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Abstract

The development of a new drug is an increasingly expensive and inefficient process.

Many drug candidates are discarded due to pharmacokinetic (PK) complications de-

tected at clinical phases. It is critical to accurately estimate the PK parameters of new

drugs before being tested in humans since they will determine their efficacy and safety

outcomes. Preclinical predictions of PK parameters are largely based on prior knowledge

from other compounds, but much of this potentially valuable data is currently locked

in the format of scientific papers. With an ever-increasing amount of scientific liter-

ature, automated systems are essential to exploit this resource efficiently. Developing

text mining systems that can structure PK literature is critical to improving the drug

development pipeline.

This thesis studied the development and application of text mining resources to accel-

erate the curation of PK databases. Specifically, the development of novel corpora and

suitable natural language processing architectures in the PK domain were addressed.

The work presented focused on machine learning approaches that can model the high

diversity of PK studies, parameter mentions, numerical measurements, units, and con-

textual information reported across the literature. Additionally, architectures and train-

ing approaches that could efficiently deal with the scarcity of annotated examples were

explored. The chapters of this thesis tackle the development of suitable models and cor-

pora to (1) retrieve PK documents, (2) recognise PK parameter mentions, (3) link PK

entities to a knowledge base and (4) extract relations between parameter mentions, esti-

mated measurements, units and other contextual information. Finally, the last chapter

of this thesis studied the feasibility of the whole extraction pipeline to accelerate tasks

in drug development research.

The results from this thesis exhibited the potential of text mining approaches to au-

tomatically generate PK databases that can aid researchers in the field and ultimately

accelerate the drug development pipeline. Additionally, the thesis presented contribu-

tions to biomedical natural language processing by developing suitable architectures and

corpora for multiple tasks, tackling novel entities and relations within the PK domain.
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Impact Statement

This PhD thesis presents research in the intersection of drug development and Natural

Language Processing (NLP), and it aims to enhance the development of text mining

systems that can accelerate the curation of datasets used across the drug development

pipeline. Learnings and findings from this PhD have a potential impact on developing

new medicines and systems that structure the biomedical text.

Systems that can automatically extract evidence across the scientific literature become

increasingly important as the amount of biomedical literature expands. Such systems

can aid biomedical researchers in finding relevant information and accelerate the dis-

covery of new associations. Specifically, this thesis contributed to developing new text

mining systems that can centralise pharmacokinetic (PK) measurements reported across

the literature to automatise the construction of chemical databases critical for drug de-

velopment. In addition, the thesis developed novel corpora and NLP architectures in

the PK domain.

To put the findings of this thesis to beneficial use, they were presented to the academic

and pharmaceutical communities in different forms. The first chapter of this thesis

was published as an article at Wellcome Open Research, describing an algorithm to

accelerate the identification of publications reporting pharmacokinetic (PK) parameters.

Additionally, a search engine was deployed to facilitate the finding of PK information by

researchers in academia and industry. Finally, the code and data developed were publicly

released, and they could be used to evaluate and develop novel text mining systems in

this domain. Results from the following chapters of this thesis were disseminated as

oral and poster presentations in the UK Quantitative Systems Pharmacology Network

2019 meeting, the Pharmacokinetics UK 2019 conference and the World Conference on

Pharmacometrics 2020 and 2022.

A database with a large amount of pharmacokinetic evidence was generated in the last

chapter of this thesis. In addition, a search interface has been built to aid researchers in

preclinical and clinical drug development perform better predictions of novel compounds.

The information extraction pipeline and database built in this work can enhance repro-

ducible research practices in PK and provide a structured and centralised resource that

could enable machine learning approaches to have a more significant role in drug devel-

opment.
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sequence and [SEP] was originally used to separate sentences [2]. . . . . . 49

2.6 (a) Decision tree splitting two features X1 and X2 at different points t.

A 2D visualisation of the regions generated by these splits is observed in

the right hand-panel (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.7 Example of a decision tree of depth 3. . . . . . . . . . . . . . . . . . . . . 53

3.1 MeSH indexing of the term “Pharmacokinetics” and its related sub-terms. 55

3.2 Example of XML tags for title and abstract in PubMed files. . . . . . . . 60

3



3.3 A) Bootstrap procedure to compare the effect of different features during

field selection, n-grams and distributed representations analyses. B) The

best-performing features from previous analyses were selected to com-

pare different hyperparameter combinations with 5-fold cross validation.

Finally, the best-performing features and hyperparameters were used to

apply the pipeline to the final test set. . . . . . . . . . . . . . . . . . . . . 61

3.4 Example of the approaches used to generate distributed representations

for an input title after BioBERT encoding. The same procedure was

applied for tokens in the abstract. . . . . . . . . . . . . . . . . . . . . . . 66

3.5 Comparison word cloud with the unigrams and bigrams obtained after

preprocessing each field for bag-of-words encoding. Word size is propor-

tional to the frequency of a token in the vocabulary, whereas the position

in the vertical axis refers to the proportion of labels in which that token

appears. Note that tokens that are not from the abstract are displayed

with a field identifier (e.g. T for tokens from the title or M for mesh

terms). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.6 Distribution of F1 scores for the different features used in the classifier

comparison analysis after 200 bootstrap iterations. . . . . . . . . . . . . . 70

3.7 Distribution of F1 scores for the different features used in the field selection

analysis after 200 bootstrap iterations. The fields Chemicals, Journal,

Authors, Keywords, Affiliations, MeSH terms and Publication Type were

encoded together with the title and abstract tokens. The Optimal Fields

include the title, abstract, MeSH terms and Publication Type. . . . . . . 72

3.8 Distribution of F1 scores for the n-grams analysis after 200 bootstrap

iterations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.9 Distribution of F1 scores for the distributed analysis after 200 bootstrap

iterations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.10 F1 score distributions for the pipelines using unigrams together with

BioBERT embeddings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.1 Illustration of the fine-tuning strategy for NER with BERT-based models.

Blue boxes represent the input embeddings (Ei) for each token. Green

boxes represent the output embeddings (Ti) from BERT which go trough

a feed-forward layer (Token Classifier) and are mapped to token-level BIO

labels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4



4.2 Distribution of number of BERT tokens in each sentence of the train-

ing set. The red line determines 256, which was the maximum length

established during the experiments. . . . . . . . . . . . . . . . . . . . . . . 87

4.3 Flow diagram showing the main processes involved to generate a pool of

candidate sentences for NER labelling. . . . . . . . . . . . . . . . . . . . . 88

4.4 Screenshot of the interface used to annotate PK entities from scientific

text. The example displays a single sentence after being annotated. . . . . 90

4.5 Schematic representation of the approach used to label instances for the

training set by using and updating scispaCy NER model in the loop. . . . 94

4.6 Distribution of F1, Recall and Precision scores for the Active Learning and

Random Sampling datasets (n=500 sentences) after 10 runs with different

random seeds. The left and right panels display the scores considering

strict and partial matching of entities, respectively. . . . . . . . . . . . . . 101

5.1 Schematic description of the bi-encoder approach to represent, encode,

and link PK parameter mentions in sentences to Knowledge Base (KB)

entries. TB represents the language model used to encode mentions and

KB entries into single-vector representations in an embedding space. Each

KB entity representation was scored against the mention representation

using the dot-product, and the entity with the maximum dot product was

selected as the model prediction. . . . . . . . . . . . . . . . . . . . . . . . 110

5.2 Performance of the bi-encoder on the development set when starting the

model with BERT-base or BioBERT parameters. Experiments were per-

formed over 20 epochs, and one epoch = 125 training steps. Shaded

lines represent the raw values, which were smoothed using an exponential

average with a weight of 0.1 (non-shaded lines). . . . . . . . . . . . . . . . 116

5.3 Performance of the bi-encoder on the development set when sharing or not

sharing parameters. The left- and hand-side panels show micro-accuracy

and mean rank, respectively. Experiments were performed over 20 epochs,

and one epoch = 125 training steps. Shaded lines represent the raw values,

which were smoothed using an exponential average with a weight of 0.1

(non-shaded lines). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.4 Performance of the bi-encoder on the development set when changing the

number of negative samples used for training. The left- and hand-side

panels show micro-accuracy and mean rank, respectively. Experiments

were performed over 20 epochs, and one epoch = 125 training steps.

Shaded lines represent the raw values, which were smoothed using an

exponential average with a weight of 0.1 (non-shaded lines). . . . . . . . . 118

5



5.5 Performance when using the bi-encoder or the softmax classifier on the

development set. The left- and hand-side panels show micro-accuracy and

mean rank, respectively. Experiments were performed over 20 epochs, and

one epoch = 125 training steps. Shaded lines represent the raw values,

which were smoothed using an exponential average with a weight of 0.1

(non-shaded lines). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.6 Box-plot showing the accuracy stratified by class of the bi-encoder and

softmax classifier on the test set. The accuracy was computed by class

(i.e. KB entity) on the test set, and classes were grouped depending on

how many mentions of that class they had on the training set. . . . . . . . 121

5.7 Confusion matrix of the bi-encoder on the test set showing the predicted

vs true labels per class. The scale is calculated as the proportion of

samples predicted as one class (Predicted) that belonged to an annotated

(Actual) class. Empty columns correspond to entities that were never

predicted in the test set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.1 The top panel shows a sentence with the key entities to extract PK mea-

surements highlighted. The bottom panel shows the sentence in struc-

tured format, with the key columns to build PK databases. The sentence

was adapted from Teng et al. [3] for illustration purposes. . . . . . . . . . 126

6.2 Example of a sentence after all entities had been annotated. . . . . . . . . 130

6.3 The top panel shows a sentence where all entities and relations had been

annotated. The bottom panel shows how the annotated entities and re-

lations can be mapped into a tabular format that can be integrated into

a database of PK measurements. . . . . . . . . . . . . . . . . . . . . . . . 131

6.4 Screenshot of the interface used to annotate entities and relations from

scientific text. The example displays a single sentence after entities and

relations were annotated. . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.5 Illustration of the approach used for joint entity and relation extraction of

PK measurements. The model first receives a sequence of token embed-

dings (blue boxes, Ei) and goes through the encoder layers to generate

a sequence of contextual token embeddings (green boxes, Ti) which are

shared in both tasks. Then, (A) contextual token embeddings go through

the token classifier (feed-forward layer) to output BIO labels that will

allow recognising entities. (B) Entities and contexts (span between two

entities) are represented by max-pooling their contextual token embed-

dings. Finally, pairs of entities are concatenated with their context rep-

resentation and passed through the relation classifier (feed-forward layer). 137

6



6.6 Illustration of labelled sentences with (A) multiple parameter mentions

and their respective values, and (B) a measurement that does not refer

to the parameter mentioned. . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.7 Example of the augmentation process to generate a synthetic sentence

(bottom) given its original one (top). . . . . . . . . . . . . . . . . . . . . . 142

6.8 Illustration of the process implemented to covert Units to their dimen-

sions. (A) Input mentions annotated as Units go through a series of

rule-based steps to be converted into a (B) Normalised form. Finally,

normalised forms are tokenised based on multiplication and division sym-

bols, and each token is mapped to its dimension (C). . . . . . . . . . . . . 143

6.9 Box-plot showing the F1 scores on the test set for each relation class when

performing augmentation of sentences in the training set. Experiments

were performed augmenting each annotated sentence once (x2), twice (x3)

or three times (x4) or not performing augmentation at all. Ten runs with

different seeds were performed for each experiment. . . . . . . . . . . . . . 152

6.10 Box-plot showing the NER micro- and macro-averaged F1 scores when

performing augmentation of sentences in the training set. Experiments

were performed augmenting each annotated sentence once (x2), twice (x3)

or three times (x4). Ten runs with different seeds were performed for each

experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.11 Box-plot showing the F1 scores for each entity type when performing aug-

mentation of sentences in the training set. Experiments were performed

augmenting each annotated sentence once (x2), twice (x3) or three times

(x4). Ten runs with different seeds were performed for each experiment. . 153

6.12 Examples from the test set of main causes of model error at the NER level.

One example is presented for over-predicted, missed, partial match, and

wrongly annotated sentences. . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.13 Example of a complex annotated case where the rule-based algorithm to

associate consecutive PK parameters and their respective V alues would

not work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.1 Pie chart displaying the frequency of PK estimates in PKUnlocked strat-

ified by the type of parameter. The legend shows the main entity name

together with the knowledge base identifier, sorted by their frequency

from top to bottom. The top-15 most frequent parameter types were in-

cluded and the rest were grouped into the Others category. The chart

shows the total number of estimates for a given entity followed by their

relative % over all estimates in the PKUnlocked. . . . . . . . . . . . . . . 162

7



7.2 Example of the evaluation interface built for PKUnlocked. The abstract

is displayed with the title, and the pipeline predictions were highlighted at

the entity level. The extracted rows for a given abstract were displayed at

the bottom in tabular format. From this visualisation, true/false positives

and false negatives were derived. . . . . . . . . . . . . . . . . . . . . . . . 163

7.3 Example of two sentences where the extraction pippeline successfully pre-

dicted all entities and relations for each estimate but did not link some

of the parameter mentions to the correct knowledge base identifier (i.e.

distribution in example A and central in example B). . . . . . . . . . . . . 165

7.4 Example of a search interface to filter estimates from PKUnlocked. . . . . 166

7.5 Box-plots displaying the distribution of clearance estimates extracted

from the scientific literature and stored in PKUnlocked for Amoxicillin,

Clavulanic, Piperacillin, Tazobactam and Meropenem. Individual esti-

mates were represented next to each box-plot. The top panel (A) shows

the values before being inspected by a pharmacometrician and the bot-

tom panel (B) shows the values after inspection/removal of values not

associated to that drug or measured in non-human studies. . . . . . . . . 172

7.6 Box-plots displaying the distribution of volume of distribution estimates

extracted from the scientific literature and stored in PKUnlocked for

Amoxicillin, Clavulanic, Piperacillin, Tazobactam and Meropenem. Indi-

vidual estimates were represented next to each box-plot. The top panel

(A) shows the values before being inspected by a pharmacometrician and

the bottom panel (B) shows the values after inspection/removal of values

not associated to that drug or measured in non-human studies. . . . . . . 173

7.7 Box-plots displaying the half-life estimates extracted from the scientific

literature and stored in PKUnlocked for Amoxicillin, Clavulanic, Piperacillin,

Tazobactam, Meropenem and Vancomycin. Individual estimates were

represented next to each box-plot. Values are shown after the drug was

searched in PKUnlocked without being filtered/inspected by a pharmaco-

metrician. The graph only displays values up to 45h but a few estimates

for vancomycin reached up to 180h. . . . . . . . . . . . . . . . . . . . . . . 174

8



List of Tables

1.1 Examples of terminological resources for genes, proteins chemical com-

pounds and enzymes. This table was adapted from Piliouras [4]. . . . . . 25

1.2 Summary of main datasets annotated for biomedical Natural Language

Processing (NLP) tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 Summary statistics reporting the percentage of documents in which a par-

ticular field was available, and the proportion of papers labeled as Rel-

evant and Not Relevant. The statistics are reported for both training

and final test sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2 Hyperparameters tuned during cross-validation and their default values.

The range represents the different values tested for each hyperparameter

in the grid-search procedure. The step size refers to the increase between

the starting and stop values. . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3 Summary table with performance metrics reported as median (95% CI)

and F1 interquartile variance (IQV) after 200 bootstrap iterations. The

performance metrics are compared across pipelines using different classifiers. 70

3.4 Summary table with performance metrics reported as median (95% CI)

and F1 interquartile variance (IQV) after 200 bootstrap iterations. The

performance metrics are compared across pipelines using different fields

from PubMed entries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.5 Summary table with performance metrics reported as median (95% CI)

and F1 interquartile variance (IQV) after 200 bootstrap iterations. The

performance metrics are compared across pipelines using different n-grams

from the optimal fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.6 Summary table with performance metrics reported as median (95% CI)

and F1 interquartile variance (IQV) after 200 bootstrap iterations. The

performance metrics are compared across pipelines using different dis-

tributed document representations. . . . . . . . . . . . . . . . . . . . . . . 74

3.7 Summary table with performance metrics reported as median (95% CI)

and F1 interquartile variance (IQV) after 200 bootstrap iterations. The

performance metrics are compared across pipelines using BoW together

with distributed representations. . . . . . . . . . . . . . . . . . . . . . . . 75

9



3.8 Performance metrics of the final pipeline on the test set. . . . . . . . . . . 77

4.1 Example of system prediction and true labels in PK NER. Where “O”

stands for out of an entity, “B-PK” beginning of a PK entity and “I-PK”

for inside a PK entity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2 Corpus statistics of the PK-Ontology-corpus stratified by the training and

test sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3 Corpus statistics of the PK-NER-corpus stratified by the training, devel-

opment and test sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.4 Results on the test set for different NER models. Metrics are reported at

the entity level using strict and partial match. . . . . . . . . . . . . . . . . 98

4.5 Common errors from the BioBERT model on the test set. green [*] =

annotated entity, blue [*] = model prediction . . . . . . . . . . . . . . . . 99

4.6 Summary table with performance metrics comparing random sampling

against active learning protocols. The Active Learning dataset was ob-

tained by randomly sampling 500 sentences from the training set. The

Random Sampling refers to the development set (n=500 sentences) with

different model initializations in each run. Metrics were obtained in the

test set after training the pipelines for five epochs. Metrics are reported

as median values after 10 runs. . . . . . . . . . . . . . . . . . . . . . . . . 100

4.7 Results obtained on the external validation corpus test set. Metrics

from the PK-NER-corpus were obtained by training models on PK-NER-

corpus and applying them to the PK-Ontology-corpus. Their own training

set was used for the PK-Ontology-corpus to fit the NER model. . . . . . . 102

4.8 Predictions vs annotations in the PK-Ontology-corpus. green [*] = an-

notated entities, blue [*] = predictions of model trained on the PK-NER-

corpus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.1 Corpus statistics stratified by the training, development and test sets. . . 115

5.2 Summary table with performance metrics on the development and test

sets comparing the softmax classifier against the bi-encoder. . . . . . . . . 119

5.3 Examples of mentions classified as fraction of the drug absorbed (fa). . . . 123

5.4 Examples of mentions classified as free:brain plasma ratio (kpuu). . . . . . 123

6.1 Corpus statistics summarising the sentences, entities and relations in the

dataset stratified by the training, development and test sets. . . . . . . . . 144

10



6.2 Named Entity Recognition results on the test set for the model using

multi-task learning (MT), NER + RE, against a model only optimising

for NER (no-MT). The metrics reported consider strict matching over

entity mentions. Results are displayed as the median over ten runs with

their interquartile variance in subscript. . . . . . . . . . . . . . . . . . . . 147

6.3 End-to-end relation extraction results on the test set for the MT model

configuration. Results are displayed as the median over ten runs with

their interquartile variance in subscript. . . . . . . . . . . . . . . . . . . . 148

6.4 Results on the test set when using different encoder models. Results are

displayed as the median over ten runs with their interquartile variance

in subscript. NER metrics are the micro- and macro- averaged F1 scores

over all entities, and RE metrics are the F1 scores for each relation class. 149

6.5 Results on the test set when using different representations as input to the

relation classifier. Local context is the max pooling of all tokens strictly

between two entities. No context only used the concatenation of each

entity representation in a specific relation. Results are displayed as the

median over ten runs with their interquartile variance in subscript. NER

metrics are the micro- and macro- averaged F1 scores over all entities and

RE metrics are the F1 scores for each relation class. . . . . . . . . . . . . 150

6.6 Results on the test set when performing augmentation on the training set.

Results are displayed as the median over ten runs with their interquartile

variance in subscript. NER metrics are the micro- and macro- averaged

F1 scores over all entities, and RE metrics are the F1 scores for each

relation class. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.1 Statistics of the construction process of PKUnlocked. . . . . . . . . . . . . 160

11



Chapter 1

Introduction and Background

1.1 Thesis motivation

Recent research estimates the R&D costs of bringing a new chemical compound to the

market between $161m and $4.5bn [5]. Meanwhile, over 90% of drug candidates fail after

entering phase I clinical trials [6, 7]. Accurate predictions of candidate drug properties

at an early stage are critical for improving the efficiency of this process.

For candidate drugs to elicit the desired effect, they must reach a specific concentration

over a certain period of time at the target site of the body [8]. Predicting whether

candidate drugs will reach the desired concentration over a certain period at the target

site requires understanding the processes of absorption, distribution, metabolism and

excretion (ADME) of drugs from the human body. Pharmacokinetic (PK) parameters

quantify the ADME processes of chemical compounds through numerical estimates.

Therefore, accurate estimation of drugs’ PK parameters is crucial for drug development

research [8]. Mechanistic models have been widely used to predict the PK parameters

of candidate drugs before they are tested in humans. However, a significant proportion

of those candidates still fail due to PK complications found during the clinical phases

[9]. Hence, improving PK predictions of candidate compounds before they are given to

humans is crucial for assessing candidate prospects and optimising the drug development

pipeline.

One of the main limitations to improving PK predictions of chemical compounds is

the lack of comprehensive and standardised PK repositories [10]. Existing open-access

databases collate information ranging from chemical structure to a summary of PK

publications, but only very sparse PK information is explicitly reported [10, 11]. As a

result, researchers need to search and curate PK estimates from the scientific literature

before preclinical predictions can be performed [10, 12]. Unfortunately, the extensive

amount of PK information locked in scientific articles and the vast and in-coming number

of PK publications limits our ability to efficiently find and curate comprehensive datasets

manually [11]. Hence, despite the potential PK data in scientific articles, efficiently

exploiting this resource still represents a significant challenge in drug development.

Text mining can help researchers find and extract information from the scientific litera-

ture more efficiently using automated approaches. For this reason, this thesis investigates
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the application of text mining and NLP to structure PK information reported in the sci-

entific literature. Developing automated systems that can process PK articles effectively

has the potential of aiding the curation of more comprehensive datasets, improving pre-

clinical predictions of novel compounds, PK meta-analyses and providing informative

priors for model building.

Introduction outline The following sections present background and literature re-

view on drug development, pharmacokinetic modelling and limitations in preclinical PK

predictions. Then, resources and related work on text mining are reviewed. Finally, the

research gap is discussed in detail, and the aims and research questions are presented

together with a thesis outline.

1.2 Quantitative pharmacology

The development cycle of a new successful drug can be divided into drug discovery, and

drug development [13].

Drug Discovery The discovery phase aims to understand the role of different molecules

in a specific disease to detect potential biological targets and design new therapeutic

compounds that successfully bind to that target. During drug discovery, in vitro and in

silico studies are performed. In vitro studies are performed in a controlled environment

where drug properties are studied outside a living organism (e.g. test tubes, flasks, Petri

dishes) while in silico refers to biological experiments performed via computer simula-

tions. Thousands of compounds may be considered potential drug candidates, but only

a small percentage moves into the drug development phase after early testing.

Drug Development During drug development, in vivo studies are also performed,

which involve those experiments where a drug is administered to a living organism (e.g.

animal and human studies). Hence, preclinical and clinical trials are performed to assess

the likelihood of that compound becoming a usable medicine.

Bringing a new chemical into the market is an extremely long and complicated pro-

cess that suffers from a high degree of uncertainty at each stage. For this reason, the

pharmaceutical industry has relied on quantitative models to inform and improve the

decision-making process at each phase [14–16].
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1.2.1 Modelling approaches

Drug Discovery Since in vitro and in silico experiments are often cheaper to perform

than experiments in vivo, the drug discovery phase has more often relied on data-driven

models. For instance, Quantitative Structure-Activity Relationship (QSAR) approaches

use machine learning models to empirically model the relation between molecular de-

scriptors of a particular compound and its biological activity. These molecular descrip-

tors can be related to the structural or the physicochemical properties of that compound

[17]. In the conventional setting, QSAR approaches aim to predict specific end-points

related to the binding affinity to the biological target during drug discovery [18].

Drug Development In contrast, mechanistic approaches have been commonly used

in drug development [19]. Since in vivo data is often more sparse and limited, modelling

approaches in drug development often rely on prior knowledge of the biological system.

Examples of mechanistic models in drug development include population PK models,

PK/PD or physiologically-based pharmacokinetics, which will be discussed in detail in

the following section. Nonetheless, more recently, QSAR approaches have also been

applied to predict clinical end-points, such as predicting the in human PK profile of

new chemical entities given their molecular descriptors [20–22]. However, the datasets

in which models are trained often contain a limited number of PK end-points, limiting

their performance and use in the preclinical setting [12, 23]. QSAR models represent a

promising approach in drug development to infer relations between chemical descriptors

and clinical end-points without mechanistic assumptions. However, the performance of

these models will be highly dependent on the availability of large databases containing

multiple chemical descriptors, clinical PK parameters and contextual information of the

clinical trial (i.e. route of administration, conditions of the patient population).

1.2.2 Drug development

Before a drug candidate proceeds to clinical trials, safety and efficacy information is

assessed through a combination of in silico, in vitro and animal models to predict a

potential human outcome [24].

When clinical data is available, population pharmacokinetic/pharmcodynamic (PK/PD)

models are the main asset to understand and quantify exposure-response properties in a

specific cohort. However, in the preclinical setting, no human data is yet available, and

PK/PD models of comparator drugs are often used to project the anticipated in human

response and provide a therapeutic range for the first clinical dose of a new compound

[14]. It is noteworthy that the confidence of preclinical predictions is highly dependent on

the availability and quality of PK information from similar compounds, which is largely

gathered from the scientific literature and manually curated databases [14]. Additionally,
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allometric scaling is often used to extrapolate PK parameters obtained in animal studies

to PK parameters in humans [25]. If there is enough safety and tolerability evidence

to justify the first human dose, the candidate drug enters the clinical phase, where its

predicted behaviour and potential outcomes will be tested in humans.

The clinical stage of drug development can be divided into three main phases. Dur-

ing early Phase I, clinical trials are often performed in healthy volunteers, and initial

PK models are developed to estimate the administration, distribution, metabolism and

elimination (ADME) properties as well as potential side effects. These results are used

to optimise the dosing regimens of subsequent stages. Along with Phase I, the pri-

mary sources (and magnitudes) of variability associated with PK and PD parameters

are quantified to evaluate whether they are likely to change in a target population.

In Phase II, the effect of different dosing regimens is studied, and signs of efficacy in the

target population are confirmed/rejected [26]. As more clinical data become available,

PK/PD models are updated to understand and optimise drug responses in the patient

population [14]. Additionally, during Phase II, PK and PD information is used to

improve the design of Phase III trials.

During Phase III, the drug effects are compared with current therapies or placebo [26],

and conclusions regarding the safety, tolerability and efficacy of the drug candidate are

made. Finally, population PK/PD models are validated with Phase III clinical data, and

the need for dose adjustments in specific populations (e.g. paediatric) might be studied.

Overall, this drug development approach is based on the learn-and-confirm paradigm

[14], in which initial models are updated and validated as new data become available

during the clinical phases.

Physiologically-based pharmacokinetics Another common approach in drug de-

velopment is physiologically-based pharmacokinetic (PBPK) modelling, which has be-

come increasingly popular in preclinical and clinical drug development. In PBPK, the

different physiological compartments are modelled together with their potential inter-

actions with a range of compounds. The PK parameters are then obtained through a

“bottom-up” approach, in which the high-level ADME properties emerge by modelling

interactions at the molecular level. This very mechanistic framework allows researchers

to integrate detailed knowledge (about the drug and the system) from in vitro and in

vivo data to simulate drug exposure and response in a variety of contexts [27]. These

models focus on the molecular interplay between the drug and the underlying system to

simulate the PK/PD profile [28]. For this reason, different applications can be found in

the scientific literature [29], including preclinical assessment for the first in human dose

[30], evaluation of potential drug-drug interactions (DDIs) [31–33] and in silico profil-

ing of the dose-response curve for specific target populations (e.g. paediatric patients,

critically ill patients) [34].
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The following sections present the techniques behind PK/PD modelling, followed by the

main approaches involved in preclinical PK parameter prediction.

1.2.3 Pharmacokinetic/Pharmacodynamic modelling

Understanding the effect of a specific compound within the human body requires con-

sidering its intrinsic molecular activity together with its ability to reach the desired

concentration in the action site [35]. As previously mentioned, the science of PK studies

the ADME processes while pharmacodynamics (PDs) comprises the biochemical and

physiological response to a chemical compound [36]. In broad terms, PK can be de-

scribed as “what the body does to the drug”, whereas PD relates to “what the drug

does to the body”. PK/PD modelling comprises a framework of mathematical and

statistical techniques to quantify and explain variability in drug exposure (PK) and

response (PD).

In the clinical context, PK models are used to infer ADME properties by studying how

drug and metabolite concentrations change over time within the human body. In con-

trast, PD models estimate different response end-points (e.g. bacterial concentration,

disease scores, clinical events) as a function of drug concentration to evaluate the poten-

tial drug efficacy or toxicity [37]. Furthermore, the integration of PK and PD models

(PK/PD) is often conducted to predict and understand the entire relationship dose-

concentration-effect under a unified modelling framework [37]. Overall, these approaches

fall under the umbrella of pharmacometrics, which has been defined as “the science of de-

veloping and applying mathematical and statistical methods to characterise, understand

and predict a drug’s pharmacokinetic and pharmacodynamic behaviour” [38].

1.2.3.1 Pharmacokinetic parameters

Once a drug is administered to a patient population, blood samples are periodically taken

to measure concentration changes over time. Then, blood cells are often separated from

the sample solution to measure the drug concentration in plasma (or serum), which is

more reflective of the drug concentrations available for pharmacological effect. Once the

concentration data has been collected and preprocessed, the concentration versus time

plot is drawn, and several PK parameters regarding ADME mechanisms can be obtained

(Figure 1.1). The main parameters reported in a PK study include [39]:

• Maximum concentration: Cmax (units: mass/volume) and time to reach Cmax :

tmax (units: time). Assuming a concentration-time profile with absorption and

elimination phases (Figure 1.1), Cmax and tmax can be directly obtained from

the observed data by locating the peak concentration and the time at which this

concentration was reached, respectively.
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• Area under the (concentration-time) curve: AUC (units: mass · time / volume).

AUC represents the drug exposure through time and can be obtained by comput-

ing the integral below the concentration-time curve (Figure 1.1). AUC might be

calculated from the time of administration until the last measurement (AUC0−t)

with the trapezoidal rule or if the elimination rate constant (k) is known, extrap-

olated until infinity (AUC0−∞). The rate constant k can be estimated with the

slope of the last sample points of the decay phase or by computing the fraction

of clearance over the volume of distribution (See equation 1.5). Then, given the

concentration at a particular time point (Ct), k and the AUC0−t, AUC0−∞ can

be estimated:

AUCt−∞ =
Ct
k

(1.1)

AUC0−∞ = AUC0−t +AUCt−∞ (1.2)

• Bioavailability: F (unitless). F represents the fraction of an administered dose

that reaches the systemic circulation [40]. If a drug is administered intravenously

(i.v), F will be 100%. However, when the administration route is extravascular,

F needs to be estimated in the PK analysis to account for absorption processes.

For instance, to determine the F of a drug following oral administration (p.o), a

PK study has to be performed with both i.v and p.o administration. Then, their

time-concentration profiles can be related to derive F :

F = 100 · AUCp.o ·Dosei.v
AUCi.v ·Dosep.o

(1.3)

• Volume of distribution (or apparent volume of distribution) : VD (units: volume).

Given the total amount of an administered substance (Dose), VD represents the

necessary volume to achieve the concentration measured in plasma (C) [41]. Hence,

it can be often described as:

VD =
Dose

C
(1.4)

• Clearance: Cl (units: volume / time ). Cl is defined as the volume of plasma

from which a particular drug is completely removed per unit of time [42]. It rep-

resents the elimination rate of a particular substance divided by its concentration

in plasma. Depending on the excretion route of a particular compound, one can

measure the renal (Clrenal), hepatic (Clhepatic) or lung (Cllung) clearance among

other possible elimination routes. The total Cl is then the sum of each individual

Cl. Given the k and the VD of a drug, Cl can be obtained through:

Cl = VD · k (1.5)
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Additionally, considering the F of a particular compound, Cl can be calculated as

the fraction of absorbed dose over AUC:

Cl =
Dose · F
AUC

(1.6)

• Half-life: t1/2 (units: time). Timepoint of the elimination phase where the drug

has lost half of its maximum concentration (Cmax/2) (Figure 1.1). Assuming a

first-order elimination rate, t1/2 can be determined with the Cl and VD :

t1/2 =
ln 2 · VD
Cl

(1.7)

• Free fraction: fu (units: unitless). Several drugs are partially bound to plasma and

tissue proteins, but only the free (unbound) fraction of the drug exhibits biological

activity [26]. Hence, to develop effective PKPD models, fu might be estimated to

consider the unbound drug concentration in the site of action.

These parameters have become the main metrics to characterise the PK properties of

drugs in specific populations and, therefore, the focus of PK analyses. The parameters

and units presented in this section represent the main PK scenario, but additional PK

parameters and units might be found across the scientific literature. For a more detailed

overview of the different PK parameters see Wu et al. 2013 [43]. To obtain PK parameter

estimates, one might either use Non-Compartmental Analyses (NCA) or model-based

approaches [44].

Non-compartmental analyses NCA uses descriptive approaches and algebraic equa-

tions to estimate PK parameters and determine the systemic exposure of a drug [44].

For instance, Figure 1.1 illustrates a graphical interpretation of some PK parameters

from the concentration-time data. NCA applies the trapezoidal rule to compute the

AUC0−t [45]. Then, it uses the last 3-4 observations to graphically estimate k with the

terminal slope of the time-concentration curve [46]. Finally, once AUC and k are esti-

mated, other PK parameters can be derived with the equations previously mentioned.

One of the main advantages of this methodology is that it relies on fewer physiological

assumptions than model-based approaches. The relative simplicity of NCA also provides

fast results and low variability between analysts [41]. However, accurate estimation of

AUC with the trapezoidal rule is highly dependent on rich sample schedules. Addition-

ally, NCA approaches have limited accuracy in extrapolating plasma concentration over

time and predicting drug PK for other populations or dose regimens. As a result, NCA

is often used to determine drug exposure within a single study when rich sample data

is available [44].
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Figure 1.1: Example of the drug concentration vs time profile after a single oral ad-
ministration and graphical representation of the area under the curve (AUC), maximum
concentration (Cmax), time to Cmax (tmax) and half-life (t1/2).

Model-based approaches Model-based approaches are beneficial for dealing with

heterogeneous and sparse data and characterising variability sources between concentration-

time profiles in a population. They are based on differential equations that represent

ADME processes within a system. These population models are composed of a struc-

tural, statistical and covariate model [47].

Figure 1.2: Structural representa-
tion of a 2-compartment PK model.
The subscripts c and p stand for cen-
tral and peripheral compartments, A
represents the amount of drug, V the
volume of distribution and CL and Q
the elimination and intercompartmen-
tal clearance, respectively.

The structural model describes the concentration-

time relation and is often divided into compart-

ments in which the drug is assumed to be com-

pletely mixed. For instance, Figure 1.2 represents

a two-compartmental model in which the drug dy-

namics can be described by means of differential

equations [26]. The statistical model is used to

represent the inter-individual variability (exposure

differences between subjects), inter-occasion vari-

ability (differences in the same subject from one

dose to another) and residual (unexplained) vari-

ability [47]. Then, the covariate model considers

the effect of the subject’s characteristics such as

demographics or physiological state with functions

relating a specific parameter with a covariate value.

For instance, it is known that the parameter Cl

tends to increase as body weight increases [48]. Hence, incorporating an equation that

describes the relationship between weight and Cl will often result in better predictions

and reduce the unexplained variability in the population model.
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Overall, the population PK model is defined with a set of parameters from the structural,

statistical and covariate model that need to be estimated from the population data. A

variety of estimation methods based on nonlinear regression have been used to find

the parameters that best describe the clinical data given an objective function. For a

review on population PK parameter estimation methods, see Ette and Williams [49].

The estimated parameters of the population model will then provide information on

the population PK parameters, relevant covariates and sources of variability in the

population.

1.2.4 Pharmacokinetic preclinical prediction

During preclinical drug development, the prediction of PK parameters is a critical step

to detect and discard those molecules with inappropriate in vivo properties at an early

stage [50]. A wide range of in silico models have been developed to predict the potential

PK parameters of new chemical entities, but their performance is primarily limited by

the quality and amount of data on which they are based [51]. Here, existing resources

for human PK parameter prediction are discussed.

Commonly, predictive models such as QSAR are applied to datasets where the ADME

properties of multiple compounds are reported together with several molecular descrip-

tors. These descriptors represent the chemical structure of the compounds (e.g. 3-D

representation, Simplified Molecular-Input Line-Entry System (SMILES) string) and

might include information on their physicochemical properties (e.g. molecular weight,

solubility, lipophilicity). Then, different ADME properties (in vitro and in vivo) are

reported and used as end-points for predictive models.

Several databases containing information on many chemical compounds have been de-

veloped in the public domain during the last few decades. Amongst the most well-known

open-access databases for chemical descriptors and ADME-related data are PubChem

[52], DrugBank [53], ChEMBL [54], and ACTorR [55]. Despite the wealth of struc-

tural and physicochemical data contained in these databases, the volume and detail of

ADME data are frequently insufficient to perform direct pharmacokinetic (PK) param-

eter prediction studies [56, 57]. For instance, very little information about the study’s

design or modelling approach to pharmacokinetic parameters is reported. As a result,

the majority of datasets used to predict PK parameters combine data from in-house

studies, publicly available databases, and information taken from the scientific litera-

ture [58, 59]. Thus, this aggregation process becomes extremely time-consuming, as it

needs researchers to manually search for, collect, and standardise PK data from different

sources before conducting predictive studies.

Przybylak et al. 2018 [35], provided an excellent review of publicly available datasets

curated for ADME prediction. In that study, 31 datasets were selected (based on a
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quality assessment) and characterised by the type of ADME end-points, and the number

of chemical compounds reported. A majority of these datasets were based on in vitro

ADME properties, and only a few reported human PK parameters. In addition, rich

parameter data was only reported for two ADME end-points (bioavailability and oral

absorption), and very scarce PK data were reported for other parameters (e.g. Cl,

VD, t1/2). In 2018, Lombardo et al. [58] released a dataset reporting the VD, Cl,

t1/2 and fu for 1352 drugs following intravenous administration in humans together

with several structural and physicochemical descriptors. Following this release, several

studies have applied QSAR algorithms to Lombardo’s et al. dataset to estimate human

PK parameters [60, 61]. Despite the valuable information reported in this dataset, it was

still limited to 1352 data points, a single administration route (i.v), and not reporting

potential sources of PK parameter variability (e.g. the number of subjects, modelling

approach, covariates).

The most comprehensive and detailed dataset of PK parameters currently available

in the public domain is PK/DB [10]. PK/DB stores fine-grained information on PK

properties from multiple compounds derived from clinical trials (in vivo human studies).

For each clinical trial reported in PK/DB, the dataset curates standardised data about

the demographics of the patient cohort, the study design (e.g. drug, dosing, route of

administration), the specific PK estimations (e.g. values and units of Cl, AUC, t1/2) as

well as the concentration-time data. In PK/DB, curators have to (1) select a corpus of

papers relevant to a given drug or problem domain (e.g. meta-analysis of PK parameters

for caffeine in humans), (2) manually extract and store the desired metadata from each

study, (3) standardise the extracted data (e.g. units) and (4) validate and check the

extracted data with multiple curators [10]. This curation approach results in extensive

and reliable data for the selected study context, but it is highly limited by the time and

expertise required to collate data for each context. So far, PK/DB (v0.9.3) exclusively

focuses on substances applied in dynamical liver function tests (i.e. glucose metabolism

studies, statins and benzodiazepines) with a total of 512 studies analysed [10].

Overall, despite the high-quality data stored in Lombardo’s et al. and PK/DB datasets,

their approaches are still limited by the ability to efficiently scan and keep up-to-date

with the ever-growing and unstructured PK literature since they rely on experts con-

stantly curating data from numerous publications.

Text mining and machine learning have recently arisen as valuable tools to automati-

cally process large amounts of textual data. This thesis aims to develop text mining

approaches that efficiently structure PK information reported in the scientific literature.

The ultimate goal of these automated approaches is to aid researchers in generating more

comprehensive and up-to-date ADME datasets that can be used for preclinical predic-

tions, PK meta-analyses and provide more informative priors during PBPK, PK/PD or

population PK model building.
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1.3 Text mining

With a growing volume of information reported in textual format, text mining has

become an essential technique to efficiently extract, integrate and exploit knowledge

stored across extensive collections of unstructured text. The main goal of text min-

ing is to derive high-quality information from text using automated pipelines. Natural

Language Processing (NLP) is one of the principal methodologies behind text mining

applications [62]. NLP is a sub-field of computational linguistics and artificial intelli-

gence that attempts to represent the meaning of text (written in natural language) with

computational techniques such as morphological analysis, part-of-speech (POS) tagging,

syntactic parsing, and other types of linguistic analyses [63]. Throughout this thesis,

the term NLP will be used as a methodology used for text mining purposes. However,

one might find both terms used interchangeably across the literature.

This section provides an introduction to text mining and NLP with particular attention

to resources and applications for the biomedical domain and previous work on extracting

PK parameters.

1.3.1 Underlying techniques

Ananiadou and McNaught [64] divide the main activities involved in text mining into (1)

Information Retrieval (IR), which identifies relevant texts (e.g. documents, paragraphs,

sentences) from a given collection; (2) Information Extraction (IE), which locates and

extracts specific instances and relations from text; and (3) data mining, which analyses

and exploits the information extracted across multiple sources. In each of these stages, a

wide variety of tasks have been studied and applied across the literature, including text

classification, Named Entity Recognition (NER), Entity Linking (EL) and relationship

extraction, amongst others. Despite a large number of tasks and approaches in IR and

IE, the underlying methods and techniques can be roughly divided into dictionary-based,

rule-based and statistical approaches.

Dictionary-based

Dictionary-based approaches use databases and lexical resources (e.g. lexicons1, termi-

nologies2 and ontologies3) to locate specific occurrences in the text. Given a particular

input text, the goal is to find and categorise those character sequences (tokens) that

1 Collection of words in a specific language together with descriptors of its use. This may include
phonetic, morphological, syntactic and other linguistic information [65].

2 Vocabulary of terms and meanings used in a specific domain [65].
3 Formal, explicit description of concepts in a specific domain, including a set of vocabulary terms

together with their description and hierarchical relationships [65].
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match entry names in the dictionary. Therefore, terminological resources are often ap-

plied for NER and normalisation tasks. In the biomedical domain, this approach has

been extensively used to detect and standardise mentions of genes, drugs and proteins,

and a number of resources have been generated for this purpose [66–68]. However,

some of their main challenges include the existence of synonyms, term variations, and

the growing number of newly published terms [64]. Although some methodologies have

adapted these approaches to account for morphological variations and synonyms (e.g.

[69],[70]), many terms require further tasks to deal with more complex variations.

Rule-based

Rule-based approaches commonly refer to hand-crafted rules that are developed to de-

tect particular patterns of interest. They have been widely applied in IR and IE tasks

to account for a broader range of variations than dictionary-based approaches [64]. For

instance, in text classification, rule-based approaches might be used to assign the cat-

egory of an input text depending on its length or the frequency of specific terms. In

NER tasks, regular expressions might be generated to characterise morphological and

syntactic variations of certain instances, considering not only the character- and word-

level variation but, to some extent, the context of the term [71]. However, due to the

high variability of natural language, rules usually require extensive domain knowledge,

and some tasks might entail highly complex rules to describe the desired pattern. Also,

since rules tend to be domain and task-specific, they exhibit poor adaptability to other

domains and classes. For this reason, data-driven approaches have been often applied

to model heterogeneous patterns.

