A(0, τf )− cτf under the event DJ0(εx).

Lemma 7.6.5 Under the event DJ0(εx), A(0, τf )− cτf can be represented as

A(0, τf )− cτf = min{min
i∈J0

Fi,min
i∈J1

Gi},

where J1 = J \ J0. The random variables Fi and Gi are given by

Fi = (r − c)Ār
i (εx)−

∑

k∈J1

rk


IkAr

k(εx) + (1− Ik)[Ak(εx) + U r
k ] +

Nk(εx)∑

j=1

Ukj


 ,

Gi = (r − c)Āi(εx) + (r − c)


IiAr

i (εx) + (1− Ii)Ai(εx) +

Ni(εx)∑

j=1

Aij(εx)


−

di


(1− Ii)U

r
i +

Ni(εx)∑

j=1

Uij


−

∑

k∈J1\{i}
rk


(1− Ik)U

r
k +

Nk(εx)∑

j=1

Ukj


 .

Here Āi(εx) = Ai|Ai > εx, Ār
i (εx) = Ar

i |Ar
i > εx, Aij(εx)

d
= Aij|Aij ≤ εx, and Ar

i (εx)
d
=

Ar
i |Ar

i ≤ εx.
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Proof

Under the event DJ0(εx), the random variables τs,i, i ∈ J1, can be represented as

τs,i = IiA
r
i (εx) + (1− Ii)[U

r
i + Ai(εx)] +

Ni(εx)∑

j=1

[Uij + Aij(εx)], i ∈ J1.

Combined with the identities

Ai(0, τs,i) = ri[IiA
r
i (εx) + (1− Ii)Ai(εx) +

Ni(εx)∑

j=1

Aij(εx)],

τf = min{min
i∈J0

Ār
i (εx),min

i∈J1

{Āi(εx) + τs,i}},
Ai(τs,i, τf ) = ri(τf − τs,i),

the representation for A(0, τf )− cτf then easily follows.

2

We now give a brief sketch of the proofs of Lemmas 7.6.3 and 7.6.4. Both rely on the

above representation for A(0, τf )− cτf in terms of the variables Fi and Gi. The proofs of

the lemmas have a similar structure.

• The expressions for Fi and Gi are quite complicated, so an attempt to obtain the

exact joint distribution does not seem promising. Therefore, the first step is to show

that all random variables Aij(εx) and Uij can be replaced by their means;

• The above point indicates that Fi and Gi may be approximated as follows.

Fi ≈ (r − c)Ār
i (εx) +

∑

k∈J1

rkE{Uk}Nk(εx),

Gi ≈ (r − c)Āi(εx) + [(r − c)E{Ai} − diE{Ui}]Ni(εx)−∑

k∈J1\{i}
rkE{Uk}Nk(εx).

It will be useful to keep these approximations in mind. The formulas in Appen-

dices 7.B and 7.C look much more cumbersome by the appearance of many addi-

tional, but small constants;

• The only random variables appearing in the above expressions are Āi(εx), B
r
i (εx),

and Ni(εx), of which the distributions are known. What thus remains is a straight-

forward computation.

The first point causes the most technical difficulties. It requires a separate treatment in

the proofs of Lemmas 7.6.3 and 7.6.4. Details may be found in the appendices.
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7.6.4 Computation of the pre-factor

In this subsection we give an asymptotic characterization of PJ0(x), which may be useful

for further analysis. In particular, we establish that PJ0(x) and P{V c > x} are both regu-

larly varying, and provide expressions for the pre-factors in their asymptotic expansions.

Assume that J0 is a proper subset of J , observing

PJ (x) =
∏

i∈J
P{Ar

i >
x

r − c
}.

For every set J0, define the |J1|-vector g by

g :=

(
rj − ρj
r − c

)

j∈J1

.

Let G be a (square) matrix with identical rows g, and let Ḡ := G− I, with I the identity

matrix of dimension |J1|.
It can easily be shown that Ḡ is invertible; denote its inverse by H. A straightforward

computation yields H = 1
ge−1G− I, with e = (1, . . . , 1), which implies that gH = 1

ge−1g.

A further straightforward computation shows |Ḡ| = eg − 1.

Define y = (yi)J1 and dy =
∏
i∈J1

dyi. Then we may write

PJ0(x) =
1∏

i∈J1

E{Ai}

∫

y≥0

∏

i∈J1

P{Ai > (Ḡy)i +
x

r − c
}
∏

i∈J0

P{Ar
i > gy +

x

r − c
}dy.

If we integrate w.r.t. z := Ḡy (note that Ḡ is a positive matrix), then we obtain (defining

AJ1 = (Ar
i )i∈J1)

PJ0(x)

=
1

|Ḡ| ∏
i∈J1

E{Ai}

∫

z≥0

∏

i∈J1

P{Ai > zi +
x

r − c
}
∏

i∈J0

P{Ar
i > gHz +

x

r − c
}dz

=
1

eg − 1

∫

z≥0

∏

i∈J0

P{Ar
i >

1

eg − 1
gz +

x

r − c
}
∏

i∈J1

dP{Ar
i ≤ zi +

x

r − c
}

=
1

eg − 1
P{Ar

i ≥
x

r − c
, i ∈ J ;Ar

k −
x

r − c
≥ 1

eg − 1
g

(
Ar
J1
− e

x

r − c

)
, k ∈ J1}.

We conclude that PJ0(x) can be written (up to a constant) as the probability that (Ar
i )i∈J

belongs to a certain set. We now show that PJ0(x) is regularly varying of index −µ (recall

that µ =
N∑
i=1

(νi − 1)). If Ai is regularly varying of index −νi < −1, then it is well-known

and elementary to show that

P{A
r
i − γx

x
> y|Ar

i > γx} →
(
1 +

y

γ

)1−νi
,
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as x→∞. Let Zi be a random variable with the above limiting distribution, with γ = 1
r−c

such that the Zi, i ∈ J1 are independent. The above computations are summarized in

the following theorem.

Theorem 7.6.3 PJ0(x) ∼ κJ0

N∏

i=1

P{Ar
i >

x

r − c
},

with κJ = 1 and

κJ0 =
1

eg − 1
P{Zi ≥

1

eg − 1
gZJ1 , i ∈ J0}

if J0 is a proper subset of J . In particular, PJ0(x) is regularly varying of index −µ.

Combining Theorems 7.6.1 and 7.6.3, we obtain

Theorem 7.6.4 P{V c > x} ∼ κ
N∏

i=1

piP{Ar
i >

x

r − c
},

with

κ =
∑

J0⊆{1,...,N}
κJ0 .

In particular, P{V c > x} is regularly varying of index −µ.

The above theorem is used in proving the reduced-load equivalence (see Section 7.5), and

may be potentially useful for computational purposes.

In particular, in the case of two On-Off sources, the computation of κ is as difficult as

the computation of κ1 and κ2. Using the probabilistic interpretation of these constants

readily leads to an integral expression, which can be evaluated explicitly when both ν1
and ν2 are integer-valued. We omit the details.

7.7 K heterogeneous classes: proofs

In this section we provide the proofs of the results in Section 7.3.4 for the case with K het-

erogeneous classes of On-Off sources. In particular, we present a proof of Theorem 7.3.3.

We start with the regime where we first let x → ∞ and then n → ∞. For every n we

have, using Theorem 7.3.2,

lim
x→∞

P{V (n) > nx}
log x

= −µ(n),

with µ(n) denoting the optimal value of the criterion function of the associated knapsack

problem. It thus remains to be shown that

lim
n→∞

µ(n)

nµ
= 1. (7.1)
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First observe that the optimal value of the continuous relaxation of the knapsack problem

is nµ, yielding a lower bound for µ(n). On the other hand, the continuous relaxation may

be used to construct a feasible solution of the knapsack problem. Take (use the notation

of Section 7.3.4) qk = nk = nak for k < `, qk = nk = 0 for k > `, and q` = |n`| + 1. This

is a feasible solution with a value at most nµ + γ`, giving an upper bound for µ(n). In

conclusion, we have

nµ ≤ µ(n) ≤ nµ+ γ`,

from which (7.1) directly follows.

We now turn to the regime where we first let n → ∞ and then x → ∞ (i.e., the many-

sources regime). Define the ‘decay rate’

I(x) := − lim
n→∞

1

n
logP{V (n) > nx}.

It needs to be shown that I(x) ∼ µ log x as x→∞.

The above decay rate equals [62, page 300]

I(x) = inf
t≥0

sup
θ

(
θ(x+ t)−

K∑

k=1

ak logE{eθAk(t)}
)
,

with Ak(t) := Ak(0, t) representing the amount of traffic generated by a single class-k

source in a time interval of length t in steady state. Replacing θ by θ(log t)/t, we obtain

an alternative variational problem:

inf
t≥0

log t · Jt
(x
t
+ 1
)
, where Jt(x) := sup

θ

(
θx−

K∑

k=1

ak
logE{eθ(log t)Ak(t)/t}

log t

)
, (7.2)

for x ∈ (0,
K∑
k=1

akrk). The latter variational problem allows direct asymptotic analysis

(x→∞) as in [195], which yields Theorem 7.7.1 below.

First, however, we state an auxiliary lemma. Recall that σk =
k−1∑
m=1

akrk +
K∑

m=k

akρk, and

that the K classes are indexed in non-decreasing order of the ratios γk = (νk−1)/(rk−ρk).

Lemma 7.7.1 For θ ≥ 0,

lim
t→∞

logE{eθ(log t)Ak(t)/t}
log t

= max{θρk, θrk − νk + 1},

so that the cumulant function of the superposition is piecewise linear:

K∑

k=1

ak lim
t→∞

logE{eθ(log t)Ak(t)/t}
log t

=
K∑

k=1

akmax{θρk, θrk − νk + 1}.
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Furthermore,

lim
t→∞

Jt(x) = γ`(x)x−
`(x)−1∑

k=1

ak(γ`(x)rk − νk + 1)−
K∑

k=`(x)

akγ`(x)ρk, (7.3)

for x ∈ (0,
K∑
k=1

akrk), where `(x) is such that x ∈ (σ`(x)−1, σ`(x)).

The function limt→∞ Jt(·) is increasing.

The proof of the above lemma is analogous to that of Theorem 3.6 and Lemma 3.7 of [195].

Theorem 7.7.1 (Large-buffer asymptotics)

lim
x→∞

I(x)

log x
= µ,

with µ =
`−1∑
k=1

ak(νk − 1) + (1− σ`−1)γ` and ` := `(1).

Proof

The proof consists of deriving an upper bound and a lower bound which asymptotically

coincide.

Upper bound

Using the representation (7.2),

lim sup
x→∞

I(x)

log x
= lim sup

x→∞
inf
t>0

log t

log x
Jt

(x
t
+ 1
)
.

Substituting t = x/s, s ∈ (0,
K∑
k=1

akrk − 1), to obtain an upper bound, and using (7.3),

lim sup
x→∞

inf
t>0

log t

log x
Jt

(x
t
+ 1
)

≤ lim sup
x→∞

log(x/s)

log x
Jx/s(s+ 1)

≤ lim sup
x→∞

log(x/s)

log x
lim sup
x→∞

Jx/s(s+ 1)

≤ lim sup
x→∞

Jx/s(s+ 1)

= γ`(s+1)(s+ 1)−
`(s+1)−1∑

k=1

(akγ`(s+1)rk − νk + 1)−
K∑

k=`(s+1)

akγ`(s+1)ρk.
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The above inequality holds for any s ∈ (0,
K∑
k=1

akrk − 1). According to Lemma 7.7.1, the

last term is increasing in s+1. Letting s ↓ 0 to obtain the sharpest possible upper bound,

we obtain

lim sup
x→∞

I(x)

log x
≤ γ` −

`−1∑

k=1

ak(γ`rk − νk + 1)−
K∑

k=`

akγ`ρk = µ.

Lower bound

Using the representation (7.2), and taking θ = γ`, we obtain the lower bound

I(x) = inf
t≥0

log t · sup
θ

(
θ
(x
t
+ 1
)
−

K∑

k=1

ak
logE{eθ(log t)Ak(t)/t}

log t

)

≥ inf
t≥0

log t ·
(
γ`

(x
t
+ 1
)
−

K∑

k=1

ak
logE{eγ`(log t)Ak(t)/t}

log t

)
.

The optimizing value of t in the above variational problem is at least linear in x, for

large x. Formally, there exists a d such that the above infimum needs to be taken only

over t > dx, for large x. This may be proven analogously to case (iii) of [119, page 258].

Thus,

I(x) ≥ inf
t>dx

log t ·
(
γ`

(x
t
+ 1
)
−

K∑

k=1

ak
logE{eγ`(log t)Ak(t)/t}

log t

)
.

Using (7.3), we find that for any ε > 0, and x large enough, we have for all t > dx,

K∑

k=1

ak
logE{eγ` log tAk(t)/t}

log t
≤ (1 + ε)

K∑

k=1

akmax{γ`ρk, γ`rk − νk + 1}.

Thus,

lim inf
x→∞

I(x)

log x

≥ lim inf
x→∞

inf
t>dx

log t

log x

(
γ`

(x
t
+ 1
)
− (1 + ε)

K∑

k=1

akmax {γ`ρk, γ`rk − νk + 1}
)

≥ lim inf
x→∞

inf
t>dx

log t

log x
inf
t>dx

(
γ`

(x
t
+ 1
)
− (1 + ε)

K∑

k=1

akmax{γ`ρk, γ`rk − νk + 1}
)

≥ γ` − (1 + ε)
K∑

k=1

akmax{γ`ρk, γ`rk − νk + 1}.
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Letting ε ↓ 0, we obtain

lim inf
x→∞

I(x)

log x
≥ γ` −

K∑

k=1

akmax{γ`ρk, γ`rk − νk + 1}

= γ` −
K∑

k=1

ak(γ`ρk +max{0, γ`(rk − ρk)− νk + 1})

= γ` −
K∑

k=1

ak(γ`ρk +max{0, (γ` − γk)(rk − ρk)})

= γ` −
`−1∑

k=1

ak(γ`rk − νk + 1)−
K∑

k=`

akγ`ρk

= µ.

2

As shown above, Theorem 7.3.3 implies that the limits x → ∞ and n → ∞ commute,

as long as one considers ‘rough’ (i.e., logarithmic) asymptotics. However, in case of

‘more refined’ asymptotics, the limits do not necessarily commute. This may be seen as

follows. Consider the case of n homogeneous On-Off sources with Pareto(ν) distributed

On-periods. In Mandjes [198], it is proven that

lim
x→∞

[
lim
n→∞

1

n
logP{V (n) > nx}+ (ν − 1)

(
c− ρ

r − ρ

)
log(x log x) = H

]
,

for some constantH ∈ (0,∞). Now reverse the limits. Denote by kn the number of sources

sending at peak rate in the reduced-load approximation (in the notation of Section 7.3.3,

we have kn = N∗):

kn :=

⌈
nc− nρ

r − ρ

⌉
.

Now with Theorem 7.3.1, we have for any finite n and x→∞,

P{V (n) > nx} ∼ f(n)x−(ν−1)kn ,

for some function f(·). Hence,

lim
x→∞

[
1

n
logP{V (n) > nx}+ (ν − 1)

(
c− ρ

r − ρ

)
log(x log x)

]

= log f(n)− lim
x→∞

(ν − 1)

(
kn
n
− c− ρ

r − ρ

)
log x+ (ν − 1)

c− ρ

r − ρ
log log x.

