
University of Kentucky University of Kentucky

UKnowledge UKnowledge

Theses and Dissertations--Computer Science Computer Science

2020

Deep Neural Architectures for End-to-End Relation Extraction Deep Neural Architectures for End-to-End Relation Extraction

Tung Tran
University of Kentucky, tran8749@gmail.com
Author ORCID Identifier:

https://orcid.org/0000-0001-8166-0681
Digital Object Identifier: https://doi.org/10.13023/etd.2020.153

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you.

Recommended Citation Recommended Citation
Tran, Tung, "Deep Neural Architectures for End-to-End Relation Extraction" (2020). Theses and
Dissertations--Computer Science. 97.
https://uknowledge.uky.edu/cs_etds/97

This Doctoral Dissertation is brought to you for free and open access by the Computer Science at UKnowledge. It
has been accepted for inclusion in Theses and Dissertations--Computer Science by an authorized administrator of
UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/cs_etds
https://uknowledge.uky.edu/cs
https://orcid.org/0000-0001-8166-0681
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu

STUDENT AGREEMENT: STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution

has been given to all outside sources. I understand that I am solely responsible for obtaining

any needed copyright permissions. I have obtained needed written permission statement(s)

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing

electronic distribution (if such use is not permitted by the fair use doctrine) which will be

submitted to UKnowledge as Additional File.

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and

royalty-free license to archive and make accessible my work in whole or in part in all forms of

media, now or hereafter known. I agree that the document mentioned above may be made

available immediately for worldwide access unless an embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in

future works (such as articles or books) all or part of my work. I understand that I am free to

register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of

the program; we verify that this is the final, approved version of the student’s thesis including all

changes required by the advisory committee. The undersigned agree to abide by the statements

above.

Tung Tran, Student

Dr. Ramakanth Kavuluru, Major Professor

Dr. Miroslaw Truszczynski, Director of Graduate Studies

Deep Neural Architectures for End-to-End Relation Extraction

DISSERTATION

A dissertation submitted in partial
fulfillment of the requirements for
the degree of Doctor of Philosophy
in the College of Engineering at the

University of Kentucky

By
Tung Tran

Lexington, Kentucky

Director: Dr. Ramakanth Kavuluru, Associate Professor of Biomedical Informatics
Lexington, Kentucky 2020

Copyright© Tung Tran 2020
https://orcid.org/0000-0001-8166-0681

ABSTRACT OF DISSERTATION

Deep Neural Architectures for End-to-End Relation Extraction

The rapid pace of scientific and technological advancements has led to a meteoric
growth in knowledge, as evidenced by a sharp increase in the number of scholarly
publications in recent years. PubMed, for example, archives more than 30 million
biomedical articles across various domains and covers a wide range of topics including
medicine, pharmacy, biology, and healthcare. Social media and digital journalism
have similarly experienced their own accelerated growth in the age of big data. Hence,
there is a compelling need for ways to organize and distill the vast, fragmented body of
information (often unstructured in the form of natural human language) so that it can
be assimilated, reasoned about, and ultimately harnessed. Relation extraction is an
important natural language task toward that end. In relation extraction, semantic
relationships are extracted from natural human language in the form of (subject,
object, predicate) triples such that subject and object are mentions of discrete concepts
and predicate indicates the type of relation between them. The difficulty of relation
extraction becomes clear when we consider the myriad of ways the same relation can
be expressed in natural language. Much of the current works in relation extraction
assume that entities are known at extraction time, thus treating entity recognition as
an entirely separate and independent task. However, recent studies have shown that
entity recognition and relation extraction, when modeled together as interdependent
tasks, can lead to overall improvements in extraction accuracy. When modeled in
such a manner, the task is referred to as “end-to-end” relation extraction. In this
work, we present four studies that introduce incrementally sophisticated architectures
designed to tackle the task of end-to-end relation extraction. In the first study, we
present a pipeline approach for extracting protein-protein interactions as affected by
particular mutations. The pipeline system makes use of recurrent neural networks for
protein detection, lexicons for gene normalization, and convolutional neural networks
for relation extraction. In the second study, we show that a multi-task learning
framework, with parameter sharing, can achieve state-of-the-art results for drug-drug
interaction extraction. At its core, the model uses graph convolutions, with a novel
attention-gating mechanism, over dependency parse trees. In the third study, we
present a more efficient and general-purpose end-to-end neural architecture designed
around the idea of the “table-filling” paradigm; for an input sentence of length n, all

entities and relations are extracted in a single pass of the network in an indirect fashion
by populating the cells of a corresponding n×n table using metric-based features. We
show that this approach excels in both the general English and biomedical domains
with extraction times that are up to an order of magnitude faster compared to the
prior best. In the fourth and last study, we present an architecture for relation
extraction that, in addition to being end-to-end, is able to handle cross-sentence
and N -ary relations. Overall, our work contributes to the advancement of modern
information extraction by exploring end-to-end solutions that are fast, accurate, and
generalizable to many high-value domains.

KEYWORDS: Machine Learning, Deep Neural Networks, Natural Language Pro-
cessing, Information Extraction, Relation Extraction

Author’s signature: Tung Tran

Date: May 7, 2020

Deep Neural Architectures for End-to-End Relation Extraction

By
Tung Tran

Director of Dissertation: Ramakanth Kavuluru

Director of Graduate Studies: Miros law Truszczyński

Date: May 7, 2020

Dedicated to my parents, Thu and Vũ Trần, to my sister Quyên Trần,
and to the memory of my cousin Thomas Lê.

ACKNOWLEDGMENTS

This dissertation is the result of the support and guidance of many people to whom

I owe my gratitude. First and foremost, I would like to thank my dissertation advi-

sor, Dr. Ramakanth Kavuluru, for his phenomenal and careful guidance during the

course of my academic journey. His exemplary sense of integrity and commitment to

scholarship has inspired me to set higher standards and expectations for myself. I

would also like to thank Dr. Halil Kilicoglu for providing me the opportunity to do

research at the U.S. National Library of Medicine, for his support and guidance, and

for allowing me the time and freedom to work on projects of my choosing, including

one that led to one of the studies presented in this dissertation. I am also grateful

to Dr. Mirek Truszczyński for his early mentorship, which has had a strong influence

in my decision to pursue academic research, and for his ongoing support. I would

also thank Dr. Yuliya Lierler for seeing potential in me and for providing me with

my first research opportunity in my early undergraduate years. I also wish to thank

my peers (lab mates) for their help as a source of advice and constructive criticism.

Finally, I would like to thank all members of my dissertation committee, and outside

examiner, respectively: Dr. Ramakanth Kavuluru, Dr. Mirek Truszczyński, Dr. Jane

Hayes, Dr. Subbarao Bondada, and Dr. Kunlei Liu.

Beyond the technical aspect of the dissertation, I would first and foremost like

to thank my parents, Thu Trần and Vũ Trần, for their unwavering love, support,

and encouragement throughout the course of my academic career. They taught me

to be responsible for myself and to choose my own path, and provided me with full

support without any pressure or expectations. Thanks to my sister Quyên Trần and

her husband Jerry Lu for always having such a big presence in my life through all the

highs and lows. I am also grateful to my uncle Bình Trần and his family for providing

iii

what was essentially a second home to me, including the daily creature comforts of

a home-cooked meal, during the last leg of my academic journey. Of course, I would

also like to acknowledge the collective love and support from the many other figures

in my life, including my grandparents, cousins, other close relatives, and life-long

friends.

iv

TABLE OF CONTENTS

Acknowledgments . iii

Table of Contents . v

List of Tables . vii

List of Figures . ix

Chapter 1 Introduction . 1
1.1 Thesis Statement . 3
1.2 Organization and Related Publications 3

Chapter 2 Background and Related Works . 5
2.1 End-to-End Relation Extraction . 5

2.1.1 A Typical Pipelined Approach 6
2.1.2 Evaluation Metrics . 7

2.2 Literature Review . 8
2.2.1 Deep Neural Networks . 8
2.2.2 Relation Classification . 10
2.2.3 End-to-End Relation Extraction 11

2.3 Notations and Neural Building Blocks 14

Chapter 3 Deep Learning for Extracting Protein-Protein Interactions 17
3.1 Background and Related Work . 19

3.1.1 Biomedical Relation Extraction 19
3.1.2 Top Performing PPIm Extraction Entry 20

3.2 Materials and Methods . 21
3.2.1 PPIm Dataset . 21
3.2.2 Gene Mention Identification (NER) 21
3.2.3 Entrez Gene ID Normalization (GN) 27
3.2.4 Relation Classification of Gene Pairs (RC) 29

3.3 Results and Discussion . 30
3.4 Conclusion . 36

Chapter 4 Graph Convolutions for Extracting Drug Interaction Information . 37
4.1 Background and Related Work . 40

4.1.1 Relation Extraction for DDI . 40
4.1.2 TAC 2018 DDI Track . 41

4.2 Materials and Methods . 42
4.2.1 Task Description . 42
4.2.2 Joint Modeling Approach . 43

v

4.2.3 Neural Network Architecture and Training Details 45
4.2.4 Transfer Learning with Network Pre-Training 52
4.2.5 Voting-based Ensembling . 53
4.2.6 Model Evaluation . 54

4.3 Results and Discussion . 56
4.4 Error Analysis . 58
4.5 Conclusion . 61

Chapter 5 Neural Metric Learning for Fast End-to-End Relation Extraction . 62
5.1 Background and Related Work . 64
5.2 Methodology . 64

5.2.1 The Table-Filling Problem . 64
5.2.2 Our Model: Relation-Metric Network 67
5.2.3 Decoding the Output . 71

5.3 Experimental Setup . 72
5.3.1 Evaluation Metrics . 72
5.3.2 Datasets . 72
5.3.3 Model Configuration . 73

5.4 Results and Discussion . 74
5.4.1 Ablation Analysis . 76
5.4.2 Error Analyses . 77

5.5 Conclusion . 83

Chapter 6 End-to-End Extraction of Cross-Sentence N -ary Relations 85
6.1 Related Work . 87
6.2 Methodology . 88

6.2.1 Neural Network Architecture . 88
6.2.2 Ternary Relation Extraction . 89
6.2.3 Training Procedure . 90
6.2.4 Model Ensembling . 90

6.3 Experimental Setup . 91
6.3.1 JAX-CKB Dataset . 91
6.3.2 Evaluation Method . 91
6.3.3 Model Configuration . 92

6.4 Results and Discussion . 93
6.5 Conclusion . 101

Chapter 7 Conclusion . 102
7.1 Contributions . 102
7.2 Limitations and Future Work . 103

Abbreviations . 105

Bibliography . 107

Vita . 120

vi

LIST OF TABLES

3.1 System performance on the official test set 31
3.2 Iterative component-level analysis on the official test set 34

4.1 Characteristics of various datasets . 39
4.2 Example of the sequence labeling scheme for the sentence in Figure 4.1,

where LABELDRUG is substitute for Adenocard. 43
4.3 Model configuration obtained through random search over 11-fold cross-

validation of TR22 (training data). 51
4.4 Main results based on 95% confidence interval around mean precision,

recall, and F1 based on evaluating N=100 ensembles for each model. . . . 55
4.5 Comparison of our method with comparable (based on training data)

methods of teams in the top 5 trained on solely TR22 + NLM180. 56
4.6 Confusion matrix for interaction type . 61

5.1 Model configuration as tuned on the CoNLL04 development set. 73
5.2 Results comparing to other methods on the CoNLL04 dataset. We report

95% confidence intervals around the mean F1 over 30 runs for models in
the last two rows. Our model was tuned on the CoNLL04 development
set corresponding to the configuration from Table 5.1. 74

5.3 Results comparing to other methods on the ADE dataset. We report the
mean performance over 10-fold cross-validation for models in the last two
rows. Our model was tuned on the CoNLL04 development set correspond-
ing to the configuration from Table 5.1. 75

5.4 Ablation studies for relation extraction over the CoNLL04 and ADE dataset;
each row after the first indicates removal of a particular feature/component. 76

5.5 Relation extraction performance partitioned based on “Entity Distance”,
which is defined as the number of characters separating the subject and
object entities (i.e., absolute character offset). 80

5.6 Relation extraction performance on the CoNLL04 dataset partitioned based
on relation type. 81

6.1 Characteristics of the JAX-CKB dataset . 92
6.2 Results on the test set for various models when learning and predicting

at the sentence level, and when also evaluating at the sentence level. The
“N -ary Relations” column are results from evaluating on a test set con-
taining both binary and ternary relations, while the “Only Binary” and
“Only Ternary” columns evaluates on binary relations and ternary rela-
tions exclusively. 94

vii

6.3 Our main results on the test set for various models and various levels of
discourse when evaluating on both intra- and inter-sentence relations (at
the paragraph level). Results from Table 6.2, in which models learn and
predict at the sentence level, are included after adjusting for inter-sentence
relations — by penalizing recall based on missed inter-sentence relations
— so that all displayed results are directly comparable. 96

6.4 Entity recognition results for the N -ary with ensembling model based on
entity type. 98

6.5 Relation extraction results for the N -ary with ensembling model based on
relation type. 98

viii

LIST OF FIGURES

3.1 Deep neural network architecture of the NER model 22
3.2 Network architecture of the RC model (adapted from Tran and Kavuluru

[1, Figure 1]) . 29
3.3 Visualization of decisions made by the final system on article with PMID

23897824 . 33

4.1 An example illustrating the end-to-end DDI extraction task. We first (1)
identify mentions including precipitants; for each precipitant, we (2) deter-
mine the type of interaction and, based on interaction type, (3) determine
the interaction outcome. In the case of PD interactions, the outcome
corresponds to one of the previously identified effect spans. 38

4.2 Overview of the neural network architecture for a simplified example from
the drug label Adenocard. Here, the ground truth indicates that digitalis
is a pharmacodynamic precipitant associated with the effect “ventricular
fibrillation.” The PK predictive component is omitted given there are no
precipitants involved in a PK interaction. 44

4.3 An example sentence from the drug label for Savella along with the result-
ing prediction and ground truth labels. Red arrows indicate interaction
outcome. 58

4.4 An example sentence from the drug label for Aubagio along with the re-
sulting prediction and ground truth labels. Red arrows indicate interaction
outcome, where C54357 is a PK label corresponding to the NCI Thesaurus
code for “Increased Concomitant Drug Level.” 59

5.1 A simple relation extraction example. 63
5.2 Table representation for the example in Figure 5.1. BILOU-encoded entity

tags are assigned along the diagonal and relation tags are assigned where
entity spans intersect. Empty cells are implicitly assigned the O tag. . . . 65

5.3 Overview of the network architecture for λ = 2. For simplicity, we ignore
punctuation tokens. 66

5.4 2D convolution on 3D input with padding 70
5.5 Mean F1-score (over 10 runs) on CoNLL04 development set with respect

to number of training epochs for various embedding training strategies. . 77
5.6 Entity and relation extraction performance with respective to change in

maximum sentence length for CoNLL04. 78
5.7 Entity and relation extraction performance with respect to change in max-

imum sentence length for ADE. 79

ix

5.8 Visualization of activity of pooling layers at various depths (Li for i =
1, . . . , λ), as tabular heatmaps, for a network with a depth of λ = 8 given
the following input sentence: “In 1964, a jury in Dallas found Jack Ruby
guilty of murdering Lee Harvey Oswald, the accused assassin of President
Kennedy.” Here, we measure activity by sum-pooling the activations along
the channel dimension of each hidden representation. For the prediction
activity, we simply max-pool probabilities along the relation dimension
thus ignoring the exact type of entity or relation. 82

6.1 Error analysis on an example paragraph, with recall-related errors, ap-
pearing in the article with PMID 27523909. The entire input with model-
annotated entities appear on the left side, where mentions of the same
concept share the same color. On the top right, we present binary predic-
tions and highlight missed binary relations. On the bottom right, we show
predictions of ternary candidates and the final output evaluated based on
ground truth information. 99

x

Chapter 1 Introduction

As part of our transition into the information age, there is a growing wealth of infor-

mation in the form of unstructured text. In news data, we have millions of articles

relating people, places, and organizations published on a daily basis. Meanwhile,

PubMed archives more than 30 million research articles and continues to archive

an additional 500,000 articles per year. On the Twitter platform alone, participants

share commentaries (“tweets”) at a rate of one-half of a billion per day. These perpet-

ually accumulating bodies of knowledge are rich in valuable information, encoded in

natural human language, and remain relatively untapped. The sheer scale of textual

data prevents any one person from being able to make meaningful use of encoded

information in aggregate. Unlike human beings, machines are capable of such an

endeavor. That is, we can build machines capable of organizing and distilling the

vast, fragmented body of information so that it can be assimilated, reasoned about,

and ultimately harnessed. Such efforts, under the broad theme of knowledge discov-

ery, fundamentally rely on being able to recognize and capture semantic relations as

conveyed in natural language — hence the importance of relation extraction (RE)

systems. The task of RE is simple: given some textual input, extract (subject, predi-

cate, object) triples where the subject and object are entities and the predicate is an

instance of a semantic relation. For example, (insulin, treat, diabetes type 1) is a

triple representing a relationship that can be extracted from the sentence:

“Insulin is prescribed for the treatment of Diabetes Type 1.”

A natural source of difficulty is how the same semantic relationship can be conveyed

in a variety of complex ways while having the same intended meaning; e.g.,

“Patients with Type 1 Diabetes are prescribed insulin.”

Intuitively, semantic relations that are conveyed in active voice are easier for humans

and rule-based machines to detect, while relations presented in passive voice are

slightly more difficult. Sentences that are overly complex or where the entities of

the relations are far apart can also prove to be difficult cases for a machine-based

RE system. Another issue arises from how entities are represented, as it is not

uncommon that entities are represented not as discrete words but rather spans of

text. Moreover, a sentence may contain multiple relations and there may be relations

1

that are expressed across sentence bounds; both cases add to the complexity of the

problem.

Ultimately, the goal of relation extraction systems is to extract structured as-

sertions relating entities corresponding to discrete concepts in a way that is ideally

both human-readable and machine-processable. Once obtained, these so called re-

lations can be valuable in and of themselves or as serve as valuable input to other

user-end systems. For example, doctors may use such systems to survey for new

drug-disease relations for off-label prescription of a particular drug. Or, this infor-

mation may be used to construct new or populate existing knowledge databases and

ontologies in certain specialized domains. This is important in precision medicine, for

instance, wherein treatments are individualized based on a patient’s genetic profile.

In such cases, knowledge bases containing up-to-date information about relations be-

tween drugs, genes, and mutations, is an invaluable resource for medical researchers

and professionals as they ponder treatment options. Freshly extracted relations can

also serve as crucial input to end-systems including information retrieval, question-

answering, automatic summarization, and knowledge discovery systems.

Typically, works in RE the presume that entities are pre-identified, and the rela-

tion extraction aspect is mostly limited to classification of these known entity pairs

as either positive or negative for a relation — we refer to such tasks more concisely

as relation classification. RE of the end-to-end (E2ERE) variety is a complex multi-

stage natural-language task typically involving an additional named entity recognition

(NER) step. That is, all entities are identified via NER before pairs of entities are

classified for a relationship. Much of the current research in RE treat NER and re-

lation classification as independent subtasks, with many focusing exclusively on the

relation classification aspect with the simplifying assumption that entities are known

during test time. Granted, RE systems resulting from such studies are modular with

the benefit that innovations to each subtask can be achieved independently and later

combined in an ad-hoc fashion. However, there is evidence to suggest that there are

correlations between NER and relation classification — at a semantic level — that

can be exploited for improved overall performance [2, 3, 4, 5]. In this dissertation, we

present four studies that introduce incrementally sophisticated architectures designed

to tackle the task of E2ERE across a wide-array of applications in the biomedical,

healthcare, and general English domain. Overall, this work contributes to the ad-

vancement of modern information extraction by innovating on end-to-end solutions

that are fast, accurate, and highly applicable to specialized domains.

2

1.1 Thesis Statement

Relation extraction is important because it facilitates knowledge discovery from the

growing body of unstructured text encoded in natural language. We propose to study

various deep learning architectures toward end-to-end relation extraction wherein

both entities and their relationships are identified in a coordinated manner – for

example, by modeling the subtasks jointly. We hypothesize that such an approach is

able to better leverage inter-task correlations between NER and relation classification,

which would otherwise be ignored in a traditional ad hoc pipeline system, resulting

in non-trival gains in relation extraction tasks. Furthermore, we hypothesize that

additionally extending end-to-end approaches to account for cross-sentence and N -

ary relations will significantly improve recall and thus overall model accuracy.

1.2 Organization and Related Publications

The remaining chapters of this dissertation are organized as follows.

Chapter 2 introduces the task of relation extraction and presents pertinent back-

ground information important for staging the rest of the dissertation. Here, we

concretely define the problem of end-to-end relation extraction, describe relevant

nuances, and provide an example of a typical pipeline approach to such problems.

This chapter additionally includes a review of the literature on deep neural net-

works in general, and its application to the problem of relation extraction. This

chapter concludes with a description of mathematical notations used in remaining

chapters of the dissertation; additionally provided are definitions of standard neu-

ral architectures referenced as abstract building blocks in the methodology section

of studies described in subsequent chapters.

Chapter 3 presents the first study focused on extracting protein-protein interactions

from biomedical literature. Here, we explore a pipeline approach that exemplifies

the typical end-to-end modeling approach. The pipeline system makes use of

recurrent neural networks for protein detection, lexicons for gene normalization,

and convolutional neural networks for relation extraction. While we do not model

NER and RC jointly, we show that our coordinated end-to-end approach improves

over prior works that focus solely on optimizing relation classification and rely

exclusively on existing tools for entity recognition.

3

Chapter 4 presents the second study focused on extracting drug-drug interactions

from drug labels. Such problems are highly specialized, and require a complex

multi-stage system for extracting not only drug entities and interactions, but

also the outcome of each interaction. In this study, we proposed a multi-task

learning framework, with joint learning via parameter sharing, involving a novel

attention-gated graph convolution over dependency parse trees. We show that this

approach is able to achieve state-of-the-art results over prior work on comparable

FDA datasets.

Chapter 5 presents the third study of this thesis focused on devising an approach

capable of jointly extracting both entities and relations without the need for local

classifiers. Here, we present an efficient and general-purpose end-to-end neural

architecture designed around the idea of the “table-filling” paradigm; for an input

sentence of length N , all entities and relations are extracted in a single pass of the

network in an indirect fashion by populating the cells of a corresponding N ×N

table using metric-based features. We show that this approach excels in both the

general English and biomedical domains with extraction times that are an order

of magnitude faster compared to prior methods.

Chapter 6 presents the fourth and final study of this dissertation. Here, we present

an architecture for relation extraction that, in addition to being end-to-end, is

able to handle relations that are N -arity and expressed over multiple sentences.

We achieve this by leveraging the speed and efficiency of the model introduced in

Chapter 5; we manage potential scalability issues by learning higher-arity relations

by representing them through their constituent binary subrelations. We show

that by additionally accounting for cross-sentence and higher-arity relations, we

improve over baseline approaches predominantly owing to substantial gains in

recall.

Chapter 7 concludes the dissertation by summarizing important contributions and

highlighting potential avenues for future work.

This dissertation contains materials previously published in the following study:

T. Tran and R. Kavuluru. An End-to-End Deep Learning Architecture for Ex-

tracting Protein-Protein Interactions Affected by Genetic Mutations. Database:

Journal of Biological Databases and Curation, 2018.

4

Chapter 2 Background and Related Works

2.1 End-to-End Relation Extraction

In this section, we concretely formulate the problem of RE. Let E be a set of entities

and R be a set of semantic relation types for some target application domain. A

directed binary relation is defined as a triple (α, ρ, β) ∈ E ×R × E where α,β ∈ E are

the subject/object entities and ρ ∈R is a predicate describing the relationship. As a

digression, it is possible to have n-ary relationships where there are n participating

entities. In most chapters of this work, we focus on the specific case where there

are two participating entities. We explore N -ary relation extraction in Chapter 6

exclusively. In the literature, relation extraction can refer to one of two related but

separate problems. In this dissertation, we make the distinction by referring to one

as relation classification (RC) and the other as E2ERE. In RC, the input is a body

of text pre-annotated with entity offsets and the output is a relation r ∈ R. Here,

the subject and object entities are known beforehand and included as input to the

classification problem. In E2ERE, the input is a body of text and the goal is to

exhaustively identify and return all triples corresponding to a relationship. In this

case, the entities, if any, are not known beforehand. Typically, a solution to the RE

problem will involve a combination of named entity recognition (NER) and relation

classification (RC). Thus, in some cases, an RC system may serve as a subcomponent

of an E2ERE system. In some specialized domains, there will also be an additional

entity normalization component responsible for linking an entity mention to a unique

identifier; for example, mentions of genes may be mapped to unique gene IDs. In

this work, we generally do not address the problem of entity normalization except

in cases where it is an integral part of the domain problem being studied. This is

due to the fact that entity normalization can exist as an ad-hoc and independent

post-processing step with no bearing on the E2ERE system. Interestingly, many

studies on relation extraction focus solely on the RC aspect. However, when treated

as a sub-task of E2ERE, RC will typically include an additional null relation type

indicating the lack of a relationship. In RC, the null relation type may or may not

be included. In Section 2.1.1, we describe a typical pipeline setup for document-level

relation extraction. Lastly, in Section 2.1.2, we describe standard evaluation metrics

for E2ERE.

5

2.1.1 A Typical Pipelined Approach

A typical relation extraction pipeline is composed of an NER and an RC component.

Many E2ERE tasks in technical domains also mandate an entity normalization (EN)

component as part of the NER process. EN refers to the mapping of entity mentions

to domain-specific identifiers. Clearly, the entity normalization aspect adds another

source of error that can propagate to the pipeline output. If we map an entity to

an incorrect identifier, all triples extracted involving said entity will be treated as

false positives regardless of how well the NER component performs. We proceed to

describe a common E2ERE approach with a few simplifying assumptions in mind.

First, that EN is either perfect or irrelevant. Second, that no cross-sentence relation-

ships exist. And lastly, we assume that each entity corresponds to a single contiguous

span in the input text; this is usually — but not always — the case.

In NER, the goal is to identify spans of text corresponding to named entities,

or proper names of people, places, or objects such as “George Washington“ or “Fu-

turama”. NER has been traditionally modeled as a sequence-to-sequence tagging

problem such as in part-of-speech tagging and machine translation. The input is a

sequence of tokens (these are symbols/words forming a sentence) and the output is

a corresponding sequence of labels demarcating entity bounds. It is important to

note that it is common for a single named entity to span multiple words, so a binary

tagging scheme is insufficient. There has been many tagging schemes proposed, with

the most popular among them being the IOB (inside, outside, beginning) and IOBES

(inside, outside, beginning, end, and single) scheme. These sequence-tagging labels

usually serve as prefixes to an entity type such as a person or location. In the IOB

tagging scheme, the B label indicates the beginning of a tag, the I label indicates

the inside of a tag, and the O label indicates the outside of a tag. As a rule, the B

label is only used to indicate the beginning of a new tag when following a tag of the

same entity type. This allows for the distinction of entity spans that are adjacent but

share the same entity type. The IOBES scheme is a more fine-grained extension of

IOB that also happens to be more intuitive and has generally been shown to perform

better.

For an input document x, we extract a set of entities Sx ⊂ E using an NER model.

Once all entities are identified (and mapped to their IDs, if applicable), the next step

is to classify pairs according to their relation type. To that end, a classifier is build

to assign each pair in P = {(α,β)∣(α,β) ∈ Sx ×Sx} a relation from R. In this problem

scenario, R includes the null relation type which indicates the lack of a relationship.

The output for x are all pairs in P , along with their relation assignment, that were

6

not assigned the null relation.

2.1.2 Evaluation Metrics

In end-to-end relation extraction, we use evaluate entity recognition and relation

extraction separately. However, relation extraction performance directly subsumes

entity recognition performance, and thus can be viewed as a holistic measure, given

the heavy reliance of relation extraction on entity recognition performance. In both

cases, however, we use the standard F1 score as a single evaluation metric as opposed

to the more popular accuracy metric. While accuracy is an acceptable metric in

cases where the number of positive to negative examples is balanced, he F1 score

is preferable when there is sparsity in the prediction space as is associated with

information extraction tasks. That is, the number of candidate entities and relations

are typically high for any input example, and the number of any of those entity or

relation being relevant is much smaller by comparison. In such cases, a model that

predicts nothing (that is, no entities or no relations) will have a misleadingly high

accuracy owing to a high number of true negatives. The F1 score is not inflated

by true negatives, and is thus a better choice for information extraction problems.

The F1 score is actually a summary metric that is based on an ideal balance of

the precision and recall measures often seen in NLP and information retrieval tasks.

Precision (or positive predictive value) is the fraction of predicted entity or relation

that are correctly predicted, or

precision =
TP

TP + FP
,

while recall (or sensitivity) is the fraction of all correct entity or relation appearing

in the prediction set, or

recall =
TP

TP + FN
,

where TP, FP, and FN are true positives, false positives, and false negatives. Con-

cretely, the F1 score is defined as the harmonic mean of the precision and recall,

F1 =
2 ⋅ precision ⋅ recall

precision + recall
.

Thus, precision and recall, and thereby the F1 score, ignores true negatives com-

pletely.

Micro- and macro-averaged F1. In the studies explored in this work, the F1

scores are implicitly micro-averaged over classes. That is, we compute F1 in way

7

that weights all discrete predictions equally; relations or entities of different types

are weighted proportion to the frequency of each type. This is opposed to macro-

averaging, wherein each type is weighted equally without regard for their relative

frequency. Concretely, for a set of relations R relations, the micro-averaged F1 score

is the harmonic mean of

micro precision =
∑rTPr

∑rTPr +∑r FPr
and micro recall =

∑rTPr

∑rTPr +∑r FNr

,

where TPr, FPr, and FNr are the true positive, false positive, and false negative

counts, respectively, for relation r. Or more concretely,

micro F1 =
2 ⋅micro precision ⋅micro recall

micro precision +micro recall
. (2.1)

With macro-averaging, F1 scores are computed per class, and then averaged.

While the above describes a generic formulation for the micro-F1 score, each

self-contained study in this work will typically contain a more tailored definition

depending on the problem or dataset.

2.2 Literature Review

This section serves as a literature review of the research space on the topic of deep

learning as well as both relation classification (RC) and end-to-end relation extraction

(E2ERE). We first provide an overview of advances in deep neural networks for natural

language tasks in Section 2.2.1. In Section 2.2.2, we discuss early works on relation

classification as well as recent state-of-the-art neural models. In Section 2.2.3, we

review studies that focus on E2ERE; here, we explore early works using inference

mechanisms as well as recent end-to-end neural models.

2.2.1 Deep Neural Networks

Recent progress in natural language processing (NLP) in general has mostly been

a consequence of advances in deep neural networks – neural networks with at least

two layers between the input and output layer and capable of composing useful in-

termediate representations. Relevant deep neural architectures are introduced in the

remainder of this section.

Neural Word Embeddings and Convolutional Neural Networks. Convo-

lutional neural networks (CNNs) in particular were originally developed for image

8

recognition tasks [6] and has been successfully applied to the text domain by exploit-

ing so called neural word embeddings [7, 8]. These word embeddings represent words

as vectors and can be pre-trained using unsupervised methods and further trained

when learning on a specific task. CNNs exhibit translational invariance, which allows

them to detect contextual features while being insensitive to changes of a translational

nature. In the context of computer vision, this feature allows a model to recognize

an object regardless of whether it has been rotated or rescaled, for example. In text

classification, this translates to being able to recognize meaningful contextual terms

or phrases while accounting for the many distinct ways the same sentence can be

expressed syntactically. Moreover, the so called pooling operation (more later) that

is intrinsic to CNNs makes it possible to deal with variable-length nature of text.