Statistical

The exponential increase of text data and computer power over the last few decades

has resulted in a growing number of studies relying on statistical methods for NLP [71].

The goal of statistical approaches is to understand the distribution of the input text

to develop predictive models for specific tasks. This is commonly achieved by utilising

Machine Learning (ML) algorithms, which, given a large number of examples (training

data), fit the parameters of mathematical models in order to successfully perform future

predictions by inferring specific patterns from the data [4, 72]. In ML, each textual

input is usually represented with a numerical vector x ∈ Rd with d features, where each

feature describes a particular attribute of the data. To train (or fit) the ML model, a

set of independent n examples is provided, generating a matrix of features X ∈ Rn×d

[73]. In the context of supervised learning, each example xi is associated to a certain

label, yi. The goal is to fit a model (f(x)) that relates the input features to the output

labels in order to perform future predictions or to better understand the relationship

x → f(x) → y. Unsupervised learning refers to the situation in which no designated
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labels are available. In those cases, the goal might be to infer some structure in X,

understand relationships between features, or improve the numerical representations of

the raw text [74]. In addition, ML tasks are often categorised as either classification

or regression problems. In regression, the labels are continuous numbers, whereas in

classification y belongs to a predefined set of categories [73].

Unlike dictionary- and rule-based approaches, ML becomes particularly efficient to model

textual structures with high variability (e.g. multiple text occurrences referring to the

same concept) and complex underlying patterns when enough training data is avail-

able. However, their main limitation is their dependence on large amounts of high-

quality training data, which is often challenging to generate. Additionally, unlike ML

approaches, dictionaries and rules are fast and flexible methods that allow users to eas-

ily extend and modify those dictionaries/rules when errors are detected, making them

reliable and production-friendly approaches. For this reason, text mining applications

often combine statistical, rule-based and dictionary-based methods, and deciding when

to use one or another will highly depend on the specific task and resources available [64].

1.3.2 Biomedical text mining

With a growing volume of electronic clinical records and scientific publications, biomed-

ical text mining has become a central approach to deal with these large amounts of

potentially valuable data. The biomedical text presents several particular challenges, in-

cluding highly domain-specific terminology, extensive use of abbreviations and acronyms,

diversity of naming conventions and the constant appearance of newly published terms,

to name but a few [64]. Several resources have been developed to deal with the chal-

lenges. These range from lexical, terminological and ontological resources to text mining

tools and frameworks for biomedical IR and IE tasks.

1.3.2.1 Resources

Corpora In the biomedical domain, MEDLINE represents one of the primary re-

sources for text mining applications from the scientific literature. MEDLINE is a journal

citation database with more than 26 million references indexed by the Medical Subject

Headings (MeSH) controlled vocabulary from the U.S. National Library of Medicine

(NLM) [75]. These citations, together with their titles, abstracts and other metadata,

can be accessed through the PubMed database, which also includes additional records

from life science journals, author manuscripts, and online books [76]. For text mining

purposes, PubMed citations and their metadata can be easily accessed through the E-

utilities API or downloaded from the NCBI FTP sites4. As a result, PubMed represents

4 ftp://ftp.ncbi.nlm.nih.gov/pubmed/
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a large volume of indexed biomedical text from more than 30 million citations. How-

ever, these resources do not provide valuable information in full-text articles. The Open

Access subset from PubMed Central (PMC) represents the central resource for this pur-

pose, which provides free access to the full-text of over 2.5 million PubMed articles [77].

Finally, several new collections of clinical text have recently become available for text

mining purposes. Some of these include electric health records (EHR), the MIMIC III

database [78], the annotated collections from the i2b2 database [79] and Web resources

in which biomedical information has been reported (e.g. medical blogs and forums,

Twitter). Other bibliographic databases containing relevant PK data include EMBASE

[80], or ClinicalTrials.gov [81] which contain a vast number of summary reports from

clinical studies, which often report valuable PK data for constructing ADME datasets.

Knowledge and terminological resources A large number of terminologies and on-

tologies have been generated to structure the variety of terms in the biomedical domain.

One of the most comprehensive and well-known resources is the Unified Medical Lan-

guage System (UMLS), which integrates several biomedical nomenclatures, controlled

vocabularies and ontologies maintained by the NLM [82]. Terms in the UMLS are or-

ganised by concept, meaning and term synonyms under the Metathesaurus vocabulary

database [83]. Then, the UMLS Semantic Network [84] provides consistent categorisa-

tion and defines relationships between concepts in the Metathesaurus. Additionally, the

UMLS provides tools such as the Specialist lexicon [85] to perform lexical analysis of

raw biomedical text and facilitate subsequent NLP tasks.

Table 1.1: Examples of terminological resources for genes, proteins chemical com-
pounds and enzymes. This table was adapted from Piliouras [4].

Domain Resource URL

Genes and Proteins UniProt http://www.uniprot.org/

Entrez Gene http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene

Chemicals PubChem http://pubchem.ncbi.nlm.nih.gov/

SureChem https://www.surechem.com/

ChemIDplus http://chem.sis.nlm.nih.gov/chemidplus/

ChEBI http://www.ebi.ac.uk/chebi/

CheMBL https://www.ebi.ac.uk/chembl/

DrugBank http://www.drugbank.ca/

DiDB http://www.druginteractioninfo.org/

RxNorm http://www.nlm.nih.gov/research/umls/rxnorm/

Enzymes BRENDA http://www.brenda-enzymes.org/

Although UMLS has a broad coverage for general biomedical concepts, separate and

specialised resources have been developed for specific entities. For instance, some spe-

cialised dictionaries for genes, proteins, chemicals and enzymes are shown in Table 1.1.

An example of a specialised ontology is the Pharmacogenomics Knowledge Base [86],
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which has annotated gene variants, phenotype data and gene-drug-disease relationships

from many scientific publications [71].

In PK, Wu et al. 2013 [43] developed an ontology covering those concepts appearing

in the PK field. Specifically, their contribution characterised PK parameters from in

vitro experiments and in vivo studies, modelling approaches, types of study design and

quantification methods. Also, they included external dictionaries to cover transporters,

metabolism enzymes, drug terms and demographics. The authors also provided a man-

ually annotated corpus with 541 PubMed PK-related abstracts based on their ontology.

This resource is particularly relevant for this project since it provides a structured repre-

sentation of those PK parameters appearing in in vivo studies together with demographic

and modelling concepts.

Annotations With the rise of statistical approaches, scientific and biomedical text an-

notations represent a crucial resource to train and evaluate NLP algorithms. Biomedical

NLP annotations are often performed by experts in a particular biomedical domain, that,

given a specific text, annotate desired properties such as token or sentence boundaries,

POS tags, sentence categories (e.g. Population/Problem, Intervention, Comparator,

and Outcome (PICO) [87]), entities (e.g. chemicals, genes, proteins), relations between

entities and others. The annotations can also be performed at different linguistic lev-

els, including grammatical (morphological and syntactical), semantic and or pragmatic

annotations [71]. Once textual annotations are provided, ML models are often trained

to model the underlying pattern of those manual annotations and perform inference on

unseen text.

Some of the main publicly available benchmark datasets for biomedical NLP tasks are

presented in Table 1.2. Multiple datasets have been curated to promote the development

of text mining systems capable of detecting and normalising specific biomedical entities

(e.g. BC5CDR, Linneaus, NCBI-Disease, SCAI[109]), extracting biomedical relation-

ships between entities (e.g. ChemProt, DDI, GAD), answer biomedical questions (e.g.

PubMedQA, BioASQ), perform efficient tokenisation, POS tagging, dependency parsing

or sentence segmentation of biomedical text (e.g. CRAFT, GENIA) and others. Despite

significant efforts have been made to develop ML models that can process biomedical

text, the quality and usage of those models will highly depend on (1) the annotation

consistency, (3) diversity and (3) size of the datasets used to train those models. Since

manual annotation of textual data is a complex and time-consuming task, several tools

have also been developed to aid researchers in this process. Some of the most widely

used include BRAT [110] (open-source) and Prodigy [111] (commercial).
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Table 1.2: Summary of main datasets annotated for biomedical NLP tasks

Dataset Tasks Domains Reference

AnatEM NER Anatomy [88]
BC5CDR NER Chemicals and Diseases [89]

BC4CHEMD NER Chemicals [90]
BioNLP13CG NER Cancer Genetics [91]

JNLPBA NER Genes and Proteins [92]
Linnaeus NER Species [93]

NCBI-Disease NER Diseases [94]
S800 NER Species [95]

BC2GM NER Genetics [96]
CALBC NER General [97]

MedMentions NER and EL General [98]
ChemProt Relation Extraction Protein-Chemical [99]

DDI Relation Extraction Drug-Drug interaction [100]
GAD Relation Extraction Gene-Disease [101]

PubMedQA Question Answering General [102]
BioASQ Question Answering General [103]

EBM PICO PICO General [104]
BIOSSES Sentence Similarity General [105]

HoC Document classification General [106]
CRAFT Syntactic analysis and NER General [107]
GENIA Syntactic analysis and NER General [108]

1.3.2.2 Tasks, supporting tools and evaluation metrics

Biomedical text mining covers a wide spectrum of tasks and research efforts that have

resulted in a large number of publications and specialised software. As previously men-

tioned, some of the main tasks involved in IR, NER, EL and relation extraction, amongst

others.

Information Retrieval One of the main steps in text mining applications is to iden-

tify those texts that are relevant for IE purposes. Commonly, a set of documents or

sentences (named corpus) is provided as an input, and the goal is to either categorise or

rank each input based on specific textual features. In many cases, search systems retrieve

documents or sentences depending on whether they contain a list of input terms without

considering how these might be used in context [112]. Dictionary and rule-based ap-

proaches have been extensively used to expand the limitations of a simple match query.

For instance, the PubMed search engine allows querying relevant citations to a partic-

ular topic by making use of the MeSH indexing together with keywords from the title,

abstract and other indexed metadata [113]. While this type of retrieval is often quite effi-

cient for providing a potentially relevant subset of documents, more advanced approaches

might be needed for specific domains and queries. For instance, latent semantic analy-

ses and supervised ML approaches might be used to identify potential topics in a given
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corpus based on term frequency distribution or to develop classifiers for predefined cat-

egories [114]. Some of these approaches have been developed on top of PubMed, giving

rise to specialised retrieval systems such as Relemed [115], MScanner [116], or BioRe-

ader [117]. In the kinetics domain, Wittig et al. [118] developed SABIO-RK, which is

a manually-curated database that stores comprehensive information about biochemical

reactions and kinetic properties. More recently, Wang et al. [119] developed a web re-

source for browsing evidence of supplement-drug interactions automatically extracted

from the biomedical literature.

Named Entity Recognition Biomedical IE often starts with the identification of

spans of text referring to certain concepts such as drugs, proteins or species. As pre-

viously mentioned, NER is particularly challenging in the biomedical domain. For ex-

ample, the expressions “heart attack” and “myocardial infarction” refer to the same

medical complication, despite morphologically unrelated. To detect this with an NER

system, one might either (a) construct a dictionary with both mentions under the same

concept or (b) build an algorithm comparing the similarity of their contexts. Ontologies

such as the UMLS and specialised dictionaries have been widely used for biomedical

NER. However, a large number of synonyms, abbreviations, acronyms and constantly

incoming new terms makes dictionary-based approaches unlikely to be complete, which

often limits their recall in NER tasks [71]. Many rule-based approaches such as EM-

PathIE and PASTA [120, 121] have been applied to account for term variations and

some contextual patterns. However, statistical approaches (often combined with rules

and dictionaries) have exhibited state-of-the-art results in NER tasks when considerable

amounts of annotated data are available for those entities [122]. The main advantage

of these approaches is their ability to generate and select complex features of the to-

kens and their surrounding context that would be difficult to identify with hand-crafted

rules. ML algorithms generally approach NER problems as a sequence-labelling task,

in which each token in a sentence is classified into a particular category based on its

features and some contextual information. Studies applying ML for biomedical NER

have used conditional random fields (CRFs) [123], semi-Markov linear classifiers [124],

and more recently, deep neural networks such as long short-term memory (LSTM)s [125]

or Transformer models [122].

Entity Linking After biomedical entities have been recognised, it is often desirable

to standardise those entities into their canonical forms or to associate them with an

entry in a knowledge base [71]. For instance, after applying a drug NER model to a

particular corpus, one might need to link those recognised drug mentions to their ChEBI

or MeSH identifiers. EL (also referred to as Entity Normalisation or Standardisation)

is the task of grounding entity mentions to a reference knowledge base. To do so,

dictionary and rule-based systems are the most widely used approaches, which merely

rely on morphological information of entity mentions. Lowercasing and abbreviation
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resolution are often performed as preprocessing steps. Then, the recognised mentions

are often compared to existing dictionaries through exact, partial or pattern matching

approaches before linking them to a dictionary ID. In many cases, biomedical NER

systems integrate dictionaries from multiple sources to perform EL of several entity types

simultaneously (e.g. proteins, species, drugs) [126]. More recently, ML approaches based

on deep neural networks have been used for EL to incorporate semantic information of

entity mentions [127–130].

Several publicly available tools have been developed in the biomedical domain for NER

and EL based on the approaches mentioned above. One of the most widely used is

MetaMap [131], which identifies UMLS concepts from free text and has a variety of

features facilitating biomedical text processing. In addition, a large number of tools

combining statistical with rule and dictionary-based approaches have been developed.

Some of the most common ones are ezTag [132], tmTool [133] or PubTator [134]. One of

the best architectures for biomedical NER currently available is BioBERT [122], which

exhibited state-of-the-art performance for disease, drug/chemicals, gene/proteins and

species NER in several benchmark datasets. BioBERT uses a pre-trained Transformer

model that was fine-tuned to perform NER, and it was further extended for EL with

BERN [126] using a set of heuristics to link entity mentions to several biomedical knowl-

edge bases. More recently, several ML approaches have focused on jointly modelling both

tasks, NER and EL in an end-to-end fashion by using a single neural model as an encoder

[130, 135].

Relation extraction Another subsequent task in biomedical IE is relation extraction,

which attempts to determine potential relationships among recognised entities. Some

common scenarios include protein-protein or DDIs, and gene-disease or gene-phenotype

relationships. Although the entity types for NER tasks are generally well established,

the types of relationships can be extensive and difficult to categorise into predefined

classes. Therefore, depending on the specific task, one might wish to identify the token

characterising a relationship between entities (e.g. “increases”, “inhibits”) or classify

an entity tuple5 (of recognised named entities) into a specific relation type. Relation

extraction approaches have become increasingly complex over time, starting with sim-

ple techniques such as co-occurrence statistics (measuring the frequency of entities co-

appearing) to more advanced methods involving the syntactic analysis and dependency

parsing [71]. Several rule-based approaches have been combined with ML algorithms to

perform dependency parsing, which uses syntactic descriptors to produce dependency

graphs that encode grammatical relations between words. Then, several studies applied

ML to extract useful information from the dependency graphs in order to extract or clas-

sify relationships between entities [71]. As a relevant example, Zhang et al. 2015 [136]

presented a framework to characterise pharmacokinetic DDIs by training a ML classifier

5 Pair of entities.
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from the features derived in syntactic and dependency parsing. A widely used software

for this task is the open-domain Stanford Dependency Parser [137], which has also been

applied to biomedical relation extraction tasks [138]. Other approaches such as the fine-

tuned versions of BioBERT and SciBERT [139] have exhibited great performance on

biomedical relation extraction tasks by encoding the representation of entity mention

pairs along with the corresponding context, but without explicit dependency parsing

[122, 140]. More recently, in the kinetics domain, Wang et al. [119] fine-tuned a pre-

trained RoBERTa model to classify sentences reporting DDIs, and called the resulting

model RoBERTa-DDI.

Further tasks and software Apart from the tasks mentioned above, text mining

has also been applied to other relevant areas such as biomedical event (which is often

more abstract than binary relations) extraction [141], biomedical question answering

[142] and other approaches for literature-based discovery [138, 143]. Over the last few

years, software tools integrating multiple NLP functionalities for biomedical IE tasks

have become increasingly popular among researchers in the field. One of the most

widely used is cTakes [144], which has been frequently applied to EHRs for characterising

patient cohorts, extracting adverse drug events, identifying risk factors, and other similar

tasks [145]. Another relevant tool is MedEx [146], which is a rule-based software to

extract medication name, strength, route and frequency of administration and has shown

robust performance in a variety of contexts [147, 148]. More recently, the scispaCy

[149], and Stanza [150] libraries have provided python interfaces to tackle a wide variety

of NLP tasks in the biomedical domain, including tokenisation, lemmatisation, POS,

dependency parsing, NER and EL. These libraries come with pre-trained pipelines that

are particularly fast at inference time, user friendly, and only slightly worse than state of

the art models in each task. Therefore, Stanza and scispaCy have been widely adopted

in biomedical NLP over the last years and integrated into multiple pipelines requiring

different text mining tasks.

Evaluation metrics In information retrieval and extraction, different evaluation met-

rics might be used to measure the performance of a specific text mining system. The

most widely reported metrics include: Precision, Recall, Accuracy and F1 score. All

those metrics are based on the notion of True/False positives and True/False negatives:

1. True Positives (TP): instances from the positive class correctly labelled by the

system.

2. True Negatives (TN): instances from the negative class correctly labelled by the

system.

3. False Positives (FP): instances misclassified as positive examples.
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4. False Negatives (FN): instances from the positive class missed by the systems.

Then, the following metrics can be derived from the confusion matrix:

Precision =
TP

TP + FP
(1.8)

Recall =
TP

TP + FN
(1.9)

Accuracy =
TP + TN

TP + TN + FP + FN
(1.10)

Fβ =
(β2 + 1) · Precision ·Recall

(β2 · Precision) +Recall
(1.11)

Where β is a parameter that can be adjusted to empathise the influence of either recall

or precision in the final metric. In text classification tasks, an intuitive option might

be to use accuracy as an evaluation metric, which is the fraction of instances that have

been correctly classified. However, in many NLP settings, the proportion of positive and

negative instances is often highly imbalanced (e.g. IR, NER), and accuracy can be highly

biased towards the most frequent classes [151]. For instance, in binary classification, if

one had 90 negative and 10 positive samples, a system tuned to classify all instances

as negative would have an accuracy of 90%, but this approach would not detect any

positive samples. For this reason, precision and recall are useful metrics when the

goal is to retrieve a specific (positive) class. Depending on the task, maximising either

precision or recall might be preferable, but it is often desired to balance both metrics.

For this reason, Fβ (also called F measure) is often used to find a trade-off between

precision and recall by performing a weighted harmonic mean in which values β < 1

empathise precision while β > 1 empathises recall. The balanced F measure with

β = 1 is commonly used across the literature and is often referred to as F1 score. This

harmonic mean is preferred over the arithmetic mean to detect cases in which either

precision or recall is very low [151]. In contrast, when precision and recall differ greatly,

the harmonic mean is always closer to the minimum, penalising low values of both

metrics. It is worth noting that ranking and retrieval systems also use precision@k and

recall@k, which consider the relevant instances and coverage of the top k items returned

by the system [152]. Additionally, measures such as Normalized Discounted Cumulative

Gain and Mean Average Precision are commonly used as metrics in information retrieval

[153]6. When evaluating a classifier performance, one will also find other metrics such

6 The reader is referred to Chen et al. [153] for a review of the relationship between loss functions and
retrieval evaluation metrics.
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as the area under the Receiver Operating Characteristics (ROC) curve or the Matthews

Correlation Coefficient7.

1.3.3 Related work and research gap

Retrieving and extracting PK information from the literature presents some character-

istic challenges compared to other biomedical IE tasks. For instance, PK parameter

mentions might need to be identified together with their associated numerical expres-

sions (e.g. “The estimated amoxicillin clearance (Cl) was 0.32± 0.1 L/kg/h when 800

mg/day were administered”) or drug mentions and their related dose regimen (e.g. “The

estimated amoxicillin clearance (Cl) was 0.32± 0.1 L/kg/h when 800 mg/day were ad-

ministered”). Processing these numerical expressions is generally a non-trivial task due

to the large number of possible expressions and the presence of alphanumeric characters

reporting multiple types of information (e.g. ranges, central and deviation measures,

units, frequencies). Additionally, values might be reported in the same sentence refer-

ring to different drugs doses, PK parameters and other entities, making the dependency

parsing and relationship extraction particularly challenging (e.g.8“CL and V(d) of the

typical individual in this study population (PMA = 34.6 weeks, weight = 1.7kg) were

estimated to be 0.066lh−1 kg−1 (95% CI 0.059, 0.073lh−1 kg−1) and 0.572lkg−1 (95%

CI 0.505, 0.639lkg−1), respectively.”). Additionally, very little work has focused on

developing text mining systems within the PK domain, which makes recognising and

linking specific entities (e.g. parameter mentions, units, values) and their relationships

particularly challenging.

Kinetic parameters Some text mining research has tackled similar issues for bio-

chemical kinetic systems (e.g. enzyme kinetics) that frequently report parameters from

ordinary differential equations. [113]. Since the underlying models are relatively sim-

ilar to those in PK, parameter mining studies are likely to present similar challenges.

Hakenberg et al. 2004 [155], used a ML approach to classify full-text PDF documents

depending on whether they contained kinetic parameters obtained experimentally, and

they reported a F1 score of 54% on 791 manually-annotated publications. Other works

such as the KiPar algorithm [156] applied rule-based approaches to retrieve and char-

acterise relevant publications to enzyme kinetic parameters based on entity mentions,

which exhibited a F1 of 65% on document retrieval using full-text articles from PMC.

In 2009, Tsay et al. [157] developed a system (KIND) to extract kinetic parameter

data from articles published at ScienceDirect [158]. Their system relies on a dictionary

and rule-based approaches to label the kinetic parameter mentions and disentangles

7 For a comprehensive review of evaluation metrics in information retrieval, see Chapter 8 of Manning
2008 [151].

8 Example taken from the abstract at Marqués-Miñana et al. [154].

32



the different types of information reported in alphanumeric expressions. They first de-

tected relevant sentences with a rule-based approach after POS tagging and reported a

F1 score of 81% on sentences from 200 annotated articles. Then, another set of rules

was manually constructed to mine specific kinetic parameter mentions and their values,

units, boundaries, and other related information in the sentence. The authors reported

a relatively high averaged F1 of 82.2% on the IE task.

Pharmacokinetic text mining The main publication focusing on PK parameter ex-

traction is that of Wang et al. 2009 [11]. Initially, the authors constructed a dictionary

of terms based on expert knowledge to retrieve PubMed abstracts reporting PK pa-

rameters of a specific drug (midazolam) in healthy human volunteers. The dictionary

summarises key factors to determine whether an abstract is relevant, and they reported

a F1 score of 78.1% when using it to filter the corpus resulting from the PubMed query

“midazolam AND pharmacokinetics”. The dictionary-based approach was compared

against training a ML classifier, which exhibited lower performance on abstract classi-

fication (F1 score = 68.1%). Subsequently, they constructed specific term dictionaries

to identify dosing, subjects and PK parameter information from the abstracts. Then,

rule-based approaches were applied to extract numerical values referring to systemic and

oral Cl of midazolam in healthy humans. After extracting numerical Cl values from the

selected abstracts, a linear-mixed model meta-analysis approach was applied to remove

potential outliers from the extracted values9. With this approach, the authors reported

a final F1 score of 91% on numerical Cl extraction for midazolam in healthy volunteers.

According to the authors, applying the same approach on seven different drugs led to

a similar performance. Despite these promising results, the IE metrics were based on

the number of abstracts from which Cl data had been automatically extracted, and no

details regarding the performance at detecting and standardising parameter mentions,

values, ranges or units were found. This approach aimed to detect a specific PK pa-

rameter (Cl for midazolam) in a specified context (healthy human volunteers), but the

feasibility and time required to adopt this approach for different contexts (other pa-

rameters, drugs, species, conditions) is yet unclear. Finally, no analyses from full-text

articles were performed, and the application to ADME database construction was not

studied.

An area where text mining has been applied to pharmacokinetic literature is in the con-

text of drug-drug interactions [43, 159, 160]. When given in combination, the absorption,

distribution, metabolism and excretion processes of one drug can be affected by another

drug. Hence, several drug-drug interactions reported in the literature are described by

mentioning how the PK parameters of one drug might change by the influence of an-

other drug. As a consequence, detecting mentions of pharmacokinetic parameters can

9 For this, they assumed a normal distribution of midazolam Cl values at the article and population
(across all articles) levels and used an expectation-maximisation algorithm to estimate the mean and
variance of each distribution.
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be particularly relevant when seeking evidence of causal mechanisms behind drug-drug

interactions [43]. However, most of the text mining work that has been developed in

this area tackles the identification of the drugs mentioned in a particular interaction and

whether the interaction between these drugs happens at the PK or PD level [159]. As

a result, except from the PK Ontology developed by Wu et al. [43], most of the tasks

tackled by text mining of drug-drug interactions are not directly transferable to the

challenge of extracting numerical estimates of PK parameters for constructing ADME

datasets.

Finally, another study related to PK text mining work is the MPhil thesis of Piliouras

[4]. Piliouras 2014 discussed the issue of extracting numerical estimates of PK param-

eters in depth. However, the main contributions of the thesis focus on (1) methods for

improving the recognition of drug mentions in pharmacokinetics and (2) parsers that

can disambiguate the linguistic dependencies between terms in sentences expressing PK

interactions between drugs, improving the extraction of such evidence in the scientific

literature. However, despite the importance of recognising drug mentions for extracting

PK estimates in context, many PK parameter estimates are not reported in the context

of drug-drug interactions. Therefore, multiple challenges (e.g. recognising mentions of

multiple PK parameters and their relation to numerical estimates and their units) were

left for exploration to reach the goal of developing systems that can aid the construction

of ADME datasets in drug development.

1.3.3.1 Research gap

Overall, very few studies have applied text mining to extract PK information from

the literature. Previous approaches to parameter IE have approached this task with

dictionary- and rule-based methods. This is likely to be a consequence of the singular

tasks these studies were tackling (e.g. retrieving a specific parameter (e.g. Cl) in a

specific context (e.g. intravenous administration in healthy volunteers)), where building

rules and dictionaries are efficient approaches. However, the kind of PK data required to

build comprehensive ADME datasets needs to account for a higher degree of variability

(e.g. multiple PK parameters, units, chemical compounds). For instance, it is common

to look for other PK parameters (e.g. bioavailability, AUC, t1/2), chemical compounds,

routes of administration or other study design factors when building repositories of

ADME data [10]. However, with the text mining approaches that have been applied to

PK text up until now (dictionary- and rule-based), one would need to construct new rules

and dictionaries to account for each PK parameter or study-design context. Additionally,

despite a large number of PK publications reporting results and demographic information

in tables and full text, the extraction of PK information has focused, so far, on the

information reported in abstracts10.

10Only one study using full-text and tabular data for PK extraction was found at Wang’s PhD thesis
[113].
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Novel approaches based on NLP and ML have been increasingly used across biomedical

text mining applications to deal with the high variability of textual patterns and their

influence on the underlying semantics. However, these approaches often require large

amounts of high-quality labelled data, which is limited in the PK domain. Therefore,

future work is required to develop annotated resources and models that can efficiently

process PK literature.
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1.4 Research aim, questions and thesis outline

This thesis aimed to enhance the curation of pharmacokinetic datasets by automatically

structuring estimates reported across the scientific literature.

Previous work on this domain has focused on extracting a single type of parameter for a

specific population and dose regimen, but the generalisation to multiple PK parameters

and study types has not been tackled yet. Therefore, this thesis focused on approaches

that can generalise to multiple PK parameters and study designs found across the lit-

erature. Specifically, the chapters of this thesis discuss the limitations of previous work

and suggest improvements for tackling multiple types of parameters and study designs.

In the short term, it is expected that this thesis contributes to (1) the field of PK and

drug development, by accelerating the construction of ADME datasets and (2) the field

of biomedical text mining, by developing novel approaches and resources to process PK

literature. In the long term, automatically extracting information for multiple param-

eters across study types has the potential of improving preclinical predictions of novel

compounds, PK meta-analyses and providing informative priors for pharmacometric

model building.

Based on the limitations of existing methods, the following research questions were

defined to achieve the aim of this thesis:

Q1 How can text mining approaches be applied to identify scientific publications re-

porting novel PK parameter estimates automatically across study types?

Q2 How can the task of recognising parameter mentions of multiple parameter types

be accomplished?

Q3 How can the specific types of PK parameters be determined given mentions in

context?

Q4 How can suitable architectures be developed and evaluated to extract PK param-

eter estimates of multiple parameter types?

Q5 How can text mining approaches accelerate the curation of ADME datasets used

by pharmacometricians?

Thesis outline Each of the research questions were addressed in-depth in each of the

thesis chapters.

Chapter 2 introduced the reader to ML and NLP approaches used across this thesis.

Chapter 3 addressed the task of document classification of PK articles (Q1).
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Chapter 4 studied the development of named entity recognition models for multiple PK pa-

rameters while minimising the amount of training data required (Q2).

Chapter 5 studied limitations and potential approaches to ground PK parameter mentions

to a knowledge base with limited training data (Q3).

Chapter 6 focused on extracting structured information for PK estimates of multiple param-

eters reported in scientific text by formulating the task in an end-to-end relation

extraction setting (Q4).

Chapter 7 constructed a database of PK estimates with the approaches developed in this the-

sis, and studied its application in a case study requiring the extraction of multiple

parameters and drugs of interest (Q5).

In each chapter, specific objectives were defined and addressed after reviewing previous

work and potential improvements, and they were described in the introductory sections.
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Chapter 2

Models in Natural Language Pro-

cessing

This chapter provides an introduction to the main ML approaches used in NLP, focusing

on those models implemented across the different chapters of this thesis.

Before textual data can be processed by ML models, the input text needs to be converted

into numerical vectors of fixed size. These vectors are often called representations and

contain characteristic features of the input text. To perform this conversion, the first

step in NLP tasks is tokenisation and consists of splitting the input text into smaller

textual units called tokens, which might refer to words, sub-words or characters. A finite

vocabulary of tokens is often defined a priori, and each token in the vocabulary has an

associated identifier. At the beginning of NLP pipelines, each token id is often mapped

to a fix-sized vector using a look-up table. The main methods used to associate tokens

to their vectors can be broadly divided into context-independent and distributional

approaches.

2.1 Context-independent

2.1.1 Bag-of-Words

One of the most common and simple ways to represent tokens is through one-hot vectors.

In this setting, each token id corresponds to a position in an n-dimensional vector, where

“n” refers to the vocabulary size. To represent the i-th token in the vocabulary, a vector

of size n is generated with a one on the i-th dimension and zero on the rest. To represent

a sequence of tokens (e.g. sentence, paragraph, document), one of the most common

methodologies is the bag-of-words (BoW) approach [161], which generates n-dimensional

sequence representations by adding all the one-hot token vectors in a given sequence.

The resulting vectors of BoW contain information about the frequency of tokens in the

input sequence.

This approach has been widely adopted in document retrieval tasks where the occurrence

of certain terms might be enough to determine the retrieval of specific documents. BoW

also provides additional benefits such as interpretability (each feature corresponds to one

token), speed, and the fact that the length of the resulting vectors (n) is independent to
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the length of the input document. However, this representation has several limitations:

(1) it completely ignores the relative position of tokens in the document,(2) it generates

long feature vectors due to the large size of input vocabularies, and (3) the resulting

document representations are highly sparse since most documents typically use a small

subset of the tokens in the vocabulary.

N-grams Since the BoW model does not consider any order in the input sequence, all

tokens are treated as independent entities. The n-gram approach aims to encapsulate

some spatial information by generating groups of tokens (of size n) that appear sequen-

tially in the text. For instance, in the bigram model the unigram list: [“Mary”, “likes”,

“to”, “watch”, “movies”] would be converted into [“Mary likes”, “likes to”, “to watch”,

“watch movies”]. This might be a useful approach to encode information about concepts

formed by more than one token (e.g. [“renal”, ”clearance”], [“area”, “under”, “curve”]).

However, one of the main disadvantages of this approach is its direct impact on the size

of the feature vector, which highly increases when bigrams or trigrams are added to the

unigram token list.

2.1.2 TF-IDF

Another common approach to represent documents in a given corpus1 is to perform term

frequency-inverse document frequency (TF-IDF) standardisation of the BoW vectors.

This approach aims to attenuate the effect of terms that appear with high frequency

across the corpus and give higher relevance to those terms that only appear in a few

documents [162]. In this setting, the term frequency (tf) scores encoded by BoW are

multiplied by the following idf scores:

idf(t) = log
N + 1

df(t) + 1
(2.1)

tf-idf(t, d) = tf(t, d) · idf(t) (2.2)

In which N is the total number of documents in the corpus and df(t) is the number

of documents that contain a particular term t. Then, the frequency of each term t in

each document d, tf(d, t), is multiplied by its idf(t) to generate the TF-iIDF (t, d) score.

The constant one is added to the numerator and denominator of equation 2.1 to prevent

zero divisions when new terms from new documents are encoded. The idf(t) weight is

comprised between 0 and 1 and takes lower values for those terms that appear in a high

proportion of documents and higher values for infrequent terms across the corpus.

1 Collection of documents.
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2.2 Distributional

Instead of representing tokens as independent textual units, distributional semantics

refers to a family of techniques to represent the meaning of tokens (often words) based

on their linguistic contexts of use. The central hypothesis of distributional semantics is

that words appearing in similar contexts tend to have similar meanings [161]. Driven

by this hypothesis, various models have been proposed to generate representations of

tokens based on their contexts.

2.2.1 Count-based

Distributional approaches often generate vectors of much lower dimensionality than the

vocabulary size that provides similar word vectors for words that appear in similar

contexts. To do so, count-based models perform two steps [1]: (1) construct a word-

context matrix, and (2) reduce its dimensionality. The word-context matrix often has one

word per row, and columns represent all potential contextual words. The cells are filled

with the frequency of contextual words in a given corpus within a specific window size

around the central word. Since word-context matrices contain many columns (as many

as potential words) and many words only appear in a few possible contexts (producing

many zeros in the matrix), dimensionality reduction is applied to reduce the size and

sparsity of word vectors. Different count-based approaches have been used, including:

Co-occurrence Counts One of the simplest and most common approaches is to define

a context window of size L around each word. Then, a cell ci,j in the co-occurrence matrix

is filled by counting how many the contextual word j appears along the central word i

within a window of L words [163]. Despite its simplicity, one of the main drawbacks of

this approach is the sparsity of the resulting matrix.

Positive Pointwise Mutual Information (PPMI) In PPMI, the co-occurrence

matrix has the same rows and columns as co-occurrence counts, and the window size also

needs to be defined. However, PMI compares the probability of two words co-occurring

(joint probability, P (a, b)) to the likelihood that those words were independent (dot

product of marginal probabilities P (a) ∗ P (b)) through the following equation:

PMI(a, b) = log(
P (a, b)

P (a)P (b)
) (2.3)

The PPMI of a specific word is then filled by taking the maximum between 0 and

PMI(a, b). When the ratio is 1 (log equals 0), the words only co-occur by chance but

do not form a unique concept. On the other hand, if words have a low probability
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of independent occurrence in the corpus but a high probability of occurring together,

they are likely to form a unique concept. This approach attenuates the effect of common

words across the corpus and enhances the representation of concepts in the co-occurrence

matrix. PPMI was considered one of the state-of-the-art approaches before neural ar-

chitectures [164].

Latent Semantic Analysis (LSA) LSA is a count-based model used to analyse

relationships between documents and the terms they contain by producing a set of topics

related to the documents and terms. LSA starts by computing the term frequency matrix

mentioned in section 2.1.2, which counts the number of words in each document. Then,

Singular Value Decomposition (SVD) [165] is applied to reduce the dimensionality of

the matrix. In LSA, document representations are generated such that the vectors of

similar documents have a high cosine similarity [166].

2.2.2 Prediction-based

In contrast to count-based approaches, prediction-based methods learn word vectors

by improving the predictive ability of specific ML models. In distributional semantics,

predictive tasks often focus on enforcing the models to model the relationship between

words and their contexts of use. This thesis will mainly use distributed representations

learned by neural networks since they have been shown to preserve linear regularities

between words significantly better than previous approaches such as LSA [167].

2.2.2.1 Feed-forward neural networks

Over the last years, neural networks have become the leading architecture behind dis-

tributional semantics. Neural networks are ML models structured with layers of in-

terconnected neurons (also called perceptrons) that propagate information through the

network. A classical feed-forward neural network is shown in Figure 2.1, which is also

known as Multilayer Perceptron (MLP). The vertical layer of orange neurons is known

as the input layer and contains the input features given to the model. The layers of

grey neurons refer to the hidden layers that propagate the information through the net-

work until reaching the output layers (blue neurons), representing the model’s output

values. Each neuron receives a series of inputs (incoming arrows) and combines them to

generate a single output (outcoming arrows). Each input has an associated weight. A

neuron performs a weighted sum of its inputs and applies a non-linear transformation

(activation function) to the result, generating an output value [168]. If each neuron

in a hidden layer is connected to all neurons in the following layer, this is known as a

feed-forward or fully-connected layer.
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Figure 2.1: Graphical representation of a neural network with 4 layers. The input
layer is represented in orange and composed by 4 neurons, whereas the output layer is
represented by two blue neurons. Two hidden layers are exemplified in grey.

In mathematical notation, the values in every layer of neurons are often represented as

a single vector. For instance, in Figure 2.1, the input layer can be represented with a

vector X of 4 dimensions and the next layer (h1) as a vector of 5 values. To generate

h1, a fully-connected layer performs a multiplication between the input vector (X) and

the matrix of weights relating each input-output neuron (W1). Often, a bias vector (b1)

is added after the vector-matrix multiplication. Finally, the activation function (g) is a

non-linear transformation applied to each output value:

h1 = g(W1X + b1) (2.4)

In the following sections of this thesis, the collection of all weights (W1...n) and biases

(b1...n) of a neural network will be defined as the network parameters θ.

One of the most widely-used activation functions is the sigmoid or logistic function:

g(z) =
1

1 + e−z
(2.5)

However, a wide variety of activation functions have been used to train neural networks,

such as Hyperbolic Tangent (Tanh) or Rectified Linear Activation (ReLU).

Model training Given a series of input features and expected labels (i.e. training

examples), neural networks are trained to minimise the distance between their outputs

and the desired labels. This distance is often measured with a loss function, also called

objective function or error measure. An example of a loss function is the mean squared

error, defined as:
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J(θ) =
1

n

n∑
i=1

(ŷi(θ)− yi)2 (2.6)

Where n refers to the number of training examples, ŷi to the network’s output for the

example i, and yi to the expected labels. There are a variety of loss functions used to

train neural networks, which are suited to different applications [73].

To update the weights of a neural network, gradient decent methods are often used

to update the model parameters (θ) so that they minimise the loss function (J(θ)).

The first step is to compute the gradient of the model parameters’ respect to the loss

function ∇θJ(θ). The algorithm used to compute ∇θJ(θ) in neural networks is known as

back-propagation [169] which relies on the chain rule of calculus to compute the partial

derivate of each model parameter respect to the loss function2.

When the gradients are computed, at each training iteration, the model parameters are

updated in the following manner:

θt+1 = θt − η · ∇θtJ(θt) (2.7)

Where η refers to the learning rate and controls the magnitude of the updates. As shown

in equation 2.6, the loss function is defined as the average loss over all training examples

(n). However, computing the gradient ∇θJ(θ) at every update for all the training

examples is an expensive computational operation. Therefore, a common approach is to

update the model parameters using a mini-batch of examples, often known as stochastic

gradient descent. In practice, the whole set of training examples is split into a series of

mini-batches. For every mini-batch, the model parameters are updated by computing

the mini-batch loss and its associated gradient. A single pass and update of the mini-

batch through the model is defined as a training step, and an entire pass of the whole

training data through the model (all mini-batch updates) is referred to as epoch.

2.2.2.2 Word2Vec

Training neural networks using Language Modelling (LM) objectives has become the

main approach to generate distributed representations of tokens. In LM, a model is

often asked to predict the probability of a token (or sequence of tokens) given their

context tokens or vice versa. One of the earliest and most successful applications of this

idea is Word2Vec, developed by Mikolov et al. 2013 [167]. In essence, Word2Vec is a

neural network model whose parameters are word vectors. Given a large text corpus,

Word2Vec uses a sliding window to generate combinations of central and context word

pairs (see Figure 2.2).

2 For further details on the back-propagation algorithm see Ruder 2019 [73].
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Figure 2.2: Illustrative example of the sliding widow used in Word2Vec. Taken from
Voita 2020 [1].

Word2Vec trains a neural network with a single hidden layer to perform an “auxiliary”

task. The main LM objective of Word2Vec is to either: (1) predict the probabilities of

context words given a central word (Skip-Gram variation, Figure 2.3a) or (2) predict the

probability of a central word given the context words (CBOW variation, Figure 2.3b).

Figure 2.3: Schematic representation of the Skip-Gram (a) and CBOW (b) architec-
tures from Word2Vec.

For each position in a text corpus t = 1, ..., T the Skip-Gram model is trained to min-

imise:

J(θ) = − 1

T

T∑
t=1

∑
−m≤j≤m

logP (wt+j |wt, θ); j 6= 0 (2.8)

where m is the window size and P (wt+j |wt) is the probability of a context word given

the central word. Given a vocabulary of words V , a central word vector vc and a context

word uo, P (o|c) is computed using the softmax function:

P (o|c) =
eu

T
o vc∑

w∈V e
uTwvc

(2.9)

Word2Vec uses stochastic gradient descent to update its parameters so that they min-

imise the loss function in equation 2.8. In practice, instead of considering all the possible
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context words for a given central word, negative sampling is performed for efficient train-

ing and to balance the frequency distribution of words in the corpus. As a result, the

similarity of the central word is only computed against the correct context word and a

specific number of negative (non-context) words. This approach avoids the denominator

in equation 2.9 to add all the words in the vocabulary V, but only the positive and

selected negative samples for a specific central word.

This training procedure can be performed in a self-supervised fashion since almost un-

limited instances of context - central word pairs can be automatically generated without

manual labels. By training Word2Vec on large amounts of data, the weights of the

network are adjusted to represent the context of words, and therefore, encode valuable

semantic information into a relatively small dimensional space − note that the number of

neurons in the hidden layer will determine the size of the embeddings. One of the main

advantages of this approach is that once Word2Vec has been trained on a large corpus

of text, the learnt word vectors can be used as initial representations for downstream

applications, which exhibited significant improvements in multiple NLP tasks [167]. The

idea of using models pre-trained on large amounts of unlabelled data as starting points

for other supervised tasks is known as transfer learning which has been widely used in

the NLP domain after the appearance of Word2Vec.

The following sections present the fundamental neural network architectures used to

process textual data and used across this thesis.

2.2.2.3 Recurrent models

Since natural language text is sequential, most of the models used in NLP consider

processing sequences of inputs. Therefore, a single training sample is often represented

as a sequence of token vectors. The most common architecture for this task is the

Recurrent Neural Network (RNN) [170]. RNNs take an ordered list of input vectors

x1, ..., xn (e.g. token vectors) together with an initial state vector s0, and compute an

ordered sequence of output vectors y1, ..., yn and cell states s1, ..., sn [168] (see Figure 2.4).