Since this limit does not exist in R, we conclude that the limits do not necessarily com-

mute.
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Appendix

7.A Proof of Corollary 7.6.1

In this appendix we give a formal proof of Corollary 7.6.1.

Corollary 7.6.1

If Aj(·) ∈ R for all j = 1, . . . , N , then P{V c > x} ∈ IRV.

Proof

As described earlier, the idea behind the proof is as follows. If V c > x, then Proposi-

tions 7.6.4 and 7.6.5 show that the process {A(0, t)− ct} reaches the level (1− δ)x after

all sources have been On for at least (1−2δ)x
r−c time units. Since Aj(·) ∈ R ⊆ IRV for

all j = 1, . . . , N , with high probability, all sources remain On for at least 2δx
r−c more time

units. This yields

lim
δ↓0

lim inf
x→∞

P{V c > (1 + δ)x|V c > x} = 1, (A.1)

implying the desired statement (by definition).

In order to give a formal proof, define the event C(δ, εx) by

C(δ, εx) := {τs(εx) ≤ τ(δx) < τ((1− δ)x) ≤ τf (εx)}.

With Ap
i (x, δ) and Ar

i (x, δ) we denote the past and residual period that source i is active

at time τ((1− δ)x) ∈ [τs, τf ] (on C(δ, εx)). Note that, given C(δ, εx),

Ap
i (x, δ) ≥ τ((1− δ)x)− τs ≥ τ((1− δ)x)− τ(δx) =

x(1− 2δ)

r − c
, (A.2)

and that

P{V c > (1 + δ)x} ≥ P{V c > (1 + δ)x,C(δ, εx)}

≥ P{C(δ, εx), Ar
i (x, δ) ≥

2δx

r − c
for all i = 1, . . . , N}

≥ P{C(δ, εx)} −
N∑

i=1

P{C(δ, εx), Ar
i (x, δ) ≤

2δx

r − c
}.

Hence,

P{V c > (1 + δ)x}
P{V c > x} ≥

(
1−

N∑

i=1

P{Ar
i (x, δ) ≤

2δx

r − c
|C(δ, εx)}

)
P{C(δ, εx)}
P{V c > x} . (A.3)
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In order to derive (A.1) we now develop (i) a lower bound for the ratio P{C(δ,εx)}
P{V c>x} and (ii)

an upper bound for the conditional probability P{Ar
i (x, δ) ≤ 2δx

r−c |C(δ, εx)}. With Ec we

denote the complement of a set E. (i) For all M > 0,

P{C(δ, εx)}
P{V c > x} ≥

P{V c(Mx) > x}
P{V c > x} − P{V c(Mx) > x,C(δ, εx)c}

P{V c > x} .

Using Propositions 7.6.1, 7.6.4, and 7.6.5, we then obtain

lim inf
x→∞

P{C(δ, εx)}
P{V c > x} ≥ 1. (A.4)

(ii) Conditioning upon Ap
i (x, δ), we obtain (using the Markov property in (a) and a well-

known identity from renewal theory in (b) concerning the joint distribution of the past

lifetime Ap and residual lifetime Ar),

P{Ar
i (x, δ) ≤

2δx

r − c
|C(δ, εx)}

=

∫ ∞

x 1−2δ
r−c

P{Ar
i (x, δ) ≤

2δx

r − c
|Ap

i (x, δ) = y, C(δ, εx)}dP{Ap
i (x, δ) ≤ y|C(δ, εx)}

(a)
=

∫ ∞

x 1−2δ
r−c

P{Ar
i ≤

2δx

r − c
|Ap

i = y}dP{Ap
i (x, δ) ≤ y|C(δ, εx)}

(b)
=

∫ ∞

x 1−2δ
r−c

(
1−

P{Ai >
2δx
r−c + y}

P{Ai > y}

)
dP{Ap

i (x, δ) ≤ y|C(δ, εx)}.

Since P{Ai > x} is regularly varying, one can apply the Potter bound (see Lemma 2.1.6)

to find positive constants η and K, with K arbitrarily close to 1, independent of δ such

that for x large enough and for all y ≥ x(1−2δ)
r−c ,

P{Ai >
2δx
r−c + y}

P{Ai > y} ≥ K

(
2δx
r−c + y

y

)−η
≥ K(1− 2δ)η.

In view of (A.2), we conclude that for all i, ε > 0, and for any δ > 0 and K < 1,

P{Ar
i (x, δ) ≤

2δx

r − c
|C(δ, εx)} ≤ 1−K(1− 2δ)η

for x large enough, so that

lim
δ↓0

lim inf
x→∞

(
1−

N∑

i=1

P{Ar
i (x, δ) ≤

2δx

r − c
|C(δ, εx)}

)
= 1. (A.5)

Combining (A.3), (A.4), and (A.5) now yields (A.1).

2
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7.B Proof of Lemma 7.6.3

Lemma 7.6.3 (Upper bound)

For any δ > 0, there exists an εδ > 0 such that for all ε ∈ (0, εδ),

PJ0{A(0, τf (εx))− cτf (εx) > (1− δ)x}
∏

i∈J0

P{Ar
i > εx} <∼ PJ0((1− δ)x)

∏

i∈J1

pi,

with PJ0((1− δ)x) as in (6.1).

Proof

As mentioned earlier, the first step is to replace all random variables Aij and Uij by their

means. Let δ̄ and δ̃ be two J1-vectors, of which the elements are positive, but arbitrarily

small. Note that, for fixed J0,

Fi ≤ (r − c)Ār
i (εx)−

∑

k∈J1

rkNk(εx)[E{Uk} − δ̄k] +

∑

k∈J1

rk

Nk(εx)∑

j=1

[E{Uk} − δ̄k − Ukj],

Gi ≤ (r − c)Āi(εx) + (r − c)εx+

(r − c)Ni(εx)[E{Ai}+ δ̃i] + (r − c)

Ni(εx)∑

j=1

[Aij(εx)− E{Ai} − δ̃i]−

diNi(εx)[E{Ui} − δ̃i] + di

Ni(εx)∑

j=1

[E{Ui} − δ̃i − Uij]−

∑

k∈J1\{i}
rkNk(εx)[E{Uk} − δ̄k] +

∑

k∈J1\{i}
rk

Nk(εx)∑

j=1

[E{Uk} − δ̄k − Ukj].

Define the event E1(γ, δ̄, δ̃, ε, x) by




Ni(εx)∑

j=1

[E{Ui} −min{δ̄i, δ̃i} − Uij] ≤ γx/(2r), i ∈ J1




⋃





Ni(εx)∑

j=1

[Aij(εx)− E{Ai} −min{δ̄i, δ̃i}] ≤ γx/(2r)− (r − c)εx, i ∈ J1



 .

A straightforward application of Lemma 2.4.1 (analogously to the proofs of Proposi-

tions 7.6.2, 7.6.4 and 7.6.5) shows that for any γ, δ̄, δ̃ > 0, there exists an ε∗ > 0 such that

for all ε ∈ (0, ε∗],

PJ0{E1(γ, δ̄, δ̃, ε, x)
c} = o(P (x)), (B.1)
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as x→∞ with P (x) =
N∏
j=1

P{Ar
j > x}, as defined earlier.

From Equation (B.1) and Lemma 7.6.5, we conclude that, using the upper bounds for Fi
and Gi,

PJ0{A(0, τf )− cτf > (1− δ)x}
= PJ0{A(0, τf )− cτf > (1− δ)x;E1(γ, δ̄, δ̃, ε, x)

c}+
PJ0{A(0, τf )− cτf > (1− δ)x;E1(γ, δ̄, δ̃, ε, x)}

≤ P{(r − c)Ār
i (εx)−

∑

k∈J1

rkNk(εx)[E{Uk} − δ̄k] > (1− γ − δ)x, i ∈ J0;

(r − c)Āi(εx) + (r − c)Ni(εx)[E{Ai}+ δ̃i]− diNi(εx)[E{Ui} − δ̃i]−∑

k∈J1\{i}
rkNk(εx)[E{Uk} − δ̄k] > (1− γ − δ)x, i ∈ J1}+ o(P (x)).

The last probability equals (condition on Ni(εx), i ∈ J1),

∑

ni≥1,i∈J1

(
∏

i∈J1

P{Ni(εx) = ni}
)
×

P{(r − c)Ār
i (εx)−

∑

k∈J1

rk[E{Uk} − δ̄k]nk > (1− γ − δ)x, i ∈ J0;

(r − c)Āi(εx) + (r − c)[E{Ai}+ δ̃i]ni − di[E{Ui} − δ̃i]ni −∑

k∈J1\{i}
rk[E{Uk} − δ̄k]nk > (1− γ − δ)x, i ∈ J1}.

Deconditioning upon Āi and Ār
i (i.e., dividing by

∏
i∈J0

P{Ar
i > εx} ∏

i∈J1

P{Ai > εx}), and
noting that P{Ni(εx) = ni} ≤ P{Ai > εx}, we obtain that

PJ0{A(0, τf )− cτf > (1− δ)x}
∏

i∈J0

P{Ar
i > εx}

is upper bounded by (up to o(P (x)))

∑

ni≥0,i∈J1

(
∏

i∈J0

P{(r − c)Ar
i > (1− γ − δ)x+

∑

k∈J1

rk[E{Uk} − δ̄k]nk}
)
×

∏

i∈J1

P{(r − c)Ai > (1− γ − δ)x+ [diE{Ui} − (r − c)E{Ai} − riδ̃i]ni +

∑

k∈J1\{i}
rk[E{Uk} − δ̄k]nk}.

It is important to note that this expression is independent of ε.
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Since all probabilities appearing in the right hand side are decreasing functions of ni (for δ̄

and δ̃ small enough), the latter term is bounded by (with y := (yi)i∈J1 and dy :=
∏
i∈J1

dyi)

∫

y≥0

∏

i∈J0

P{(r − c)Ar
i > (1− γ − δ)x+

∑

k∈J1

rk[E{Uk} − δ̄k]yk} (B.2)

∏

i∈J1

P{(r − c)Ai > (1− γ − δ)x+ [diE{Ui} − (r − c)E{Ai} − riδ̃i]yi

+
∑

k∈J1\{i}
rk[E{Uk} − δ̄k]yk}dy.

We will rewrite this expression in terms of PJ0(x). Apply the change of variables zi :=

yi(E{Ai} + E{Ui}). Redefine δ̄i := δ̄i(E{Ai} + E{Ui}) and similarly δ̃i := δ̃i(E{Ai} +
E{Ui}). Note that 1

E{Ai}+E{Ui} = pi
E{Ai} and ri

E{Ui}
E{Ai}+E{Ui} = ri(1 − pi) = ri − ρi. Then we

obtain that (B.2) equals

(
∏

i∈J1

pi
E{Ai}

)∫

z≥0

∏

i∈J0

P{(r − c)Ar
i > (1− γ − δ)x+

∑

k∈J1

(rk − ρk − δ̄k)zk}

∏

i∈J1

P{(r − c)Ai > (1− γ − δ)x+ (di − ρi − δ̃i)zi +
∑

k∈J1\{i}
(rk − ρk − δ̄k)zk}dz.

If we take δ̃i =
di−ρi
ri−ρi δ̄i and integrate w.r.t. zi

ri−ρi−δ̄i
ri−ρi , then we obtain

(
∏

i∈J1

ri − ρi
ri − ρi − δ̄i

pi
E{Ai}

)∫

z≥0

∏

i∈J0

P{(r − c)Ar
i > (1− γ − δ)x+

∑

k∈J1

(rk − ρk)zk}

∏

i∈J1

P{(r − c)Ai > (1− γ − δ)x+ (di − ρi)zi +
∑

k∈J1\{i}
(rk − ρk)zk}dz =

∏

i∈J1

pi
ri − ρi

ri − ρi − δ̄i
PJ0((1− γ − δ)x).

Together with the fact that PJ0(·) is regularly varying, this completes the proof of the

upper bound after dividing by PJ0(x), letting x → ∞, and noting that δ, δ̄, and γ may

be chosen arbitrarily small.

2
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7.C Proof of Lemma 7.6.4

Lemma 7.6.4 (Lower bound)

There exists an ε > 0 such that

PJ0{A(0, τf (εx))− cτf (εx) > x}
∏

i∈J0

P{Ar
i > εx} >∼ PJ0(x)

∏

i∈J1

pi,

with PJ0(x) as in (6.1).

Proof

Like in Appendix 7.B, the first step is to replace the random variables Ai(εx) and Ui by

their means. Adding and subtracting appropriate means, it is easy to see that, for fixed

J0,

Fi = (r − c)Ār
i (εx)−

∑

k∈J1

rkNk(εx)[E{Uk}+ δ̄k] +

∑

k∈J1

rk

Nk(εx)∑

j=1

[E{Uk} − Ukj + δ̄k]−
∑

k∈J1

rk [IkA
r
k(εx) + (1− Ik)(Ak(εx) + U r

k )] ,

Gi = (r − c)Āi(εx) + (r − c)[IiA
r
i (εx) + (1− Ii)Ai(εx)]− di(1− Ii)U

r
i −

∑

k∈J1\{i}
rk(1− Ik)U

r
k + (r − c)

Ni(εx)∑

j=1

[Aij(εx)− E{Ai}+ δ̃i] +

(r − c)Ni(εx)[E{Ai} − δ̃i]− diNi(εx)[E{Ui}+ δ̃i] +

di

Ni(εx)∑

j=1

[E{Ui} − Uij + δ̃i]−
∑

k∈J1\{i}
rkNk(εx)[E{Uk}+ δ̄k] +

∑

k∈J1\{i}
rk

Nk(εx)∑

j=1

[E{Uk} − Ukj + δ̄k].

Define the event E2(γ, δ̄, δ̃, ε, x) by



Ni(εx)∑

j=1

[E{Ui} − Uij +min{δ̄i, δ̃i}] ≥ −γx/(3r), i ∈ J1




⋃





Ni(εx)∑

j=1

[Aij(εx)− E{Ai}+min{δ̄i, δ̃i}] ≥ −γx/(3r), i ∈ J1




⋃

{
∑

k∈J1

[IkA
r
k(εx) + (1−k)(Ak(εx) + U r

k )] ≤ γx/(3r)

}
.
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We have the lower bound

PJ0{A(0, τf )− cτf > x}
= PJ0{Fi > x, i ∈ J0;Gi > x, i ∈ J1}
≥ PJ0{Fi > x, i ∈ J0;Gi > x, i ∈ J1;E2(γ, δ̄, δ̃, ε, x)}
≥ P{(r − c)Ār

i (εx)−
∑

k∈J1

rkNk(εx)[E{Uk}+ δ̄k] > (1 + γ)x, i ∈ J0;

(r − c)Āi(εx) + (r − c)Ni(εx)[E{Ai} − δ̃i]− diNi(εx)[E{Ui}+ δ̃i]−∑

k∈J1\{i}
rkNk(εx)[E{Uk}+ δ̄k] > (1 + γ)x, i ∈ J1;E2(γ, δ̄, δ̃, ε, x)}.