Using CNNs along with neural word embeddings has been shown to be effective in

many natural language tasks (including text classification and relation extraction)

since they naturally capture syntactic and semantic information [9, 10, 11].

Recurrent Neural Networks. Unlike CNNs, which are a feedforward type of

network, recurrent neural networks (RNNs) have also been successful in NLP tasks

involving sequence data such as part-of-speech tagging, named entity recognition

(NER), and machine translation [12, 13]. RNNs are a natural architecture for model-

ing sequences via cyclical connections in the network such that outputs from previous

timesteps are fed back as input to the network. It is typical to compose RNNs in

both the forward and the backward direction as this allows the sequence to be mod-

eled in both directions in a joint architecture called a bidirectional RNN (Bi-RNN).

In a typical Bi-RNN architecture, both the forward and backward RNN receive the

same input and are composed independently; once composed, the output vector is

concatenated at each corresponding timestep. Bi-RNNs are important for sequence

labeling tasks as the full context is taken into account when assigning a label for each

timestep of the input sequence. Bi-RNNs in a text classification setting can also be

viewed intuitively as a composition of the entire context (in vector form) centered at

some word with as many “context vectors” as there are words in the sequence.

Long Short-Term Memory Networks. A significant issue with traditional RNNs

is the problem of vanishing gradients [14] where the back propagated errors that are

needed to update the parameters become extremely small for earlier layers (in the

cyclical layer unfolding) due to the application of the familiar chain rule in comput-

ing derivates that involve functions of functions. The effect of this learning becomes

9

extremely slow and may be ineffective overall. This effect increases the deeper the

network is, which in case of RNNs amounts to the maximum length of the input se-

quences. To counter this in RNNs, one popular idea is to use a more involved hidden

layer with the so called long short-term memory (LSTM) units [15, 16]. Unlike in

a traditional RNN, in LSTMs, the state representation includes an explicit memory

cell access to and use of which is controlled through three gates – first to control how

much of the next input to incorporate in the memory (input gate), second to deter-

mine to what extent the current memory is to be forgotten (forget gate), and third

to limit the extent of information from the current step’s output to propagate to the

next step (output gate). These three gates control the flow of information based on

the previous output and cell state via sigmoid outputs in [0,1]. We encourage readers

to refer to Graves [17, Chapter 4] and Goldberg [18, Section 11] for thorough details

of LSTMs and the corresponding derivations of gradients. In this study, we used

Bi-RNNs with LSTM units in the hidden layer which are simply termed Bi-LSTMs.

2.2.2 Relation Classification

The majority of past and current efforts in relation extraction treat the problem as

a simpler relation classification problem where pairs of entities are known during

test time; the goal is to classify the pair of entities, given the context, as being

either positive or negative for a particular type of relation. Many early works on

relation classification preprocess the input as a dependency parse tree [19, 20] and

exploit features corresponding to the shortest dependency path between candidate

entities; this general approach has also been successfully applied in the biomedical

domain [21, 22, 23, 24], where they typically involve a graph kernel based Support

Vector Machine (SVM) classifier [23, 25]. Such models are limited in that they rely

on a capable dependency parser to pre-process the input and are prone to errors that

can propagate from input pre-processing step. The concept of network centrality

has also been applied [24] such that gene networks were created with respect to a

specific disease; genes are then ranked according to network centrality metrics where

highly ranked genes were considered more likely to be associated with the disease.

Other studies, such as the effort by Frunza et al. [26], apply the more traditional

bag-of-words approach focusing on syntactic and lexical features while exploring a

wide variety of classification algorithms including decision trees, SVMs, and Näive

Bayes.

10

Deep Neural Models. More recently, innovations in relation extraction have cen-

tered around designing meaningful deep learning architectures. Liu et al. [27] pro-

posed a dependency-based CNN architecture wherein the convolution is applied over

words adjacent according to the shortest path connecting the entities in the depen-

dency tree, rather than words adjacent with respect to the order expressed, to detect

drug-drug interactions (DDIs). In Kavuluru et al. [28], ensembling of both character-

level and word-level RNNs is further proposed for improved performance in DDI

extraction. Raj et al. [29] proposed a deep learning architecture such that word rep-

resentations are first processed by a bidirectional RNN layer followed by a standard

CNN, with an optional attention mechanism towards the output layer. Luo et al. [30]

proposed convolving over not only the sentence, but rather over the five segments of

a sentence: before the first entity mention, the first entity mention, in between the

entity mentions, the second entity mention, and after the second entity mention. A

single representation of the candidate relation and its context are then composed via

simple concatenation of the CNN outputs. Zhang et al. [31] showed that relation ex-

traction performance can be improved by applying graph convolutions over a pruned

version of the dependency tree.

2.2.3 End-to-End Relation Extraction

Early efforts in E2ERE, as covered in this section, assume that entity bounds are

known during test time. Hence, the NER aspect of these methods is limited to clas-

sifying entity type (e.g., is "President Kennedy" a person, place, or organization?).

In an early seminal study, Roth and Yih [2] proposed an integer linear programming

(LP) approach to tackle the end-to-end relation extraction problem1. The LP com-

ponent, which takes independent local classifier probability outputs as input, is used

to enhance classification outputs by enforcing relational constraints at a global level

through a so called global inference mechanism. The task of joint extraction is then

reduced to finding a most-probable joint assignment of entities and relations. Hence,

it is possible for the results of an relation classifier to affect the results of the NER

component, which is otherwise impossible in a traditional pipeline approach. A ben-

efit to formulating RE as an LP problem is that it is relatively fast using commercial

LP packages despite hardware limitations at the time; moreover, it is more efficient

1In early works, end-to-end relation extraction for the most part assume that entity bounds are
known during test time. The joint modeling aspect is really then to 1. assign entity types to known
entity mentions along and 2. assign relation types for each candidate pair of entities. It is therefore
a much easier task than “end-to-end relation extraction” as defined in this study, where we must
additionally identify entity bounds.

11

than computing these relationships independently. They experimented on the TREC

dataset (corpus from Wall Street Journal, Associate Press, etc.) that were annotated

with entities and their relationships. They discovered that the LP component was

effective in enhancing classifier results by reducing semantic inconsistencies in the

predictions compared to a traditional pipeline approach wherein the outputs of an

NER are passed as features into the relation classification component. This indicates

that there are mutual inter-dependencies between NER and RC as subtasks which

can be exploited. The LP technique has been also been successfully applied in jointly

model entities and relations with respect to opinion recognition by Choi et al. [32].

Kate and Mooney [33] proposed a similar approach but presented a global inference

mechanism induced by building a graph resembling a card-pyramid structure. A

dynamic programming algorithm, similar to CYK [34] parsing, called card-pyramid

parsing is applied along with beam search to identify the most probable joint assign-

ment of entities and their relations based on outputs of local classifiers. Other efforts

to this end involve the use of a probabilistic graphical model [35, 36]. These methods

work on the assumption that entity mention boundaries are known during test time.

Li and Ji [4] proposed the first model wherein entities (including entity mention

bounds) and their relations are predicted using a single joint model. The predictive

goal is to obtain a structure output for some input sentence given arbitrary (non-task

specific) features and constraints, such that a structure contains both entity mentions

and their relations. Structured perceptrons [37], as a learning framework, is used to

estimate feature weights while beam-search is used to explore partial solutions to

incrementally arrive at the most probable structure. Miwa and Sasaki [3] followed up

by being the first to propose the idea of using a table representation which simplifies

the task into a table-filling problem such that NER and relation labels are assigned

to cells of the table; the goal is to predict a most-probable assignment to the table

out of all possible assignments using beam search. The table is symmetric so only

cells in the lower triangle are assigned a relation label, while cells along the diagonal

are assigned entity labels. While the representation is in table form, the beam search

is performed linearly, one cell-assignment per step. Many search orders are explored

as part of the study and they discovered that assigning entity labels first resulted

in slight gains that are statistically significant. They also deployed an enhanced

margin-based version of the structured perceptron by Li and Ji [4] such that wrong

assignments with small differences from groundtruth are penalized. Moreover, label

dependencies are strictly enforced based on the previous label assignment, at the cost

of additional computation time, so that illegal assignments are not possible.

12

Deep Neural Models. Miwa and Bansal [38] proposed the first deep neural net-

work based model for end-to-end relation extraction. The model proposed consists of

a sequential bi-LSTM layer for encoding contextual semantic information about the

sentence as well as predicting NER tags. Each pair of identified entity are passed to

a mention-level classifier based on a tree-structured LSTM where each pair of entities

is represented by the shortest-path dependency subtree that connects them. Such

a model trained in conjunction with entity pre-training and scheduled sampling was

found to be highly effective. Katiyar and Cardie [39] proposed a deep neural model

for jointly extracting entities and relations without the need to rely on dependency

trees. They propose a multi-layered LSTM model that jointly assigns NER and re-

lation labels at each timestep. For relation labeling, they use an attention layer as

in pointer networks [40] to assign relatedness measures to tokens identified as enti-

ties in previous timesteps. A drawback of this approach is that, while NER tagging

decisions are conditioned on the tag assigned to the previous token, pointer decisions

are not conditioned similarly as in a true pointer network. Moreover, the model as

proposed only permits entities to participate in at most one relation, which restricts

its usefulness for real-world problems.

Zheng et al. [41] proposed a “hybrid” neural network based on an LSTMmodule for

NER tagging and CNN for relation classification; the networks are trained separately

despite such that intermediate representations of the NER module are passed as

input to the relation classification module. A major drawback of such a setup is

that the weights of the NER module are not affected during back-propagation when

training the relation classification component. In this sense, the predictive capability

of the NER component does not benefit from global knowledge about the relation

component. In a separate but related work, Zheng et al. [42] proposes the idea of a

novel tagging scheme for identifying entities as well as relations based on the BIES

(Begin, Inside, End, Single) tags traditionally reserved for NER. In this proposed

tagging scheme, there is an instance of the BIES tag for each relation type and for one

of the two designations (subject or object). For example, a tag “B-Affects-Subject”

indicates that a token is the beginning of an entity tag and the subject of an “Affects”

relation type. The study suggests a layered encoder-decoder LSTM model typically

observed for NER. This approach suffers from the same drawback as Katiyar and

Cardie [39] wherein overlapping relations are not possible.

Pawar et al. [43] proposed a so called All Word Pairs (AWP) neural network

model that, similar to Miwa and Sasaki [3], uses mention-level subnetworks to label

pairs of words such that the end-to-end relation extraction reduces to a table filling

13

problem. The model is advertised as a single joint network in the sense that network

parameters are shared; however, the use of features that are specific to each pair

of words (such as shortest dependency path) for mention-level prediction suggests a

reliance on local classifiers as in past work. Since label predictions are independent

of another, the authors used Markov Logic Networks (MLNs) as a global inference

mechanism to correct label assignments. Li et al. [5] proposes a similar “joint” type

model involving two sub-models; a neural network with CNNs at the character level

and Bi-LSTM at the word level serves as the NER sub-model while a Bi-LSTM over

the shortest dependency path serves as the relation classification sub-model. The

sub-models share parameters but are trained separately in alternation.

Verga et al. [44] proposes a deep neural network model that simultaneously pre-

dicts relationships between all mention pairs in a document based on finding pairwise

scores between entity mentions, using a bi-affine similarity function, and aggregates

them to arrive at a single relation score for each entity pair. Katiyar and Cardie [39]

and Bekoulis et al. [45] specifically use attention mechanisms for the RE component

without the need for dependency parse features. Zheng et al. [46] operate by reducing

the problem to a sequence-labeling task that relies on a novel tagging scheme. Zeng

et al. [47] use an encoder-decoder network such that the input sentence is encoded as

fixed-length vector and decoded to relation triples directly. Most recently, Bekoulis

et al. [48] found that adversarial training (AT) is an effective regularization approach

for E2ERE performance.

2.3 Notations and Neural Building Blocks

Herein, we adhere to the following mathematical notations for consistency. Matrices

are denoted as uppercase letters, such as X, Y , and Z. We use standard subscript

indexing notation to represent matrix indexing operations on rows and columns re-

spectively. For example, Xi,j corresponds to the element at the ith row and jth column

of X. Furthermore, we use subscripted square brackets following a matrix term to

denote a row-indexing operation; for example, X
[i]

corresponds to the vector at row

i of X. The operation for selecting a range of rows is denoted similarly by making

use of the colon; for example, X
[i∶j]

corresponds to the sub-matrix consisting of rows

i to j of X. Vectors are denoted as bolded lowercase letters such as x, y, and z,

with standard subscript as an indexing notation. For example, xi corresponds to the

ith element of x. Moreover, vectors can be represented as a sequence using square

brackets such that x = [x1, . . . ,xn] supposing x is a vector of size n. The vector

14

concatenation operation is denoted using the ∥ symbol. Scalars and other types of

variables are denoted as plain lowercase letters such as x, y, and z. Lastly, sets are

represented as calligraphic uppercase letters such as X , Y , and Z.

We next provide a generic definition of the canonical CNN and BiLSTM networks

that are later used as building blocks in model construction. For ease of notation, we

assume fixed sentence length n and word length n̂; in practice, we set n and n̂ to be

the maximum sentence/word length and zero-pad shorter sentences/words.

CNN. Henceforth, the abstract function fw,dout

CNN (⋅) ∶ Rn×din ↦ Rdout is used to rep-

resent the CNN that convolves on a window of size w in a sentence with n words,

mapping an n × din matrix to a vector representation of length dout, where din is the

word embedding size. This is an abstraction of the canonical CNN for NLP first

proposed by Kim [7] and is defined as follows. First, we denote the convolution op-

eration ⋆ as the sum of the element-wise products of two matrices. That is, for two

matrices A and B of same dimensions, A ⋆B = ∑j∑kAj,k ⋅Bj,k. Suppose the input

is a sequence of vector representations x1, . . . ,xn ∈ Rdin ; the output representation

g ∈ Rdout is defined such that

gk = max(fconvolve(k,x
1, . . . ,xw) , . . . ,

fconvolve(k,x
n−w+1, . . . ,xn))

for k = 1, . . . , dout,

given a convolution function fconvolve that convolves over a contiguous window of size

w ≤ n, defined as

fconvolve(k,v
1, . . . ,vw) = ReLU

⎛
⎜
⎜
⎜
⎝

W k ⋆

⎛
⎜
⎜
⎜
⎝

v1

⋮

vw

⎞
⎟
⎟
⎟
⎠

+ bk
⎞
⎟
⎟
⎟
⎠

where v1, . . . ,vw ∈ Rdin are input vectors,W k ∈ Rw×din and bk ∈ R for k = 1, . . . , dout, are

network parameters (corresponding to a set of dout convolutional filters), ReLU(x) =

max(0, x) is the linear rectifier activation function. Here, dout is a hyperparameter

that determines the number of convolutional filters and thus the size of the final

feature vector. In the study, we denote the convolution as an abstract function

fw,dout

CNN (⋅) ∶ Rn×din ↦ Rdout that convolves on a window of size w and maps an n × din

matrix to a vector representation of length dout.

BiLSTM. Likewise, we represent the BiLSTM network as an abstract function

fdout

BLSTM(⋅) ∶ Rn×din ↦ Rn×dout that maps a sequence of n input vectors (e.g., word

15

embeddings) of din size (as an n×din matrix) to a corresponding sequence of n output

context vectors of dout size (as an n × dout matrix). Let
ÐÐÐ→
LSTM and

←ÐÐÐ
LSTM represent

an LSTM composition in the forward and backward direction. Suppose the input

is a sequence of vector representations x1, . . . ,xn ∈ Rdin ; the output of a standard

bidirectional LSTM network (BiLSTM) is a matrix H ∈ Rn×dout = (h1, . . . ,hn)
⊺

such

that

Ð→
h i =

ÐÐÐ→
LSTM(xi),

←Ð
h i =

←ÐÐÐ
LSTM(xi),

hi =
Ð→
h i ∥

←Ð
h i, for i = 1, . . . , n,

where ∥ is the vector concatenation operator and hi ∈ Rdout represents the context

centered at the ith word. Here, dout is a hyperparameter that determines the size

of the the context embeddings. In the study, we denote the BiLSTM network as an

abstract function fdout

BLSTM(⋅) ∶ Rn×din ↦ Rn×dout that maps a sequence of n input vectors

(e.g., word embeddings) of din size (as an n×din matrix) to a corresponding sequence

of n output context vectors of dout size (as an n × dout matrix).

16

Chapter 3 Deep Learning for Extracting Protein-Protein Interactions

Precision medicine is an emerging disease treatment paradigm in which healthcare

is customized to each individual patient. To support this effort, it is important to

be able to extract useful translational information such as mentions of relationships

between genes1, mutations, and diseases. BioCreative (Critical Assessment of Infor-

mation Extraction in Biology) [49] is an initiative with the aims of providing a stan-

dard evaluation framework for assessing text mining systems with respect to relevant

problems in the biomedical domain. The related challenges are important as they

provide an avenue for introducing new gold standard datasets to the research com-

munity that are hand-annotated by human domain experts. The precision medicine

track of BioCreative VI, specifically, was organized to identify and study mutations

and their effect on molecular interactions. Concretely, this track focuses on min-

ing biomedical literature for protein-protein interactions (PPIs) that are affected by

the presence of a genetic mutation. As an example, consider the following sentence:

“We found that dominant-negative mutants of PML blocked AXIN-induced p53 ac-

tivation, and that AXIN promotes PML SUMOylation, a modification necessary for

PML functions.” Here, we see that AXIN and PML are proteins that interact, as

indicated by the assertion that AXIN promotes SUMOylation in PML; moreover, a

mutation of PML is involved. Based on this observation, we can deduce that AXIN

and PML are interesting pairs of proteins to study. We refer to this particular type of

relation, where the participants of a PPI are also affected by a mutation, as a PPIm

relation. This challenge is important as there has been a lack of tools that allows for

the extraction of such interactions from biomedical literature despite its potential to

support approaches in precision medicine.

The precision medicine track involves two distinct tasks: document triage and

relation extraction. In the first task, participants are asked to build systems able

to determine whether a PubMed citation is relevant or not relevant with respect to

the relation extraction task; that is, whether or not it contains any PPIm relations

to be extracted. In the second task, we are asked to build systems that take as

input a PubMed citation and output any PPIm relations along with the Entrez Gene

1Given proteins are biochemical materials resulting from expression of corresponding genes, the
terms gene and protein are used interchangeably in this study and the exact meaning is dependent
on the context

17

IDs2 of the participating genes. Thus for the second task, besides the input text,

no additional information is provided making it a true end-to-end requirement where

gene spotting, normalization, and interaction detection are all required.

In this study, we exclusively focus on the PPIm extraction task and propose a

pipeline of three modular components: named entity recognition (NER), gene men-

tion normalization (GN), and relation classification (RC). The input to the pipeline

is a PubMed article and the output is a set of extracted PPIm pairs. The first compo-

nent identifies spans of text corresponding to gene mentions. As an aside, we do not

recognize pronouns referring to gene mentions, only the mentions themselves. The

second component maps the gene mentions to their normalized Entrez Gene IDs.

Lastly, the third component classifies all pairs of unique gene IDs found in the article

as either positive or negative for the PPIm relation. The system we present here is an

improved version of our original challenge entry [50] with three major changes. First,

we use GNormPlus [51] to augment the original training corpus with additional gene

annotations. For the NER component, this has the effect of reducing mixed signals

stemming from the lack of annotations in the original training data. For the RC com-

ponent, this provides many more meaningful negative examples such that the label

imbalance more accurately reflects real-world situations. Second, during testing, we

tag sequences of tokens that are missed by the NER component but appear in a gene

lexicon (provided with the BioCreative II Gene Normalization training data [52]) to

boost overall recall. Third, we consult PubTator [53] as a secondary reference (in ad-

dition to the gene database lookup; more later) for document-level gene annotations

when mapping genes to their Entrez Gene IDs. We find that these changes drastically

improve recall while retaining high precision.

The PPIm extraction task differs from a typical relation extraction task in three

notable ways. First, a protein may interact with itself which implies that a protein

can participate simultaneously as both the subject and the object of a PPIm relation.

Second, directionality of a protein pair is immaterial which implies that (A,B) and

(B,A) are equivalent for the sake of system evaluation. Here, the interaction type

is also not important as in other PPI tasks so each relation can sufficiently be rep-

resented as a pair instead the usual (subject, predicate, object) triple. Lastly, it is

possible for relations to be expressed across sentence bounds such that the subject

and object mentions of a PPIm pair are in different sentences. Hence, we believe it

is better to make relation classification decisions (i.e., extract protein-pairs) at the

document level for this particular task. This is opposed to sentence-level relation

2https://www.ncbi.nlm.nih.gov/gene/

18

https://www.ncbi.nlm.nih.gov/gene/

extraction where sentences are assumed to be mutually independent when extracting

relations; and only pairs mentioned in the same sentence are considered as valid can-

didates for extraction. Document-level extraction has an additional advantage in that

it takes into account sentence-level correlations such as order of sentences expressed.

In the rest of the manuscript, we discuss other approaches to this task and provide

an overview of deep neural network architectures in Section 3.1. We present our

main methods in Section 3.2 and discuss system performance and comparisons in

Section 3.3.

3.1 Background and Related Work

In this section we cover prior efforts in biomedical relation extraction and the top

performer of the PPIm extraction task we address in this manuscript.

3.1.1 Biomedical Relation Extraction

Many early works on relation extraction preprocess the input as a dependency parse

tree [19, 20] and exploit features corresponding to the shortest dependency path

between candidate entities; this general approach has also been successfully applied

in the biomedical domain [21, 22, 23, 25], where they typically involve a graph kernel

based Support Vector Machine (SVM) classifier [23, 25]. The concept of network

centrality has also been applied [24] such that gene networks were created with respect

to a specific disease; genes are then ranked according to network centrality metrics

where highly ranked genes were considered more likely to be associated with the

disease. Other studies, such as the effort by Frunza et al. [26], apply the more

traditional bag-of-words approach focusing on syntactic and lexical features while

exploring a wide variety of classification algorithms including decision trees, SVMs,

and Näive Bayes. More recently, innovations in relation extraction have centered

around designing meaningful deep learning architectures. Liu et al. [27] proposed a

dependency-based CNN architecture wherein the convolution is applied over words

adjacent according to the shortest path connecting the entities in the dependency

tree, rather than words adjacent with respect to the order expressed, to detect drug-

drug interactions (DDIs). In Kavuluru et al. [28], ensembling of both character-

level and word-level RNNs is further proposed for improved performance in DDI

extraction. Raj et al. [29] proposed a deep learning architecture such that word

representations are first processed by a bidirectional RNN layer followed by a standard

CNN, with an optional attention mechanism towards the output layer. Luo et al. [30]

19

proposed convolving over not only the sentence, but rather over the five segments of

a sentence: before the first entity mention, the first entity mention, in between the

entity mentions, the second entity mention, and after the second entity mention. A

single representation of the candidate relation and its context are then composed via

simple concatenation of the CNN outputs. Recent studies have also explored joint

modeling of both NER and relation extraction in an end-to-end fashion via deep

neural networks [39, 38, 41].

3.1.2 Top Performing PPIm Extraction Entry

Chen et al. [54] produced the best micro-F1 scores during the BioCreative VI PPIm

extraction challenge. They used the GNormPlus [51] tool as an “out-of-the-box” so-

lution for recognizing and normalizing gene mentions. The main contribution lies in

the relation classification aspect in which two different approaches are explored. The

first is based on a rule-based system using the heuristic that if a protein-protein pair

occur together in more than N sentences then it is considered positive for a PPIm

relation. This works surprisingly well which is likely due to the observation that an

article that has already been deemed relevant during document triage phase is likely

topically-focused on a specific PPIm relation. It is reasonable to assume that two pro-

teins mentioned together multiple times are more likely to be part of a relation than

not. They found that N = 2 was optimal during validation. The second approach

is based on traditional SVM with a graph kernel where the input is a dependency

graph. Syntactic dependency graphs generated for each sentence are used as classifier

features. In case a protein-pair is mentioned across two sentences, an artificial root

node is generated connecting the roots of the two sentences to form a single larger

graph to be used as input. They additionally experimented with introducing hand-

picked mutation-context binary features in the form of 30 interaction terms including

interact, complex, bound, bind, and regulate. From the 5-fold cross validation results

on the training set, they found that SVM with these mutation features worked best

at 27.5% F1. This is contrary to the test results, in which the rule-based approach

was superior at 37.67% on the official test set. The authors note an end-to-end

performance ceiling of 56% F1 when using GNormPlus for protein recognition and

normalization. This aligns with our observation that improving the gene annotation

aspect plays a key role in improving overall performance. The system we propose in

this study uses more elaborate heuristics for the NER and gene normalization com-

ponents and exploits recent advances in deep neural networks for natural language

processing. Our current results improve upon Chen et al. [54] by 3 micro-F1 points

20

in exact matching and by over 8 micro-F1 points in homolog-level matching strongly

indicating that our end-to-end formulation is more suitable for this task.

3.2 Materials and Methods

For the relation extraction subtask, we propose a pipeline system that consists of three

components: supervised NER for gene mention detection, knowledge-based gene nor-

malization, and supervised relation classification to predict each pair of genes found

as either positive or negative for an interaction. It is possible to use an “out-of-

the-box” solution such as GNormPlus that identifies both gene mentions and their

corresponding gene identifier directly; however, we opted for a supervised approach

that lets us leverage the generous gene annotations provided with the training corpus

for this task. In the rest of this section, we first describe the dataset to be used

in Section 3.2.1. We describe the NER system used to identify spans of text corre-

sponding to a gene mention in Section 3.2.2. We then describe our knowledge-based

method for gene normalization in Section 3.2.3 and relation classification model in

Section 3.2.4.

3.2.1 PPIm Dataset

The PPIm dataset consists of 597 article title and abstracts each of which is annotated

with gene mentions and interacting relevant protein pairs (at least one per citation)

identified by their Entrez Gene IDs. In total, there are 752 pairs such that each article

contains 1.26 relevant PPIm pairs on average. It is important to note that a gene is

only annotated with mention-level offsets if it exists as part of a PPIm relation in

the ground truth; hence, these gene annotations are incomplete for the sole purpose

of training an NER model to identify gene mentions. The test has 632 articles each

with at least one PPIm pair and a total of 868 PPIm pairs over the full test set; here

we observe a similar distribution to the training set with an average of 1.37 pairs

per article. Systems designed for this task are officially evaluated using standard

metrics such as micro and macro F1/precision/recall; additionally, evaluations can

be performed using exact or homologous gene matching. Further details of system

evaluation are discussed in Section 3.3.

21

Figure 3.1: Deep neural network architecture of the NER model

Ti

B
E
T
A
-
T
U
B
U
L
I
N

Character-type
embedding

8

Character
embedding

32

Character
CNN Layer

3

Ti-2

50

50

..

..

.

.

.

Char-CNN
composition

50

200

Word embedding

Word-type
embedding

32

Bi-LSTM
Layer

����������

����������

����������

h1

h2

hn

h1

h2

hn

.. ..

22

3.2.2 Gene Mention Identification (NER)

The aim of the first component in the pipeline is to identify spans of text correspond-

ing to gene mentions. To that end, we propose the use of a deep neural network

system based on a CNN-LSTM hybrid model initially proposed by Chiu and Nichols

[55] for NER. This sequence-to-sequence model composes word representations with

CNNs by convolving over character n-grams. At the word level, contextual word

representations are composed using a bi-directional LSTM layer. A separate fully-

connected softmax output layer is present at the output of each LSTM unit such that

an IOB3 [56] label prediction can be made for each token. A visualization of the

architecture can be observed in Figure 3.1.

Herein, we formulate the model from the bottom up. In this formulation, a word

at position i for i = 1, . . . , n is treated as a lowercased character sequence ci1, . . . , c
i
T i

represented by their index into the character vocabulary Vchar. The corresponding

character embedding matrix Echar ∈ R∣V
char

∣×α embeds each character as a vector of

length α (a hyper-parameter). Embedding matrices can be initialized to random or

pretrained values; in either case, the word vectors are (further) modified via backward

propagation. We use the same embedding setup to produce character type embedding

vectors of length 8 indicating the type of character: lowercase, uppercase, punctu-

ation, or other. Suppose the embedding matrix for character type is Ectype ∈ R4×8

and zi1, . . . , z
i
T i represents the sequence of enumerated character types for the word at

position i. The word at position i can then be represented as a matrix composition

Bi of its character embeddings, or concretely

Bi =

⎛
⎜
⎜
⎜
⎜
⎝

Echar
[ci1]

∥ Ectype

[zi1]

⋮

Echar
[ci

T i]
∥ Ectype

[zi
T i]

⎞
⎟
⎟
⎟
⎟
⎠

where Echar
[j]

, Ectype
[j]

is the jth row of Echar, Ectype respectively and ∥ is the vector

concatenation operator. The central idea in CNNs is the so called convolution op-

eration over the document matrix (or in this case, the “word” matrix) to produce a

feature map representation using a convolution filter (CF). The convolution opera-

tion ∗ is formally defined as the sum of the element-wise products of two matrices.

That is, for two matrices A and B of same dimensions, A ∗B = ∑j∑kAj,k ⋅Bj,k. We

3The Inside-Outside-Beginning (IOB) format is a tagging scheme commonly used in NER and
sequence labeling tasks. The Inside and Beginning tags indicate that the tag is inside and at the
beginning of a typed span respectively while Outside indicates that the tag is outside of a span.
Typically, and in our model, the Beginning tag is only used when a tag is followed by a tag of the
same type to indicate the start of a new span.

23

perform a convolution operation over Bi of window size three to obtain the feature

map vi = [vi1, . . . , v
i
T i−2

] such that

vij = ReLU(W char ∗Bi
[j∶j+2] + b

char)

whereBi
[j∶j+2]

is a window of matrixBi spanning from row j to row j+2,W char and bchar

are network parameters representing a CF, and the linear rectifier activation function

ReLU(x) = max(0, x). The goal is to learn multiple CFs that can collectively capture

diverse representations of the same word. Here, specifically, we learn κ filters to obtain

κ corresponding feature maps denoted as vi,1, . . . ,vi,κ. As a crucial step with CNNs,

we select the most distinctive feature of each feature map using a max-over-time

pooling operation [57]. Let vi,jk be the kth value of vi,j, then the word representation

at position i is ui = [v̂i,1, . . . , v̂i,κ] where v̂i,j = max (vi,j1 , . . . ,v
i,j
T i−2

). Conceptually,

we can roughly equate this to composing a word representation using the traditional

bag-of-words model, except here the features consist of character tri-grams. Because

of the way max-pooling is applied, the order of tri-grams is immaterial.

