795 research outputs found

    Optimizing text mining methods for improving biomedical natural language processing

    Get PDF
    The overwhelming amount and the increasing rate of publication in the biomedical domain make it difficult for life sciences researchers to acquire and maintain all information that is necessary for their research. Pubmed (the primary citation database for the biomedical literature) currently contains over 21 million article abstracts and more than one million of them were published in 2020 alone. Even though existing article databases provide capable keyword search services, typical everyday-life queries usually return thousands of relevant articles. For instance, a cancer research scientist may need to acquire a complete list of genes that interact with BRCA1 (breast cancer 1) gene. The PubMed keyword search for BRCA1 returns over 16,500 article abstracts, making manual inspection of the retrieved documents impractical. Missing even one of the interacting gene partners in this scenario may jeopardize successful development of a potential new drug or vaccine. Although manually curated databases of biomolecular interactions exist, they are usually not up-to-date and they require notable human effort to maintain. To summarize, new discoveries are constantly being shared within the community via scientific publishing, but unfortunately the probability of missing vital information for research in life sciences is increasing. In response to this problem, the biomedical natural language processing (BioNLP) community of researchers has emerged and strives to assist life sciences researchers by building modern language processing and text mining tools that can be applied at large-scale and scan the whole publicly available literature and extract, classify, and aggregate the information found within, thus keeping life sciences researchers always up-to-date with the recent relevant discoveries and facilitating their research in numerous fields such as molecular biology, biomedical engineering, bioinformatics, genetics engineering and biochemistry. My research has almost exclusively focused on biomedical relation and event extraction tasks. These foundational information extraction tasks deal with automatic detection of biological processes, interactions and relations described in the biomedical literature. Precisely speaking, biomedical relation and event extraction systems can scan through a vast amount of biomedical texts and automatically detect and extract the semantic relations of biomedical named entities (e.g. genes, proteins, chemical compounds, and diseases). The structured outputs of such systems (i.e., the extracted relations or events) can be stored as relational databases or molecular interaction networks which can easily be queried, filtered, analyzed, visualized and integrated with other structured data sources. Extracting biomolecular interactions has always been the primary interest of BioNLP researcher because having knowledge about such interactions is crucially important in various research areas including precision medicine, drug discovery, drug repurposing, hypothesis generation, construction and curation of signaling pathways, and protein function and structure prediction. State-of-the-art relation and event extraction methods are based on supervised machine learning, requiring manually annotated data for training. Manual annotation for the biomedical domain requires domain expertise and it is time-consuming. Hence, having minimal training data for building information extraction systems is a common case in the biomedical domain. This demands development of methods that can make the most out of available training data and this thesis gathers all my research efforts and contributions in that direction. It is worth mentioning that biomedical natural language processing has undergone a revolution since I started my research in this field almost ten years ago. As a member of the BioNLP community, I have witnessed the emergence, improvement– and in some cases, the disappearance–of many methods, each pushing the performance of the best previous method one step further. I can broadly divide the last ten years into three periods. Once I started my research, feature-based methods that relied on heavy feature engineering were dominant and popular. Then, significant advancements in the hardware technology, as well as several breakthroughs in the algorithms and methods enabled machine learning practitioners to seriously utilize artificial neural networks for real-world applications. In this period, convolutional, recurrent, and attention-based neural network models became dominant and superior. Finally, the introduction of transformer-based language representation models such as BERT and GPT impacted the field and resulted in unprecedented performance improvements on many data sets. When reading this thesis, I demand the reader to take into account the course of history and judge the methods and results based on what could have been done in that particular period of the history

    Mining the Medical and Patent Literature to Support Healthcare and Pharmacovigilance

    Get PDF
    Recent advancements in healthcare practices and the increasing use of information technology in the medical domain has lead to the rapid generation of free-text data in forms of scientific articles, e-health records, patents, and document inventories. This has urged the development of sophisticated information retrieval and information extraction technologies. A fundamental requirement for the automatic processing of biomedical text is the identification of information carrying units such as the concepts or named entities. In this context, this work focuses on the identification of medical disorders (such as diseases and adverse effects) which denote an important category of concepts in the medical text. Two methodologies were investigated in this regard and they are dictionary-based and machine learning-based approaches. Futhermore, the capabilities of the concept recognition techniques were systematically exploited to build a semantic search platform for the retrieval of e-health records and patents. The system facilitates conventional text search as well as semantic and ontological searches. Performance of the adapted retrieval platform for e-health records and patents was evaluated within open assessment challenges (i.e. TRECMED and TRECCHEM respectively) wherein the system was best rated in comparison to several other competing information retrieval platforms. Finally, from the medico-pharma perspective, a strategy for the identification of adverse drug events from medical case reports was developed. Qualitative evaluation as well as an expert validation of the developed system's performance showed robust results. In conclusion, this thesis presents approaches for efficient information retrieval and information extraction from various biomedical literature sources in the support of healthcare and pharmacovigilance. The applied strategies have potential to enhance the literature-searches performed by biomedical, healthcare, and patent professionals. The applied strategies have potential to enhance the literature-searches performed by biomedical, healthcare, and patent professionals. This can promote the literature-based knowledge discovery, improve the safety and effectiveness of medical practices, and drive the research and development in medical and healthcare arena