This probability is lower bounded by, for any L (condition on Ni(εx)),
∑

0≤ni≤Lx,i∈J1

P{E2(γ, δ̄, δ̃, ε, x)|Ni(εx) = ni, i ∈ J1}
∏

i∈J1

P{Ni(εx) = ni} ×

P{(r − c)Ār
i (εx)−

∑

k∈J1

rkNk(εx)[E{Uk}+ δ̄k] > (1 + γ)x, i ∈ J1;

(r − c)Āi(εx) + (r − c)Ni(εx)[E{Ai} − δ̃i]− diNi(εx)[E{Ui}+ δ̃i]−∑

k∈J1\{i}
rkNk(εx)[E{Uk}+ δ̄k] > (1 + γ)x, i ∈ J1|Ni(εx) = ni, i ∈ J1}. (C.1)

Before proceeding, we first state a useful lemma (a proof is given at the end of this

appendix).

Lemma 7.C.1 For all ε, γ, δ̄, δ̃ > 0,

P{E2(γ, δ̄, δ̃, ε, x)|Ni(εx) = ni, i ∈ J1} → 1, (C.2)

as x→∞ uniformly in ni ≥ 0, i ∈ J1, and

P{Ni(εx) = ni}
P{Ai > εx} → 1 (C.3)

for all i ∈ J1 as x→∞ uniformly in 0 ≤ ni ≤ Lx.

Equations (C.2) and (C.3) imply that for any L < ∞ and η > 0 one can lower bound

Equation (C.1) for x large enough by

(1− η)
∑

ni≤Lx,i∈J1

PJ0{(r − c)Ār
i (εx)−

∑

k∈J1

rknk[E{Uk}+ δk]n > (1 + γ)x, i ∈ J0;

(r − c)Āi(εx) + (r − c)ni[E{Ai} − δ̃i]− dini[E{Ui}+ δ̃i]−
∑

k∈J1\{i}
rknk[E{Uk}+ δ̄k] > (1 + γ)x, i ∈ J1|Ni(εx) = ni, i ∈ J1}

∏

i∈J1

P{Ai > εx}.
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As before, deconditioning upon Āi and Ār
i and applying a similar change of variables as

in Appendix 7.B, we obtain the lower bound

(1− η)

(
∏

i∈J1

pi
E{Ai}

)∫

1≤yi≤Lx,i∈J1

∏

i∈J0

P{(r − c)Ar
i > (1 + γ)x+

∑

k∈J1

(rk − ρk + δ̄k)yk}

∏

i∈J1

P{(r − c)Ai > (1 + γ)x+ (di − ρi + δ̃i)yi +
∑

k∈J1\{i}
(rk − ρk + δ̄k)yk}dy.

Now write

(1− η)

∫

1≤yi≤Lx,i∈J1

. . . = (1− η)

∫

yi≥0,i∈J1

. . .− (1− η)

∫

{1≤yi≤Lx,i∈J1}c
. . .

(the complement taken with respect to the non-negative orthant). The first term in the

right hand side can be handled as in the proof of the upper bound (the only difference is

the factor 1 + γ instead of 1 − γ − δ). The next lemma shows that the second term can

be neglected.

2

Lemma 7.C.2

lim
L→∞

lim sup
x→∞

1

P (x)

∫

{1≤yi≤Lx,i∈J1}c

∏

i∈J0

P{(r − c)Ar
i > (1 + γ)x+

∑

k∈J1

(rk − ρk + δ̄k)yk}
∏

i∈J1

P{(r − c)Ai > (1 + γ)x+ (di − ρi + δ̃i)yi +
∑

k∈J1\{i}
(rk − ρk + δ̄k)yk}dy = 0.

Proof

The integral over the regions in which at least one yi is smaller than 1 is easily shown to

be of o(P (x)), so we concentrate on the set {0 ≤ yi ≤ Lx, i ∈ J1}c. The integral
∫

{0≤yi≤Lx,i∈J1}c

∏

i∈J0

P{(r − c)Ar
i > (1 + γ)x+

∑

k∈J1

(rk − ρk + δ̄k)yk}

∏

i∈J1

P{(r − c)Ai > (1 + γ)x+ (di − ρi + δ̃i)yi +
∑

k∈J1\{i}
(rk − ρk + δ̄k)yk}dy

is bounded from above by
(
∏

i∈J0

P{(r − c)Ar
i > (1 + γ)x}

)
∑

j∈J1

∫

yj≥Lx,yi≥0,i∈J1,i6=j
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∏

i∈J1

P{(r − c)Ai > (1 + γ)x+ (di − ρi + δ̃i)yi +
∑

k∈J1\{i}
(rk − ρk + δ̄k)yk, i ∈ J1}dy.

Observing that the integrals can be separated, we obtain the upper bound

O

(
∏

i∈J0

P{Ar
i > x}

)
∑

j∈J1

O
(
P{Ar

j > Lx}
) ∏

i∈J1,i6=j
O

(
∏

i∈J0

P{Ar
i > x}

)

= O(P (x))
∑

j∈J1

P{Ar
j > Lx}

P{Ar
j > x} .

The result then follows immediately.

2

Proof of Lemma 7.C.1

Equation (C.2) follows immediately from the following result. Let Sn := X1 + . . . + Xn

be a random walk with i.i.d. step sizes with E{X1} < 0. Then

lim sup
x→∞

sup
n≥1

P{Sn > x} ≤ lim
x→∞

P{sup
n≥1

Sn > x} = 0,

since supn≥1 Sn is a proper random variable. For every i = 1, . . . , N , apply this result

twice with Xj := Uij − E{Ui} −min{δ̄i, δ̃i} and Xj := E{Ai} − Aij(εx)−min{δ̄i, δ̃i}.
In order to prove Equation (C.3), note that for ni ≤ Lx,

P{Ni(εx) = ni}
P{Ai > εx} = P{Ai ≤ εx}ni ≤ P{Ai ≤ εx}Lx =

(
1− o(1)

x

)Lx

→ 1,

as x→∞. The last equality holds because Ai has finite mean.

2
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Chapter 8

Fluid queues with heavy-tailed

M/G/∞ input

8.1 Introduction

The previous two chapters have been devoted to the fluid queue fed by a finite number

of On-Off sources. In the present chapter, we consider a closely related model: A fluid

queue with M/G/∞ input. The arrival dynamics in this system can be described as

follows. Sessions arrive as a Poisson process, and remain in the system for a randomly

distributed period of time. While in the system, each session generates traffic at some

constant rate. Note that the number of active sessions behaves as the number of customers

in an M/G/∞ system, hence the term M/G/∞ input. An M/G/∞ input process may

also be viewed as the limit of the superposition of On-Off sources when the number of

sources grows large, and the fraction of On-time gets correspondingly small, as shown in

Jelenković & Lazar [161].

While incorporating session-level dynamics, the M/G/∞ model avoids the intricate tem-

poral dependence structure of ordinary On-Off sources. At the same time, the M/G/∞
model retains the usual versatility of fluid models in covering a wide spectrum of possible

traffic characteristics through the distribution of the activity periods.

Fluid queues with heavy-tailed M/G/∞ input have been extensively studied before.

Likhanov [184] and Liu et al. [187] obtain asymptotic lower and upper bounds for the

workload distribution. Under a certain peak rate condition, the bounds are shown to

be tight (up to a constant factor) for Pareto-distributed session lengths, thus yielding

the exact decay rate. The peak rate condition essentially implies that just a single long

session is enough to cause overflow. Under roughly similar assumptions, Boxma [65],

Jelenković & Lazar [161], and Resnick & Samorodnitsky [238] also determine the corre-

sponding pre-factor, resulting in the exact workload asymptotics. Duffield [119] obtains

logarithmic ‘many-sources’ asymptotics (as opposed to ‘large-buffer’ asymptotics) for a

regime where the arrival rate, service rate, and buffer size are scaled up in proportion, see

169
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also Mandjes [198].

Recently, several authors have considered heterogeneous heavy-tailed M/G/∞ input,

where sessions belong to one of several classes with distinct characteristics (arrival rates,

session lengths, peak rates). Likhanov & Mazumdar [185] obtain asymptotic lower and

upper bounds for the workload distribution, which are shown to be tight up to a constant

factor. Under a similar peak rate condition as described above, the bounds coincide,

yielding the exact asymptotics. An elegant treatment of this special case is also given in

Jelenković [164]. Remarkably enough, the bounds in [185] are asymptotically exact for

finite buffers as well.

As mentioned above, the M/G/∞ model is closely related to the classical model with a

fixed set of On-Off sources. Despite some subtle differences, the similarity manifests itself

in the qualitative way that overflow occurs for heavy-tailed input, and is also reflected

in the tail asymptotics of the workload. For example, the results in [120] for a fixed set

of On-Off sources are reminiscent of the results in [185] for M/G/∞ input. Also, the

M/G/∞ asymptotics in [65], [161], and [238] for the special case where a single long

session can cause overflow are accompanied (in [65] and [161]) by conceptual counterparts

for a scenario where a single regularly varying On-Off source is multiplexed with several

light-tailed sources.

It is interesting to observe that the exact workload asymptotics for the M/G/∞ model

with infinite buffers have only been obtained under the condition that a single long session

is sufficient to cause positive drift. Although technically convenient, this condition is

rather restrictive from a practical perspective. The degree of multiplexing is typically so

high, that the peak rate of an individual session is relatively small compared to the link

rate. Thus, under moderate loading, several long sessions must coincide in order for the

drift to turn positive. In the present chapter, we derive the exact asymptotic workload

behavior under such general circumstances where a combination of several long sessions

is involved in causing overflow. Besides the practical relevance, these scenarios are also

theoretically challenging, since the combinatorial structure of the overlap of the various

sessions significantly adds to the complexity. The analysis unifies and generalizes the

results in [164], [185], and [238], and complements the exact tail asymptotics for a fixed

set of On-Off sources which have been derived in Chapter 7 of this thesis. As in Chapter

7, we use the framework of Section 2.4.

The remainder of the chapter is organized as follows. In Section 8.2, we present a detailed

model description. In Section 8.3, we provide some intuitive arguments, and summarize

the main results of this chapter. Like in the previous chapters, the arguments are grounded

on the large-deviations idea that overflow is typically due to some minimal combination

of extremely long concurrent sessions causing positive drift. The typical configuration of

long sessions is identified through a simple integer linear program, which corresponds to

the set optimization problem defined in [185].

The subsequent sections are devoted to the detailed proofs. In particular, in Section 8.4,
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we extend the probabilistic arguments developed in [238], enabling the exact calculation

of the asymptotic workload behavior. In addition, the computations provide fundamental

insight in the typical overflow scenario.

The analysis in fact focuses on the transient behavior, from which the steady-state asymp-

totics easily follow after showing in Section 8.5 that overflow occurs in linear time. As a

by-product, we obtain asymptotically tight bounds for the transient workload distribution.

The transient asymptotics in their full generality remain a challenging open problem, see

Subsection 8.4.6. In Section 8.6, we combine our transient and steady-state asymptotics

to obtain the limiting distribution of the most probable time to overflow.

8.2 Model description and preliminaries

In this section, we present a detailed model description, and introduce some notation.

8.2.1 Basic input and workload processes

We consider a fluid queue of unit capacity fed by K heterogeneous M/G/∞ input pro-

cesses. Class-k sessions arrive as a Poisson process of rate λk, and remain in the system

for a random period Bk having distribution Bk(·) with mean βk, k = 1, . . . , K. We as-

sume that Bk(·) is regularly varying of index −νk < −1 (this assumption can be relaxed

somewhat, see Remark 8.3.1), so that βk <∞. While in the system, each class-k session

generates traffic at constant rate rk.

Let ρk := λkβkrk be the traffic intensity associated with class-k sessions. Define ρ̄k :=

λkβk = ρk/rk. Let ρ :=
K∑
k=1

ρk be the total traffic intensity. We assume ρ < 1 for stability.

Denote by Br
k(·) the distribution of the residual life-time of Bk, and by Br

k a stochastic

variable with that distribution.

Define Ak(s, t) as the amount of class-k traffic generated in the time interval (s, t]. Note

that

Ak(s, t)
d
= rk

∫ t

s

Nk(u)du,

with Nk(u), u ≥ 0, the number of customers at time u in a stationary M/G/∞ queue

with arrival rate λk and service time distribution Bk(·).

Denote by A(s, t) :=
K∑
k=1

Ak(s, t) the total amount of traffic generated in the time interval

(s, t]. The workload in the system at time t ≥ 0 is V (t) := sup
0≤s≤t

{A(s, t) − (t − s)},
assuming the system is empty at time t = 0. Let V be the weak limit of V (t) for t→∞.
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8.2.2 Auxiliary processes: separating short and long sessions

One of the first steps of the analysis will be to split the arriving sessions into two groups,

short and long ones. In this subsection we introduce some notation for the corresponding

processes.

We denote by Ak,≤z(s, t) the amount of traffic generated in (s, t] by class-k sessions of

length at most z (upon arrival). The corresponding traffic intensity is denoted by

ρk,≤z := λkP{Bk ≤ z}rkE{Bk | Bk ≤ z} = ρkB
r
k(z)− λkrkzP{Bk > z}.

Define A≤z(s, t) :=
K∑
k=1

Ak,≤z(s, t), and ρ≤z :=
K∑
k=1

ρk,≤z. Similarly, we denote by Ak,>z(s, t)

the amount of traffic generated in (s, t] by class-k sessions of length exceeding z. The

corresponding traffic intensity ρk,>z is given by ρkP{Br
k > z} + λkrkzP{Bk > z}. Define

A>z(s, t) :=
K∑
k=1

Ak,>z(s, t), and ρ>z :=
K∑
k=1

ρk,>z. Denote ρ̄k,>z = ρk,>z/rk.

Denote by Nk,>z(t), t ≥ 0 the number of class-k sessions exceeding length z which are still

active at time t. Note that the remaining lengths of these sessions at time tmay be smaller

than z (except for t = 0). The process Nk,>z(t), t ≥ 0, is constructed from Nk(t), t ≥ 0.

In particular, it follows from basic M/G/∞ theory that the random vector N>z(0) :=

(N1,>z(0), . . . , NK,>z(t)) has a multi-dimensional Poisson distribution with parameters

(ρ̄1P{Br
1 > z}, . . . , ρ̄KP{Br

K > z}), i.e.,

P{N>z(0) = (n1, . . . , nK)} =
K∏

k=1

e−ρ̄kP{Br
k>z} ρ̄

nk
k

nk!
P{Br

k > z}nk . (2.1)

Note that the steady-state distribution of {Nk,>z(t)} is Poisson with rate ρ̄k,>z, and that

Ak,>z(0, t)
d
= rk

t∫
0

Nk,>z(u)du. For future purposes, we define the processes

V c
>z(t) := sup

0≤s≤t
{A>z(0, s)− cs},

V c
>z := sup

t≥0
{A>z(0, t)− ct}.

8.2.3 Representation for the workload

In this subsection we give a convenient representation for the transient and stationary

workload. First, we consider the aggregate workload process V c(t). Using the expression

V c(t) = sup
0≤s≤t

{A(s, t) − c(t − s)} and noting that the process A(·, ·) has stationary and

reversible increments, the transient workload may be represented as

V c(t) = sup
0≤s≤t

{A(s, t)− c(t− s)} d
= sup

0≤s≤t
{A(0, s)− cs}.
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In the sequel, we proceed similarly as in [238] and Chapter 7 of this thesis, and use

the latter expression as the definition of V c
>z(t). Accordingly, for c > ρ, the stationary

workload as t→∞ may be expressed as

V c := sup
t≥0
{A(0, t)− ct}.