Once a representation is composed for each word, we then use a bi-directional

LSTM to model the word sequence. It is important that we also include actual word

embeddings (in addition to those obtained through character embedding composi-

tions) as well as word type embeddings as input. The latter embeddings serve a

similar purpose to that of the character types and can correspond to one of the five

following types: all lowercase, mixed-cased, capitalized first letter, all uppercase, or

other. We now transition to a word-level perspective. Formally, the input to the

network is a sequence of word indexes w1, . . . ,wn into the word vocabulary Vword and

the corresponding embedding matrix is denoted as Eword ∈ R∣V
word

∣×d. In addition, we

denote z̄1, . . . , z̄n as a sequence of enumerated word types corresponding to the em-

bedding matrix Ewtype ∈ R5×α. The bi-directional LSTM with a hidden/output unit

size of π can then be composed as

hi = fρBLSTM(ui ∥ Eword
[wi]

∥ Ewtype
[z̄i]

)
[i]

where ui is character based embedding for wi, Eword
[j]

and Ewtype
[j]

are jth rows of

Eword and Ewtype respectively, and LSTM→ and LSTM← represent an LSTM unit

composition in the forward and backward directions respectively. The concatenated

output vector hi ∈ R2π represents the entire context centered at the ith word. The

output at each timestep necessarily has its own softmax output layer in order for the

network to be able to tag each word with an IOB label typically used for NER. The

24

output at each position i = 1, . . . , n is

qi =W outhi + bout

where W out ∈ Rm×2π and bout ∈ Rm are network parameters and m = 3, the number of

NER tags (B-GENE, I-GENE, and O). In order to get a categorical distribution, we

apply the softmax formulation to qi such that

pij =
eq

i
j

∑
m
l=1 e

qi
l

where pi is the vector of probability estimates serving as a categorical distribution

over gene IOB tags for the word at position i. We optimize by computing the standard

categorical cross-entropy loss at each output layer. Since each instance may be of a

different sequence length, the final loss is computed as the mean over all n losses, one

per word. The per-example loss ` is therefore computed as

` = −
1

n

n

∑
i=1

m

∑
j=1

yij log(pij)

where yi ∈ Rm is the correct label for word i encoded as a one-hot vector. Next, we

discuss the training procedure and model configuration.

Training and Model Configuration The NER model is trained on the training

data and additionally on the GNormPlus corpus which includes re-annotations of the

BioCreative II GM/GN corpus [52]. The core training data consists of 5668 sentence-

level training examples while the GNormPlus corpus constitutes an additional 6389.

We chose an embedding size of α = 32 with κ = 50 filters for the character-based

CNN composition. These hyperparameters were chosen based on the results of a hy-

perparameter search conducted by Chiu and Nichols [55] and further tweaked during

initial experiments. At the word level, we used word embedding vectors of size d = 200

pre-trained on the PubMed corpus [58]. The forward and backward LSTM are each

implemented with a hidden unit size of π = 200. The network was trained using SGD

with an exponential decay rate of 0.95 for a maximum of 10,000 iterations. On each

iteration, we trained the network using a mini-batch [59] of 20 random examples.

We check-pointed every 100 iterations and saved only the checkpoint with the best

F1 on the development set. We also deployed early stopping such that training is

stopped if there are no improvements for ten checkpoints. We train ten such models

(each with a different seed) as part of an ensemble where each model is trained on a

smaller random subset of only 50% of the original training set. We observed that the

25

ensemble was less prone to over-fitting (during initial experiments) when each model

of the ensemble was only exposed to a smaller subset of the training data.

Augmented Gene Annotations An issue with the gene annotations in the train-

ing data is that they are not comprehensive. In fact, only genes participating in at

least one relationship are annotated with mention-level offsets and gene IDs. This

issue manifests in two distinct ways.

1. Mixed signals are introduced during learning (for the NER model) given it is

possible for the same entity to appear as a target (annotated with I-GENE) for

identification in one training example but not others (they are instead annotated

with O) where it may not participate in an interaction. Due to the nature of a

pipeline system, downstream bottlenecks can often occur as a result of low recall

at the front-end of a pipeline. If we fail to identify a gene mention, for example,

we will miss any relations it may participate in regardless of the competency of

the relation classification component.

2. Data generated to train the relation classification component will not contain

enough meaningful negative examples given gene mentions in the original train-

ing dataset are limited to those participating in interactions. From a manual

observation of the data, we find that most examples generated are positive with

many of the negative instances resulting from self-interactions.

From our original system submission [50], we found that models trained on only the

provided annotations worked reasonably well despite the highlighted issues. As a

strategy to overcome these issues and to improve end-to-end recall, we augment gene

annotations provided in the training set using the PubTator tool [53] (which uses

GNormPlus [51] as the backend for gene annotations). We simply run PubTator

on the training corpus and insert genes it finds to corresponding spans of text in

the training data that have consecutive O labels. The augmented corpus is instead

used for training the supervised model (not only for NER, but relation classification

as well). When doing this, we make sure to apply corrections such that the label

sequence conforms to IOB rules.

Post-processing step Before proceeding to the gene normalization component, we

perform a post-processing step to the output of the NER system in an attempt to

maximize recall. Specifically, we use the gene lexicon provided with the BioCreative

II Gene Normalization training data [52] as a knowledge source. The gene lexicon

26

provides mappings of gene mentions to potential Entrez Gene IDs (keeping in mind

that a gene mention may map to more than one unique ID). For a document input,

we search for occurrences of gene mentions from the lexicon (note that we prioritize

longer gene mentions over shorter ones) and add them as additional mentions to

our supervised NER system’s annotations barring those that overlap with our NER

gene spans. In the gene normalization step (to be discussed next), we filter out

gene mentions for which there are no plausible gene ID mappings. As such, the

lower precision at the NER level due to this recall oriented post-processing step is

reconcilable as we can weed out obviously bad gene mentions (i.e., gene mentions with

no valid mapping) during gene normalization. Hence, precision can be compromised

for the sake of improved recall for the NER component.

3.2.3 Entrez Gene ID Normalization (GN)

For the gene normalization component, we initially experimented with a naive look-up

approach using the gene lexicon from BioCreative II normalization task [52] as well

as mappings provided with the training corpus. This served as a reasonable baseline;

however, it does not take context into consideration during the mapping process.

A gene mention may be incorrectly mapped to one of its many homologs resulting

in increased false positives. The final version of our gene normalization system is

knowledge-based and more sophisticated in that it takes into consideration both the

gene mention and the context. This system relies on the NCBI gene database [60]

to identify the candidate gene IDs for a particular mention and further narrows it

down to a “best guess” based on the document in which it occurred. We define two

utility functions that serve as the basis for this system. Before we proceed, we recall

that the full citation (title and abstract) represents a single input instance for our

task. Hence the context for confirming the mapping is the Medline citation of the

full article.

The first function, gene_name_lookup, takes as input a mention span and returns

a list of candidate gene IDs sorted by relevance. This is achieved by querying the

NCBI gene database via the E-utilities API4. This provides a ranked list of candidate

genes for a given gene mention. The intuition here is that the top few in this list

are either the correct gene or at least homologs of the correct gene. We now define

the second function, gene_pmid_lookup, which takes as input a PubMed article ID

(PMID) and returns a list of candidate gene IDs for the article. We achieve this by

4An example query for the gene span “Utp21”: https://eutils.ncbi.nlm.nih.gov/entrez/
eutils/esearch.fcgi?db=gene&term=Utp21&retmax=100&sort=relevance

27

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=gene&term=Utp21&retmax=100&sort=relevance
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=gene&term=Utp21&retmax=100&sort=relevance

Algorithm 1 Gene Normalization
Input a: gene mention
Input b: document PMID

X ← gene_name_lookup(a)
Y ← gene_pmid_lookup(b)
Z ← pubtator_pmid_lookup(b)

for x ∈X do
if x ∈ Y then

return x
end if

end for

for x ∈X do
if x ∈ Z then

return x
end if

end for

return NULL

making another query to the NCBI gene database using the PMID of the current

document as query input5. This allows us to narrow down the list of candidate gene

IDs to ones that have already been identified as appearing in the document.

The final gene_normalization algorithm takes as input a gene mention and a

PMID and returns either a gene ID or NULL. The latter indicates that no match

can be found, in which case we simply ignore the span entirely for the remainder

of the pipeline. From initial experiments, we found that relying only on the NCBI

gene database to inform us of the possible genes for a document is too limiting and

hurts recall considerably. This is because, while it is very precise, the database is

not a comprehensive source of knowledge (at least for our purpose) and should not

be relied upon as such. Hence, there is reason to believe that augmenting it with

another high-precision system such as PubTator would improve overall recall. Let

pubtator_pmid_lookup be a function that takes as input a PMID and returns a list

of candidate genes for an article — not unlike gene_pmid_lookup. The difference is

that pubtator_pmid_lookup returns the output of PubTator for the article without

any information about word-level offsets; in other words, only a list of document-level

gene IDs is returned. A natural union works well in our experiments, but we find

a slight advantage in using gene_pmid_lookup as the primary source of knowledge

5An example query for the PMID 18725399: https://eutils.ncbi.nlm.nih.gov/entrez/
eutils/esearch.fcgi?db=gene&term=18725399[PMID]

28

https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=gene&term=18725399[PMID]
https://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=gene&term=18725399[PMID]

Figure 3.2: Network architecture of the RC model (adapted from Tran and Kavuluru
[1, Figure 1])

Max-Pooling
Layer

2 Fully-Connected
SoftMax Output Layer

3Convolutional Layer1

Positive
Negative

:
found

that
dominant

-
negative
mutants

of
GENE_A
blocked
GENE_B
induced
GENE_N

activation
:

with pubtator_pmid_lookup serving as a secondary fallback. The final version of the

procedure is defined in Algorithm 1. For example, suppose the document in question

has PMID 18725399 and we wish to map the gene mention “Utp21” to a gene ID. The

above algorithm will correctly return 851125 as the gene ID which can be verified via

footnotes 4 and 5.

3.2.4 Relation Classification of Gene Pairs (RC)

To extract PPIm pairs, we propose using a deep neural network architecture based

on CNNs for relation classification. The proposed model was originally introduced by

Kim [7] for text classification and later adapted by us for narrative-based prediction

of mental conditions [1]. An overview of the architecture modified to suit the relation

classification task is presented in Figure 3.2. Since the architecture is identical (with

exception of the output layer) to our prior work [1], we simply refer readers to the

original study for the exact model formulation; the remainder of this section will

instead focus on the training and configuration aspect of the model.

Training and Model Configuration When generating training examples for this

model, we use the augmented training corpus as described in Section 3.2.2 with the

additional gene mentions. For this task, each pair of candidate genes in an article

29

constitutes a separate candidate interaction. Hence for each pair of candidate genes,

we generate a distinct training instance by performing well-known entity-binding – we

replace mentions of the pair with special tokens GENE_A and GENE_B (with their

own embeddings) in the corresponding document text. We adapt this idea of entity-

binding from prior efforts [28, 27] on classifying drug-drug interactions (DDIs), which

obtained competitive results on a popular DDI dataset. For a gene pair (A,B), we

also generate an additional instance for the reverse case (B,A) given directionality

does not matter. Note that we run both cases of a candidate pair during testing

and take the average output score for classification. We also generate examples for

the exception case when the candidate pair involves the same gene, i.e. A = B, in

which case GENE_S is used for entity binding of the single gene ID. We also replace

mentions of other genes in the narrative with a special GENE_N token in either case.

In total, we generated 2972 instances from the 597 articles in the training set. At

test time, we only predict pairs as positive where the mean probability is above 50%

for the instance generated from (A,B) and its reverse case (B,A). In case no pairs

meet the threshold, we make a single positive prediction by choosing the pair with

the highest probability (even if it is ≤ 50%).

We now describe the configuration of the RC model. As with the NER model, we

used word embeddings of size 200 pre-trained on the PubMed corpus [58]. For the

convolutional component, we used window sizes of 3, 4, and 5 with 200 convolutional

filters. The model was trained for 30 epochs using RMSProp [61] (an SGD variant)

using mini-batches [59] with a batch size of 8 and a learning rate of 0.001. Since

each instance is a collection of sentences and the window size is at most 5, we pad

four zero-vectors at the beginning and the end of the input text as well as between

sentences. We additionally apply dropout at a rate of 50%. During training, we

checkpoint model parameters at each epoch and only keep the checkpoint resulting

in the highest F1 on the development set. We train 10 such models as part of an

ensemble. Each model of the ensemble is trained and tuned on a random split of 80%

to 20% and seeded with a different value for random parameter initialization. The

neural network was configured based on insights from our prior work [1] with this

particular architecture and further tuned during initial experiments.

3.3 Results and Discussion

Officially, systems submitted for this task are evaluated on micro-F1 with macro-

F1 being a secondary metric introduced after the original challenge. There are two

30

Table 3.1: System performance on the official test set

HomoloGene Matching Method Micro-P (%) Micro-R (%) Micro-F (%) Macro-P (%) Macro-R (%) Macro-F (%)

1

7

Task baseline 10.91 47.41 17.74 19.29 47.16 23.21

2 Tran and Kavuluru [50] 37.39 25.09 30.03 26.86 27.35 25.87

3 Chen et al. [54] 40.00 30.84 34.83 28.68 33.53 28.90

4 Our system 38.22 37.34 37.78 39.68 40.94 38.46

5

3

Task baseline 14.68 51.97 22.90 21.36 51.57 26.02

6 Tran and Kavuluru [50] 46.53 31.09 37.27 32.87 34.15 31.94

7 Chen et al. [54] 43.18 33.41 37.67 30.87 35.86 31.09

8 Our system 46.67 45.69 46.17 48.53 49.94 47.03

matching criteria that are considered when evaluating: exact gene ID matching and

HomoloGene Gene ID matching. In the latter case, genes of the same homology

group are considered equivalent for the purpose of evaluation. This allows room for

errors in the gene mapping aspect of the system and is therefore a less stringent

measure compared to “exact matches.” To identify homologous genes, the NCBI

HomoloGene6 database is used as a reference. In this context, the macro-F1 metric is

based on computing the example-based F1 for each test article and averaging it over

all test articles; this is different from the standard macro-F1 in a multi-class setting

where it is the average of the F1 score over all classes.

The end-to-end performance of our system on the official test set is recorded in

Table 3.1. Results of the top-performing participants of the original challenge are

displayed in order of ascending micro-F1. Our original system submission [50] during

the challenge placed second on exact matching (Table 3.1; row 2) and on HomoloGene

ID matching (Table 3.1; row 6) at a micro-F1 of 30.03% and 37.27% respectively. As

observed in Table 3.1, we were able to improve drastically on previous results by at

least 7 points in micro-F1 for both exact and HomoloGene ID matching. The gains

are almost entirely due to the improved recall of the new system although minor

gains in precision were also observed. We also included the results of Chen et al. [54]

for comparison as their system placed first on both matching criteria. Our improved

system attains competitive test results for this dataset at 37.78% micro-F1 on exact

matching and 46.17% micro-F1 on HomoloGene ID matching.

In Table 3.2, we study the iterative gains achieved by incrementally applying

proposed changes to our original system [50]. In order to draw conclusions based on

statistical significance, we apply the following experiment. First, we train a set of

30 models each with randomly initialized weights for both the NER and the relation

classification component. Recall that both components make predictions based on

6https://www.ncbi.nlm.nih.gov/homologene

31

ten-model ensembles. We repeatedly evaluate the end-to-end system on the test set 30

times; each evaluation run involves a different ten-model ensemble for each component

sampled from their respective pool of 30 trained models. We record the mean-F1 and

95% confidence intervals from these experiments in Table 3.2. Based on the results of

this experiment, we can conclude that performance gains from the proposed changes

are statistically significant (with exception of the retrained NER/RC component on

HomoloGene ID matching). Next, we discuss these changes in detail.

We start by implementing changes to the NER and RC components such that

they are trained on the augmented training corpus (recall that this corpus includes

the original gene annotations as well as genes identified by GNormPlus). This results

in fewer mixed signals for NER component while supplying the RC component with

meaningful negative examples. From this, we see a notable improvement in micro-

precision of at least 5 points on exact matching and 6 points on HomoloGene ID

matching at a minor cost of recall in either case (rows 2 and 8 of Table 3.2); due

to the nature of harmonic means and the fact that the performance already skews

toward precision, improvements to micro-F1 are marginal. Next, we change the NER

component by adding an NER post-processor that takes the output of the NER com-

ponent and annotates unmatched gene names using the gene lexicon as a dictionary.

From this we observe minor improvements (rows 3 and 9 of Table 3.2) to both preci-

sion and recall corresponding to an increase of at least 1 micro-F1 that is consistent

for either matching criteria. A suspected bottleneck of our system is that it has an

overly strict gene mapping criterion in that only genes that are annotated in the NCBI

gene database for a particular PMID are allowed. The system is precise, but does

not comprehensively cover all genes at the document level. Hence, we implemented a

final change such that document-level PubTator (GNormPlus) annotations are used

as a secondary recourse when considering the scope of genes to allow for a particular

article. This final change is responsible for the most dramatic improvement (rows 4

and 10 of Table 3.2) to micro-recall at 12 points on exact matching and 14 points on

HomoloGene ID matching. This comes with a cost to micro-precision at 5 points on

exact matching and 6 points on HomoloGene ID matching. We arrive at relatively

balanced precision and recall measures, an observation that is consistent on either

matching criteria, resulting in an increase of at about 6 points on exact matching and

7 points on HomoloGene ID matching with respect to micro-F1.

32

Figure 3.3: Visualization of decisions made by the final system on article with PMID 23897824

85358

85358

85358

85358

85358

85358

85358

59312

85358 85358

81858

85358

85358

85358

85358

������������� ��������� ���� ������ �����
� ��������� �	� ���� ������������

�������� ���������� ��� ���� ������ ������� ����� ���� ��������
� �����
������������
���������� ��� ������� ��������
����
����� ��� ����� �������
� ����
	��������� ��������� �	� �������� ������� ��������� ���������� �������� ����
� ��������� �������� �	� ���� �������� ��� ���������� �	� ���
 ����� ��
� �������
������� ��� ������
� �������� ��
� ��� ���
���� ������� ��� ������������� ������
������������ ���������� �	� ����������� ������� ���� ��������
�� ���
������������������� ������������ ����� ���
 ����� ��
� ����� ������� 	����� �	�
������� ����� �������� �������� ��� ���������� �������� 	������� �����
����
���� �	� ��
�������� �������� ��� �������
� ����� �������� ����������
�����
� ���
���� ��� ����������� ��������� �	� ���� ������� �������� ������� ��������
���� �	� ������ ����������� ������ �������
� ���
���� ��� ����� �����
��� ��� ��� ���
�����
� � ��������� ��� ���� �������� ��������� ��� �� ������� �������
� ������� �����
��� �
����	�� ����� ��� �� ������
������ �����
� ���� ������������� � ���������
������
������� ��� ����� ����� ���� ����
������ ��������� ����� ���� ��������
�������� ��� ��� �������������� �������� �������� ����������� ����� �	� �������
�������� ��� � 	�
����� ���� ����� ���������
�������� ����� �����
���
����� �������� ���� ������� �������� ������� ������� ��� ���� �����
��� ����
����
�
����	�� �� ���� ����� �	� ����������� �	� ������ ��������� ��
� �������� �����
���������� ��� ���� ������� �����
�� ���� ����������� ��
��� �� ����� �	� 	��������
�������� ���������� �� ������	� 	������������ ������� ��� ����	�� ��������������������

������� ����� ���������� ��������
� ����� ������� 	���������
�����
� ���
���� ��� ���� ������� �������� ������� �������

59312 59312

59312

59312

81858

81858

85358

81858

81858

85358

85358

85358

��

��

���

��

���

���

���

���

���

���

���

���

6709 85358

59312
85358

81858

81858 81858

���

���

���

6709

59312
85358

59312
85358

��

��

��

��

��

��

��� ��� ��

������������
���������

�����

��� ��

��

��

��

�������������
���������

��
��

�	���������
�������� ��

��
��
����

�
���
���

��
��

���
���

��
���

���
��

������������
��������

59312
85358

��
��

���
���

��
���

���
��

33

Table 3.2: Iterative component-level analysis on the official test set

HomoloGene ID Matching Method Micro-P (%) Micro-R (%) Micro-F (%)

1

7

Our base system [50] 35.115 ± 0.488 25.380 ± 0.551 29.461 ± 0.540

2 + Retrained NER/RC 40.848 ± 0.148 24.211 ± 0.094 30.403 ± 0.112

3 + Improved NER 42.368 ± 0.126 25.210 ± 0.079 31.611 ± 0.090

4 + Improved GN 37.425 ± 0.303 37.221 ± 0.205 37.317 ± 0.194

5 Lexicon-based GN + Our NER/RC 12.149 ± 0.156 13.826 ± 0.132 12.925 ± 0.106

6 GNormPlus-based NER/GN + Our RC 37.069 ± 0.206 35.637 ± 0.176 36.333 ± 0.082

7

3

Our base system [50] 44.335 ± 0.684 31.871 ± 0.708 37.077 ± 0.713

8 + Retrained NER/RC 50.406 ± 0.161 29.991 ± 0.092 37.543 ± 0.113

9 + Improved NER 52.393 ± 0.139 31.186 ± 0.081 39.099 ± 0.094

10 + Improved GN 45.989 ± 0.365 45.863 ± 0.278 45.927 ± 0.251

11 Lexicon-based GN + Our NER/RC 13.592 ± 0.183 15.594 ± 0.141 14.517 ± 0.121

12 GNormPlus-based NER/GN + Our RC 40.067 ± 0.178 38.632 ± 0.231 39.329 ± 0.095

We additionally include results based on other variants of our system for com-

parison. For example, we report performance for a variant in which the NER and

RC component are fixed while replacing the GN component with a method based on

gene lexicon mapping and a fuzzy string matching that allowed genes to be mapped

to gene IDs within a 90% similarity threshold. This corresponds to rows 5 and 11 of

Table 3.2 in which we observe very poor performance. For HomoloGene ID matching,

the result is worse than the baseline reported in Table 3.1. This is expected as article

context is not used to infer the correct gene ID from many possible gene IDs that are

homologous in nature. On the other hand, using GNormPlus with the retrained RC

component results in surprisingly high performance. This is contrary to our initial

experiments on a held-out validation set wherein GNormPlus performs much worse at

a micro-F1 of 26.75% – granted this was prior to system improvements as described in

this study. This could be an indicator that GNormPlus is better at annotating genes

on the test set than the training set. Nevertheless, relying on GNormPlus as the

core NER and GN component would result in 36.33% and 39.33% micro-F1 scores on

exact and homologous matching respectively(rows 6 and 12 of Table 3.2); while these

scores are high, this restricts any further improvement to strictly the RC component

and the pipeline wide improvements achieved by our system are still superior (rows

4 and 10 of Table 3.2).

To gain further insight on the inner workings of the final system, we provide a

visualization of intermediate decisions made on a concrete example in Figure 3.3. The

target article, identified by PMID 23897824, was manually chosen from the set of test

examples based on its potential for discussion as well as practical considerations (such

34

as length). Highlighted in yellow are spans of text initially identified by the NER

system; further corrections to these annotations by consulting the gene lexicon are

highlighted in blue. Gene ID annotations are tagged (in green) for each named entity

span for which the gene normalization component finds a suitable match. The color

red is reserved for spans and genes which were missed entirely by the system. We also

include an example-based evaluation on both matching criteria for the final prediction.

For HomoloGene ID matching, we group genes that are homologous accordingly.

One clear observation to be made is that most occurrences of the gene Shank3 are

captured by the supervised NER system. Since Shank3 and its variants do not occur

in the training set, this example demonstrates the ability of the system to generalize

to unseen examples. Occurrences of the same gene without the numeric suffix are not

captured however, which can be an indication that the character-level composition

plays an influential role and that there is bias for word tokens that are a mix of

alphabetic and numeric characters. We can also observe that the NER component

was unable to detect the gene α-fodrin, more commonly known as SPTAN1. This

is due to the system’s lack of support for non-ASCII characters; here, we believe

a simple preprocessing step to convert non-ASCII characters to a more processable

form prior to training and testing will alleviate such issues. The final evaluation

of this example shows that missing such genes can be detrimental to overall recall.

The post-NER correction step introduces its share of false positives including ligand

and novel ; nonetheless, it is responsible for detecting the only mention of the gene

Sharpin, which is a participant of a PPIm relation according to the groundtruth. The

result is a net-gain as the false positives introduced are not normalized by the gene

normalization component at this stage and are therefore ignored for the rest of the

pipeline. Another observation is that Shank/ProSAP individually refer to protein

names but in this context may refer to a group of proteins; the first instance of this

mention is ignored while the NER system detects only ProSAP in the second mention.

In this case, ProSAP appears to be a source of error as it is ultimately mapped to

gene ID 59312, which is Shank3 but of the variety that occurs in the Norwegian rat.

This is in contrast to other instances of Shank3 which are correctly identified as of the

human variety (gene ID 85358). Despite genes 59312 and 85358 being homologous,

incorrectly identifying the precise gene ID predictably results in a false positive when

evaluating on exact matches. This issue disappears when matching on HomoloGene

IDs, as shown in the right panel of Figure 3.3. To bridge the gap between exact

and homologous gene ID matching performance, one option to reduce false positives

is by consolidating the gene ID mappings for subsets of unique gene IDs that are

35

homologous; for example, the use of a voting mechanism for deciding the correct

variant for all members of the subset. However, it is necessary to consider the trade-

off since such a system would not perform well on articles without narrow focus on

any particular species of animal.

3.4 Conclusion

In this chapter, we proposed an end-to-end deep learning system that consists of

named entity recognition, gene normalization, and relation classification for the BioCre-

ative VI Precision Medicine track’s task on relation extraction. We proposed changes

to our original system entry for the challenge and analyzed the incremental perfor-

mance gains of these changes. Furthermore, we demonstrated that the proposed

system performs competitively for this task by significantly improving upon top re-

sults achieved in the original challenge. We believe this is an important progression

in supporting efforts in precision medicine. A drawback of the system is the lack of

built-in mechanisms for interpretability of decisions, which can be rectified by adding

an attention layer to highlight contextual words or phrases that are central to this new

problem domain. On the other hand, the lack of comprehensive gene annotations also

poses a non-trivial challenge when attempting to build an end-to-end system for this

task. The system as proposed relies heavily on numerous external tools and knowledge

bases to circumvent the lack of comprehensive gene annotations. As human-expert

annotations are expensive and time consuming, this aspect may continue to surface in

future datasets of a similar nature. The next chapters will focus on dealing with this

aspect in a more direct fashion while realizing a true end-to-end deep neural network

that is able to model all components jointly.

36

Chapter 4 Graph Convolutions for Extracting Drug Interaction

Information

Preventable adverse events (AE) are negative consequences of medical care resulting

in injury or illness in a way that is generally considered avoidable. According to a

report [62] by the Department of Human and Health Services, based on an analysis of

hospital visits by over a million Medicare beneficiaries, about one in seven hospital

visits were associated with an AE with 44% being considered clearly or likely pre-

ventable. Overall, AEs were responsible for an estimated US $324 million in Medicare

spending for the studied month of October 2008. Preventable AEs thus introduce a

growing concern in the modern healthcare system as they represent a significant frac-

tion of hospital admissions and play a significant role in increased health care costs.

Alarmingly, preventable AEs have been cited as the eighth leading cause of death in

the U.S., with an estimated fatality rate of between 44,000 and 98,000 each year [63].

As drug-drug interactions (DDIs) may lead to to variety of preventable AEs, being

able to extract DDIs from prescription drug labels is an important effort toward effec-

tive dissemination of drug safety information. This includes extracting information

such as adverse drug reactions and drug-drug interactions as indicated by drug labels.

The U.S. Food and Drug Administration (FDA), for example, has recently begun to

transform Structured Product Labeling (SPL) documents into a computer-readable

format, encoded in national standard terminologies, that will be made available to

the the medical community and the public [64]. The initiative to develop a database

of structured drug safety information that can be indexed, searched, and sorted is an

important milestone toward a fully-automated health information exchange system.

To aid in this effort, we propose a supervised deep learning model able to tackle

the problem of drug-drug interaction extraction in an end-to-end fashion. While most

prior efforts assume all drug entities are known ahead of time (more in Section 4.1),

and the drug-drug interaction extraction task reduces to a simpler binary relation

classification task of known drug pairs, we propose a system able to identify drug

mentions in addition to their interactions. Concretely, the system takes as input the

textual content of the label (indicating dosage and drug safety precautions) of a target

drug and, as output, identifies mentions of other drugs that interact with the target

drug. Thus only one of the two interacting drugs is known beforehand (i.e., the “label

drug”), while the other (i.e., the “precipitating drug”, or simply precipitant) is an

unknown that our model is expected to extract. Along with identifying precipitants,

37

Figure 4.1: An example illustrating the end-to-end DDI extraction task. We first
(1) identify mentions including precipitants; for each precipitant, we (2) determine
the type of interaction and, based on interaction type, (3) determine the interaction
outcome. In the case of PD interactions, the outcome corresponds to one of the
previously identified effect spans.

Precipitant

Trigger E�ect

Label Drug

The use of Adenocard in patients

receiving digitalis may be rarely

associated with ventricular �brillation .

Adenocard digitalis

MENTIONS INTERACTION

Pharmacodynamic

ventricular �brillation
E�ect

INTERACTION EFFECT

INTERACTION TYPE

Label Drug Precipitant

Pharmacokinetic

Unspeci�ed

X

1 2

3

we also determine the type of interaction associated with each precipitant; that is,

whether the interaction is designated as being pharmacodynamic (PD) or pharma-

cokinetic (PK). In pharmacology, PD interactions are associated with a consequence

on the organism while PK interactions are associated with changes in how one or

both of the interacting drugs is absorbed, transported, distributed, metabolized, and

excreted when used jointly. Beyond identifying the interaction type, it is also im-

portant to identify the outcome or consequence of an interaction. As defined, PK

consequence can be captured using a small fixed vocabulary, while identifying PD

effects is a much more contrived process. The latter involves additionally identifying

spans of text correspond to a mention of a PD effect and linking each identified PD

precipitants to one or more PD effects. We provide a more formal description of the

task in Section 4.2.1. Figure 4.1 features a simple example of a PD interaction that is

extracted from the drug label for Adenocard, where the precipitant is digitalis and

the effect is “ventricular fibrillation.”

To address this end-to-end variant of DDI extraction, we propose a multi-task

joint-learning architecture wherein various intermediate hidden representations, in-

cluding sequence-based and graph-based contextual representations based on bidirec-

tional Long Short-Term Memory (BiLSTM) networks and graph convolution (GC)

networks respectively, are composed and are then combined in clever ways to pro-

duce predictions for each subtask. GCs over dependency parse trees are useful for

38

Table 4.1: Characteristics of various datasets

*DDI2013 *NLM180 TR22 Test Set 1 Test Set 2

Number of Drug Labels 715 180 22 57 66

Total number of sentences 6489 5757 603 8195 4256

Number of sentences per Drug Label (Average) 9 32 27 144 64

Number of words per sentence (Average) 21 23 24 22 23

Proportion of sentences with annotations 70% 27% 51% 23% 23%

Number of mentions per annotated sentence (Average) 2.3 4.0 3.8 3.7 3.6

Proportion of mentions that are Precipitant 100% 57% 53% 56% 55%

Proportion of mentions that are Trigger - 20% 28% 30% 33%

Proportion of mentions that are Effect - 23% 19% 14% 12%

Proportion of interactions that are Pharmacodynamic 14% 47% 49% 33% 28%

Proportion of interactions that are Pharmacokinetic 9% 25% 21% 28% 47%

Proportion of interactions that are Unspecified 77% 28% 30% 39% 25%

* Statistics for NLM180 and DDI2013 were computed on mapped examples (based on our own annotation mapping
scheme) and not based on the original data.

capturing long-distance syntactic dependencies. We innovate on conventional GCs

with a sigmoid gating mechanism derived via additive attention, referred to as Graph

Convolution with Attention-Gating (GCA), which determines whether or not (and to

what extent) information propagates between source and target nodes corresponding

to edges in the dependency tree. The attention component controls information flow

by producing a sigmoid gate (corresponding to a value in [0,1]) for each edge based on

an attention-like mechanism that measures relevance between node pairs. Intuitively,

some dependency edges are more relevant than others; for example, negations or ad-

jectives linked to important nouns via dependency edges may have a large influence

on the overall meaning of a sentence while articles, such as “the”, “a”, and “an”, have

little or no influence comparatively. A standard GC would compose all source nodes

with equal weighting, while the GCA would be more selective by possibly assigning

a higher sigmoid value to negations/adjectives and a lower sigmoid value to articles.