At each time step i, the network receives an input vector xi together with the previous

cell state si−1, which stores information about the previous inputs. Broadly speaking,

simple3 RNNs are feed-forward neural networks accepting an extra input vector (cell

state, si−1) retaining information of previous steps and propagating its current state

(si) to the following time step. As shown in Figure 2.4, it is noteworthy that the

parameters of the network remain constant over each time step and are only updated at

the end of each mini-batch (analogous to feed-forward neural networks) [168].

To compute yi and si, the RNN performs two main computations:

3 Without gate mechanisms like LSTMs or GRUs.
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Figure 2.4: Schematic illustration of an RNN where θ represents the network param-
eters, and xi, si and yi represent the input, cell state, and output vectors at a particular
time step.

si = f1(si−1, xi) (2.10)

yi = f2(si) (2.11)

Where f1 is often a feed-forward layer accepting the input vector at time i (xi) and

previous cell state (si−1) and returning a vector that represents the current cell state

(si). The f2 is the operation used to map the state vector si to the desired output vector

for that time step (yi).

This architecture allows framing a large number of NLP tasks. For instance, in sentence

classification tasks, sentence tokens are provided as sequential inputs, and the last out-

put vector (yn in Figure 2.4) is often treated as the model prediction. In NER tasks that

require one label per token, it is common to use each of the RNN output’s (y1, ..., yn)

and calculate the loss based on the token-level labels. In machine translation, the final

cell state sn is often used as an input to a decoder that will use sn as an input vector

containing the required information for the whole input sentence to be translated. It is

noteworthy that at time i, the network does not have any information about subsequent

tokens, which might be required for some tasks. For this reason, it is common to use

bidirectional recurrent models (e.g. biRNN) [171] which consist of two RNNs, one pro-

cessing the sentence left-to-write, and another one right-to-left. For a specific time step

i, the output vectors of each RNN are concatenated to include contextual information

from both sides of the sequence.

One common issue when training RNNs in practice is the vanishing or exploding gradient

problem [172]. In RNNs, the hidden state is multiplied by the weight matrix of the neural

network at every time step. When calculating the gradient using back-propagation, this

results in the gradients being multiplied by the same values multiple times, which can
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cause the gradient values to either become very large (explode) or exceedingly close to

zero (vanish). This phenomenon makes it hard for simple RNNs to capture long-range

dependencies since the gradient in later steps of the sequence quickly dimmish in the

back-propagation process. Architectures using memory cells in RNNs have been widely

adopted to deal with vanishing/exploding gradients. These approaches contain “gate

mechanisms” that decide what needs to be remembered/forgotten by the network and

allow preserving gradients across time [168]. As a result, the most successful RNN

architectures currently used in practice are LSTMs [173] and Gated Recurrent Units

(GRUs) [174] which use gate mechanisms that attenuate the effect of vanishing/exploding

gradients.

2.2.2.4 Transformers

The best-performing models tackling multiple NLP tasks before 2017 often consisted

of initialising token-vectors pre-trained with variants of Word2Vec and using recurrent

architectures to model the desired tasks (e.g. Xu et al. [175], Lin et al. [176]).

Despite LSTMs and GRUs enabled a better gradient flow when processing sequential

inputs, as the length of the input sequence increases, recurrent models struggle to cap-

ture long-range dependencies between tokens in a sentence. This limitation is present

in any recurrent architecture since their cell state vectors are modified at every step.

Consequently, when recurrent networks reach tokens at the end of long sequences, they

often rely on the cell state vector to preserve relevant information that might have ap-

peared at the beginning of the sequence. However, it is often difficult to preserve this

and other relevant information through long sequences in a single vector representation.

Additionally, recurrent models cannot be easily trained in parallel due to their sequential

nature [177]. To address these issues, Bahdanau et al. 2014 [178] and Luong et al. 2015

[179] introduced the concept of attention to approach machine translation tasks. The

attention mechanism allowed recurrent models to focus on relevant hidden states of the

input sequence at each decoding step during translation tasks.

In 2017, Vaswani et al. 2017 [177] presented the Transformer, which is a neural ar-

chitecture relying on attention mechanisms without any recurrent models. Since their

appearance, Transformers have become the state-of-the-art architecture for modelling

sequential textual data due to their speed (most computations can be executed in par-

allel) and high performance when modelling long-range dependencies. The core idea

behind attention is to generate a mechanism by which, given a sequence of representa-

tions (e.g. cell states), can optimally combine those input representations into a new

vector that will be used for a specific task (e.g. produce a new token representation).

The Transformer uses a specific type of attention, so-called self-attention, that given

a sequence of n input vectors, returns a new sequence of n output vectors that con-

tain information about their surrounding vectors. Unlike Word2Vec where each token
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relates to a single, context-independent vector, this mechanism allows generating to-

ken embeddings that are dependent on their surrounding tokens. The Transformer was

first presented to tackle machine-translation tasks using an Encoder-Decoder structure.

In machine translation, an Encoder is often used to generate token representations of

the input sequence and the Decoder to predict a new sequence of tokens in the target

language.

2.2.2.5 BERT

Building upon these developments, Devlin et al. 2018 presented Bidirectional Encoder

Representations from Transformers (BERT) [2]. BERT was designed to generate pow-

erful token representations that could be used or easily fine-tuned for a variety of down-

stream NLP tasks. To do so, the model uses a stack of Transformer Encoder blocks

to convert a sequence of n input tokens into a sequence of n contextual token vectors.

Then, similar to Word2Vec, the model is pre-trained in a self-supervised manner on a

large corpus of text using LM objectives that force the model to encode relevant se-

mantic information for each token. Specifically, BERT is pre-trained to perform two

self-supervised tasks: (1) “masked language model” (MLM) where the model is asked to

predict 15% of randomly masked tokens, and (2) “next sentence prediction”, that given

two sentences the model has to predict whether they appear sequentially in the original

text [180]. Once pre-trained, the parameters of BERT can be re-used as a starting model

to represent tokens and fine-tuned for specific supervised tasks (transfer learning) with-

out the need of using a large number of task-specific layers [2]. Overall, BERT exhibited

state-of-the-art results in multiple NLP tasks. It has been shown that the token repre-

sentations learned by BERT often require little adaptation for downstream applications,

reducing the need for labelled data or designing complex task-specific architectures in

NLP. Since BERT has been used or fine-tuned for multiple tasks within this thesis, this

section describes the fundamental blocks behind it.

Tokeniser and vocabulary BERT uses a sub-word tokenisation approach that relies

on the principle that common words should not be broken down into smaller tokens

while rare words should be segmented into reusable tokens (sub-words). This approach

allows representing unseen/rare words at inference time by encoding their sub-word

tokens while preserving frequent words as single tokens (this avoids very long input

sequences). Specifically, BERT uses the WordPiece tokenisation algorithm [181] with a

vocabulary of 30,000 tokens. Additionally, at the beginning of each token sequence, there

is a special classification token included [CLS], which attempts to encode sequence-level

information into a single vector, and a [SEP] token to specify the separation between

sentences (Figure 2.5).
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Architecture Once the input sequence has been split into tokens, BERT maps each

input token to a vector representation (Embedding layer Figure 2.5) and adds positional

encodings to provide information on the relative position of each token in the input

sequence. Then, the model goes through several Encoder blocks and finally returns

a sequence of token embeddings. Initially, Devlin et al. [2] released BERT-base, and

BERT-large, consisting of 12 and 24 Encoder blocks, respectively. As shown on the

right panel of Figure 2.5, each Encoder has two main sub-layers: self-attention and a

fully-connected feed-forward network [177]. Additionally, the “Add & Normalise” layers

represent residual connections that add the input block to its output and perform layer

normalisation4 [182] to ease the flow of the gradient through the network [1].

Figure 2.5: Graphical representation of BERT-base accepting a sequence of tokens
that go through twelve encoder blocks and return a sequence of vectors. Each Encoder
represents a Trasformer Encoder block displayed on the right panel. [CLS] is a special
token added at the beginning of each sequence and [SEP] was originally used to separate
sentences [2].

Self-attention As previously mentioned, the self-attention operation aims to map a

sequence of token embeddings (x1, ..., xn) to another collection of token embeddings

(y1, ..., yn) that have been updated according to their context. To implement this idea,

each input token (xi) is mapped to three different representations: query (qi), key (ki)

and value (vi) vectors. Each of these vectors is generated by multiplying the input

vector (xi) by three independent weight matrices (WQ,WK ,W V ) that are backpropagated

during the training phase. For a given input word i, the second step consists of computing

a score against every other input, determining how much focus to place on other parts

of the input sequence (so-called attention scores). All the scores then go through a

softmax layer, value vectors are multiplied by their scores, and all the resulting vectors

are added together (i.e. weighted sum). In practice, this is computed as a sequence

4 See Ba et al. [182] for details on layer normalisation.
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of matrix operations for faster processing. If X is the matrix containing all the input

vectors, the first operation is:

Q = X ·WQ (2.12)

K = X ·WK (2.13)

V = X ·W V (2.14)

Where Q, K and V are the matrices containing each input’s query, key and value rep-

resentations, respectively. Then, all the outputs of the self-attention operation can be

obtained through a single equation:

Z = Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2.15)

Where dk is the dimension of the queries and key vectors and Z has the same number

of rows as X and represents the resulting token vectors after self-attention. In the

implementation of the Transformer, the attention operation is performed multiple times

(h) independently (attention heads) to allow the model to focus on different aspects of

the surrounding vectors. Different weight matrices (WQ
1,...,h,WK

1,...,h,W V
1,...,h) are assigned

to each attention head and the resulting vectors (Z1,...,h) are concatenated and multiplied

by a final weight matrix W o. This process is known as multi-head attention and enables

the model to simultaneously attend to data from different representation subspaces for

each input token [177].

2.3 Non-neural models

This section describes ML models used in this thesis for text classification tasks (chapter

3) that did not use neural networks. The models are exclusively described in the context

of classification tasks and assume a fixed number of input features.

Logistic Regression Logistic regression models the probability that a response yi

belongs to a particular category yi given the input features xi with a sigmoid or logistic

function [183]:

p̂(yi | xi; θ) =
eβ0+βxi

1 + eβ0+βxi
(2.16)
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In which β0 and β5 represent parameters θ that will be estimated from the training

data. Note that the possible outputs from equation 2.16 are compressed between 0 and

1, which allows treating the output of logistic regression as a class probability. Logistic

regression uses the principle of maximum likelihood estimation (MLE) [184] to estimate

the optimal θ given the training data. MLE aims to bring the probabilities of the model

p̂(x) as close as possible to the empirical probability of the input data p(x) by maximising

the log-likelihood function. In supervised binary classification, the empirical probability

can be expressed as the label yi ∈ {0, 1}, and the log-likelihood function becomes [183]:

n∑
i=1

yi log p̂(xi; θ) + (1− yi) log(1− p̂(xi; θ)) (2.17)

In which n is the total number of training examples. Since maximising equation 2.17

results in the same than minimising the negative log-likelihood, it is common to use the

average cross-entropy as a loss function [73]:

L(θ) =
1

n

n∑
i=1

−yi log p̂(xi; θ)− (1− yi) log(1− p̂(xi; θ)) (2.18)

Optimisation methods are then used [183] to obtain the parameter combination that

minimises L(θ) in a specific dataset.

Decision Trees Decision trees are non-parametric algorithms used for supervised clas-

sification and regression tasks. The main idea behind this algorithm is to build a model

that predicts the target variable yi based on simple decision rules learned from the input

features. As it can be observed in Figure 2.6, decision trees split the feature space X

into different regions Ri that will characterise the response variable y. Figure 2.7 shows

the basic elements and nomenclature of a decision tree. Different tree algorithms have

been developed with this idea [183].

In classification tasks, the goal is to divide the feature space into regions Ri in which the

majority of instances belong to a unique class. Decision trees use an iterative top-down

approach to achieve this goal. Starting at the root node (Figure 2.7) (when all instances

belong to the same region), the feature Xj and splitting cut-point s that produce the

best subregions are selected at each iteration to generate two new branches. This is

known as recursive binary splitting [184] and requires a metric to measure the “purity”

of a particular region and assess the quality of a split. A commonly used metric is the

Gini index:

5 Note that β will be a vector of coefficients with the same dimensionality than xi and βxi represents
the dot product.
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Figure 2.6: (a) Decision tree splitting two features X1 and X2 at different points
t. A 2D visualisation of the regions generated by these splits is observed in the right
hand-panel (b)

G =
K∑
k=1

p̂mk(1− p̂mk) (2.19)

Where p̂mk represents the proportion of training instances that belong to the kth class.

From equation 2.19 it can be noticed that G takes small values when most instances of a

particular region belong to a single class (p̂mk close to 1). The G from a parent node is

compared to the weighted (by the number of samples) average of the G of the resulting

two regions to evaluate the quality of a particular split. Then, the feature Xj and cut-

point s that produce the largest reduction in G is selected for a split. The determination

of the best splitting point for a particular feature tends to be a fast computation, and by

scanning through all the features, finding the optimal (j,s) is feasible [183]. This splitting

procedure continues for each branch until a stopping criterion is reached, and the last

nodes become leaf nodes. If no stopping condition is imposed a priori, the decision tree

grows until all the leaf nodes are pure (G = 0). However, this approach might split the

feature space into overly small regions and overfit the training data.

Different stopping criteria can be imposed to limit the tree’s growth and prevent overfit-

ting, such as specifying a maximum depth, a minimum decrease in Gini index to perform

a split or a minimum size for the leaf nodes.

Extreme Gradient Boosting Despite their excellent interpretability and ease of

train, decision trees do not tend to perform as good as other ML algorithms. One of

the main drawbacks is their high variance and instability. In addition, the nature of

the hierarchical-building process propagates decisions produced in top nodes down to

the child nodes. This fact causes slight variations in the input data can result in a

very different sequence of splits [184]. However, ensemble methods have achieved robust
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Figure 2.7: Example of a decision tree of depth 3.

results in different tasks by aggregating multiple decision trees under a single classifier.

Extreme Gradient Boosting (XGBoost) is a boosting method that has been successfully

applied in a variety of tasks [185–187].

Boosting belongs to a specific class of ensemble learning methods in which multiple weak

learners (e.g. decision trees) are combined to produce a stronger model. How different

weak learners are combined defines the type of ensemble method (i.e. bagging, boosting,

stacking). Although different models can be used as weak learners, decision trees have

been the most widely adopted [183]. Bagging approaches average the decision of multiple

weak learners independently fitted to subsets of the dataset, which reduces the variance

of the strong learner. In contrast, boosting methods use a sequential approach in which

each new weak learner is fitted to focus on those observations that were misclassified by

the previous models [188]. This approach aims to reduce the bias of the strong learner,

and depending on the aggregation approach, two main boosting methods are found:

Adaboost [189] and Gradient Boosting. XGBoost is an advanced implementation of

Gradient Boosting developed by Chen et al., 2016 [190]. Boosting methods try to build

a strong model HL(x) as a weighted sum of L weak learners fl(x):

HL(x) =

L∑
l=1

η · wl · fl(x) (2.20)

In which wl is the weight associated with the new weak learner. The parameter η

(learning rate) scales the contribution of each weak learner by a constant value. The

η parameter is often treated as a hyperparameter6 and smaller values require a larger

6 Hyperparameters refer to parameters of the objective function that are not fitted during the training
process and need to be specified before fitting the model.
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number of weak learners to maintain a specific training error. However, directly find-

ing the optimal combination of parameters (and the number of weak learners) in the

ensemble model represents an intractable optimisation problem [188]. For this reason,

boosting methods build an iterative process by which weak learners are built one by one

based on the previous state of the ensemble:

Hl(x) = Hl−1(x) + η · wl · fl(x) (2.21)

Where wl is the weight associated with the new weak learner. In gradient boosting, a

new weak learner (fl(x)) is fitted to the negative gradient of the loss function in each

iteration [188]. The implementation in XGBoost has several characteristics that have

made it particularly efficient in ML applications. These include L1 and L2 regularisation,

scalability, sparsity handling and optimisation techniques that make it extremely fast

compared to other gradient boosting algorithms [190]. The regularisation term is often

applied to the decision tree’s parameters and can be expressed as follows:

Ω(ft) = γT +
1

2
λ

T∑
j=1

w2
j (2.22)

Where T is the number of leaves, wj is a coefficient associated with each leaf, and γ and

λ are hyperparameters that can be adjusted for regularisation.

54



Chapter 3

Pharmacokinetic Document Retrieval

Most content in this chapter has been published at Gonzalez Hernandez et al. [191].

3.1 Introduction

A significant challenge in the curation of ADME datasets is to efficiently collect relevant

literature regarding the PK parameters of different compounds. According to Nawaz

et al. [192], the PubMed database is growing at a rate of two articles every minute,

which complicates and lengthens the process of finding relevant literature. Current

search systems are not specific enough to limit query results to those publications re-

porting PK parameters obtained from in vivo studies while ensuring high recall rates

[11]. When looking for PK parameters of a particular compound, generic search queries

(e.g. “amoxicillin AND pharmacokinetics”) are often performed as a first step, and large

amounts of time need to be invested in finding the relevant documents through a num-

ber of unrelated publications [193]. This chapter addresses the challenge of efficiently

finding those scientific articles publishing PK results derived from in vivo data. Central-

ising studies reporting PK estimates would not only accelerate the curation of ADME

datasets, but could also provide a benchmark repository for comparison and evaluation

of PK results and provide an initial set of relevant documents for further IE tasks.

Figure 3.1: MeSH indexing of the term
“Pharmacokinetics” and its related sub-
terms.

The PubMed search engine makes use of the

MeSH vocabulary and words appearing in the

title and abstract to perform queries relevant

to certain biomedical topics. For instance, the

MEDLINE indexing includes the MeSH term

“Pharmacokinetics”1 together with a number

of sub-related terms (Figure 3.1). However,

as previous studies suggest [11], the retrieval

of documents with this term results in a high

recall but low precision rate for in vivo PK

data. Since scientific search engines tend to

provide low precision rates in document re-

trieval of specific biomedical fields, a variety

1 https://www.ncbi.nlm.nih.gov/mesh/68010599
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of studies have applied additional text mining

techniques for biomedical IR [155, 156].

In the field of PK, only one text mining publication performing document retrieval was

found. As previously mentioned, Zhiping et al., 2009 [11] applied an entity template to

PubMed abstracts to perform NER of drugs, routes of administration, specific PK pa-

rameters and species. Subsequently, simple rules were applied to the tagged documents

to determine whether a particular publication reported PK parameters of midazolam

in healthy volunteers. Initially, this entity template was applied to the corpus resulting

from the PubMed search “midazolam” (n=7129) and resulted in 43% precision and un-

reported recall. However, after adding the term pharmacokinetics to the original query

(“midazolam AND pharmacokinetics”, n=819), the authors reported performance of

91.5% recall, 68.2% precision and F1 of 78.1%. In the second corpus, the authors man-

ually labelled the resulting 819 PubMed abstracts, from which they identified 20% as

being relevant. They also compared the performance of the entity template against a

supervised ML approach, in which a support vector machine was trained to perform the

binary classification task. The ML approach resulted in a F1 of 68.1% when trained with

a balanced corpus of 100 samples. However, the small number of publications available

for training and the minimal exploration of the features encoded might have significantly

limited the performance of this approach.

This chapter presents an automated pipeline to identify and characterise scientific publi-

cations reporting in vivo PK parameters across different study types (e.g. animal/human

studies, healthy/non-healthy subjects, different drug regimens).

Due to the heterogeneity of the biomedical literature and the requirement for a high-

quality corpus of PK articles, supervised ML approaches were studied to find scientific

publications that reported in vivo PK parameters. Two main motivations were found

to use ML approaches over rule-based systems for this task. (1) Building comprehensive

rules that can distinguish documents reporting novel in vivo PK parameters becomes

particularly challenging to implement due to the multiple linguistic and structural cues

involved, which expand over different parts of the text [194]. (2) Additionally, posterior

probabilities of ML models could be used for search engines to rank scientific publi-

cations depending on their likelihood of reporting PK parameters, prioritising relevant

documents to be scanned in the curation of ADME datasets. Hence, based on Q1 of this

thesis, the following objectives were formulated:

O1−1 Develop an expert-annotated dataset that can be used to train and evaluate models

that distinguish publications reporting in vivo PK parameters.

O1−2 Study the effect of different encoders and decoders for classifying scientific publi-

cations reporting PK parameter estimates.
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O1−3 Apply the optimal classifier to PubMed publications to generate an automatically-

updated and centralised repository of PK papers.

O1−4 Deploy the collection of retrieved documents through a search interface where users

can search for relevant PK data.

3.2 Methods

The methodology behind this study was divided in the following main sections:

1. Corpus development: manual annotation of scientific articles as “Relevant” or

“Not Relevant” by field experts depending on whether they reported in vivo PK

parameters.

2. Pipeline development: Study of different NLP pipelines to optimise the retrieval

of relevant publications.

3. Large-scale application: Deployment of the optimal pipeline to classify a large

corpus of PK literature.

The code developed in this chapter can be found at https://github.com/PKPDAI/

PKDocClassifier.

3.2.1 Corpus development

3.2.1.1 Source

The search “pharmacokinetics” in PubMed returns over half a million entries from which

≈ 20% report in vivo PK parameters. Therefore, being able to retrieve relevant pub-

lications from this corpus would provide a large collection of potentially valuable PK

literature for ADME dataset curation and subsequent IE tasks. Only the keyword “phar-

macokinetics” was used as a query since most of other relevant PK terms were included

in the MeSH hierarchy under the “pharmacokinetics” node 2. A PubMed search for

“pharmacokinetics” was conducted without additional filtering, and the resulting list of

PubMed IDs was obtained (October 2020). All papers used in this study were sampled

from this distribution of papers.

2 https://www.ncbi.nlm.nih.gov/mesh/68010599
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3.2.1.2 Size and criteria

Two collections of documents were created to train, compare, and assess various clas-

sification approaches: the training and final test sets. The training and final test sets

each contained 3992 and 800 randomly selected (without replacement) articles from the

list of PubMed Ids downloaded, respectively. The size of each set was established based

on the availability of expert annotators, ensuring that each document had at least two

independent labels. The following criteria were used to label the articles: If a pub-

lication’s title, abstract, tables, or full-text3 contained newly estimated measurements

of PK parameters from in vivo data (human or animal), the publication was labelled

as “Relevant” by the annotators. Publications that did not include estimates of PK

parameters, reviews, or papers that only mentioned PK parameters from other studies

were deemed “Not Relevant”. Only those original articles in which PK parameters were

reported along with their contextual information were considered “Relevant”.

3.2.1.3 Annotation

Two clinical pharmacists and two pharmacometricians from University College London’s

Pharmacometrics Group, as well as one clinical pharmacist from the London Health Sci-

ences Center, all of whom had considerable experience in pharmacometric modelling,

contributed to the annotation process. Initial annotation guidelines were established4,

and a training session was conducted before annotations started. Each document in the

training set was first labelled by two annotators, and each document in the final test was

initially labelled by at least three annotators. Disagreements were then discussed with

the annotation team. Exceptions and divergent views on labelling criteria emerged dur-

ing the labelling process, and when each instance was resolved, the annotation guidelines

were updated accordingly. The Cohen Kappa Coefficient (K, Eq. 3.1) was initially cal-

culated on 100 documents randomly selected from the final test set and labelled by all

annotators [195] to determine the degree of agreement between annotators. K compares

the observed agreement between two annotators assigned to any sample (po) against the

expected agreement by chance (pe)5:

K =
po − pe
1− pe

(3.1)

Guidelines were iteratively updated during the labelling process until a high level of

pairwise consistency amongst annotators (K > 0.9) was achieved, which resulted in 2-5

reviews per document.

3 Despite the full-text article was considered for labelling purposes, note that the only fields used in
the classification pipeline are those described in section 3.2.2.1 (without utilising tabular and full-text
data).

4 https://github.com/PKPDAI/DRGuidelines.github.io
5 pe is estimated using a per-annotator empirical prior over the class labels [196].
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After the final guidelines were generated, pair-wise F1 between annotators was also

computed on the initial 100 documents to assess differences between model performance

and inter-annotator agreement. This exercise established an approximate ceiling perfor-

mance for our models given by the average pair-wise F1 across annotators. To compute

pair-wise F1 score, the labels of one annotator were treated as ground truth and the

other as the system prediction6. Finally, the average pair-wise F1 between each pair of

annotators was computed as a ceiling performance metric.

Results on inter-annotator agreements were presented in section 3.3.2.

3.2.2 Pipeline development

3.2.2.1 Parsing

Since full-text and tabular information are not always accessible, the classification

pipelines were trained using textual data from the title, abstract, and other PubMed

metadata. However, unlike the full-text and tabular data, this information is publicly

available for most papers in PubMed. Therefore, developing a retrieval system without

utilising the full-text information of papers would expand the scope of the pipeline’s

applicability.

To obtain the desired textual information from the labelled documents, the selected

PubMed publications were downloaded in XML format through the baseline7 and up-

dates8 FTP sites. These sites store the information from PubMed entries indexed in

XML files. For each paper, the information from multiple fields (e.g. title, abstract

authors, MeSH terms and others) was parsed from the XML files into a dataframe.

An analysis was later performed to select those fields that improved the classification

performance (see details in section 3.2.2.4).

The XML files provide different fields under a series of tags. For instance, in Figure 3.2

it can be observed how the textual information from the title and abstract of a particular

PubMed entry is stored under the tags <ArticleTitle> and <AbstractText>. Hence,

rules need to be applied to extract the desired textual information from the XML files

and store it in a structured format. For the XML extraction PubMed Parser [197] was

used. This python module is frequently used for researchers in biomedical NLP and

considers XML tags for all our desired fields. The extracted textual information was

stored in a dataframe format for subsequent analyses.

6 Note that switching roles would not alter the F1 score [234].
7 ftp://ftp.ncbi.nlm.nih.gov/pubmed/baseline/
8 ftp://ftp.ncbi.nlm.nih.gov/pubmed/updatefiles/
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Figure 3.2: Example of XML tags for title and abstract in PubMed files.

3.2.2.2 Evaluation

During the pipeline development stage, the impact of various pipeline setups was investi-

gated to maximise the classification performance of “Relevant” articles. Analyses were

conducted to determine the influence of various classifiers, textual input fields, document

representations, and pipeline hyperparameters9. Precision (P), Recall (R), and the F1

score (the harmonic mean of P and R) were used as evaluation criteria to compare the

different architectures. The following analyses were sequentially performed to determine

the optimal architecture: (1) Classifier comparison, (2) Field selection, (3) N-grams, (4)

Distributed representations, and (5) Final pipeline. The first analysis aimed to deter-

mine the classifier with the best performance. The second, third, and fourth analyses

attempted to pick the best performant document representations for the classification

task. Due to the scarcity of training samples and consequent variability on the F1, a

bootstrapping strategy was used to establish a distribution of metrics for each pipeline

configuration (Figure 3.3 A). To prevent bias in the evaluation, the training set was

randomly divided into temp training (60 percent), temp dev (20 percent), and temp

test (20 percent) with stratified sampling using scikit-learn’s python module. The temp

training was used to fit the classifier, temp dev was used to assess the classifier during

training and to conduct early stopping, and temp test was used to analyse pipeline

performance after each bootstrap iteration. This procedure was performed 200 times

for each pipeline configuration to obtain a distribution of metrics. After identifying

the optimal document representations, the whole training set was used to choose the

optimal hyperparameters, which were then applied to the final test set to provide the

final metrics (Figure 3.3B). It is worth noting that during the first analysis (Classifier

comparison), no early stopping was performed since the default hyperparameters were

9 Parameters supplied by the user and not implicitly learned during the training phase.
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used for each classifier. As a result, during the Classifier comparison the training set

was split into 80% temp training and 20% temp test.

Figure 3.3: A) Bootstrap procedure to compare the effect of different features dur-
ing field selection, n-grams and distributed representations analyses. B) The best-
performing features from previous analyses were selected to compare different hyperpa-
rameter combinations with 5-fold cross validation. Finally, the best-performing features
and hyperparameters were used to apply the pipeline to the final test set.
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3.2.2.3 Classifier comparison

The first analysis compared supervised learning models and selected the best-performing

ones for the following steps. In this classification task, three classifiers were compared:

logistic regression, decision tree and XGBoost. During this analysis, the default hyper-

parameters from each classifier were used according to their scikit-learn implementation.

During this analysis, only the title and abstract were encoded through bag-of-words.

To account for possible prediction biases caused by class imbalance, the weights associ-

ated with each sample during the training stage were set inversely proportional to the

class frequency on the corpus. In other words, if only 20% of the documents in the train-

ing set were “Relevant”, the loss associated with each “Relevant” sample was scaled by

a factor of five. This loss weighting technique efficiently eliminated spurious solutions

in which predictions were skewed toward the most frequent class.

Logistic regression Logistic regression was analysed as a classifier. In this experi-

ment, L2 regularisation was applied on the model parameters θ, and stochastic gradient

descent [198] was used to update the parameters iteratively. Average cross-entropy was

used as a loss function. For one training example, i with input features xi and label yi,

the loss was computed as:

L(θ)i = −yi log p̂(xi; θ)− (1− yi) log(1− p̂(xi; θ)) (3.2)

Decision Tree The CART algorithm [199] was used in this study through scikit-

learn’s10 implementation. In this analysis, the Gini index was used to measure the

quality of splits and the default values defined in scikit-learn’s implementation were

used for the rest of the model hyperparameters. As previously mentioned, different

weights were given to samples labelled as Relevant or Not Relevant.

Extreme Gradient Boosting In this experiment, the algorithm XGBoost was anal-

ysed as a decoder. Decision Trees were used as weak learners over which the XGBoost

was trained to minimise the average cross-entropy loss. Finally, early stopping was em-

ployed, where the maximum number of iterations was set to 2000 and boosting was

stopped earlier if the F1 performance on the validation (temp dev) set did not improve

after 100 iterations. This approach was used to prevent overfitting by limiting the num-

ber of boosting iterations through an external evaluation (temp dev set) and, in turn,

limiting the complexity of the model.

10https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.

html
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3.2.2.4 Field-selection

After selecting the best-performing classifier, this experiment aimed to detect the most

useful fields for the classification task. The following fields were initially retrieved from

the PubMed XML files:

• Title of the publication

• Abstract

• List of authors

• Journal of publication

• Publication type: Journal Article, Review etc

• Keywords from the abstract

• MeSH terms

• List of chemicals annotated and indexed by MEDLINE

• Author’s affiliations

Table 3.1 displays the availability of these fields in the training and final test datasets.

The importance of the abstract was first determined by comparing the performance when

the title was used alone against the combination of title and abstract. The significance of

each field in the metadata section was then studied by comparing its performance when

combined with the title and abstract. Finally, those fields that showed an improvement

in classification performance against only title + abstract were combined.

During the classifier comparison and field selection analyses, documents were encoded

into sparse vectors using a BoW approach (see section 2.1.1 of this thesis for de-

tails). Each column in the document vector was filled with the frequency of each

term in the input document, and the resulting vector was divided by the document’s

total number of tokens to standardise it by the document’s length (L1 vector norm).

Each document was tokenised before applying the BoW count. Without further pre-

processing, each author, journal, publication type, keyword, MeSH term, chemical and

affiliation were handled as single tokens since they are standardised terms in MEDLINE.

However, tokenisation is more complex for the title and abstract since they are extracted

in string format. One of the main challenges is that biomedical text significantly differs

(in terms of grammar and vocabulary) from general-domain English, and common to-

kenisers might not consider specific characteristics of biomedical tokens [200]. For this

task, the rule-based tokeniser from ScispaCy [149] was used. ScispaCy adds tokenisation
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Table 3.1: Summary statistics reporting the percentage of documents in which a
particular field was available, and the proportion of papers labeled as Relevant and
Not Relevant. The statistics are reported for both training and final test sets.

Field Training Final test

Title 100 100
Abstract 87.17 87.67
Authors 99.44 99.63
Journal 100 100

Publication Type 100 100
Keywords 15.41 16.125

MeSH terms 97.67 98.25
Chemicals 93.86 94.13
Affiliations 80.94 79.125

Label

Relevant 19.81 20.25
Not Relevant 80.19 79.75

rules on top of the general-domain spaCy’s rule-based tokeniser to improve the tokenisa-

tion of biomedical text11. Once tokenisation was performed, further pre-processing and

cleaning steps were applied to improve the quality of tokens and reduce the vocabulary

size (which directly impacts the number of features):

• Initially, all tokens were lowercased.

• Punctuation signs were removed from token units (e.g. “2.2” becomes “22”).

Then, tokens that were entirely composed by digits were standardised to “##”.

This approach attempted to encode the frequency of numerical information in an

abstract but not the specific digits reported. In addition, after some exploration, it

was observed that a substantial number of tokens included a numerical value with

the units attached without white-spaces (e.g. “43.3l/min”). To separate these

cases, tokens starting with a digit value were split into numeric and non-numeric

tokens before the digits were standardised. For instance, the token “43.3l/min”

becomes [“##”, “lmin”] after pre-processing is applied.

• Common English terms that appear with high frequency (called stopwords) and

are assumed to add little discriminant value (e.g. “the”, “be”, “in”, “are”) were

removed. Then, isolated punctuation signs were also removed since they were

assumed to be irrelevant for classification purposes. The list of stopwords and

punctuation signs included in the spaCy’s 2.2 library [201] were used to identify

those tokens.

11Details on spaCy’s tokenisation rules can be found at https://spacy.io/usage/

linguistic-features#how-tokeniser-works and the additional rules for sentence segmenta-
tion and tokenisation implemented for biomedical text can be found at https://github.com/

allenai/scispacy/blob/master/scispacy/custom_tokenizer.py.
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• Chemical mentions were identified using scispaCy’s named entity recogniser (NER)

model trained on the BC5CDR corpus and replaced with the token drugname to

avoid bias toward particular chemical references.

• Stemming: Due to differences in grammatical expressions, documents include dif-

ferent forms of the same word (e.g. pharmacokinetic, pharmacokinetics, phar-

macokinetically). In many information retrieval tasks, it is helpful to standardise

these words to a unique form since the size of the vocabulary is reduced, and higher

frequencies of important base-forms can be obtained [151]. Two main approaches

are often used to reduce inflexions and derivations of related forms into a base

token, stemming and lemmatisation. Stemming generally refers to the heuristic

process that “chops-off” the end of the words by removing derivational affixes (e.g.

pharmacokinetic, pharmacokinetics, pharmacokinetically become pharmacokinet),

whereas lemmatisation uses existing vocabularies and morphological analyses to

return a base or dictionary form [151]. Due to its popularity and efficiency, the

rule-based Porter’s algorithm [202] was used to stem the tokens in our corpus12.

Once the tokens from each field were generated and pre-processed, they were joined

into a single list of tokens. However, to differentiate the source of each token, an iden-

tifier (initial uppercase letter of the particular field) was attached at the end of each

token. For instance, the frequency of the token ”pharmacokinet” might have different

relevance if the token comes from the title or the abstract. Hence, the identifier allows

to differentiate both terms in the input vocabulary for BoW (e.g. “pharmacokinet” vs

“pharmacokinetT”). After tokens had been unified into a single list, the BoW encoding

was applied.

3.2.2.5 N-grams

Since a number of PK parameters are composed by more than one term (e.g. “area under

the curve”, “renal clearance”) the effect of using n-grams was explored (see section 2.1.1

for details). The best-performing fields from field selection were utilised for this study,

and the effect of using bigrams and trigrams from the abstract and title as additional

features was compared against using unigrams.

3.2.2.6 Distributed representations

Pre-trained BERT architectures were used to construct distributed representations of

scientific documents in this experiment (for details on this architecture, see section

2.2.2.5). It is worth noting that the parameters of pre-trained models were not updated

12Details on how Porter’s algorithm works can be found at https://nlp.stanford.edu/IR-book/html/
htmledition/stemming-and-lemmatization-1.html.
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(fine-tuned) in this study. Instead, they were used as feature extractors keeping all

BERT parameters fixed. Two models based on BERT were employed in this experiment:

BioBERT and SPECTER.

BioBERT Lee et al., 2019 [122] presented BioBERT, which extended the BERTBASE

model by further pre-training it on PubMed abstracts and PMC full-text articles to

learn word representations specific to the biomedical domain. Distributed token repre-

sentations were constructed in this study by combining the final four hidden layers of

BioBERT v1.1, resulting in 768-dimensional vectors for each token. The representa-

tion of a document was created by concatenating the BioBERT encodings of the title

and abstract. Because the number of tokens varied between documents, a composition

function transformed multiple token vectors into fixed-length document representations.

Two ways were examined to do this, as seen in Figure 3.4. To begin, the mean of

all token representations was calculated (mean pooling), resulting in 1536-dimensional

document representations (768 for the title and 768 for the abstract). The minimum

and maximum values (min&max pooling) were then computed and combined with mean

pooling to generate 4608-dimensional document representations. Note that other com-

position functions have been applied across the literature (e.g. [203]), such as simple

addition or weighted average with idf scores.

Figure 3.4: Example of the approaches used to generate distributed representations
for an input title after BioBERT encoding. The same procedure was applied for tokens
in the abstract.

SPECTER Rather than employing token-level representations, Cohan et al., 2020

[204] suggested a BERT-based strategy for directly generating document-level repre-

sentations for scientific papers. SPECTER pre-trains the Transformer using the ti-

tle and abstract of scientific texts to learn close embeddings for related publications.

SPECTER’s pre-training objective is to predict whether or not a given input docu-

ment cites individual articles. SPECTER encodes the abstract and title of each input

publication into a single 768-dimensional vector that serves as the document’s represen-

tation during pre-training. The authors reported state-of-the-art performance on seven
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document-level tasks [204]. This experiment examined the classification performance by

utilising SPECTER document representations as input features for the binary classifier.

3.2.2.7 Final pipeline

The best-performing features from previous analyses were combined into a single model

to test whether they provided complementary information. The pipeline’s hyperparam-

eters were then tuned using a five-fold cross-validation (CV) approach combined with an

exhaustive grid search through the whole training set (Figure 3.3B). For the grid-search

analysis, a set of candidate values for each hyperparameter were initially established.

The hyperparameters tuned were those from BoW encoder and XGBoost classifier:

1. min df : Minimum number of documents that a specific token should appear to be

included in the BoW feature matrix. This hyperparameter has a large impact on

the size of the feature vectors generated by BoW.

2. max depth: Maximum depth of each decision tree build in the boosting process.

3. colsample bytree: Proportion of features that each decision tree subsamples at each

boosting iteration.

4. n estimators: Number of boosting iterations.

The specified range of values for each hyperparameter is listed in Table 3.2. The learning

rate of XGBoost was kept constant at 0.1. The remaining XGBoost hyperparameters

were maintained at their default values in the scikit-learn API.

Table 3.2: Hyperparameters tuned during cross-validation and their default values.
The range represents the different values tested for each hyperparameter in the grid-
search procedure. The step size refers to the increase between the starting and stop
values.

Parameter Range (start, stop, step) Default value

min df (2,512,x2) 20
max depth (2,64,x2) 4

colsample bytree (1/3,1,+1/3) 1
n estimators Early stopping -

3.2.3 Large-scale application

After training the final pipeline, it was used to classify > 550K documents obtained

through the PubMed search “pharmacokinetics”. The final pipeline was deployed with

Apache Spark for efficient computation and runs weekly updates in Azure Databricks

[205]. Using the BERN algorithm [126], the retrieved articles were characterised by the

chemicals, diseases and species mentioned in the abstract.
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3.3 Results and Discussion

3.3.1 Feature visualisation

A comparison cloud was initially computed to visualise the token frequency distribu-

tion in the corpus and study potentially relevant features. This was plotted using the R

library wordcloud [206] and provides a quick visual inspection of the potential character-

istic tokens from each class. The comparison cloud from Figure 3.5 displays the unigram

and bigram tokens. The size was plotted proportionally to their relative frequency in

the corpus vocabulary, and the vertical position was determined by the proportion of

“Relevant” and “Not Relevant” documents in which tokens appeared. As a result, it

can be observed how tokens like “dose”, “plasma” or “## mg” have a high frequency

in the corpus, but they appear in similar proportions of “Relevant” and “Not Relevant”

documents. In contrast, “pharmacokinetT”13 or “subject” appear in a majority of “Rel-

evant” papers. As a result, these tokens are likely to encode important features during

the training stages. Finally, high-frequency tokens seemed to appear in a higher pro-

portion of “Relevant” documents (more variation of blue token sizes), which indicates

the potential presence of patterns related to word frequencies. In contrast, tokens in the

“Not Relevant” area (red), seemed to have a more uniform size, suggesting the absence

of a word frequency pattern to characterise “Not Relevant” papers.

3.3.2 Inter-annotator agreement

The initial pairwise K value for the 100 randomly selected articles was 0.68 ± 0.073

(mean ± standard deviation) [42]. The initial disagreement was primarily due to: (1)

the annotator’s accidental omission of “Relevant” instances, (2) discrepancies in the

labelling criteria for complicated cases, such as PK studies of endogenous substances,

physiologically-based PK studies, and (3) instances where PK parameters were not re-

ported in the abstract, and the full-text was not accessible. Type 1 disagreements were

easily identified using the double annotation approach and posterior checking of every

disagreed instance. Annotation guidelines were iteratively updated through discussion

with the annotation team to minimise conflicts caused by labelling criteria (type 2).

Updates were performed at the end of each annotation batch until the inter-annotator

agreement exceeded a pairwise K of 0.9. Pair-wise F1 was computed at the end of the

annotation process and resulted in 92.01 ± 1.26 across annotators. This was treated as

the ceiling performance of our models.

The most complicated examples were those in which the entire text was unavailable,

and the abstract was unclear about whether the study estimated PK parameters in

vivo (type 3). In those instances, extensive checks were conducted across the whole

13The capital T indicates that the token came from the title.
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Figure 3.5: Comparison word cloud with the unigrams and bigrams obtained after
preprocessing each field for bag-of-words encoding. Word size is proportional to the
frequency of a token in the vocabulary, whereas the position in the vertical axis refers
to the proportion of labels in which that token appears. Note that tokens that are not
from the abstract are displayed with a field identifier (e.g. T for tokens from the title
or M for mesh terms).

annotation team, and the final label was assigned based on the most frequently used

criteria across annotators. Annotation was also particularly time-consuming for those

publications that did not report parameter estimates in the abstract, which occurred in

over 80% of cases. For those instances, annotators had to find, download and examine

the full-text document. As a result, the average annotation time per abstract across

annotators was 1.5 minutes without posterior review of disagreements.

3.3.3 Classifier comparison

Table 3.3 and Figure 3.6 display the performance metrics when using unigram features

from the abstract and title for Logistic Regression, Decision Tree and XGBoost as classi-

fiers. The best performing classifier was XGBoost, which exhibited over 6% improvement

in the median F1 score in comparison to Decision Tree and Logistic Regression. Although
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many hyperparameters and textual field combinations could be studied, XGBoost was

the classifier selected for subsequent analyses due to its clear outperformance when using

default hyperparameters.

Table 3.3: Summary table with performance metrics reported as median (95% CI)
and F1 interquartile variance (IQV) after 200 bootstrap iterations. The performance
metrics are compared across pipelines using different classifiers.

Pipeline Precision (%) Recall(%) F1 (%) F1 IQV

XGBoost 71.5 (66.5,76.4) 83.5 (77.8,89.9) 77.0 (73.4,81.6) 8.2
Decision Tree 63.1 (57.9,69.4) 68.7 (59.5,76.6) 66.1 (60.3,70.8) 10.5

Logistic Regression 55.1 (50.6,59.9) 81.6 (76.6,87.4) 65.8 (62.0,70.1) 8.1

Figure 3.6: Distribution of F1 scores for the different features used in the classifier
comparison analysis after 200 bootstrap iterations.