8.3 Overview

In this section we present the main results of the chapter, which characterize the exact

asymptotic behavior of P{V > x} as x → ∞. This behavior, as well the corresponding

intuition, is strongly reminiscent of the overflow scenarios (reduced-load) considered in

Chapter 7. The reduced-peak scenario considered in Chapter 6 cannot occur.

8.3.1 Intuitive arguments

Before formally stating the results, we first provide some intuitive arguments. Large-

deviations results for heavy-tailed distributions suggest that a large workload level is

typically due to some ‘minimal combination’ of extremely long overlapping sessions caus-

ing positive drift. In a homogeneous context, the typical combination simply consists of

the minimal number of long sessions needed for the drift to turn positive. However, in

a heterogeneous setting, not only the number of long sessions counts, but also the class

characteristics. Note that the number of long sessions required for a positive drift varies

with the peak rates rk of the various classes. In addition, the relative frequency of long

sessions differs across the various classes as governed by the tail exponents νk.

Informally speaking, the typical combination may be interpreted as the one most likely to

occur among those producing positive drift. Specifically, let the typical configuration of

long sessions be n = (n1, . . . , nK). For the workload to reach a large level x, the associated

drift must be strictly positive, i.e.,

K∑

k=1

nkrk + ρ− 1 > 0. (3.1)

In addition, the sessions must last for a period of the order x, which happens with prob-

ability of the order

x
−

K∑
k=1

nk(νk−1)
. (3.2)

The supposition that n = (n1, . . . , nK) is the most likely combination, means that it

should maximize (3.2) for large values of x, i.e., minimize the exponent
K∑
k=1

nk(νk − 1),
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subject to the drift condition (3.1). Thus, the most likely configuration of long sessions

may be identified as follows.

min µ =
K∑

k=1

nk(νk − 1)

sub
K∑

k=1

nkrk ≥ 1− ρ

nk ∈ N, k = 1, . . . , K.

The above integer linear program corresponds to the set optimization problem defined

in [185]. In general, the optimal solution cannot be obtained in closed form due to

the integrality constraints. However, if the integrality constraints are relaxed, then the

optimization program may be easily solved. The optimal solution is then given by

n∗ = (1 − ρ)ek∗/rk∗ , with k∗ := argmaxk=1,...,K rk/(νk − 1), and ek denoting the unit

vector. This suggests that sessions of class k∗ are likely to be involved in the typical

configuration of long sessions that causes overflow. This is especially the case when the

peak rates rk are relatively small compared to the slack capacity 1−ρ, so that the typical

combination consists of a relatively large number of sessions. However, in general the

optimal combination may include sessions of other classes as well due to the integrality

constraints, and in extreme cases may not contain a single session of class k∗ at all. Let

S∗ ⊆ NK be the set of optimal solutions (there may be several in general). Denote by

µ∗ the corresponding optimal value. Also, define rmin := min
n∈S∗

K∑
k=1

nkrk. Throughout the

chapter, we assume that rmin > 1 − ρ. This assumption ensures that the drift in all

plausible overflow scenarios is strictly positive. (In general, some overflow scenarios may

involve only zero drift.)

8.3.2 Steady-state workload asymptotics

We now state the central result of this chapter, which characterizes the exact asymp-

totic behavior of the stationary workload distribution. For given n ∈ NK , denote dn :=
K∑
k=1

nkrk + ρ− 1.

Theorem 8.3.1 Assume that rmin > 1− ρ. Then,

P{V > x} ∼
∑

n∈S∗

∑

j≤n

K∏

k=1

ρ̄nkk
jk!

Pj,n(x), (3.3)

where j = (j1, . . . , jK), and Pj,n(x) satisfies

Pj,n(x) ∼ κj,n

K∏

k=1

P{Br
k >

x

dn
}nk ,
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for some constant κj,n.

In particular, P{V > x} is regularly varying of index −µ∗.
Explicit expressions for Pj,n(x) and κj,n are given in Subsection 8.4.5.

Remark 8.3.1 Recall that we assumed Bk(·) to be regularly varying of index −νk < −1
for all k = 1, . . . , K. In fact, Theorem 8.3.1 continues to hold if, for some k, 1−Bk(x) =

o(x−α) as x→∞ for any α. Theorem 8.3.1 and all the results stated below which follow

from it, formally go through if we simply define νk :=∞ in this light-tailed case.

8.3.3 Single-session overflow scenario

The expressions for the coefficients κj,n may in principle be computable, but are in general

not very explicit. However, as described in the introduction, rather tractable results

are available for scenarios where just a single long session can cause overflow. We now

specialize the general result stated in Theorem 8.3.1 to these scenarios in order to obtain

more explicit expressions, and recover these results. Let ek denote the k-th unit vector.

Define T ∗ = {k : ek ∈ S∗}.
Theorem 8.3.2 Assume that S∗ ⊆ {e1, . . . , eK}. If rmin = min

k∈T ∗
rk > 1− ρ, then

P{V > x} ∼
∑

k∈T ∗

ρk
1− ρ

P{Br
k >

x

rk + ρ− 1
}. (3.4)

This result is obtained in [164] under the condition that rk > 1 − ρ and Bk(·) is of

intermediate regular variation for all k = 1, . . . , K. The discrete-time analogue for Pareto-

distributed session lengths may be found in [185].

8.3.4 Single-class input

We now consider the important special case of a single input class, i.e., homogeneous input.

For conciseness, we suppress the class index 1. We have S∗ = {n∗} and µ∗ = n∗(ν − 1),

with n∗ := d(1− ρ)/re.
Theorem 8.3.3 Assume that rmin = n∗r > 1− ρ. Then,

P{V > x} ∼
n∗∑

j=0

ρ̄n
∗

j!
Pj,n∗(x), (3.5)

where Pj,n∗(x) satisfies

Pj,n∗(x) ∼ κj,n∗P{Br >
x

dn∗
}n∗ ,

for some constant κj,n∗.

In particular, P{V > x} is regularly varying of index −n∗(ν − 1).

An explicit expression for κj,n∗ is given in Subsection 8.4.5.
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8.3.5 Single-class input with single-session overflow scenario

Finally, we consider the intersection of single-class input with a single-session overflow

scenario. Taking T ∗ = {1} in Theorem 8.3.2, or n∗ = 1 in Theorem 8.3.3, we find

P{V > x} ∼ ρ

1− ρ
P{Br >

x

r + ρ− 1
}. (3.6)

This result is also obtained in [164] and [238].

Remark 8.3.2 It is worth observing that the qualitative resemblance of (3.6) with (3.4)

is markedly stronger than with (3.5). Thus, the extension to a multiple-session overflow

scenario has greater ramifications than the issue of heterogeneous input. This confirms

that the fundamental problem lies in the plurality of the set S∗ rather than the hetero-

geneity of the input or non-uniqueness of the set S∗.

Remark 8.3.3 It is also interesting to compare (3.6) with the corresponding result for

a single On-Off source. Specifically, consider a fluid queue of capacity c fed by a single

On-Off source with the same On-periods B, Off-periods with mean 1/λ′, peak rate r′,

fraction Off-time p = (1 + λ′β)−1, and traffic intensity ρ′ = (1 − p)r′, with ρ′ < c < r′.

Then the asymptotic behavior of the workload is given by Theorem 2.2.3,

P{V ′ > x} ∼ p
ρ′

c− ρ′
P{Br >

x

r′ − c
}. (3.7)

Now suppose that we choose r = r′ − ρ′ = pr′, λ = (1/λ′ + β)−1, so that ρ = λβr =

(1 − p)r = (1 − p)pr′ = pρ′, and c = 1 + ρ′ − ρ. Then (3.7) agrees with (3.6). In other

words, if r + ρ > 1, then the workload in a queue of unit capacity fed by M/G/∞ input

with λ = (1/λ′ + β)−1 and r = r′ − ρ′ is asymptotically equivalent to that in a queue of

capacity c = 1 + ρ′ − ρ fed by a single On-Off source with the same On-periods B, peak

rate r′, and Off-periods with mean 1/λ′.

This may be understood as follows. In both situations, a large workload level is most likely

due to a single extreme event causing a persistent positive drift, either a long session in

the M/G/∞ case, or a long On-period in the On-Off case. By assumption, the sessions

in the M/G/∞ case have the same distribution as the On-periods in the On-Off case.

The chosen parameter values imply that the frequency of sessions and On-periods is also

equal. The mean number of On-periods per unit of time is (1/λ′ + β)−1 = λ, the rate at

which sessions arrive. As a result, the occurrence of long sessions and long On-periods

matches. The workload dynamics during long sessions and long On-periods coincide as

well. With M/G/∞ input, the workload has positive drift r + ρ− 1 when a long session

is active, and negative drift ρ − 1 otherwise. With On-Off input, the workload increases

at rate r′ − c = r + ρ − 1 during a long On-period, and decreases approximately at rate

ρ′− c = ρ−1 otherwise. Unfortunately, this equivalence does not seem to extend to more

general scenarios.
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8.4 Proof of Theorem 8.3.1

In this section we analyze the asymptotic behavior of P{V (ax) > x} for fixed a and

x → ∞. As the next theorem shows, this directly yields the steady-state asymptotics

after letting a→∞.

Theorem 8.4.1 If rmin > 1− ρ, then

lim
a→∞

lim
x→∞

P{V (ax) > x}
P{V > x} = 1.

The proof of the above theorem is deferred to Section 8.5.

In order to analyze P{V (ax) > x}, it will be convenient to use the representation

V (ax) = sup
0≤s≤ax

{A(0, s)− s},

see Subsection 8.2.3. For the tail behavior of P{V (ax) > x}, similar heuristic arguments

apply as those sketched in Subsection 8.3.1. The only difference is that in general a

positive drift alone is not enough for the process {A(0, s) − s} to reach level x before

time ax. Instead, the drift should be at least 1
a
. Therefore, the integer linear program as

formulated in Subsection 8.3.1 needs to be modified as follows.

min µ =
K∑

k=1

nk(νk − 1)

sub
K∑

k=1

nkrk ≥ 1− ρ+
1

a

nk ∈ N, k = 1, . . . , K.

Let S∗a ⊆ NK be the set of optimal solutions of the above linear program. Denote by µ∗a

the corresponding optimal value. Also, define rmin
a := min

n∈S∗a

K∑
k=1

nkrk.

The analysis of the tail behavior of P{V (ax) > x} involves several steps.

• We first separate ‘short’ and ‘long’ sessions. A session is called ‘long’ if it exceeds

length εx, with ε some small positive constant, independent of x. Otherwise, it is

called ‘short’. We show that the ‘short’ sessions can be asymptotically ignored if

the capacity is reduced by ρ, in the sense that for ε sufficiently small,

P{V (ax) > x} ∼ P{V 1−ρ
>εx (ax) > x}.
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• Next, we determine the typical combination of long sessions involved in causing

overflow. Specifically, we prove that, for overflow of level x to occur within time ax,

the configuration of long sessions in the interval [0, ax] must be n = (n1, . . . , nK),

for some n ∈ S∗a.

• Subsequently, we identify a stopping time τ̄nf (εx) (conditional upon the event that

the configuration of long sessions is n ∈ S∗a) such that for a sufficiently large and c

sufficiently close to 1− ρ,

P{ sup
0≤s≤ax

{A>εx(0, s)− cs} > x} ∼ P{A>εx(0, τ̄
n
f (εx))− cτ̄nf (εx) > x}.

• Last, we compute the asymptotic behavior of P{A>εx(0, τ̄
n
f (εx)) − cτ̄nf (εx) > x} as

x→∞, which involves a rather tedious but straightforward calculation.

Subsections 8.4.1-8.4.4 elaborate upon the above four steps, which prepare the way for

the proof of Theorem 8.3.1 in Subsection 8.4.5. As a by-product of the analysis, we obtain

asymptotically tight lower and upper bounds for the transient workload distribution in

Subsection 8.4.6. The various steps involve similar probabilistic arguments as developed

in [239] for the special case where a single long session is enough to cause overflow. The

first two steps are also used in [185] to derive asymptotic lower and upper bounds for

P{V > x} which coincide up to a constant factor. The exact asymptotics for infinite

buffers however entail a detailed calculation as in the last two steps listed above.

8.4.1 Discarding short sessions

As a first step, we separate short and long sessions. We show that – as far as asymptotic

behavior is concerned – the short sessions can be deleted if the capacity is reduced by ρ.

Formally, we derive asymptotic lower and upper bounds for P{V (ax) > x} of the form

P{V 1−ρ±δ
>εx (ax) > (1± θ)x} for arbitrarily small δ, θ.

We first establish a simple sample-path lower bound. For any c > 0, define Z c
≤z(t) :=

sup
0≤s≤t

{cs− A≤z(0, s)}.

Proposition 8.4.1 For any c ∈ (0, ρ≤z),

P{V (t) > x} ≥ P{V 1−c
>z (t) > x+ y}P{Zc

≤z(t) ≤ y}.
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Proof

Sample-path wise,

V (t) = sup
0≤s≤t

{A(0, s)− s}

= sup
0≤s≤t

{A>z(0, s)− (1− c)s+ A≤z(0, s)− cs}

≥ sup
0≤s≤t

{A>z(0, s)− (1− c)s} − sup
0≤s≤t

{cs− A≤z(0, s)}

= V 1−c
>z (t)− Zc

≤z(t).

2

We now use the above sample-path bound to obtain an asymptotic lower bound for

P{V (ax) > x} as x→∞.

Proposition 8.4.2 For any δ > 0, ε > 0, θ > 0,

P{V (ax) > x} >∼ P{V 1−ρ+δ
>εx (ax) > (1 + θ)x}.

Proof

Since ρ≤z ↑ ρ for z →∞, there exists an x0 such that ρ≤εx > ρ− δ for all x ≥ x0.

From Proposition 8.4.1, taking c = ρ− δ, y = θx, z = εx, for all x ≥ x0,

P{V (ax) > x}
P{V 1−ρ+δ

>εx (ax) > (1 + θ)x}
≥ P{Zρ−δ

≤εx (ax) ≤ θx} ≥ P{Zρ−δ
≤εx0

(ax) ≤ θx}.

The statement then easily follows.

2

We now proceed with a simple sample-path upper bound.

Proposition 8.4.3 For any c ∈ (ρ≤z, 1− ρ>z),

P{V (t) > x} ≤ P{V 1−c
>z (t) > x− y}+ P{V c

≤z(t) > y}.

Proof

Sample-path wise,

V (t) = sup
0≤s≤t

{A(0, s)− s}

= sup
0≤s≤t

{A>z(0, s)− (1− c)s+ A≤z(0, s)− cs}

≤ sup
0≤s≤t

{A>z(0, s)− (1− c)s}+ sup
0≤s≤t

{A≤z(0, s)− cs}

= V 1−c
>z (t) + V c

≤z(t).
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2

The next proposition provides an upper bound which indicates that the workload from

the short sessions can be asymptotically neglected.

Proposition 8.4.4 For any c > ρ, θ > 0, µ > 0, there exists an ε∗ > 0 such that for all

ε < ε∗,

P{V c
≤εx(ax) > θx} = o(x−µ)

as x→∞.