We train and evaluate our model on the Text Analysis Conference (TAC) 2018

dataset for drug-drug interaction extraction from drug labels [64]. The training data

contains 22 drug labels, referred to as TR22, with gold standard annotations. As

training data is scarce, we additionally propose a transfer learning step whereby the

model is first trained on external data for extracting DDIs including the NLM-DDI

CD corpus1 and SemEval-2013 Task 9 dataset [65]; we refer to these as NLM180

and DDI2013 respectively. Two official test sets of 57 and 66 drug labels, referred

1https://lhce-brat.nlm.nih.gov/NLMDDICorpus.htm

39

to as Test Set 1 and 2 respectively, with gold standard annotations are used strictly

for evaluation. Table 4.1 contains more information about these datasets and their

characteristics. In this study, we show that the GCA improves over the standard GC

and that our GCA based model with transfer learning by pretraining on external data

improves over our the best model [66] from a prior study2, that is based solely on

BiLSTMs, by 4 absolute F1 points in overall performance. Furthermore, we show that

our GCA based model complements our prior BiLSTM model; that is, by combining

the two via ensembling, we improve over the prior best by 6 absolute F1 points in

overall performance. Among comparable methods, our GCA based method exhibits

state-of-the-art performance on all metrics after controlling for available training data.

4.1 Background and Related Work

Prior studies on DDI extraction have focused primarily on binary relation extraction

where drug entities are known during test time and the learning objective is reduced

to a simpler relation classification (RC) task. In RC, pairs of known drug entities

occurring in the same sentence are assigned a label, from a fixed set of labels, indi-

cating relation type (including the none or null relation). Typically, no preliminary

drug entity recognition or additional consequence prediction step is required. In this

section, we cover prior relation extraction methods for DDI as well as participants of

the initial TAC DDI challenge.

4.1.1 Relation Extraction for DDI

State-of-the-art methods for DDI extraction typically involve some variant of convo-

lutional neural networks (CNNs) or recurrent neural networks (RNNs), or a hybrid

of the two. Many studies utilize the dependency parse structure of an input sentence

to capture long-distance dependencies, which has previously been shown to improve

performance in general relation extraction tasks [31] and those in the biomedical

domain [67, 27]. Liu et al. [68] first proposed the use of standard CNNs for DDI

extraction. Their approach involved convolving over an input sentence with drug

entities bound to generic tokens in conjunction with so called position vectors. Posi-

tion vectors are used to indicate the offset between a word and each drug of the pair

and provide additional spatial features. Improvements were attained, in a follow-up

study, by instead convolving over the shortest dependency path between the candi-

2Tran et al. [66] was published as part of the non-refereed Text Analysis Conference (TAC); this
study is an extension of our original report.

40

date drug pair [27]. Zhao et al. [69] introduced an enhanced version of the CNN based

method by deploying word embeddings that were pretrained on syntactic parses, part-

of-speech embeddings, and traditional handcrafted features. Suárez-Paniagua et al.

[70] instead focused on fine-tuning various hyperparameter settings including word

and position vector dimensions and convolution filter sizes for improved performance.

Kavuluru et al. [28] introduced the first neural architecture for DDI extraction based

on hierarchical RNNs, wherein hidden intermediate representations are composed in

a sequential fashion with cyclic connections, with character and word-level input.

Sahu and Anand [71] experimented with various ways of composing the output of a

bidirectional LSTM network including max-pooling and attention pooling. Lim et al.

[72] proposed a recursive neural network architecture using recurrent units called

TreeLSTMs to produce meaningful intermediate representations that are composed

based on the structure of the dependency parse tree of a sentence. Asada et al. [73]

demonstrated that combining representations of a CNN over the input text and graph

convolutions over the molecular structure of the target drug pair (as informed by an

external drug database) can result in improved DDI extraction performance. More

recently, Sun et al. [74] proposed a hybrid RNN/CNN method by convolving over the

contextual representations produced by a preceding recurrent neural network.

4.1.2 TAC 2018 DDI Track

TAC is a series of workshops organized by NIST aimed at encouraging research in

natural language processing (NLP) by providing large test collections along with a

standard evaluation procedure. The “DDI Extraction from Drug Labels” track [64] is

established with the goal of transforming the contents of drug labels into a machine-

processable format with linkage to standard terminologies. Tang et al. [75] placed first

in the challenge using an encoder/decoder architecture to jointly identify precipitants

and their interaction types and a rule-based system to determine interaction outcome.

In addition to the provided training data, they downloaded and manually annotated a

collection of 1148 sentences to be used as external training data. Tran et al. [66] placed

second in the challenge using a BiLSTM for joint entity recognition and interaction

type prediction, followed by a CNN with two separate dense output layers (one of

PK and one for PD) for outcome prediction. Dandala et al. [76] placed third in

the challenge using a BiLSTM (with CRFs) with part-of-speech and dependency

features as input for entity recognition. Next, an Attention-LSTM model was used

to detect relations between recognized entities. The embeddings were pretrained on

a corpus of FDA-released drug labels and used to initialized the model. NLM180

41

was used for training with TR22 serving as the development set. Other participants

proposed systems involving similar approaches including BiLSTMs and CNNs as well

as traditional linear and rule-based methods.

4.2 Materials and Methods

We begin by formally describing the end-to-end task in Section 4.2.1. Next, we

describe our approach to framing and modeling the problem (Section 4.2.2), the

proposed network architecture (Section 4.2.3), the data used for transfer learning

(Section 4.2.4), and our model-ensembling approach (Section 4.2.5). Finally, in Sec-

tion 4.2.6, we describe the method for model evaluation.

4.2.1 Task Description

Herein, we describe the end-to-end task of automatically detecting drugs and their in-

teractions, including the outcome of identified interactions, as conveyed in drug labels.

We first define drug label as a collection of sections (e.g., DOSAGE & ADMINISTRATION,

CONTRAINDICATIONS, and WARNINGS) where each section contains one or more sen-

tences. The overall task, in essence, involve fundamental language processing tech-

niques including named entity recognition (NER) and relation extraction (RE). The

first subtask of NER is focused on identifying mentions in the text corresponding

to precipitants, interaction triggers, and interaction effects. Precipitating drugs (or

simply precipitants) are defined as substances, drugs, or a drug class involved in an

interaction. The second subtask of RE is focused on identifying sentence-level inter-

actions; specifically, the goal is to identify the interacting precipitant, the type of the

interaction, and outcome of the interaction. The interaction outcome depends on the

interaction type as follows. Pharmacodynamic (PD) interactions are associated with

a specified effect corresponding to a span within the text that describes the outcome

of the interaction. Figure 4.1 features a simple example of a PD interaction that

is extracted from the drug label for Adenocard, where the precipitant is digitalis

and the effect is “ventricular fibrillation.” Naturally, it is possible for a precipitant

to be involved in multiple PD interactions. Pharmacokinetic (PK) interactions, on

the other hand, are associated with a label from a fixed vocabulary of National Can-

cer Institute (NCI) Thesaurus codes indicating various levels of increase/decrease in

functional measurements. For example, consider the sentence: “There is evidence that

treatment with phenytoin leads to decrease intestinal absorption of furosemide, and

consequently to lower peak serum furosemide concentrations.” Here, phenytoin is

42

Table 4.2: Example of the sequence labeling scheme for the sentence in Figure 4.1,
where LABELDRUG is substitute for Adenocard.

O O O O O O O U-DYN

The use of LABELDRUG in patients receiving digitalis

O O O B-TRI L-TRI B-EFF L-EFF O

may be rarely associated with ventricular fibrillation .

involved in a PK interaction with the label drug, furosemide, and the type of PK in-

teraction is indicated by the NCI Thesaurus code C54615 which describes a decrease

in the maximum serum concentration (Cmax) of the label drug. Lastly, unspecified

(UN) interactions are interactions with an outcome that is not explicitly stated in

the text and is typically indicated through cautionary remarks.

4.2.2 Joint Modeling Approach

Since only precipitants are annotated in the ground truth, we model the task of

precipitant recognition and interaction type prediction jointly. We accomplish this by

reducing the problem to a sequence tagging problem via a novel NER tagging scheme.

That is, for each precipitant drug, we additionally encode the associated interaction

type. Hence, there are three possible precipitant tags: DYN, KIN, and UN for

precipitants with pharmacodynamic, pharmacokinetic, and unspecified interactions

respectively. Two more tags, TRI and EFF, are added to further identify mentions

of triggers and effects concurrently. To properly identify boundaries, we employ the

BILOU encoding scheme [77]. In the BILOU scheme, B, I, and L tags are used to

indicate the beginning, inside, and last token of a multi-token entity respectively. The

U tag is used for unit-length entities while the O tag indicates that the token is outside

of an entity span. As a preprocessing step, we identify the label drug in the sentence,

if it is mentioned, and bind it to a generic entity token (e.g., “LABELDRUG”). We

also account for indirect mentions of the label drug, such as the generic version of

a brand-name drug, or cases where the label drug is referred to by its drug class.

To that end, we built a lexicon of drug names mapped to alias using NLM’s Medical

Subject Heading (MeSH) tree as a reference. Table 4.2 shows how the tagging scheme

is applied to a simple example.

43

Figure 4.2: Overview of the neural network architecture for a simplified example from the drug label Adenocard. Here, the
ground truth indicates that digitalis is a pharmacodynamic precipitant associated with the effect “ventricular fibrillation.” The
PK predictive component is omitted given there are no precipitants involved in a PK interaction.

use

of

LABELDRUG

with

digitalis

may

be

associated

with

ventricular

�brillation

CN
N

BI
-L

ST
M

GRAPH
CONVOLUTIONCHARACTER-BASED REPRESENTATION

WORD-BASED REPRESENTATION

CONTEXT REPRESENTATION

GRAPH CONV. REPRESENTATION

SE
Q

U
EN

CE
 L

A
BE

LI
N

G

BI
-L

ST
M

CN
N

U-DYN

O

B-EFF

L-EFF

O

O

O

O

O

O

O

YES

PHARMACODYNAMIC
OUTCOME

44

Once we have identified the precipitant (as well as triggers/effects) and the inter-

action type for each precipitant, we subsequently predict the outcome or consequence

of the interaction (if any). To that end, we consider all entity spans annotated with

KIN tags and assign them a label from a static vocabulary of 20 NCI concept codes

corresponding to PK consequence (i.e., multi-class classification). Likewise, we con-

sider all entity spans annotated with DYN tags and link them to mention spans

annotated with EFF tags; we accomplish this via binary classification of all pairwise

combinations. For entity spans with UN tags, no outcome prediction is needed.

4.2.3 Neural Network Architecture and Training Details

We begin by describing how the three types of intermediate representations are com-

posed. The construction of word, context, and graph-based representations are de-

scribed in the remainder of this section. We note that this section references neural

building blocks originally described in Section 2.3. Next, we describe the predictive

components of the network that share and utilize the intermediate representations.

Afterwards, we describe the sequence-labeling component of the network used to ex-

tract drugs and their interactions. Then, we describe the component for predicting

interaction outcome. An overview of the architecture is shown in Figure 4.2. Lastly,

we describe the model configuration and training process.

Word-level Representation

Suppose the input is a sentence of length n represented by a sequence of word indices

w1, . . . ,wn into the vocabulary VWord. Each word is mapped to a word embedding

vector via embedding matrices EWord ∈ R∣V
Word

∣×δ such that δ is a hyperparameter

that determines the size of word embeddings. In addition to word embeddings, we

employ character-CNN based representations as commonly observed in recent neural

NER models [55]. Character-based models capture morphological features and help

generalize to out-of-vocabulary words. For the proposed model, such representations

are composed by convolving over character embeddings of size π using a window

of size 3, producing η feature maps; the feature maps are then max-pooled to pro-

duce η-length feature representations. Correspondingly, we denote EChar ∈ R∣V
Char

∣×π

as the embedding matrix given the character vocabulary VChar; the character-level

45

embedding matrix Ci ∈ Rn̂×π for the word at position i is

Ci =

⎛
⎜
⎜
⎜
⎝

EChar
[ci,1]

⋮

EChar
[ci,n̂]

⎞
⎟
⎟
⎟
⎠

where ci,j for 1 ≤ i ≤ n,1 ≤ j ≤ n̂, represents the jth character index of the ith word. The

word-level representation Rword ∈ Rn×(δ+η) is a concatenation of character-based word

embeddings and pretrained word embeddings along the feature dimension; formally,

RWord =

⎛
⎜
⎜
⎜
⎝

EWord
[w1]

∥ f 3,η
CNN(C

1)

⋮

EWord
[wn]

∥ f 3,η
CNN(C

n)

⎞
⎟
⎟
⎟
⎠

.

Context-based Representation

We compose context-based representation by simply processing the word-level repre-

sentation with a BiLSTM layer as is common practice; concretely, RContext = fρBLSTM(RWord)

where ρ is a hyperparameter that determines the size of the context embeddings.

Graph-based Representation

In addition to the sequential nature of LSTMs, we propose an alternative and com-

plementary graph-based approach for representing context using graph convolution

(GC) networks. Typically composed on dependency parse trees, graph-based repre-

sentations are useful for relation extraction as they capture long-distance relation-

ships among words of a sentence as informed by the sentence’s syntactic depen-

dency structure. While graph convolutions are typically applied repeatedly, our ini-

tial cross-validation results indicate that single-layered GCs are sufficient and deep

GCs typically resulted in performance degradation; moreover, Zhang et al. [31] re-

port good performance with similarly shallow GC layers. Hence the following for-

mulation describes a single-layered GC network, with an additional attention-based

sigmoid gating mechanism, which we holistically refer to as a Graph Convolution with

Attention-Gating (GCA) network. As mentioned in the beginning of Chapter 4, the

GCA improves on conventional GCs with a sigmoid-gating mechanism derived via an

alignment score function associated with additive attention [13]. The sigmoid “gate”

determines whether or not (and to what extent) information is propagated based on

a learned alignment function that conceives a “relevance” score between a source and

target node (more later).

46

As a pre-processing step, we use a dependency parsing tool to generate the pro-

jective dependency tree for the input sentence. We represent the dependency tree as

an n × n adjacency matrix A where Ai,j = Aj,i = 1 if there is a dependency relation

between words at positions i and j. This matrix controls the flow of information

between pairs of words corresponding to connected nodes in the dependency tree (ig-

noring dependency type); however, it is also important for the existing information of

each node to carry over on each application of the GC. Hence, as with prior work [31],

we use the modified version Ã = A+ I where I is the identity matrix to allow for self-

loops in the GC network. The graph-based representation RGraph ∈ Rn×β is composed

such that

RGraph
[i] = tanh(

n

∑
j=1

Ãi,jW
GraphRContext

[j] + bGraph)

where WGraph ∈ Rβ×ρ,bGraph ∈ Rβ are network parameters, tanh(⋅) is the hyperbolic

tangent activation function, and β is a hyperparameter that determines the hidden

GC layer size. Thus, information propagated from source nodes j = 1, . . . , n to target

node i, based on the summation of intermediate representations, are unweighted and

share equal importance.

As stated previously, we propose to extend the standard GC by adding an attention-

based sigmoid gating mechanism to control the flow of information via the gating

matrix G ∈ Rn×n. We define G such that

Gi,j = σ(v ⋅ a
i,j) for i = 1, . . . , n, j = 1, . . . , n,

where v ∈ Rα is a network parameter and ai,j ∈ Rα is the hidden attention layer

composed as a function of the context representation at source node i and target

node j; concretely,

ai,j = tanh (W SourceRContext
[i] +W

TargetRContext
[j] + bAttn) ,

where W Source,WTarget ∈ Rα×ρ and bAttn ∈ Rα are network parameters and α is a

hyperparameter that determines hidden attention layer size. Intuitively, the network

learns the relevance of node i to node j via the attention ai,j and outputs a between 0

and 1 at gate Gi,j. Gate Gi,j controls the flow of information from node i to j, where

0 indicates no information is passed and 1 indicates that all information is passed.

To integrate the gating mechanism, we simply redefine Ã = (A + I) ×G. In the next

two sections, we show how the intermediate representations are used for end-task

prediction.

47

Sequence Labeling

The sequence labeling (SL) task for detecting precipitant drugs and their interaction

type is handled by a bidirectional LSTM trained on a combination of the two types

of losses: conditional random fields (CRF) and softmax cross entropy (SCE). Us-

ing CRFs results in choosing a globally optimal assignment of tags to the sequence,

whereas a standard softmax at the output of each step may result in less globally

consistent assignments (e.g., an L tag following an O tag) but better local or partial

assignments. We begin by introducing a bidirectional LSTM layer that processes the

various intermediate representations. The new representation, RSL ∈ Rn×γ, is defined

such that

RSL = fγBLSTM

⎛
⎜
⎜
⎜
⎝

RWord
[1] ∥ RContext

[1] ∥ RGraph
[1]

⋮

RWord
[n] ∥ RContext

[n] ∥ RGraph
[n]

⎞
⎟
⎟
⎟
⎠

where γ is a hyperparameter that determines the hidden layer size. While RGraph

is based on RContext and RContext is based on RWord, we observed that combining

these intermediate representations (manifesting at varying depth in the architecture)

resulted in improved sequence-labeling performance according to preliminary exper-

iments and prior results from Tran et al. [66]. As with residual networks [78], they

additionally provide a kind of shortcut or “skip-connection” over intermediate layers.

Given a set of ntag possible tags, we compose an n × ntag score matrix Y (where

Yi,t represents the score of the tth tag at position i) such that Y
[i]

=WOutRSL
[i] +b

Out

where WOut ∈ Rntag×γ,bOut ∈ Rntag are network parameters. Given example x and the

truth tag assignment as a matrix Ȳ where rows are one-hot vectors over all possible

tags, the SCE loss is

`SCE(x, Ã, Ȳ ; θ) = −
n

∑
i=1

ntags

∑
t=1

Ȳi,t log(
exp(Yi,t)

∑
ntags

k=1 exp(Yi,k)
)

where Ȳi,t ∈ {0,1} indicates whether the tag t is assigned at position i and θ is the

set of all network parameters. Next, we define the CRF loss as commonly used

with LSTM based models for entity recognition. We learn a transition score matrix

M ∈ Rntag×ntag , inferred from the training data, such that Mi,j is the transition score

from tag i to tag j. Given an example x as a sequence of word indices w1, . . . ,wn and

candidate tag sequence ȳ as a sequence of tag indices s1, . . . , sn, the tag assignment

score (t-score) is defined as

t-score (x, Ã, ȳ; θ̂) = t-score (w1, . . . ,wn, Ã, s1, . . . , sn; θ̂) =
n

∑
i=1

(Yi,si +Msi−1,si)

48

where θ̂ = θ ∪ {M}. Intuitively, this score summarizes the likelihood of observing a

transition from tag si−1 to tag si in addition to the likelihood of emitting tag si given

the semantic context for i = 1, . . . , n. Thus Y is treated as a matrix of emission scores

for the CRF. For an example with input x and truth tag assignment ȳ, the loss is

computed as the negative log-likelihood of the tag assignment as informed by the

normalized tag assignment score, or

`CRF(x, Ã, ȳ; θ̂) = − log
exp(t-score(x, Ã, ȳ; θ̂))

∑y∈S exp(t-score(x, Ã, y; θ̂))

where S is the set of all possible tag assignments. The final per-example loss for

sequence labeling is simply a summation of the two losses: `SL = `SCE + `CRF. During

testing, we use the Viterbi algorithm [79], a dynamic programming approach, to

decode and identify the globally optimal tag assignment.

Consequence prediction

Once precipitants (and corresponding interaction types) have been identified, we

perform so called consequence prediction (CP) for all precipitant drugs identified as

participating in PD or PK interactions. The classification task of CP takes as input

the target sentence and two candidate entities that are referred to as the subject and

object entities. Here the subject is always a precipitating drug; on the other hand, the

object designation depends on the type of interaction (more later). First, we define

the representation matrix for CP as RCP ∈ Rn×(ρ+β) where

RCP =

⎛
⎜
⎜
⎜
⎝

RContext
[1] ∥ RGraph

[1]

⋮

RContext
[n] ∥ RGraph

[n]

⎞
⎟
⎟
⎟
⎠

.

We process the matrix via convolutions of windows sizes 3, 4, and 5 and concatenate

the results to produce the final feature vector gCP. In addition to CNN features, we

map entities to their graph based context features and append it to gCP, which has

been previously shown to work well in a similar architecture [5]. Concretely, the final

feature vector is

gCP = f 3,µ
CNN(R

CP) ∥ f 4,µ
CNN(R

CP) ∥ f 5,µ
CNN(R

CP) ∥ RCP[tSub] ∥ RCP[tObj]

with gCP ∈ R3µ+2(ρ+β) where µ, as a hyperparameter, is the number of CNN filters per

convolution and tSub and tObj are the position index of the last word (typically the

“head” word) of the subject and object respectively.

49

The actual entities determined to be the subject/object pair are based on the

interaction type; for PD interactions, the subject is the precipitant drug and the

object is some candidate effect mention. For PK interactions, however, the subject is

the precipitant drug but the object is chosen to be the closest (based on character-

offset) mention of the drug label with respect to the target precipitant drug. We

found this appropriate based on manual review of the data, as the NCI code being

assigned depends highly on whether the increase/decrease in functional measurements

is with respect to the label drug or the precipitant drug. In case the label drug is not

mentioned, a generic “null” vector is used to represent the object.

When performing sequence labeling, we pass in the entire dependency tree encoded

as the matrix Ã. However, when performing consequence prediction and both entities

are non-null, we pass in a pruned version of the entire tree that is tailored to the entity

pair. We apply the same pruning strategy proposed by Zhang et al. [31], wherein

for a pair of subject and object entities (corresponding to tSub and tObj), we keep

only nodes either along or within one hop of the shortest dependency path. This

prevents distant and irrelevant portions of the dependency tree from influencing the

model while retaining important modifying and negating terms. Thus the notation

ÃSub↔Obj is used to denote the pruned version of Ã as a function of the entity pair

indicated by tSub and tObj.

To determine whether there is a PD interaction between a pair of entities, we

employ a standard binary classification output layer. Concretely, for example sentence

x̂ and output y ∈ {0,1}, the probability of a PD interaction between the entity pair

is q = sigmoid(wPD ⋅ gCP + bPD) where wPD ∈ R3µ+2(ρ+β) and bPD ∈ R are network

parameters. The associated binary cross entropy loss is

`PD(x, ÃSub↔Obj, ŷ; θ) = ŷ log q + (1 − ŷ) log(1 − q)

where ŷ ∈ {0,1} indicates the ground truth. For PK interactions, we instead use a

softmax function to produce a probability distribution, represented as vector q ∈ R20,

over the 20 labels corresponding to NCI Thesaurus codes. Concretely, the predicted

probability of label j is qj = exp(yPK
j)/ exp(∑

20
k=1 y

PK
k) where yPK = WPKgCP + bPK

and WPK ∈ R20×[3µ+2(ρ+β)] and bPK ∈ R20 are network parameters. Given a one-hot

vector ȳ ∈ R20 indicating the ground truth, the associated softmax cross entropy loss

is

`PK(x, ÃSub↔Obj, ȳ; θ) =
20

∑
j=1

ȳj logqj .

The loss for a batch of examples is simply the sum of its constituent example-based

losses.

50

Table 4.3: Model configuration obtained through random search over 11-fold cross-
validation of TR22 (training data).

Setting Value

Learning Rate 0.001

Dropout Rate 0.5

Character Embedding Size (π) 25

Character Representation Size (η) 50

Word Embedding Size (δ) 200

Setting Value

Context Embedding Size (ρ) 100

GC Hidden Size (β) 100

GC Attention Size (α) 25

Sequence LSTM Hidden Size (γ) 200

Outcome CNN Filter Count (µ) 50

Neural Network Configuration and Training Details

For each training iteration, we randomly sample 10 sentences from the training data.

These are re-composed into three sets of task-specific examples S, D, and K corre-

sponding to the tasks of sequence labeling, PD prediction, and PK prediction respec-

tively. Unlike our prior work, in which the sub-tasks were trained in an interleaved

fashion, we train on all three objectives jointly. Here, we dynamically switch between

one of four training objective losses based on whether there are available training

examples (in the batch and for the current iteration) for each task. The final training

loss is then

` =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
x∈S

`SL(x) + ∑
x∈D

`PD(x) + ∑
x∈K

`PK(x) if ∣D∣ > 0 and ∣K∣ > 0,

∑
x∈S

`SL(x) + ∑
x∈K

`PK(x) if ∣D∣ = 0 and ∣K∣ > 0,

∑
x∈S

`SL(x) + ∑
x∈D

`PD(x) if ∣D∣ > 0 and ∣K∣ = 0,

∑
x∈S

`SL(x) otherwise.

We train the network for a maximum of 10,000 iterations, check-pointing and

evaluating every 100 iterations on a validation set of sentences from four held-out

drug labels. Only the checkpoint that performed best on the validation set is kept for

test time evaluation. The choice of hyperparameters is shown in Table 4.3; discrete

numbered parameters corresponding to embedding or hidden size were chosen from

{10, 25, 50, 100, 200, 400} based on random search and optimized by assessing 11-

fold cross-validation performance on TR22. The learning and dropout rates are set

to typical default values. We used Word2Vec embeddings pretrained on the corpus

of PubMed abstracts [58]. All other variables are initialized using values drawn

from a normal distribution with a mean of 0 and standard deviation of 0.1 and

further tuned during training. Words were tokenized on both spaces and punctuation

marks; punctuation tokens were kept as is common practice for NER type systems.

51

For dependency parsing, we use SyntaxNet3 which implements the transition-based

neural model by Andor et al. [80]. We trained the aforementioned parser, using default

settings, on the GENIA corpus [81] and use it to obtain projective dependency parses

for each example.

4.2.4 Transfer Learning with Network Pre-Training

An obstacle in solving this flavor of DDI extraction as a machine learning problem is

the high potential for overfitting given the sparse nature of the output space, which is

further intensified by the scarce availability of high quality training data. As quality

training data is expensive and requires domain expertise, we propose to use a transfer

learning approach where the model is pre-trained on external data as follows. First,

we pre-train on the DDI2013 dataset, which contains strictly binary relation DDI an-

notations and no interaction consequence annotation. Hence, DDI2013 is only used

to train the sequence labeling objective `SL(x). Next, we pre-train on NLM180, a

collection of 180 drug labels annotated in a comparable format to TR22 but follows

a different set of guidelines and lacks comprehensive interaction consequence anno-

tation. Finally, we fine-tune for the target task by training on the official TR22

dataset.

Translating NLM180 and DD2013 to the TAC 2018 format is an imperfect pro-

cess given structural (breadth and depth of annotations) and semantic (guidelines in

addition to annotator experience and vision) differences. For example, differences in

how entity boundaries are annotated, such as whether or not modifier terms should

be kept as part of a named entity, may have a large impact on model performance.

Hence, we expect the translated versions of NLM180 and DDI2013 to be very noisy

as training examples for the target task. We describe the translation process for

DDI2013 in Sections 4.2.4 and 4.2.4. We provide summary statistics about these

datasets in Table 4.1.

NLM180 Mapping Scheme

In NLM180, there is no distinction between triggers and effects; moreover, PK effects

are limited to coarse-grained (binary) labels corresponding to increase or decrease

in function measurements. Hence, a direct mapping from NLM180 to the TR22 an-

notation scheme is impossible. As a compromise, NLM180 “triggers” were mapped

to TR22 triggers in the case of unspecified and PK interactions. For PD interac-

3https://github.com/tensorflow/models/tree/master/research/syntaxnet

52

tions, we instead mapped NLM180 “triggers” to TR22 effects, which we believe to be

appropriate based on our manual analysis of the data. Since we do not have both

trigger and effect for every PD interaction, we opted to ignore trigger mentions al-

together in the case of PD interactions to avoid introducing mixed signals. While

trigger recognition has no bearing on relation extraction performance, this policy

has the effect of reducing the recall upperbound on NER by about 25% based on

early cross-validation results. To overcome the lack of fine-grained annotations for

PK outcome in NLM180, we deploy the well-known bootstrapping approach [82] to

incrementally annotate NLM180 PK outcomes using TR22 annotations as a starting

point. To mitigate the problem of semantic drift, we re-annotated by hand iterative

predictions that were not consistent with the original NLM180 coarse annotations

(i.e., active learning [83]).

DDI2013 Mapping Scheme

The DDI2013 dataset contains annotations that are incomplete with respect to the

target task; specifically, annotations are limited to typed binary relations between any

two drug mentioned drugs in the sentence (and not necessary between a mentioned

drug and the label drug) without outcome or consequence prediction. In DDI2013,

there are four types of interactions: mechanism, effect, advice and int. The mech-

anism type indicates that a PK mechanism is being discussed; effect indicates that

the consequence of a PD interaction is being discussed; advice indicates suggestions

regarding the handling of the drugs; and int is an interaction without any specific

additional information. We translate the annotation by first applying a filtering step

on all interactions such that it conforms to the target task; namely, we filter such that

only interactions involving the label drug is kept. The non-label drug entity is then

annotated as a precipitant with an interaction tag based on the following mapping

scheme. Entities involved in a mechanism relation with the drug label are treated

as KIN precipitants; likewise, entities in effect and advice relations are treated as

DYN precipitants and int relations are treated as UNK precipitants. As there is no

consequence annotation, the mapped examples are used to train the sequence labeling

objective but not the other objective.

4.2.5 Voting-based Ensembling

Our prior effort [66] showed that model ensembling resulted in optimal performance

for this task. Hence, model ensembling remains a key component of the proposed

53

model. Our ensembling method is based on ensembling over ten models each trained

with randomly initialized weights and a random development split. Intuitively, mod-

els collectively “vote” on predicted annotations that are kept and annotations that

are discarded. A unique annotation (entity or relation) has one vote for each time

it appears in one of the ten model prediction sets. In terms of implementation,

unique annotations are incrementally added (to the final prediction set) in order of

descending vote count; subsequent annotations that conflict (i.e., overlap based on

character offsets) with existing annotations are discarded. Hence, we loosely refer to

this approach as “voting-based” ensembling.

4.2.6 Model Evaluation

We used the official evaluation metrics for NER and relation extraction based on the

standard precision, recall, and F1 micro-averaged over exactly matched entity/relation

annotations. We use the strictest matching criteria corresponding to the official “pri-

mary” metric (of the TAC DDI task), as opposed to the “relaxed” metric that ignores

mention and interaction type. Concretely, the matching criteria for entity recogni-

tion considers entity bounds as well as the type of the entity. The matching criteria

for relation extraction comprehensively considers precipitant drugs and, for each,

the corresponding interaction type and interaction outcome. As relation extraction

evaluation takes into account the bounds of constituent entity predictions, relation

extraction performance is heavily reliant on entity recognition performance. On the

other hand, we note that while NER evaluation considers trigger mentions, triggers

are ignored when evaluating relation extraction performance. Two test sets of 57

and 66 drug labels, referred to as Test Set 1 and 2 respectively, with gold standard

annotations are used for evaluation.