3.3.4 Field selection

After 200 bootstrapping rounds on the training set, evaluation metrics were calculated to

determine the importance of each PubMed field for the classification task. Table 3.4 and

Figure 3.7 present the outcomes of this analysis. It was found that combining the ab-

stract and title information (Abstract pipeline, median F1=78.2%) gave a significant
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benefit over employing only the title (Title pipeline, median F1=65%). Additionally,

a number of fields added to the title and abstract did not provide any discriminant

information: chemicals, journal, authors, keywords. Adding affiliations increased the

median F1 score by a very small amount (∆F1=0.1 %), but there was no apparent change

in the distribution of F1 scores (Figure 3.7). In comparison to using only the abstract

and title, adding the MeSH terms and Publication Type as extra fields resulted in a

significant increase in the distribution of F1 scores, with a gain of over 1% in the median

F1. The Publication Type was particularly useful for determining if PK articles were

Reviews containing PK data from other studies, which facilitated the characterisation of

“Not Relevant” publications that had similar word frequencies to the “Relevant” ones.

After the previous observations, the Title, Abstract, MeSH terms and Publication Type

were selected for subsequent analyses and named optimal fields. Only using the optimal

fields exhibited a similar (and slightly higher) performance than the pipeline using all

the fields (Table 3.4). Hence, a significant decrease in the feature matrix was obtained

while maintaining the classification performance when only using the optimal fields. In

subsequent analyses, only the optimal fields were considered for BoW encoding.

Table 3.4: Summary table with performance metrics reported as median (95% CI)
and F1 interquartile variance (IQV) after 200 bootstrap iterations. The performance
metrics are compared across pipelines using different fields from PubMed entries.

Pipeline Precision (%) Recall(%) F1 (%) F1 IQV

Title 65.3 (59.0,72.7) 65.8 (55.0,72.8) 65.0 (59.5,71.0) 11.5
Abstract 77.0 (69.8,82.6) 79.8 (73.4,86.1) 78.2 (73.6,82.6) 9.0

Authors* 76.4 (69.4,82.6) 80.4 (72.8,86.1) 78.2 (73.3,82.6) 9.3

Journal* 76.4 (70.2,82.2) 79.8 (72.8,85.4) 78.0 (73.6,82.0) 8.4

Publication Type* 78.0 (71.6,84.3) 81.6 (74.7,87.4) 79.6 (75.5,84.2) 8.7

Keywords* 76.6 (70.2,83.0) 80.4 (72.8,85.5) 78.2 (73.8,82.2) 8.4

MeSH terms* 79.2 (72.1,85.2) 79.8 (72.8,86.1) 79.5 (74.3,83.3) 9.0

Chemicals* 76.0 (69.5,81.9) 80.4 (73.4,86.1) 77.8 (73.0,82.0) 9.0

Affiliations* 76.6 (69.8,82.1) 80.4 (72.8,86.7) 78.3 (73.2,81.9) 8.7
All fields 80.1 (73.0,86.1) 81.6 (74.1,87.4) 80.5 (75.7,84.9) 9.2

Optimal Fields** 80.1 (73.9,86.0) 82.3 (74.1,88.6) 80.6 (75.8,85.2) 9.4

*Tokens from the title and abstract were also included when encoding this field.
**The optimal fields were the title, abstract, MeSH terms and publication type.
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Figure 3.7: Distribution of F1 scores for the different features used in the field selec-
tion analysis after 200 bootstrap iterations. The fields Chemicals, Journal, Authors,
Keywords, Affiliations, MeSH terms and Publication Type were encoded together with
the title and abstract tokens. The Optimal Fields include the title, abstract, MeSH
terms and Publication Type.

3.3.5 N-grams

The results of BoW encoding utilising bigrams and trigrams are shown in Table 3.5 and

Figure 3.8, respectively. Optimal Fields from the previous section refers to the same

as the Unigrams pipeline in this section. Bigrams and trigrams did not outperform

unigrams in this experiment. Bigram and trigram features did not give extra discrim-

inant information despite numerous PK parameters being expressed with more than

one term (e.g. distribution volume, maximum concentration, the area under the curve,

and systemic clearance, for example). This might be caused by the high diversity of

PK parameter mentions, which results in very sparse BoW representations that do not

benefit from n-grams. When n-grams are included, the number of features in input

document representations goes up significantly. Because of this, the additional infor-

mation that bigram and trigram features might provide does not seem to be worth the

additional expense in dimensionality and sparsity of the feature matrices.
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Another analysis that is often performed in document classification tasks is scaling BoW

matrices with TF-IDF scores. However, since XGBoost used decision trees as weak

learners and the gini index as the splitting criterion, there was no justification for scaling

each feature column with the IDF score. The ranking of values in the same column

would not be modified after scaling, which would result in the same Gini index per

feature column.

Table 3.5: Summary table with performance metrics reported as median (95% CI)
and F1 interquartile variance (IQV) after 200 bootstrap iterations. The performance
metrics are compared across pipelines using different n-grams from the optimal fields.

Pipeline Precision (%) Recall(%) F1 (%) F1 IQV

Unigrams 80.1 (73.9,86.0) 82.3 (74.1,88.6) 80.6 (75.8,85.2) 9.4
Bigrams 79.9 (72.2,86.9) 81.6 (74.1,88.0) 80.6 (76.2,84.8) 8.6
Trigrams 80.4 (74.4,86.3) 81.0 (73.4,88.0) 80.6 (76.7,84.6) 7.9

Figure 3.8: Distribution of F1 scores for the n-grams analysis after 200 bootstrap
iterations.
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3.3.6 Distributed representations

This section examined the effect of encoding documents using word and document em-

beddings. Table 3.6 and Figure 3.9 illustrate the results. The F1 scores for document

representations produced via SPECTER were worse than those obtained by pooling

BioBERT embeddings from the title and abstract tokens, with a difference of over 5 %

in the median F1 score. While SPECTER representations have demonstrated state-of-

the-art performance for a variety of document-level tasks [204], pooling strategies at the

token level may be more suited for this specific task because they are more likely to

identify whether specific terms (e.g. PK parameters) appeared in the document.

When using BioBERT representations, adding min&max pooling resulted in a slightly

higher median F1 score over using the mean across tokens. If only a small number of

keywords (e.g. PK parameters and study-specific terms) contributed to the final predic-

tions, min&max pooling are useful methods to identify the presence of those terms by

extracting the most salient features from every token-embedding dimension [207]. How-

ever, since these keywords’ appearance might also be detected with BoW approaches,

in the following analyses, the effect of joining both (1) BoW + BioBERT mean pooling

and (2) BoW + BioBERT mean + min&max pooling was studied.

Table 3.6: Summary table with performance metrics reported as median (95% CI) and
F1 interquartile variance (IQV) after 200 bootstrap iterations. The performance metrics
are compared across pipelines using different distributed document representations.

Pipeline Precision (%) Recall(%) F1 (%) F1 IQV

SPECTER 74.1 (66.5,80.9) 69.0 (62.0,76.6) 71.2 (66.2,75.8) 9.6
Mean pool 78.1 (69.0,85.4) 75.3 (68.3,82.9) 76.6 (71.6,81.3) 9.7

Mean + min&max pool 80.1 (71.8,86.0) 75.9 (69.6,82.9) 77.7 (72.7,81.4) 8.7

Only two token-pooling strategies (mean vs min&max) were studied in this chapter since

they represent the most common mechanisms used by previous approaches [207]. How-

ever, future studies might benefit from more complex hierarchical pooling approaches

such as attentive pooling [208].
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Figure 3.9: Distribution of F1 scores for the distributed analysis after 200 bootstrap
iterations.

3.3.7 Final Pipeline

Table 3.7 and Figure 3.10 show the outcomes of adding BioBERT mean pooling and

BioBERT mean + min&max pooling embeddings to the unigram representations. When

BioBERT embeddings were added to unigram representations, the median F1 scores were

slightly higher than when unigrams were used alone. However no significant improve-

ment can be concluded due to the high degree of overlap between the three distributions.

Table 3.7: Summary table with performance metrics reported as median (95% CI) and
F1 interquartile variance (IQV) after 200 bootstrap iterations. The performance metrics
are compared across pipelines using BoW together with distributed representations.

Pipeline Precision (%) Recall(%) F1 (%) F1 IQV

Unigr. 80.1 (73.9,86.0) 82.3 (74.1,88.6) 80.6 (75.8,85.2) 9.4
Unigr. + mean pool 83.7 (76.7,89.1) 80.4 (74.1,87.3) 81.7 (77.8,86.0) 8.2

Unigr. + mean + min&max 83.8 (75.6,88.8) 79.1 (73.4,85.4) 81.0 (77.2,85.4) 8.2

A five-fold CV approach was used to find the optimal hyperparameters (Figure 3.2) for

encoding documents using Unigrams + BioBERT mean pooling since this pipeline re-

ported the highest median F1 score. The optimal hyperparameters were min df =128,
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Figure 3.10: F1 score distributions for the pipelines using unigrams together with
BioBERT embeddings.

max depth=4 and colsample bytree=1., which resulted in an average F1 score of 83.8

% over five folds. Finally, the whole training set was used to optimise the pipeline’s

hyperparameters, which were then applied to the 800 documents in the test set. Table

3.8 contains the final metrics. The best estimates of the classifier’s performance on un-

seen data exhibited an F1 of 83.8% on the classification of “Relevant” publications, and

an overall 93.2% accuracy across all predictions (“Relevant” and “Not Relevant”). Wang

et al. [11] used an entity template to detect scientific publications providing midazolam

PK parameters in healthy human volunteers and achieved an F1 of 78.1 %. However, the

relevance criteria used in this study were significantly broader than those used in Wang

et al. [11], including a range of drugs, species, conditions and study designs. Overall,

the pipeline presented in this study outperforms previous tools at detecting relevant

literature reporting in vivo PK parameters.

A qualitative evaluation of the classifier predictions on the test set was conducted

to identify causes of misclassification. The primary causes of misclassification of “Not

Relevant” papers (thus limiting the pipeline’s precision) were: (1) papers reporting PK
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results for endogenous substances (e.g. insulin) that were previously considered “Rel-

evant”; and (2) physiologically-based or in silico PK studies that included estimated

parameter values in the abstract. This suggests that the primary cause for these stud-

ies’ misclassification is the very similar word distribution to the “Relevant” articles since,

despite not being relevant, they would often report PK parameter values along with de-

mographic data. Misclassification of “Relevant” papers (thereby limiting the pipeline’s

recall) was most frequently observed in the following situations: (1) publications with-

out abstracts available in PubMed, (2) PK publications with parameters mentioned in

the full-text but not in the abstract, and (3) animal PK studies. Cases 1 and 2 are

challenging to detect since establishing their relevance might require information from

the whole text, which is not provided to the classifier. However, the ceiling performance

given by the average inter-annotator F1 score was 92.01%, which is still far from the

current model performance. Additionally, our inspection indicates that there is still

significant room for improvement in the detection of animal studies reporting in vivo

PK parameters. Releasing this labelled corpus openly available aims to encourage the

development of NLP pipelines that help to accelerate ADME datasets’ curation.

Table 3.8: Performance metrics of the final pipeline on the test set.

Precision (%) Recall(%) F1 (%) Accuracy (%)

84.8% 82.8% 83.8% 93.2%

3.3.8 Large-scale application

In January 2021, the final pipeline identified 120,913 papers as “Relevant” when applied

to the corpus obtained from the PubMed search “pharmacokinetics” (n = 584,961).

According to the annotation timings analysed in this chapter, manually annotating this

corpus would have required over 610 days for a single annotator without further review.

Furthermore, by utilising BERN [126], all “Relevant” articles were indexed according to

the chemicals, species, and diseases stated in the abstract. All publications providing

in vivo PK parameters have been made publicly available through a search interface at

https://pkpdai-search.com/pkdocsearch. The classification pipeline was scheduled

to run weekly updates to retrieve newly published PK papers. Overall, the interface

serves as a centralised repository of articles reporting PK parameters, which researchers

can now utilise to compare and efficiently find relevant PK data.

3.4 Conclusion

This chapter described a classification pipeline for identifying scientific publications that

reported in vivo PK parameters. Objective O1−1 was addressed by developing a new
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annotated corpus containing document-level labels for over 4000 abstracts. Different

encoding and decoding approaches were compared to fulfil objective O1−2, and the

optimal pipeline obtained an F1 score of 83.8 % on the test set. Finally, objectives O1−3

and O1−4 were addressed by applying this model to a large corpus of pharmacometric

literature and developing an online resource14 including over 120K relevant papers to

search for and compare PK outcomes. Furthermore, all labelled data and models were

made publicly accessible to the research community at GitHub15.

In addition to speeding up ADME dataset curation, this open-access automated reposi-

tory has the potential to enable text mining applications in the PK domain and serve as

a central database for PK data search, making PK results easier to find, compare and

replicate. The potential application of the search engine developed for curating ADME

datasets was studied in detail in chapter 7.

3.5 Future work

Different approaches were independently explored in this chapter to represent and clas-

sify PK articles. One promising approach for improving the classification performance is

to train a single neural model end-to-end through backpropagation, fine-tuning param-

eters for both (1) token embeddings and (2) classification layers. For instance, recent

approaches have fine-tuned Transformer-based models (e.g. BERT) for specific long-text

classification tasks achieving state-of-the-art results [209]. Additionally, to account for

the specialised vocabulary found in the pharmacokinetics domain, future studies using

BERT-style models could benefit from: (1) further pre-training on this corpus, (2) using

pre-trained models with medical vocabularies (e.g. PubmedBERT [210]) or (3) using

approaches that start with character-level representations and do not rely on WordPiece

tokenisers, such as CharacterBERT [211].

Given the large number of PK publications retrieved in this study, future research in

biomedical NLP might use this corpus and the annotated data to develop additional tools

that can facilitate the extraction of PK information and evaluate document classification

algorithms.

14https://pkpdai-search.com/pkdocsearch
15https://github.com/PKPDAI/PKDocClassifier
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Chapter 4

Named Entity Recognition of Phar-

macokinetic Parameters

The content of this chapter is based on work conducted by the author during a twelve-

month Enrichment Scheme at The Alan Turing Institute.

4.1 Introduction

This chapter addresses the first step towards automated extraction of pharmacokinetic

(PK) estimates from the literature, which is critical to accelerating the construction

of Administration, Distribution, Metabolism and Excretion (ADME) datasets. Named

Entity Recognition (NER) is fundamental for information extraction pipelines. Recog-

nising entities of interest in text allows for subsequent downstream tasks such as relation

extraction or entity linking [212]. As a consequence, over the last two decades, a variety

of annotated resources have been developed to target different types of biomedical enti-

ties such as chemical mentions, genes, species or diseases, amongst others [88]. Some of

these entities are crucial to extract pharmacokinetic PK measurements in context. For

instance, given the sentence:

The elimination t1/2 of leuprolide was 1.28 h in patients with prostate cancer.

An NLP system that extracts PK estimates from the literature might need to recognise

a variety of entities such the PK parameter (elimination t1/2), chemical related to

the parameter (leuprolide), estimated value (1.28), units (h), species (patients) and

condition/disease (prostate cancer). As previously mentioned, existing resources have

been developed to tackle the main types of biomedical entities and they might be efficient

to identify the drug, species and conditions mentioned in the example. Additionally,

some entities with relatively consistent patterns (e.g. numerical values) might be easily

identified with rule-based algorithms [11].

However, one of the main challenges for building comprehensive ADME datasets that

are useful for preclinical drug development is to tackle multiple types of PK parameters

[23]. Recognising PK parameters is also critical to characterise DDIs better since many

interactions are reported by mentioning their effect on specific PK parameters [43, 213].
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For instance, in the following sentences, it can be observed how detecting clearance, and

bioavailability mentions is crucial for understanding the type of DDI:

The bioavailability of oral ondansetron was reduced from 60% to 40% (P < .01) by

rifampin.

The clearance of mitoxantronse and etoposide was decreased by 64% and 60%, respec-

tively, when combined with valspodar.

Recognising mentions of PK parameters is a challenging task since there are multiple

PK parameter types and their mentions are often highly variable across the scientific

literature, involving the frequent use of acronyms and long textual spans [43].

Previous work Although several biomedical text mining efforts have focused on DDIs,

little work has tackled the NER of PK parameters. Lewinski et al. 2017 [214] developed

an annotated corpus for NER in the domain of nanomedicine. The corpus annotated

physicochemical properties, PK parameters and biologic response information from 41

drugs in drug product inserts collected from the Drugs@FDA Database1. The annotation

not only considered whether a specific span was a PK parameter but also classified it into

whether it was an AUC, Clearance, Cmax, Elimination half-life, Plasma half-life, Tmax

or Volume of distribution. However, only 272 mentions of PK parameters were present

across the corpus, which highly limited the performance of NER models in recognising

PK parameters (below 50% F1 for all parameter types except plasma half-life). Although

this corpus tackled several PK parameters, it did not cover all the ones appearing in the

scientific literature (more than 66 were described in the PK Ontology from Wu et al.

[43]). Additionally, drug product insert documents have a very different narrative than

scientific articles. Therefore, due to the particular domain (nanomedicine), different

types of documents (drug inserts), limited annotations of PK parameter spans, and

space of parameters covered, models trained on this corpus are unlikely to perform PK

NER of multiple parameters in scientific sentences efficiently.

The most similar work to the one presented in this chapter is the corpus developed by Wu

et al. 2013 [43] when presenting the PK Ontology. In that study, the authors annotated

multiple entities relevant to PKs and DDIs from multiple study types (i.e. clinical

PK, pharmacogenetics, in vivo DDI and in vitro drug interaction studies). However,

the annotations focused on a specific application domain (DDIs) and abstracts were

deliberately selected from PK studies of certain compounds: midazolam and CYP2D6

enzyme. This selection of annotated sentences has limitations for training and evaluating

NLP systems used across different PK study types. For instance, NER models trained

on this corpus might learn specific features only used in midazolam’s abstracts (e.g.

some parameters, species or routes of administration might be mentioned more or less

frequently than in abstracts from other drugs). Additionally, sentences were only selected

1 https://www.accessdata.fda.gov/scripts/cder/daf/
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from abstracts, but it is crucial to train and evaluate models that also use PK sentences

from the full text since estimates are often not reported in the abstract but in the results

section of the publication. Nonetheless, since PK parameter spans were annotated, the

suitability of this corpus to develop PK NER models was studied in this chapter, and a

description of the corpus is provided in section 4.2.2.4.

Finally, Kolchinsky et al. [160] studied different classifiers to identify sentences from the

scientific literature that reported PK DDIs. To generate valuable features, Kolchinsky

et al. mentioned the use of an in-house dictionary, i-PkParams, to detect terms relevant

to PK parameters and studies. However, the dictionary was not publicly available and

could not be used in this work.

Overall, few annotated resources are currently available for recognising PK parameter

mentions. Additionally, no model has been found explicitly designed to perform NER

of PK parameters in the scientific literature. Therefore, due to its potential benefit for

extracting PK estimations from text and characterisation of DDIs, this chapter focuses

on developing a NER model for PK parameters that can be effective across different PK

study types and abstract and full-text sections. However, very large amounts of training

data are often needed to train efficient NER algorithms, which can be prohibitively

expensive to annotate. Therefore, this chapter also analyses the effect of active learning

approaches for NER of PK parameters. With this context in mind, the Q2 of this thesis

was addressed with the following objectives:

O2−1 Develop annotated corpora using abstract and full text sections for NER of PK

parameters.

O2−2 Analyse the effect of using active learning to reduce labelling efforts.

O2−3 Compare the performance of multiple approaches in recognising PK parameter

mentions, from rule-based to Transformer models.

O2−4 Assess the generalisation of the models developed to external annotated corpora.

O2−5 Compare the effect of training models with the annotations developed in this study

against using the corpus annotated by Wu et al. [43].
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4.2 Methods

This section describes the methods employed to develop suitable architectures and anno-

tated data to efficiently train NER models of PK parameters. The methods are divided

into the following sections:

1. NER Models Description of architectures used to recognise PK parameter men-

tions.

2. Corpus construction: Description of the annotation procedure to develop an

annotated corpus to train and evaluate PK NER pipelines.

4.2.1 NER models

4.2.1.1 Evaluation

Given some input text (often a sentence/paragraph), the task of NER models consists of

identifying mentions of entities within the text. NER is commonly framed as a sequential

labelling task, where each token in an input text receives a particular label [215]. Since

entities can expand across multiple tokens, different tagging schemes exist to associate

token-level labels to named entities composed by one or more tokens [216]. The BIO

tagging scheme (also known as IOB2) is the most commonly used, where each token

can be classified as the beginning of an entity (B), inside an entity (I), or outside of an

entity(O) [210, 216]. To determine the type of entity, the “B” and “I” tags are often

followed by the title of the entity type. For instance, a PK entity composed of two

tokens followed by a single-token chemical entity might be labelled as [“B-PK”, “I-PK”,

“B-CH”] according to the BIO scheme. In this chapter, a single entity type was studied,

“PK” using the BIO tagging scheme.

The most common metrics for NER are precision, recall and F1 scores, but different ap-

proaches can be taken when analysing sequences of BIO labels. During the training of

ML models for NER, the loss function often computes the loss at the token level. How-

ever, when evaluating the performance of NER systems, it is crucial to derive entity-level

metrics instead of token-level since these are more reflective of how well the system can

recognise the desired named entities. This setting requires defining the concept of true

and false positives and false negatives for a specific sequence prediction to derive preci-

sion, recall and F1 scores at the entity level. Partial overlaps between a system prediction

and annotated labels need consideration. Table 4.1 shows an example of a sequence of

tokens with BIO predictions against BIO labels. There are two entities mentioned in

the input sequence, “terminal half-life” and “renal clearance”, each composed of two

tokens. The system correctly identifies the boundaries and type of “terminal half-life”
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but predicted only “clearance” instead of “renal clearance”, which is considered a partial

match. In NER, it is common to consider these partial matches as false positives (be-

cause the predicted entity is incorrect) and false negatives (because the system did not

predict the annotated span). However, these criteria might be too restrictive for some

applications. It is important to monitor partial matches to evaluate PK NER systems

since they might already be helpful for some applications (e.g. capturing the primary

PK term might be enough to determine the type of DDI). Therefore, two main criteria

were used to evaluate NER models in this chapter based on the metrics presented at the

Message Understanding Conference V [217], and SemEval-2013 Task [218]: strict and

partial matching.

Table 4.1: Example of system prediction and true labels in PK NER. Where “O”
stands for out of an entity, “B-PK” beginning of a PK entity and “I-PK” for inside a
PK entity.

Token System Prediction True Label

the O O

terminal B-PK B-PK

half-life I-PK I-PK

and O O

renal O B-PK

clearance B-PK I-PK

were O O

Strict matching This is the most common metric reported in the NER literature.

In this scenario, only predictions that have total overlap with the annotations in terms

of entity boundaries and types are considered true positives. If the system misses an

annotated entity, this is considered a false negative, and if it predicts an entity that has

not been annotated, it is considered a false positive. Partial matches are considered as

both false positives and false negatives.

Partial matching This metric reflects some information on cases where the system

prediction has some entity tokens overlapping with annotated entity tokens. Specifically,

if there is a partial overlap between a system prediction and annotated entity, this is

considered a half-true positive, i.e. True Positives = strict matches + 0.5 · partial

matches.

Precision, recall and F1 scores were independently computed for the two matching cri-

teria in this chapter. The metrics were computed using the nervaluate2 library, which

researchers in the field have extensively used. Specifically, to perform an evaluation

2 https://github.com/MantisAI/nervaluate
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independent of the tokenisers used, the test script accepted annotations at the character

level (i.e. defining character start and end offsets of entity mentions). Given an input

sentence, it required models to predict character-level entities. Finally, strict and partial

matching were computed using the character-level predictions. For instance, the follow-

ing shows an example of the format required to compare annotations against predictions

for two sentences of the test set:

Annotations = [

[{"label": "PK", "start": 2, "end": 4}],

[{"label": "PK", "start": 1, "end": 2},

{"label": "PK", "start": 3, "end": 4}]

]

Predictions = [

[{"label": "PK", "start": 2, "end": 4}],

[{"label": "PK", "start": 1, "end": 2},

{"label": "PK", "start": 2, "end": 4}] # partial match

]

4.2.1.2 Rule-based

Given the PK expertise of the annotation team, a set of rules was generated to develop

a rule-based model covering well-known PK parameters and their primary surface forms

and acronyms. The model was implemented using the entity ruler from spaCy3 which

requires a set of token-level patterns and can incorporate rules regarding part-of-speech

(POS) and dependency labels. The pre-trained scispaCy (en core sci md) was used as

a base tokeniser, POS tagger and dependency parser to incorporate the token-level pat-

terns into the model. For a list of patterns see Appendix B: Named Entity Recognition

patterns. Developing the list of terms and rules was an iterative process performed to-

gether with experienced pharmacometricians, and the model performance was updated

by assessing its performance on the development set. Once the rules covered the most

well-known terms, the final rule-based algorithm was only evaluated once on the test set

to compare the model performance against ML models.

4.2.1.3 BERT

Most state-of-the-art architectures currently used for NER tasks employ pre-trained

Transformer models to obtain contextual token representations [2]. BERT was used in

this study as a pre-trained model. As observed in Figure 4.1, a sequence of tokens is

given as an input to the BERT model, which processes them through a series of trans-

former encoder blocks (see details in section 2.2.2.5) and returns a sequence of contextual

token embeddings (green boxes in Figure 4.1). Then, a task-specific classification model

3 https://spacy.io/usage/rule-based-matching
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(Token classifier in Figure 4.1) is arranged on top of BERT to generate the final out-

put token labels (e.g. using the BIO tagging scheme). It has been shown that when

fine-tuning4 BERT models for specific tasks, the output representations already capture

many non-linear and long-range dependencies between input tokens [2, 210]. Therefore,

the token classifier consisted of a single feed-forward layer accepting an output vector

representation from BERT and transforming it to a vector of j dimensions where j =

the number of classes (3 in this dataset), which was finally normalised with a softmax

operation to convert output values to class probabilities. In other words, the following

operation was applied to each output token representation from BERT (Ti) to obtain

their token labels:

ŷi = softmax(WoTi + bo) (4.1)

Where ŷi represents the model output for token i expressed as a vector of j elements, each

containing the probability of BIO classes (in this application “O”, “B-PK” or “I-PK”).

Wo and bo are the weight parameters of the token classifier. The softmax operation

performs the following transform to each value in the output layer (xi):

softmax(xi) =
exi∑j
w=1 e

xw
(4.2)

Figure 4.1: Illustration of the fine-tuning strategy for NER with BERT-based models.
Blue boxes represent the input embeddings (Ei) for each token. Green boxes represent
the output embeddings (Ti) from BERT which go trough a feed-forward layer (Token
Classifier) and are mapped to token-level BIO labels.

Two pre-trained models were compared: BERTBASE [2] which was pre-trained on

general-domain English text (English Wikipedia and BooksCorpus), and BioBERT v1.1

4 All BERT parameters are updated by gradient descent using backpropagation.
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[122] which was further pre-trained on PubMed articles. The implementation was done

using PyTorch [219] and the Huggingface Transformers library [220]5.

Training Training instances were sentences with their respective entity annotations.

BERT tokenisers were used to split each input sentence into a sequence of (sub-word)

tokens. Each token was associated with a BIO label (“O”, “B-PK” or “I-PK”) according

to the annotations provided. The training was supervised. The model was trained to

minimise the categorical cross-entropy loss between the predicted token-level softmax

scores and the true labels encoded as one-hot vectors. Both BERT and classification

layer parameters were updated during training. The model was trained during 20 epochs

and evaluated on the development set at the end of each epoch. In each experiment,

the state of the model with the highest entity-level strict F1 score on the development

set at a certain epoch was saved. In most experiments, the development F1 scores were

roughly stable after ten epochs and most models achieved the highest strict F1 score

shortly after that time. The Adam Optimizer with a linear weight decay6 of 0.05 was

used and dropout a dropout probability of 0.1 was applied on all layers (according to

[2]). The experiments were run on a single GPU NVIDIA Titan RTX (24GB).

Hyperparameter tuning In early experiments, it was observed that the development

performance was not very sensitive to the choice of hyperparameters as long as they

were within specific ranges. Therefore, little hyperparameter tuning was performed.

The batch size was established at B=16, and larger values were not explored due to

memory constraints. Learning rate was the main hyperparameter examined, which was

grid-search over µ =[1e-5, 2e-5, 3e-5, 4e-5, 5e-5]. The exploration was performed using

BioBERT and a single run for each learning rate, obtaining the best performance when

µ=3e-5. Ten runs with different random seeds were performed for each experiment, and

the run with the highest F1 score on the development set was selected to use it on the

test set. One critical hyperparameter was the maximum number of tokens for input

sequences. After observing the distribution of # tokens/sentence in the training set

(Figure 4.2), a maximum of 256 tokens was established to cover most training instances,

and those sentences with more than 256 tokens were truncated. At inference time, if

sentences contained more than 256 tokens, the sentence was split into several instances,

and after performing predictions, BIO labels were re-joined.

4.2.1.4 SpaCy

Although transformer-based pipelines currently outperform alternative architectures for

NER, they contain a large number of parameters (e.g. 110M for BERTBASE) which

5 https://huggingface.co/transformers/
6 For details on weight decay regularisation the reader is referred to Loshchilov and Hutter 2017 [221].
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Figure 4.2: Distribution of number of BERT tokens in each sentence of the training
set. The red line determines 256, which was the maximum length established during
the experiments.

often limit their usability due to long inference times and technical expertise required to

perform inference. The spaCy library7 gathers components tackling multiple NLP tasks

(e.g. tokeniser, POS tagger, dependency parser, named entity recognisers) in a single

pipeline. Due to their efficiency and competitive performance, spaCy models have been

widely adopted by the NLP and Python communities.

To compare the BERT pipelines against simpler ML architectures for NER and pro-

vide efficient and easy-to-use PK NER models, the scispaCy [149] model was fine-tuned

to perform NER of PK parameters. ScispaCy is built on top of spaCy but focusing

on biomedical/scientific text processing. Specifically, scispaCy models contain a cus-

tom rule-based tokeniser, trained POS taggers, dependency parsers, and NER and EL

components on biomedical text, showing competitive performance on several biomed-

ical NLP benchmarks. The spaCy NER model is a transition-based system based on

the chunking model from Lample et al. 2016 [215]. Each token is represented with a

combination of hashed, embedded representation of their prefix, suffix, shape and lem-

matised features of individual words [149]. A convolutional neural network with residual

connections is used to create contextual embeddings for each token. In this work, all

components from the scispaCy medium-sized pipeline (en core sci md) were reused, and

the NER layer was trained from scratch. Analogous to the BERT pipelines, models were

trained for 20 epochs and evaluated on the development set after each epoch. The state

of the model with the best performance on the development set was saved. The rest of

the hyperparameters and training protocols were the same as those from scispaCy NER

pipelines [149].

7 spacy.io
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It is worth noting that all the architectures implemented in this chapter treated NER as

a token classification problem. This decision was because the PK entity spans did not

overlap. Hence, each token could only belong to a single entity span. However, future

work involving drug names or other biomedical entities might need to address the issue

of nested entities with different architectures (e.g. Ju et al. [222]).

4.2.2 Corpus construction

An annotated corpus was constructed to train and evaluate NER models for PK param-

eters, named PK-NER-corpus.

4.2.2.1 Source

Looking at sentence-level information is often enough to determine whether a specific

span of text relates to a PK parameter without further context. Hence, NER annotations

and training were performed at the sentence level.

Figure 4.3: Flow diagram showing the main processes involved to generate a pool of
candidate sentences for NER labelling.

To generate a candidate pool of sentences to be annotated, the steps displayed in Fig-

ure 4.3 were performed. Initially, the PubMed search “pharmacokinetics” was applied

in June 2020, and the optimal pipeline described in chapter 3 was used to select pub-

lications that reported novel estimates of in vivo PK parameters, which resulted in a

corpus of 114,921 relevant publications. From this corpus, the full-text of 10,132 articles

(8.82%) was accessible from the PMC OA subset8 (green boxes from Figure 4.3) while

only the abstract was accessible for the rest of publications (blue boxes from Figure

4.3). Both, full-text and abstract publications were downloaded in XML format from

8 https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/
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the PubMed9 and PMC10 FTP sites, respectively. Then, the PubMed Parser [197] was

used to extract textual data from XML files resulting in abstract and paragraph texts.

Since the introduction section rarely contains relevant information for PK text mining

purposes, paragraphs from the introduction section were removed before sentence seg-

mentation. Sentence segmentation of scientific text presents characteristic challenges

compared to general-domain English text (e.g. punctuation is often present in abbre-

viations and noun compounds). Therefore, the sentence segmentation algorithm from

scispaCy [149], which was designed to deal with scientific and biomedical text, was used

to split the abstract and paragraphs into sentences. Overall, this preprocessing resulted

in two sets of sentences: the abstract and full-text pools.

The full-text pool contained 721,522 sentences, while over a million sentences were avail-

able in the abstract pool. For many IE applications, it is desirable to evaluate and train

ML models using both abstract and full-text data. Therefore, 721,522 instances were

randomly sampled from the abstract pool and joined with the full-text sentences to

generate a balanced set of candidate sentences. This procedure resulted in a balanced

pool of 1,443,044 sentences, referred to as the candidate pool. All the sentences labelled

during the corpus construction were sampled from the candidate pool.

4.2.2.2 Annotation interface and Guidelines

An interface was developed to annotate PK entities at the sentence level using the com-

mercial tool Prodigy11. This tool was used since it allowed flexible design of UI interfaces

and it facilitated the implementation of annotation frameworks with a model-in-the loop.

However, note that other annotation tools have been previously used allowing active

learning approaches, such as APlenty [223], Inception [224], AlpacaTag [225] or Paladin

[226]. Figure 4.4 shows the main components of the interface developed in this chapter.

Each annotation instance displayed a single sentence, and field experts were asked to

highlight those spans of text relating to PK parameters. If annotators were unsure about

how to annotate a specific instance, they could flag the example for review (flag in Figure

4.4). After annotations were performed, each sample stored character-level indices for

each annotated span (e.g. {entity: “PK”, start character: 15, end character: 20}). The

annotation interface was deployed in a virtual machine hosted on Azure, and Prodigy

sessions were launched on local ports. Local ports were then exposed to a public address

on the internet using ngrok12. Each annotator accessed the interface through a unique

web link, and annotations were stored in an SQL database on the virtual machine and

backed up on Azure Blob storage.

9 https://www.nlm.nih.gov/databases/download/pubmed_medline.html
10https://ftp.ncbi.nlm.nih.gov/pub/pmc/
11https://prodi.gy/
12https://ngrok.com/
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Figure 4.4: Screenshot of the interface used to annotate PK entities from scientific
text. The example displays a single sentence after being annotated.

The annotators were PK modellers familiar with the different parameters and study

types present in the PK literature. However, this work aimed to annotate any PK

parameter mention, covering a large collection of parameter types and potential sur-

face forms appearing during annotation. Therefore, explicit and detailed guidelines

were required to ensure consistency in various decisions, especially those regarding span

boundaries. For instance, amongst many others, some common doubts arising when

annotating PK spans were:

• Which noun modifiers should be included as part of the PK span: renal clearance

or renal clearance; mean clearance or mean clearance.

• How to label abbreviated forms: oral clearance (CL/F) or oral clearance (CL/F),

volume of distribution (Vd) or volume of distribution (Vd).

• Ratios of PK and PD parameters: AUC/MIC or AUC/MIC.

• Whether to label parameter mentions appearing inside equations.

Initially, a small set (n=100) of examples were independently labelled by each anno-

tator involved to detect common doubts and causes of disagreement before annotating

larger batches of sentences. The resolution of which parameters to include and how to

define span boundaries was discussed with the team, and decisions were based on the

expected applications of the models developed, i.e. numerical PK parameter extraction
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and characterisation of DDIs. To determine the main PK parameters included, the

PK ontology published by Wu et al. 2013 [43] was used. Annotation guidelines were

provided to annotators before starting the labelling task. As new challenging examples

appeared and conflicting instances were resolved, guidelines were updated accordingly.

The final annotation guidelines for this task can be found in Appendix A: Guidelines

Named Entity Recognition.

4.2.2.3 Annotation process

The team responsible for the annotation involved three researchers with in-depth ex-

pertise in PK modelling and one PhD student with NLP and PK expertise. Three

datasets were developed to train and evaluate different NER pipelines named: training

development and test sets.

Construction of test and development sets The development and test sets were

generated from randomly sampled sentences from the candidate pool without replace-

ment. This approach aimed to assess the performance of NER algorithms in both the

abstract and full text and to account for the variability of parameter mentions across

the literature by including sentences from multiple papers (e.g. different acronyms often

used in different publications). In total, 1,500 and 500 sentences were selected for the test

and development sets, respectively. Initially, a set of trial sentences were independently

labelled by each annotator involved to detect the primary sources of confusion and dis-

agreement. The initial set of guidelines was then developed. Each of the 2000 sentences

(test + development) followed a two-stage procedure of (1) initial annotation by one

expert, (2) review and standardisation of span boundaries by another bio-NLP expert

(similar to Hope et al. [227]). This process was carried out in batches of 200 sentences.

After each batch, sources of disagreement were discussed, and annotation guidelines

were updated. This approach attempted to ensure consistent and high-quality spans,

but some parameter mentions could still have been missed. To account for potential

parameter mentions missed during this annotation process, sentences in which model

predictions disagreed with the labelled spans were displayed in the terminal to compare

the predicted vs labelled spans. This last check allowed detecting parameter mentions

missed during annotation and generating hypotheses behind model errors.

Why selective sampling? The construction of development and test sets was par-

ticularly labour-intensive and time-consuming since it required iterative reviews of the

annotations to check for missing cases and frequent discussions to unify criteria. Addi-

tionally, many sentences did not contain PK entities. It was observed that only ≈16.4%

of the sentences sampled in PK articles contained PK parameter mentions, resulting

in 149 (development) and 390 (test) annotated spans (see Table 4.3). The sampling
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approach used for the development and test sets preserved the distribution of sentences

in PK articles, which is likely to be a frequent application ground for PK NER models.

However, training effective NER models for new entity types often require many anno-

tated samples with relevant spans on the training set to account for the variability of

surface forms and contexts of use [228]. Hence, applying the same sampling approach

used for the development and test sets to the training set might require labelling a vast

number of training sentences to model the highly variable distribution of PK param-

eter mentions across the literature. Therefore, a selective sampling protocol was used

to maximise the information provided by labelled sentences and generate a training set

covering a large variety of PK parameter mentions.

Construction of training set NER models that rely on hand-crafted rules provide a

framework to incorporate prior knowledge regarding entity mentions. It is often possible

to construct rules that select positive samples with relatively high precision and low

recall, which can be used to construct an initial training dataset covering a collection

of well-known entity mentions [194]. Then, statistical models might be incorporated to

generalise new patterns that could not have been easily written by rules (e.g. patterns

highly dependent on context). Two main approaches were sequentially used to selectively

sample the most informative sentences for PK NER: (1) developing a rule-based model

to automatically generate an initial dataset and (2) active learning to select samples

where the model was most uncertain.

1. Initial dataset The rule-based model described in section 4.2.1 was applied to

all the sentences in the candidate pool. Early exploration showed that the patterns

developed had relatively high precision on partial matches, but there were frequent mis-

takes regarding the exact span boundaries. Additionally, some spans required highly

contextual information to determine whether they were PK parameters. For instance,

the mention of “F” could refer to the PK bioavailability, the statistic from a hypoth-

esis test, a table/figure number or other concepts, but it can only be inferred using

contextual information. Similarly, “area under the curve” could refer to the plasma

concentration-time curve or any other curves (e.g. ROC curve in machine learning).

Hence, a subsequent correction of the labels provided by the rule-based model was re-

quired. Three hundred sentences containing matches from the rule-based model were

randomly selected to construct an initial training set, and annotators were asked to cor-

rect labels provided by the rule-based model. After correction, 86.67% of sentences (260)

remained with PK mentions, although their span boundaries often required correction.

2. Active learning Selecting samples to label based on a model prediction is known

as active learning (AL). Most machine learning algorithms provide probabilistic outputs

of their predictions (e.g. softmax layer in neural networks). This output might be used
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as a proxy to estimate the uncertainty13 of a model on a specific prediction and prioritise

data samples with higher uncertainty for labelling [229]. This approach aims to label

data samples close to the model decision boundary to provide training instances that

reduce the uncertainty of the model. As shown in Figure 4.5 (A), the scispaCy model

(en core sci md [149]) was trained with the initial dataset of 300 sentences (see section

4.2.1.4 for details on the model and training approach).

After training the scispaCy pipeline on the initial dataset, the Prodigy ner.teach frame-

work14 was used to suggest those spans where the model was most uncertain about based

on the token-level softmax scores given by the NER model (B and C Figure 4.5). Specif-

ically, Prodigy uses beam search to select the most uncertain spans over the sequence

of token-level probabilities. The default settings from the Prodigy ner.teach framework

were used (e.g. update approach and frequency). Annotators were asked to accept or

reject spans predicted by the model, and based on their answers; the model was up-

dated in the loop after every batch of ten binary annotations (D and E Figure 4.5).

Note that binary annotations (accept/reject a suggested span) only indicated whether a

span was an entity or not, but information from the rest of the sentence tokens was not

provided. Hence, the model was updated with this partially annotated data (annotator

feedback only provided for those tokens from suggested spans) by updating the target

probabilities of each candidate label in each token involved in the suggested spans. The

updates were automatically performed during the annotation with the default settings

from Prodigy. Binary decisions highly accelerated and simplified the annotation process.

Instead of using large language models like BERT, the scispaCy pipeline allowed fast

iterations and updates with the model in the loop, which made it preferable for AL

purposes. This procedure was performed for 2500 sentences by a single annotator.

Once binary annotations had been performed, another annotator reviewed each of the

sentences with binary annotations and highlighted other spans if present in the sentence

(step F in Figure 4.5). The model used for AL was re-trained (not updated) from

scratch after every batch of 500 sentences was annotated (Figure 4.5, step G). Finally,

the dataset collected with AL approaches was joined with the initial rule-based dataset,

generating a training set of 2800 sentences (step H Figure 4.5).

The stopping criterion for annotation was based on the annotators’ availability and the

project’s time constraints. However, future studies could use confidence-based stopping

criteria for active learning, such as Zhu et al. [231].

Inter-annotator agreement As discussed in Hripcsak and Rothschild [232], Cohen’s

kappa score is not the most suitable metric for inter-annotator agreement (IAA) of NER

13This approach only accounts for aleatoric uncertainty [229]. Note that different sources and quantifi-
cation methods of uncertainty exist across the literature. For a comprehensive review, the reader is
referred to Abdar et al. [230].

14https://prodi.gy/docs/recipes#ner-teach
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Figure 4.5: Schematic representation of the approach used to label instances for the
training set by using and updating scispaCy NER model in the loop.

annotations since it requires the number of negative samples to be computed a priori.

However, since named entities are sequences of tokens, there is no pre-defined number of

candidates in the annotation task [233]. Instead, pair-wise F1 is often used to measure

IAA of named entities [232, 233]. The four annotators independently labelled a total of

200 sentences from the test set, and the average F1 score across each pair of annotators

was used as the IAA. This exercise was done with the last batch of the test set, when

guidelines had already been updated multiple times, but no corrections were performed

before computing the F1 score.