Proof

Define δ := (c− ρ)/K. Then

V c
≤εx(ax) = sup

0≤s≤ax
{A≤εx(0, s)− cs}

= sup
0≤s≤ax

{
K∑

k=1

Ak,≤εx(0, s)−
K∑

k=1

(ρk + δ)s}

≤
K∑

k=1

sup
0≤s≤ax

{Ak,≤εx(0, s)− (ρk + δ)s}

=
K∑

k=1

V ρk+δ
k,≤εx(ax).

This implies

P{V c
≤εx(ax) > x} ≤

K∑

k=1

P{V ρk+δ
k,≤εx(ax) > x/K}.

Thus, it suffices to show that

P{V ρk+δ
k,≤εx(ax) > x/K} = o(x−µ)

as x→∞ for all k = 1, . . . , K.

Now observe that

V ρk+δ
k,≤εx(ax) ≤ A

(0)
k,≤εx + sup

0≤s≤ax
{A(>0)

k,≤εx(0, s)− (ρk + δ)s},

where the two terms correspond to the traffic generated by the sessions already active at

and starting after time 0, respectively. Hence,

P{V ρk+δ
k,≤εx(ax) > x/K} ≤ P{A(0)

k,≤εx > x/(2K)}
+ P{ sup

0≤s≤ax
{A(>0)

k,≤εx(0, s)− (ρk + δ)s} > x/(2K)}

= I + II.
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In the remainder of the proof, we bound the terms I and II.

We first consider Term I. Let α ∈ (0, 1) such that E{(Br
k)
α} < ∞. Let β ∈ (0, α). Note

that A
(0)
k,≤εx is stochastically smaller than rk

Nk(0)∑
i=1

Br
k,i(εx), where B

r
k,i(εx)

d
= Br

k,i | Br
k,i ≤

εx. Thus,

I ≤ P{rk
xβ∑

i=1

Br
k,i(εx) > x/(2K)}+ P{Nk(0) > xβ}.

Since Nk(0) is Poisson distributed, the second term decays exponentially fast in x. Us-

ing Lemma 2.4.1 (applied to Br
k,i(εx)

α), the first term can be bounded as follows, for ε

sufficiently small:

P{rk
xβ∑

i=1

Br
k,i(εx) > x/(2K)}

= P{(rk
xβ∑

i=1

Br
k,i(εx))

α > (x/2K)α}

≤ P{rαk
xβ∑

i=1

Br
k,i(εx)

α > (x/2K)α}

= P{rαk
xβ∑

i=1

[Br
k,i(εx)

α − 2E{(Br
k,i)

α}] > (x/(2K))α − 2E{(Br
k,i)

α}xβ}

≤ φ(xα/(2KrK)
α − 2E{(Br

k)
α}xβ/rαk ),

with φ(·) ∈ R−η, η > µ/α.

We now turn to Term II. Note that sup
0≤s≤ax

{A(>0)
k,≤εx(0, s)−(ρk+δ)s} is stochastically smaller

than W ρk+δ
k,≤εx(ax), where the latter quantity represents the workload if the entire amount

of traffic generated over the duration of a session were released instantaneously upon the

arrival of the session. Thus,

II ≤ P{W ρk+δ
k,≤εx(ax) > x/(2K)}.

Now observe that W ρk+δ
k,≤εx(ax) is the workload at time ax in an M/G/1 queue of ca-

pacity ρk + δ with arrival rate λkBk(εx) and service time distribution Bk(y/rk)/Bk(εx),

0 ≤ y ≤ εxrk. Let B′k,n(εx), n ≥ 1, be an i.i.d. sequence of random variables with this

distribution, and let Uk,n, n ≥ 1, be an i.i.d. sequence of interarrival times. Denote by

Nk(ax) := sup{n : Uk,1 + . . . + Uk,n ≤ ax} the number of arrivals in this M/G/1 queue

up to time ax. Define Sk,n(εx) :=
n∑
i=1

Xk,i, with Xk,i := B′k,i(εx)− (ρk + δ)Uk,i. Then, for

any Λ,

P{W ρk+δ
k,≤εx(ax) > x/(2K)} = P{ sup

n≤Nk(ax)

Sk,n(εx) > x/(2K)}

≤ P{ sup
n≤Λax

Sk,n(εx) > x/(2K)}+ P{Nk(ax) > Λax}.
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The second term decays exponentially fast in x for Λ > λk. Using the truncation

Lemma 2.4.1, noting that E{X1} < 0, the first term can be bounded by, for ε∗ > 0

sufficiently small,

Λax∑

n=1

P{Sk,n(εx) > x/(2K)} ≤ Λaxφ(x/(2K)),

with φ(·) ∈ R−α, α > µ+ 1. This completes the proof.

2

We now combine the above two bounds to obtain an asymptotic upper bound for P{V (ax) >

x} as x→∞.

Proposition 8.4.5 For any δ > 0, θ > 0, µ > 0, there exists an ε∗ > 0 such that for all

ε < ε∗,

P{V (ax) > x} ≤ P{V 1−ρ−δ
>εx (ax) > (1− θ)x}+ o(x−µ)

as x→∞.

Proof

The proof follows directly from Propositions 8.4.3 and 8.4.4 taking c = ρ+ δ.

2

Combined, Propositions 8.4.2 and 8.4.5 allow us to restrict the attention to long sessions

only, and focus on probabilities of the form P{V 1−ρ±δ
>εx (ax) > (1± θ)x}.

8.4.2 Configuration of long sessions

In this subsection, we determine the typical combination of long sessions involved in

causing overflow. Specifically, we show that, for overflow of level x to occur within time ax,

the configuration of long sessions in the interval [0, ax] must be in the set S∗a. As we argued

before, these configurations of long sessions may be interpreted as the most likely ones to

occur among those producing sufficiently high drift. All other combinations are unlikely

to cause overflow, either because the resulting drift is simply too low, or because the

corresponding probability is too small (or both).

In order to formalize these statements, we need to keep track of the number of long

sessions in the time interval [0, ax]. With minor abuse of notation, define Nk,>εx(T )

as the number of class-k sessions exceeding length εx in the time interval T . Denote
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N>εx(T ) := (N1,>εx(T ), . . . , NK,>εx(T )). Formally, we will show that for δ, θ sufficiently

small,

P{V 1−ρ±δ
>εx (ax) > (1± θ)x} ∼

∑

n∈S∗a

P{V 1−ρ±δ
>εx (ax) > (1± θ)x;N>εx([0, ax]) = n}.

We first exclude the possibility that overflow is caused by some configuration which fails

to generate at least a drift 1/a.

Let S∗a(c) be the set of optimal solutions of the integer linear program formulated at the

beginning of this section with the constraint value 1−ρ+1/a replaced by c+1/a. Denote

by µ∗a(c) the corresponding optimal value. Define S−a (c) := {n ∈ NK :
K∑
k=1

nkrk < c+1/a},

S+
a (c) := {n ∈ NK :

K∑
k=1

nkrk > c+ 1/a}, and rmax
a (c) := max

n∈S−a (c)

K∑
k=1

nkrk.

Proposition 8.4.6 For θ sufficiently small, and all ε > 0, x > 0,

P{V c
>εx(ax) > (1± θ)x;N>εx([0, ax]) ∈ S−a (c)} = 0.

Proof

The idea of the proof is as follows. If N>εx([0, ax]) ∈ S−a (c), then during the time interval

[0, ax] the drift of the workload is always less than 1/a. Hence, the workload cannot reach

level (1± θ)x before time ax for θ sufficiently small.

Formally, denote ua(c) := c + 1/a − rmax
a (c) > 0. If N>εx([0, ax]) ∈ S−a (c), then the left

derivative d
ds
A>εx(0, s) ≤ rmax

a (c) for all s ∈ [0, ax], so that A>εx(0, s) ≤ rmax
a (c)s for all

s ∈ [0, ax]. Therefore,

V c
>εx(ax) = sup

0≤s≤ax
{A>εx(0, s)− cs} ≤ sup

0≤s≤ax
{(rmax

a (c)− c)s}

= sup
0≤s≤ax

{(1/a− ua(c))s} = (1/a− ua(c))ax.

The latter quantity is less than (1± θ)x for θ < aua(c).

2

We now eliminate all configurations of long sessions that do generate at least a drift 1/a,

but that are relatively unlikely compared to other combinations that do so.

Proposition 8.4.7 There exists a µ > µ∗a(c) such that, for all ε > 0, n ∈ S+
a (c) \ S∗a(c),

P{N>εx([0, ax]) ≥ n} = o(x−µ),

as x→∞.
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Proof

Note that Nk,>εx([0, ax]) has a Poisson distribution with parameter ρ̄kP{Br
k > εx} +

λkaxP{Bk > εx}. A straightforward computation then shows that P{Nk,>εx([0, ax]) ≥ nk}
is upper bounded by a function which is regularly varying of index −nk(νk − 1). Since

P{N>εx([0, ax]) ≥ n} =
K∏

k=1

P{Nk,>εx([0, ax]) ≥ nk},

the left hand side is upper bounded by a function which is regularly varying of index

−
K∑
k=1

nk(νk − 1). The fact that n ∈ S+
a (c) \ S∗a(c) implies

K∑
k=1

nk(νk − 1) > µ∗a(c), because

otherwise n ∈ S∗a(c).

2

Combined, the above two propositions allow us to limit the attention to scenarios with

N>εx([0, ax]) ∈ S∗a(c), as formalized in the following lemma.

Lemma 8.4.1 Assume that rmin
a > 1 − ρ. Then there exists a µ > µ∗a such that for δ, θ

sufficiently small, and all ε > 0,

P{V 1−ρ±δ
>εx (ax) > (1± θ)x} =

∑

n∈S∗a

P{V 1−ρ±δ
>εx (ax) > (1± θ)x;N>εx([0, ax]) = n}+ o(x−µ).

Proof

The proof follows directly from Propositions 8.4.6, 8.4.7, noting that Sa(1− ρ± δ) = S∗a
for δ sufficiently small as rmin

a > 1− ρ.

2

Combined with the earlier results, we have now obtained asymptotic lower and upper

bounds for P{V > x} in terms of the probabilities P{V 1−ρ±δ
>εx (ax) > (1±θ)x;N>εx([0, ax]) =

n}. What thus remains is to determine the asymptotic behavior of these probabilities as

x→∞, which is the subject of the next subsection.

8.4.3 Identifying a stopping time

In this subsection we identify a stopping time τ̄ nf (εx) (conditional upon the event

N>εx([0, ax]) = n) such that for a sufficiently large and c sufficiently close to 1− ρ,

P{ sup
0≤s≤ax

{A>εx(0, s)− cs} > x} ∼ P{A>εx(0, τ̄
n
f (εx))− cτ̄nf (εx) > x}.
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We first introduce some additional notation. Assume that N>εx(0) ≤ n. In this case, we

define An
>εx(0, t) as the amount of traffic generated up to time t by the first nk class-k

sessions only, k = 1, . . . , K. Define V c,n
>εx(t) := sup

0≤s≤t
{An

>εx(0, s)− cs}.
Let τns,k(εx) and τnf,k(εx) be the respective starting and finishing times of the n-th class-k

session exceeding length εx. For any n ∈ NK , let

τns (εx) := max
k=1,...,K

τnks,k(εx),

and

τnf (εx) := min
k=1,...,K

τnkf,k(εx).

Thus, for a configuration n ∈ NK of long sessions, τns (εx) is the time at which the last

long session begins, and τnf (εx) is the time at which the first long session ends. To account

for the case τnf (εx) > ax, we define τ̄nf (εx) := min{ax, τnf (εx)}. This turns out to be the

relevant stopping time, as is demonstrated by the following lemma.

Lemma 8.4.2 There exists a µ > µ∗a(c) such that for θ sufficiently small and all n ∈
S∗a(c),

P{V c
>εx(ax) > (1± θ)x;N>εx([0, ax]) = n} >∼

P{N>εx(0) ≤ n;An
>εx(0, τ̄

n
f (εx))− cτ̄nf (εx) > (1− θ)x}+ o(x−µ).

In case rmax
a (c) < c, there also exists a µ > µ∗a(c) such that for θ sufficiently small and all

n ∈ S∗a(c),

P{V c
>εx(ax) > (1± θ)x;N>εx([0, ax]) = n} <∼

P{N>εx(0) ≤ n;An
>εx(0, τ̄

n
f (εx))− cτ̄nf (εx) > (1± θ)x}+ o(x−µ).

Proof

We first prove the second statement. Since V c,n
>εx(ax) ≤ V c

>εx(ax), with strict equality

under the event N>εx([0, ax]) = n, and the latter event also implies that N>εx(0) ≤ n, we

have

P{V c
>εx(ax) > (1± θ)x;N>εx([0, ax]) = n} =

P{V c,n
>εx(ax) > (1± θ)x;N>εx([0, ax]) = n;N>εx(0) ≤ n}.

First observe that

P{V c,n
>εx(ax) > (1± θ)x;N>εx([0, ax]) = n;N>εx(0) ≤ n}

≤ P{V c,n
>εx(ax) > (1± θ)x;N>εx(0) ≤ n}

= P{ sup
0≤s≤ax

{An
>εx(0, s)− cs} > (1± θ)x;N>εx(0) ≤ n}.
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Note that before time τns (εx) and after time τnf (εx) the drift of the process An
>εx(0, s) is

at most rmaxa (c) < c. Thus, the drift of the process {An
>εx(0, s) − cs} is only positive

between times τns (εx) and τnf (εx). Hence, sup
0≤s≤ax

{An
>εx(0, s)− cs} > (1± θ)x implies that

An
>εx(0, τ̄

n
f (εx)) − cτ̄nf (εx) > (1 ± θ)x. Thus, the last probability in the above display is

smaller than P{N>εx(0) ≤ n;An
>εx(0, τ̄

n
f (εx))− cτ̄nf (εx) > (1± θ)x}.

We now turn to the first statement. Observe that V c,n
>εx(ax) = 0, unless N>εx([0, ax]) ≥ n,

so for θ sufficiently small, using Proposition 8.4.7,

P{V c,n
>εx(ax) > (1± θ)x;N>εx([0, ax]) = n;N>εx(0) ≤ n}

≥ P{V c,n
>εx(ax) > (1± θ)x;N>εx(0) ≤ n} − P{N>εx([0, ax]) > n}

≥ P{V c,n
>εx(ax) > (1± θ)x;N>εx(0) ≤ n}+ o(x−µ)

= P{ sup
0≤s≤ax

{An
>εx(0, s)− cs} > (1± θ)x;N>εx(0) ≤ n}+ o(x−µ)

≥ P{N>εx(0) ≤ n;An
>εx(0, τ̄

n
f (εx))− cτ̄nf (εx) > (1± θ)x}+ o(x−µ).

2

Combined with the earlier results, we have now obtained asymptotic lower and upper

bounds for P{V > x} in terms of the probabilities P{N>εx(0) ≤ n;An
>εx(0, τ̄

n
f (εx)) −

cτ̄nf (εx) > (1±θ)x} with c = 1−ρ±δ. What thus remains is to determine the asymptotic

behavior of these probabilities as x→∞, which is the subject of the next subsection.