54

Table 4.4: Main results based on 95% confidence interval around mean precision, recall, and F1 based on evaluating N=100
ensembles for each model.

Test 1 / Entity Test 1 / Relation Test 2 / Entity Test 2 / Relation Overall

Method Training Data P R F (%) P R F (%) P R F (%) P R F (%) P R F (%)

BL TR22 23.82 42.04 30.39 14.74 18.38 16.35 26.15 39.69 31.51 12.48 15.43 13.79 19.30 ± 0.12 28.88 ± 0.12 23.01 ± 0.06

GCA TR22 32.87 32.35 32.59 22.70 13.95 17.27 38.82 31.31 34.65 19.26 11.63 14.49 28.41 ± 0.09 22.31 ± 0.16 24.75 ± 0.11

BL(1) TR22 + NLM180 27.05 39.87 32.22 19.94 22.20 21.00 32.49 41.92 36.60 21.82 23.93 22.82 25.32 ± 0.09 31.98 ± 0.11 28.16 ± 0.06

GCA TR22 + NLM180 38.30 31.20 34.38 27.97 15.14 19.63 44.13 31.18 36.53 31.79 15.76 21.06 35.55 ± 0.18 23.32 ± 0.20 27.90 ± 0.17

BL TR22 + NLM180 + DDI2013 29.27 41.93 34.47 22.93 25.42 24.11 38.73 43.79 41.10 27.11 27.32 27.21 29.51 ± 0.10 34.61 ± 0.10 31.72 ± 0.06

GCA TR22 + NLM180 + DDI2013 41.58 38.24 39.83 31.84 20.49 24.93 47.54 36.12 41.04 32.07 17.81 22.90 38.26 ± 0.16 28.17 ± 0.12 32.18 ± 0.12

GC(2) TR22 + NLM180 + DDI2013 38.85 36.30 37.52 29.82 18.59 22.88 43.74 34.88 38.80 31.14 16.40 21.48 35.89 ± 0.20 26.54 ± 0.20 30.17 ± 0.19

GCA + BL(3) TR22 + NLM180 + DDI2013 35.22 44.23 39.20 27.58 24.77 26.09 45.50 45.10 45.30 31.69 24.89 27.87 35.00 ± 0.15 34.75 ± 0.13 34.61 ± 0.10

(1) Our original challenge submission using a BiLSTM-based approach and trained on only TR22 and NLM180.
(2) For reference, we include an evaluation of the standard GC without attention-gating.
(3) Our current best is a combination of GCA and BL by ensembling.

55

Next, we discuss the differences between these test sets. As shown in Table 4.1,

Test Set 1 closely resembles TR22 with respect to the sections that are annotated.

However, Test Set 1 is more sparse in the sense that there are more sentences per

drug label (144 vs. 27), with a smaller proportion of those sentences having gold

annotations (23% vs. 51%). Test Set 2 is unique in that it contains annotations from

only two sections, namely DRUG INTERACTIONS and CLINICAL PHARMACOL-

OGY, the latter of which is not represented in TR22 (nor Test Set 1). Lastly, TR22,

Test Set 1, and Test Set 2 all vary with respect to the distribution of interaction

types, with TR22, Test Set 1, and Test Set 2 containing a higher proportion of PD,

UN, and PK interactions respectively. Overall model performance is assessed using

a single metric defined as the average of entity recognition and relation extraction

performance across both test sets.

Table 4.5: Comparison of our method with comparable (based on training data)
methods of teams in the top 5 trained on solely TR22 + NLM180.

Test 1 / Entity Test 1 / Relation Test 2 / Entity Test 2 / Relation

Method P R F (%) P R F (%) P R F (%) P R F (%)

Dandala et al. [76] 41.94 23.19 29.87 25.24 16.10 19.66 44.61 29.31 35.38 22.99 16.83 19.43

Tran et al. [66] 29.50 37.45 33.00 22.08 21.13 21.59 36.68 40.02 38.28 22.53 21.13 23.55

BL + GCA (Ours) 32.89 41.06 36.51 24.66 21.35 22.87 40.57 42.44 41.47 28.15 22.42 24.95

4.3 Results and Discussion

In order to assess model performance with confidence intervals and draw conclusions

based on statistical significance, we perform a technique called bootstrap ensembling

proposed by Kavuluru et al. [28]. That is, for each neural network (NN), we train

a pool of 30 models each with a different set of randomly initialized weights and

training-development set split. Performance of the NN is evaluated based on com-

puting the 95% confidence interval around the mean F1 of N = 100 ensembles, where

each ensemble is assembled from a set of ten models randomly sampled from the pool.

This approach allows us to better assess average performance which is a nontrivial

task given the high variance nature of models learned with limited training data. Our

method for model ensembling (by “voting”) is described in Section 4.2.5.

56

We present the main results of this study in Table 4.4 where we compare our prior

efforts using strictly BiLSTMs (BL) and our current best results with graph convolu-

tions (GCA). BL with TR22 and NLM180 as training data corresponds to our prior

best at 28.16% overall F1, while GCA with TR22, NLM180, and DDI2013 as training

data represents our current best at 32.18% overall F1 based on graph convolutions.

Here, we observe a 4 point gain in overall F1 (statistically significant at 95% confi-

dence level based on non-overlapping confidence intervals), with most gains owing to

a substantial improvement in entity recognition performance. We note that GCA is

more precision focused while BL is more recall focused; moreover, GCA tends to ex-

hibit better performance on Test Set 1, while BL tends to exhibit better performance

on Test Set 2. This hints that the two architectures are highly complementary and

may work well in combination. Indeed, when combined via ensembling, we observe

a major performance gain across almost all measures. Here, for each ensemble, we

sample five models from each pool of models (GCA and BL) for a total of ten models

to ensure that results remain comparable. The resulting hybrid model exhibits the

best performance overall, improving over the prior best by two points and over the

current best by six points in overall F1 at 34.61%. These differences are statistically

significant at the 95% confidence level. Next, we highlight that a main benefit of

the GCA model is that it operates well with very small amounts of training data, as

evident by the almost 2 absolute point improvement over the BiLSTM model when

trained solely on TR22. These gains tend to be less notable when we involve exam-

ples from NLM180 and DDI2013. Lastly, we note that GCA (graph convolution with

attention-gating) performs better than the standard GC (graph convolution without

attention-gating) by two absolute points in overall F1 with improvements that are

consistent across all metrics. We present a comparison of our results with other works

in Table 4.5. We omit results by Tang et al. [75] as they are not directly comparable

to ours given the stark difference in available training data. When training on strictly

TR22 and NLM180 (thus being comparable to most prior work), our model exhibits

state-of-the-art performance across all metrics on either test sets.

We present Figures 4.3 and 4.4 to illustrate error cases to be discussed later in

Section 4.4. In additional to actual and predicted annotations, these figures include

a sigmoid gating activity visualization for edges in the dependency tree. The visual-

ization serves two purposes. First, it confirms the intuition for this particular design

and, second, provides a means to interpret model decisions. That is, we can observe

the importance of each edge in the dependency tree as deemed by the network for

a particular example. In Figure 4.3, for example, we can observe that for the tar-

57

Figure 4.3: An example sentence from the drug label for Savella along with the re-
sulting prediction and ground truth labels. Red arrows indicate interaction outcome.

SIGMOID GATE
ACTIVITY

PREDICTED ACTUAL

get word “digoxin” (which is a precipitant, the second occurrence in the sentence),

the phrase “use”, “concomitantly”, and “with” show very high activity. Likewise, sig-

nal flow from “hemodynamic” to “effects” is strong, and vice versa. Less important

words such as articles appear to receive less incoming activity overall, even through

self-loops.

4.4 Error Analysis

In this section, we perform error analysis to identify challenging cases typically re-

sulting in erroneous predictions by the model. One major source of difficulty for the

model is boundary detection in cases of multi-word entities. Errors of this type are

especially prominent in case of effect mentions which may manifest as potentially long

noun phrases. Phrases with conjunctions or punctuation marks (or a combination of)

58

Figure 4.4: An example sentence from the drug label for Aubagio along with the re-
sulting prediction and ground truth labels. Red arrows indicate interaction outcome,
where C54357 is a PK label corresponding to the NCI Thesaurus code for “Increased
Concomitant Drug Level.”

SIGMOID GATE
ACTIVITY

PREDICTED ACTUAL

C5
43

57
may also present an obstacle for the model; for example, an effect expressed as “serious

and/or life threatening reaction” may instead be predicted as simply “life threatening

reaction.” Figure 4.3 shows a general case of this error where the model recognizes

“potentiation of adverse hemodynamic effects” as the effect while the ground truth

identifies the effect as simply “adverse hemodynamic effects.” This leads to both a

false positive and a false negative for both the NER and the RE evaluation. We note

that, given the potentially limitless ways an effect may be expressed, any disagree-

ment among annotators (for cases beyond those addressed in annotator guidelines)

during the initial annotation process will lead to inconsistent ground truth data and

thus negatively affect downstream model performance. As an example, consider the

following two sentences that appear in TR22: “Co-administration of SAMSCA with

potent CYP3A inducers ..” and “For patients chronically taking potent inducers

of CYP3A, ..” Here, one sentence is annotated such that potent is included as part

of the precipitant expression, while another is annotated such that this modifier is

59

excluded.

Mixed signals and noisy labels in general tend to be an issue especially when there

is limited training data as deep learning models are prone to overfitting. When eval-

uating on purely effect mentions, we obtain a micro-F1 score of 66% (54% Precision,

87% Recall). However, the micro F1 is 87% when ignoring the starting boundary

offset and 86% when ignoring the ending boundary offset during evaluation corre-

sponding to roughly 20 absolute micro-F1 gain in performance. When applying the

same looser evaluation criteria to triggers and precipitants, the gains are only ≈ 6%

and ≈ 5% respectively. Thus there is immense potential for improving entity recog-

nition of effect mentions if we can better handle boundary detection, possibly via

rule-based methods or post-processing adjustments, with the added benefit of im-

proving consequence prediction performance for PD interactions.

Precipitants interacting with the label drug being mentioned multiple times may

also cause issues for the model. As an example, consider the sentence presented in

Figure 4.3. Our model identifies both mentions of the precipitant “Digoxin” as being

involved in an interaction with the drug Savella; however, the ground truth more

specifically recognizes the second mention as the sole precipitant. This results in an

additional false positive with respect to both NER and RE evaluation. Lastly, there

are cases where the model will mistake a mention subtly referring to the label drug as a

precipitant. This is a common occurrence in cases where the label drug is not referred

to by name, but by a class of drugs. Typically, identifying a mention as a reference

to the drug label beforehand will disqualify it from being predicted as a precipitant.

While we do use a lexicon of drug names mapped to drug synonyms and drug classes

to identify these indirect mentions, it is not exhaustive for all drugs. For example,

within the label of the drug Lexapro, consider the sentence “Altered anticoagulant

effects, including increased bleeding, have been reported when SSRIs and SNRIs

are coadministered with warfarin.” Here, the model recognized SSRI and SNRI as

precipitants. This is incorrect, however, as Lexapro is an SSRI and these mentions

are more than likely referring to Lexapro. Without this information, the model likely

assumes that it is an implicit case where the label drug is not mentioned and therefore

assume all drug mentions are precipitants. Hence, curating a more exhaustive lexicon

for indirectly mentions of the label drug will improve overall performance.

Lastly, we describe a source of difficulty stemming from incorrectly classifying

interaction types. Figure 4.4 presents an example sentence where our model mistakes

PK for PD interactions and a trigger mention for an effect mention. As PD and PK

interactions tend to frequently co-occur with effect and trigger mentions respectively,

60

Table 4.6: Confusion matrix for interaction type

Predicted

PD PK UN

A
ct
u
al PD 788 37 68

PK 57 353 147

UN 170 10 599

predicted annotations tend to be polarized toward one pair (PD with effect) or the

other (PK with trigger). Hence, differentiating between types of interactions for each

recognized precipitant is another interesting class of error. Among all correctly rec-

ognized precipitants (based purely on boundary detection), we analyzed cases where

one type of interaction, among PD, PK, and Unspecified (UN), is mistaken for an-

other via the confusion matrix in Table 4.6. Clearly, many errors are due to cases

where (1) we mistake unspecified precipitants for PD precipitants and (2) we mistake

PK precipitants for unspecified precipitants. We conjecture that making precise im-

plicit connections (not only whether there is evidence in the form of trigger words or

phrases, but whether the evidence concerns the particular precipitant) is highly non-

trivial. Likely, this aspect may be improved by inclusion of more high quality training

data. Confusion between trigger and effect mentions is less concerning; among more

than 1000 cases, there are six cases where we mistake effect for trigger and 20 cases

where we mistake trigger for effect.

4.5 Conclusion

In this chapter, we proposed an end-to-end method for extracting drugs and their

interactions from drug labels, including interaction outcome in the case of PK and

PD interactions. The method involved composing various intermediate representa-

tions including sequential and graph based context, where the latter is produced

using a novel attention-gated version of the graph convolution over dependency parse

trees. The so called graph convolution with attention-gating (GCA), along with

transfer learning via serial pre-training using other annotated DDI datasets includ-

ing DDI2013, resulted in an improvement over our original TAC challenge entry by

up to 6 absolute F1 points overall. Among comparable studies (based on training

data composition), our method exhibits state-of-the-art performance across all met-

rics and test sets. Future work will focus on curating more quality training data and

leveraging semi-supervised methods overcome the scarcity in training data.

61

Chapter 5 Neural Metric Learning for Fast End-to-End Relation

Extraction

Information extraction (IE) systems are fundamental to the automatic construction

of knowledge bases and ontologies from unstructured text. While important, in and

of themselves, these resulting resources can be harnessed to advance other important

language understanding applications including knowledge discovery and question an-

swering systems. Among IE tasks are named entity recognition (NER) and binary

relation extraction (RE) which involve identifying named entities and relations among

them, respectively, where the latter is typically a set of triplets identifying pairs of

related entities and their relation types.

We present Figure 5.1 as an example of the NER and RE problem given the input

sentence “Mrs. Tsuruyama is from Yatsushiro in Kumamoto Prefecture in southern

Japan.” First, we extract as entities the spans “Mrs. Tsuruyama”, “Yatsushiro”, “Ku-

mamoto Prefecture”, and “Japan” where “Mrs. Tsuruyama” is of type PERSON and

the rest are of type LOCATION. Thus, NER consists of identifying both the bounds

and type of entities mentioned in the sentence. Once entities are identified, the next

step is to extract relation triplets of the form (subject,predicate,object), if any,

based on the context; for example, (Mrs. Tsuruyama, LIVE_IN, Yatsushiro) is

a relation triple that may be extracted from the example sentence as output of an

RE system. Given this, it is clear that E2ERE is a complex problem given the sparse

nature of the output space; for a sentence of n length with k possible relation types,

the output is a variable-length set of relations each drawn from kn2 possible relation

combinations.

NER and RE have been traditionally treated as independent problems to be solved

separately and later combined in an ad-hoc manner as part of a pipeline system. End-

to-end RE (E2ERE) is a relatively new research direction that seeks to model NER

and RE jointly in a unified architecture. As these tasks are closely intertwined, joint

models that simultaneously extract entities and their relations in a single framework

have the capacity to exploit inter-task correlations and dependencies leading to po-

tential performance gains. Moreover, joint approaches, like our method, are better

equipped to handle datasets where entity annotations are non-exhaustive (that is,

only entities involved in a relation are annotated), since standalone NER systems

are not designed to handle incomplete annotations. Recent advancements in deep

learning for E2ERE are broadly divided into two categories: (1). The first category

62

Figure 5.1: A simple relation extraction example.

Mrs. Tsuruyama is from Yatsushiro in Kumamoto Prefecture in southern Japan .
PERSON

LOCATED_IN

LIVE_IN

LOCATED_IN

LOCATED_IN
LOCATION

LIVE_IN
LIVE_IN

LOCATION LOCATION

involves applying deep learning to the table structure first introduced by Miwa and

Sasaki [3], including Gupta et al. [84], Pawar et al. [43], and Zhang et al. [85] where

E2ERE is reduced to some variant of the table-filling problem such that the (i, j)-th

cell is assigned a label that represents the relation between tokens at positions i and j

in the sentence. We further describe the table-filling problem in Section 5.2.1. Recent

approaches based on the table structure operate on the idea that cell labels are depen-

dent on features or predictions derived from preceding or adjacent cells; hence, the

table is filled incrementally leading to potential efficiency issues. Also, these meth-

ods typically require an additional expensive decoding step, involving beam search,

to obtain a globally optimal table-wide label assignment. (2). The second category

includes models where NER and RE are modeled jointly with shared components or

parameters without the table structure. Even state-of-the-art methods not utilizing

the table structure rely on conditional random fields (CRFs) as an integral compo-

nent of the NER subsystem where Viterbi algorithm is used to decode the best label

assignment at test time [45, 48].

Our model utilizes the table formulation by embedding features along the third

dimension. We overcome efficiency issues by utilizing a more efficient and effec-

tive approach for deep feature aggregation such that local metric, dependency, and

position based features are simultaneously pooled — in a 3 × 3 cellular window —

over many applications of the 2D convolution. Intuitively, preliminary decisions are

made at earlier layers and corroborated at later layers. Final label assignments for

both NER and RE are made simultaneously via a simple softmax layer. Thus, com-

putationally, our model is expected to improve over earlier efforts without a costly

decoding step. We validate our proposed method on the CoNLL04 dataset [2] and

the ADE dataset [86], which correspond to the general English and the biomedical

domain respectively, and show that our method improves over prior state-of-the-art

in E2ERE. We also show that our approach leads to training and testing times that

are seven to ten times faster, where the latter can be critical for time-sensitive end-

63

user applications. Lastly, we perform extensive error analyses and show that our

network is visually interpretable by examining the activity of hidden pooling layers

(corresponding to intermediate decisions). To our knowledge, our study is the first

to perform this type of visual analysis of a deep neural architecture for end-to-end

relation extraction.

5.1 Background and Related Work

Li and Ji [4] proposed one of the first truly joint models wherein entities, including

entity mention bounds, and their relations are predicted. Structured perceptrons [37],

as a learning framework, are used to estimate feature weights while beam search is

used to explore partial solutions to incrementally arrive at the most probable struc-

ture. Miwa and Sasaki [3] proposed the idea of using a table representation which

simplifies the task into a table-filling problem such that NER and relation labels

are assigned to cells of the table; the aim was to predict the most probable label

assignment to the table, out of all possible assignments, using beam search. While

the representation is in table form, beam search is performed sequentially, one cell-

assignment per step. The table-filling problem for E2ERE has since been successfully

transferred to the deep neural network setting [84, 43, 85].

5.2 Methodology

We present our version of the table-filling problem, a novel neural network architec-

ture to fill the table, and details of the training process. Here, Greek letter symbols are

used to distinguish hyper-parameters from variables that are learned during training.

5.2.1 The Table-Filling Problem

Given a sentence of length n, we use an n×n table to represent a set of semantic rela-

tions such that the (i, j)-th cell represents the relationship (or non-relation) between

tokens i and j. In practice, we assign a tag for each cell in the table such that entity

tags are encoded along the diagonal while relation tags are encoded at non-diagonal

cells. For entity recognition, we use the BILOU tagging scheme [77]. In the BILOU

scheme, B, I, and L tags are used to indicate the beginning, inside, and last token of

a multi-token entity respectively. The O tag indicates whether the token outside of

an entity span, and U is used for unit-length entities.

64

Figure 5.2: Table representation for the example in Figure 5.1. BILOU-encoded entity
tags are assigned along the diagonal and relation tags are assigned where entity spans
intersect. Empty cells are implicitly assigned the O tag.

Mrs
.

Tsuruyama
is

from
Yatsushiro

in
Kumamoto
Prefecture

in
southern

Japan
.

M
rs

. Ts
ur

uy
am

a
is

fr

om

Ya
ts

us
hi

ro

in

Ku
m

am
ot

o
Pr

ef
ec

tu
re

in

so

ut
he

rn

Ja
pa

n
.

�

�

�

�

�

�

�

PERSON

LOCATION

LIVE_IN

LOCATION_IN

In tabular form, entity and relation tags are drawn from a unified list Z serving

as the label space; that is, each cell in the table is assigned exactly one tag from

Z. For simplicity, the O tag is also used to indicate a null relation when occurring

outside of a diagonal. As each entity type requires a BILOU variant, a problem

with nent entity types and nrel relation types has ∣Z ∣ = 4nent + nrel + 1 where the last

term accounts for the O tag. Our conception of the table-filling problem differs from

Miwa and Sasaki [3] in that we utilize the entire table as opposed to only the lower

triangle; this allows us to model directed relations without the need for additional

inverse-relation tags. Moreover, we assign relation tags to cells where entity spans

intersect instead of where head words intersect; thus encoded relations manifest as

rectangular blocks in the proposed table representation. We present a visualization of

our table representation in Figure 5.2. At test time, entities are first extracted, and

relations are subsequently extracted by averaging the output probability estimates of

the blocks where entities intersect. We describe the exact procedure for extracting

relations from these blocks at test-time in Section 5.2.3.

65

Figure 5.3: Overview of the network architecture for λ = 2. For simplicity, we ignore punctuation tokens.

���

���������

��

���

�����

����

����

����

����

����

��������������������������
�����
	����

�����������

�

��������
�

������������

��������
�

������������

������ ��

�
�����������

�

��

��

���

��

�
�����������

��
�������������

��
	��
���
 �
��	��

�	��	
����
��	�����������

�������
���������

��
	
���	
����������

�
�

�
�

�������������	���

66

5.2.2 Our Model: Relation-Metric Network

We propose a novel neural architecture, which we call the relation-metric network,

combining the ideas of metric learning and convolutional neural networks (CNNs) for

table filling. The schematic of the network is shown in Figure 5.3, whose components

will be detailed in this section.

Context Embeddings Layer

In addition to word embeddings, we employ character-CNN based representations

as commonly observed in recent neural NER models [55] and E2ERE models [5].

Character-based features can capture morphological features and help generalize to

out-of-vocabulary words. For the proposed model, such representations are composed

by convolving over character embeddings of size π using a window of size 3, producing

η feature maps; the feature maps are then max-pooled to produce η-length feature

representations. As our approach is standard, we refer readers to Chiu and Nichols

[55] for full details. This portion of the network is illustrated in step 1 of Figure 5.3.

Suppose the input is a sentence of length n represented by a sequence of word

indices w1, . . . ,wn into the vocabulary VWord. Each word is mapped to an embedding

vector via embedding matrices EWord ∈ R∣V
Word

∣×δ such that δ is a hyperparameter

that determines the size of word embeddings. Next, let C
[i]

be the character-based

representation for the ith word. An input sentence is represented by matrix S wherein

rows are words mapped to their corresponding embedding vectors; or concretely,

S =

⎛
⎜
⎜
⎜
⎝

EWord
[w1]

∥ C
[1]

⋮

EWord
[wn]

∥ C
[n]

⎞
⎟
⎟
⎟
⎠

where ∥ is the vector concatenation operator and EWord
[i] is the i

th row of EWord.

Next, we compose context embedding vectors (CVs) as H = fρBLSTM(S) where

fρBLSTM is a BiLSTM composition previously defined in Section 2.3. This concludes

step 2 of Figure 5.3.

Relation-Metric Learning

Our goal is to design a network such that any two CVs can be compared via some

“relatedness” measure; that is, we wish to learn a relatedness measure (as a param-

eterized function) that is able to capture correlative features indicating semantic

relationships. A common approach in metric learning to parameterize a relatedness

67

function is to model it in bilinear form. Here, for input vectors x,z ∈ Rm, a similarity

function in bilinear form is formally defined as

sR(x,z) = x⊺Rz (5.1)

where R ∈ Rm×m is a parameter of the relatedness function, dubbed a relation-metric

embedding matrix, that is learned during the training process.

In machine learning research, Eq. 5.1 is also associated with a type of attention

mechanism commonly referred to as “multiplicative” attention [87]. However, we

apply Eq. 5.1 with the classical goal of learning a variety of metric-based features. Our

aim is to compute sR for all pairs of CVs in the sentence. Concretely, we can compute

a “relational-metric table” G ∈ Rn×n over all pairs of CVs in the sentence such that

Gi,j = hi⊺Rhj. In fact, we can learn a collection of κ similarity functions corresponding

to κ relation metric tables; for our purposes, this is analogous to learning a diverse

set of convolution filters in the context of CNNs. Thus we have the 3-dimensional

tensor

Gi,j,k = hi
⊺

Rkhj, for k = 1, . . . , κ, (5.2)

with G ∈ Rn×n×κ where the first and second dimension correspond to word position

indices while the third dimension embeds metric-based features. This constitutes

step 3 of Figure 5.3. We show how G is consumed by the rest of the network in

Section 5.2.2. However, as a prerequisite, we first describe how dependency parse and

relative position information is prepared in Section 5.2.2 and Section 5.2.2 respectively

and define the 2D convolution in Section 5.2.2.

Dependency Embeddings Table

Let Vdep be the vocabulary of syntactic dependency tags (e.g., nsubj, dobj). For an

input sentence, let T = {(a1, b1, z1), . . . , (ad̂, bd̂, zd̂)} be the set of dependency relations

where zi are mappings to tags in Vdep that express the dependency-based relations

between pairs of words at positions ai, bi ∈ {1, . . . , n}, respectively. We define the

dependency embedding matrix as F dep ∈ R∣V
dep

∣×β, where each unique dependency tag

is a β-dimensional embedding. We compose the dependency representation tensor D

for T as

Di,j,k =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

F dep
t,k if (i, j, t) ∈ T or (j, i, t) ∈ T ,

φk otherwise,

for k = 1, . . . , β, where φ is a trainable embedding vector representing the null depen-

dency relation. As shown in the above equation for Di,j,k, we embed the dependency

parse tree simply as an undirected graph.

68

Position Embeddings Table

First proposed by Zeng et al. [88], so called position vectors have been shown to be

effective in neural models for relation classification. Position vectors are designed to

encode the relative offset between a word and the two candidate entities (for RE) as

fixed-length embeddings. We bring this idea to the tabular setting by proposing a

position embeddings table P , which is composed the same way as the dependencies

table; however, instead of dependency tags, we simply encode the distance between

two candidate CVs as discrete labels mapped to fixed-length embeddings (of size γ,

a hyperparameter). It is straightforward to see there will be 2(nmax − 1) + 1 distinct

position offset labels where nmax is the maximum length of a sentence in the training

data. Specifically, given a position vocabulary Vdist, associated position embedding

matrix F dist ∈ R∣V
dist

∣×γ, the position embeddings tensor is Pi,j,k = F dist
(i−j),k

for k =

1, . . . , γ. As an implementation detail, we set Vdist to {−nmax, . . . , nmax} where nmax

is the maximum sentence length over all training examples. Both dependency and

position embedding tensors are concatenated to the metric tensor (Eq. (5.2)) along

the 3rd dimension prior to every convolution operation. Hence they are shown in

steps 4 and 6 of Figure 5.3 for the network with two convolutional layers.

2D Convolution Operation

Unlike the standard 2D convolution typically used in NLP tasks, which takes 2D in-

put, our 2D convolution operates on 3D input commonly seen in computer vision tasks

where colored image data has height, width, and an additional dimension for color

channel. The goal of the 2D convolution is to pool information within a 3×3 window

along the first two dimensions such that metric features and dependency/positional

information of adjacent cells are pooled locally over several layers. However, it is

necessary to perform a padded convolution to ensure that dimensions correspond-

ing to word positions are not altered by the convolution. We denote this padding

transformation using the hat accent. That is, for some tensor input X ∈ Rn×n×m, the

padded version is X̂ ∈ R(n+2)×(n+2)×m and the zero-padding exists at the beginning and

at the end of the first and second dimensions. Next, we define the 2D convolution

operation via the ⋆ operator which corresponds to an element-wise product of two

tensors followed by summation over the products; formally, for two input tensors A

and B, A ⋆B = ∑i∑j∑kAi,j,kBi,j,k.

Now our 2D convolution step is a tensor map fv(X) ∶ Rn×n×u → Rn×n×v with v

69

Figure 5.4: 2D convolution on 3D input with padding

�

�

�

�

�

�
�

��

��

��

����� �

��
�

filters of size 3 × 3 × u, defined as

fv(X)i,j,k =W
k ⋆ X̂[i∶i+2][j∶j+2][1∶u] + bk (5.3)

for i = 1, . . . , n, j = 1, . . . , n, k = 1, . . . , v, where W k ∈ R3×3×u for k = 1, . . . , v, and b ∈ Rv

are filter and bias variables respectively, and X̂[i∶i+2][j∶j+2][1∶u] is a 3 × 3 × u window of

X̂ from i to i + 2 along the first dimension, j to j + 2 along the second dimension,

and 1 to u along the final dimension. We show how fv(X) is used to repeatedly pool

contextual information in Section 5.2.2. Instead of a 3 × 3 window, the convolution

operation can be over any t × t window for some odd t ≥ 3 where large t values lead

to larger parameter spaces and multiplication operations. The 2D convolution is

illustrated in Figure 5.4 and manifests in steps 5 and 7 of Figure 5.3.

Pooling Mechanism

Central to our architecture is the iterative pooling mechanism designed so that prelim-

inary decisions are made in early iterations and further corroborated in subsequent it-

erations. It also facilitates the propagation of local metric and dependency/positional

features to neighboring cells. Let Z be the set of tags for the target task. We denote

hyper-parameters κ and λ as the number of channels and the number of CNN layers

respectively, where κ is same hyperparameter previously defined to represent the size

of metric-based features. The pooling layers are defined recursively with base case

70

L1 = relu(fκ(G ∥ D ∥ P)) and

Li =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

relu(fκ(Li−1 ∥ D ∥ P)) 1 < i < λ,

f∣Z ∣(Li−1 ∥ D ∥ P) i = λ,

where f is the convolution function from Eq. (5.3), G is the tensor from Eq. (5.2),

and ∥ is the tensor concatenation operator along the third dimension, and relu(x) =

max(0, x) is the linear rectifier activation function. Here, κ and λ determine the

breadth and depth of the architecture. A higher λ corresponds to a larger receptive

field when making final predictions. For example at λ = 2, the decision at some cell is

informed by its immediate neighbors with a receptive field of 3×3. However, at λ = 3,

decisions are informed by all adjacent neighbors in a 5×5 window. The last layer, Lλ,

is the output layer immediately prior to application of the softmax function. Given

the architecture in Figure 5.3 with two convolutional layers, the convolve-and-pool

operation is applied twice, indicated as steps 5 and 7 in the figure.

Softmax Output Layer

Given Lλ, we apply the softmax function along the third dimension to obtain a

categorical distribution tensor Q ∈ Rn×n×∣Z ∣over output tags Z for each word position

pair such that Qi,j,k = exp(Lλi,j,k)/(∑
∣Z ∣

l=1 exp(Lλi,j,l)), where Qi,j,k is the probability

estimate of the pair of words at position i and j being assigned the kth tag. This

constitutes the final step 8 of the network (Figure 5.3). Suppose Y ∈ Rn×n×∣Z ∣

represents the corresponding one-hot encoded ground truth along the third dimension

such that Yi,j,k ∈ {0,1}. Then the example-based loss ` is obtained by summing the

categorical cross-entropy loss over each cell in the table, normalized by the number

of words in the sentence; that is,

`(Y,Q; θ) = −
1

n

n

∑
i=1

n

∑
j=1

∣Z ∣

∑
k=1

Yi,j,k log(Qi,j,k), (5.4)

where θ is the network parameter set. During training, the loss ` is computed per

example and averaged along the mini-batch dimension.