4.2.2.4 External dataset validation

Wu et al. 2013 [43] developed a PK Ontology and presented an annotated corpus using

their ontology. The annotated corpus from Wu et al. 2013 will be referred to as PK-

Ontology-corpus in this chapter. In that study, 541 abstracts were manually labelled,

involving the annotation of key terms, DDI sentences, and DDI pairs. The abstracts

came from 4 study types: clinical PK (mostly focusing on midazolam), clinical phar-

macogenetics, in vivo DDI and in vitro DDI studies. One of the key terms annotated
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in the PK-Ontology-corpus were PK parameters. Since the source of the abstracts was

different from those developed in this chapter (PK-NER-corpus) and focused on specific

application domains, the NER models developed in this chapter were assessed in the

PK-Ontology-corpus. This external evaluation allowed assessment of the performance

of the models developed in an external dataset with different study types, including

several DDI sentences and observing differences in the annotation criteria.

In this analysis, the XML annotations from PK-Ontology-corpus were preprocessed to

generate character-level NER labels for PK terms. The PK-Ontology-corpus anno-

tated different key terms, but only PK parameters were analysed in this study. The

dataset came with three files: invivo train.xml, invitro train.xml, invivo test.xml, in-

vitro test.xml. For this work, in vitro and in vivo studies were merged, resulting in a

training and test dataset. The statistics for those datasets are given in Table 4.2.

Table 4.2: Corpus statistics of the PK-Ontology-corpus stratified by the training and
test sets.

Dataset # Sentences # entity mentions % sentences
with PK mentions

Training 4008 1478 23.68
Test 1021 377 25.27
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4.3 Results and Discussion

4.3.1 Corpus statistics

The main statistics for the PK-NER-corpus are shown in Table 4.3. First, the differences

between the evaluation (development and test) and the training sets are worth noting.

Since the evaluation sets randomly sampled sentences from PK articles, the proportion

of sentences containing PK parameter mentions was only 16.40%. Despite preserving

the distribution of sentences in which PK NER algorithms might be applied, fewer entity

mentions were present in the evaluation sets. On the other hand, 64.25% of sentences in

the training set contained mentions of PK parameters, resulting in many entity mentions.

This difference in the distribution of parameter mentions was due to the active learning

protocol applied to sample training sentences.

A large proportion of sentences from the training set (79.46%) came from sentences in

the full-text body of the articles. Although the candidate pool of sentences was balanced

(same number of abstract and full-text sentences), the active learning protocol suggested

full-text sentences more often than those from the abstract. One potential explanation

for this is that authors tend to report a standard set of PK parameters in the abstract

(e.g. clearance, t1/2), while full-text contains a higher variability of parameter types

and mentions (e.g. compartmental parameters, inconsistent acronyms). This fact might

cause higher model uncertainty of spans coming from full-text sections which resulted

in more sentences from full-text being suggested by the AL loop.

Table 4.3: Corpus statistics of the PK-NER-corpus stratified by the training, devel-
opment and test sets.

Dataset # Sentences # entity mentions % sentences % of full-text
with PK mentions sentences

Training 2800 3680 64.25 79.46
Development 500 149 16.40 50.8

Test 1500 390 16.40 50.8

The average inter-annotator pair-wise F1 scores for exact and partial matching were

89.55% and 93.48%, respectively. These results suggested a high consistency in the

annotation of PK parameters. However, differences in span boundaries still accounted

for a large proportion of disagreements. Nonetheless, it is worth noting that these

metrics reflect the agreement between annotators after stage one, but a subsequent

standardisation of span boundaries was performed in all sentences aiming to improve the

quality and consistency of the annotations. Therefore, the pair-wise F1 scores reported

here does not reflect the ceiling performance for the models, but the expected agreement

between pharmacometricians without standardisation of criteria and span boundaries.
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After review and standardisation without active learning, the average annotation time

per sentence resulted in approximately one minute. The active learning approach ac-

celerated this process, reducing the annotation time to approximately 40 seconds per

sentence.

4.3.2 Model Comparison

This section presents the performance comparison of different NER models in the PK-

NER-corpus. Table 4.4 summarises the main results on the test set. Models were

developed on the training set, and the best hyperparameter combinations were selected

using the development set.

Machine learning approaches tend to outperform NER dictionary- and rule-based meth-

ods when sufficient training data is available and there is a high diversity in entity men-

tions’ surface forms or strong context dependencies. This is often caused by an improved

recall rate [235]. However, rule-based models are often a good starting point to evaluate

whether more complex approaches are required since they can often provide high pre-

cision [235]. Developing good algorithms based on rules often requires reasoning about

the specific domain and the type of entity mentions trying to extract. Therefore, rule-

based models can be used as strong baselines for more complex approaches when domain

knowledge is available to develop robust rules. The results from this section showed that

the rule-based model could not efficiently cover the diversity of PK parameter mentions

annotated by field experts on the test set, with an strict F1 score below 50%. Some of

the main challenges of the rule-based approach were (1) great variety of PK parameter

types, which limited the pipeline’s recall, (2) presence of complementary terms within

PK spans that were difficult to encapsulate with rules (e.g. total body clearance), (3)

acronyms highly dependent on context (e.g. “F” for bioavailability, “AUC” for the area

under the concentration-time curve). There was a large difference (over 15%) in the

Precision for the strict vs partial match evaluation. This is a consequence of challenge 2,

where rules often detected the primary PK term, but complementary terms determining

the parameter subtype were missed. It is important to note that the initial collection

of PK terms was constructed from prior expert knowledge. In the future, the recall of

the rule-based model could be improved by including a more extensive collection of PK

parameter types and acronyms using existing annotations from the training set.

The ML pipelines significantly outperformed the heuristic model with over 30% gain on

the strict F1 score and particularly large improvements on the Recall. Furthermore, as

it has been previously reported [236], it was observed that the models based on BERT

provided substantial performance benefits in comparison to the scispaCy-based model.

On the other hand, from the test set predictions, it was observed that the scispaCy
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Table 4.4: Results on the test set for different NER models. Metrics are reported at
the entity level using strict and partial match.

Strict Partial

Model P R F1 P R F1

Rule-based 52.8 43.59 47.75 69.25 57.18 62.64
ScispaCy 77.09 82.82 79.85 80.91 86.92 83.81

BERT 81.47 87.72 84.48 84.92 91.43 88.05
BioBERT 90.49 90.26 90.37 92.54 92.31 92.43

pipeline was x10 faster at inference time on CPU in comparison to running BERT

models on a single GPU15.

The BioBERT model outperformed the BERT model pre-trained on general-domain En-

glish text, especially on strict entity matching. Specifically, BioBERT provided a large

gain (∆ 9%) on the pipeline precision in comparison to all the other models. This result

suggests that domain-specific pre-training is crucial for PK NER and exploiting BERT’s

transfer learning potential. Therefore, in the subsequent analyses, the optimal BioBERT

pipeline was used. It is worth noting that the performance of the fine-tuned BioBERT

model was already higher than the initial pair-wise F1 between annotators, suggest-

ing that posterior reviews and standardisation of the corpus improved the annotation

consistency and exhibiting the high performance of this model during PK NER.

Other baseline models based on pre-trained language models, such as SciBERT [139], or

RoBERTA [237], could have been used. However, the models selected in this study aimed

to compare the effect of (1) using machine learning approaches instead of rules, (2) using

transformer-based language models instead of CNNs, and (3) using models pre-trained

on biomedical text against pre-training on general-domain English text. Therefore, the

benchmarking of other architectures was left for future work.

Error inspection Overall, the BioBERT pipeline showed good performance at detect-

ing PK parameter entities with strict F1 over 90%. However, a qualitative examination

of the main reasons behind the model errors was carried out to assess the limitations and

potential improvements of the model. Some common examples are presented in Table

4.5.

• When drug names were present within the PK parameter span, the model struggled

to predict the entity span successfully. The first examples in Table 4.5 show

two scenarios where the model did not include the drug names (tulathromycin

and cyclosporine) as part of the spans. Although including drug names within

parameter mentions is rare, future approaches might benefit from masking drug

15NVIDIA Titan RTX 24GB.
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names or performing augmentation by replacing drug mentions with other drug

terms.

• The prediction of slightly incorrect spans (partial matches) where a nearby term

was missed or added by the model was a common source of error. These cases

have been previously observed as common challenges in scientific NER [238]. It

was also one of the most common causes of disagreement between annotators.

Although guidelines were detailed about which terms to include, the number of

exceptions was vast, and inconsistencies might still be present in the annotated

corpus. Further review of the annotations might improve the performance of the

model in these cases.

• In some cases, the model predicted spans of text that, despite not being PK pa-

rameters, they related to some parameter that might have numerical estimations

associated with it. For example, as it can be observed in Table 4.5, time to relapse

(TTR) or AD50 both had contextual similarity to PK parameters since they were

present in the form of acronyms and had numerical values associated with them.

Table 4.5: Common errors from the BioBERT model on the test set. green [*] =
annotated entity, blue [*] = model prediction

Drug mentions The [[maximal] tulathromycin concentration] in lung and muscle homogenate from a
single animal was 4657 ng/g (14 days) and 2264 ng/g (7 days), respectively.

Two patients with radiologic signs of gastroparesis had no [peak cyclosporine levels] at
all and were excluded from the correlation analysis.

Partial matches The mean NTZ [[maximum concentration (Cmax)] in plasma] was 10.2 µg/ml.

Cyclosporin A treatment resulted in a significant increase in [[elimination half-life]],
[mean [residence time]] and [[area under the concentration versus time curve (AUC)]]
of unbound baicalein in the brain.

Non-PK parameters After immuno-chemotherapy, the median follow-up was 55.5 months [24–108 months]
, median [time to relapse (TTR)] was 60 months [12 - more than 108 months], and
time to second CLL treatment (TST) was 84 months [24 - more than 108 months].

The dose of COU that promoted the bronchodilator effect in guinea pigs ([AD50]: 75
mg/kg) [15] was used as a reference to conduct the study.

To showcase the model and allow assessment by researchers in the field, an interactive

demo of the model was released at https://pkpdai-search.com/pknerdemo.

4.3.3 Active Learning protocol

This section compared selecting samples using the AL protocol to random sampling.

Here, AL protocol refers to the process of (1) generating rules and an initial dataset,

(2) developing an initial model on this dataset and (3) using and updating the model

in the loop to select new samples to be labelled. The development set (n=500) was

used as an example of an annotated set randomly sampled. Five hundred sentences

from the training set (n=2800) collected with AL were randomly sampled to perform a

fair comparison. Ten separate runs with different random seeds were performed. The
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AL experiment randomly sampled a different subset of sentences from the training set

and randomly initialised the classification layer parameters in each run. The random

sampling experiment only involved randomising the classification layer parameters in

each run since only 500 sentences were available. The BioBERT model was trained for

five epochs with a µ=3e-5, and the final model was applied to the test set at the end of

each run.

Table 4.6 and Figure 4.6 show the results of these experiments. Training the BioBERT

model with the AL dataset resulted in over 7% increase on the median F1 score for

strict matching compared to training with randomly sampled sentences. Most of this

difference was due to the Recall of the AL pipeline, which was significantly higher than

the random sampling. These results suggest that the protocol used to generate the

training set highly benefited the model performance compared to randomly sampling

sentences. Most of this benefit is the consequence of an improved recall, suggesting that

the AL dataset contains a wide variety of PK spans not covered by the random sampling

dataset. Considering the frequency of named entities in each dataset (i.e. only 16.4% of

sentences mentioned PK parameters in the randomly sampled datasets), it is likely that

the selective sampling approach implemented for this task was particularly beneficial for

covering a wider variety of relevant spans.

Table 4.6: Summary table with performance metrics comparing random sampling
against active learning protocols. The Active Learning dataset was obtained by ran-
domly sampling 500 sentences from the training set. The Random Sampling refers to
the development set (n=500 sentences) with different model initializations in each run.
Metrics were obtained in the test set after training the pipelines for five epochs. Metrics
are reported as median values after 10 runs.

Strict Partial

Dataset protocol P R F1 F1 IQV P R F1 F1 IQV

Active Learning 74.14 84.51 79.78 7.54 77.94 88.92 83.67 6.49
Random Sampling 71.92 75.77 72.61 9.66 78.08 82.78 78.81 8.9

It is important to note that a variety of approaches have been applied for AL in NER

[229, 239, 240]. For instance, Bayesian approaches have recently shown promising results

[229], although their application comes with computation costs. It is still unclear which

AL approaches are most beneficial to make efficient use of a model in the loop. In

this chapter, many approaches are left for exploration. For instance, using BERT-based

models in the loop instead of scispaCy, using diversity sampling, applying other criteria

to estimate uncertainty better, to name a few. However, the framework developed with

Prodigy allowed for fast annotations that reduced the labelling load, and the samples

suggested in early experiments provided diverse (i.e. in terms of surface forms and

parameter types) and challenging spans. Therefore, since the primary focus of this work

was to study and develop suitable corpora and models for NER of PK parameters, the

AL approach described in this study proved efficient for developing such corpora.
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Figure 4.6: Distribution of F1, Recall and Precision scores for the Active Learning and
Random Sampling datasets (n=500 sentences) after 10 runs with different random seeds.
The left and right panels display the scores considering strict and partial matching of
entities, respectively.

Due to the multiple types of PK parameters and their corresponding surface forms

and acronyms appearing in the PK literature, a promising approach for future studies

gathering training data could involve diversity sampling, aiming to cover each type of

parameter and their diversity of named entities. After analysing the annotated data it

was also observed that some entity surface forms had a high frequency in the corpus,

which might provide redundant information to the model. Additionally, the model had

worse performance on some types of parameters (e.g. “time to maximum concentra-

tion”). Hence, AL approaches that aim to cover a wider variety of surface forms and

parameter types might be beneficial for this task.

4.3.4 External corpus

To evaluate the model performance on an external corpus and assess annotation differ-

ences between the PK-NER-corpus and the one from Wu et al. 2013 [43] (PK-Ontology-

corpus), the BioBERT model fine-tuned on the PK-NER-corpus was applied to the test

set of the PK-Ontology-corpus, without any further training on this dataset. Surpris-

ingly, the model reported a competitive strict F1 score of 74.52% without any training

on that dataset (See Table 4.7). A substantial increase can be observed when consid-

ering partial matching (81.1% F1), which suggests that the main PK terms are often

captured, but disagreements on span boundaries limit the model performance on this

dataset. If using the training set from the PK-Ontology-corpus to fit BioBERT16, the

strict F1 score increases by ≈7%. Additionally, a substantial increase is observed from

16In this experiment BioBERT was trained for ten epochs, and the final model was saved.
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strict to partial matching, which might be explained by inconsistencies on span bound-

ary annotations in the training set of PK-Ontology-corpus. Although different research

groups developed both datasets, it was observed that the models trained on PK-NER-

corpus transferred well to the annotation criteria used in Wu et al. 2013. However, when

training a model with the PK-Ontology-corpus and applying it to the test set of the PK-

NER-corpus, the exact matching metrics were 68.8%, 63.59% and 66.13% for precision,

recall and F1 score, respectively. Since the PK-Ontology-corpus used abstracts delib-

erately picked (e.g. midazolam PK abstracts), models trained on this corpus probably

learnt some features specific to these types of articles but not transferable to PK studies

from other types of compounds. These results indicate that PK NER models trained on

the PK-NER-corpus generalise better to unseen PK publications than those trained on

the PK-Ontology-corpus.

Table 4.7: Results obtained on the external validation corpus test set. Metrics from
the PK-NER-corpus were obtained by training models on PK-NER-corpus and applying
them to the PK-Ontology-corpus. Their own training set was used for the PK-Ontology-
corpus to fit the NER model.

Strict Partial

Training corpus P R F1 P R F1

PK-NER-corpus 77.05 72.15 74.52 83.85 78.51 81.1
PK-Ontology-corpus 79.75 83.55 81.61 86.2 90.32 88.21

Annotation differences An evaluation of true labels against model predictions was

performed to detect possible differences in the annotation criteria between the PK-NER-

corpus and the PK-Ontology-corpus. The principal sources of divergences are displayed

in Table 4.8.

• The first source of divergence were span boundaries. It was observed that terms

such as “renal clearance” were not labelled in some examples of the PK-Ontology-

corpus while these were labelled in PK-NER-corpus since they provided infor-

mation on the type of PK parameter. Additionally “mean total area under the

concentration-time curve” or “the peak plasma concentration” were labelled in

PK-Ontology-corpus. Many PK mentions included the term “the” in the PK-

Ontology-corpus, while this term was considered not relevant in the PK-NER-

corpus.

• Some PK parameters were not labelled or missed in PK-Ontology-corpus such as

tmax (time to reach Cmax) or the volume of distribution.

• The plasma concentrations were not considered a PK parameter in PK-NER-

corpus since their values are often noisy and irrelevant for numerical extraction

purposes. However, these were often labelled in the PK-Ontology-corpus.
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These differences are likely to limit the performance of models trained on the PK-

NER-corpus when applied to the PK-Ontology-corpus. However, except for partial

matches and mentions of plasma concentration, the model trained on the PK-NER-

corpus detected almost all the main PK terms appearing on DDI sentences from PK-

Ontology-corpus. This result suggests that the corpus and model developed is aligned

with Wu et al. [43] work and it is likely to be a suitable tool to detect PK parameters

in DDI contexts.

Table 4.8: Predictions vs annotations in the PK-Ontology-corpus. green [*] = anno-
tated entities, blue [*] = predictions of model trained on the PK-NER-corpus.

Span boundaries The [renal [clearance]] was reduced by 60% and the elimination half-life increased by 35%.

Clarithromycin increased the [mean [total area under the concentration-time curve]]
of repaglinide by 40% (P <.0001) and [the [peak plasma concentration]] by 67%
(P <.005) compared with placebo.

Parameters not in Thus, [[clearance]] was approximately halved, [steady-state volume of distribution] was
PK-Ontology-corpus increased, and [[terminal half-life]] was more than doubled.

Itraconazole did not change the [peak time] or the [[elimination half-life]] of either
oxybutynin or N-desethyloxybutynin.

Parameters not in [Plasma concentrations of bosentan] and its three metabolites were measured on days 1 and
PK-NER-corpus 7 of treatment A and on day 6 of treatment B.

Both erythromycin and itraconazole greatly increased [plasma buspirone concentrations],
obviously by inhibiting its CYP3A4-mediated first-pass metabolism.
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4.4 Conclusions and Future work

This chapter presented a new corpus to train and evaluate NER models to detect men-

tions of PK parameters in the scientific literature which fulfilled objective O2−1. The

active learning protocol accelerated the curation of PK data while improving the infor-

mation provided by labelled sentences compared to random sampling, which addressed

objective O2−2. To address objective O2−3, a variety of models were compared, and

BioBERT reported the best performance on PK NER with over 90% F1 score on strict

entity matching. Domain-specific pre-training with transformers was crucial to obtain

optimal performance. A lightweight model based on scispaCy was developed to facilitate

fast inference and integration with other NLP frameworks. Finally, the best-performing

model showed good generalisation on various study types when applied to external an-

notated corpora and validated its potential application to improve the characterisation

of DDIs, which was accomplished through objective O2−4. Additionally, by tackling

objective O2−5, it was observed that models trained on the corpus developed in this

chapter exhibited significantly better generalisation to unseen PK studies than models

trained on previously published corpora.

Future directions of this work could involve:

1. Exhaustive evaluation of the model when characterising DDIs

2. Extension of the model to perform relation extraction of pharmacokinetic param-

eter measurements

3. Exploration of other AL strategies

4. Study of acronym resolution to improve the recognition of PK parameters

5. Evaluation of the effect of pre-training BERT on PK text
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Chapter 5

Few-shot Entity Linking of Phar-

macokinetic parameters

The content of this chapter is based on work conducted by the author during a four-month

internship at BenevolentAI.

5.1 Introduction

Chapter 4 focused on developing models that could recognise mentions of any pharma-

cokinetic (PK) parameter in the scientific literature. However, linking those parameter

mentions to entities in a knowledge base (KB) is critical to identify the specific param-

eter type and stratify the PK information extracted from the literature. For instance,

when extracting PK parameter estimates from the literature, numerical values might be

grouped by PK parameter types and drugs to compare distributions of PK estimations

(e.g. Wang et al. [11], Obach et al. [193]). Furthermore, information of PK parameter

types has rarely been included in text mining approaches to drug-drug interaction (DDI)

[241]. However, such information can be crucial to understand the causal mechanisms

behind DDIs, since it can aid the characterisation of PK DDIs by predicting whether

the interaction affects the absorption, metabolism, distribution or excretion processes

[241]. Pharmacokinetic parameters are generally grouped into main classes (e.g. clear-

ance, half-life, Cmax, AUC, bioavailability, the volume of distribution)1 that refer to

measurements of different ADME properties. However, more granularity on parameter

types is often needed when constructing ADME datasets or comparing parameter dis-

tributions. For instance, Wang et al. 2009 [11] showed that when extracting numerical

estimates of midazolam’s systemic clearance from the literature, the extracted values

had a very different distribution (in terms of mean and standard deviation) than the

values obtained when extracting oral clearance.

Additionally, the main parameter classes have many sub-types crucial to stratify before

including values in ADME datasets. Specifically, Wu et al. 2013 [43] defined 66 parameter

types found across PK studies and relevant for PK text mining. Although Wang et al.

2009 [11] retrieved numerical values for systemic and oral clearance with high precision,

the number of estimates missed and the ability to expand their rule-based approach to

1 For a detailed description of these categories see section 1.2.3.1 in the introduction.
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other PK parameters has not been explored. For these reasons, this chapter focuses on

the study of EL in the PK domain.

The process of normalising specific spans (often detected by NER models) to entities

in knowledge bases is known as entity linking (EL) and plays a fundamental role in

structuring knowledge stored across different types of textual documents. Being able

to link mentions to KB entities is a critical step for many information extraction (IE)

pipelines since it resolves the lexical ambiguity of entity mentions (often containing

many different surface forms) and allows the association of attributes and relations

reported in the text to specific KB entities [242]. In turn, this allows the construction

of nodes in knowledge graphs or items in databases. However, EL is often performed

after recognising candidate mentions in the text. For instance, a NER model detecting

mentions of person names would not be able to resolve whether the mention “Michael

Jordan” refers to the basketball player2 or the mathematician3 [242]. Hence, EL would

be required to successfully disambiguate the “Michael Jordan” mention and potential

associate relations or attributes found in the text to the correct KB entity.

EL is a challenging task in NLP. For example, each entity often has multiple associated

mentions (i.e. synonyms), and a single mention can belong to multiple entities (i.e.

polysemy) [126]. Additionally, biomedical and general-domain KBs such as Wikipedia

or the UMLS contain millions of entities [98]. Due to these challenges, traditional ap-

proaches for EL have often relied on extensive expert-curated vocabularies and complex

hand-crafted rules that perform approximate dictionary matching [126, 243]. However,

the performance of these approaches has been limited by the challenge of keeping termi-

nology lists complete and efficiently dealing with synonyms used by multiple KB entities.

More recently, there has been a shift to using neural methods for EL that exploit contex-

tual information to disambiguate named entities and do not exclusively rely on extensive

vocabularies and hand-crafted rules [130, 242], which have achieved state-of-the-art re-

sults in multiple EL benchmarks [128, 244]. However, applying machine learning for

entity linking is challenging since the number of possible classes is extremely large com-

pared to other classification tasks. As a consequence, annotated EL datasets only cover

a small fraction of the entities in the KB in their training mentions [244]. This setting

requires from models that can link entities not observed at training time or had very

few training examples. The setting of having none or few labelled training data for a

particular KB entity is referred to as zero- or few-shot, respectively [245].

While the majority of EL work has focused on linking to large and generic knowledge

bases, it is frequently desirable to link to specialised entity dictionaries in a specific sub-

domain [246]. For instance, the UMLS covers many biomedical concepts (over 3M), but

only a few general PK parameters are included (i.e. clearance, half-life). Additionally,

training efficient EL systems often requires very large annotated datasets (in the order

2 https://en.wikipedia.org/wiki/Michael_Jordan
3 https://en.wikipedia.org/wiki/Michael_I._Jordan
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of tens of thousands of example mentions (e.g. Mohan and Li [98])). Unfortunately,

labelled data for these specialised KBs are not commonly available and are frequently

challenging to develop.

One of the main challenges of mining data from multiple PK parameters is the availability

of a system that can recognise a wide variety of PK parameter mentions and successfully

determine the specific parameter type in a knowledge base. For this reason, the main

aim of this chapter was to develop a novel EL system that could ground PK parameter

mentions to a knowledge base. Machine learning approaches for PK entity linking were

explored in this study to account for the high variability of PK parameter types and

overlapping synonyms and acronyms between them. Due to the limited training data

available and sparse PK parameter mentions in the literature, potential challenges and

suitable architectures to develop EL models in a specialised sub-domain with limited

training data were explored, focusing on few- and zero-shot settings. Hence, the following

objectives were defined to tackle Q3 of this thesis:

O3−1 Develop annotations to train and evaluate entity linking architectures for PK pa-

rameter mentions using the ontology developed by Wu et al. [43].

O3−2 Study suitable adaptations from existing architectures for few and zero-shot EL

to the task of PK EL, where the number of KB entities and training examples is

significantly smaller than in most EL tasks.

O3−3 Compare few- and zero-shot approaches to simpler baselines and analyse the main

sources of model errors.

5.2 Methods

In this work, the EL task of PK parameters was framed as a subsequent step of NER.

Hence, given a mention span predicted by a NER system, the EL model related that

mention to the correct entry in a knowledge base. The following sections present the

methodology implemented to develop annotated corpora for PK EL and the model

architecture used to address this task.

5.2.1 Corpus construction

The annotated corpus from Wu et al. 2013 (PK-Ontology-corpus) [43] and the PK-NER-

corpus presented in chapter 4 provided annotations regarding which spans of text referred

to PK parameters. However, no information regarding the specific type of parameter

was annotated. Since no annotated corpora were publicly available to evaluate and train

EL systems for PK parameters, a corpus was constructed with training, development,
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and test sets. This corpus consisted of sentences with PK parameter mentions and their

associated entries in a KB.

5.2.1.1 PK Knowledge Base

Amongst other concepts appearing in PK studies, Wu et al. presented a comprehensive

collection of PK parameters containing the main parameter names, a description of each

parameter, and their units. Specifically, two tables describing in vivo and in vitro PK

parameters were published by Wu et al., covering 65 PK parameter types (Tables 2 and

4 from [43]). After inspection by field experts, this collection was considered to contain

the main parameters of interest for ADME dataset construction and to characterise PK

DDIs. Therefore, this collection of parameters, together with their descriptions and

units, was used as the PK Knowledge Base (KB) for EL in this chapter. Additionally,

due to its frequent appearance across PK studies, minimum concentration (Cmin) was

also included. It is worth noting that some less frequent PK parameter mentions might

not be covered in this KB despite appearing in PK studies. Therefore, an additional

entity named NIL4 was added as a potential EL label for those parameter mentions

not covered by the KB. In this study, the NIL entry was used to account for both PK

parameter mentions not listed in the KB and incorrect entity mentions detected by the

NER system. However, the NER’s partial matches with an associated KB entity were

labelled with the correct KB entry. Overall, the final KB used in this chapter included

67 entries (66 PK parameters + NIL entry) with parameter titles (main name in the

KB), descriptions and units.

5.2.1.2 Data source and annotation

This corpus was intended to train and evaluate EL systems that, given a single PK

parameter mention in context (e.g. sentence), could associate that mention to the cor-

rect entity in the KB. Therefore, each parameter mention was assigned one of the 67

categories in the KB.

Source Annotations were performed at the sentence level since this often provides

enough context to determine the type of PK parameter. To generate a comprehensive

corpus of sentences with PK parameters, the best-performing NER model from chapter

4 was applied to abstract and full-text sentences of PK publications. Only sentences

from the 114,921 relevant PK publications described in the previous chapters were used.

Sentences from the abstract and full-text sections of these publications were available

in-house. The NER model was applied to over 1.2M sentences. If the model detected

4 Common label to indicate that there is no matching entity in the KB for a specific mention [43].
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a parameter mention in a specific sentence, an annotation candidate instance was gen-

erated containing the sentence and span boundaries of the parameter mention. If one

sentence mentioned more than one parameter, this was divided into multiple candidate

instances. After generating a collection of candidate instances, 1000, 500 and 1000 in-

stances were randomly sampled to annotate the training, development, and test sets,

respectively. The number of samples selected for each dataset was determined based on

the availability of expert annotators. More samples were allocated to the training and

test set to (1) have enough training samples to model the complexity of the task and (2)

obtain final performance metrics that were as reflective as possible to the distribution

found in the scientific literature.

Annotation process The annotation interface was implemented in Prodigy, and,

for each instance, it displayed a sentence with a single PK parameter mention high-

lighted (as predicted by the NER model) and 67 candidate options relating to the KB

entries. Annotators were asked to select a single option for each mention in context

displayed in the interface. The annotation team involved two senior scientists from the

Drug Metabolism and Pharmacokinetics (DMPK) team with in-depth expertise on PK

modelling and one PhD student with NLP and PK expertise. Guidelines were initially

generated and iteratively updated as new challenging examples appeared. Two anno-

tators labelled the development and test sets independently, and disagreements were

reviewed and resolved. This process was done in batches of 250 instances to resolve dis-

agreements and unify criteria iteratively. Overall, the agreement significantly improved

along the annotation process. Before resolution, two labels were provided for each of

the 1500 evaluation instances (development + test), including overlap between all an-

notators. To estimate the quality of the annotations, the Cohen Kappa Coefficient K

(see section 3.2.1.3 for details) was used to measure pairwise inter-annotator agreements

before resolving conflicting examples on the development and test sets. Due to the time

constraints of this project, a single annotation was generated for each training instance

with an expert review. Micro- and macro-accuracy across annotators was also computed

on the development set to assess ceiling performance.

5.2.2 EL architectures

Task Given an input text document D and a list of mentions within that document

MD = {m1, ...,mN}, an EL model returns a list of mention-entity pairs {(mi, êi)}i∈[1,N ],

where each predicted entity (êi) is an entry in a knowledge base e ∈ E and E rep-

resents the space of possible knowledge base entities (e.g. Unified Medical Language

System (UMLS)). [128]. The models developed in this chapter assume that a title and

a description is available for each KB entry.
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It is common to frame EL with a two-stage approach: (1) candidate generation; where

a group of KB entities are selected for a particular mention, and (2) candidate ranking;

where candidates are inspected in-depth and ranked according to their relative proba-

bility of being the correct link [246]. This approach is commonly used for KBs with a

vast number of entries (usually over 10,000 [98, 128, 246]) since the candidate ranking

is often a computationally expensive operation and candidate generation aims to reduce

the number of examples going to the second stage. However, since this work consisted

of linking mentions to a KB of 67 candidate entities, it is computationally feasible to

consider all KB entries as candidates at inference time. Therefore, the approaches pre-

sented in this section do not perform candidate generation but only rank KB entities for

a given input mention.

5.2.2.1 Bi-encoder

Architecture To develop a model that used entity descriptions from the KB and had

the potential of predicting entities without examples in the training set (zero-shot), a

bi-encoder architecture was implemented. The model was similar to the bi-encoders

presented by Wu et al. 2019 [128] (candidate generator) and Humeau et al. 2019 [247].

A diagram of the approach is shown in Figure 5.1.

Figure 5.1: Schematic description of the bi-encoder approach to represent, encode,
and link PK parameter mentions in sentences to Knowledge Base (KB) entries. TB

represents the language model used to encode mentions and KB entries into single-
vector representations in an embedding space. Each KB entity representation was
scored against the mention representation using the dot-product, and the entity with
the maximum dot product was selected as the model prediction.
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This architecture starts with a sequence of tokens for every KB entity (τe, named candi-

date entity) and mention in context (τm). Then, candidate entities and mentions were

encoded into vector representations:

ym = red(TB(τm)) (5.1)

ye = red(TB(τe)) (5.2)

Where τm and τe are the input token representations for mentions and entities, respec-

tively. TB represents a language model accepting a list of input tokens and returning

a list of contextualised token embeddings, and red(∗) is a function reducing the list of

token vectors into a single vector. Analogous to Humeau et al. [247] and Wu et al.

[128] TB was a pre-trained Transformer and red(∗) was the function selecting the out-

put representation from BERT (last layer) of the [CLS] token. In other words, given

N output token embeddings from a Transformer model, red(∗) simply selects the first

embedding, corresponding to the [CLS] token representation. Experiments were carried

out comparing BERTBASE [2] and BioBERT v1.1 [122] as pre-trained models. Note

that the pre-trained BERT models used in this work output token vectors with 768

dimensions, which was the length of ym and ye vectors. Humeau et al. [247] and Wu

et al. [128] trained two independent transformer models (T1 and T2) to encode KB en-

tities and mentions. Due to the limited number of training samples and KB entities

in this work, the same model parameters (TB) were used to encode both entities and

mentions independently. However, experiments were carried out to compare the effect

of this simplification (named shared vs non-shared approaches in section 5.3.2).

Input representations The BERT tokeniser split input strings into sub-word to-

kens. For PK parameter mentions, two special tokens were used to determine where the

mention started and ended, [Ms] and [Me]:

[CLS] ctxtl [Ms] mention [Me] ctxtr [SEP]

Where ctxtl and ctxtr are the sub-word tokens before and after the mention in the

sentence. An example of an input representation for a PK mention in context is shown

in Figure 5.1. A maximum length of 128 sub-word tokens was established. Entities in

the KB had (1) a title describing the main name of the parameter, (2) a brief description

of the parameter, (3) a field specifying whether the parameter was measured in vitro

or in vivo and (4) the common units of that parameter. Hence, to generate input

representations for KB entities, the special tokens [ENT], [CND], [UN] were used to

separate sub-word tokens of those fields:

[CLS] title [ENT] description [CND] condition [UN] units [SEP]
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Scoring Analogous to Wu et al. [128], to score the similarity between a specific mention

(mi) and a KB entity (ej) the dot-product between their vector representations was used:

s(mi, ej) = ymi · yej (5.3)

Optimisation The model was trained to maximise the dot-product between input

mentions (mi) and their correct entity in the KB (ec) with respect to other negative

entities. Specifically, for each training pair of input mention and correct entity (mi, ec),

the loss was computed as follows:

L(mi, ec) = −s(mi, ec) + log
N∑
j=1

exp(s(mi, ej)) (5.4)

Where N specifies the number of negative samples + 1, and the ordered set of entities

{e1, e2, ..., eN} is computed by each training pair and includes the correct entity (ec) and

N-1 incorrect entities randomly sampled from the KB. The number of negative samples

(N-1) was treated as a hyperparameter initially set to 7 and explored during preliminary

experiments.

Due to their minor impact on the model performance, minimal tuning was performed on

other hyperparameters. Models were implemented in PyTorch and optimised with Adam

with a linear weight decay of 0.05. The batch size remained constant at 8. The learning

rate was grid-searched based on the best micro-accuracy in the development set, and

the values explored included µ =[2e-7, 2e-6, 2e-5, 2e-4, 2e-3]. Early experiments with

BioBERT indicated 2e-5 as the best-performing learning rate, which was kept constant

in subsequent experiments.

Inference When predicting the correct KB entries for a given list of mentions, all

entities in the KB were initially encoded and cached. Then, for every mention, its

representation was scored against all the KB entity representations, and the entity with

the maximum mention-entity dot-product was selected as the model prediction. This

approach was extremely fast at inference time compared to EL systems based on Cross-

Encoders5 that need to pass each (mention, candidate entity) pair through the language

model [128].

5 Cross-Encoders refer to models accepting mentions and KB entities simultaneously and generating a
representation for every entity-mention pair. For a detailed explanation on Cross-Encoders, see [247].
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5.2.2.2 Baseline

Since the number of KB entities is quite limited in this study (67) compared to other

EL tasks, a competitive baseline might consist of a simple sequence classification model,

which has been named softmax classifier in this chapter. Given an input mention in

context as a list of tokens (τm), a BERT model was used to encode the mention into a

single vector (ym) using the [CLS] token representation. This approach was previously

described by equation 5.1. Then, the contextualised mention representation was passed

through a linear layer mapping the 768-dimensional vector ym to an output vector of

67 elements, each relating to one KB entity. Finally, a softmax layer was applied to

the output vector. This linear layer + softmax approach is analogous to the token

classification approach described in the previous chapter (equation 4.1). The model

was trained using categorical cross-entropy loss and the same training protocol as the

bi-encoder. Only BioBERT was used for the softmax classifier since early experiments

with the bi-encoder already showed significant improvements over using BERTBASE as

a pre-trained model.

It is worth noting that, in contrast to the bi-encoder, this baseline did not use textual

information in the KB and treats the task as a sequence classification of mentions in

sentences. However, this approach used the same sequence encoder (BERT) as the bi-

encoder. Given the small number of training samples and KB entities, this allowed

for a comparative assessment of the potential benefits and limitations of the bi-encoder

approach for training novel EL systems in low-resource and domain-specific scenarios.

5.2.2.3 Evaluation metrics

The labelled corpora is often represented as {(mi, ei)}i∈[1,N ] where ei is the labelled KB

entity for mention mi. Similarly, model predictions in that corpus are represented as

{(mi, êi)}i∈[1,N ]. To evaluate the model predictions against the labels in the development

and test sets, three main metrics were used:

Micro-accuracy This metric computes the overall proportion of mentions for which

the model predicted the correct entity [248]. In other words, it is the percentage of cases

where êi = ei over all the evaluation examples N . This metric is often a good indicator

of how the model performs overall and what percentage of predictions can be expected

to be correct for a given model. However, if the dataset is highly imbalanced, a model

might exhibit high micro-accuracy due to high performance on those KB entities with

more evaluation examples and poor performance on KB entities with fewer evaluation

examples.
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Macro-accuracy To evaluate how well the model performs across KB entities, the

macro-accuracy applies the same weight to each KB entity [248]. Specifically, the accu-

racy was first independently computed for each KB entity appearing in the evaluation

set, and then, the average across all the KB entity accuracies was calculated. This metric

can help identify whether a high micro-accuracy hinders low accuracy on entities with

fewer mentions in the evaluation set.

Mean Rank The metrics mentioned above were selected to assess EL performance

based on the evaluation used by Wu et al. [128], Logeswaran et al. [246], Humeau et al.

[247]. However, they only considered a prediction as correct if the predicted entity equals

the annotated one. EL systems often rank KB entities according to their likelihood of

being the correct link for a given input mention. Since some KB entities might have

very similar biomedical meaning (e.g. in vitro intrinsic clearance vs in vivo intrinsic

clearance), assessing the rank of the correct entity predicted by the model across all

KB entities can be informative to understand potential causes of misclassification. For

example, low accuracy and high mean rank would indicate that a system is uncertain

between a few specific KB entities, but the correct entity is often ranked highly. Correct

mention predictions (true positives) had a rank of 1, while incorrect predictions could

rank from 2 to 67. For a given prediction, the mean rank starts by computing one

minus the predicted rank for the correct entity (r) over the KB size (i.e. 67): 1 − r

67
.

Then, the mean over all the predictions is performed [249]. Hence, the mean rank goes

from 0 to 1 and provides an informative metric of how highly the correct entities are

ranked relative to all KB entities. For instance, in a KB of 100 entities, a mean rank of

0.9 would indicate that the correct entity for a given prediction is, on average, ranked

amongst the top 10 candidates.

These metrics provided an assessment of the model performance from different per-

spectives but merging the performance across entities. A more detailed evaluation was

performed through multiple plots to assess the model performance on specific KB enti-

ties, especially those with limited or no training samples.

5.3 Results and Discussion

5.3.1 Corpus statistics

Table 5.1 shows the statistics of the annotated dataset. Independent annotators pro-

vided at least two annotations for each instance in the development and test sets. The

inter-annotator agreement (IAA) given by the pairwise K coefficient ranged from 0.78

to 0.82. This range can be interpreted as a high IAA according to Cohen [250] and con-

sidering the number of candidate classes for every mention. The pair-wise micro- and
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macro-accuracy between annotators on the development set were 92.11% and 87.23%,

respectively. Since many conflicting annotations had a common source of disagreement,

a significant improvement was observed after resolving examples in each annotation

batch and updating guidelines. It was noted that classifying the parameter mentions

into general categories (e.g. clearance, half-life, AUC) was relatively simple for annota-

tors. However, identifying the specific parameter type (e.g. intrinsic vs total clearance)

often required in-depth expertise, detailed reading of the context, and guideline checks.

Consequently, the labelling process was very time-consuming compared to previous an-

notations performed in this thesis (i.e. document classification, NER). The average

annotation time per instance was approximately 2.5 minutes including resolution of

disagreements.

The annotated mentions in the training set only contained mentions for 70.15% of KB

entities, leaving 29.85% without explicit training data. Additionally, a large proportion

of entities had less than ten mentions in the training set. These results were expected

since there are some parameters that authors tend to report in most PK studies, whereas

others depend on the study type (e.g. compartmental vs not compartmental modelling).

Additionally, due to errors by the NER model and parameters not covered in the KB,

≈12% of the examples were labelled as NIL. The test set exhibited similar statistics to

the training set. It is worth considering that 10.44% of KB entities appearing in the test

set did not have any training mentions and were considered the zero-shot cases.

Table 5.1: Corpus statistics stratified by the training, development and test sets.

Dataset # Sentences annotations/sentence % of KB
entities covered

Training 1000 1 + review 70.15
Development 500 2 + resolution 53.73

Test 1000 2 + resolution 71.64

The classes had a very sparse frequency across the dataset, and it was clear that much

more labelled data would be required to accurately represent the underlying entity fre-

quency distribution in the PK literature. However, given the large number of entities

in most KBs, this is often the case in annotated EL datasets [98]. Therefore, it was

considered a good setting to train EL systems for PK parameters and to study how well

they could generalise to entities with none or few training mentions. Selecting candidate

mentions with a pre-trained NER model allowed annotators to focus exclusively on EL

labels without considering NER labelling, which significantly simplified and accelerated

the annotation process. However, this approach might propagate bias of the NER model

to the dataset. Overall, the quality of this dataset might be improved in future studies

by (1) fixing incorrect NER predictions, (2) including mentions that might have been

missed by the NER model, (3) expanding the number of examples in the test set. By

developing a dataset with both, NER and EL labels, solutions modelling both tasks

simultaneously could also be explored, similar to Wiatrak and Iso-Sipilä 2020 [130].
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5.3.2 Preliminary analyses

Model initialisation The first experiment performed compared initialising BERT

with BioBERT v1.1 or BERTBASE parameters, which have been pre-trained on general

domain and biomedical corpora, respectively. Figure 5.2 shows the micro-accuracy on

the development set when training over 20 epochs. As it has also been observed for other

NLP tasks in the PK domain (document classifier and NER chapters), the BioBERT

model had a consistently better performance than BERTBASE , which suggests that

pre-training in biomedical text is also crucial for EL of PK parameters. Furthermore,

the performance difference is particularly large in early training stages, indicating that

BERTBASE requires many more training steps and potentially more training data than

BioBERT to encode relevant information for linking PK parameters. After this result,

BioBERT was used in subsequent experiments.

Figure 5.2: Performance of the bi-encoder on the development set when starting the
model with BERT-base or BioBERT parameters. Experiments were performed over 20
epochs, and one epoch = 125 training steps. Shaded lines represent the raw values,
which were smoothed using an exponential average with a weight of 0.1 (non-shaded
lines).