8.4.4 Computation of the pre-factor

As a final step, we compute the asymptotic behavior of P{N>εx(0) ≤ n;An
>εx(0, τ̄

n
f (εx))−

cτ̄nf (εx) > (1 ± θ)x} for fixed n ∈ S∗a(c) and x → ∞. Throughout this subsection, we

assume that a is large enough for the condition rmax
a (c) < c to hold.

We start by conditioning upon the configuration of long sessions active at time 0. For

j = (j1, . . . , jK), define the event Dj(εx) by Dj(εx) := {N>εx(0) = j}. In words, Dj(εx)

is the event that the number of long class-k sessions active at time 0 is jk, k = 1, . . . , K.

Denote Pj{·} = P{·|Dj(εx)}. Then

P{N>εx(0) ≤ n;An
>εx(0, τ̄

n
f (εx))− cτ̄nf (εx) > (1± θ)x}

=
∑

j≤n
P{Dj(εx)}Pj{An

>εx(0, τ̄
n
f (εx))− cτ̄nf (εx) > (1± θ)x}.

Note that

P{Dj(εx)} =
K∏

k=1

(ρ̄kP{Br
k > εx})jk
jk!

e−ρ̄kP{Br
k>εx} ∼

K∏

k=1

(ρ̄kP{Br
k > εx})jk
jk!

.
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It remains to compute the asymptotic behavior of Pj{An
>εx(0, τ̄

n
f (εx))−cτ̄nf (εx) > (1±θ)x}

as x→∞. In order to do so, we need to condition upon the arrival times of the remaining

sessions as well. Denote the interarrival times of the class-k sessions by Eki(εx), k =

1, . . . , K, i = 1, 2, . . .. Note that Eki(εx) is an exponentially distributed random variable

with parameter λkP{Bk > εx}.
To obtain an expression for An

>εx(0, τ̄
n
f (εx))− cτ̄nf (εx) under the event Dj(εx), note that,

if all long sessions had been active already at time 0, the expression would equal cnτ̄
n
f (εx),

with cn :=
K∑
k=1

nkrk − c. However, some sessions may have started later. To account for

this, it is not hard to see that we need to subtract H(εx), which is defined by

H(εx) :=
K∑

k=1

rk

nk−jk∑

i=1

i∑

l=1

Ekl(εx).

This is summarized in the following lemma.

Lemma 8.4.3 Under the event Dj(εx), A
n
>εx(0, τ̄

n
f (εx))− cτ̄nf (εx) can be represented as

An
>εx(0, τ̄

n
f (εx))− cτ̄nf (εx) = cnτ̄

n
f (εx)−H(εx),

with τ̄nf (εx) = min{ax, τnf (εx)} the stopping time defined earlier and

τnf (εx) = min
k=1,...,K

min{ min
i=1,...,jk

B̄r
ki(εx), min

i=1,...,nk−jk

[
Ek1(εx) + . . .+ Eki(εx) + B̄ki(εx)

]
}.

Here B̄r
ki(εx)

d
= Br

ki | Br
ki > εx, and B̄ki(εx)

d
= Bki | Bki > εx.

We proceed to compute the asymptotic behavior of Pj{An
>εx(0, τ̄

n
f (εx))− cτ̄nf (εx) > (1±

θ)x}, using the above representation.

Define the sets E0 := {(k, i) : k = 1, . . . , K, i = 1, . . . , jk} and E1 := {(k, i) : k =

1, . . . , K, i = 1, . . . , nk − jk}. Write y = y(k,i)∈E0 (we interpret y as a vector), and let h(y)

be a realization of H(εx), i.e., if Eki(εx) = yki for (k, i) ∈ E1, then

h(y) =
K∑

k=1

rk

nk−jk∑

i=1

i∑

l=1

ykl.

Let t(y) be distributed as τnf (εx) conditional upon Eki(εx) = yki for (k, i) ∈ E1. Note that

t(y) is still a random variable. Hence, using Lemma 8.4.3,

Pj{An
>εx(0, τ̄

n
f (εx))− cτ̄nf (εx) > (1± θ)x}

=

∫

y≥0


 ∏

(k,i)∈E1

(
λkP{Bk > εx}e−ykiλkP{Bk>εx}

)

×

P{cnmin{ax, t(y)} > (1± θ)x+ h(y)}dy
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=
1

K∏
k=1

P{Br
k > εx}jk

∫

y≥0,h(y)≤(cna−1)x


 ∏

(k,i)∈E1

(
λke

−ykiλkP{Bk>εx}
)




 ∏

(k,i)∈E0

P{cnBr
k > (1± θ)x+ h(y)}





 ∏

(k,i)∈E1

P{cn(yk1 + . . .+ yki +Bk) > (1± θ)x+ h(y)}


 dy.

This implies (using bounded convergence)

P{Dj(εx)}Pj{An
>εx(0, τ

n
f (εx))− cτnf (εx) > (1± θ)x}

∼
K∏

k=1

ρ̄nkk
jk!

K∏

k=1

1

βnk−jkk

∫

y≥0,h(y)≤(cna−1)x


 ∏

(k,i)∈E0

P{cnBr
k > (1± θ)x+ h(y)}





 ∏

(k,i)∈E1

P{cn(yk1 + . . .+ yki +Bk) > (1± θ)x+ h(y)}


 dy.

For given n and j, define the |E1|-dimensional row vector g = gc,j,n by g = (g1, . . . , gK).

Here gk is a row vector of dimension nk − jk with all elements equal to rk/cn. In the

sequel, we write g := (g(k,i))(k,i)∈E1 . Let G be a square matrix with all rows equal to g.

Define Ḡ := G − I. Note that |Ḡ| = eg − 1 and that the inverse H of Ḡ is given by

H = 1
eg−1G− I. Here e := (1, . . . , 1) is the unit vector with all elements equal to 1. Note

that gH = 1
eg−1g. Set z := (zki)(k,i)∈E1 , where zki = yk1 + . . .+ yki. Define w := Ḡz. Note

that h(y) = cngz.

Straightforward computations yield

K∏

k=1

1

βnk−jkk

∫

y≥0,h(y)≤(cna−1)x


 ∏

(k,i)∈E0

P{cnBr
k > (1± θ)x+ h(y)}





 ∏

(k,i)∈E1

P{cn(zki +Bk) > (1± θ)x+ h(y)}


 dy

=
K∏

k=1

1

βnk−jkk

∫

z≥0,gz≤(a−1/cn)x


 ∏

(k,i)∈E0

P{Br
ki > (1± θ)

x

cn
+ gz}





 ∏

(k,i)∈E1

P{Bki > (1± θ)
x

cn
+ (Ḡz)(k,i)}


 dz
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=
K∏

k=1

1

βnk−jkk

1

eg − 1

∫

w≥0,gw≤(eg−1)(a−1/cn)x


 ∏

(k,i)∈E0

P{Br
ki > (1± θ)

x

cn
+

gw

eg − 1
}





 ∏

(k,i)∈E1

P{Bki > (1± θ)
x

cn
+ w(k,i)}


 dw

=
1

eg − 1

∫

w≥0,gw≤(eg−1)(a−1/cn)x


 ∏

(k,i)∈E0

P{Br
ki > (1± θ)

x

cn
+

1

eg − 1
gw}




d
∏

(k,i)∈E1

P{Br
ki > (1± θ)

x

cn
+ w(k,i)}

= P{Br
ki > (1± θ)

x

cn
, k = 1, . . . , K, i = 1, . . . , nk;

Br
ki − (1± θ)

x

cn
≥ 1

eg − 1
g

(
Br
E1
− (1± θ)

x

cn
e

)
, (k, i) ∈ E0;

1

eg − 1
g

(
Br
E1
− (1± θ)

x

cn
e

)
≤ (1± θ)x(a− 1

cn
)}

=: P c
j,n,a((1± θ)x).

In the last expression, Br
E1

:= (Br
ki)(k,i)∈E1 .

Using the fact that Br
ki is regularly varying of index 1− νk, it is easy to show that

P{Br
ki −

x

cn
> yx|Br

ki >
x

cn
} ∼ P{Zki > y} := (1 + cny)

1−νk .

Take the Zki independent. Then, with obvious notation,

(eg − 1)P c
j,n,a(x)

= P{Br
ki >

x

cn
, k = 1, . . . , K, i = 1, . . . , nk;B

r
ki −

x

cn
≥ 1

eg − 1
g

(
Br
E1
− x

cn
e

)
,

(k, i) ∈ E0;
1

eg − 1
g

(
Br
E1
− x

cn
e

)
≤ x(a− 1

cn
)}

∼ P{Zki ≥
1

eg − 1
gZE1 , (k, i) ∈ E0; (a−

1

cn
) ≥ 1

eg − 1
gZE1}

K∏

k=1

P{Br
k >

x

cn
}jk .

The above calculations are summarized in the following lemma.

Lemma 8.4.4 For n ∈ S∗a(c) there exists an ε∗ > 0 such that for all ε < ε∗,

P{N>εx(0) ≤ n;An
>εx(0, τ̄

n
f (εx))− cτ̄nf (εx) > (1± θ)x} ∼

∑

j≤n

K∏

k=1

ρ̄nkk
jk!

P c
j,n,a((1± θ)x),
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where

P c
j,n,a(x) =

1

eg − 1
P{Br

ki >
x

cn
, k = 1, . . . , K, i = 1, . . . , nk;

Br
ki −

x

cn
≥ 1

eg − 1
g

(
Br
E1
− x

cn
e

)
, (k, i) ∈ E0;

1

eg − 1
g

(
Br
E1
− x

cn
e

)
≤ x(a− 1

cn
)},

with g = gc,j,n as defined earlier.

In particular, we have

P c
j,n,a(x) ∼ κcj,n,a

K∏

k=1

P{Br
k >

x

cn
}nk ,

with κcn,n,a = 1, and for j ≤ n, j 6= n,

κcj,n,a =
1

eg − 1
P{Zki ≥

1

eg − 1
gZE1 , (k, i) ∈ E0; (a−

1

cn
) ≥ 1

eg − 1
gZE1}.

The coefficient κcj,n,a is a continuous function of c in a neighborhood of c = 1− ρ.

The continuity property of the coefficient κcj,n,a follows immediately from its definition.

8.4.5 Proof of Theorem 8.3.1

We have now gathered all the ingredients for the proof of Theorem 8.3.1, which is restated

below in extended form. Recall that dn =
K∑
k=1

nkrk + ρ− 1.

Theorem 8.3.1

Assume that rmin > 1− ρ. Then,

P{V > x} ∼
∑

n∈S∗

∑

j≤n

K∏

k=1

ρ̄nkk
jk!

Pj,n(x),

where j = (j1, . . . , jK) and Pj,n(x) := lim
a→∞

P 1−ρ
j,n,a(x) satisfies

Pj,n(x) ∼ κj,n

K∏

k=1

P{Br
k >

x

dn
}nk ,

for some constant κj,n := lim
a→∞

κj,n,a, with κj,n,a := κ1−ρj,n,a, which is given by

κj,n =
1

eg − 1
P{Zki ≥

1

eg − 1
gZE1 , (k, i) ∈ E0},
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with g = g1−ρ,j,n as defined earlier.

In particular, P{V > x} is regularly varying of index −µ∗.

Proof

For compactness, denote

P c
a(x) :=

∑

n∈S∗a

∑

j≤n

K∏

k=1

ρ̄nkk
jk!

P c
j,n,a(x),

and

P (x) :=
∑

n∈S∗

∑

j≤n

K∏

k=1

ρ̄nkk
jk!

Pj,n(x).

We need to show that

lim
x→∞

P{V > x}
P (x)

= 1.

We may write, for any a > 0,

P{V > x}
P (x)

=
P{V > x}

P{V (ax) > x}
P{V (ax) > x}

P (x)
.

Because of Theorem 8.4.1, it thus suffices to show that

lim
a→∞

lim
x→∞

P{V (ax) > x}
P (x)

= 1. (4.8)

First observe that if rmin > 1−ρ, then there exists an a0 such that S∗a = S∗ for all a ≥ a0.

Also, combining Lemmas 8.4.1, 8.4.2, 8.4.4, we have that for δ, θ sufficiently small,

P{V 1−ρ±δ
>εx (ax) > (1± θ)x} ∼ P 1−ρ±δ

a ((1± θ)x). (4.9)

The proof of (4.8) consists of a lower and an upper bound.

Lower bound

Using Proposition 8.4.2 and Equation (4.9), we obtain that for δ > 0, θ > 0 sufficiently

small,

P{V (ax) > x} >∼ P 1−ρ+δ
a ((1 + θ)x).

Thus, for all a ≥ a0,

P{V (ax) > x}
P (x)

>∼

∑
n∈S∗

∑
j≤n

K∏
k=1

ρ̄
nk
k

jk!
P 1−ρ+δ
j,n,a ((1 + θ)x)

∑
n∈S∗

∑
j≤n

K∏
k=1

ρ̄
nk
k

jk!
Pj,n(x)

≥ min
n∈S∗,j≤n

P 1−ρ+δ
j,n,a ((1 + θ)x)

Pj,n(x)
.
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Letting θ ↓ 0, using the fact that P c
j,n,a(x) is regularly varying, we find

lim inf
x→∞

P{V (ax) > x}
P (x)

≥ min
n∈S∗,j≤n

κ1−ρ+δj,n,a

κj,n
.

Letting δ ↓ 0, recalling that κcj,n,a is continuous in c in a neighborhood of 1− ρ, and then

a→∞, the desired lower bound follows.

Upper bound

Using Proposition 8.4.4 and Equation (4.9), we obtain that for δ > 0, θ > 0 sufficiently

small,

P{V (ax) > x} <∼ P 1−ρ−δ
a ((1− θ)x).

Thus, for all a ≥ a0,

P{V (ax) > x}
P (x)

≤

∑
n∈S∗

∑
j≤n

K∏
k=1

ρ̄
nk
k

jk!
P 1−ρ−δ
j,n,a ((1− θ)x)

∑
n∈S∗

∑
j≤n

K∏
k=1

ρ̄
nk
k

jk!
Pj,n(x)

≤ max
n∈S∗,j≤n

P 1−ρ−δ
j,n,a ((1− θ)x)

Pj,n(x)
.

Letting θ ↓ 0, using the fact that P c
j,n,a(x) is regularly varying, we conclude

lim sup
x→∞

P{V (ax) > x}
P (x)

≤ max
n∈S∗,j≤n

κ1−ρ−δj,n,a

κj,n
.

Letting δ ↓ 0, recalling that κcj,n,a is continuous in c in a neighborhood of 1− ρ, and then

a→∞, the desired upper bound follows.

2

8.4.6 Transient workload asymptotics

Recall that the steady-state workload asymptotics were obtained from an analysis of the

asymptotic behavior of P{V (ax) > x} for x → ∞ after letting a → ∞. This raises

the question whether it is possible to obtain the exact asymptotics of P{V (ax) > x} for

x→∞ for any value of a.

To answer this question, we first consider the case where a is large enough for the condition

rmax
a (1−ρ) < 1−ρ to hold, which implies that the overflow scenarios in the transient and

steady-state case coincide.

Theorem 8.4.2 If rmax
a (1− ρ) < 1− ρ, then

P{V (ax) > x} ∼ P 1−ρ
a (x).
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Proof

The proof is largely similar to that of Theorem 8.3.1 in the previous subsection, except

that the use of Theorem 8.4.1 is not needed now.