    Information retrieval and text mining technologies for chemistry

    Get PDF
    Efficient access to chemical information contained in scientific literature, patents, technical reports, or the web is a pressing need shared by researchers and patent attorneys from different chemical disciplines. Retrieval of important chemical information in most cases starts with finding relevant documents for a particular chemical compound or family. Targeted retrieval of chemical documents is closely connected to the automatic recognition of chemical entities in the text, which commonly involves the extraction of the entire list of chemicals mentioned in a document, including any associated information. In this Review, we provide a comprehensive and in-depth description of fundamental concepts, technical implementations, and current technologies for meeting these information demands. A strong focus is placed on community challenges addressing systems performance, more particularly CHEMDNER and CHEMDNER patents tasks of BioCreative IV and V, respectively. Considering the growing interest in the construction of automatically annotated chemical knowledge bases that integrate chemical information and biological data, cheminformatics approaches for mapping the extracted chemical names into chemical structures and their subsequent annotation together with text mining applications for linking chemistry with biological information are also presented. Finally, future trends and current challenges are highlighted as a roadmap proposal for research in this emerging field.A.V. and M.K. acknowledge funding from the European Community’s Horizon 2020 Program (project reference: 654021 - OpenMinted). M.K. additionally acknowledges the Encomienda MINETAD-CNIO as part of the Plan for the Advancement of Language Technology. O.R. and J.O. thank the Foundation for Applied Medical Research (FIMA), University of Navarra (Pamplona, Spain). This work was partially funded by Consellería de Cultura, Educación e Ordenación Universitaria (Xunta de Galicia), and FEDER (European Union), and the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684). We thank Iñigo Garciá -Yoldi for useful feedback and discussions during the preparation of the manuscript.info:eu-repo/semantics/publishedVersio

    NERO: a biomedical named-entity (recognition) ontology with a large, annotated corpus reveals meaningful associations through text embedding.

    Get PDF
    Machine reading (MR) is essential for unlocking valuable knowledge contained in millions of existing biomedical documents. Over the last two decades1,2, the most dramatic advances in MR have followed in the wake of critical corpus development3. Large, well-annotated corpora have been associated with punctuated advances in MR methodology and automated knowledge extraction systems in the same way that ImageNet4 was fundamental for developing machine vision techniques. This study contributes six components to an advanced, named entity analysis tool for biomedicine: (a) a new, Named Entity Recognition Ontology (NERO) developed specifically for describing textual entities in biomedical texts, which accounts for diverse levels of ambiguity, bridging the scientific sublanguages of molecular biology, genetics, biochemistry, and medicine; (b) detailed guidelines for human experts annotating hundreds of named entity classes; (c) pictographs for all named entities, to simplify the burden of annotation for curators; (d) an original, annotated corpus comprising 35,865 sentences, which encapsulate 190,679 named entities and 43,438 events connecting two or more entities; (e) validated, off-the-shelf, named entity recognition (NER) automated extraction, and; (f) embedding models that demonstrate the promise of biomedical associations embedded within this corpus

    On the Use of Parsing for Named Entity Recognition

    Get PDF
    [Abstract] Parsing is a core natural language processing technique that can be used to obtain the structure underlying sentences in human languages. Named entity recognition (NER) is the task of identifying the entities that appear in a text. NER is a challenging natural language processing task that is essential to extract knowledge from texts in multiple domains, ranging from financial to medical. It is intuitive that the structure of a text can be helpful to determine whether or not a certain portion of it is an entity and if so, to establish its concrete limits. However, parsing has been a relatively little-used technique in NER systems, since most of them have chosen to consider shallow approaches to deal with text. In this work, we study the characteristics of NER, a task that is far from being solved despite its long history; we analyze the latest advances in parsing that make its use advisable in NER settings; we review the different approaches to NER that make use of syntactic information; and we propose a new way of using parsing in NER based on casting parsing itself as a sequence labeling task.Xunta de Galicia; ED431C 2020/11Xunta de Galicia; ED431G 2019/01This work has been funded by MINECO, AEI and FEDER of UE through the ANSWER-ASAP project (TIN2017-85160-C2-1-R); and by Xunta de Galicia through a Competitive Reference Group grant (ED431C 2020/11). CITIC, as Research Center of the Galician University System, is funded by the Consellería de Educación, Universidade e Formación Profesional of the Xunta de Galicia through the European Regional Development Fund (ERDF/FEDER) with 80%, the Galicia ERDF 2014-20 Operational Programme, and the remaining 20% from the Secretaría Xeral de Universidades (Ref. ED431G 2019/01). Carlos Gómez-Rodríguez has also received funding from the European Research Council (ERC), under the European Union’s Horizon 2020 research and innovation programme (FASTPARSE, Grant No. 714150)