5.2.3 Decoding the Output

While we learn concrete tags during training, the process for extracting predictions

is slightly more nuanced. Entity spans are straightforwardly extracted by decoding

BILOU tags along the diagonal. However, RE is based on “ensembling” the cellular

71

outputs of the table where entity spans intersect. For entities a and b represented

by their starting and ending offsets, (aS, aE) and (bS, bE), the relation between them

is the label computed as argmax1≤k≤∣Z ∣ ∑
aE
i=aS
∑
bE
j=bS

Qi,j,k, which indexes a tag in the

label space Z.

5.3 Experimental Setup

In this section, we describe the established evaluation method, the datasets used

for training and testing, and the configuration of our model. We note that the

computing hardware is controlled across experiments given we report training and

testing run times. Specifically, we used the Amazon AWS EC2 p2.xlarge instance

which supports the NVIDIA Tesla K80 GPU with 12 GB memory.

5.3.1 Evaluation Metrics

We use the well-known F1 measure (along with precision and recall) to evaluate

NER and RE subtasks as in prior work. For NER, a predicted entity is treated as

a true positive if it is exactly matched to an entity in the groundtruth based on

both character offsets and entity type. For RE, a predicted relation is treated as

a true positive if it is exactly matched to a relation in the ground truth based on

subject/object entities and relation type. As relation extraction performance directly

subsumes NER performance, we focus purely on relation extraction performance as

the primary evaluation metric of this study.

5.3.2 Datasets

CoNLL04 We use the dataset originally released by Roth and Yih [2] with 1441

examples consisting of news articles from outlets such as WSJ and AP. The dataset

has four entity types including Person, Location, Organization, and Other and five

relation types including Live_In, Located_In, OrgBased_In, Work_For, and Kill.

We report results based on training/testing on the same train-test split as established

by Gupta et al. [84], Adel and Schütze [89], Bekoulis et al. [45, 48], which consists of

910 training, 243 development, and 288 testing instances.

ADE We also validate our method on the Adverse Drug Events (ADE) dataset

from Gurulingappa et al. [86] for extracting drug-related adverse effects from medical

text. Here, the only entity types are Drug and Disease and the relation extraction

task is strictly binary (i.e., Yes/No w.r.t the ADE relation). The examples come

72

from 1644 PubMed abstracts and are divided in two partitions: the first partition of

6821 sentences contain at least one drug/disease pair while the second partition of

16695 sentences contain no drug/disease pairs. As with prior work [90, 5, 45, 48], we

only use examples from the first partition from which 120 relations with nested entity

annotations (such as “lithium intoxication” where lithium and lithium intoxication are

the drug/disease pair) are removed. Since sentences are duplicated for each pair of

drug/disease mention in the original dataset, when collapsed on unique sentences, the

final dataset used in our experiments constitutes 4271 sentences in total. Given there

are no official train-test splits, we report results based on 10-fold cross-validation,

where results are based on averaging performance across the ten folds, as in prior

work.

5.3.3 Model Configuration

Table 5.1: Model configuration as tuned on the CoNLL04 development set.

Setting Value

Optimization Method RMSProp
Learning Rate 0.005
Dropout Rate 0.5
Num. Epochs 100
Num. Channels (κ) 15
Num. Layers (λ) 8

Setting Value

Character Embedding Size (π) 25
Character Representation Size (η) 50
Position Embedding Size (γ) 25
Dependency Embedding Size (β) 10
Word Embedding Size (δ) 200
Context Embedding Size (ρ) 200

We tuned our model on the CoNLL04 development set; the corresponding configu-

ration of our model (including hyperparameter values) used in our main experiments

is shown in Table 5.1. For the ADE dataset, we used Word2Vec embeddings pre-

trained on the corpus of PubMed abstracts [58]. For the CoNLL04 dataset, we used

GloVe embeddings pretrained on Wikipedia and Gigaword [91]. All other variables

are initialized using values drawn from a normal distribution with a mean of 0 and

standard deviation of 0.1 and further tuned during training. Words were tokenized on

both spaces and punctuations; punctuation tokens were kept as is common practice

for NER systems. For part-of-speech and dependency parsing, we use the well-known

tool spaCy1. For both datasets, we used projective dependency parses produced from

the default pretrained English models. We found that using models pretrained on

biomedical text (namely, the GENIA [81] corpus) did not improve performance on

the ADE dataset.

1https://spacy.io/

73

Early experiments showed that applying exponential decay to the learning rate

in conjunction with batch normalization [92] is essential for stable/effective learning

for this particular architecture. We apply exponential decay to the learning rate such

that it is roughly halved every 10 epochs; concretely, rk = rb
k
10 where rb is the base

learning rate and rk is the rate at the kth epoch. We apply dropout [93] on hi for

i = 1, . . . , n as regularization at the earlier layers. However, dropout had a detrimental

impact when applied to later layers. We instead apply batch normalization as a form

of regularization on representations G and Li for i = 1, . . . , λ − 1. We optimize the

objective loss using RMSProp [61] with a relatively high initial learning rate of 0.005

given exponential decay is used.

5.4 Results and Discussion

Table 5.2: Results comparing to other methods on the CoNLL04 dataset. We report
95% confidence intervals around the mean F1 over 30 runs for models in the last two
rows. Our model was tuned on the CoNLL04 development set corresponding to the
configuration from Table 5.1.

Entity Recognition Relation Extraction Avg. Epoch Avg.

Model P (%) R (%) F (%) P (%) R (%) F (%) Train Time Test Time ∗

Table Representation[3] 81.20 80.20 80.70 76.00 50.90 61.00 - -

Multihead [45] 83.75 84.06 83.90 63.75 60.43 62.04 - -

Multihead with AT [48] - - 83.61 - - 61.95 - -

Replicating Multihead with AT [48]† 84.36 85.80 85.07 ± 0.26 65.81 57.59 61.38 ± 0.50 614 sec 34 sec

Relation-Metric (Ours)† 84.46 84.67 84.57 ± 0.29 67.97 58.18 62.68 ± 0.46 101 sec 4.5 sec

† These results are directly comparable given the same train-test splits, pretrained word embeddings, and computing
hardware.

∗ Average test time is per test set of 288 examples; dependency parsing accounts for approximately 0.5 second of our
reported test time.

We report our main results in Tables 5.2 and 5.3 for the CoNLL04 and ADE

datasets respectively. As a baseline, we replicate the prior best models [48] for both

datasets based on publicly available source code2. Unlike prior work, which reports

performance based on a single run, we report the 95% confidence interval around the

mean F1 based on 30 runs with differing seed values for the CoNLL04 dataset. For the

ADE dataset, we instead report the mean performance over 10-fold cross-validation so

that results are comparable to established work. These experiments were performed

2https://github.com/bekou/multihead_joint_entity_relation_extraction

74

Table 5.3: Results comparing to other methods on the ADE dataset. We report the
mean performance over 10-fold cross-validation for models in the last two rows. Our
model was tuned on the CoNLL04 development set corresponding to the configuration
from Table 5.1.

Entity Recognition Relation Extraction Avg. Epoch Avg.

Model P (%) R (%) F (%) P (%) R (%) F (%) Train Time Test Time ∗

Neural Joint Model [90] 79.50 79.60 79.50 64.00 62.90 63.40 - -

Neural Joint Model [5] 82.70 86.70 84.60 67.50 75.80 71.40 - -

Multihead [45] 84.72 88.16 86.40 72.10 77.24 74.58 - -

Multihead with AT [48] - - 86.73 - - 75.52 - -

Replicating Multihead with AT [48]† 85.76 88.17 86.95 74.43 78.45 76.36 1567 sec 40 sec

Relation-Metric (Ours)† 86.16 88.08 87.11 77.36 77.25 77.29 134 sec 4.5 sec

† These results are directly comparable given the same fixed 10-fold splits, pretrained word embeddings, and
computing hardware.

∗ Average test time is per test set of 427 examples; dependency parsing accounts for approximately 0.5 second of our
reported test time.

using the same splits, pretrained embeddings, and computing hardware; hence, results

are directly comparable.

We make the following observations based on our results from Table 5.2. Both our

model and the model from Bekoulis et al. [48] tend to skew heavily towards precision.

However, our method improves on both precision and recall, and by over 1% F1 on

relation extraction where improvements are statistically significant (p < 0.05) based on

the two-tailed Student’s t-test. We note that our model performs slightly worse when

evaluated purely on NER. We contend this is a worthwhile trade-off given our model

is tuned purely on relation extraction and the relation extraction metric, being end-

to-end, indirectly accounts for NER performance. Based on Table 5.3, when tested

on the ADE dataset, our method improves over prior best results by approximately

1% F1 for RE on average. While the prior best skews toward recall in this case, our

method exhibits better balance of precision and recall. Based on run time results, we

contend that our method is more computationally efficient given training and testing

times are nearly seven times lower on the CoNLL04 and ten times lower on the

ADE set when compared to prior efforts. We note that dependency parsing accounts

approximately one-half second of our testing time. While training time may not be

crucial in most settings, we argue that fast and efficient predictions are important for

many end-user applications.

As an auxiliary experiment, we tested the potential for integrating adversarial

75

training (AT) with our model; however, there were no performance gains even with

extensive tuning. On the CoNLL04 dataset, our method with AT performs at 62.26%

F1, compared to 62.68% without AT. On the ADE dataset, our method performs at

76.83% F1 with AT, compared to 77.29% without AT. Given this, we have elected

not to include AT evaluations as part of our main results.

Comparison with More Prior Efforts Gupta et al. [84], Adel and Schütze [89],

and Zhang et al. [85] also experimented with the CoNLL04 dataset; however, Gupta

et al. [84] evaluate on a more relaxed evaluation metric for matching entity bounds

while Adel and Schütze [89] assume entity bounds are known at test time thus treating

the NER aspect as a simpler entity classification problem. Of the three studies, results

from Zhang et al. [85] are most comparable given they consider entity bounds in their

evaluations; however, their results are based on a random 80%–20% split of the train

and test set. As we use established splits based on prior work, the two results are not

directly comparable.

5.4.1 Ablation Analysis

We report ablation analysis results in Table 5.4 using our best model as the base-

line. We note that the model hyperparameters were tuned on the CoNLL04 devel-

opment set. Character and dependency based features all had a notable impact on

performance for either dataset. On the hand, while position embeddings had a pos-

itive effect on the ADE dataset, performance gains were negligible when testing on

CoNLL04. For the CoNLL04 dataset, we find that character based features had little

effect on precision while improving recall substantially.

Unsurprisingly, pretrained word embeddings had the greatest impact on perfor-

mance in terms of both precision and recall. Early experiments showed that, unlike

Table 5.4: Ablation studies for relation extraction over the CoNLL04 and ADE
dataset; each row after the first indicates removal of a particular feature/component.

CoNLL04 (Relation) ADE (Relation)

Model P (%) R (%) F (%) P (%) R (%) F (%)

Full model 67.97 58.18 62.68 77.36 77.25 77.29

– Character-based Input 67.30 52.69 59.09 76.73 76.44 76.58

– Dependency Embeddings 66.56 57.69 61.78 75.79 77.16 76.45

– Position Embeddings 68.57 57.34 62.43 75.94 76.62 76.27

– Pretrained Word Embeddings 62.33 46.09 52.96 72.50 71.41 71.91

76

Figure 5.5: Mean F1-score (over 10 runs) on CoNLL04 development set with respect
to number of training epochs for various embedding training strategies.

20 30 40 50 60 70 80
Number of Epochs

67.5

68.0

68.5

69.0

69.5

70.0
M

ea
n

F1

Trainable Word Embeddings
Trainable Word Embeddings
 with Downscaled Gradients
Static Word Embeddings

models from prior work that used static word embeddings [5, 48], our model benefits

from trainable word embeddings as shown in Figure 5.5. Here, trainable word embed-

dings with downscaled gradients refer to reducing the gradient of word embeddings

by a factor of 10 at each training step.

5.4.2 Error Analyses

In this section, we first perform a class based analysis where performance variations

for different classes of examples are examined. Then, a more in-depth error analysis is

performed for interesting example cases. The class based analyses entail partitioning

examples by length, entity distance, and relation type and are covered in Section 5.4.2.

The more in-depth example based analysis is discussed in Section 5.4.2.

Class based analyses

Long sentences are a natural source of difficulty for relation extraction models given

the potential for long-term dependencies. In this section, we perform straightforward

analysis by conducting experiments to assess model performance with respect to

increasing sentence length. For this experiment, we train a single model using 80%

of the dataset with 20% held out for testing. For some sentence length limit k̂, we

77

Figure 5.6: Entity and relation extraction performance with respective to change in
maximum sentence length for CoNLL04.

60

65

70

75

80

85

90

Pe
rfo

rm
an

ce
 (%

)
ENTITY F
ENTITY R
ENTITY P

RELATION F
RELATION R
RELATION P

10 20 30 40 50 60 70 80
Maximum sentence length

100
200
300

of

 E
xa

m
pl

es

evaluate on a subset of the overall test set that includes only examples with a sentence

length that is less than or equal to k̂.

Results from these experiments are plotted in Figures 5.6 and 5.7, for the CoNLL04

and ADE datasets respectively, such that k̂ is varied along the horizontal x-axis. The

top graph displays performance, while the bottom graph plots the number of examples

with sentence length less than or equal to k̂ that are used for evaluation. As shown,

performances for both NER and RE tend to decline as longer sentences are added

to the evaluation set. Unsurprisingly, relation extraction is more susceptible to long

sentences compared to entity recognition. While there is a decline in both relation

extraction precision and recall, we note that recall drops at a faster rate with respect

to maximum sentence length and this phenomenon is apparent for both datasets.

78

Figure 5.7: Entity and relation extraction performance with respect to change in
maximum sentence length for ADE.

70

75

80

85

90
Pe

rfo
rm

an
ce

 (%
)

ENTITY F
ENTITY R
ENTITY P

RELATION F
RELATION R
RELATION P

10 20 30 40 50 60 70 80
Maximum sentence length

250
500
750

of

 E
xa

m
pl

es

In addition to length-based analysis, we also conducted experiments to study

the variation in relation extraction performance with respect to the distance between

subject and object entities as shown in Table 5.5. We measure distance by computing

the absolute character offset between the last character of the first occurring entity

and first character of the second occurring entity, which is henceforth simply referred

to as “entity distance.” Our results show that, at least on the CoNLL04 dataset,

notable performance differences occur at the boundary cases; i.e., very short range

relations (0-20 entity distance) tend to be easier and very long range relations (80-

100 entity distance) tend to be harder (mostly due to changes in recall). For the

ADE dataset, performance is similar across all partitions of entity distances. This

is surprising, as sentence length appears to have a more notable impact on relation

79

extraction performance than entity distance for this particular architecture.

Table 5.6 shows variance in performance when examined by relation type. Here,

we see that performance depends heavily on the type of relation being extracted; our

model exhibits much higher accuracy on the Kill relation at 80% F1, with Located_In

and Work_For being the most difficult with performance below 60% F1. These

results further corroborate our analysis based on Table 5.5 that entity distance does

not correlate with example difficulty given that the Kill relation, being the easiest

relation to extract, occurs with the highest average entity distance.

Example based analysis

A common source of difficulty that occurs is ambiguity with respect to expression of

the Live_In and Work_In relation types. For example, consider the sentence “After

buying the shawl for $1,600, Darryl Breniser of Blue Ball, said the approximately 2-

by-5 foot shawl was worth the money.” The ground truth relation is (Darryl Breniser,

Live_In, Blue Ball) which indicates that “Blue Ball” is in fact a location. However, it

is difficult to assess whether “Blue Ball” is a location or company based on the context

alone and without broader geographical knowledge (even for humans). Our model

predicted (Darryl Breniser, Work_For, Blue Ball) in this case. We observe a similar

pattern in the following case: “Santa Monica artist Tom Van Sant said Monday after

the 23-foot-tall statue was found crushed and broken in pieces.”; here, we see the same

phenomenon where our model mistakes (Tom Van Sant, Live_In, Santa Monica) for

(Tom Van Sant, Work_For, Santa Monica). Finally, we present the most interesting

example of this type of ambiguity in the sentence: “ ‘Temperatures didn’t get too low,

but the wind chill was bad’, said Bingham County Sheriff’s Lt. Bill Gordon.” Here,

the ground truth indicates that the only relation to be extracted is (Bill Gordon,

Table 5.5: Relation extraction performance partitioned based on “Entity Distance”,
which is defined as the number of characters separating the subject and object entities
(i.e., absolute character offset).

CoNLL04 (Relation) ADE (Relation)

Entity Distance # of Examples P (%) R (%) F (%) # of Examples P (%) R (%) F (%)

0 — 20 207 83.7 43.80 57.51 447 88.50 42.02 56.98

20 — 40 51 59.09 24.07 34.21 265 77.17 35.51 48.64

40 — 60 43 80.00 18.60 30.19 181 78.72 37.00 50.34

60 — 80 22 100.00 25.93 41.18 125 82.35 29.58 43.52

80 — 100 13 100.00 15.38 26.67 91 85.00 34.00 48.57

80

Table 5.6: Relation extraction performance on the CoNLL04 dataset partitioned
based on relation type.

CoNLL04 (Relation)

Relation Type # of Examples Avg. Entity Distance P (%) R (%) F (%)

Kill 46 47 81.25 82.98 82.11

Live_In 82 37 71.76 61.00 65.95

Located_In 58 28 80.77 44.68 57.53

Work_For 65 24 60.56 56.58 58.50

OrgBased_In 70 29 91.38 50.48 65.03

Live_In, Bingham County); however, our model extracts (Bill Gordon, Work_For,

Bingham County Sheriff), which is also technically a valid relation. Such cases present

ambiguities that are also difficult for human annotators; here, imbuing the NER

component with external knowledge or learning based on a broader level of context

may alleviate these types of errors.

Inconsistencies in the way entities are annotated can also cause issues when it

comes to demarcating names that are accompanied with honorifics or titles. For

example, some ground truth annotations will include the title, such as “President

Park Chung-hee” or “Sen. Bob Dole”, and other cases will leave out the title, such as

“Kennedy” instead of “President Kennedy.” These truth annotations are inconsistent

and present a source of difficulty for the model during training and testing. For exam-

ple, “Navy spokeswoman Lt. Nettie Johnson was unable to say immediately whether

the aircraft had experienced problems from faulty check and drain valves.” Here, our

model extracted (Lt. Nettie Johnson, Work_For, Navy), while the groundtruth is

(Nettie Johnson, Work_For, Navy) — while both are technically correctly, the ex-

tremely precise nature of the evaluation metric causes this prediction to be considered

a false positive.

We also see such issues with annotation at the relation extraction stage; for exam-

ple, consider the sentence “In 1964, a jury in Dallas found Jack Ruby guilty of mur-

dering Lee Harvey Oswald, the accused assassin of President Kennedy.” Figure 5.8

shows the internal activity of the network as it attempts to extract entities and re-

lations from this particular example. Here, the ground truth annotation includes

(Lee Harvey Oswald, Kills, President Kennedy), which our model fails to recognize;

we instead obtain the prediction (Jack Ruby, Kills, Lee Harvey Oswald) which is a

valid relation missed by the ground truth. In fact, it can be argued that the latter

relation is a stronger manifested of the “Kill” relation based on the linguistic context

81

Figure 5.8: Visualization of activity of pooling layers at various depths (Li for i =
1, . . . , λ), as tabular heatmaps, for a network with a depth of λ = 8 given the following
input sentence: “In 1964, a jury in Dallas found Jack Ruby guilty of murdering
Lee Harvey Oswald, the accused assassin of President Kennedy.” Here, we measure
activity by sum-pooling the activations along the channel dimension of each hidden
representation. For the prediction activity, we simply max-pool probabilities along
the relation dimension thus ignoring the exact type of entity or relation.

In
1964

,
a

jury
in

Dallas
found

Jack
Ruby
guilty

of
murdering

Lee
Harvey
Oswald

,
the

accused
assassin

of
President
Kennedy

.

L1 L2 L3

In
1964

,
a

jury
in

Dallas
found

Jack
Ruby
guilty

of
murdering

Lee
Harvey
Oswald

,
the

accused
assassin

of
President
Kennedy

.

L4 L5 L6

In
19

64 , a
jur

y in
Dalla

s
fou

ndJac
k

Rub
y

gu
ilty of

murd
eri

ngLee
Harv

ey

Osw
ald

,
the

acc
use

d

ass
ass

in of

Pre
sid

en
t

Ke
nn

ed
y .

In
1964

,
a

jury
in

Dallas
found

Jack
Ruby
guilty

of
murdering

Lee
Harvey
Oswald

,
the

accused
assassin

of
President
Kennedy

.

L7

In
19

64 , a
jur

y in
Dalla

s
fou

ndJac
k

Rub
y

gu
ilty of

murd
eri

ngLee
Harv

ey

Osw
ald

,
the

acc
use

d

ass
ass

in of

Pre
sid

en
t

Ke
nn

ed
y .

Prediction (L8)

In
19

64 , a
jur

y in
Dalla

s
fou

ndJac
k

Rub
y

gu
ilty of

murd
eri

ngLee
Harv

ey

Osw
ald

,
the

acc
use

d

ass
ass

in of

Pre
sid

en
t

Ke
nn

ed
y .

Ground Truth

0.0

0.2

0.4

0.6

0.8

1.0

as evidenced by the trigger phrase “found [..] guilty of murdering”. We note that our

model is able to detect (Lee Harvey Oswald, Kills, President Kennedy) as shown in

the center-bottom heatmap of Figure 5.8; however, signals were not strong enough to

warrant a concrete extraction of the relation.

In the ADE dataset, we mostly observe issues with entity recognition where bound-

aries of noun phrases are not properly recognized. Modifier phrases are sometimes

not predicted as part of the named entity, for example: “protracted neuromuscular

82

block” instead extracted as “neuromuscular block”, and “generalized mite infesta-

tion” instead extracted as simply “mite infestation.” The nature of the data results

in especially long named entities that are often entire noun or verb phrases which

can be difficult to delimit. For example, consider the following case: “DISCUS-

SION: Central nervous system (CNS) toxicity has been described with ifosfamide,

with most cases reported in the pediatric population.” Here, instead of extracting

(Central nervous system (CNS) toxicity, ifosfamide) as the relation pair, our model

predicts (Central nervous system, ifosfamide) and (CNS, ifosfamide). Essentially,

long entity phrases are often not recognized in their entirety, and broken down into

segments where each segment is independently involved in a relation. In this partic-

ular case, this error in prediction lead to one false negative and two false positives.

This phenomenon occurs frequently with coordinated noun phrases which present

a nontrivial challenge. For example, “Growth and adrenal suppression in asthmatic

children treated with high-dose fluticasone propionate.” is annotated with “Growth

and adrenal suppression” as a singular entity, while our model falsely recognizes it as

two entities “Growth” and “adrenal suppression.” We see similar outcomes for the sen-

tence: “Generalized maculopapular and papular purpuric eruptions are perhaps the

most common thionamide-induced reactions.” Such cases occur frequently which we

suspect are a major source of hampered precision given the increased number of false

positives for each predictive mistake.

5.5 Conclusion

In this study, we introduced a novel neural architecture that combines the ideas of

metric learning and convolutional neural networks to tackle the highly challenging

problem of end-to-end relation extraction. Our method is able to simultaneously

and efficiently recognize entity boundaries, the type of each entity, and the relation-

ships among them. It achieves this by learning intermediate table representations by

pooling local metric, dependency, and position information via repeated application

of the 2D convolution. For end-to-end relation extraction, this approach improves

over the state-of-the-art across two datasets from different domains with statistically

significant results based on examining average performance of repeated runs. More-

over, the proposed architecture operates at substantially reduced training and testing

times with testing times that are seven to ten times faster, the latter important for

many user-end applications. We also perform extensive error analysis and show that

our network can be visually analyzed by observing the hidden pooling activity lead-

83

ing to preliminary or intermediate decisions. Currently, the architecture is designed

for extracting relations involving two entities and occur within sentence bounds; han-

dling n-ary relations and exploring document-level extraction involving cross-sentence

relations will be the focus of future work.

84

Chapter 6 End-to-End Extraction of Cross-Sentence N-ary Relations

Most studies on relation extraction are focused on intra-sentence binary relation ex-

traction. However, real-world problems are typically more complex, and may involve

several key challenges not adequately addressed by existing work. One of which is the

end-to-end aspect, which we have discussed and addressed in the previous chapters

of this dissertation. However, other interesting challenges include the extraction of

cross sentence relations and the extraction of N-ary relations. The ability to ex-

tract relations of variable arity across multiple sentences is highly prized in some

specialized domains, including the biomedical domain, and with problems related

to precision medicine. Given genetic variants may impact targeted treatment out-

comes, knowledge about relationships among drugs, genes, and mutations is crucial

for personalizing patient care. Such data, when compiled and distilled, will lead to

better clinical decisions; however, cutting-edge knowledge of this form is still latent

in biomedical literature. Being able to extract cross sentence N-ary relations is

important for the following reasons.

• Cross-sentence relation extraction is important, especially in the biomedical

domain given documents tend to be especially long. Long-range relations that

occur across sentences appear frequently and tend to be difficult to identify

and extract as they are usually expressed in an implicit manner. Based on a

preliminary analysis of the JAX-CKB dataset [94], with gold standard annota-

tions among drug-gene-mutations, limiting efforts to extracting intra-sentence

relations will impair recall by up to 32 absolute percentage points.

• N -ary relation extraction refers to problems where relations may involve a vari-

able number of participating entities, as opposed to binary relation extraction,

where the number of entities is fixed to two. Complex biomedical relationships

exist, for example, wherein a drug is asserted as being effective for treating

a disease arising from a particular genetic mutation in some gene. As an ex-

ample, consider the following sentence: “The FDA-approved RAF inhibitor

vemurafenib and dabrafenib have elicited responses and extended survival of

patients with BRAF V600E melanomas.” Here, the sentence expresses a rela-

tionship wherein the drugs vemurafenib and dabrafenib are used in treatment of

a type of cancer caused by the mutation V600E occurring in the BRAF gene.

Such relationships are complex and cannot be addressed by existing binary ap-

85

proaches. Based on our analysis of the JAX-CKB dataset, limiting efforts to

only predicting binary relations, as is typical, may impair recall by up to 18

absolute percentage points.

Designing an architecture able to simultaneously handle cross-sentence relations and

N -ary relations is a nontrivial task given scalability issues. In case of N -ary relations,

the variability of N depends on the nature of the problem being studied. To illustrate

the complexity of the problem, we use set notation to describe the class of arity for

a particular problem; for example, we classify a problem using the set K such that,

as an example, a problem with 2-ary and 3-ary relations has K = {2,3}. Henceforth,

we refer to such specific cases of the N -ary problem as K-ary. Suppose E represents

the set of entities for a hypothetical example. For a problem with K = {2,3}, that is,

{2,3}-ary relations, we must consider up to ∣E ∣2 + ∣E ∣3 candidate selections. Thus, in

general, a problem with K-ary relations must consider up to ∑x∈K ∣E ∣x comparisons.

The complexity of an K-ary problem is defined by the maximum arity, or max(K),

such that we observe a time complexity of O(∣E ∣max(K)), which is polynomial with

respect to the number of entities and exponential with respect to the maximum arity

of candidate relations. Given the number of entities tend to scale with input length

(naturally, a paragraph will contain more entities than a sentence), longer sentences

tend to exacerbate the number of comparisons needed.

Recent works moving beyond existing standards have typically focused on two of

three aspects; for example, end-to-end and cross-sentence [95, 96] or cross-sentence

and N -ary [97, 98, 99, 100]. To our knowledge, no studies have explored all three

aspects in a single model. In this study, we propose the first end-to-end approach for

extracting inter-sentence N -ary relations. We overcome issues of scale by appropriat-

ing the efficient neural-metric learning architecture introduced in Chapter 5 as a base

for learning lower-arity representations. The representations of lower-arity relations

are used to construct high-arity representations and subsequent high-arity relations.

We demonstrate the effectiveness of our approach by validating our method on a

dataset, called JAX-CKB [94], of full-text PubMed documents annotated with gold

standard relations among drugs, genes, and genetic mutations. For this particular

problem, we wish to extract these biomedical entities and the K-ary relations among

them, where K = {2,3}, treating entire paragraphs as units of discourse. Besides

architectural innovations, we highlight the following contributions. We demonstrate

the extent to which cross-sentence N -ary relation extraction improves over baseline

models that are restricted to intra-sentence binary relation extraction. We show that

learning to extract higher-arity relations has a side effect of improving the quality of

86

binary relations extracted. Lastly, we introduce several variants of the architecture

with different levels of restrictiveness when considering triple candidates, and show

that ensembling them leads to improved overall results on all accounts.

6.1 Related Work

In this section, we discuss recent related work primarily dealing with cross-sentence

and N-ary relations. For a review of work in end-to-end relation extraction, we refer

readers to Section 2.2.

Cross-sentence relation extraction. Recent studies dealing primarily with cross-

sentence relation extraction typically deal with problems in the biomedical domain

such as chemical-disease [101] and protein-protein [102] interaction extraction from

biomedical literature. For some problem domains, such as those involving chemical-

protein interactions [103], there are few enough cross-sentence relations (< 1%) that

they can be effectively ignored without adversely affecting recall [104]. Otherwise,

cross-sentence relations are typically considered by simply changing the scope of

each unit example from sentence-level to either paragraph-, abstract-, or document-

level [95, 96]. To limit the number of candidates, some approaches involving a filtering

step wherein only candidates within a certain distance — for example, within three

sentences — are considered [96]. Other notable approaches include applying distant

supervision to cross-sentence relation extraction [105, 106, 107], graph LSTMs [97, 98],

or focusing on scalability by use of multi-scale, entity-centric representations [100].

Focusing on chemical-disease relations, Verga et al. [44] proposed a method for simul-

taneously predicting relations between all pairs of mentions; aggregating over mention

pairs allowed for multi-instance learning for extracting document-level relations be-

tween entity pairs.

N-ary relation extraction. N -ary relation extraction has been explored in a vari-

ety of ways including rule-based methods on shortest dependency path [108], pattern

discovery based on domain ontology [109], and linguistic theory involving Frame Se-

mantics [110]. Machine learning based approaches include methods based on distant

supervision [106], LSTMs over graph structures [97, 98], and learning high-arity re-

lations based on lower arity representations [100, 111].

End-to-end, cross-sentence, and N-ary relation extraction. Existing works

that focus on end-to-end and cross sentence relation extraction are mostly limited

87

to studies on protein-protein interactions [102]. On this front, Tran and Kavuluru

[95] devised an end-to-end pipeline method for cross-sentence binary relation ex-

traction, considering all protein pairs mentioned within the abstract as potential

interaction candidates. Zhou et al. [96] instead considered only protein pairs men-

tioned within a window of three sentences as potential candidates. The other set

of studies focused primarily on cross sentence and N-ary relation extraction with

deep neural network approaches. Approaches in this category included the use of

graph-structured LSTMs [97, 98], hybrid LSTM-CNN network [99], distant supervi-

sion [106], and multi-scale entity-centric representation learning [100]. To our knowl-

edge, no studies have approached the problem of relation extraction in an end-to-end,

cross-sentence, and N -ary fashion.