2

Unfortunately, it seems difficult to remove the condition rmax
a (1− ρ) < 1− ρ in the above

theorem. This condition is induced by the use of Lemma 8.4.2, where it is needed to

ensure that the process {An
>εx(0, s)− cs} reaches its supremum over the interval [0, ax] at

time τ̄nf (εx).

This is no longer guaranteed to be the case when rmax
a (1 − ρ) > 1 − ρ. In that case, the

event An
>εx(0, τ̄

n
f (εx)) − cτ̄nf (εx) > x is by far not necessary for the event V c,n

>εx(ax) > x

to occur because the drift of the process {An
>εx(0, s) − cs} may remain positive after

time τ̄nf (εx). This necessitates a detailed analysis of the process {An
>εx(0, s) − cs} after

time τ̄nf (εx), which seems rather difficult, even in the single-class case K = 1.

Nevertheless, it is possible to apply the earlier results to obtain asymptotically tight lower

and upper bounds for P{V (ax) > x} as x→∞, which hold for any value of a, under the

considerably milder condition rmin
a > 1− ρ.

Theorem 8.4.3 Assume that rmin
a > 1− ρ. Then,

P 1−ρ
a (x)

<∼ P{V (ax) > x} <∼ P 1−ρ
a (x(1− a(rmax

a + ρ− 1))).

Proof

The lower bound follows directly from Lemmas 8.4.2 and 8.4.4 and the results of Subsec-

tion 8.4.1. For the upper bound, note that the drift of the process {An
>εx(0, s)− cs} is at

most rmax
a −c after time τ̄nf (εx). Hence, this process can increase by at most a(rmax

a −c)x un-

til time ax. This implies that one must have An
>εx(0, τ̄

n
f (εx))−cτ̄nf (εx) > x(1−a(rmax

a −c))
in order for the event V c,n

>εx(ax) > x to occur. The proof of the upper bound is then com-

pleted by using Lemma 8.4.4.

2

Note that the upper bound in the above theorem is non-trivial because rmax
a + ρ− 1 < 1

a
.

Moreover, the bounds asymptotically coincide up to a constant factor, since the function

P 1−ρ
a (·) is regularly varying of index −µ∗a.

8.5 Proof of Theorem 8.4.1

In this section we provide the proof of Theorem 8.4.1. We first collect some preparatory

results. For conciseness, we drop a = ∞ from the previously introduced notation to
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denote steady-state quantities. For example S∗(c) := S∗∞(c) is the set of optimal solutions

of the linear program formulated at the beginning of Section 8.4, rmin(c) := rmin
∞ (c) =

min
n∈S∗(c)

K∑
k=1

nkrk, S
−(c) := S−∞(c) = {n ∈ NK :

K∑
k=1

nkrk < c}, S+(c) := S+
∞(c) = {n ∈ NK :

K∑
k=1

nkrk ≥ c}, and rmax(c) := rmax
∞ (c) = max

n∈S−(c)

K∑
k=1

nkrk < c.

Proposition 8.5.1 Assume that rmin(c) > c.

Then for all ε < 1
rmin(c)−c ,

P{V c
>εx > x} ≥

∑

n∈S∗(c)

K∏

k=1

e−ρ̄k
ρ̄nkk
nk!

(P{Br
k >

x

rmin(c)− c
})nk .

Proof

Consider the event that at some arbitrary time t there are exactly nk active class-k

sessions, k = 1, . . . , K, n ∈ S∗(c), which all started before time t− x
rmin(c)−c .

Since ε < 1
rmin(c)−c , this event implies that V c

>εx(t) is larger than

(
K∑

k=1

nkrk − c)
x

rmin(c)− c
≥ x,

while it occurs with probability

K∏

k=1

e−ρ̄k
ρ̄nkk
nk!

(P{Br
k >

x

rmin(c)− c
})nk .

2

Proposition 8.5.2 Consider a queue of capacity c fed by a process which generates traffic

at rate rn for a fraction of the time pn, n = 1, . . . , N (possibly N = ∞). Assume

r1 ≤ r2 ≤ . . . rK−1 < c ≤ rK ≤ . . . ≤ rN , and
N∑
n=1

pnrn < c for stability. Let V c be the

stationary workload. Then for any x > 0

P{V c > 0} ≤ 1

c− rK−1

N∑

n=K

pn(rn − rK−1).

Proof

First observe that P{V c > 0} ≤ π>0, where the latter quantity represents the stationary

probability that the workload is non-zero if the rate rn were increased to rK−1 for all

n = 1, . . . , K − 1.
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From a simple balance argument, noting that the workload cannot be zero when traffic is

generated at a rate pn > c,

N∑

n=K

pn(rn − c) = (π −
N∑

n=K

pn)(c− rK−1),

yielding

π>0 =
1

c− rK−1

N∑

n=K

pn(rn − rK−1),

which completes the proof.

2

Proposition 8.5.3 For each ε > 0 there exists a finite Mε such that

P{V c
>εx > 0} <∼

max
k=1,...,K

rk

c− rmax(c)

∑

n∈S∗(c)

K∏

k=1

ρ̄nkk
jk!

(MεP{Br
k > εx})nk .

Proof

Since Bk is regularly varying, it is possible to construct a finite constant Mε such that

ρ̄k,>εx ≤ ρ̄kMεP{Br
k > εx}. Using Proposition 8.5.2 (noting that pn =

K∏
k=1

e−ρ̄k,>εx
ρ̄
nk
k,>εx

nk!
),

P{V c
>εx > 0}

≤ 1

c− rmax(c)

∑

n∈S+(c)

(
K∑

k=1

nkrk − rmax(c))
K∏

k=1

e−ρ̄k,>εx
ρ̄nkk,>εx
nk!

≤ 1

c− rmax(c)

∑

n∈S+(c)

(
K∑

k=1

nkrk − rmax(c))
K∏

k=1

ρ̄nkk
nk!

(MεP{Br
k > εx})nk

=
1

c− rmax(c)

∑

n∈S∗(c)
(
K∑

k=1

nkrk − rmax(c))
K∏

k=1

ρ̄nkk
nk!

(MεP{Br
k > εx})nk

+
1

c− rmax(c)

∑

m∈S+(c)\S∗(c)
(
K∑

k=1

mkrk − rmax(c))
K∏

k=1

ρ̄mk
k

jk!
(MεP{Br

k > εx})mk .

Note that

∑
n∈S∗(c)

(
K∑
k=1

nkrk − rmax(c))
ρ̄
nk
k

nk!
(MεP{Br

k > εx})nk

∑
n∈S∗(c)

ρ̄
nk
k

nk!
(MεP{Br

k > εx})nk
≤ max

n∈S∗(c)

K∑

k=1

nkrk − rmax(c)

≤ max
k=1,...,K

rk.
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From the definition of S∗(c) it follows that there exists an x0 such that for all x ≥ x0,

K∏

k=1

P{Br
k > εx})mk ≤ H(x)

K∏

k=1

(Mερ̄k)
nk

nk!
P{Br

k > εx})nk ,

for all m ∈ S+(c) \ S∗(c), n ∈ S∗(c), with H(x) = o(1) as x→∞, so that

∑
m∈S+(c)\S∗(c)

(
K∑
k=1

mkrk − rmax(c))
K∏
k=1

(Mερ̄k)
mk

mk!
(P{Br

k > εx})mk

∑
n∈S∗(c)

(Mερ̄k)
nk

nk!
(P{Br

k > εx})nk

≤ H(x)
∑

m∈S+(c)\S∗(c)
(
K∑

k=1

mkrk − rmax(c))
K∏

k=1

(Mερ̄k)
mk

mk!

≤ H(x)
∑

m≥0
(
K∑

k=1

mkrk)
K∏

k=1

(Mερ̄k)
mk

mk!

= H(x)(
K∑

k=1

ρ̄krk)e
Mε

K∑
k=1

ρ̄k
= ρH(x)e

Mε

K∑
k=1

ρ̄k
.

Hence,

lim sup
x→∞

P{V c
>εx > 0}

∑
n∈S∗(c)

K∏
k=1

ρ̄
nk
k

jk!
(MεP{Br

k > εx})nk
≤

max
k=1,...,K

rk

c− rmax(c)
.

2

We have now gathered all the ingredients for the proof of Theorem 8.4.1 which is repeated

below.

Theorem 8.4.1

If rmin > 1− ρ, then

lim
a→∞

lim
x→∞

P{V (ax) > x}
P{V > x} = 1.

Proof

By definition,

P{V > x} = P{sup
t≥0
{A(0, t)− t} > x}

≤ P{sup
t≤ax

{A(0, t)− t} > x}+ P{sup
t≥ax

{A(0, t)− t} > x}

= P{V (ax) > x}+ P{sup
t≥ax

{A(0, t)− t} > x}.
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Thus, it suffices to show that

lim
a→∞

lim sup
x→∞

P{sup
t≥ax

{A(0, t)− t} > x}

P{V > x} = 0.

For t ≥ ax, write

A(0, t)− t = A(0, ax)− ax+ A(ax, t)− (t− ax),

and observe thatA(ax, t)
d
= A(0, t−ax) since the processA(0, t) has stationary increments.

Thus, for δ > 0 sufficiently small,

P{sup
t≥ax

{A(0, t)− t} > 0}

= P{sup
t≥ax

{A(0, ax)− ax+ A(ax, t)− (t− ax)} > 0}

= P{A(0, ax)− ax+ sup
t≥ax

{A(ax, t)− (t− ax)} > 0}

≤ P{A(0, ax)− ax > −δax}+ P{sup
t≥ax

{A(0, t− ax)− (t− ax)} > δax}

= P{A(0, ax)− (1− 2δ)ax > δax}+ P{sup
t≥ax

{A(0, t− ax)− (t− ax)} > δax}

≤ P{sup
t≥0
{A(0, t)− (1− 2δ)t} > δax}+ P{sup

t≥0
{A(0, t)− t} > δax}

= P{V 1−2δ > δax}+ P{V > δax}
≤ 2P{V 1−2δ > δax}.

Hence, using Propositions 8.4.2, 8.4.5, for θ > 0 sufficiently small,

lim sup
x→∞

P{sup
t≥ax

{A(0, t)− t} > x}

P{V > x} ≤ 2 lim sup
x→∞

P{V 1−2δ > δax}
P{V > x}

≤ 2 lim sup
x→∞

P{V 1−ρ−3δ
>εx > (1− θ)δax}

P{V 1−ρ+δ
>εx > (1 + θ)x}

≤ 2 lim sup
x→∞

P{V 1−ρ−3δ
>εx > (1− θ)δx/(1 + θ)}

P{V 1−ρ+δ
>εx > x/a}

≤ 2 lim sup
x→∞

P{V 1−ρ−3δ
>εx > 0}

P{V 1−ρ+δ
>εx > x/a}

.

The assumption that rmin > 1−ρ ensures that there exists a δ∗ such that rmin > 1−ρ+δ∗,

rmax < 1− ρ− 3δ∗, and S∗(1− ρ− 3δ∗) = S∗(1− ρ+ δ∗) = S∗.

Using Propositions 8.5.1, 8.5.3, we then find that there exists an ε∗ > 0 such that for all

ε < ε∗,

lim sup
x→∞

P{sup
t≥ax

{A(0, t)− t} > x}

P{V > x} ≤
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2 lim sup
x→∞

max
k=1,...,K

rk

1− ρ− rmax − 3δ∗

∑
n∈S∗

K∏
k=1

ρ̄
nk
k

nk!
(MεP{Br

k > εx})nk

∑
n∈S∗

K∏
k=1

e−ρ̄k
ρ̄
nk
k

nk!
(P{Br

k >
x

a(rmin+ρ−1−δ∗)})nk
≤

2
max

k=1,...,K
rk

1− ρ− rmax − 3δ∗
e

K∑
k=1

ρ̄k
max
n∈S∗

lim sup
x→∞

K∏

k=1

(
MεP{Br

k > εx}
ρ̄nkP{Br

k >
x

a(rmin+ρ−1−δ∗)}

)nk

.

Now first let x→∞ and then a→∞ (use the fact that P{Br
k > x} is of regular variation).

2

8.6 Most probable time to overflow

As a direct application of the workload asymptotics which we derived in the previous

sections, we now establish a conditional limit theorem for the most probable time to

overflow, given that the process {A(0, t) − ct} reaches a large level x. Define τ(x) =

inf{t ≥ 0 : A(0, t) − ct > x}. Note that V ≥ x iff τ(x) < ∞. We will give an expression

for the asymptotic distribution of τ(x) conditional upon τ(x) <∞ for x→∞. Define the

probability measure Px{·} := P{· | τ(x) < ∞}. In this section we compute the limiting

Px-distribution of τ(x)
x

for x→∞.

A similar problem has been investigated by Asmussen & Klüppelberg [21] for random

walks and Lévy processes with negative drift and heavy-tailed jumps. As has been shown

in [21], this class of processes allows for a general subexponential jump size distribution.

Here though, like in the rest of the chapter, we consider the case of regular variation. In

fact, since slowly varying functions may be difficult to compare in the multi-class case,

we assume that the session lengths are Pareto distributed, i.e.,

P{Br
k > x} ∼ γkx

1−νk , k = 1, . . . , K.

This assumption may be weakened, as will be discussed below.

In order to state the result, we need to introduce some additional notation. For given a,

define the set Sa as Sa := {n ∈ S∗ :
K∑
k=1

rknk ≥ 1 − ρ + 1
a
}. We will also make extensive

use of the coefficients κj,n and κj,n,a defined earlier. The definition of κj,n,a as given in

Subsection 8.4.4 only makes sense for
K∑
k=1

rknk > 1 − ρ + 1
a
. If

K∑
k=1

rknk = 1 − ρ + 1
a
, we

define κj,n,a = 1{j=n}.

Theorem 8.6.1 The quantity τ(x)
x

converges in Px-distribution for x → ∞ to a random
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variable Y , which has distribution function

G(a) := P{Y ≤ a} =

∑
n∈Sa

∑
j≤n

dµ
∗

n κj,n,a
K∏
k=1

(ρ̄kγk)
nk

jk!

∑
n∈S∗

∑
j≤n

dµ
∗

n κj,n
K∏
k=1

(ρ̄kγk)
nk

jk!

,

with dn =
K∑
k=1

nkrk + ρ− 1 as before.

Proof

First observe that the extended definition of κj,n,a ensures that κj,n,a is right-continuous

in a if a is such that
K∑
k=1

rknk = 1 − ρ + 1
a
. This then implies that the function G(·) is

right-continuous. From the analysis in the previous sections, it follows that G(·) is non-

decreasing and that G(a) → 1 as a → ∞. Hence, G(·) is a proper distribution function,

so that Y is a well-defined random variable.

We need to show that Px{τ(x) < ax} → G(a) as x→∞ for each continuity point of G(·).
Using the definition of Sa and the (extended) definition of κj,n,a, it is easy to see that

G(·) is continuous in a iff
K∑
k=1

rknk > 1− ρ+ 1
a
for all n ∈ Sa (look at the structure of Sa).

Hence, we may assume that a is such that
K∑
k=1

rknk > 1− ρ+ 1
a
for all n ∈ Sa.