    Structuring the Unstructured: Unlocking pharmacokinetic data from journals with Natural Language Processing

    Get PDF
    The development of a new drug is an increasingly expensive and inefficient process. Many drug candidates are discarded due to pharmacokinetic (PK) complications detected at clinical phases. It is critical to accurately estimate the PK parameters of new drugs before being tested in humans since they will determine their efficacy and safety outcomes. Preclinical predictions of PK parameters are largely based on prior knowledge from other compounds, but much of this potentially valuable data is currently locked in the format of scientific papers. With an ever-increasing amount of scientific literature, automated systems are essential to exploit this resource efficiently. Developing text mining systems that can structure PK literature is critical to improving the drug development pipeline. This thesis studied the development and application of text mining resources to accelerate the curation of PK databases. Specifically, the development of novel corpora and suitable natural language processing architectures in the PK domain were addressed. The work presented focused on machine learning approaches that can model the high diversity of PK studies, parameter mentions, numerical measurements, units, and contextual information reported across the literature. Additionally, architectures and training approaches that could efficiently deal with the scarcity of annotated examples were explored. The chapters of this thesis tackle the development of suitable models and corpora to (1) retrieve PK documents, (2) recognise PK parameter mentions, (3) link PK entities to a knowledge base and (4) extract relations between parameter mentions, estimated measurements, units and other contextual information. Finally, the last chapter of this thesis studied the feasibility of the whole extraction pipeline to accelerate tasks in drug development research. The results from this thesis exhibited the potential of text mining approaches to automatically generate PK databases that can aid researchers in the field and ultimately accelerate the drug development pipeline. Additionally, the thesis presented contributions to biomedical natural language processing by developing suitable architectures and corpora for multiple tasks, tackling novel entities and relations within the PK domain

    Deep Neural Architectures for End-to-End Relation Extraction

    Get PDF
    The rapid pace of scientific and technological advancements has led to a meteoric growth in knowledge, as evidenced by a sharp increase in the number of scholarly publications in recent years. PubMed, for example, archives more than 30 million biomedical articles across various domains and covers a wide range of topics including medicine, pharmacy, biology, and healthcare. Social media and digital journalism have similarly experienced their own accelerated growth in the age of big data. Hence, there is a compelling need for ways to organize and distill the vast, fragmented body of information (often unstructured in the form of natural human language) so that it can be assimilated, reasoned about, and ultimately harnessed. Relation extraction is an important natural language task toward that end. In relation extraction, semantic relationships are extracted from natural human language in the form of (subject, object, predicate) triples such that subject and object are mentions of discrete concepts and predicate indicates the type of relation between them. The difficulty of relation extraction becomes clear when we consider the myriad of ways the same relation can be expressed in natural language. Much of the current works in relation extraction assume that entities are known at extraction time, thus treating entity recognition as an entirely separate and independent task. However, recent studies have shown that entity recognition and relation extraction, when modeled together as interdependent tasks, can lead to overall improvements in extraction accuracy. When modeled in such a manner, the task is referred to as end-to-end relation extraction. In this work, we present four studies that introduce incrementally sophisticated architectures designed to tackle the task of end-to-end relation extraction. In the first study, we present a pipeline approach for extracting protein-protein interactions as affected by particular mutations. The pipeline system makes use of recurrent neural networks for protein detection, lexicons for gene normalization, and convolutional neural networks for relation extraction. In the second study, we show that a multi-task learning framework, with parameter sharing, can achieve state-of-the-art results for drug-drug interaction extraction. At its core, the model uses graph convolutions, with a novel attention-gating mechanism, over dependency parse trees. In the third study, we present a more efficient and general-purpose end-to-end neural architecture designed around the idea of the table-filling paradigm; for an input sentence of length n, all entities and relations are extracted in a single pass of the network in an indirect fashion by populating the cells of a corresponding n by n table using metric-based features. We show that this approach excels in both the general English and biomedical domains with extraction times that are up to an order of magnitude faster compared to the prior best. In the fourth and last study, we present an architecture for relation extraction that, in addition to being end-to-end, is able to handle cross-sentence and N-ary relations. Overall, our work contributes to the advancement of modern information extraction by exploring end-to-end solutions that are fast, accurate, and generalizable to many high-value domains