Sharing bi-encoder parameters The effect of using one (shared) or two (not-shared)

BERT models to encode mentions and KB entities can be observed in Figure 5.3. Al-

though previous studies only used separate models for encoding mentions and entities

[128, 246, 247], in this work, it was shown that sharing the same model parameters for

encoding mentions and entities provided higher performance (≈ ∆10% micro-accuracy)
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and earlier convergence. Specifically, it was observed that when not sharing the bi-

encoder weights, during the initial six epochs, the model did not improve the micro-

accuracy or mean rank on the development, and then it suddenly started learning rele-

vant patterns. However, the performance was always better when using a single model.

Figure 5.3: Performance of the bi-encoder on the development set when sharing or
not sharing parameters. The left- and hand-side panels show micro-accuracy and mean
rank, respectively. Experiments were performed over 20 epochs, and one epoch = 125
training steps. Shaded lines represent the raw values, which were smoothed using an
exponential average with a weight of 0.1 (non-shaded lines).

Although the type and structure of textual information on the KB are very different

from the one in scientific sentences, it is worth considering that the shared model tuned

approximately 110M parameters while 220M were backpropagated during training of the

not-shared model. Given the small number of training samples on this dataset and the

limited number of KB entities, it is likely that larger models do not encode additional

information but require a longer time to minimise the training loss. Overall, this result

suggests that when training bi-encoder architectures for EL in small KBs and limited

training data, it might be beneficial to use the same model for encoding KB entities and

mentions in context. However, further work is needed to analyse this result in other

domains and better understand which scenarios could benefit from sharing parameters.

Wu et al. [128] showed that Knowledge Distillation could be used to improve the bi-

encoder performance for candidate generation. Future studies on this dataset might

also benefit from Knowledge Distillation to find an optimal trade-off between model size

and accuracy while exploiting the transfer-learning benefits of pre-trained transformer

models.

Negative samples Seven negative KB entities were used for every training sample

in the initial model configuration. However, the effect of using a different number of

negative samples was examined, and results are displayed in Figure 5.4. When using

only three negative KB entities, the model exhibited worse performance. The model had
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to select one out of 67 possible entities during evaluation. Since negatives were randomly

sampled from the KB, it is likely that when only comparing the correct entity against

three negatives during training, the task became too simple compared to the evaluation

setting. In other words, since the main challenge of EL often consists of discriminating

the correct entity against similar ones (e.g. clearance vs renal clearance), it is likely

that hard negatives did not appear enough during training when using three negative

samples. Performance was significantly improved when comparing positives with half of

the knowledge base (33 negative samples) in comparison to seven negatives. However,

when using 60 negatives, the performance was slightly worse than using 33.

Figure 5.4: Performance of the bi-encoder on the development set when changing
the number of negative samples used for training. The left- and hand-side panels show
micro-accuracy and mean rank, respectively. Experiments were performed over 20
epochs, and one epoch = 125 training steps. Shaded lines represent the raw values,
which were smoothed using an exponential average with a weight of 0.1 (non-shaded
lines).

These results indicate that PK EL benefits from observing challenging negative enti-

ties during training. However, this might be achieved by comparing the correct entity

against a specific proportion of randomly sampled negatives, but using all KB entities

as negatives might not be optimal. This observation might be explained because the

bi-encoder maximises the separation between all negatives (regardless of how similar

they might be to the correct entity) and the correct entity. However, not using the

whole knowledge base for sampling negatives might provide a regularisation effect, al-

lowing entities with similar biomedical meanings to be encoded closer in an embedding

space by only appearing in some cases as hard negatives. Given the results observed, 33

negative samples were used for all the subsequent experiments.

Due to the significant effect of the number of negative samples on model performance,

future studies might benefit from further studying this behaviour. For instance, one

potential approach would be to select negative samples based on the proximity of entities

within a knowledge graph, like Ahrabian et al. [251].
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5.3.3 Baseline comparison

The performance of the bi-encoder and softmax classifier on the development set is shown

in Figure 5.5. While the bi-encoder reached high performance after ≈3 epochs and then

slight improvement was observed, the softmax classifier only seemed to start converging

by the end of training. This result suggests that the bi-encoder might transfer the

knowledge learnt from some entities to others more efficiently due to its distance-based

loss. Additionally, the bi-encoder achieved higher micro-accuracy and mean rank at the

end of training.

Figure 5.5: Performance when using the bi-encoder or the softmax classifier on the
development set. The left- and hand-side panels show micro-accuracy and mean rank,
respectively. Experiments were performed over 20 epochs, and one epoch = 125 training
steps. Shaded lines represent the raw values, which were smoothed using an exponential
average with a weight of 0.1 (non-shaded lines).

Table 5.2 also shows the results on the test set when selecting the model state with the

highest micro-accuracy on the development set. Interestingly, over ∆25% improvement

in macro-accuracy was observed on the test set between the bi-encoder and the softmax

classifier. This result indicates that although the accuracy difference over all instances

was around 4%, the bi-encoder improved significantly on those KB entities with very

few training instances. Additionally, the macro-accuracy on the test set dropped 15.21%

and 5.39% compared to the development set for the softmax classifier and bi-encoder,

respectively. Hence although overfitting appeared on both models, the softmax classifier

was much more sensitive to KB entries with few or no training examples.

Table 5.2: Summary table with performance metrics on the development and test
sets comparing the softmax classifier against the bi-encoder.

Development Test

Model Mean Rank Micro-accuracy Macro-accuracy Mean Rank Micro-accuracy Macro-accuracy

Softmax classifier 0.91 86.91 65.70 0.89 83.81 50.49
Bi-encoder 0.94 90.81 81.19 0.92 88.08 75.8
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Overall, using the bi-encoder approach provided better average performance across all

predictions, converged faster and dealt with few and zero-shot examples better when

compared to the softmax approach. Hence, these results suggest that even in low resource

scenarios (i.e. small KBs and limited training data), the distance-based loss implemented

by the bi-encoder deals better with sparse frequency distributions than traditional multi-

class sequence classifiers. Finally, it is worth noting that inter-annotation scores in

the development set (micro- and macro- accuracy of 92.11% and 87.23%, respectively)

remained significantly higher than the best-performing model, indicating that there is

still significant room for model improvement in this task.

Other baselines could have been used in this study. For instance, dictionary and rule-

based systems or EL models based on n-grams TF-IDF of named aliases are often com-

petitive approaches in EL [149]. However, no list of entity aliases was available a priori

for this study, and although some acronyms could potentially be normalised using the

surface forms (e.g. AUC0−∞), many parameters required contextual information to be

linked since many acronyms were used by multiple KB entities (e.g. CL, AUC, t1/2,

Vd). Nonetheless, using prior information such as frequency metrics of entity surface

forms, known aliases or rule-based models could provide competitive non-ML baselines

or additional information for the solution presented.

5.3.4 Few-shot performance

To better understand the performance of the models developed on KB entities with

varying numbers of training instances, the accuracy of the test set was stratified. Figure

5.6 shows a box-plot in which the accuracy on the test set was first calculated per entity,

and the entities with a similar number of training examples were grouped into the same

box-plot. For instance, some entities on the test set had no training samples but had

test samples. These are the group 0 in the x-axis of Figure 5.6.

As it can be expected in machine learning models, Figure 5.6 confirms that, on average,

the model performance increases with an increasing number of training mentions for

a given KB entity. It can be observed that the softmax classifier had a performance

of 0% for entities appearing on the test set but not on the training set (zero-shot).

This result was expected since no information regarding those entities was learnt during

the training phase, and the model had no access to the KB descriptions. However,

the bi-encoder showed sparse performance on entities with zero training samples, with

accuracies ranging from 0 to 100% depending on the KB entity. The box plot also

suggests that there might be a very small number of instances on the test set for entities

with few training examples, which generates sparse and noisy metrics. Despite the low

number of test samples, the performance of the bi-encoder seems to be consistently

better for KB entities with less than 30 training samples. The difference between the

bi-encoder and the softmax classifier for KB entities with more than 30 training samples
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Figure 5.6: Box-plot showing the accuracy stratified by class of the bi-encoder and
softmax classifier on the test set. The accuracy was computed by class (i.e. KB entity)
on the test set, and classes were grouped depending on how many mentions of that
class they had on the training set.

was not noticeable. Apart from exhibiting the outperformance of the bi-encoder on a

few-shot setting, these results could also be used to establish a minimum number of

training samples to achieve a desired minimum performance for a certain entity when

gathering more training data. For instance, one might consider collecting more than 16

training examples for an entity to be correctly linked in most cases.

5.3.5 Error analysis

A confusion matrix was generated to identify entities in which the model might be more

uncertain. Figure 5.7 shows the predicted against the labelled entities on the test set

when using the bi-encoder. The colour determines the proportion of predicted entities

from a labelled entity category. From this plot, it was observed that the model was most

confused in PK parameters that had the same title and description but were measured

in vitro or in vivo (e.g. intrinsic clearance (CLint)). The information required to link

these cases was highly contextual since determining whether a parameter was measured

in vitro or in vivo required understanding the conditions of the study (e.g. clinical trial

against laboratory conditions), and, on some occasions, it was not available by only

reading the sentence.

Entities with lower accuracy often exhibited confusion between 2-4 classes. Hence, future

studies might benefit from using the information in this confusion matrix as a proxy for
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active learning approaches. For instance, high confusion was observed between volumes

of distribution types V, V1, V2 and NIL entities, which might be caused by the wide

variety of overlapping acronyms and surface forms observed for those entities. To im-

prove the model performance, one could focus on sampling mentions where at least two

out of the V, V1, V2 and NIL entities were ranked highly by the model to reduce the

uncertainty shown in those types of mentions. However, the feasibility of active learning

approaches was left for future exploration.

Figure 5.7: Confusion matrix of the bi-encoder on the test set showing the predicted
vs true labels per class. The scale is calculated as the proportion of samples predicted
as one class (Predicted) that belonged to an annotated (Actual) class. Empty columns
correspond to entities that were never predicted in the test set.

5.3.6 Zero-shot parameters

A qualitative analysis was conducted to explore the model behaviour when new entities

were added to the KB. For this, field experts provided the KB fields (title, condition,

description and units) for two parameters that might be of relevance during preclinical

drug development but were not included in the original KB during training: fraction

of the drug absorbed from the gastrointestinal tract (fa) and free:brain plasma ratio

(kpuu). After adding these entities to the KB, the bi-encoder performed inference on

the whole KB and the initial collection of (>1.2M) sentences with parameter mentions.

Then, a collection of mentions that were classified as either fa or kpuu were randomly
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sampled and analysed. Tables 5.3 and 5.4 show some of the mentions classified as fa or

kpuu in context.

Table 5.3: Examples of mentions classified as fraction of the drug absorbed (fa).

# Mention in context linked as fa

1 The AUC was calculated according to the trapezoidal rule and the absorption fraction (f) was acquired by Eq.2.

2 Similarly, a fraction of dose absorbed (Fa), furnishes information on the extent of drug absorption from
the intestinal mucosa (54).

3 The fractional absorption (F) during a 24-hr period was 47.4 (22.7-98.1)%.

4 The cumulative fraction of bupremorphine absorbed after SC administration is shown in Figure 3.

5 The oral bioavailability (F) was calculated as follows: F=(AUC0-∞),po x Dose iv)/(AUC0-∞,iv xDose po)

Table 5.4: Examples of mentions classified as free:brain plasma ratio (kpuu).

# Mention in context linked as Kpuu

1 The blood and brain PK parameters (Cmax, Tmax, t1/2, AUCτ , Kpu,u,brain) were estimated...

2 The unbound brain/unbound plasma AUC ratio (Kp,uu) was determined from the total brain and plasma AUCs and ...

3 The relationship between the change in ratio and the change in PKs was analysed using Kendall’s tau.

4 Despite advantages of Kp,uu from steady state after constant intravenous (i.v.) infusion compared ...

5 These Kpub values were used as priors for making inferences in man.

The model provided high precision for the parameter mentions retrieved. The mentions

retrieved had some variability of surface forms, but they were highly similar to either the

parameter title or the description. Additionally, some bias was observed for acronyms

with similar surface forms. For instance, in example 5 of Table 5.3, F does not refer to

the fraction absorbed from the gastrointestinal tract but to the drug’s bioavailability.

However, it is worth noting that the drug’s bioavailability (F ) is generally considered

to be a composite of three processes: F = fa ·fq6 ·fh7 [252] and fa and F are often

incorrectly used interchangeably, which created high confusion on those mentions. Ad-

ditionally, in example 4 in Table 5.4 the model classified Kendall’s tau as kpuu while

this was an error of the NER model. Overall, the model developed seemed to provide

a framework for drug developers to include new KB entities without training data and

retrieve parameter mentions with similar surface forms. However, it is also worth consid-

ering that NIL mentions or incorrect acronyms with highly similar surface forms were

also detected in the newly added categories. Finally, the ability of the model to account

for more diverse mentions remains to be quantified and further explored.

5.4 Conclusions and Future work

This chapter presented the first work to develop NLP models that link mentions of PK

parameters to a KB of PK parameter types. Objective O3−1 was tackled by classifying

2500 PK parameter mentions from scientific sentences into one of 67 possible categories.

6 Fraction of the drug escaping metabolism or efflux in the gut membrane.
7 Fraction of the drug escaping hepatic metabolism prior to entering the systemic circulation.
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To the best of our knowledge, this represents the first annotated dataset for PK EL. A

high inter-annotator agreement was observed after developing and iteratively updating

detailed guidelines. The model developed was based on a previously published bi-encoder

that independently encoded KB entities and mentions in context. To address objective

O3−2, simplifications were proposed to adapt previous architectures to EL scenarios with

small KBs and limited training data, which improved the model’s performance. The

solution proposed efficiently dealt with the highly imbalanced dataset, outperforming

sequence classification models and showing significant benefits on KB entities with few

or no training mentions. To fulfil objective O3−3, an in-depth comparison between

sequence classification models and the bi-encoder was performed, and the causes of

model errors were discussed in detail. The final performance achieved by the bi-encoder

was considered high given the limited number of training samples and the complexity

of the task (over 85% micro-accuracy).

One of the main limitations of the dataset developed is that it relies on spans predicted

by a NER model. Although highlighting predicted spans allowed faster annotation and

the model achieved high performance on PK NER, this approach might not accurately

represent the PK parameters’ distribution in the literature. Future studies might bene-

fit from datasets that annotate both named entities and their KB entries, which would

allow joint training and evaluation of NER and EL tasks [130, 253, 254]. However, devel-

oping such datasets while preserving a sufficient number of named entities for effective

model training remains an open challenge. Furthermore, the models presented relied on

large pre-trained transformer models. Due to the small KB and limited training data,

simpler baselines using heuristic or frequency-based approaches could be explored as

an alternative or used as prior information for machine learning models with distance

supervision. Finally, future work could use the model presented to enhance ADME

dataset construction and improve DDI characterisation by understanding the specific

PK parameters mentioned in the scientific literature.

124



Chapter 6

End-to-End Relation Extraction of

Pharmacokinetic estimates

The content of this chapter will be presented at the World Conference on Pharmacomet-

rics (WCoP) 2022.

6.1 Introduction

The need for a large and standardised database of PK measurements has been, for

a long time, recognised as a significant limitation in the drug development pipeline

[10, 11, 255, 256]. Such a database could accelerate the curation of large ADME

datasets in pre-clinical drug development, improve PBPK models by providing infor-

mative parameter priors, or allow large-scale PK meta-analyses between drugs or study

populations [10]. As a result, efforts such as PK/DB [10] have started, aiming to curate

parameter estimates from the scientific literature. However, PK/DB is manually curated

by pharmacometricians, which limits the ability of PK/DB to cope with the vast and

increasing PK literature. Unfortunately, apart from the manually-curated PK/DB, no

other open and freely accessible database of PK parameters exists so far [10]. This chap-

ter studies the main challenges to automatically extracting PK data from the literature

while addressing the core problem of recognising and extracting numerical estimations

of multiple PK parameter types. For text mining tools to efficiently extract PK mea-

surements, it is essential to recognise multiple entities and their relations from the text.

The top panel of Figure 6.1 illustrates a sentence found in the scientific literature to-

gether with key entities that would need consideration in the extraction of PK data.

The bottom panel displays the information in a tabular format that could be used to

construct a database of PK measurements, relating each measurement to its parame-

ter mention, units, chemical compound, route of administration and conditions of the

study population. Text mining systems need to recognise (and potentially link) those

key entities and predict their relation to the relevant measurement to go from the raw

sentence to the tabular format observed in Figure 6.1. From an extraction perspective,

this problem consists of two sequential tasks:
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Figure 6.1: The top panel shows a sentence with the key entities to extract PK
measurements highlighted. The bottom panel shows the sentence in structured format,
with the key columns to build PK databases. The sentence was adapted from Teng
et al. [3] for illustration purposes.

1. Identifying entities and relations directly linked to the PK measurement such

as: parameter mentions, their central and deviation values, units or potential

comparative terms (e.g. “The Cmax was above 598.4 ± 144 ng/mL”).

2. Identifying contextual entities and their relation to a specific central measure-

ment. Amongst others, contextual information could include the drug for which

the PK parameter has been estimated, the route of administration, the given dose,

the species in which the parameter was measured, demographic information, or

the studied population’s conditions.

Regarding the second task, the recognition and linking of most of the relevant contextual

entities have been widely studied in biomedical NLP (e.g. chemical compounds, species,

diseases) [257]. As a result, multiple tools are available out-of-the-box for recognising

and linking these entities to specialised ontologies [236, 258]. However, relating these

mentions to the correct PK value remains an open challenge. For example, estimated

values of PK parameters are often reported together with their units and parameter

mentions within the same sentence in the abstract or results section. However, contextual

entities might be mentioned in other sections of the paper1, making the extraction and

1 Demographic and dosing information is often described in the Methods sections while PK estimations
are commonly reported in the Results section.
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evaluation of this task particularly challenging. As a result, developing annotations

and evaluation frameworks that consider contextual entities of PK measurements would

require labelling a wide range of concepts and their relations at multiple levels (entities,

knowledge base identifiers, relations) and integrating information in multiple sections of

the paper. Additionally, PK measurements would need to be pre-labelled to associate

their contextual information.

Automatically extracting central measurements of multiple parameter types and their

units and deviation values from the scientific literature would already provide a valu-

able database for PK applications. For instance, Wang et al. [11] showed that using

dictionary-based methods provided high precision to filter PK measurements for one

specific drug, administration route, and study population. Therefore, once PK measure-

ments are extracted from scientific publications, different approaches could be used to

filter for the relevant context to a specific use case or accelerate the search of PK infor-

mation for a given compound. For this reason, this chapter focuses on developing text

mining resources that exclusively tackle the first task, and complementing the extracted

values with relevant context will be approached in future work.

Related work To the best of our knowledge, no existing text mining resources exist

to extract PK measurements for multiple parameter types together with their units and

deviation values. Wang et al. [11] performed a feasibility study, using dictionary and rule-

based methods to extract systemic and oral clearance values of intravenous midazolam

in healthy volunteers from scientific abstracts. The text mining approach developed

by Wang et al. exhibited high precision on extracting estimates of systemic and oral

clearance for a specific drug and context. Yet, no further work has been found extending

the approach of Wang et al. to other types of PK parameters, study populations or full-

text sections. After careful examination of the methodology developed by Wang et al.,

the following hypotheses were generated regarding the limitations of adapting Wang

et al.’s approach for constructing a public database of PK parameters:

1. Evaluation framework: For pharmacometricians to rely on text mining tools

that extracted PK parameter estimates, it is essential to provide a robust eval-

uation of the extraction pipeline. Although precision and recall estimates were

reported by Wang et al., the evaluation was not stratified by NER but exclusively

relied on the extraction of central values. Additionally, the approach was only

evaluated on midazolam abstracts, but the performance on sentences from full-

text or abstracts from other drugs was not studied. In the PK-Ontology-corpus of

Wu et al. [43], PK parameter mentions and numerical expressions were annotated.

However, since their approach was focused on DDIs, relations between parame-

ters, measurements and units were not labelled. Therefore, it does not provide an

evaluation framework for extracting PK estimations.
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2. Recognition of PK parameters: The methodology relies on a list of terms

to find mentions of systemic and oral clearance. However, as discussed in chap-

ter 4 and 5, PK parameter surface forms are highly variable, including multiple

acronyms and complex spans. Therefore, dictionary and rule-based approaches

are not suitable for detecting mentions of multiple PK parameter types effectively,

limiting the ability of Wang et al.’s method to extract measurements for other

parameters. This challenge was later discussed by Wu et al. [43].

3. Recognition of units, deviation measurements and relations: To extract

clearance measurements, dictionary and rules implemented by Wang et al. [11]

relied on expressions following the pattern: < V alue > ± < V alue >< Units >

and accounted for little flexibility on the location of multiple < Parameter >

mentions in the same sentence. When multiple parameters or study type settings

were mentioned in the same sentence, the approach focused on discarding all the

information that was not exclusively related to their parameter and context of

interest. Although this approach proved effective for extracting the systemic and

oral clearance of midazolam in healthy volunteers, many PK parameters might

be mentioned in the same sentence, and their measurements might be reported

for different study designs. Additionally, some parameters might be reported in

ranges and might not contain units associated with them (e.g. fraction of the drug

unbound, AUC ratio). Finally, deviation measurements are not always expressed

after a ± mention. Therefore, it is unlikely that Wang et al.’s approach has enough

flexibility to account for multiple parameters, units, deviations and their relations.

Despite the limitations of Wang et al.’s work to account for a higher degree of variability

in parameter mentions, units and numerical expressions, their approach was sufficient to

reproduce the distribution of systemic and oral clearance of intravenous midazolam for

a specific population. Hence, if numerical values are successfully extracted for multiple

parameters, their filtering approach might be effective at obtaining high precision of

parameter values for a specific drug, route and study population and discard irrelevant

PK values for a specific use-case. To address Q4 of this thesis, the following objectives

were established in this chapter:

O4−1 To design an annotation framework that allows extracting PK estimations from

the scientific literature in an structured format.

O4−2 To develop training and evaluation corpora that tackles the extraction of PK pa-

rameter estimates involving: (1) high diversity of PK parameter types and associ-

ated units and (2) sentences from abstract and full-text sections.

O4−3 To adapt current NLP architectures for end-to-end RE to the extraction of PK

measurements and perform ablation studies on their components.
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O4−4 To compare architectures that model NER and RE jointly against models that

optimise for a single task.

O4−5 To apply data augmentation techniques that increase entity mentions’ diversity

and introduce prior knowledge about the relation between specific PK parameters

and their units.

O4−6 To inspect the leading causes of model errors and discuss potential ways to improve

them.

6.2 Methods

The methods in this section described the development of suitable architectures and

annotated data to train and evaluate RE models to extract measurements of pharma-

cokinetic parameters and their units from scientific text. The methods are divided into

the following sections:

1. Corpus construction: Procedure employed to annotate entities and relations

from sentences.

2. Model development: Description of the architectures employed to recognise PK

entities and their relations.

3. Data augmentation: An heuristic approach to incorporate prior knowledge

about the relation between specific PK parameters and their most common units

into neural RE models.

6.2.1 Corpus construction

An annotated corpus was developed to train and evaluate end-to-end pipelines that

extract PK measurements from text, named PK-REX corpus.

6.2.1.1 Entities, relations and guidelines

To automatically extract PK estimations from the literature with their relevant informa-

tion, the following entities were considered and annotated at the sentence level (shown

in Figure 6.2):

1. PK: Mentions of parameters. This entity refers to spans mentioning PK parame-

ters, and it is the same concept as the entity described in chapter 4.
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2. Units: Spans of text corresponding to units of numerical PK estimations.

3. Value: Spans encapsulating numerical estimations related to PK parameters (i.e.

central and deviation values).

4. Range: Two values defining the boundaries of a PK estimation.

5. Compare: Textual mentions that provided information about whether a specific

value/range mention was the extreme of an estimated parameter (see higher in

Figure 6.2). This entity appeared with low frequency, but it was important for

detecting extracted measurements that were not central estimations of a certain

parameter.

Figure 6.2: Example of a sentence after all entities had been annotated.

Three relations types were considered between entities to extract structured information

from raw sentences in a usable format (see Figure 6.3):

1. Centralval
2: This relation type happened between PK parameter mentions and

their estimated values or ranges. This involved central measurements of the param-

eter but not measures of deviation or % of increase concerning other experimental

conditions. The entities between which this relation could happen were:

• PK ↔ Value/Range

2. Deviationval
3: This relation type informed whether a specific measurement was

the deviation of a central measurement and only happened between the entities:

• Value/Range ↔ Value/Range (involved in a Centralval relation)

3. Related: This relation type complemented values/ranges with their units or com-

pare terms and only happened between the following entities:

• Compare ↔ Value/Range

• Units ↔ Value/Range

2 Abbreviated as C VAL in the annotation interface.
3 Abbreviated as D VAL in the annotation interface.
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Note that if an automated system can detect these entities and relations, there is no need

to understand the directionality of the relations in order to map the top panel in Figure

6.3 to the tabular format in the bottom panel. For instance, if there is a Deviationval

relation between two values, by looking at the value involved in a Centralval relation,

one could disambiguate the central from the deviation value. For this reason, the direc-

tionality of the relations was not considered in this work.

It could also be possible to design a system that predicted a single relation class for every

entity pair (relation/no-relation) and perform the mapping of the top to bottom panels of

Figure 6.3 by looking at the entity types involved in each predicted relation. For instance,

if a relation happened between a parameter and a value, it would be straightforward to

understand that it is the central measurement. However, the reasoning behind having

different relation classes instead of a single relation class is that the syntax behind

instances of each of the three relations is very different. Therefore, three relation classes

were used to enhance the encoding of distant embeddings between instances of different

relation classes, preserving their syntactic differences in the model representations.

Figure 6.3: The top panel shows a sentence where all entities and relations had
been annotated. The bottom panel shows how the annotated entities and relations
can be mapped into a tabular format that can be integrated into a database of PK
measurements.

6.2.1.2 Source

Once relevant entities and relations were defined, the following step consisted of sampling

texts to annotate. All the relations tackled in this task appeared between entities within
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the same sentence in all cases observed. Therefore, the sampling and annotations were

performed at the sentence level. The candidate pool of 1,443,044 sentences (50% abstract

and 50% full-text) described in the NER chapter (section 4.2.2.1) was used as a starting

pool in this study to develop models that could efficiently deal with PK measurements

reported in both, abstract or full-text sentences.

As reported in the NER chapter results, only 16.4% of sentences from the initial can-

didate pool mentioned PK parameters (for details, see Table 4.3). Additionally, many

of these sentences mentioned PK parameters but not their estimated measurements.

Therefore, a filtering protocol was applied to promote developing a corpus with a wide

variety of PK mentions and relation instances. First, the optimal PK NER model de-

veloped in chapter 4 was applied to all the candidate pool sentences. Then, a set of

heuristics were developed to filter those sentences that at least had: (1) one PK mention

detected by the NER model and (2) a numerical value. Numerical values were detected

with a regular expression matching continuous digits with an optional dot between them:

“\d+(\.\d+)?”4. Values preceded by a match of any of the following were not considered:

“(table|group|compound|equation|figure|stud(i|y)|phase|formulation|product|fig|fig.|
day|trial|subject|eq|eq.)(s)?”. Similarly, values followed by a lowercased match of any of

the following were not considered either:“(time|patient|phases|sample|subject|dose)(s)?”.

This preliminary NER and filtering approach was applied to the original candidate pool

to reduce the number of sampled sentences without PK measurements reported.

From the candidate pool of sentences containing at least one PK parameter mention

and one value (detected with the regular expressions), 3600 instances were randomly

sampled without replacement and divided into 2100, 500 and 1000 instances for the

training, development and test sets.

6.2.1.3 Annotation

Interface The annotation interface was developed in Prodigy and allowed annotating

both entities and relations at the sentence level. As observed in Figure 6.4, annotators

were presented with a single sentence at a time, and they could swap between the entity

and relation annotation modes. Additionally, a comment box was included to store

doubts or thoughts for a particular example. Analogous to chapter 4, the annotation

interface was deployed in an Azure server, and annotators accessed the task through a

unique web link. The annotations of named entities were represented at the character

level, and relations were defined with the unique identifiers of each entity and their

relation class. Annotations were exported in JSONL format, where each line contained

a dictionary with the annotations of one sentence.

4 Regular expressions mentioned in this chapter were implemented in Python 3.8 using the re package:
https://docs.python.org/3/library/re.html.
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Figure 6.4: Screenshot of the interface used to annotate entities and relations from
scientific text. The example displays a single sentence after entities and relations were
annotated.

Candidate values and ranges were pre-highlighted in the interface using a rule-based

system. PK terms were pre-highlighted using the optimal NER model from chapter 4

and a list of dictionary terms was used to pre-annotate Compare entities. The pre-

highlighted entities often had to be corrected by the annotators, but it allowed them

to quickly focus on the relevant parameter mentions and their surrounding information.

After one sentence was annotated and accepted, a set of quality checks were performed

and only if a set of conditions were met the annotator could move to the following

example. The checks included: (1) ensuring that each relation was between the allowed

entities (e.g. if a Centralval was annotated between two Value mentions a pop-up

window would appear and prevent moving forward), (2) ensuring that all the annotated

entities were part of relations, and (3) checking that if a Deviationval was annotated,

one of the values as part of a Centralval relation while the other was not.

Guidelines Prior to beginning the labelling task, initial annotation guidelines were

developed and distributed to the annotators. As new complex cases and disagreements

emerged during the annotation process, guidelines were updated with those challenging

examples and their resolutions. Appendix C: Guidelines Relation Extraction contains

the final guidelines for this work.
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Annotation team The multiple entities and relations involved in this task required

significant PK expertise and attention from the annotators, who spent, on average,

more than a minute per sentence. Given the relevance of this task for academic and

industrial applications and the need for a relatively large (in comparison to the NER

study) team of annotators to perform the task, a variety of potential end-users were

contacted a priori to discuss applications of the extracted data in drug development and

ask for annotation on a volunteering basis. Twelve annotators were involved during the

annotation process, including two senior pharmacometricians from University College

London’s Pharmacometrics group, one postdoctoral researcher in pharmacokinetics from

Uppsala University, two postdoctoral researchers in pharmacokinetics from the Mahidol

Oxford Tropical Medicine Research Unit, one principal scientist from the DMPK team

at AstraZeneca, one pharmacometrician from Sanofi, three senior pharmacometricians

and one final-year pharmacy student from Universitat Ramon Lull and one PhD student

from UCL with NLP and PK expertise.

Annotation process Each volunteer assisted in a training session where annotation

guidelines were reviewed, and about 30 example sentences were annotated and discussed

in a group. After this session, annotations were performed in batches of 200 sentences.

Each batch followed a three-step procedure similar to the one employed by Hope et al.

[227]: (1) initial annotation by one PK expert, (2) review by another PK annotator and

(3) final check focusing on span boundary consistency by an annotator with bio-NLP

experience. After the second step in each batch, comments from the first and second

steps were reviewed, and feedback regarding incorrect annotation patterns was given to

the annotators. Finally, the model predictions on the development and test sets were

displayed in a terminal window together with their annotated version, which allowed

identifying potentially missed entities and relations during the annotation.

6.2.2 Model development

In this section, the task of end-to-end relation extraction is first presented together

with the main evaluation metrics used. Then, the architecture developed for end-to-end

extraction of PK measurements is described and compared with previous work.

6.2.2.1 Task definition and evaluation

Task End-to-end RE aims to identify named entities and extract relations between

them. Given some input text X, the output of any end-to-end RE system is a list of

triplets in the form of (si, sj , r) where si, sj ∈ S and r ∈ R and S denote all the possible

spans in X and R the set of pre-defined relation types [259]. Hence, the annotated

data was represented as a list of sentences, each with their corresponding list of relation
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triplets and compared to model predictions in the same format. Because end-to-end RE

systems need to (1) identify candidate spans and (2) predict relation classes for pairs of

spans, this task is often decomposed into two sub-tasks:

1. Named Entity Recognition: which attempts to detect the list of entity mentions

(i.e. spans) and their type E = {PK,Units, V alue,Range, Compare} from the

input text X.

2. Relation Extraction: which compares all pairs of spans in X and outputs a relation

class for each pair R = {Centralval, Deviationval, Related}.

Evaluation Evaluation is performed for both NER and RE, and the most common

metrics are Precision, Recall and F1 scores. The evaluation of the NER predictions is

analogous to the one in chapter 4, but instead of one, there are five types of entities in

this task. As a result, for a given system prediction, F1 scores were computed per entity,

and macro and micro-average was performed across entity types to evaluate the overall

system performance. The NER metrics reported in this chapter consider the strict

matching of entity boundaries and types, but qualitative evaluations were performed

regarding partial matches of PK parameter mentions. Different evaluation settings have

been introduced for end-to-end RE systems regarding the span boundaries, and types

of a specific relation triplet [259, 260]. Following recent guidelines on end-to-end RE

evaluation [260] the strict criteria defined by Zhong and Chen [259] was used in this

study. In this setting, for a prediction triplet to be correct, it needs to have the right

relation class, and both the boundaries and entity types of each predicted span must be

correct. In other words, given the following annotated vs predicted triplet:

annotation =

(

{"start":5, "start":12,"type":"PK"},

{"start":17, "start":20,"type":"Value"},

"C_VAL"

)

prediction =

(

{"start":5, "start":7,"type":"PK"},

{"start":17, "start":20,"type":"Value"},

"C_VAL"

)

The prediction is considered a false positive because it missed the span boundaries of

the PK mention and a false negative because it missed the annotated relation triplet.

Precision, Recall and F1 scores were computed per each relation class. However, since

predicting Deviationval or Related relations without correctly predicting Centralval

135



makes the extracted data not useful, the evaluation of the overall system performance

in RE was focused on the F1 score of the Centralval relations.

In summary, micro-averaged F1 scores for NER and Centralval F1 score for RE were

considered the main metrics to compare different architectures on the PK-REX corpus.

Nonetheless, additional metrics were reported in the results section of this chapter to

provide a deeper understanding of the system performance in both tasks.

6.2.2.2 Architecture

End-to-end RE has traditionally been tackled with a pipeline approach, training one

model to extract entities and a separate one to classify relations between them [261–

263]. However, recent work has shown state-of-the-art performance by sharing represen-

tations between tasks and modelling both tasks simultaneously by optimising a single

loss function in a multi-task setting [238, 264, 265]. The latter approach has shown that

the knowledge required to recognise entities can be helpful to extract relations and vice-

versa [238]. This fact seems especially important when extracting PK measurements,

where a specific value and PK parameter mention are only considered entities if the value

is the central measurement of the mentioned parameter. In other words, to determine

whether a specific span is an entity mention, it requires an understanding of whether it

holds a relation with another entity in that sentence. For this reason, the architecture

proposed in this section models NER and RE jointly to share encoded knowledge from

both tasks.

The architecture is illustrated in Figure 6.5. Initially, an input sentence is tokenised into

a sequence of sub-words using the BERT tokeniser. Then, tokens are passed through an

encoder that aims to incorporate contextual information in each tokens’ representation.

The output embeddings from the encoder (T1, T2, ...TN ) are then used to (1) recognise

entities through the token classifier, (2) generate candidate pairs of predicted entities

and (3) classify all pairs of recognised entities with a relation classifier. NER and RE

use the same encoder to represent tokens and have one task-specific classification layer

for each sub-task.

Encoder BioBERT v1.1 [122] was used as an encoder to generate contextual rep-

resentations of input tokens. However, the effect of using different encoders was also

analysed. First, experiments with BERTBASE [2] were performed to analyse the effect

of in-domain pre-training. Additionally, experiments using a bi-directional Gated Recur-

rent Unit (biGRU) were performed to analyse the effect of using a simpler architecture

with fewer parameters. For the biGRU experiments, an embedding matrix was learnt

from scratch for tokens in the vocabulary of BERT’s tokeniser, mapping each token to

a 384-dimensional vector. The size of the hidden layer of the GRU was set to 384 in
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Figure 6.5: Illustration of the approach used for joint entity and relation extraction of
PK measurements. The model first receives a sequence of token embeddings (blue boxes,
Ei) and goes through the encoder layers to generate a sequence of contextual token
embeddings (green boxes, Ti) which are shared in both tasks. Then, (A) contextual
token embeddings go through the token classifier (feed-forward layer) to output BIO
labels that will allow recognising entities. (B) Entities and contexts (span between two
entities) are represented by max-pooling their contextual token embeddings. Finally,
pairs of entities are concatenated with their context representation and passed through
the relation classifier (feed-forward layer).

each direction so that the output representation for each token matched the BERT’s

dimension (d=768), and a single layer was used.

Named Entity Recognition Analogous to the model presented in chapter 4, NER

was treated as a sequential labelling problem. Each output token representation from

the encoder (Ti) was classified into one unique BIO class (see section 4.2.1.3 for details)

using a feed-forward layer with a sigmoid activation function. The NER loss, LNER,

was computed using the categorical cross-entropy loss between the predicted token-level

softmax scores and the actual labels for each BIO class. For a given sentence i with N

tokens, the loss was computed as:

LNERi = −
N∑
n=1

C∑
c=1

ynclog(ŷnc) (6.1)
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Where C is the list of possible BIO labels and ŷnc is the predicted likelihood that token

n belongs to class c.

Candidate entity pairs After NER is performed in a specific sentence, all potential

pairs of predicted spans were arranged and filtered before going to the relation classifier.

During the filtering phase, those pairs of spans belonging to entity types that had no

relation were not considered. In other words, if multiple PK, V alue, and Units spans

were detected in a specific sentence, all pairs of spans were classified except those between

PK −Units, PK −PK and Units−Units, since none of the relations in the PK-REX

corpus involved those entity type pairs.

Relation Classification After filtering, each candidate entity pair was classified into

one relation class [Centralval, Deviationval, Relation,No Relation]. Following Taillé

et al. [260], the representation of those spans composed by multiple tokens was generated

by max-pooling their contextual token embeddings. For instance, in Figure 6.5 B, the

contextual embeddings from “elimination” and “t1/2” (T2 and T3) were fused into a

single embedding of the same length (d=768) by max-pooling across each dimension of

the two embeddings. Given the effective results of the max-pooling strategy presented

by Eberts and Ulges [238], no other fusion functions were analysed. The input to the

relation classifier x(s1, s2) was the concatenation of the two span representations e(s1)

and e(s2) with their context representation c(s1, s2):

x(s1, s2) = [e(s1); c(s1, s2); e(s2)] (6.2)

The context representation for two spans (yellow in Figure 6.5 B) was generated by

max-pooling all tokens strictly between them. If there were no tokens present between

two spans c(s1, s2) = 0. Experiments were performed to analyse the effect of using

this local context. Relations between entities were symmetric (non-directional) in the

PK-REX corpus, and no overlapping spans were annotated. As a consequence, e(s1)

and e(s2) were arranged according to their relative position in the sentence from left to

right. Analogous to the token classifier, a single-feed forward layer was used to classify

each candidate span pair. Since only one relation class could be associated between

two entities5, a softmax operation was used as an activation function. The categorical

cross-entropy loss over relation classes was used as the RE loss, LRE .

Training and optimisation All the parameters from the encoder, the token and

the relation classifier were fine-tuned during the training phase. Given sentences with

5 This was a different setting from most previous work on end-to-end RE where more than one relation
can often exist between two entities and sigmoid is used as an activation function [238]
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annotated entities and relations, the loss was computed jointly by adding the NER and

RE losses:

L = LNER + LRE (6.3)

Both losses were averaged over each batches’ samples. Each batch consisted of B sen-

tences from which samples were drawn for both classifiers:

• For the token classifier, the loss was computed for all tokens in the batch using

the BIO labels.

• For the relation classifier, at training time, ground truth (annotated) entities were

used to generate candidate pairs. Negative samples (No Relation class) were

generated with all candidate entity pairs that were not labelled with a relation

during the annotation phase. For instance in the sentence:

“The t1/2 and CL of amoxicillin were 3 min and 4 mL/min, respectively”

With the following labelled relations: (t1/2, 3, Centralval), (CL, 4, Centralval),

(3, min, Related), (4, mL/min, Related)

Negative samples were generated with unconnected entity pairs:

(CL, 3, No Relation), (t1/2, 4, No Relation), (4, min, No Relation), (3, mL/min,

No Relation).

At inference time, only those entities predicted by the NER module were passed

to the RE classifier instead of using ground truth entities.

The models were implemented with PyTorch [219] and the Huggingface Transformers li-

brary [220]. The models were trained for 50 epochs and evaluated on the development set

after each epoch. In each experiment, the state of the model with the highest Centralval

F1 score on the development set at a specific epoch was saved. Early experiments sug-

gested the performance on the development set started plateauing after 30 epochs, and

most experiments achieved the highest performance short after that time. The Adam

Optimizer with a linear weight decay of 0.05 was used, and a dropout probability of 0.1

was applied on all layers. All the experiments were run on a single GPU NVIDIA Titan

RTX (24GB). Ten runs were performed for each model or data configuration to compare

model architectures, each with a different random seed affecting the initialisation of the

NER and RE layers, dropout, and the mini-batch splits. At the end of each run, the

state of the model with the best performance on the development set was applied to the

test set.
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Hyperparameters For all experiments, the maximum sequence length was set to 256

and the batch size to 8. The learning rate for BERT-based models was selected based

on the development set performance by performing a grid-search over µ =[1e-5, 2e-5,

3e-5, 4e-5, 5e-5]. The exploration was performed using BioBERT as an encoder, and a

single run was performed for each learning rate value, obtaining the best performance

on the development set when µ=2e-5. For experiments using a biGRU the learning rate

was grid-searched over µ =[10e-1, 10e-2, 10e-3, 10e-4, 10e-5] resulting in 10e-3 as the

optimal value. All the other hyperparameters remained constant to their default values

during all the experiments.

Comparison to previous work The architecture presented in this work is inspired

by the SpERT model developed by Eberts and Ulges [238]. However, modifications

were performed to adapt the architecture for PK measurement extraction. The main

differences with SpERT included:

1. Eberts and Ulges [238] used a span-based approach in the NER module, which con-

siders all groups of consecutive tokens as candidate spans (up to a certain length),

and classifies each of them into entity types. The approach is often used to deal

with overlapping spans. However, Taillé et al. [260] showed that when no overlap-

ping spans were present, there were no benefits of using the span-based classifier

over token-level predictions. For this reason, and because it is less computationally

intensive, sequential BIO labelling was used in this work.

2. Eberts and Ulges represented entities with an additional width embedding, which

encoded the length of a certain entity (i.e. number of tokens). This has been

effective in NER models using the span-based approach to recognise such entities

better. However, no such benefit has been shown on including width embeddings

in the RE layer. For this reason, width embeddings were not used in this work.

3. Most work in end-to-end RE considered predicting the directionality of relations,

which was not needed for this task. Therefore, entity pairs were arranged based

on their appearance in the original text (from left to right).

4. Instead of a softmax layer in the RE classifier, Eberts and Ulges implemented a

sigmoid activation. Since more than one relation can happen between two entities

in most RE datasets, the values higher than a certain threshold after the sigmoid

activation were considered part of a relation. However, only one label can exist

between each entity pair in the PK-REX corpus, which made softmax activation

more suitable for this task.
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6.2.3 Data augmentation

Understanding the relation between specific parameter types and their most common

units of measurement could be particularly important for this task. For instance, Figure

6.6A shows a sentence mentioning three PK parameters followed by their estimated val-

ues, which is a frequent pattern to express results across the PK literature. From a model

perspective, it can be particularly challenging to understand the syntactic dependencies

between PK parameters and their associated values in these sentences. However, it is

known by pharmacometricians that half-life is always expressed in units of time, clear-

ance in units of volume divided by time and often6 mass, and that volume of distribution

is expressed in units of volume and often divided by mass.