Now write

P{τ(x) ≤ ax | τ(x) <∞} = P{τ(x) ≤ ax}
P{τ(x) <∞} =

P{V (ax) ≥ x}
P{V ≥ x} ∼ P{V (ax) > x}

P{V > x} .

Note that P{V > x} is regularly varying of index −µ∗. If
K∑
k=1

rknk < 1 − ρ + 1
a
for all

n ∈ S∗ (i.e. Sa = ∅), then it is obvious that P{V (ax) > x} is regularly varying of index

−µ∗a < −µ∗. This implies that P{V (ax) > x}/P{V > x} → 0 if a is small enough for Sa
to be empty.

Now suppose that a is large enough such that Sa is non-empty. It is then easy to see that

Sa = S∗a. If we combine this identity with Theorems 8.3.1 and 8.4.2, we find, noting that
K∑
k=1

(νk − 1) = µ∗ for all n ∈ S∗,

Px{τ(x) ≤ ax} =
P{V (ax) ≥ x}

P{V > x}

∼

∑
n∈Sa

∑
j≤n

κj,n,a
K∏
k=1

ρ̄
nk
k

jk!
(P{Br

k >
x
dn
})nk

∑
n∈S∗

∑
j≤n

κj,n
K∏
k=1

ρ̄
nk
k

jk!
(P{Br

k >
x
dn
})nk
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∼

∑
n∈Sa

∑
j≤n

κj,n,a
K∏
k=1

ρ̄
nk
k

jk!
γnkk ( x

dn
)−nk(νk−1)

∑
n∈S∗

∑
j≤n

κj,n
K∏
k=1

ρ̄
nk
k

jk!
γnkk ( x

dn
)−nk(νk−1)

∼

∑
n∈Sa

dµ
∗

n

∑
j≤n

κj,n,a
K∏
k=1

(ρ̄kγk)
nk

jk!

∑
n∈S∗

dµ
∗

n

∑
j≤n

κj,n
K∏
k=1

(ρ̄kγk)
nk

jk!

.

2

If the set S∗ is a singleton, then it is easy to see that regular variation suffices in the last

two lines of the above proof. In particular, this is true in the single-class case K = 1.

We conclude the section with the most basic single-class scenario where overflow is caused

by a single long session, which occurs when r > 1− ρ. In this case, the distribution of Y

takes the explicit form

P{Y ≤ a} = 1− ρ

r
+

(
1− 1− ρ

r

)
P{ r

1− ρ
Z ≤ a− 1

r − (1− ρ)
},

where P{Z > a} = (1 + (r − (1− ρ))a)1−ν . This expression reduces to the results for the

case of compound Poisson input in [21] when we let r → ∞. The results in [21] further

include conditional limit theorems for the behavior of the process {A(0, t) − ct} up to

time τ(x). It should be possible to derive similar results for the case of M/G/∞ input

considered here as well.
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[61] Borst, S.C., Boxma, O.J., Núñez-Queija, R. (2001). Personal communication.

[62] Botvich, D.D., Duffield, N.G. (1995). Large deviations, the shape of the loss curve,

and economies of scale in large multiplexers. Queueing Systems 20, 293–320.

[63] Boxma, O.J. (1978). On the longest service time in a busy period of the M/G/1

queue. Stochastic Processes and their Applications 8, 93–100.

[64] Boxma, O.J. (1980). The longest service time in a busy period. Zeitschrift für Op-

erations Research 24, 235–242.

[65] Boxma, O.J. (1996). Fluid queues and regular variation. Performance Evaluation

27 & 28, 699–712.

[66] Boxma, O.J. (1997). Regular variation in a multi-source fluid queue. In: Ra-

maswami, V., Wirth, P. (editors). Teletraffic Contributions for the Information Age,

Proc. ITC-15. North-Holland, Amsterdam, 391–402.



206 BIBLIOGRAPHY

[67] Boxma, O.J., Dumas, V. (1998). Fluid queues with heavy-tailed activity period

distributions. Computer Communications 21, 1509–1529.

[68] Boxma, O.J., Dumas, V. (1998). The busy period in the fluid queue. Performance

Evaluation Review 26, 100–110.

[69] Boxma, O.J., Cohen, J.W. (1998). The M/G/1 queue with heavy-tailed service time

distribution. IEEE Journal on Selected Areas in Communications 16, 349–363.

[70] Boxma, O.J., Deng, Q., Zwart, A.P. (1999). Waiting-time asymptotics for the

M/G/2 queue with heterogeneous servers. Technical Memorandum COSOR 99-20,

Eindhoven University of Technology. Queueing Systems, to appear.

[71] Boxma, O.J., Cohen, J.W. (1999). Heavy-traffic analysis for the GI/G/1 queue with

heavy-tailed distributions. Queueing Systems 33, 177–204.

[72] Boxma, O.J., Cohen, J.W., Deng, Q. (1999). Heavy-traffic analysis of the M/G/1

queue with priority classes. In: Key, P., Smith, D. (editors). Teletraffic Engineering

in a Competitive World, Proc. ITC-16. North-Holland, Amsterdam, 1157–1167.

[73] Boxma, O.J., Kurkova, I. (1999). The M/G/1 queue with two speeds of service.

Technical Report 99-057, EURANDOM, Eindhoven. Advances in Applied Probabil-

ity, to appear.

[74] Boxma, O.J., Kurkova, I. (2000). The M/M/1 queue in a heavy-tailed random

environment. Statistica Neerlandica 54, 221–236.

[75] Boxma, O.J., Cohen, J.W. (2000). The single server queue: heavy tails and heavy

traffic. In: Park, K., Willinger, W. (editors). Self-Similar Network Traffic and Per-

formance Evaluation. Wiley, New York, 143–170.

[76] Boxma, O.J., Deng, Q. (2000). Asymptotic behaviour of the tandem queueing sys-

tem with identical service times at both queues.Mathematical Methods of Operations

Research 52, 307–323.

[77] Boxma, O.J, Deng, Q., Resing, J.A.C. (2000). Polling systems with regularly varying

service and/or switchover times. Advances in Performance Analysis 3, 71–107.

[78] Breiman, L. (1965). On some limit theorems similar to the arc-sin law. Theory of

Probability and its Applications 10, 323–331.

[79] Brichet, F., Roberts, J., Simonian, A., Veitch, D. (1996). Heavy traffic analysis of

a storage model with long-range dependent On-Off sources. Queueing Systems 23,

197–215.



BIBLIOGRAPHY 207

[80] Brockwell, P.J., Davis, R.A. (1991). Time Series: Theory and Methods. Springer,

New York.

[81] Choe, J., Shroff, N. (1999). On the supremum distribution of integrated stationary

Gaussian processes with negative linear drift. Advances in Applied Probability 31,

135–157.

[82] Chistyakov, V.P. (1964). A theorem on sums of independent, positive random vari-

ables and its applications to branching processes. Theory of Probability and its

Applications 9, 640–648.

[83] Choudhury, G. L., Whitt, W. (1997). Long-tail buffer-content distributions in broad-

band networks. Performance Evaluation 30, 177–190.

[84] Chover, J., Ney, P., Wainger, S. (1973). Functions of probability measures. Journal
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Volume I. Springer, Berlin, 601–678.

[108] Crovella, M., Bestavros, A. (1996). Self-similarity in World Wide Web traffic: evi-

dence and possible causes. In: Proceedings of ACM Sigmetrics ’96, 160–169.

[109] Crovella, M., Taqqu, M.S., Bestavros, A. (1998). Heavy tails in the World Wide

Web. In: Adler, R., Feldman, R., Taqqu, M.S. (editors). A Practical Guide to

Heavy Tails. Birkhäuser, Boston, 3–25.
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Samenvatting (Summary)

Het onderwerp van dit proefschrift is de probabilistische analyse van wachtrijmodellen

en vloeistofmodellen, waarbij bijvoorbeeld de bedieningsvraag van een klant of de aan-

periode van een aan-uit bron zwaarstaartig is.

De belangstelling voor deze klasse van wachtrijmodellen is ingegeven door recente metin-

gen aan moderne communicatienetwerken, zoals het Internet. Deze metingen hebben

uitgewezen dat het verkeer in deze systemen zich extreem grillig gedraagt. Essentiële

kenmerken van dit verkeer zijn onder meer het ‘fractale’ karakter (self-similarity) en sig-

nificante correlaties op grote tijdschalen (long-range dependence). Een algemeen geac-

cepteerde verklaring voor deze verschijnselen is ‘zwaarstaartigheid’ van verdelingen van

diverse grootheden, zoals lengtes van telefoongesprekken en filegroottes in het dataver-

keer. Hoofdstuk 1 van dit proefschrift gaat dieper in op bovenstaande motivatie en plaatst

de in dit proefschrift gevolgde aanpak in een breder kader.

Hoofdstuk 2 gaat dieper in op de wiskundige aspecten van wachtrijen met zware staarten.

Er worden diverse klassen en eigenschappen van zwaarstaartige verdelingen gëıntroduceerd.

Daarnaast worden diverse in de literatuur bekende resultaten voor basismodellen gegeven.

Dit hoofdstuk heeft als rode draad de aandacht voor de intüıtieve verklaring van deze re-

sultaten en bevat ook een heuristische afleiding van de staartkans van de wachttijd in een

wachtrij met twee heterogene bedienden. Het hoofdstuk besluit met een algemeen recept

dat in latere hoofdstukken als leidraad dient om deze heuristische afleidingen te vertalen

in een bewijs.

In Hoofdstuk 3 analyseren we de verblijftijd van een klant in de M/G/1 wachtrij met de

Processor Sharing (PS) bedieningsdiscipline, voor het geval dat de bedieningsduurverdel-

ing van een klant een regulier variërende staart heeft. Het belangrijkste resultaat van

dit hoofdstuk is dat de staarten van de bedieningsduurverdeling en verblijftijdverdeling

even zwaar zijn. Dit staat in schril contrast met de traditionele First-Come-First-Served

(FCFS) bedieningsdiscipline, waarbij een zwaarstaartige bedieningsduurverdeling leidt tot

een nog zwaardere staart van de verdeling van de verblijftijd. De resultaten in dit hoofd-

stuk geven duidelijk aan dat een lange bedieningstijd van een klant slechts een beperkte

invloed heeft op de verblijftijd van andere klanten.

De in dit proefschrift bestudeerde modellen hebben vrijwel allemaal een oneindig grote

buffer. Een uitzondering op deze regel wordt gemaakt in Hoofdstuk 4: Dit hoofdstuk
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richt zich op het evalueren van de verliesfractie in een vloeistofmodel, gebruikmakend van

relaties met het vloeistofmodel met oneindig grote buffer. Daarnaast wordt de verdeling

van de bufferinhoud, in het bijzonder de gemiddelde bufferinhoud, bestudeerd. De resul-

taten worden toegepast om het asymptotische gedrag van de verliesfractie en gemiddelde

bufferinhoud te bepalen, voor het geval dat de buffer groot is. De resultaten laten zien

dat in sommige gevallen een extreem grote buffer nodig is om een kleine verliesfractie te

garanderen, hetgeen een direct gevolg is van de zwaarstaartige input.

Het centrale onderwerp in Hoofdstuk 5 is de lengte van de ‘bezige periode’ in de G/G/1

wachtrij; dit is de periode dat de bediende onafgebroken aan het werk is. We concen-

treren ons in het bijzonder op de staartkans van de bijbehorende kansverdeling in het

geval dat de bedieningsduurverdeling regulier variërend is; de tussenaankomsttijd heeft

een willekeurige verdeling. Een belangrijke bijdrage van dit hoofdstuk is de manier waarop

het staartgedrag van de bezige periode wordt afgeleid. Eerst wordt heuristisch beargu-

menteerd dat een lange bezige periode het gevolg is van een extreem grote hoeveelheid

werk in het systeem aan het ‘begin’ van die bezige periode. Vervolgens wordt deze intüıtie

gebruikt in het bewijs.

In Hoofdstukken 6 en 7 van het proefschrift analyseren we het vloeistofmodel met meerdere

aan-uit bronnen met zwaarstaartige (regulier variërende) aan-tijden. Naast deze bronnen

laten we ook verkeer met een lichtstaartig karakter toe. Voor deze superpositie analyseren

we het staartgedrag van de stationaire verdeling van de bufferinhoud.

Er is een duidelijk criterium aan te geven dat het kwalitatieve gedrag van deze staart

bepaalt. Als de capaciteit van het systeem groter is dan een bepaalde kritieke waarde,

dan is de kansverdeling van de bufferinhoud lichtstaartig; in het andere geval heeft de

verdeling van de bufferinhoud een zware staart. Deze regimes zijn het respectievelijke

onderwerp van Hoofdstukken 6 en 7. Beide hoofdstukken leunen zwaar op intüıtieve

verklaringen voor de totstandkoming van extreem grote vertragingen.

In Hoofdstuk 6 laten we zien dat een grote bufferinhoud het gevolg is van het feit dat

alle zwaarstaartige bronnen tegelijkertijd een lange aan-periode beleven. In dit regime is

de overgebleven capaciteit voor de lichtstaartige input nog steeds genoeg om het systeem

stabiel te houden. Dit systeem wordt geanalyseerd met behulp van bestaande resultaten

uit de theorie van grote afwijkingen.

In het regime van hoofdstuk 7 komt een extreem grote bufferinhoud op geheel andere

wijze tot stand. We laten zien dat een bepaalde ‘dominante’ verzameling aan-uit bronnen

verantwoordelijk is. Deze verzameling kan worden beschreven als de oplossing van een

‘knapsack’ probleem. De bronnen die niet tot deze verzameling behoren kunnen vervan-

gen worden door hun gemiddelde input en oefenen zo geen invloed uit op de zeldzame

gebeurtenis. Dit hoofdstuk laat zien dat de bronnen uit de dominante verzameling elk

één lange aan-periode genereren. Deze aan-periodes treden vrijwel gelijktijdig op.

In voorgaande studies is alleen het geval opgelost waarbij de dominante verzameling uit

één aan-uit bron bestaat. Deze aanname vereenvoudigt de analyse, maar is uit praktisch
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oogpunt onbevredigend. In dit hoofdstuk wordt deze restrictie opgeheven, hetgeen een

aanmerkelijk gecompliceerder bewijs met zich meebrengt. Het bewijs leunt zwaar op de

gegeven intüıtie en op het recept in Hoofdstuk 2.

De analyse in Hoofdstuk 8 van dit proefschrift is nauw gerelateerd aan die van Hoofdstuk

7, maar de input van het vloeistofmodel wordt nu gereguleerd door het aantal klanten in

een M/G/∞ wachtrij, d.w.z., het inputproces kan gezien worden als de superpositie van

oneindig veel aan-uit bronnen die elk één aan-periode genereren. De structuur van dit

inputproces is aanmerkelijk eenvoudiger dan dat van Hoofdstuk 7 en is daarom buitenge-

woon populair. Evenals in Hoofdstuk 7 zijn in de literatuur slechts exacte resultaten

bekend voor de staart van de bufferinhoud wanneer één lange aan-periode genoeg is om

het systeem instabiel te maken. Dit hoofdstuk geeft exacte asymptotische resultaten voor

het algemenere geval waarbij meerdere lange aan-periodes nodig zijn. De mooie structuur

van het inputproces maakt het mogelijk om ook asymptotische resultaten af te leiden voor

de transiënte verdeling van de bufferinhoud.
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