    Development of a text mining approach to disease network discovery

    Get PDF
    Scientific literature is one of the major sources of knowledge for systems biology, in the form of papers, patents and other types of written reports. Text mining methods aim at automatically extracting relevant information from the literature. The hypothesis of this thesis was that biological systems could be elucidated by the development of text mining solutions that can automatically extract relevant information from documents. The first objective consisted in developing software components to recognize biomedical entities in text, which is the first step to generate a network about a biological system. To this end, a machine learning solution was developed, which can be trained for specific biological entities using an annotated dataset, obtaining high-quality results. Additionally, a rule-based solution was developed, which can be easily adapted to various types of entities. The second objective consisted in developing an automatic approach to link the recognized entities to a reference knowledge base. A solution based on the PageRank algorithm was developed in order to match the entities to the concepts that most contribute to the overall coherence. The third objective consisted in automatically extracting relations between entities, to generate knowledge graphs about biological systems. Due to the lack of annotated datasets available for this task, distant supervision was employed to train a relation classifier on a corpus of documents and a knowledge base. The applicability of this approach was demonstrated in two case studies: microRNAgene relations for cystic fibrosis, obtaining a network of 27 relations using the abstracts of 51 recently published papers; and cell-cytokine relations for tolerogenic cell therapies, obtaining a network of 647 relations from 3264 abstracts. Through a manual evaluation, the information contained in these networks was determined to be relevant. Additionally, a solution combining deep learning techniques with ontology information was developed, to take advantage of the domain knowledge provided by ontologies. This thesis contributed with several solutions that demonstrate the usefulness of text mining methods to systems biology by extracting domain-specific information from the literature. These solutions make it easier to integrate various areas of research, leading to a better understanding of biological systems

    Semantic resources in pharmacovigilance: a corpus and an ontology for drug-drug interactions