6.2 Methodology

Our approach is based on the premise that an N -ary relation can be decomposed and

represented as a set of constituent binary sub-relations. Intuitively, we can analyze

the semantics of a ternary relation between entities a, b, and c, denoted by tuple (a,

b, c), by exploring binary sub-relations between entities represented by pairs (a,b),

(a,b), and (a,c). Inspired by prior work on N -ary relation extraction [100, 111], the

goal is to learn ternary (or N -ary) relations by representing them as a composition

of representations corresponding to constituent binary pairs. Thus, we approach the

problem of end-to-end extraction of binary and ternary relations as follows. To extract

entities and binary relations, we follow the steps as established in Section 5.2.2 of the

previous chapter. To recap, we extract entities by decoding softmax signals along

the diagonal and we extract binary relations by averaging the signals at intersections

of the output. In Section 6.2.1, we describe how the architecture is extended to

accommodate ternary relations unique to the target problem and dataset.

6.2.1 Neural Network Architecture

The neural-metric architecture readily and naturally represents a semantic relation-

ship between pairs of words at positions i and j through the representation gi,j. For

an example, we denote E as the set of all gold entities for a particular example. Con-

cretely, each entity e is represented as a pair of indices indicating the starting and

ending offsets, denoted as eend and estart respectively, such that e = (estart, eend). For a

set of entities, we can derive a list of candidate relations by observing all entity combi-

nations matching a relevant type template (more later). Let R(E) represent the set of

88

all candidate 2,3-ary relations between entities in E expressed in x, where R2
(E)

⊂R(E)

represents the set of candidate binary relations and R3
(E)

⊂ R(E) represents the set

of candidate ternary relations. We compute R2
(E)

by including all pairs of entities in

E adhering to one of the following type templates: (Drug,Gene), (Gene,Variant),

and (Drug,Variant). Likewise, we compute R3
(E)

by including all triples of entities

in E adhering to the type template (Drug, Gene, Variant).

The proposed method builds on the neural metric learning architecture discussed

in the previous chapter. We again denote the relation-metric representation first

defined in Equation 5.2 as G ∈ Rn×n×κ representing an n × n sentence wherein the

third dimension embeds metric-based features. We use gi,j to denote the embedding

vector of length κ for position i, j, such that gi,jk = Gi,j,k for k = 1 . . . κ. For a candidate

ternary relation (a, b, c) ∈ R3
(E)

, the probability of there being a relationship between

(a, b, c) is expressed as

p̄ = σ(WDrugGenef(a, b) +WGeneVariantf(b, c) +WDrugVariantf(a, c) + bDGV) ,

where f(r, s) is a vector representation of the relationship between entities r and s,

defined as

f(r, s) = gr
start,sstart

∥ gr
end,send

,

where ∥ is the vector concatenation operator; WDrugGene, WGeneVariant, WDrugVariant,

and bDGV are network parameters; and σ is the sigmoid function. The binary cross

entropy loss for the candidate triple is computed as

¯̀(ȳ, p̄∣θ) = − (ȳ log(p̄) + (1 − ȳ) log(1 − p̄))

where ȳ ∈ {0,1} is the groundtruth and θ is the set of all parameters.

6.2.2 Ternary Relation Extraction

Let E ′ represent the set of entities predicted for a particular test example. For con-

ciseness, we use R2
(E ′) to denote the set of candidate binary relations and R2⋆

(E ′) to

denote the set of predicted binary relations such that R2⋆
(E ′) ⊂R

2
(E ′). During extraction

time, we first extract the set of predicted entities E ′ according to procedures in Sec-

tion 5.2.3. Based on those same procedures, we can extract a set of predicted binary

relations R2⋆
(E ′) directly without considering R2

(E ′). However, R2⋆
(E ′) can be used as a

filtering mechanism for pre-emptively eliminating unlikely ternary candidates from

R3
(E ′), thus resulting in fewer comparisons and more focused triple predictions. We

propose three natural approaches for filtering:

89

• For none, no filtering is applied and we consider all candidates in R3
(E ′).

• For relaxed, we only consider a candidate triple if at least one of its constituent

binary subrelations exist in the set of predicted binary relations. Concretely,

we only consider a triple (a, b, c) ∈R3
(E ′) if

(a, b) ∈R2⋆
(E ′) ∨ (b, c) ∈R2⋆

(E ′) ∨ (a, c) ∈R2⋆
(E ′) .

• For strict, we only consider a candidate triple if all of its constituent binary

subrelations exist in the set of predicted binary relations. Concretely, we only

consider a triple (a, b, c) ∈R3
(E ′) if

(a, b) ∈R2⋆
(E ′) ∧ (b, c) ∈R2⋆

(E ′) ∧ (a, c) ∈R2⋆
(E ′) .

After applying one of the three aforementioned filtering step on R3
(E ′), we process the

remaining candidates using the neural network model to obtain R3⋆
(E ′), with R

2⋆
(E ′) ∪

R3⋆
(E ′) being the final predicted set of {2,3}-ary relations.

6.2.3 Training Procedure

We train the core objective loss `, defined in Equation 5.4 of Section 5.2.2, and

triple prediction objective loss ¯̀, defined in Equation 6.2.1, in an interleaved fashion.

That is, for each training iteration, we train a set of examples (that is, a minibatch)

on the original task entity and binary relation extraction task (corresponding to

loss `). Then, we transform the set of examples in the minibatch to a set of triple

candidate level examples, which are then used to train objective ¯̀. We filter triple

candidates used for training based on the chosen filtering mode; given this, with strict

filtering, there is a strong bias toward predicting as positive any candidate meeting

the initial filter criteria; in this sense, strict-based predictions are effectively based

on constituent binary predictions.

6.2.4 Model Ensembling

Models that are complementary tend to benefit from ensembling. Thus, in addition

to the experiments with the proposed model, we also experiment with a simple ensem-

bling approach based on majority voting. We discuss our motivation for ensembling

later in Section 6.4; herein, we simply describe our approach. For entity recognition,

each unique entity (entity name and entity type) and relation (participating entities

and relation type) is included in the final ensemble prediction set if it is predicted in

90

the majority of models of the ensemble. For example, in a 3-model ensemble, if the

unique entity pair (e.g., the drug cisplatin) is predicted in at least two of the three

models, it is included in the final prediction set. Likewise, a unique relation (e.g.,

a drug-gene relation involving the drug cisplatin and the gene metallothionein) indi-

cating participating entities and the relation type is included in the final prediction

set only if it is predicted by at least two of the three models of the ensemble.

6.3 Experimental Setup

In this section, we describe materials relevant to the experiments conducted in this

study, including the dataset used to validate our method, the method for evaluation,

and the configuration of the neural network model.

6.3.1 JAX-CKB Dataset

We train and evaluate our model on data from the JAX Clinical Knowledge-base

(JAX-CKB) [94] consisting of gold standard drug-gene-mutation relations manually-

curated by the Jackson Laboratory (JAX). The final dataset used in our experiments

contains 342 PubMed full-text documents partitioned into 240, 51, and 52 documents

based on a random 70-15-15 split for training, development, and testing respectively.

While we use JAX-CKB annotations, preprocessing and entity-linkage of the input

is based on data made publicly available by Jia et al. [100]. Characteristics of the

dataset are presented in Table 6.1. According to our analysis, each document is,

on average, comprised of about 30 paragraphs and each paragraph is, on average,

comprised of about 6 sentences.

6.3.2 Evaluation Method

As JAX-CKB contains annotations at the document level (i.e., unique genes regardless

of offset) based on normalized entities, we evaluate our method in a similar manner

to reflect the expected real-world use case. That is, we train and extract relations

at the mention-level as is typical of end-to-end elation extraction systems; before

evaluating, we collapse the mention-level relations by normalizing them to unique

drug/gene/mutations and truncating positional information. As normalization is not

a goal of this study, we assume perfect normalization if there is an exact match of

a drug/gene/mutation mention being extracted based on a pre-computed mapping

of mentions to unique names. Mentions extracted but cannot be mapped on exact

matching are not normalized and thus evaluated as false positives for both entity and

91

Table 6.1: Characteristics of the JAX-CKB dataset

Training Development Testing

Num. Documents 240 51 52

Num. Paragraphs 7,414 1,545 1,605

Num. Sentences 42,675 9,050 9,547

Num. Entities 89,883 18,151 18,643

↰

Num. Entities (Drug) 24,296 5,165 4,286

↰

Num. Entities (Gene) 55,178 11,037 12,257

↰

Num. Entities (Variant) 10,409 1,949 2,100

Num. Binary Relations 125,788 26,858 16,384

↰

Num. Binary Relations (Drug-Gene) 62,304 14,334 7,103

↰

Num. Binary Relations (Gene-Variant) 41,172 7,449 7,178

↰

Num. Binary Relations (Drug-Variant) 22,312 5,075 2,103

Num. Ternary Relations 162,422 40,972 14,031

relation extraction. We evaluate using the popular F1 metric, where the F1 score

is micro-averaged across class types to account for distributional differences between

classes.

6.3.3 Model Configuration

We used the exact settings as described in Section 5.1 as a starting point given

their success in our prior work and preliminary experiments. We instead focused

on optimize architecture-specific settings, such as number of layers λ and number of

channels κ. Based on a grid search set over {3,6,9,12} for λ and {15,30,45,60} for

κ, evaluating on the development set, we found that λ = 3 and κ = 45 was optimal

for this particular problem. These settings suggest that, in contrast to the previous

study in Chapter 5, a “shallow but wide” architecture is more suitable at least for some

problems. Given the biomedical nature of the data, we used Word2Vec embeddings

pretrained on the corpus of PubMed abstracts. We again used spaCy to produce

projective dependency parses at the sentence level. Since we focus on paragraph-level

examples, we produce paragraph-level dependency graphs by joining the dependency

parses of constituent sentences. We accomplish this by simply connecting the root

node of a sentence to the root node of every other sentence in the same paragraph.

92

6.4 Results and Discussion

93

Table 6.2: Results on the test set for various models when learning and predicting at the sentence level, and when also evaluating
at the sentence level. The “N -ary Relations” column are results from evaluating on a test set containing both binary and ternary
relations, while the “Only Binary” and “Only Ternary” columns evaluates on binary relations and ternary relations exclusively.

Entities N -ary Relations Only Binary Relations Only Ternary Relations

Model P (%) R (%) F (%) P (%) R (%) F (%) P(%) R (%) F (%) P (%) R (%) F (%)

Binary 93.19 89.35 91.23 48.12 60.95 53.78 48.12 69.18 56.76 - - -

N -ary with no filtering 94.30 88.64 91.39 51.35 61.16 55.83 52.55 62.93 57.27 42.08 48.02 44.85

N -ary with relaxed filtering 94.09 84.68 89.14 47.38 66.87 55.46 48.24 68.80 56.71 40.43 52.54 45.70

N -ary with strict filtering 94.15 87.97 90.96 50.74 59.81 54.90 52.23 62.47 56.89 38.17 40.11 39.12

94

We begin by presenting initial results of models evaluating on sentence-level re-

lations from the test set in Table 6.2. Specifically, these are results on the test set

for various models when learning and predicting at the sentence level, and when also

evaluating at the sentence level. Models are thus not penalized for failing to identify

inter-sentence relations. Each row corresponds to a different model or model vari-

ant while each column correspond to a different evaluation criteria as follows. The

“N -ary Relations” column are results from evaluating on a test set containing both

binary and ternary relations, while the “Only Binary” and “Only Ternary” columns

evaluates on binary relations and ternary relations exclusively. As an aside, we note

that entity recognition performance is much higher than results from prior chapters

– this is owed to the fact that entity recognition is simply an easier problem here, in

that the vast majority of entities span a single token.

We note that the precision of entity recognition tends to increase while recall tends

to decrease when moving from binary to N -ary modeling. For relation extraction, the

N -ary model exhibits an improvement over the binary mode by up to two absolute F1

points regardless of filtering mode (53.78% vs. 55.83% F1). In general, all models tend

to exhibit predictions that tend to skew toward higher recall and lower precision. This

is likely an artifact of training on mention-level annotations derived from document-

level annotations.

Among N -ary model variants, we mainly observe varying differences in terms of

precision-recall trade-off. With no filtering, we observe the best balance of precision

and recall, while with “relaxed” filtering, we observe a much greater bias toward re-

call than precision. Interestingly, “strict” filtering has a trade-off that is somewhere

in between the other two filtering variants. Among model variants, N -ary with no

filtering tends to exhibit the best performance on N -ary (55.83% F1) and exclu-

sively binary (57.27% F1) relations specifically. The “relaxed” model exhibits the

best performance on ternary relations (45.70% F1), while the “strict” model exhibits

the worst performance on ternary relations (39.12% F1). We note that this model’s

improvement over the binary version when evaluating on only binary relations (owing

to improved precision) is an unexpected outcome, and may indicate that learning to

additionally identify ternary relations has the side-effect also improving the quality

of binary relations extracted.

95

Table 6.3: Our main results on the test set for various models and various levels of discourse when evaluating on both intra-
and inter-sentence relations (at the paragraph level). Results from Table 6.2, in which models learn and predict at the sentence
level, are included after adjusting for inter-sentence relations — by penalizing recall based on missed inter-sentence relations —
so that all displayed results are directly comparable.

Entity Recognition N -ary Relations Only Binary Relations Only Ternary Relations

Model Scope P (%) R (%) F (%) P (%) R (%) F (%) P(%) R (%) F (%) P (%) R (%) F (%)

Binary Sentence 93.19 89.35 91.23 48.14 41.72 44.70 48.14 50.39 49.24 - - -

N -ary with no filtering Sentence 94.30 88.64 91.39 51.38 41.86 46.13 52.58 45.83 48.98 42.08 22.73 29.51

N -ary with relaxed filtering Sentence 94.09 84.68 89.14 47.40 45.72 46.55 48.26 50.06 49.14 40.43 24.87 30.79

N -ary with strict filtering Sentence 94.15 87.97 90.96 50.74 40.94 45.32 52.23 45.50 48.63 38.17 18.98 25.36

N -ary with ensembling⋆ Sentence 89.53 92.01 90.75 45.05 53.40 48.87 45.83 58.06 51.23 39.06 31.02 34.58

Binary Paragraph 90.98 90.84 90.91 42.60 61.59 50.37 42.60 74.39 54.18 - - -

N -ary with no filtering Paragraph 92.41 84.84 88.46 46.32 64.54 53.93 48.32 67.00 56.15 36.96 52.67 43.44

N -ary with relaxed filtering Paragraph 91.43 90.15 90.78 43.31 67.11 52.64 46.31 69.11 55.46 31.48 57.49 40.68

N -ary with strict filtering Paragraph 92.74 90.07 91.39 45.28 66.24 53.79 47.53 69.06 56.31 34.87 52.67 41.96

N -ary with ensembling⋆ Paragraph 93.85 88.96 91.34 47.77 66.10 55.46 50.31 68.50 58.01 36.62 54.55 43.82

⋆ Ensembling refers to an ensemble of three models from each variant: no filtering, relaxed filtering, and strict filtering.

96

While Table 6.2 focused on evaluating at the sentence level, we present our

paragraph-level evaluations in Table 6.3. Results from Table 6.2 are included after

adjusting to account for inter-sentence relations — where differences mainly manifest

as penalties to recall — so that all results are directly comparable. As expected, recall

drops up to 20 absolute percentage points (from sixties to forties) when we penalize

the model for not identifying intersentence relations, which account for a significant

portion of overall relations. When we train and test on examples the paragraph-level

examples instead of sentence-level examples, precision tends to suffer (up to five per-

centage points). This is expected as input length presents a well-known source of

difficulty, as previously demonstrated in Section 5.4.2. However, this is counterbal-

anced by a significant boost in recall, of up to 25 absolute percentage points, which

results in an overall improvement to F1 across all models.

Once again, we observe a trend of improved precision on binary relation extrac-

tion performance between binary (lower) and N -ary models (higher), which reinforces

our early intuition that learning higher arity relations impacts binary relation perfor-

mance. At the paragraph level, the model with strict filtering exhibits the best per-

formance across the board with an overall relation extraction F1 score of 53.79%. Our

intuition based on preliminary results is that these variants are highly complementary,

and we expect that ensembling may result in further improved performance. Thus, we

included an additional evaluation based on an ensemble of these three models based

on the method described in Section 6.2.4. As expected, the ensemble outperforms

all other models on relation extraction, at both the sentence and the paragraph level

with an F1 score of 55.46% on relation extraction at the paragraph level. Overall,

results from Table 6.3 indicate that we can improve recall by at least 20 absolute

percentage points (41.72% vs. 64.54%), while maintaining similar levels of precision

(48.14% vs. 46.32%), by additionally accounting for N -ary and, more importantly,

cross-sentence relations.

Type-based analysis. We present type-based evaluations of the model, corre-

sponding to the last row in Table 6.3, for entity recognition in Table 6.4. The model

exhibits extremely high precision and recall, each above 97%, in identifying genetic

mutations. Overall, precision is relatively high (above 90%) across entity type with

differences most notable in terms of recall. Genes are identified with a recall of 90%,

while drugs are identified with an even lower recall of 80%. Thus, genes and drugs are

areas of weakness of entity recognition for this model, and warrant further exploration

in future work.

97

Table 6.4: Entity recognition results for the N -ary with ensembling model based on
entity type.

Relation Type P (%) R (%) F (%)

Drug 95.40 80.82 87.51

Gene 92.69 90.28 91.47

Mutation 97.76 97.86 97.81

Overall 93.85 88.96 91.34

Table 6.5: Relation extraction results for the N -ary with ensembling model based on
relation type.

Relation Type P (%) R (%) F (%)

Drug-Gene 50.20 65.48 56.83

Gene-Mutation 54.44 77.98 64.12

Drug-Mutation 42.94 58.38 49.48

Drug-Gene-Mutation 36.62 54.55 43.82

Overall 47.77 66.10 55.46

98

Figure 6.1: Error analysis on an example paragraph, with recall-related errors, appearing in the article with PMID 27523909.
The entire input with model-annotated entities appear on the left side, where mentions of the same concept share the same
color. On the top right, we present binary predictions and highlight missed binary relations. On the bottom right, we show
predictions of ternary candidates and the final output evaluated based on ground truth information.

ERK signaling has been found deregulated in a large portion

of cancers , most commonly by mutations in the RAS

gene family or in BRAF .

The most common BRAF mutation (BRAF V600E) , found

in about <digits> % of human tumors and more than

<digits> % of melanomas , results in ERK signaling

upregulation , independent of RAS activity .

The FDA-approved RAF inhibitors vemurafenib and

dabrafenib have elicited responses and extended survival

of patients with BRAF V600E melanomas .

However , responses are almost universally followed by

the development of clinical resistance , indicating the need

for improved therapies .

BRAF

vemurafenib

V600E

dabrafenib

�

� �

� �

�

�

� � � �

�

�

�

ERK

�

� ��

�� �

�����������������

�

�

�

�
�

���

� ��

�� �

���

���������

	�

	�

��

��

��

�����������������������	
 ������������

� � �

� ��

� ��

���

��

��

��

�	����
�
�	�������
�	�������

�����
�
�	������
�	�������

�������������

�����������

�������������������

�����������������������	
 ��������������

�������������	��������	
 �������������

�������������	��������	
 �������������

99

We present similar evaluations for relation extraction, in Table 6.5, partitioned

by relation type. Gene-mutation relations tend to be extracted at a higher accuracy

than other types of relations, which aligns with our intuition given genes and genetic

mutations are closely related concepts. Conversely, drug-mutation relation extraction

performance is relatively worse, owing to both reduced precision and recall. Drug-

gene-mutation relations expectedly exhibit the worst performance of all relation types,

with the least precision overall.

Error analysis. For a more indepth analysis of potential issues, we present a false

negative case in Figure 6.1. The example input is from a paragraph, of four sentences,

appearing in the PubMed article identified by PMID 27523909. First, we note that the

model exhibits perfect accuracy on entity recognition for this particular test example.

This particular example is an interesting example given the third sentence strongly

expresses a treatment relationship between the drugs Vemurafenib and Dabrafenib

and the mutation V600E of BRAF. From analyzing the binary predictions, we notice

two thematic issues. First, despite a clear therapeutic assertion involving the two

drugs, only Vemurafenib is recognized as being involved in any binary or ternary

relation. While surprising, this aligns with earlier observations in Section 5.4.2 that

coordinating conjunctions, such as ‘and’ and ‘or’, are potential sources of confusion

for this particular architecture. One simple way to alleviate this problem is to employ

a rule-based syntactic preprocessing method that deconstructs such sentences into a

set of multiple simpler sentences conveying the exact same idea. As an example, for

the discussed sentence from Figure 6.1, the third sentence would be replaced with the

following blurb.

The FDA-approved RAF inhibitor vemurafenib have elicited responses

and extended survival of patients with BRAF V600E melanomas. The

FDA-approved RAF inhibitor dabrafenib have elicited responses and ex-

tended survival of patients with BRAF V600E melanomas.

Given the model is designed to detect intersentence relations, we suspect such an

approach would resolve simple coordinated cases without any adverse effects. In

terms of binary relations, we further observe that, despite detecting vemurafenib as

being involved in a ternary relation with BRAF and V600E, the model has issues

recognizing the simpler binary relationship between vemurafenib and V600E. This

incongruity aligns with our type-based analysis, from Table 6.5, and suggests that

optimizations specifically targeting these particular types of relations, potentially as

100

rule-based postprocessing steps, will remedy at least some of the recall-related errors.

As a caveat related to Figure 6.1, there may be quality assurance issues related to

how data is annotated, and it is likely that the gene ERK is involved in a relation

with other entities appearing in the article (as hinted here or elsewhere in the article).

However, ground truth annotations indicate that ERK is not explicitly conveyed as

being involved with other entiites. For consistency, we assume correctness of the

ground truth when analyzing the presented example.

6.5 Conclusion

In this study, we proposed an approach for extracting inter-sentence N -ary rela-

tions corresponding to interactions between drugs, genes, and mutation, from the

biomedical literature. We demonstrated that our approach improved over tradi-

tional intra-sentence binary relation extraction substantially through recall-focused

improvements. While the focus of this study is on drug-gene-mutation relations of 2,3-

arity, our method can be easily extended to handle any level of arity. In this study, we

limited the scope of cross-sentence relations to discourse units at the paragraph-level;

while much less frequent, it is possible for relations to be express across paragraphs.

Thus, future work will focus on exploring ways of feasibly tackling document-level

relation extraction.

101

Chapter 7 Conclusion

In this dissertation, we introduced several advanced deep learning approaches to

tackling the problem of end-to-end relation extraction. We showed, via increasingly

sophisticated neural network architectures, that modeling entity and relation extrac-

tion in a joint or coordinated manner, results in highly competitive models that are

able to attain state-of-the-art results in many relation extraction problems includ-

ing those in specialized domains. Overall, our work contributes to the advancement

of modern information extraction by offering end-to-end solutions that are highly

competitive in terms of efficiency and accuracy.

7.1 Contributions

We highlight the contributions of this dissertation as follows.

• Chapter 3 focused on extracting protein-protein interactions, that are addi-

tionally affected by a mutation, from biomedical literature. In this study, we

showed that we can greatly improve recall by additionally consulting external

knowledge sources. And, we showed that our end-to-end approach improves

over prior works that focus solely on optimizing relation classification and rely

exclusively on existing tools for entity recognition. As of this writing, our model

remains state-of-the-art for this problem and dataset.

• Chapter 4 focused on extracting drug-drug interactions from drug labels. We

show that our proposed variant of the graph convolutional network (GCN),

with a novel attention-gating mechanism (holistically, GCA), improves over

the standard GCN. We further showed that the GCA, in conjunction with

pre-training on external DDI data, improves substantially over prior BiLSTM-

based approaches. Lastly, we showed that GCA and BiLSTM predictions are

complementary, and demonstrate that ensembling GCA and BiLSTM models

can result in further performance gains. Our approach is currently state-of-

the-art among models trained and tested on solely on the official FDA and

NLM-supplied dataset.

• Chapter 5 focused on devising an approach capable of jointly extracting both

entities and relations without the need for local classifiers. We validated our

method on two datasets in both the general English and biomedical domain and

102

showed that this approach improves over the prior best in terms of raw relation

extraction performance. We also experimentally showed that, in lieu of “global

optimization”, our approach is able to extraction relations with extraction times

that are up to an order of magnitude faster than the prior best. Finally, we

presented a visualization of intermediate layer activities that confirm our initial

intuition for this particular architecture.

• Chapter 6 presented an architecture for relation extraction that, in addition

to being end-to-end, is able to handle relations that are N -arity and expressed

over multiple sentences. We also showed that by additionally accounting for

cross-sentence and higher-arity relations, we improved over baseline approaches

drastically owing to substantial gains in recall. Our analysis showed that learn-

ing to extract higher-arity relations has a side effect of improving the quality

of binary relations extracted. And lastly, we demonstrated that ensembling the

output of model variants that train and test on different filtering modes (cor-

responding to different levels of restrictiveness for early elimination of triple

candidates), that appear to complement eachother, can lead to nontrivial gains

in overall model performance.

7.2 Limitations and Future Work

A universal problem in this domain is the lack of quality datasets for evaluation.

Guidelines for annotating datasets are designed around the problem they are intended

to solve. There are few gold standard datasets, and the few available datasets tend

to be highly specialized and vary widely in terms of problem specification. While

some datasets are produced for the sole purpose of methodological evaluation, and

thus adhere to established standards, many datasets in RE are often produced on

an as-needed basis to tackle real-world problems. Thus each problem-dataset pair

has its own set of nuances and idiosyncrasies. Even within the extremely narrow

problem of extracting drug-drug interactions, as discussed in Chapter 4, there are

several comparable datasets derived from varying annotation schemes and guidelines

with different levels of annotation granularity.

The lack of portability is a hindrance in attempting to compare methods designed

for different flavors of the same problem. While our methodological advances via

neural-metric learning is highly generalizable, given the strong adherence to standard

problem specifications, other works in this dissertation are less so. For example, our

work on protein-protein interaction requires an additional entity normalization step

103

occurring in between NER and RE. In both of our work on extracting protein-protein

interactions and drug-gene-mutation interactions, gold annotations are only available

at the document level — as opposed to mention-level — thus requiring document-

level evaluations. And in our work on drug-drug interactions, there is an additional

nontrivial subtask involving the prediction of the outcome of interactions. While we

believe there are common elements among these specialized relation extraction tasks

that are readily generalizable, it is impossible to draw direct comparisons among

them. Thus, a limitation of this thesis is a lack of analyses of the methodologies as a

collective.

Given end-to-end relation extraction is a relatively new problem domain, one

impactful avenue for future research is to establish a universal framework for crafting

portable problem specifications and annotation guidelines. Once established, work

can begin to map existing datasets to the new standard. This would benefit the

field in several ways. First, moving forward, methods designed for one problem

domain can be quickly and easily evaluated on other problem domains to assess for

generalizability. Second, annotators trained on one annotator guideline would quickly

adapt to other, thus easing human effort on the part of linguists and domain experts.

And lastly, with a shared standard for end-to-end relation extraction data sets, we

expect performance to improve across the board (“a rising tide lifts all boats”), given

the newly expanded scope of available training data and the well-known effectiveness

of modern transfer learning and domain-adaptation techniques.

Copyright© Tung Tran, 2020.

104

Abbreviations

AE — Adverse Event.

ADE — Adverse Drug Event.

API — Application Programming Interface.

ASCII — American Standard Code for Information Interchange.

AWP — All Word Pairs.

AT — Adversarial Training.

BIES — Beginning, Inside, Ending, Single Tagging Scheme.

BILOU — Beginning, Inside, Last, Outside, Unit Tagging Scheme.

BL — Bidirectional LSTM.

CF — Convolutional Filter.

CNN — Convolutional Neural Networks.

CP — Consequence Prediction.

CRF — Conditional Random Fields.

CYK — Cocke-Younger-Kasami algorithm.

DDI — Drug-Drug Interaction.

DYN — Pharmacodynamic Interaction Tag.

EN — Entity Normalizaiton.

EFF — Effect Mention Tag.

FDA — U.S. Food and Drug Administration.

FN — False Negative.

FP — False Positive.

GCN — Graph Convolutional Networks.

GC — Graph Convolution.

GCA — Graph Convolution with Attention-Gating.

GM — Gene Mention.

GN — Gene Normalization.

IE — Information Extraction.

IOB — Inside, Outside, Beginning Tagging Scheme.

IOBES — Inside, Outside, Beginning, Ending, Single Tagging Scheme.

JAX-CKB — Jackson Laboratory Clinical Knowledgebase.

KIN — Pharmacokinetic Interaction Tag.

LP — Linear Programming.

LSTM — Long Short-Term Memory.

105

NCBI — U.S. National Center for Biotechnology Information.

NCI — U.S. National Cancer Institute.

NER — Named Entity Recognition.

NIST — U.S. National Institute for Standards and Technology.

NLM — U.S. National Library of Medicine.

NLP — Natural Language Processing.

NN — Neural Networks.

PD — Pharmacodynamic Interaction.

PK — Pharmacokinetic Interaction.

PMID — PubMed Identifier.

PPI — Protein-Protein Interactions.

RE — Relation Extraction.

RNN — Recurrent Neural Network.

RC — Relation Classfication.

SCE — Softmax Cross Entropy.

SGD — Stochastic Gradient Descent.

SL — Sequence Labelling.

SPL — Structured Product Labelling.

SVM — Support Vector Machines.

TAC — Text Analysis Conference.

TP — True Positive.

TRI — Trigger Mention Tag.

TREC — Text REtrieval Conference.

UMLS — Unified Medical Language System.

UN — Unspecified Interaction.

106

Bibliography

[1] Tung Tran and Ramakanth Kavuluru. Predicting mental conditions based on

“history of present illness” in psychiatric notes with deep neural networks. Jour-

nal of Biomedical Informatics, pages S138–S148, 2017.

[2] Dan Roth and Wen-tau Yih. A linear programming formulation for global

inference in natural language tasks. In Proceedings of the Annual Conference

on Computational Natural Language Learning (CoNLL), pages 1–8, 2004.

[3] Makoto Miwa and Yutaka Sasaki. Modeling joint entity and relation extraction

with table representation. In Proceedings of the 2014 Conference on Empirical

Methods in Natural Language Processing (EMNLP), pages 1858–1869, 2014.

[4] Qi Li and Heng Ji. Incremental joint extraction of entity mentions and relations.

In Proceedings of the 52nd Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), volume 1, pages 402–412, 2014.

[5] Fei Li, Meishan Zhang, Guohong Fu, and Donghong Ji. A neural joint model

for entity and relation extraction from biomedical text. BMC bioinformatics,

18(1):198, 2017.

[6] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet classification

with deep convolutional neural networks. In Advances in neural information

processing systems, pages 1097–1105, 2012.

[7] Yoon Kim. Convolutional neural networks for sentence classification. In Pro-

ceedings of the 2014 Conference on Empirical Methods in Natural Language Pro-

cessing (EMNLP), pages 1746–1751, Doha, Qatar, October 2014. Association

for Computational Linguistics. URL http://www.aclweb.org/anthology/

D14-1181.

[8] Anthony Rios and Ramakanth Kavuluru. Convolutional neural networks for

biomedical text classification: application in indexing biomedical articles. In

Proceedings of the 6th ACM Conference on Bioinformatics, Computational Bi-

ology and Health Informatics, pages 258–267. ACM, 2015.