Figure 6.6: Illustration of labelled sentences with (A) multiple parameter mentions
and their respective values, and (B) a measurement that does not refer to the parameter
mentioned.

Similarly, in Figure 6.6 B, without prior knowledge that Cmax is often expressed in

units of concentration, it might not be clear whether the measurement “3h” (which

corresponds to the tmax) refers to the parameter Cmax based on syntactic dependencies

between entities. Hence, the challenge of predicting potential Centralval relations in

Figure 6.6 could be simplified with prior knowledge about the relations between specific

parameters types and the dimensions7 of their units of measurement. Based on this

idea, a data augmentation strategy was developed to increase the diversity of training

examples.

Data augmentation refers to a set of techniques for enhancing the diversity of training

data by producing synthetic instances without explicitly gathering more annotations

[266, 267]. Given a sentence with annotated entities and relations, the method aimed to

replace mentions of PK, Units and Compare with new ones using a look-up dictionary

and replace V alue and Range mentions by ±100% of their values. An example of

6 Clearance and volume of distribution are often normalised by mean adult body weight (70kg).
7 Across this chapter, the term dimensions is used to describe physical quantities that can be measured

such as Mass, Volume, Time.
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an augmented sentence can be observed in Figure 6.7. For V alue and Range mentions,

integers were replaced by integers by rounding the augmented result while decimal values

were replaced by synthetic values with either 1, 2, 3 or 4 decimals, which was randomly

selected. Compare mentions were replaced by randomly selecting8 another Compare

mention annotated in the training set.

Figure 6.7: Example of the augmentation process to generate a synthetic sentence
(bottom) given its original one (top).

The look-up dictionaries for Units mentions were generated by normalising each mention

to a series of tokens and mapping each token to their dimension (Figure 6.8). The

following procedure was applied to each annotated Units in the training set:

1. Lowercasing all characters except capital M (molar concentrations).

2. Replacing different division and multiplication symbols with “\” and “·”, respec-

tively. In addition, white spaces and consecutive multiplication symbols were

replaced by “·”.

3. Mentions were tokenised by the “\” and “·” symbols.

4. Each token was replaced by its standard form using a look-up dictionary of syn-

onyms9. For instance, [“microliters”, “microliter”, “micro l”, “microl”, “µl”] were

all mapped to “µl”.

5. Tokens followed by a “-1” or appearing after a back-slash were considered denom-

inator tokens.

6. Parentheses and brackets were removed.

7. Finally, each token was mapped to their dimension using a look-up dictionary

(Conversion step in Figure 6.8).

8 Without replacement.
9 Look-up dictionaries can be found in Appendix D: Unit Dictionaries.
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Figure 6.8: Illustration of the process implemented to covert Units to their dimen-
sions. (A) Input mentions annotated as Units go through a series of rule-based steps to
be converted into a (B) Normalised form. Finally, normalised forms are tokenised based
on multiplication and division symbols, and each token is mapped to its dimension (C).

Then, given a labelled Units mention, it was standardised to its dimensions, and a

new instance was generated by randomly selecting another Units mention from the

training set that had the same dimensions. If standardisation was not possible, the

original mention was used in the augmented sentence. PK mentions were replaced by

looking at the dimension of the Units related to their central values. Hence, each PK

mention in the training set was associated with a dimensions string (including Unitless

if a central value had no units). Then, a labelled PK mention was replaced by randomly

selecting another mention from the training set with the same dimensions. This process

always replaced PK and Units mentions with training set mentions that had the same

dimensions. As a result, parameter types with the same dimensions (e.g. tmax and

t1/2) might be replaced by each other. The augmentation was only performed using

the training set data, and augmented sentences were appended to the original ones.

Note that those sentences without entities and relations were not augmented. Multiple

experiments were performed, with either one, two or three augmented sentences for each

original one.

Overall, this augmentation process had two objectives: (1) increase the diversity of PK,

and Units mentions and (2) enhance the model understanding of the relation between

certain PK parameters and their most common dimensions by preserving these relations

in the augmented sentences.
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6.3 Results and Discussion

6.3.1 Corpus

Statistics The statistics of the resulting annotated dataset, PK-REX, are presented

in Table 6.1. A total of 3,600 sentences were annotated, from which 56.42% contained

annotated entities and relations. Sentences were almost evenly sampled from full-text

and abstract sections. A total of 13,404 entity mentions were annotated. The entities

with the most mentions were Values, Units and PK parameters. This result was ex-

pected since most central and deviation measurements involved those entities. Range

and Compare mentions were much less frequent, indicating that it was more common

for authors to report central measurements of PK parameters in the form of single value

estimates instead of ranges. A total of 12,411 relations were annotated, with most of

them coming from the Related and Centralval classes. This result indicates that au-

thors tend to report units together with central measurements. More importantly, the

fact that the number of annotated Centralval relations was over x2.5 times the number

of Deviationval indicates that measures of deviation are not often reported along with

central measures of PK parameters (only in 35.8% of cases). Comparing the number of

sentences with relations (≈2,031) with the total number of Centralval relations in the

dataset (4,677) indicates that, on average, those sentences with measurements reported

more than a single central measurement, ≈2.3. The average distance between entities in

the Centralval, Deviationval and Related relations was 15.05, 4.34 and 5.58 sub-word

BERT tokens, respectively. Overall, the dataset covered various entity mentions, surface

forms and relations. However, it is noteworthy the low number of Range and Compare

mentions in all datasets, which might introduce noise in the training and evaluation of

NER and RE models.

Table 6.1: Corpus statistics summarising the sentences, entities and relations in the
dataset stratified by the training, development and test sets.

Training Development Test Total

Amount # 2100 500 1000 3600
Sentences with relations (%) 57.05 53.00 56.80 56.42†

from full-text (%) 48.71 50.00 50.30 49.33†

PK 1890 394 856 3140
Units 2286 474 1056 3816

Entities Value 3524 702 1557 5783
Range 314 74 174 562

Compare 51 18 34 103

Centralval 2794 571 1312 4677
Relations Deviationval 1049 207 419 1675

Related 3643 764 1652 6059
† Weighted average across datasets.
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Annotation quality and sources of disagreement As previously mentioned, the

annotation process was performed in batches of 200 sentences and involved (1) anno-

tation of entities and relations by a PK expert, (2) review by another expert and (3)

final check focusing on span boundary consistency. Annotators could leave comments

for each annotated or reviewed sentence. At the end of each batch, comments were re-

viewed to resolve disagreements, update guidelines, and provide feedback. This iterative

procedure significantly improved the consistency of labels after each batch between the

first and second steps. For instance, significant variation was initially observed regarding

the inclusion of some PK parameters and their span boundaries, with 28% of sentences

being corrected after stage 1 in the first batch. However, as feedback was provided after

each annotation batch, the number of sentences that required correction after stage one

was reduced to 6% in the last batch. In the initial phases of the annotation process,

many sentences reporting % or fold increase of some parameters with respect to base-

line values were observed, which generated confusion between annotators and required

guideline updates.

In addition to the three passes over all sentences of the PK-REX corpus, 200 instances

(the last batch of the test set) were independently re-annotated from scratch by seven

annotators. Then, the inter-annotator agreement was examined using the pair-wise F1

score on those sentences and the mean was computed across each pair of annotators.

The average micro and macro-F1 scores for NER were 88.74% and 92.36%, respectively,

exhibiting high agreement on entity surfaces on the first annotation phase. For RE,

the average pair-wise scores were 93.02%, 94.47% and 83.2% for Related, Deviationval

and Centralval, respectively. These results indicate high agreement between annotators

when identifying deviation values and units regarding PK measurements. However, a

lower agreement was obtained between central values and their PK parameter mentions.

After frequent conversations with annotators, it was observed that most of these in-

consistencies were caused by disagreement on the span boundaries and the inclusion of

some PK parameters. Nonetheless, the annotation consistency of PK parameters was

improved in steps 2 and 3 of the annotation process, where checks and standardisation

of span boundaries were performed.

Dataset limitations The main limitation of this dataset is its potential bias in se-

lecting candidate sentences. The sampled sentences went through two filtering stages

that involved model predictions: (1) selection of PK relevant documents identified by

the document classifier and (2) selection of sentences that at least had one PK entity

recognised by the model developed in section 4. As a result, if the document classifier

missed specific types of documents, these would not appear on this dataset. Using the

trained PK NER model for filtering instances with PK parameters mentioned might

exclude sentences where the NER model missed a single PK mention. However, in most

cases, the optimal NER model detected at least a partial match for most PK parameters
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and only in less than 8% of cases (see table 4.4) the model missed the complete mention.

Furthermore, if a specific sentence mentioned more than one parameter and only one

match (partial or not) was detected by the NER model, the sentence was included in

the candidate pool, and these incorrect predictions were later corrected during the an-

notation process. This filtering resulted in over 50% of sentences in the candidate pool

reporting PK estimations (see table 6.1 for details), which provided a rich corpus of PK

parameter mentions, measurements, units and relation instances. Overall, it is impor-

tant to consider that training RE models on this dataset and directly applying them to

sentences in the literature without additional filtering might result in the extraction of

non-PK measurements due to the filtering approach performed in the sampling stage.

For this reason, when deploying systems in production, it will be important to combine

models trained on this dataset with filtering approaches to discard irrelevant measure-

ments (e.g. pre-tagging PK parameters or posterior EL of PK mentions recognised with

RE models). Finally, previous studies have shown significant benefits on dealing with

document-level relation extraction (as opposed to sentence-based) [268, 269]. Hence,

future work might benefit from annotation of entire documents.

6.3.2 Multi-Task solution

In this section, the effect of using a multi-task learning approach (MT) that jointly

optimised the model to perform NER and RE was compared against a model only

optimising for NER (no-MT). For this experiment, BioBERT was used as an encoder

in both cases. The MT architecture saved the model with the best Centralval F1 on

the development set, while micro-averaged F1 was used as a metric to select the best

model for the no-MT experiment. Table 6.2 shows the NER performance on the test set

for each entity type and the macro and micro-averaged F1 scores after ten runs of each

experiment. First, it can be observed that in both architectures, the performance was

particularly high for V alue and Units entities. However, entities with fewer mentions

on the training set, such as Compare or Range, had lower F1 scores. The performance

on PK parameters is highly similar to that in chapter 4 (see table 4.4). Although the

PK entity refers to the same concept as in the NER chapter (i.e. PK parameters),

only those parameter mentions that had an associated measurement were labelled in the

PK-REX corpus, adding a layer of complexity in PK NER.

Higher performance was obtained when using the MT architecture for all entities in the

PK-REX corpus. Although the performance gain was relatively low (≈+∆F1 0.5%),

the consistency of this gain across all entity types suggests that having the RE objective

combined with NER helped the model perform better on NER. As reported in previous

work [270–272], if two tasks are related, sharing the encoder parameters can have a

regularisation effect, enhancing the generation of embeddings that are not too specific

to a certain task and allowing the model to transfer the knowledge learnt in one task
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to another. In PK-REX, for a mention to be labelled, it required that the mention was

part of a PK estimation (i.e. involved in a relation) promoting the input embeddings of

the NER layer to encode some information about the relations in a sentence. Hence, it is

likely that RE provided some additional information to generate better embeddings for

NER. Additionally, the performance of relation extraction is directly dependent on the

successful prediction of entity types and exact boundaries. The effect of regularisation

becomes more clear for entities with fewer mentions on the training set (i.e. Range

and Compare), which had a larger performance gain when using the MT architecture.

Although the performance gain of the MT architecture was small, such an approach also

helped reduce the number of parameters required to model the task. For instance, an

end-to-end solution that does not share encoder representations might require two en-

coders for each task, increasing the overall number of parameters. Overall, these results

indicate that sharing token representations and optimising a single loss for NER and RE

is beneficial for extracting PK measurements from the scientific literature compared to

treating both tasks independently.

Table 6.2: Named Entity Recognition results on the test set for the model using
multi-task learning (MT), NER + RE, against a model only optimising for NER (no-
MT). The metrics reported consider strict matching over entity mentions. Results are
displayed as the median over ten runs with their interquartile variance in subscript.

Precision Recall F1

Entity MT no-MT MT no-MT MT no-MT

PK 90.824.02 89.983.86 90.573.76 90.093.05 90.392.1 90.021.72
Units 95.491.87 95.791.66 96.172.07 95.693.85 95.650.68 95.561.52
Value 94.832.78 94.962.87 96.183.17 95.215.94 95.542.53 95.042.02
Range 93.494.9 93.286.24 90.268.22 87.3910.33 91.664.41 90.43.71

Compare 88.236.81 88.2316.99 66.679.09 68.1811.44 76.535.82 75.648.12

Micro-average 94.031.63 93.691.60
Macro-average 90.022.23 89.562.45

Finally, the performance of the MT solution on the RE task is displayed in Table 6.3. The

RE results indicated that deviation measurements and units were successfully linked in

most cases. It is worth noting that if values and units are detected correctly, predicting

their relation often requires little context (i.e. relatively short distance between values

and units). Additionally, the context separating units from their correct value often

had no other units between both entities, which simplified the extraction. Similarly, the

context strictly between a central value and a deviation value often did not contain any

other value entity. Therefore, given the high NER performance of V alue and Units, very

few errors were observed for Deviationval and Related relations. The Centralval relation

exhibited relatively high performance given the difficulty for annotators to correctly

identify the span boundaries of PK parameters and their relation to central values,

suggesting consistency in the annotated dataset and effective modelling of the problem

end-to-end. Examination of the model predictions (see more details in section 6.3.5)
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showed that errors on the Centralval predictions were mostly caused by incorrect NER

predictions and sentences mentioning multiple parameters followed by their respective

values. Nonetheless, it was observed that some of the incorrect predictions of PK entities

successfully detected a partial match of PK parameters. This result indicates that the

Centralval performance reported in Table 6.3 could be treated as a lower bound for

the extraction of PK measurements since partial matches of PK parameters might be

enough in some applications (e.g. if EL is performed correctly). Finally, it was noted

that the F1 scores reported in Table 6.3 were close or superior to the pair-wise inter-

annotator performance observed in the initial annotation rounds: 93.02% vs 93.66%

for Related, 94.47% vs 93.53% for Deviationval, 83.2% vs 86.1% for Centralval, for

inter-annotator and MT model cases, respectively. This results suggests that posterior

reviews and standardisation of span boundaries significantly improved the consistency

of the dataset, and that the model developed has competitive performance compared to

the expected agreement between pharmacometricians.

Table 6.3: End-to-end relation extraction results on the test set for the MT model
configuration. Results are displayed as the median over ten runs with their interquartile
variance in subscript.

Relation P R F1

Centralval 85.775.04 85.465.07 86.13.49
Deviationval 92.331.9 94.396.27 93.533.01
Related 93.831.69 94.082.51 93.661.52

6.3.3 Effect of encoder and context

In the following experiment, the effect of using different encoders to generate token rep-

resentations was studied. To analyse the effect of domain-specific pre-training in the

encoder, the BioBERT model was replaced with BERTBASE , which was pre-trained on

general-domain English text. As it can be observed in Table 6.4, there was a significant

benefit of pre-training in biomedical text, with BioBERT exhibiting over 3% gains in

all metrics in comparison to BERTBASE . The largest gain (≈ ∆6%) was observed in

the Centralval relation, indicating that pre-training on biomedical text highly improved

not only PK NER but also the understanding between parameter mentions and their

measurements. These results are in-line with previous findings from Wadden et al. [273]

and Eberts and Ulges [238]. It is worth mentioning that previous work on end-to-end

relation extraction showed improvements between 1.1-4.4% on the SciERC and GENIA

datasets with in-domain pre-training [238, 273]. However, 5.9% improvement was ob-

tained in this task for Centralval, suggesting that in-domain pre-training is particularly

useful for this task. Hence, it is likely that further pre-training on PK literature helps

the model performance, and it might be a promising area for future work on this dataset.
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For tasks requiring relatively local context and where limited data is available, Trans-

former models might contain too many parameters and overfit to the training data, and

architectures with fewer parameters could be better suited, obtaining similar represen-

tations with fewer parameters [274]. For instance, Lai et al. [274] showed how carefully

designed CNNs could highly reduce the number of trainable parameters and achieve bet-

ter performance on biomedical EL than BERT-based models. BioBERT was replaced

by a biGRU with no pre-training to study a simpler encoder, aiming to compare the

effect of using a model with fewer parameters (x50 fewer parameters were trained in

the biGRU) and a simpler architecture. Nonetheless, the biGRU exhibited significantly

lower performance than BERT models, highlighting the benefits of pre-training and

fine-tuning with Transformer models for both NER and RE tasks compared to simpler

recurrent models. These results are in-line with Taillé et al. [260] who compared the

Transformer architectures to a biLSTM in end-to-end relation extraction. However, the

biGRU implemented in this study was relatively simple, and other designs of contextual

representations and pre-trained token vectors might yield better results on this task.

Table 6.4: Results on the test set when using different encoder models. Results are
displayed as the median over ten runs with their interquartile variance in subscript.
NER metrics are the micro- and macro- averaged F1 scores over all entities, and RE
metrics are the F1 scores for each relation class.

NER RE

Encoder macro-F1 micro-F1 Related Deviationval Centralval

BiGRU 75.43.17 84.122.13 83.582.61 85.74.5 72.925.78
BERTBASE 85.824.07 90.811.77 89.441.69 90.272.2 80.164.14
BioBERT 90.022.23 94.031.63 93.661.52 93.533.01 86.13.49

The effect of removing the local context between entities was studied. For this, the input

to the RE layer was simplified to the entity embeddings. In other words, the yellow

vector from Figure 6.5 B was removed. Table 6.5 shows the results of this experiment.

Surprisingly, it was observed that the local context improved not only RE but also

NER. Both micro and macro-F1 scores were slightly improved, suggesting that explicitly

encoding local context between entities in RE layers can also help recognise entities

better. One potential explanation behind this result is that, when predicting Centralval

between PKs and V alue, it might be important to detect whether other parameters

and values have been mentioned between the parameter and value being predicted. For

instance, when predicting a relation between “t1/2” and “0.5” in the following sentence:

“The t1/2, and tmax of midazolam were 0.2 and 0.5 h, respectively”, it would be crucial

to understand that another PK parameter and value were mentioned in the local context.

Hence, max-pooling those tokens in the local context could promote the network to

generate embeddings that better differentiate PK parameters and Values from other

tokens, which, in turn, could benefit the recognition of those entities. However, it is

important to note that the median improvements on NER were below 0.5, and this

hypothesis would need to be further analysed to draw conclusions.
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For relation extraction, local context seemed to provide a significant improvement for

all relation types, and especially for the Centralval. This result suggests that entity

embeddings might capture local information around the entity mentioned while failing

to incorporate longer-range dependencies. The results obtained in this experiment are

in-line with Eberts and Ulges [238]. Although recurrent and Transformer models have

improved the detection of long-range dependencies in sequential inputs, the noise in-

troduced with long context still represents a challenge in relation extraction [238, 259].

Using this local context, the model can focus on those tokens that might be more in-

formative about the dependencies between both entities. Nonetheless, future studies

might benefit from further exploring different contextual representations for RE of PK

measurements.

Table 6.5: Results on the test set when using different representations as input to
the relation classifier. Local context is the max pooling of all tokens strictly between
two entities. No context only used the concatenation of each entity representation
in a specific relation. Results are displayed as the median over ten runs with their
interquartile variance in subscript. NER metrics are the micro- and macro- averaged
F1 scores over all entities and RE metrics are the F1 scores for each relation class.

NER RE

RE layer representaiton macro-F1 micro-F1 Related Deviationval Centralval

Local context 90.022.23 94.031.63 93.661.52 93.533.01 86.13.49

No context (E1E2) 89.472.16 93.691.0 91.611.84 90.524.44 81.042.96

6.3.4 Augmentation

In the last experiment, heuristic data augmentation was performed to enhance the model

understanding of the relation between specific parameter mentions and their most com-

mon dimensions and increase the diversity of units and PK mention synonyms. Given an

input sentence from the training set, several replicates were created using the augmen-

tation dictionaries automatically generated from the training data and a set of rules to

generate new value entities. Three independent analyses were performed, using the origi-

nal sentence in the training set to generate one (x2)10, two (x3), or three (x4) augmented

sentences. Table 6.6 and Figures 6.9, 6.10, 6.11 show the results of this experiment.

Almost no improvement was observed in macro or micro-averaged F1 scores for NER. In

fact, Figure 6.10 shows a slight decrease in the macro-averaged F1 scores when increasing

the number of augmented sentences. From Figure 6.11, it can be observed that this slight

decrease is a consequence of lower performance on the Compare entity. Since very few

mentions of Compare terms was present on the training set, the augmentation approach

always replaced Compare mentions with similar terms, biasing the model towards those

specific surface forms but not aiding the generalisation of the Compare entity.

10Note that x2 refers to the original + the augmented sentence.
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However, the RE performance was more influenced by the augmentation approaches.

First, in Figure 6.11 the performance on the Centralval relation seems to increase lin-

early as more augmented sentences were generated, up to x3. This result indicates that

the augmentation approach used in this study improved the detection of central mea-

surements of PK parameters. However, the performance drops again when generating

more than two augmented replicates of the original sentence. This drop is likely to

result from the model overfitting to irrelevant context. One of the main drawbacks of

the augmentation approach developed in this study is that only NER mentions were

augmented while keeping the remaining context static. Hence, this approach might bias

the model towards detecting incorrect dependencies between the presence of irrelevant

contextual tokens and the appearance of Centralval relations. Finally, when looking at

Figure 6.11, it can be observed that the NER performance of PK terms was improved on

the x3 experiment. This result suggests that the improved performance on Centralval

is partially influenced by a better recognition of PK parameters.

Overall, due to the inconsistent results across NER and relation types and the similar

performance observed when performing augmentation, it cannot be concluded that the

augmentation approach implemented in this study provided a significant benefit for this

task. The diversity of PK surface forms in the training set was relatively high, and the

improvement observed in Centralval relations might not be observed in situations where

the diversity of entity surface forms is low. The overfitting observed in the x4 experiment

suggests a clear limitation on this augmentation approach. Future studies might benefit

from approaches that deal with the context overfitting problem [266]. One approach

could also be to augment non-entity spans such as drug names or administration routes

mentioned in the sentence.

Finally, a growing number of studies make use of distant supervision to improve the

performance of RE systems [275], which was not explored in this chapter. Future work

on this dataset might benefit from exploiting priors of known PK parameters stored in

PK databases such as PKDB or DrugBank.

Table 6.6: Results on the test set when performing augmentation on the training set.
Results are displayed as the median over ten runs with their interquartile variance in
subscript. NER metrics are the micro- and macro- averaged F1 scores over all entities,
and RE metrics are the F1 scores for each relation class.

NER RE

Strategy macro-F1 micro-F1 Related Deviationval Centralval

No augmentation 90.022.23 94.031.63 93.661.52 93.533.01 86.13.49
Augmentation x2 89.762.1 93.741.38 93.113.84 92.713.71 86.73.13
Augmentation x3 89.771.87 94.121.36 93.232.58 93.662.34 87.42.92

Augmentation x4 89.462.69 93.741.09 93.72.55 93.683.0 86.721.77
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Figure 6.9: Box-plot showing the F1 scores on the test set for each relation class when
performing augmentation of sentences in the training set. Experiments were performed
augmenting each annotated sentence once (x2), twice (x3) or three times (x4) or not
performing augmentation at all. Ten runs with different seeds were performed for each
experiment.

Figure 6.10: Box-plot showing the NER micro- and macro-averaged F1 scores when
performing augmentation of sentences in the training set. Experiments were performed
augmenting each annotated sentence once (x2), twice (x3) or three times (x4). Ten
runs with different seeds were performed for each experiment.
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Figure 6.11: Box-plot showing the F1 scores for each entity type when performing
augmentation of sentences in the training set. Experiments were performed augmenting
each annotated sentence once (x2), twice (x3) or three times (x4). Ten runs with
different seeds were performed for each experiment.

6.3.5 Error analysis

Causes of incorrect predictions were first inspected for the best11 base model (No Aug-

mentation). The examination was done qualitatively by comparing model predictions

against annotations in the test set. A total of 12% of annotated sentences in the test

set presented some sort of misalignment (either at the NER or RE level) with the base

model predictions. From those sentences with incorrect predictions, 79% had some NER

span incorrectly predicted, and 21% were exclusively related to incorrect prediction of

relations between entities. Hence, the main limitation behind optimal PK measurement

extraction seemed to be span boundary detection.

NER analysis For Units, V alue, Range and Compare entities, it was observed that

partial matches did not cause most NER errors. Instead, they were often caused by

either missing all the entities relating to a measurement (including PK) or predicting

all the entities relating to a measurement that was not a PK parameter (e.g. doses or

concentrations). Over-predicting values seemed to occur much more often than missing

annotated measurements. Two of those examples can be observed in Figure 6.12. For

PK mentions, partial matches were a common cause of the model error. However, as

it can be observed in the example from Figure 6.12, the values and units related to

11Best performing model in the development set.
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that parameter were extracted correctly. In those cases, extracting a partial match is

likely to be useful for different use-cases, especially when used in combination with EL

systems. Finally, this comparison check also allowed for detecting wrongly annotated

sentences. In the last example from Figure 6.12 it can be observed how the model did

not predict any entity since the estimated value does not refer to the parameter “V1”

but a reduction from a baseline value. However, this was incorrectly annotated as a

measurement.

Figure 6.12: Examples from the test set of main causes of model error at the NER
level. One example is presented for over-predicted, missed, partial match, and wrongly
annotated sentences.

RE analysis From those sentences with entities correctly predicted but with RE er-

rors, 44% mentioned consecutive PK parameters followed by their respective values

(e.g. Figure 6.13). Since the architecture implemented max-pools tokens between two

entities, this might not be representative enough to account for the number of param-

eters and values mentioned between a specific PK and V alue. Instead, an experiment

was performed to examine whether a simple rule could fix those cases. For this, when

multiple parameter values were mentioned without any other entity between them, if a

multiple number of central measurements (respect to the number of PK mentions) was

reported, the first PK mention was related to the first V alue/Range mention (exclud-

ing deviations), the second PK mention to the second V alue/Range, and so on. With

this approach, the performance of the Centralval relation on the test set was improved

from 86.7% to 86.82%. It is worth noting that this rule-based approach failed in some

cases where consecutive results were reported for each parameter referring to different

experimental designs, as shown in Figure 6.13. When using the augmentation x3, the

median Centralval increased 0.7%, which might be the result of better predicting those
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cases and the PK mentions. After inspection, only 35% of incorrect RE sentences from

the augmentation x3 model predictions followed the consecutive pattern, suggesting that

the augmentation approach helps reduce this kind of error.

Figure 6.13: Example of a complex annotated case where the rule-based algorithm
to associate consecutive PK parameters and their respective V alues would not work.

Another common cause of Centralval mispredictions were in estimations expressed with

the pattern “< V alue > ± < V alue >< Units >< Parameter >”. Since the parameter

is, in most cases, mentioned on the left-hand side of the measurement, the model of-

ten mispredicted these cases, associating a Centralval with the deviation measurement.

Similarly, units mentioned on the left-hand side of the measurement were often not re-

lated to the correct values. Finally, the most common source of Deviationval errors was

observed in cases following the pattern “< PK >< V alue > (< Range >) < Units >”.

In these cases, during the annotation process, the Range was considered the deviation

of the V alue to not extract repeated measurements in the PK database. However, in

most cases, the model did not predict a Deviationval between the V alue and Range but

instead a Centralval between the PK and Range.

Overall, from the error inspection, it was clear that most measurements were extracted

correctly. However, some PK parameters were still missed with no apparent explanation

(e.g. tmax), and concentration and doses were often extracted. From a NER perspective,

future work might benefit from strategies focusing on improving the detection of PK

parameter mentions. From the RE point of view, most errors seemed to appear in

sentences mentioning multiple parameters and, subsequently, their respective values.

The augmentation approach reduced the number of mispredicted sentences that followed

this pattern. However, a large proportion of mispredictions still appeared in those cases.

Hence, better encoding of the context between PK and V alue/Ranges could benefit

the overall model performance. For instance, explicitly including the embeddings of

predicted Units for a particular V alue/Ranges when predicting Centralval relations

could help the model understand the dependencies between parameters and units better.
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6.4 Conclusions and Future work

This chapter presented the first resource to train and evaluate models for extracting

PK measurements from the scientific literature, named PK-REX. To fulfil objective

O4−1, a framework was designed to annotate sentences and extract PK estimations

in a structured format based on PK entities and their relations. Annotations were

performed by expert pharmacometricians and exhibited high consistency on entities and

their relations, which addressed objective O4−2.

To address objective O4−3, a multi-task learning approach was implemented to jointly

predict entities and their relations, achieving F1 scores over 85% on end-to-end rela-

tion extraction (RE). Sharing token representations for NER and RE helped the model

performance on NER, exhibiting the benefits of jointly modelling both tasks, which ad-

dressed objective O4−4. Across the methods studied, pre-training transformer models in

biomedical text largely outperformed alternative approaches to encode sentence tokens.

Additionally, using explicit representations of the context strictly between two entities

was crucial to obtain optimal performance on RE.

A heuristic data augmentation approach was developed to tackle objective O4−5, in-

creasing the diversity of training samples based on the relationship between specific

parameter types and their units. The augmentation approach seemed to improve the

recognition of PK parameter mentions and their relation to central measurements but

this improvement was not consistent in other relation types. Additionally, the model

seemed to overfit the training data when more than two augmented sentences were gen-

erated for each original one. Overall, it could not be concluded that the augmentation

approach provided a benefit for this task.

Finally, an inspection of model errors was performed to address objective O4−6. The

analyses showed that most limitations of the model performance were caused by NER

of PK parameters and incorrect Centralval predictions when multiple PK parameters

were mentioned following their respective values.

Future work The work presented in this chapter can be advanced by exploring its

feasibility in constructing ADME datasets for preclinical drug development. For exam-

ple, a database of PK measurements could automatically be generated using the models

presented in this chapter, and different strategies could be studied to associate each

measurement to the correct chemical compound and study population. Further annota-

tions would also help improve the model performance and its robust evaluation. On this

end, annotating the relations between PK measurements and their chemical compounds

and study populations would make the extracted PK data more usable for constructing

ADME datasets. Although the models developed have exhibited the ability to automat-

ically extract useful features for RE, other contextual representations could be studied,

156



or manually-engineered syntactic and semantic features could be added to enhance the

model’s understanding of the relations between specific parameters and their estimated

values.
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Chapter 7

Pharmacokinetics database

The previous chapters in this thesis have tackled several tasks for improving text mining

in the pharmacokinetics (PK) domain, from detecting relevant documents to extracting

parameter estimates. However, for researchers in PK to exploit these resources effec-

tively, it is essential to evaluate the potential applications and limitations of using text

mining in their use cases. In this chapter the Q5 of this thesis was addressed: How can

text mining approaches accelerate the curation of ADME datasets used by pharmaco-

metricians?. Therefore, this chapter discusses how the resources developed across this

thesis could be used for pharmacometricians and highlights potential limitations and

areas for future work. Additionally, the chapter presents an overall discussion of the

methods used across this thesis when applied to extract PK estimates. The following

objectives were established to answer Q5:

O5−1 Develop a database of PK estimates automatically extracted from the literature

by using the models developed in previous chapters.

O5−2 Evaluate the performance of the extraction pipeline and the quality of the database.

O5−3 Use the database to perform a case study showcasing the extraction of multiple

parameters and drugs of interest.

O5−4 Assess whether text mining approaches can accelerate the retrieval of publications

reporting novel PK estimates for the different drugs tackled in the case study.

O5−5 Identify and discuss the key applications and limitations of using text mining

approaches to accelerate the curation of ADME datasets.

To do so, two analyses were performed:

1. Database PK estimates were automatically extracted from a large corpus of pub-

lications generating a database of measurements. Then, analyses were performed

to determine the most common parameters and units reported, and the reliabil-

ity of the information reported in the database was assessed. Finally, a potential

interface was presented to stratify the extracted estimates by drugs, parameter

types, units, and contextual information.
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2. Case study The models developed were used to accelerate a PK meta-analysis

previously published and determine where could text mining have been most help-

ful in the extraction and comparison of PK estimates across drugs and study

populations.

7.1 Database

Comprehensive databases of PK parameter estimates are critical for preclinical predic-

tions of candidate drugs, perform PK meta-analyses and provide informative priors for

pharmacometric model building [10, 11, 255]. For this reason, one of the most promising

applications of text mining is in the curation process of these databases. In this section,

the models developed in this thesis were sequentially applied to extract PK estimates

and automatically generate a database of measurements to explore and evaluate the

extraction of numerical data with text mining. Then, the quality of the extracted data

was assessed, and summary statistics were reported and discussed. Finally, a potential

interface to filter values by drugs, parameter types, units and other fields was presented.

7.1.1 Construction

For this study, the extraction of PK parameters was narrowed down to abstracts from

scientific publications. Despite the wealth of PK information reported in full-text articles

or clinical trial reports, these documents are often not available open access and might

be only published in PDF format. Hence, to allow the reproduction of the methods

presented, the extraction was limited to scientific abstracts published in PubMed, and

the extraction and use of PK estimates in full-text documents were left for future studies.

The following steps were computed sequentially to construct a database of PK estimates

from scientific abstracts:

1. Initial Search and Parsing The PubMed search “pharmacokinetics” was per-

formed in January 2021, which returned 583,961 publications. The XML of these

publications was downloaded from PubMed and parsed with PubMed Parser [197].

The metadata of each abstract was stored in JSON format, and the biomedical

Stanza Python library [150] was used to split the abstract text into sentences.

2. Document Retrieval The optimal pipeline from chapter 3 was used to identify

those publications that were likely to report PK parameters, returning 120,913

articles classified as “Relevant”.
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3. Relation Extraction From those relevant publications, the optimal pipeline from

chapter 61 was applied to extract PK estimates through relation extraction. How-

ever, like in the sampling performed for relation extraction (see section 6.2.1.2 for

details), the model was only applied to sentences reporting at least one numerical

value, which highly reduced the inference time.

4. Entity Linking Those PK parameter mentions detected by the RE model were

linked to the PK knowledge base using the optimal model presented in chapter

5. Each numerical estimate in the final database was related to a specific PK

parameter type with this approach.

5. Formatting and unit standardisation Each Centralval relation predicted by

the relation extraction model established one row in the database, named PK

estimate, and was initially composed by one parameter mention and its central

value or range. Then, using the rest of the relations predicted by the model, the

entity linker, and the abstract metadata, each PK estimate was associated with

their parameter identifier (from the entity linker), potential deviation measure-

ments, units, compare terms, original sentence, and PubMed identifier. Finally,

unit mentions were normalised using the approach described in the augmentation

section 6.2.3 (Figure 6.8).

The resulting database was named PKUnlocked and fulfilled objective O5−1.

7.1.2 Statistics

The initial results from the construction process are displayed in Table 7.1. First, it can

be observed that only 93.8% of papers retrieved had the abstract available in PubMed,

while for the rest, only the title was available in the XML file. Publications without

abstracts were then excluded and often involved old articles or publications not written

in English. From those papers with abstract, in 57.64% of cases, the pipeline extracted

some PK estimate from the abstract. This result is aligned with comments from PK

annotators involved in chapter 3, who noticed that several abstracts mentioned some

parameter or PK modelling approach, but values were only reported in the full text.

Therefore, this result suggests that extracting information from the full text is crucial

for obtaining high recall on the extraction of PK parameter estimates from the literature.

Table 7.1: Statistics of the construction process of PKUnlocked.

Initial papers # Papers with Abstracts with PK estimates #
abstract # (%) PK estimates # (%)

120,913 113,415 (93.80%) 65,377 (57.64%) 274,277

1 The relation extraction pipeline with x3 augmentation was used.
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A total of 274,277 PK estimates were extracted and present in PKUnlocked. This

result indicates that for those publications where PK estimations were reported in the

abstract, one could expect an average of 4.2 estimates reported. Figure 7.1 stratified

those estimations by the type of PK parameter, showing the 15 parameter types with

most estimations reported and the rest grouped into the Others class. As it can be

observed, a large proportion of PK estimates were classified as NIL, which accounted

for outside of the knowledge base entities. After exploration of these cases, it was

observed that the model often extracted measures that were not PK parameters but

other parameters often related to pharmacodynamics, such as flow rates, maximum

tolerated doses, viral load, recovery rates, amongst others. This high number of non-

PK parameters extracted could be the result of not applying the PK NER algorithm

presented in chapter 4. It is worth noting that the relation extraction model was trained

with sentences that at least mentioned one PK parameter detected by the NER model.

However, this filtering was not applied to build PKUnlocked to avoid missing potential

PK parameters not detected by the NER model and accelerate the overall prediction. As

a result, many non-PK measurements were detected by the relation extraction model

that seemed to focus on extracting measurements that were expressed with a similar

syntactic structure than those for PK parameters, regardless of whether they were PK

parameters. However, this behaviour could be desirable if the entity linker correctly

classified non-PK mentions as NIL entities.

Finally, it was observed that the most common measurements were related to the drug’s

maximum concentration (Cmax ) and elimination half-lives (t1/2 and t1/2,β), followed

by clearances (CL and CLpo), area under the curves (AUCinf , AUCt), bioavailability

(F ), time to reach Cmax (tmax), volumes of distribution (V , V ss), IC50, Cthrough

and the mean residence time (MRT ), respectively.

7.1.3 Quality assessment

Precision, Recall and F1 were estimated for the overall extraction pipeline to quantify

the expected quality of PKUnlocked. For this, 50 articles were randomly sampled from

the pool of 113,415 abstracts for inspection. Since the most likely use case of PKUn-

locked is the collation of values for specific parameters, for each abstract, the number

of true positives, false positives and false negatives was annotated with the following

considerations:

• True Positive: Rows in PKUnlocked where the parameter type was correctly

predicted (according to its knowledge base identifier) and associated to the cor-

rect central and deviation values, units and compare mentions considering strict

matching.
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Figure 7.1: Pie chart displaying the frequency of PK estimates in PKUnlocked strat-
ified by the type of parameter. The legend shows the main entity name together with
the knowledge base identifier, sorted by their frequency from top to bottom. The top-15
most frequent parameter types were included and the rest were grouped into the Others
category. The chart shows the total number of estimates for a given entity followed by
their relative % over all estimates in the PKUnlocked.

• False Positive: Rows in PKUnlocked where either the parameter identifier or

the span boundaries of central and deviation values, units, or compare terms were

incorrect.

• False Negatives: Rows that should have been extracted in PKUnlocked but were

not extracted. Note that, in cases where the parameter mentioned, value and units

were correctly extracted, but the parameter id was incorrect, that would have been

considered both, False positive and False negative.

Since the knowledge base identifiers would be used to filter parameter values and ag-

gregate estimates across study types, NIL predictions were not considered as positive

examples. For instance, if a value and units were correctly extracted for “MIC” (which

was not in the knowledge base) and the predicted entity type was NIL, that was ignored

and not considered a true or false positive. Instead, if “MIC” would have been predicted

as another entity in the knowledge base, that would be considered a false positive. Sim-

ilarly, estimates with parameter mentions that could not be linked to a knowledge base

identifier (apart from NIL) were not considered in the count of true/false positives.

In other words, the evaluation considered estimates of all knowledge base entities as

positives except NIL.
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Figure 7.2: Example of the evaluation interface built for PKUnlocked. The abstract
is displayed with the title, and the pipeline predictions were highlighted at the entity
level. The extracted rows for a given abstract were displayed at the bottom in tabular
format. From this visualisation, true/false positives and false negatives were derived.
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A web interface was built with Dash2 to facilitate the evaluation, displaying an abstract,

and if present, the extracted information in PKUnlocked. The interface allowed to ran-

domly select an abstract from the pool of 113,415 abstracts, and if the pipeline extracted

estimates from that abstract, the corresponding PKUnlocked rows were displayed. An

example of one abstract’s visualisation can be observed in Figure 7.2. By looking at the

tables at the bottom of the interface and the whole abstract, the number of true/false

positives and false negatives were annotated for a given abstract.

The pipeline’s Precision, Recall and F1 scores derived from this evaluation were 84.04%,

90.28% and 87.05%, respectively. The first pattern observed after the inspection was

that the majority of non-PK parameter estimates were correctly linked to the NIL

class, which attenuated the effect of extracting estimates not related to PK parameters.

Overall, the pipeline missed very few measurements, and the recall was mostly limited

by errors at the NER level, where values or unit boundaries were incorrectly predicted.

Occasional Centralval mispredictions were also observed when the estimates of multiple

parameter types were reported in the same sentence. Finally, EL errors also accounted

for a number of both false negatives and false positives. Figure 7.3 shows a common

source of error that generated false positives and false negatives. In these cases, the

model correctly detected entities and relations, but it did not successfully associate the

first parameter mentions distribution and central to the correct identifier. This pattern

suggested that the entity linker might rely more on parameter surface forms instead of

relevant context.

Another common source of error limiting the pipeline’s precision was the incorrect link

of concentration mentions (without a knowledge base identifier) such as “total plasma

concentration” or “salivary concentration” to the Cmax entity instead of NIL or “MIC”

mentions linked to “IC50” instead of NIL. This pattern suggested that when surface

forms of NIL mentions were similar to the knowledge base title of another entity, it

generated confusion in the model predictions.

Overall, the evaluation performed achieved objective O5−2 and indicated that the in-

formation stored in PKUnlocked covered a large proportion of PK estimates reported

in scientific abstracts while also having several non-PK estimations. It is worth noting

that, in most occasions, when extracting estimates for a specific parameter, several false

positives could be easily removed by discarding estimates with units not related to the

parameter of interest (e.g. “h” associated with a clearance estimate).

2 https://dash.plotly.com/

164



Figure 7.3: Example of two sentences where the extraction pippeline successfully pre-
dicted all entities and relations for each estimate but did not link some of the parameter
mentions to the correct knowledge base identifier (i.e. distribution in example A and
central in example B).

7.1.4 Potential use

When constructing ADME datasets, pharmacometricians might look for estimates of

specific parameters (e.g. AUC, Clearance), drugs (e.g. amoxicillin, midazolam), admin-

istration routes (e.g. oral, intravenous), dose regimens, sub-populations (e.g. healthy/ill,

child/adult) or clinical study designs. Therefore, when using databases similar to PKUn-

locked, end-users must be able to filter the desired estimates according to their criteria.

For this reason, a search interface built with Dash was constructed and proposed for

filtering the desired estimates from PKUnlocked according to different criteria and is

displayed in Figure 7.4.

Estimates from PKUnlocked are displayed in a dynamic table, where values can be fil-

tered by the categories in each field/column (e.g. values were filtered by CL in Figure

7.4). Additionally, estimates could be inspected in context by selecting a specific cell and
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Figure 7.4: Example of a search interface to filter estimates from PKUnlocked.

visualising the sentence and their entities on the interface. Drug names could be intro-

duced in the search bar. For this, the E-Utilities3 was used to retrieve the PubMed Ids

resulting from searching that drug name in PubMed, and those rows in PKUnlocked that

had PubMed Ids matching the search were selected. This approach allowed integrating

the PubMed search engine to filter for estimates in abstracts mentioning a specific drug.

In other words, when searching for “amoxicillin”, the PKUnlocked interface returned

all the estimates appearing in abstracts from PKUnlocked and subset those estimates

by the ones that also appeared in abstracts when searching “amoxicillin” in PubMed.