    Get PDF
    Mención Internacional en el título de doctorNowadays, with the increasing use of several drugs for the treatment of one or more different diseases (polytherapy) in large populations, the risk for drugs combinations that have not been studied in pre-authorization clinical trials has increased. This provides a favourable setting for the occurrence of drug-drug interactions (DDIs), a common adverse drug reaction (ADR) representing an important risk to patients safety, and an increase in healthcare costs. Their early detection is, therefore, a main concern in the clinical setting. Although there are different databases supporting healthcare professionals in the detection of DDIs, the quality of these databases is very uneven, and the consistency of their content is limited. Furthermore, these databases do not scale well to the large and growing number of pharmacovigilance literature in recent years. In addition, large amounts of current and valuable information are hidden in published articles, scientific journals, books, and technical reports. Thus, the large number of DDI information sources has overwhelmed most healthcare professionals because it is not possible to remain up to date on everything published about DDIs. Computational methods can play a key role in the identification, explanation, and prediction of DDIs on a large scale, since they can be used to collect, analyze and manipulate large amounts of biological and pharmacological data. Natural language processing (NLP) techniques can be used to retrieve and extract DDI information from pharmacological texts, supporting researchers and healthcare professionals on the challenging task of searching DDI information among different and heterogeneous sources. However, these methods rely on the availability of specific resources providing the domain knowledge, such as databases, terminological vocabularies, corpora, ontologies, and so forth, which are necessary to address the Information Extraction (IE) tasks. In this thesis, we have developed two semantic resources for the DDI domain that make an important contribution to the research and development of IE systems for DDIs. We have reviewed and analyzed the existing corpora and ontologies relevant to this domain, based on their strengths and weaknesses, we have developed the DDI corpus and the ontology for drug-drug interactions (named DINTO). The DDI corpus has proven to fulfil the characteristics of a high-quality gold-standard, and has demonstrated its usefulness as a benchmark for the training and testing of different IE systems in the SemEval-2013 DDIExtraction shared task. Meanwhile, DINTO has been used and evaluated in two different applications. Firstly, it has been proven that the knowledge represented in the ontology can be used to infer DDIs and their different mechanisms. Secondly, we have provided a proof-of-concept of the contribution of DINTO to NLP, by providing the domain knowledge to be exploited by an IE pilot prototype. From these results, we believe that these two semantic resources will encourage further research into the application of computational methods to the early detection of DDIs. This work has been partially supported by the Regional Government of Madrid under the Research Network MA2VICMR [S2009/TIC-1542], by the Spanish Ministry of Education under the project MULTIMEDICA [TIN2010-20644-C03-01] and by the European Commission Seventh Framework Programme under TrendMiner project [FP7-ICT287863].Hoy en día ha habido un notable aumento del número de pacientes polimedicados que reciben simultáneamente varios fármacos para el tratamiento de una o varias enfermedades. Esta situación proporciona el escenario ideal para la prescripción de combinaciones de fármacos que no han sido estudiadas previamente en ensayos clínicos, y puede dar lugar a un aumento de interacciones farmacológicas (DDIs por sus siglas en inglés). Las interacciones entre fármacos son un tipo de reacción adversa que supone no sólo un riesgo para los pacientes, sino también una importante causa de aumento del gasto sanitario. Por lo tanto, su detección temprana es crucial en la práctica clínica. En la actualidad existen diversos recursos y bases de datos que pueden ayudar a los profesionales sanitarios en la detección de posibles interacciones farmacológicas. Sin embargo, la calidad de su información varía considerablemente de unos a otros, y la consistencia de sus contenidos es limitada. Además, la actualización de estos recursos es difícil debido al aumento que ha experimentado la literatura farmacológica en los últimos años. De hecho, mucha información sobre DDIs se encuentra dispersa en artículos, revistas científicas, libros o informes técnicos, lo que ha hecho que la mayoría de los profesionales sanitarios se hayan visto abrumados al intentar mantenerse actualizados en el dominio de las interacciones farmacológicas. La ingeniería informática puede representar un papel fundamental en este campo permitiendo la identificación, explicación y predicción de DDIs, ya que puede ayudar a recopilar, analizar y manipular grandes cantidades de datos biológicos y farmacológicos. En concreto, las técnicas del procesamiento del lenguaje natural (PLN) pueden ayudar a recuperar y extraer información sobre DDIs de textos farmacológicos, ayudando a los investigadores y profesionales sanitarios en la complicada tarea de buscar esta información en diversas fuentes. Sin embargo, el desarrollo de estos métodos depende de la disponibilidad de recursos específicos que proporcionen el conocimiento del dominio, como bases de datos, vocabularios terminológicos, corpora u ontologías, entre otros, que son necesarios para desarrollar las tareas de extracción de información (EI). En el marco de esta tesis hemos desarrollado dos recursos semánticos en el dominio de las interacciones farmacológicas que suponen una importante contribución a la investigación y al desarrollo de sistemas de EI sobre DDIs. En primer lugar hemos revisado y analizado los corpora y ontologías existentes relevantes para el dominio y, en base a sus potenciales y limitaciones, hemos desarrollado el corpus DDI y la ontología para interacciones farmacológicas DINTO. El corpus DDI ha demostrado cumplir con las características de un estándar de oro de gran calidad, así como su utilidad para el entrenamiento y evaluación de distintos sistemas en la tarea de extracción de información SemEval-2013 DDIExtraction Task. Por su parte, DINTO ha sido utilizada y evaluada en dos aplicaciones diferentes. En primer lugar, hemos demostrado que esta ontología puede ser utilizada para inferir interacciones entre fármacos y los mecanismos por los que ocurren. En segundo lugar, hemos obtenido una primera prueba de concepto de la contribución de DINTO al área del PLN al proporcionar el conocimiento del dominio necesario para ser explotado por un prototipo de un sistema de EI. En vista de estos resultados, creemos que estos dos recursos semánticos pueden estimular la investigación en el desarrollo de métodos computaciones para la detección temprana de DDIs. Este trabajo ha sido financiado parcialmente por el Gobierno Regional de Madrid a través de la red de investigación MA2VICMR [S2009/TIC-1542], por el Ministerio de Educación Español, a través del proyecto MULTIMEDICA [TIN2010-20644-C03-01], y por el Séptimo Programa Macro de la Comisión Europea a través del proyecto TrendMiner [FP7-ICT287863].This work has been partially supported by the Regional Government of Madrid under the Research Network MA2VICMR [S2009/TIC-1542], by the Spanish Ministry of Education under the project MULTIMEDICA [TIN2010-20644-C03-01] and by the European Commission Seventh Framework Programme under TrendMiner project [FP7-ICT287863].Programa Oficial de Doctorado en Ciencia y Tecnología InformáticaPresidente: Asunción Gómez Pérez.- Secretario: María Belén Ruiz Mezcua.- Vocal: Mariana Neve
    corecore