107

http://www.aclweb.org/anthology/D14-1181
http://www.aclweb.org/anthology/D14-1181

[9] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Janvin. A

neural probabilistic language model. The Journal of Machine Learning Re-

search, 3:1137–1155, 2003.

[10] Ronan Collobert and Jason Weston. A unified architecture for natural language

processing: Deep neural networks with multitask learning. In Proceedings of

the 25th international conference on Machine learning, pages 160–167. ACM,

2008.

[11] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean.

Distributed representations of words and phrases and their compositionality.

In Advances in Neural Information Processing Systems, pages 3111–3119, 2013.

[12] Nal Kalchbrenner and Phil Blunsom. Recurrent continuous translation mod-

els. In Proceedings of the 2013 Conference on Empirical Methods in Natural

Language Processing (EMNLP), pages 1700–1709, 2013.

[13] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine

translation by jointly learning to align and translate. In Proceedings of 3th

International Conference on Learning Representations (ICLR), 2015.

[14] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of train-

ing recurrent neural networks. Proceedings of the 30th International Conference

on Machine Learning, 28:1310–1318, 2013.

[15] Felix A Gers, Jürgen Schmidhuber, and Fred Cummins. Learning to forget:

Continual prediction with LSTM. Neural computation, 12(10):2451–2471, 2000.

[16] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural

computation, 9(8):1735–1780, 1997.

[17] Alex Graves. Supervised Sequence Labelling with Recurrent Neural Networks,

volume 385 of Studies in Computational Intelligence. Springer, 2012. ISBN

978-3-642-24796-5. doi: 10.1007/978-3-642-24797-2.

[18] Yoav Goldberg. A primer on neural network models for natural language pro-

cessing. Journal of Artificial Intelligence Research, 57:345–420, 2016.

[19] Razvan C Bunescu and Raymond J Mooney. A shortest path dependency kernel

for relation extraction. In Proceedings of the conference on human language

technology and empirical methods in natural language processing, pages 724–

731. Association for Computational Linguistics, 2005.

108

[20] Longhua Qian, Guodong Zhou, Fang Kong, Qiaoming Zhu, and Peide Qian.

Exploiting constituent dependencies for tree kernel-based semantic relation ex-

traction. In Proceedings of the 22nd International Conference on Computational

Linguistics, volume 1, pages 697–704. Association for Computational Linguis-

tics, 2008.

[21] Antti Airola, Sampo Pyysalo, Jari Björne, Tapio Pahikkala, Filip Ginter, and

Tapio Salakoski. All-paths graph kernel for protein-protein interaction extrac-

tion with evaluation of cross-corpus learning. BMC bioinformatics, 9(11):S2,

2008.

[22] Katrin Fundel, Robert Küffner, and Ralf Zimmer. RelEx - relation extraction

using dependency parse trees. Bioinformatics, 23(3):365–371, 2007.

[23] Jiexun Li, Zhu Zhang, Xin Li, and Hsinchun Chen. Kernel-based learning

for biomedical relation extraction. Journal of the Association for Information

Science and Technology, 59(5):756–769, 2008.

[24] Arzucan Özgür, Thuy Vu, Güneş Erkan, and Dragomir R Radev. Identifying

gene-disease associations using centrality on a literature mined gene-interaction

network. Bioinformatics, 24(13):i277–i285, 2008.

[25] Bryan Rink, Sanda Harabagiu, and Kirk Roberts. Automatic extraction of

relations between medical concepts in clinical texts. Journal of the American

Medical Informatics Association, 18(5):594–600, 2011.

[26] Oana Frunza, Diana Inkpen, and Thomas Tran. A machine learning approach

for identifying disease-treatment relations in short texts. IEEE Transactions

on Knowledge and Data Engineering, 23(6):801–814, 2011.

[27] Shengyu Liu, Kai Chen, Qingcai Chen, and Buzhou Tang. Dependency-based

convolutional neural network for drug-drug interaction extraction. In 2016

IEEE International Conference on Bioinformatics and Biomedicine (BIBM),

pages 1074–1080. IEEE, 2016.

[28] Ramakanth Kavuluru, Anthony Rios, and Tung Tran. Extracting drug-drug

interactions with word and character-level recurrent neural networks. In Fifth

IEEE International Conference on Healthcare Informatics (ICHI), pages 5–12.

IEEE, 2017.

109

[29] Desh Raj, SUNIL SAHU, and Ashish Anand. Learning local and global con-

texts using a convolutional recurrent network model for relation classification

in biomedical text. In Proceedings of the 21st Conference on Computational

Natural Language Learning (CoNLL 2017), pages 311–321, 2017.

[30] Yuan Luo, Yu Cheng, Özlem Uzuner, Peter Szolovits, and Justin Starren. Seg-

ment convolutional neural networks (Seg-CNNs) for classifying relations in clin-

ical notes. Journal of the American Medical Informatics Association, 25(1):

93–98, 2017.

[31] Yuhao Zhang, Peng Qi, and Christopher D Manning. Graph convolution over

pruned dependency trees improves relation extraction. In Proceedings of the

2018 Conference on Empirical Methods in Natural Language Processing, 2018.

[32] Yejin Choi, Eric Breck, and Claire Cardie. Joint extraction of entities and

relations for opinion recognition. In Proceedings of the 2006 Conference on

Empirical Methods in Natural Language Processing, pages 431–439, 2006.

[33] Rohit J Kate and Raymond J Mooney. Joint entity and relation extraction using

card-pyramid parsing. In Proceedings of the Fourteenth Conference on Compu-

tational Natural Language Learning (CoNLL 2010), pages 203–212, 2010.

[34] Daniel Jurafsky and James H. Martin. Speech and Language Processing (2nd

Edition). Prentice-Hall, Inc., 2008. ISBN 0131873210.

[35] Xiaofeng Yu and Wai Lam. Jointly identifying entities and extracting relations

in encyclopedia text via a graphical model approach. In Proceedings of the

23rd International Conference on Computational Linguistics: Posters, pages

1399–1407, 2010.

[36] Sameer Singh, Sebastian Riedel, Brian Martin, Jiaping Zheng, and Andrew

McCallum. Joint inference of entities, relations, and coreference. In Proceedings

of the 2013 workshop on Automated knowledge base construction, pages 1–6,

2013.

[37] Michael Collins. Discriminative training methods for hidden markov mod-

els: Theory and experiments with perceptron algorithms. In Proceedings of

the ACL-02 conference on Empirical methods in natural language processing-

Volume 10, pages 1–8, 2002.

110

[38] Makoto Miwa and Mohit Bansal. End-to-end relation extraction using LSTMs

on sequences and tree structures. In Proceedings of the 54th Annual Meeting

of the Association for Computational Linguistics (Volume 1: Long Papers),

volume 1, pages 1105–1116, 2016.

[39] Arzoo Katiyar and Claire Cardie. Going out on a limb: Joint extraction of

entity mentions and relations without dependency trees. In Proceedings of the

55th Annual Meeting of the Association for Computational Linguistics (Volume

1: Long Papers), volume 1, pages 917–928, 2017.

[40] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In

Advances in Neural Information Processing Systems, pages 2692–2700, 2015.

[41] Suncong Zheng, Yuexing Hao, Dongyuan Lu, Hongyun Bao, Jiaming Xu, Hong-

wei Hao, and Bo Xu. Joint entity and relation extraction based on a hybrid

neural network. Neurocomputing, 257:59–66, 2017.

[42] Suncong Zheng, Feng Wang, Hongyun Bao, Yuexing Hao, Peng Zhou, and

Bo Xu. Joint extraction of entities and relations based on a novel tagging

scheme. In Proceedings of the 55th Annual Meeting of the Association for Com-

putational Linguistics, pages 1227–1236, 2017.

[43] Sachin Pawar, Pushpak Bhattacharyya, and Girish Palshikar. End-to-end rela-

tion extraction using neural networks and markov logic networks. In Proceedings

of the 15th Conference of the European Chapter of the Association for Compu-

tational Linguistics: Volume 1, Long Papers, volume 1, pages 818–827, 2017.

[44] Patrick Verga, Emma Strubell, and Andrew McCallum. Simultaneously self-

attending to all mentions for full-abstract biological relation extraction. arXiv

preprint arXiv:1802.10569, 2018.

[45] Giannis Bekoulis, Johannes Deleu, Thomas Demeester, and Chris Develder.

Joint entity recognition and relation extraction as a multi-head selection prob-

lem. Expert Systems with Applications, 114:34–45, 2018.

[46] Suncong Zheng, Feng Wang, Hongyun Bao, Yuexing Hao, Peng Zhou, and

Bo Xu. Joint extraction of entities and relations based on a novel tagging

scheme. In Proceedings of the 55th Annual Meeting of the Association for Com-

putational Linguistics (Volume 1: Long Papers), pages 1227–1236, 2017.

111

[47] Xiangrong Zeng, Daojian Zeng, Shizhu He, Kang Liu, and Jun Zhao. Extract-

ing relational facts by an end-to-end neural model with copy mechanism. In

Proceedings of the 56th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), volume 1, pages 506–514, 2018.

[48] Giannis Bekoulis, Johannes Deleu, Thomas Demeester, and Chris Develder.

Adversarial training for multi-context joint entity and relation extraction. In

Proceedings of the 2018 Conference on Empirical Methods in Natural Language

Processing (EMNLP), pages 2830–2836, 2018.

[49] Lynette Hirschman, Alexander Yeh, Christian Blaschke, and Alfonso Valen-

cia. Overview of BioCreAtIvE: critical assessment of information extraction for

biology. BMC bioinformatics, 6(1):S1, 2005.

[50] Tung Tran and Ramakanth Kavuluru. Exploring a deep learning pipeline for

the BioCreative VI precision medicine task. In BioCreative VI Workshop, pages

107–110, 2017.

[51] Chih-Hsuan Wei, Hung-Yu Kao, and Zhiyong Lu. GNormPlus: an integra-

tive approach for tagging genes, gene families, and protein domains. BioMed

research international, 2015, 2015.

[52] Alexander A Morgan, Zhiyong Lu, Xinglong Wang, Aaron M Cohen, Juliane

Fluck, Patrick Ruch, Anna Divoli, Katrin Fundel, Robert Leaman, Jörg Hak-

enberg, et al. Overview of BioCreative II gene normalization. Genome biology,

9(2):S3, 2008.

[53] Chih-Hsuan Wei, Hung-Yu Kao, and Zhiyong Lu. PubTator: a web-based text

mining tool for assisting biocuration. Nucleic acids research, 41(W1):W518–

W522, 2013.

[54] Qingyu Chen, Nagesh C. Panyam, Aparna Elangovan, Melissa Davis, and Karin

Verspoor. Document triage and relation extraction for protein-protein interac-

tions affected by mutations. In BioCreative VI Workshop, pages 102–105, 2017.

[55] Jason PC Chiu and Eric Nichols. Named entity recognition with bidirectional

LSTM-CNNs. Transactions of the Association for Computational Linguistics,

4:357–370, 2016.

112

[56] Lance A Ramshaw and Mitchell P Marcus. Text chunking using transformation-

based learning. In Natural language processing using very large corpora, pages

157–176. Springer, 1999.

[57] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray

Kavukcuoglu, and Pavel Kuksa. Natural language processing (almost) from

scratch. Journal of Machine Learning Research, 12:2493–2537, 2011.

[58] Sampo Pyysalo, Filip Ginter, Hans Moen, Tapio Salakoski, and Sophia Anani-

adou. Distributional semantics resources for biomedical text processing. In Pro-

ceedings of 5th International Symposium on Languages in Biology and Medicine,

pages 39–44, 2013.

[59] Quoc V Le, Jiquan Ngiam, Adam Coates, Abhik Lahiri, Bobby Prochnow, and

Andrew Y Ng. On optimization methods for deep learning. In Proceedings of the

28th International Conference on Machine Learning, pages 265–272. Omnipress,

2011.

[60] Donna Maglott, Jim Ostell, Kim D Pruitt, and Tatiana Tatusova. Entrez Gene:

gene-centered information at NCBI. Nucleic acids research, 39(suppl_1):D52–

D57, 2010.

[61] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gra-

dient by a running average of its recent magnitude. COURSERA: Neural Net-

works for Machine Learning, 4(2), 2012.

[62] Daniel R Levinson. Adverse events in hospitals: national incidence among

medicare beneficiaries. Department of Health and Human Services Office of the

Inspector General, 2010.

[63] Linda T Kohn, Janet M Corrigan, and Molla S Donaldson. To err is human:

building a safer health system, volume 6. National Academies Press, 2000.

[64] Dina Demner-Fushman, Kin Wah Fung, Phong Do, Richard D. Boyce, and

Travis Goodwin. Overview of the tac 2018 drug-drug interaction extraction

from drug labels track. In Proceedings of the 2018 Text Analysis Conference

(TAC 2018), pages 1–10, 2018.

[65] María Herrero-Zazo, Isabel Segura-Bedmar, Paloma Martínez, and Thierry De-

clerck. The ddi corpus: An annotated corpus with pharmacological substances

113

and drug–drug interactions. Journal of biomedical informatics, 46(5):914–920,

2013.

[66] Tung Tran, Ramakanth Kavuluru, and Halil Kilicoglu. A multi-task learning

framework for extracting drugs and their interactions from drug labels. In

Proceedings of the 2018 Text Analysis Conference (TAC 2018), pages 1–11,

2018.

[67] Yuan Luo, Özlem Uzuner, and Peter Szolovits. Bridging semantics and syntax

with graph algorithmsóÀẺstate-of-the-art of extracting biomedical relations.

Briefings in bioinformatics, 18(1):160–178, 2016.

[68] Shengyu Liu, Buzhou Tang, Qingcai Chen, and Xiaolong Wang. Drug-drug

interaction extraction via convolutional neural networks. Computational and

mathematical methods in medicine, 2016, 2016.

[69] Zhehuan Zhao, Zhihao Yang, Ling Luo, Hongfei Lin, and Jian Wang. Drug drug

interaction extraction from biomedical literature using syntax convolutional

neural network. Bioinformatics, 32(22):3444–3453, 2016.

[70] Víctor Suárez-Paniagua, Isabel Segura-Bedmar, and Paloma Martínez. Ex-

ploring convolutional neural networks for drug–drug interaction extraction.

Database, 2017, 2017.

[71] Sunil Kumar Sahu and Ashish Anand. Drug-drug interaction extraction from

biomedical texts using long short-term memory network. Journal of biomedical

informatics, 86:15–24, 2018.

[72] Sangrak Lim, Kyubum Lee, and Jaewoo Kang. Drug drug interaction extraction

from the literature using a recursive neural network. PloS one, 13(1):e0190926,

2018.

[73] Masaki Asada, Makoto Miwa, and Yutaka Sasaki. Enhancing drug-drug inter-

action extraction from texts by molecular structure information. In Proceedings

of the 56th Annual Meeting of the Association for Computational Linguistics

(Volume 2: Short Papers), pages 680–685, 2018.

[74] Xia Sun, Ke Dong, Long Ma, Richard Sutcliffe, Feijuan He, Sushing Chen, and

Jun Feng. Drug-drug interaction extraction via recurrent hybrid convolutional

neural networks with an improved focal loss. Entropy, 21(1):37, 2019.

114

[75] Siliang Tang, Qi Zhang, Tianpeng Zheng, Mengdi Zhou, Zhan Chen, Lixing

Shen, Xiang Ren, Yueting Zhuang, Shiliang Pu, and Fei Wu Wu. Two step

joint model for drug drug interaction extraction. In Proceedings of the 2018

Text Analysis Conference (TAC 2018), 2018.

[76] Bharath Dandala, Diwakar Mahajan, and Ananya Poddar. IBM Research sys-

tem at TAC 2018: Deep learning architectures for drug-drug interaction extrac-

tion from structured product labels. In Proceedings of the 2018 Text Analysis

Conference (TAC 2018), 2018.

[77] Lev Ratinov and Dan Roth. Design challenges and misconceptions in named en-

tity recognition. In Proceedings of the Thirteenth Conference on Computational

Natural Language Learning, pages 147–155. Association for Computational Lin-

guistics, 2009.

[78] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learn-

ing for image recognition. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 770–778, 2016.

[79] Andrew Viterbi. Error bounds for convolutional codes and an asymptotically

optimum decoding algorithm. IEEE transactions on Information Theory, 13

(2):260–269, 1967.

[80] Daniel Andor, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro Presta,

Kuzman Ganchev, Slav Petrov, and Michael Collins. Globally normalized

transition-based neural networks. arXiv preprint arXiv:1603.06042, 2016.

[81] J-D Kim, Tomoko Ohta, Yuka Tateisi, and JunóÀỄichi Tsujii. Genia cor-

pusóÀẺa semantically annotated corpus for bio-textmining. Bioinformatics, 19

(suppl_1):i180–i182, 2003.

[82] Rosie Jones, Andrew McCallum, Kamal Nigam, and Ellen Riloff. Bootstrapping

for text learning tasks. In IJCAI-99 Workshop on Text Mining: Foundations,

Techniques and Applications, volume 1, 1999.

[83] Burr Settles. Active learning. Synthesis Lectures on Artificial Intelligence and

Machine Learning, 6(1):1–114, 2012.

[84] Pankaj Gupta, Hinrich Schütze, and Bernt Andrassy. Table filling multi-task

recurrent neural network for joint entity and relation extraction. In Proceed-

115

ings of COLING 2016, the 26th International Conference on Computational

Linguistics: Technical Papers, pages 2537–2547, 2016.

[85] Meishan Zhang, Yue Zhang, and Guohong Fu. End-to-end neural relation ex-

traction with global optimization. In Proceedings of the 2017 Conference on

Empirical Methods in Natural Language Processing, pages 1730–1740, 2017.

[86] Harsha Gurulingappa, Abdul Mateen Rajput, Angus Roberts, Juliane Fluck,

Martin Hofmann-Apitius, and Luca Toldo. Development of a benchmark corpus

to support the automatic extraction of drug-related adverse effects from medical

case reports. Journal of biomedical informatics, 45(5):885–892, 2012.

[87] Minh-Thang Luong, Hieu Pham, and Christopher D Manning. Effective ap-

proaches to attention-based neural machine translation. In Proceedings of

the 2015 Conference on Empirical Methods in Natural Language Processing

(EMNLP), pages 1412–1421, 2015.

[88] Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou, Jun Zhao, et al. Rela-

tion classification via convolutional deep neural network. In Proceedings of the

25th International Conference on Computational Linguistics: Technical Papers

(COLING 2014), pages 2335–2344, 2014.

[89] Heike Adel and Hinrich Schütze. Global normalization of convolutional neural

networks for joint entity and relation classification. In Proceedings of the 2017

Conference on Empirical Methods in Natural Language Processing (EMNLP),

pages 1723–1729, 2017.

[90] Fei Li, Yue Zhang, Meishan Zhang, and Donghong Ji. Joint models for extract-

ing adverse drug events from biomedical text. In Proceedings of the Twenty-Fifth

International Joint Conference on Artificial Intelligence (IJCAI 2015), volume

2016, pages 2838–2844, 2016.

[91] Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe: Global

vectors for word representation. In Proceedings of the 2014 Conference on Em-

pirical Methods in Natural Language Processing (EMNLP), pages 1532–1543,

2014.

[92] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep

network training by reducing internal covariate shift. In Proceedings of the 32nd

116

International Conference on Machine Learning (ICML 2015), pages 448–456,

2015.

[93] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-

lan Salakhutdinov. Dropout: A simple way to prevent neural networks from

overfitting. The Journal of Machine Learning Research, 15(1):1929–1958, 2014.

[94] Sara E Patterson, Rangjiao Liu, Cara M Statz, Daniel Durkin, Anuradha Lak-

shminarayana, and Susan M Mockus. The clinical trial landscape in oncology

and connectivity of somatic mutational profiles to targeted therapies. Human

genomics, 10(1):4, 2016.

[95] Tung Tran and Ramakanth Kavuluru. An end-to-end deep learning architec-

ture for extracting protein-protein interactions affected by genetic mutations.

Journal of Biological Databases and Curation (Database), 2018:1–13, 2018.

[96] Huiwei Zhou, Zhuang Liu, Shixian Ning, Yunlong Yang, Chengkun Lang,

Yingyu Lin, and Kun Ma. Leveraging prior knowledge for protein–protein

interaction extraction with memory network. Database, 2018, 2018.

[97] Nanyun Peng, Hoifung Poon, Chris Quirk, Kristina Toutanova, and Wen-tau

Yih. Cross-sentence n-ary relation extraction with graph lstms. Transactions

of the Association for Computational Linguistics, 5:101–115, 2017.

[98] Linfeng Song, Yue Zhang, Zhiguo Wang, and Daniel Gildea. N-ary relation

extraction using graph-state lstm. In Proceedings of the 2018 Conference on

Empirical Methods in Natural Language Processing, pages 2226–2235, 2018.

[99] Angrosh Mandya, Danushka Bollegala, Frans Coenen, and Katie Atkinson.

Combining long short term memory and convolutional neural network for cross-

sentence n-ary relation extraction. arXiv preprint arXiv:1811.00845, 2018.

[100] Robin Jia, Cliff Wong, and Hoifung Poon. Document-level n-ary relation extrac-

tion with multiscale representation learning. In Proceedings of the 17th Annual

Conference of the North American Chapter of the Association for Computa-

tional Linguistics, pages 1–13, 2019.

[101] Chih-Hsuan Wei, Yifan Peng, Robert Leaman, Allan Peter Davis, Carolyn J

Mattingly, Jiao Li, Thomas C Wiegers, and Zhiyong Lu. Overview of the

biocreative v chemical disease relation (cdr) task. In Proceedings of the fifth

BioCreative challenge evaluation workshop, pages 154–166. Sevilla Spain, 2015.

117

[102] Rezarta Islamaj Dogan, Sun Kim, Andrew Chatr-aryamontri, Chih-Hsuan Wei,

Donald C. Comeau, and Zhiyong Lu. Overview of the biocreative vi preci-

sion medicine track: Mining protein interactions and mutations for precision

medicine. In BioCreative VI Workshop, pages 83–87, 2017.

[103] Martin Krallinger, Obdulia Rabal, Saber A. Akhondi, MartÕắn PÕẩrez

PÕẩrez, JesÕểs Santa-marÕắa, PÕẩrez Gael RodrÕắguez, Georgios Tsatsa-

ronis, Ander Intxaurrondo, JosÕẩ Antonio LÕẽpez, Umesh Nandal, Erin Van

Buel, Akileshwari Chan-drasekhar, Marleen Rodenburg, Astrid Laegreid, Mar-

ius Doornenbal, Julen Oyarzabal, Analia LourenÕấo, and Alfonso Valencia.

Overview of the biocreative vi chemical-protein interaction track. In BioCre-

ative VI Workshop, pages 141–146, 2017.

[104] Yifan Peng, Anthony Rios, Ramakanth Kavuluru, and Zhiyong Lu. Extracting

chemical–protein relations with ensembles of svm and deep learning models.

Database, 2018, 2018.

[105] Chris Quirk and Hoifung Poon. Distant supervision for relation extraction

beyond the sentence boundary. In Proceedings of the 15th Conference of the

European Chapter of the Association for Computational Linguistics: Volume 1,

Long Papers, pages 1171–1182, 2017.

[106] Hai Wang and Hoifung Poon. Deep probabilistic logic: A unifying framework

for indirect supervision. In Proceedings of the 2018 Conference on Empirical

Methods in Natural Language Processing, page 1891óÀẼ1902, 2018.

[107] Jinghang Gu, Fuqing Sun, Longhua Qian, and Guodong Zhou. Chemical-

induced disease relation extraction via attention-based distant supervision.

BMC bioinformatics, 20(1):403, 2019.

[108] Gitansh Khirbat, Jianzhong Qi, and Rui Zhang. N-ary biographical relation

extraction using shortest path dependencies. In Proceedings of the Australasian

Language Technology Association Workshop 2016, pages 74–83, 2016.

[109] Soumia Lilia Berrahou, Patrice Buche, Juliette Dibie, and Mathieu Roche. Xart:

Discovery of correlated arguments of n-ary relations in text. Expert Systems

with Applications, 73:115–124, 2017.

[110] Marco Fossati, Emilio Dorigatti, and Claudio Giuliano. N-ary relation extrac-

tion for simultaneous t-box and a-box knowledge base augmentation. Semantic

Web, 9(4):413–439, 2018.

118

[111] Kosuke Akimoto, Takuya Hiraoka, Kunihiko Sadamasa, and Mathias Niepert.

Cross-sentence n-ary relation extraction using lower-arity universal schemas. In

Proceedings of the 2019 Conference on Empirical Methods in Natural Language

Processing and the 9th International Joint Conference on Natural Language

Processing (EMNLP-IJCNLP), pages 6226–6232, 2019.

119

Vita

Name

Tung Tran

Education

2014–2018, M.S. in Computer Science, University of Kentucky, Lexington, KY, USA

2010–2014, B.S. in Computer Science, University of Kentucky, Lexington, KY, USA

Experience

2016–Present, Graduate Research Assistant, University of Kentucky

2017, Summer Research Intern, U.S. National Institutes of Health (CGSB/NLM/NIH)

2014–2016, Teaching Assistant, University of Kentucky

2013–2014, Software Engineering Intern, PatentRank

2011–2012, Undergraduate Research Assistant, University of Kentucky

Awards

2019 — Departmental Fellowship, 2019–2020 Academic Year, CS, UKY

2018 — Ranked 2nd out of 8 teams in the TAC 2018 task on DDI extraction

2018 — Biomedical Informatics Training Program Appointee, NLM, NIH

2017 — Ranked 2nd out of 6 teams in the BioCreative VI task on PPI extraction

2016 — Graduate School Travel Grant, UKY

2015 — Departmental Nominee for the Microsoft PhD Fellowship Program, CS, UKY

2014 — Graduated Cum Laude, B.S. in Computer Science, UKY

2010-2014 — Dean’s List for Three Semesters, UKY

2010-2014 — Kentucky Educational Excellence Scholarship (KEES)

2010 — Academic Competitiveness Grant

2010 — Catalyst Scholarship

Publications

1. T. Tran and R. Kavuluru. Social Media Surveillance for Perceived Therapeutic

Effects of Cannabidiol (CBD) Products. International Journal of Drug Policy,

2020.

2. T. Tran and R. Kavuluru. Distant Supervision for Treatment Relation Ex-

120

traction by Leveraging MeSH Subheadings. Artificial Intelligence in Medicine,

2019.

3. H. Kilicoglu, Z. Peng, S. Tafreshi, T. Tran, G. Rosemblat, and J. Schneider.

Confirm or Refute?: A Comparative Study on Citation Sentiment Classification

in Clinical Research Publications. Journal of Biomedical Informatics, 2019.

4. R. DoỎỈan, S. Kim, A. Chatr-aryamontri, C. Wei, D. Comeau, and 22 others,

including T. Tran. Overview of the BioCreative VI Precision Medicine Track:

mining protein interactions and mutations for precision medicine. Database: Jour-

nal of Biological Databases and Curation, 2019.

5. T. Tran, R. Kavuluru, and H. Kilicoglu. A Multi-Task Learning Framework

for Extracting Drugs and Their Interactions from Drug Labels. In Proceedings

of The Eleventh Text Analysis Conference (TAC), 2018.

6. A. Sarker, M. Belousov, J. Friedrichs, K. Hakala, S. Kiritchenko, F. Mehryary,

S. Han, T. Tran, and 8 others. Data and systems for medication-related text

classification and concept normalization from Twitter: Insights from the Social

Media Mining for Health (SMM4H) 2017 shared task. Journal of the American

Medical Informatics Association, 2018.

7. T. Tran and R. Kavuluru. An End-to-End Deep Learning Architecture for Ex-

tracting Protein-Protein Interactions Affected by Genetic Mutations. Database:

Journal of Biological Databases and Curation, 2018.

8. A. Rios, T. Tran, and R. Kavuluru. Predicting Psychological Health from

Childhood Essays with Convolutional Neural Networks for the CLPsych 2018

Shared Task (Team UKNLP). In Proceedings of The Fifth Workshop on Compu-

tational Linguistics and Clinical Psychology: From Keyboard to Clinic (CLPsych),

2018.

9. T. Tran and R. Kavuluru. Supervised Approaches to Assign Cooperative

Patent Classification (CPC) Codes to Patents. In Proceedings of The Fifth

International Conference on Mining Intelligence and Knowledge Exploration

(MIKE), 2017.

10. T. Tran and R. Kavuluru. Exploring a Deep Learning Pipeline for the BioCre-

ative VI Precision Medicine Task. In Proceedings of The BioCreative VI Work-

shop, 2017.

121

11. S. Han, T. Tran, A. Rios, and R. Kavuluru. Team UKNLP: Detecting ADRs,

Classifying Medication In-take Messages, and Normalizing ADR Mentions on

Twitter. In Proceedings of The 2nd Social Media Mining for Health Applications

Workshop and Shared Task at AMIA (SMM4H), 2017.

12. R. Kavuluru, A. Rios, and T. Tran. Extracting drug-drug interactions with

word and character-level recurrent neural networks. In Proceedings of The

Fifth IEEE International Conference on Healthcare Informatics, Workshop on

Healthcare Knowledge Discovery and Management (ICHI), 2017.

13. T. Tran and R. Kavuluru. Predicting Mental Conditions Based on “History of

Present Illness” in Psychiatric Notes with Deep Neural Networks. Journal of

Biomedical Informatics, 2017.

122

	Deep Neural Architectures for End-to-End Relation Extraction
	Recommended Citation

	Title Page
	Abstract
	Dedication
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Thesis Statement
	Organization and Related Publications

	Background and Related Works
	End-to-End Relation Extraction
	A Typical Pipelined Approach
	Evaluation Metrics

	Literature Review
	Deep Neural Networks
	Relation Classification
	End-to-End Relation Extraction

	Notations and Neural Building Blocks

	Deep Learning for Extracting Protein-Protein Interactions
	Background and Related Work
	Biomedical Relation Extraction
	Top Performing PPIm Extraction Entry

	Materials and Methods
	PPIm Dataset
	Gene Mention Identification (NER)
	Entrez Gene ID Normalization (GN)
	Relation Classification of Gene Pairs (RC)

	Results and Discussion
	Conclusion

	Graph Convolutions for Extracting Drug Interaction Information
	Background and Related Work
	Relation Extraction for DDI
	TAC 2018 DDI Track

	Materials and Methods
	Task Description
	Joint Modeling Approach
	Neural Network Architecture and Training Details
	Transfer Learning with Network Pre-Training
	Voting-based Ensembling
	Model Evaluation

	Results and Discussion
	Error Analysis
	Conclusion

	Neural Metric Learning for Fast End-to-End Relation Extraction
	Background and Related Work
	Methodology
	The Table-Filling Problem
	Our Model: Relation-Metric Network
	Decoding the Output

	Experimental Setup
	Evaluation Metrics
	Datasets
	Model Configuration

	Results and Discussion
	Ablation Analysis
	Error Analyses

	Conclusion

	End-to-End Extraction of Cross-Sentence N-ary Relations
	Related Work
	Methodology
	Neural Network Architecture
	Ternary Relation Extraction
	Training Procedure
	Model Ensembling

	Experimental Setup
	JAX-CKB Dataset
	Evaluation Method
	Model Configuration

	Results and Discussion
	Conclusion

	Conclusion
	Contributions
	Limitations and Future Work

	Abbreviations
	Bibliography
	Vita