Hence, this resulted in a list of candidate estimates for the desired drug, but users could

click on the desired cell, see the estimate in context and decide whether to use that

estimate by selecting the checkbox on the left-hand side of the dynamic table. It is note-

worthy that this approach integrates any search that one could perform in PubMed (e.g.

“amoxicillin AND clavulanic AND healthy”) to the PKUnlocked interface. The sentence

in which the value appeared was displayed with the related entities highlighted to see

the estimate in context. Additionally, users could see the article title (often helpful to

filter for human/animal studies) and, if needed, go to the full-text article. After inspec-

tion, the selected estimates could be downloaded for plotting or use in ADME datasets.

Early inspection indicated that sentence and title were often enough to determine the

drug related to the estimate, the study population conditions, and the administration

3 Public API that allows retrieval of entries in PubMed, PMC and other NCBI databases https://www.
ncbi.nlm.nih.gov/books/NBK25501/.

166

https://www.ncbi.nlm.nih.gov/books/NBK25501/
https://www.ncbi.nlm.nih.gov/books/NBK25501/


route. However, additional context was required occasionally, and future approaches

might benefit from displaying more context related to the estimated parameter.

This interface allowed users to inspect the extracted values in detail before using them

for specific applications while accelerating the search of PK estimates with text mining.

However, it is noteworthy that multiple approaches could be used to build search inter-

faces, and this was only an approach for a simple yet flexible and fast interface to curate

ADME datasets using the models developed in this thesis.

7.2 Case study

Lonsdale et al. 2019 [276] performed a meta-analysis of PK estimates from commonly

used beta-lactams: amoxicillin ± clavulanate, piperacillin-tazobactam and meropenem.

The study compared the clearance and volume of distribution of each drug reported

across the literature for critically and non-critically ill neonates, children and adults.

The authors screened 2082 articles and extracted PK estimates from 130 publications.

Given the variety of drugs considered, study populations, and the reported detail on the

search and extraction of PK estimates, this publication was selected as a case study to

tackle objective O5−3, analysing areas where the models developed in this thesis could

have accelerated the curation process. The analyses were performed at two levels: (1)

selection of documents and (2) extraction of estimates.

7.2.1 Document search

One area where the models developed in this thesis might accelerate the extraction per-

formed by Lonsdale et al. [276] is in the identification of relevant literature. The authors

used PubMed and EMBASE to screen through publications with values of interest.

However, in this thesis, the document classifier presented in chapter 3 was deployed

through a search interface at PKPDAI4 specifically to accelerate the search of publi-

cations reporting PK estimates. The PKPDAI search engine uses E-Utilities to allow

users to query one or more5 drug names and retrieve the list of identifiers resulting from

performing that search in PubMed and also classified as “Relevant” by the document

classifier. Then, those publications retrieved by the document classifier and also appear-

ing in the list of identifiers returned by E-utilities are displayed in the interface, sorted

by their likelihood6 of being classified as “Relevant” (i.e. reporting estimations of PK

parameters). Hence, the different searches performed by Lonsdale et al. in PubMed were

reproduced using the search engine in PKPDAI:

4 https://pkpdai-search.com/pkdocsearch
5 Allowing for operators such as “AND” or “OR” to query multiple drugs.
6 Likelihood of a particular class was obtained using the posterior probability of XGBoost predictions.
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Amoxicillin ± Clavulanic For this search, Lonsdale et al. reviewed 854 articles

from PubMed7 and selected 23 articles from which parameter estimates were extracted

for the PK meta-analysis. The search “amoxicillin OR clavulanic OR clavulanate”

was performed at PKPDAI filtering for publications before 2018, which resulted in 488

articles. In those 488 articles, 22 of the 23 selected publications were present (95.95%

recall) and ranked amongst the top 280 entries in PKPDAI. The only publication missed

by the document classifier (pmid=445959) did not have the abstract available in the XML

file, which is likely to have caused this omission. Hence, the PKPDAI search provided a

reduction of 42.86% in the number of publications that required screening while missing

one relevant publication.

Piperacillin-Tazobactam For these drugs, Lonsdale et al. screened 661 publications

and selected 54 to extract parameter estimates. The search “piperacillin OR tazobac-

tam” in PKPDAI returned 300 documents from which all the 54 selected publications

were present (100% recall). Hence, the search engine reduced the number of publications

requiring screening by 54.61% while preserving all the relevant publications.

Meropenem A total of 567 publications were screened by Lonsdale et al. for meropenem,

and 52 were selected for including PK estimates in the analysis. In PKPDAI, the search

“meropenem” returned 265 entries from which 51/52 of the publications selected were

present. The only publication missed (pmid=15793108) only mentioned pharmacody-

namic estimates in the abstract, but PK estimates were not mentioned or discussed.

PKPDAI reduced the number of publications that needed screening by 53.26% while

only missing one relevant publication for this drug.

Overall, the recall rate of the document classifier search presented in this thesis was

98.46% for the publications used in Lonsdale et al.’s meta-analysis while reducing the

number of publications requiring screening almost 50% (from 2082 to 1053). Addition-

ally, it is worth noting that the PKPDAI’s search engine ranks publications by their

likelihood of reporting PK parameters. Hence, this is likely to accelerate the identifica-

tion of the studies included in Lonsdale et al. and enhance the finding of new relevant

publications. Overall, this analysis achieved objective O5−4. Finally, further search

criteria could have been used to reduce the number of papers requiring screening (e.g.

filtering by articles not mentioning animals in the MeSH terms), but those were not

applied to perform a one-to-one comparison with Lonsdale et al. approach.

7.2.2 Extraction of estimates

Pharmacokinetic estimates were independently extracted for each drug in Lonsdale et al.

[276]. However, it is worth noting that parameter estimates were not often reported in

7 See Figure 1 in Lonsdale et al. [276] for details on search results.
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the abstract but in the full text. Therefore, analyses were performed to determine

the proportion of papers that reported estimates in abstracts and from those which

were stored in PKUnlocked. The parameters extracted in Lonsdale et al. [276] included

total/systemic clearance and volume of distribution.

Amoxicillin ± Clavulanic From the 23 papers analysed in Lonsdale et al., ten re-

ported clearance and volume estimates in the abstract (43.48%), indicating that the

majority of estimates were extracted from full text. For clearance, out of 14 values

found in the abstracts, 14 were correctly extracted in PKUnlocked. For the volume of

distribution, from 12 values found, 11 were correctly extracted (one completely missed)

in PKUnlocked. Overall, for amoxicillin and clavulanic abstracts, recall rates of clear-

ance and volume of distribution estimates were 100% and 91.67%, respectively.

Piperacillin-Tazobactam From the 54 papers analysed by Lonsdale et al., 23 (42.49%)

reported clearance estimates in the abstract and 18 (33.33%) reported volume of distri-

bution estimates in the abstract. For clearance, 34 estimates were found in the abstracts

(including both drugs), from which 33 were correctly stored in PKUnlocked. For the

volume of distribution, from 24 values found in abstracts, 21 were correctly stored in

PKUnlocked. In summary, for piperacillin and tazobactam abstracts, recall rates in

PKUnlocked of clearance and volume of distribution estimates were 97.05% and 87.5%,

respectively.

Meropenem From 53 papers analysed by Lonsdale et al. for meropenem, 24 (45.28%)

reported clearance estimates in the abstract and 22 (41.51%) reported volume of distri-

bution. Out of 24 clearance values found in the abstract, 22 were correctly extracted

in PKUnlocked. For the volume of distribution, 22 values were found in abstracts, and

21 were correctly extracted. This resulted in a recall rate for clearance and volume of

distribution estimates of 91.67% and 94.45%, respectively.

Overall, for those estimates reported in abstracts and used by Lonsdale et al., PKUn-

locked achieved 95.83% and 91.38% recall for clearance and volume of distribution es-

timates, respectively. However, it is worth noting that those values used in Lonsdale

et al.’s meta-analysis and extracted from the full-text (≈ 60%) were not accessible in

PKUnlocked. Therefore, this analysis suggests that applying the extraction pipeline to

full text articles is crucial to obtain optimal recall of parameter estimates used in PK

meta-analyses.

Finally, to assess the ability of PKUnlocked to reproduce PK profiles for the drugs

and parameter types used by Lonsdale et al., the interface described in section 7.1.4

was used to search for clearance and volume of distribution estimates for amoxicillin,
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clavulanic, piperacillin, tazobactam and meropenem. For each drug and parameter type

the following procedure was applied:

1. Drug and parameter filtering The name of a single drug was searched on

PKUnlocked interface. Then, estimates were independently filtered for total/sys-

temic clearance (identifier CL-Q22 in the knowledge base) and volume of distribu-

tion (identifiers V-Q61 and Vss-Q65 in the knowledge base).

2. Unit filtering Only estimates with standardised units as “l/h” or “ml/min” were

used for clearance, and “l” or “ml” for the volume of distribution. Notably, many

estimates (≈ 30%) found in PKUnlocked also reported clearance and volume of

distribution estimates divided by body weight in “kg”. Converting those values to

“l/h” or “l” would require extracting the mean weight of the patient population,

which would have increased the curation time significantly. For this reason, values

standardised by body weight were not used in this study, but future studies might

benefit from approaches normalising these estimates.

3. Unit conversion Then, estimates reported in “ml/min” and “ml” were auto-

matically converted to “l/h” and “l”, respectively, by applying the corresponding

conversion factor to the central measurements.

4. Manual inspection/cleaning The candidate values for each drug were individ-

ually examined by a pharmacometrician to discard (1) estimates referring to other

drugs, (2) estimates measured in non-human patients, (3) pipeline extraction er-

rors, (4) estimates mentioned in one publication but experimentally obtained in

another study (occasionally generating duplicates in PKUnlocked).

5. Box plot for comparison Finally, the central values for each estimate as reported

in PKUnlocked before and after inspection were displayed using box-plots for each

drug and parameter type independently.

The resulting estimates for each drug and parameter type were displayed in Figure 7.5

and 7.6, before and after manual inspection. Different observation were done during the

curation process and analysis of extracted values:

Manual inspection All the steps were automatised except from the manual inspec-

tion (4). For this, it was observed that, on average, cleaning clearance and volume of

distribution estimates for a specific drug and parameter using PKUnlocked interface

took between 5 to 30 minutes (depending on the initial number of estimates). During

inspection, removal of estimates for a specific drug was mainly due to different factors.

First, a few estimates (especially the ones with low clearance values) came from stud-

ies performed in animals. Although animal studies were not explicitly removed in the
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original search to preserve high recall, several approaches could be used in the future

to filter those values a-priori, such as locating animal mentions in titles (e.g. Wang

et al. [11]) or using PubMed search engine indexing (e.g. excluding studies with MeSH

term “Animals”). Additionally, those drugs usually administered in combination with

others often had multiple estimates not relating to the drug for which the values were

reported. For instance, before cleaning, several estimates appeared in both, piperacillin

and tazobactam or amoxicillin and clavulanic, since the same abstract mentioned both

compounds. Hence, careful examination was performed in those cases. To reduce this

curation time, future studies might benefit from text mining approaches locating drug

mentions in the same sentence, paragraph or title, and relating each central measurement

to the drug mentioned. Occasionally, a few mistakes (n<10 for all clearance and volume

of distribution estimates) were detected due to wrong units or entity linking. However,

these were rare since the filtering by units and parameter type ensured relatively high

precision of correct estimate extraction.

Extreme values Since the extracted values were not normalised by body weight or

age, the estimates had relatively high dispersion with clearance values ranging from 0.2

to 35 l/h. After inspection it was observed that low clearance values were often related

to studies performed in young children or patients with advanced renal diseases. On

the other hand, high clearance values were detected in studies with obese or preganant

patients.

Further stratification and context Lonsdale et al. [276] compared the distribution

of estimates for different post-menstrual ages. Additionally, other factors could influence

the PK estimates, such as other patient conditions, gender, the route of drug adminis-

tration, the dose or even the PK modelling approach. Hence, the distributions observed

in Figure 7.5 and 7.6 could be further stratified by routes, ages or conditions. Although

this was not performed in this case study, it is worth noting that the PKUnlocked inter-

face allowed inspecting estimates in context and one could efficiently filter/stratify those

values using multiple criteria. Additionally, since the search engine was wrapped around

the PubMed search engine, Medline indexing could also be exploited to pre-filter esti-

mates appearing in certain study types. Rule- and dictionary-based approaches could

also be used to filter values for specific contexts. For instance, Wang et al. [11] used a list

of dictionary terms to filter clearance estimates by specific routes of administration and

conditions (i.e. intravenous administration of midazolam in healthy volunteers). How-

ever, manual inspection by experts provided two benefits: (1) confidence by end-users

on the information extracted and (2) ensuring that potentially relevant values were not

taken away by other filtering approaches. Hence, since there is an infinite number of po-

tential study designs, it is believed that any PK search interface using text mining would

benefit from allowing experts to verify and select relevant parameter estimates during

the curation process rather than extracting all estimates automatically end-to-end.
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Figure 7.5: Box-plots displaying the distribution of clearance estimates extracted
from the scientific literature and stored in PKUnlocked for Amoxicillin, Clavulanic,
Piperacillin, Tazobactam and Meropenem. Individual estimates were represented next
to each box-plot. The top panel (A) shows the values before being inspected by a
pharmacometrician and the bottom panel (B) shows the values after inspection/removal
of values not associated to that drug or measured in non-human studies.

Missed values Despite a large number of parameter estimates were extracted for

the drugs and parameters studied, a large number of steps were sequentially applied to

filter for relevant values, potentially cascading errors and missing relevant estimations.

Therefore, it is important to acknowledge the following factors as the main potential

causes for missing relevant PK estimates in this case study:

1. Cascading errors through the extraction pipeline: First, relevant docu-

ments could have been missed due to inaccurate model predictions by the doc-

ument classifier. As discussed in chapter 3, the main causes for the document

classifier missing relevant documents were (1) publications without abstract avail-

able, (2) publications not mentioning PK parameters in the abstract and (3) animal

PK studies. Hence, one could expect lower recall for those cases. Additionally,

only the relevant documents went to the relation extraction and entity linker al-

gorithms, and, despite their high performance, one could expect relevant values

being missed due to misspredictions in those stages.

2. Unit standardisation As previously mentioned, a large number of clearance and

volume of distribution estimates were omitted in this case-study since their values
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Figure 7.6: Box-plots displaying the distribution of volume of distribution estimates
extracted from the scientific literature and stored in PKUnlocked for Amoxicillin, Clavu-
lanic, Piperacillin, Tazobactam and Meropenem. Individual estimates were represented
next to each box-plot. The top panel (A) shows the values before being inspected by a
pharmacometrician and the bottom panel (B) shows the values after inspection/removal
of values not associated to that drug or measured in non-human studies.

were standardised by the patient’s mean body weight. Hence, to ensure high recall

rates for those parameter estimates, the body weight of the population studied will

be a relevant factor to extract in future studies willing to maximise the number of

estimates for a specific drug and context.

Comparison to clinical knowledge As reported by Lonsdale et al. and also ob-

served in the extracted data, the drugs targetted in this case study had very similar PK

profiles. Perhaps the most noticeable difference of extracted estimates between drugs

was observed in the upper bound of the volume of distribution between piperacillin and

the rest of the drugs (Figure 7.6). This remarkably high upper bound was also observed

in Lonsdale et al. meta-analysis (see Table 1 in Lonsdale et al. [276]), which suggests

that despite the potential values missed in PKUnlocked, the information extracted from

abstracts was able to exhibit the same clinical difference. The PKs of vancomycin were

compared to analyse further the ability of the information extracted to showcase known

PK differences between drugs. As reported in Drugbank [53], the elimination half-life

(t1/2) of vancomycin in healthy patients ranges from 4 to 11 hours and can highly exceed

those values in anephric patients, which is slower than the drugs studied in Lonsdale et al.
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meta-analysis, which have a half-life around one hour in healthy volunteers according

to DrugBank [53]. Hence, the half-lives of all drugs and vancomycin were automatically

extracted from PKUnlocked and displayed in Figure 7.7 without manual curation. De-

spite the potential values missed in PKUnlocked and the number of estimates relating

to other drugs or species, Figure 7.7 shows that the PK differences known by pharmaco-

metricians between these drugs could be reproduced without expert intervention, with

the distribution of vancomycin’s half-life estimates being significantly higher than in the

other drugs. Although the clinical distribution of elimination t1/2 could be reproduced

for different drugs, a proportion of the estimates displayed in Figure 7.7 will refer to

other drugs mentioned in the same abstract or species, and manual inspection or fur-

ther pre-processing might be needed for this information to be used in applications that

require high precision of a drug’s PK estimates.

Figure 7.7: Box-plots displaying the half-life estimates extracted from the scientific
literature and stored in PKUnlocked for Amoxicillin, Clavulanic, Piperacillin, Tazobac-
tam, Meropenem and Vancomycin. Individual estimates were represented next to each
box-plot. Values are shown after the drug was searched in PKUnlocked without being
filtered/inspected by a pharmacometrician. The graph only displays values up to 45h
but a few estimates for vancomycin reached up to 180h.

In conclusion, this chapter discussed and evaluated the application of the text mining

approaches developed in this thesis from multiple angles and detected key applications

and limitations for future studies, which fulfilled objective O5−5.
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Chapter 8

Conclusions

In this chapter, the main thesis aim and research questions established in section 1.4

were revisited and briefly discussed how they were answered by fulfilling the objectives

established in each chapter. It is noteworthy that the different objectives were already

discussed across chapters 3 to 7, and this section provides an overview of how the different

research questions established were answered across chapters.

8.1 Summary of research findings

Q1: How can text mining approaches be applied to identify scientific publications re-

porting novel PK parameter estimates automatically across study types?

Chapter 3 addressed the task of document classification of PK articles. By addressing

the objectives established in that chapter, it was estimated that an F1 of 83.8% could

be achieved to identify scientific publications reporting novel PK parameter estimates

in PubMed. This result was obtained in annotated PubMed documents using different

study designs, utilising bag of words and BioBERT embeddings to represent documents

and XGBoost as a classifier. Additionally, it was shown that an extensive repository of

PK publications reporting PK estimates could be automatically retrieved by applying

the pipeline to PubMed articles. Finally, by addressing the fourth objective in chapter 7,

it was observed that this collection of documents combined with a search engine could be

used to accelerate a PK meta-analysis previously published by identifying publications

in which PK parameters were estimated for specific drugs of interest.

Q2: How can the task of recognising parameter mentions of multiple parameter types

be accomplished?

This research question was mainly answered in chapter 4. In this study, it was no-

ticed that a low proportion of sentences across the literature mentioned PK parameters,

which made the task of developing annotated data covering the diversity of PK pa-

rameters particularly challenging. However, by utilising active learning, the curation

of PK data could be accelerated while improving the information provided by labelled

sentences. Furthermore, by fine-tuning BioBERT on annotated corpora, the best per-

formance NER was obtained, with over 90% F1 score on strict entity matching of PK
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parameter mentions. Finally, it was also noticed that training models on previously pub-

lished corpora did not generalise well to multiple types of PK parameters found across

the literature.

Q3: How can the specific types of PK parameters be determined given mentions in

context?

This research question was answered by addressing the objectives in Chapter 5. First, it

was noticed that annotated data was not available for this task and that some parameter

types had very sparse frequencies across the literature. By addressing the objectives in

this chapter, a dataset annotating PK parameter mentions to one of 67 knowledge base

entries was built together with a system that could efficiently link parameter types

with very few or no training mentions. Specifically, it was observed that by encoding

descriptions in a knowledge base and using a distance-based loss function, the model

could deal with entities with very few training mentions more efficiently than sequence

classification models. Additionally, simplifications of previously published architectures

were proposed, and they were found to be beneficial when applying entity linking to

settings with limited training mentions and a relatively small number of knowledge base

entries. Finally, the chapter also analysed which types of PK parameters were more

challenging to link given the training data used in the study and how researchers could

add new PK entities to the knowledge base without requiring training samples for the

model to link them. Overall, the best-performing model achieved a micro-accuracy of

88.08% across PK parameter types.

Q4: How can suitable architectures be developed and evaluated to extract PK parameter

estimates for multiple parameter types?

Chapter 6 answered this question by addressing six objectives established. In this chap-

ter, the task of extracting PK estimates for multiple parameters in structured form

was formulated as an end-to-end relation extraction problem with multiple entities and

relations between them. By addressing the different objectives, a new dataset was anno-

tated by field experts to train and evaluate models for this task, and different approaches

were developed and compared to model the task. Specifically, it was found that jointly

modelling the detection of relevant entities and their relations in a multi-task setting im-

proved the model performance in comparison to optimising for each task independently.

Furthermore, pre-training transformer models in biomedical text largely outperformed

alternative approaches to encode sentence tokens, and using explicit representations of

the context strictly between two entities was found crucial to obtain optimal perfor-

mance. Additionally, it was shown that heuristic data augmentation could improve the

recognition of PK parameter mentions and their relation to numerical estimates. Finally,

an in-depth discussion of the leading causes of model errors was provided, and future di-

rections were proposed. Overall, the best-performing system obtained an end-to-end F1

score over 87% for extracting the different relations involved in parameter estimations,

covering multiple types of PK parameters and numerical expressions.
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Q5: How can text mining approaches accelerate the curation of ADME datasets used

by pharmacometricians?

This final research question was answered by addressing the objectives of Chapter 7.

First, it was shown how the models developed in this thesis could be integrated into

a single extraction pipeline to generate a database with over 250,000 parameter esti-

mates reported in scientific abstracts, named PKUnlocked and covering 66 types of PK

parameters. Next, the performance of the extraction pipeline and the quality of the

database were evaluated. Then, the application of the database in accelerating a PK

meta-analysis covering multiple drugs and parameters was studied. First, it was found

that the work from chapter 3 significantly reduced the number of publications needed

to be screened for curating the dataset, which showcased its application for accelerat-

ing different types of ADME datasets. Then, the recall rate for clearance and volume

of distribution estimates for the multiple drugs studied was established at 95.83% and

91.38% in PKUnlocked. This result was obtained by comparing the estimates from sci-

entific abstracts used in a published meta-analysis for multiple drugs and those stored in

PKUnlocked. This result highlighted the ability of the work in this thesis to accelerate

the curation of PK parameters used in ADME datasets. Finally, potential approaches to

search and filter estimates of interest in PKUnlocked were compared for multiple drugs,

and it was found that with minimal expert checks, the PK profiles of multiple drugs

could be reproduced using estimates from several parameters. Finally, limitations of the

approach presented were analysed, and it was found that a crucial area for improving

the application of this pipeline during curation of ADME datasets in future studies was

to extract estimates reported in the full text.

After addressing the objectives in each chapter, it was considered that the aim estab-

lished in this thesis was attained:

Enhancing the curation of pharmacokinetic datasets by automatically structuring

estimates reported across the scientific literature

8.2 Open Problems and Future work

The work presented in this thesis can be advanced by exploring its feasibility in drug

development and pharmacokinetic modelling applications. For instance, distributions

of parameter estimates automatically extracted could be used as priors for improving

physiologically-based pharmacokinetic models in drug development. Additionally, the

feasibility of improving predictions of in vivo PK parameters by semi-automatic curation

of extensive ADME datasets could be evaluated in future studies. Another potential ap-

plication is using the named entity recogniser and linker to improve the characterisation

of drug-drug interactions by determining the specific type of parameter involved in a

particular interaction.
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From an extraction perspective, the methods applied could be used to extract estimates

reported in sections from the article full text, which could significantly increase the

number of estimates in the database. In the full text, many pharmacokinetic estimations

are reported in tables. The extraction of numerical estimates from tables remains an

open challenge since it might require dealing with the semi-structured format of tables

and accurately parsing this information from sources such as PDFs. However, if table

extraction is addressed, the amount and quality of the information in PKUnlocked could

be highly extended. Finally, the application of the different tools developed in this thesis

could be studied in clinical trial reports or drug inserts, which often contain a wealth of

pharmacokinetic estimates.
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[94] Rezarta Islamaj Doğan, Robert Leaman, and Zhiyong Lu. Ncbi disease corpus:

a resource for disease name recognition and concept normalization. Journal of

biomedical informatics, 47:1–10, 2014.

[95] Evangelos Pafilis, Sune P Frankild, Lucia Fanini, Sarah Faulwetter, Christina

Pavloudi, Aikaterini Vasileiadou, Christos Arvanitidis, and Lars Juhl Jensen. The

species and organisms resources for fast and accurate identification of taxonomic

names in text. PloS one, 8(6):e65390, 2013.

[96] Larry Smith, Lorraine K Tanabe, Rie Johnson nee Ando, Cheng-Ju Kuo, I-Fang

Chung, Chun-Nan Hsu, Yu-Shi Lin, Roman Klinger, Christoph M Friedrich, Kuz-

man Ganchev, et al. Overview of biocreative ii gene mention recognition. Genome

biology, 9(2):1–19, 2008.

[97] Dietrich Rebholz Schuhmann, Antonio Jimeno Yepes, Erik van Mulligen, Ning

Kang, Jan Kors, David Milward, Peter Corbett, Ekaterina Buyko, Katrin

Tomanek, Elena Beisswanger, et al. The calbc silver standard corpus for biomedical

named entities—a study in harmonizing the contributions from four independent

named entity taggers. In Proceedings of the Seventh International Conference on

Language Resources and Evaluation (LREC’10), 2010.

187



[98] Sunil Mohan and Donghui Li. Medmentions: a large biomedical corpus annotated

with umls concepts. arXiv preprint arXiv:1902.09476, 2019.

[99] Martin Krallinger, Obdulia Rabal, Saber A Akhondi, Martın Pérez Pérez, Jesús
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sentence similarity estimation system for the biomedical domain. Bioinformatics,

33(14):i49–i58, 2017.

[106] Simon Baker, Ilona Silins, Yufan Guo, Imran Ali, Johan Högberg, Ulla Stenius, and

Anna Korhonen. Automatic semantic classification of scientific literature according

to the hallmarks of cancer. Bioinformatics, 32(3):432–440, 2016.

[107] Karin Verspoor, Kevin Bretonnel Cohen, Arrick Lanfranchi, Colin Warner, Helen L

Johnson, Christophe Roeder, Jinho D Choi, Christopher Funk, Yuriy Malenkiy,

Miriam Eckert, et al. A corpus of full-text journal articles is a robust evalua-

tion tool for revealing differences in performance of biomedical natural language

processing tools. BMC bioinformatics, 13(1):1–26, 2012.

188



[108] J-D Kim, Tomoko Ohta, Yuka Tateisi, and Jun’ichi Tsujii. Genia corpus—a seman-

tically annotated corpus for bio-textmining. Bioinformatics, 19(suppl 1):i180–i182,

2003.

[109] Corpora for Chemical Entity Recognition - Fraunhofer SCAI — scai.fraunhofer.de.

https://www.scai.fraunhofer.de/en/business-research-areas/

bioinformatics/downloads/corpora-for-chemical-entity-recognition.

html, 2008. [Accessed 03-Jul-2022].

[110] Pontus Stenetorp, Sampo Pyysalo, Goran Toṕıc, Tomoko Ohta, Sophia Anani-
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Appendix A: Guidelines Named En-

tity Recognition

This appendix includes guidelines developed to annotate PK parameters from sentences.

Annotators were asked to base their labelling decisions on these guidelines. As new cases

appeared, guidelines were updated accordingly.
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Annotation Guidelines PK Named
Entity Recognition (NER)

Background

Aim: We aim to develop a named entity recogniser to identify spans of text relating to PK
parameter mentions from scientific text.

Method: To do so, we sample sentences within our PK corpus (~120K articles reporting in
vivo PK parameters) from the abstract, methods, results and discussion. Then, we ask
annotators to label spans of text corresponding to pharmacokinetic parameters.

Task description and interface

The interface displays a single sentence, and the annotator is required to highlight the spans
of text relating to PK parameters.

✅ Accept the annotation and move to the following example
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🚫 Ignore annotation

Flag example for review

↩ Go back to the previous example

❌ Reject annotation (only used during active learning)

Questions & Answers

What do we consider “pharmacokinetic parameter” entities? What is included and what is
not?

We consider PK entities, those mentions referring to kinetic parameters of pharmacological
substances measured either in vivo or in vitro. As a reference, we took the following PK
Ontology for the main PK parameters:

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-35/tables/4
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-35/tables/2

However, bear in mind that other PK parameters might appear that are not included in those
tables, and some labelling decisions depend on the end-use of the algorithm. We focus on
detecting PK parameters for numerical extraction and aiding the characterisation of DDIs,
and most labelling decisions are taken with these applications in mind.

This section will try to cover most doubts that appear during the labelling of PK sentences to
help annotators resolve their doubts.

Main Cases

Modifiers

Very often, we find noun modifiers describing the type of pharmacokinetic
parameter, for instance:

1. “renal clearance”
2. “amoxicillin half-life”
3. “mean Vd”
4. “AUC ratio”, etc.

Answer: When the modifier provides information about the specific type or subtype of the
PK parameter and can be labelled within a single span, we include it as part of the span to
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facilitate subsequent entity-linking efforts. For instance, “renal” and “ratio” would be included
since they provide information on the type of parameter (rCL and AUCR, respectively).
However, “mean” is not considered to be an entity in this application. If we were to develop
an end-to-end information extraction system, “mean” would need to be a different entity type
(e.g. type of measurement). “Amoxicillin” refers to a drug, so it is best to keep it outside the
PK entity if possible.

1. “renal clearance”
2. “amoxicillin half-life”
3. “mean Vd”
4. “AUC ratio”, etc.

Abbreviations and long-forms

We often see the “full mention” of a pharmacokinetic parameter followed by its abbreviation,
for instance:

“The area under the curve from 0 to 24h (AUC0-24h) was calculated for the compound….”
“Oral clearance (CL/F) was 2.3..”

One common doubt is whether to label the complete mention (or long-form) and the
abbreviation separately or together.

Answer: Since it is easier to relate a single span to a numerical value or a DDI, we always
label the longest span that related to a PK mention

“The area under the curve from 0 to 24h (AUC0-24h) was calculated for the compound…”
“Oral clearance (CL/F) was 2.3..”

Also, on some occasions, we found examples in the following forms:

● “TAN possessed a moderate apparent volume of distribution of the central
compartment (Vc = 4.2 += 0.82 l/kg), rapid clearance (CL = 94 +- 2 ml/min/kg).”

● “The bioavailability F of compound A was….”

In both cases, we will always try to label the whole span as a single parameter unless it
overlaps with other concepts/entities.  On other occasions, we find the long-form +
abbreviation without parenthesis. In these cases, if possible, we will also label it as a single
span:
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Creatinine Clearance

Creatinine clearance is often measured as a covariate in PK studies and appears in multiple
sentences.

Answer: Creatinine is an endogenous substance, and therefore the clearance never relates
to the clearance of an administered compound. Accordingly, creatinine clearance is not
labelled as a PK mention.

Same with albumin:

Parameter ratios

Often we find ratios of the same parameters:
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Answer: We will include both parameters of the ratio within the mention. In addition, the
term ratio or ratios is also included if present.

On other occasions, we find normalised parameters or different parameters that are divided
by each other:

In these cases, we include both parameters in the ratio as part of one single span since the
whole span is generally the one that is discussed in numerical estimations or DDI context.

Ratios defining other parameters

Quite often, we find mentions like:

“0.6/Ke”
“Ln2/k”
“Ln2/lambda”

These mentions often refer to how a parameter was calculated and are not helpful entities
for PK numerical extraction or DDI.
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Answer: Only if a numerical estimation is related to this coefficient and the whole parameter
mention is not present we will consider it as a PK span. Otherwise, we will not label those as
PK mentions.

In the examples above, Vd/T1/2 were not labelled as parameters either since it is part of the
definition of CL calculation.

Equations

We often encounter equations that describe how PK parameters were calculated. For
instance:
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Answer: It is often hard to separate the PK terms within the equation, and, in almost all
cases, they do not provide valuable information to extract numerical values or characterise
DDIs. Therefore, we will not label parameters within equations.

Less-common cases
These are rare mentions. However, to ensure consistency across the dataset, make sure the
following cases are always labelled as described:

Drug mentions within parameter mentions

Occasionally, we will find cases in which a drug is mentioned within a PK parameter, e.g.

“The area under the midazolam concentration-time curve was….”

In general, we will try to avoid including drugs into PK spans to avoid nested entities, but in
this case, we cannot avoid it, so we will label the whole span as PK mention and rely on
separate NER models for drugs and PK or models that can deal with overlapping entities:

“The area under the midazolam concentration-time curve was….”

Other examples:

On other occasions such as:

“Median plasma AG10‐AG tmax was 1 hour across all dose levels.”

We might wonder whether to label only tmax or with the modifier plasma tmax:

1. “Median plasma AG10‐AG tmax was 1 hour across all dose levels”
2. “Median plasma AG10‐AG tmax was 1 hour across all dose levels”
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Because in this case, including “plasma” would also require including the compound
mentioned “AG10-AG”, we will only label the span “tmax” as an entity. The idea is that
“plasma” is not an essential term to understand the parameter being discussed, and
posterior entity linking systems could take “plasma” into account. So we would select option
1

Modifiers + parameter cue
In some cases, we also encounter the following:

“The systemic and oral clearance of  midazolam was x and y h/kg, respectively.”

In these cases, we have two parameter mentions that might refer to different numerical
estimations. In these cases, we will label in the following manner:

“The systemic and oral clearance of  midazolam was x and y h/kg, respectively.”

Even though “systemic” would not refer to a PK parameter, it does refer to systemic
clearance if found alone. Therefore, context-aware entity linking systems could still account
for this fact, and each mention could still be related to different values.

Other examples:

Central and peripheral

Normalised + parameter mention
Answer: Yes if possible:

“Normalized CL was..”

It might help posterior entity linking.
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Serum + parameter mention
Answer: Yes if possible:

“Serum CL was..”

It might help posterior entity linking.

In vitro / in vivo + parameter mention
Answer: No need. It is a contextual entity that might need to be labelled as a separate type
for specific information extraction applications.

“In vitro CL was x..”
“In vivo t1/2 was y..”

Free/total + parameter mention
Answer: Yes
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Parameters to include
We will often have doubts on whether some parameter mentions are included or not.
However, as we mentioned above, any parameter included in the following tables is
considered PK according to the PK Ontology.

Table 2:

Table 4:

215



Apart from those, other parameters also appeared. Here, we will cover most cases that we
have come across:

MIC
Answer: MIC alone is not considered as a PK parameter

● “The MIC of MDZ was…”
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PK/MIC
We often encounter rations of PK/PD parameters. For instance:

● “The AUC/MIC was…”
● “The CL/MIC was…”

Answer: We do consider this whole span, as PK mentions
● “The AUC/MIC was…”
● “The CL/MIC was…”

Bioavailability

Answer: Always include with modifier if present. Careful with the abbreviation F, since it can
sometimes refer to other concepts:
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Absorption

Absorption is mentioned very frequently as a general property of chemical compounds. For
instance:

“The absorption of drug X (F=45%) increased when co-administered with drug Y (F=68%)

However, it often does not refer to numerical values of parameters but is derived from other
parameters (most often bioavailability (F)).

Answer: We will label it as PK if the mention refers to a kinetic parameter (e.g. absorption
rate) but not if it refers to a general property. Therefore in the example above, absorption
would not be labelled as PK, but F would:

“The absorption of drug X (F=45%) increased when co-administered with drug Y (F=68%)

Exposure
Like absorption, sometimes we find sentences describing the “exposure” of a drug, often
measured through the AUC or Cmax.

We will not label exposure as a parameter but the actual parameter used to describe the
exposure (often AUC).

Concentrations
Multiple concentrations are mentioned across PK literature. However, here we will include:

● Cmin
● Cmax
● Cthourgh
● Cavg
● Css
● Tissue-to-blood concentration ratio
● X-to-Y concentration ratio
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We will not include:
● Clast
● C0
● Minimum quantifiable C
● Cin
● Cout
● Cp (concentration in compartment x)
● MIC
● Other C

Plasma concentration-time curve
Not as such.

AUC
Most often refers to the area under the concentration-time curve. Then we would label it as a
PK parameter. However, on some occasions, it refers to other, non-PK relevant curves (e.g.
chromatography). In those cases, they will not be labelled:

AUMC
The area under the moment curve: Yes, always include

AUEC
The area under the effect curve -> No, considered PD parameter.
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IC50
Yes, always → present in Table 2

Bmax
No, this refers to the number of binding sites

Dissociation and association constants
No, physicochemical properties

Permeability and radioactivity
We found many mentions across the literature. Mainly:

● Apparent permeability (Papp), Ratio of the basolateral to apical permeability and
Apical to basolateral permeability (Re) Radioactivity, permeability

These mentions are present in table 2. These are less relevant for this application since they
are in vitro parameters, but we will label them if present.

Kdeg
Yes → Table 2

KI
Yes → Table 2

Transit constant
Yes, if mentioned in PK context
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Mean residence time
Yes

Retention times
Not if mentioned in the context of chromatography. On some occasions, retention is used
interchangeably with residence:

Formation constant
No, this is often a physicochemical property

Solubility
No, this is often a physicochemical property.

Rf
Very rare, but it has eventually been referred to as Retention Fraction. Not considered PK
entity.

Hill coefficient
Yes

Kapp
Depending on the context, it can refer to different concepts. If PK parameter is in vivo or in
vitro, yes. It is not a frequent mention but if it appears, check the context.

Dose
No, not considered PK parameter

MTD
No, considered PD property
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Perfusion rate
No, most often not reported in PK context

Emax
Yes, included in table 2

Imax (maximum Inhibition)
Yes, to be consistent with labelling Emax

IC50
Yes

Disposition constants

Disposition rate constants are considered PK parameters. However, when discussing the
general concept of disposition, we do not label it as PK, for instance:

A0
Yes

AE
In general, it refers to adverse effects, so we do not label it as PK. However, it can
occasionally refer to PK parameters:
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Bleeding rate
No, endogenous and not related to compound.

Peak areas
Often found in chromatography studies but not relevant as a PK parameter:

Flow rate
In general, no, unless is the blood flow rate (which is included in table 4)

Cout Cin
Influent and effluent drug concentrations. Not relevant, often reported for in silico models.

Glomerular filtration rate
No, often mentioned as a covariate

Diffusion coefficient
No
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Bound/unbound fraction
Yes

Times
Tmax and tlag yes, others no (e.g. t0, tlast). We can apply the same rules as for the
concentrations.

Transfer constants between compartments
Yes

Biotransformation
No
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Appendix B: Named Entity Recog-

nition patterns

This appendix shows the list of patterns included to recognise PK parameters through

rules. These patterns were implemented within a spaCy model1. If more than one

pattern generated overlapping spans, the longest span was selected.

1 {"label":"PK","pattern":[{"DEP":"amod"},{"LOWER":{"IN":["cl"
,"cl/f","clz/f","clearance","clearances","seroclearance"]

}}]}
2 {"label":"PK","pattern":[{"LOWER":{"IN":["cl","crcl","cl/f",

"clz/f","clearance","clearances","seroclearance"]}}]}
3 {"label":"PK","pattern":[{"LOWER":"compartmental"},{"LOWER":

"clearance"}]}
4 {"label":"PK","pattern":[{"LOWER":"renal"},{"LOWER":"

clearance"}]}
5 {"label":"PK","pattern":[{"LOWER":"non -renal"},{"LOWER":"

clearance"}]}
6 {"label":"PK","pattern":[{"LOWER":"elimination"},{"LOWER":"

rate"},{"LOWER":"constant","OP":"?"}]}
7 {"label":"PK","pattern":[{"LOWER":{"IN":["auc","auc/mic","

aucbrain","auctissue","aucbrain/aucplasma","aucplasma","

aucinf"]}}]}
8 {"label":"PK","pattern":[{"DEP":"amod"},{"LOWER":{"IN":["auc

","auc/mic","aucbrain","auctissue","aucbrain/aucplasma","

aucplasma","aucinf"]}}]}
9 {"label":"PK","pattern":[{"LOWER":{"REGEX":"(?:auc)(?:(?:

(?!\\s)\\W|\\d)\\S+|\b)"}},{"text":")","OP":"?"},{"LOWER"
:"ratio","OP":"?"}]}

10 {"label":"PK","pattern":[{"LOWER":"area"},{"LOWER":"under"},
{"LOWER":"the","OP":"?"},{"LOWER":"plasma","OP":"?"},{"
LOWER":"concentration","OP":"?"},{"LOWER":"concentration -
time","OP":"?"},{"LOWER":"profile","OP":"?"},{"LOWER":"
curve","OP":"?"}]}

11 {"label":"PK","pattern":[{"LOWER":{"IN":["vd","vss","vz","
clz/f","vz/f","v/f","v(d)/f"]}}]}

12 {"label":"PK","pattern":[{"DEP":"amod"},{"LOWER":{"IN":["vd"
,"vss","vz","clz/f","vz/f","v/f","v(d)/f"]}}]}

1 For details on spaCy patterns see https://spacy.io/usage/rule-based-matching.
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13 {"label":"PK","pattern":[{"LOWER":"volume"},{"LOWER":"of"},{
"LOWER":"distribution"},{"LOWER":"at","OP":"?"},{"LOWER":
"steady","OP":"?"},{"LOWER":"state","OP":"?"}]}

14 {"label":"PK","pattern":[{"DEP":"amod"},{"LOWER":"volume"},{
"LOWER":"of"},{"LOWER":"distribution"},{"LOWER":"at","OP"
:"?"},{"LOWER":"steady","OP":"?"},{"LOWER":"state","OP":
"?"}]}

15 {"label":"PK","pattern":[{"LOWER":{"IN":["bioavailabilities"
,"bioavailability","f","fd","fc"]}}]}

16 {"label":"PK","pattern":[{"DEP":"amod"},{"LOWER":{"IN":["
bioavailabilities","bioavailability","f","fd","fc"]}}]}

17 {"label":"PK","pattern":[{"LOWER":{"IN":["halflife","half -
life","halflives","halftime","t1/2"]}}]}

18 {"label":"PK","pattern":[{"DEP":"amod"},{"LOWER":{"IN":["
halflife","half -life","halflives","halftime","t1/2"]}}]}

19 {"label":"PK","pattern":[{"LOWER":{"IN":["cmax","cmin"]}}]}
20 {"label":"PK","pattern":[{"LOWER":{"IN":["c(max","c(min"]}},

{"text":")","OP":"?"}]}
21 {"label":"PK","pattern":[{"DEP":"amod"},{"LOWER":{"IN":["

cmax","cmin"]}}]}
22 {"label":"PK","pattern":[{"DEP":"amod"},{"LOWER":{"IN":["c(

max","c(min"]}},{"text":")","OP":"?"}]}
23 {"label":"PK","pattern":[{"LOWER":"peak"},{"LOWER":"plasma",

"OP":"?"},{"LOWER":"concentration"}]}
24 {"label":"PK","pattern":[{"LOWER":"time","OP":"?"},{"LOWER":

"to","OP":"?"},{"LOWER":"maximum"},{"LOWER":"
concentration"}]}

25 {"label":"PK","pattern":[{"LOWER":"time","OP":"?"},{"LOWER":
"to","OP":"?"},{"LOWER":"maximum"},{"LOWER":"plasma"},{"
LOWER":"concentration"}]}

26 {"label":"PK","pattern":[{"LOWER":"mean"},{"LOWER":"
residence"},{"LOWER":"time"}]}

27 {"label":"PK","pattern":[{"LOWER":"mrt"}]}
28 {"label":"PK","pattern":[{"LOWER":"fraction"},{"LOWER":"

unbound"}]}
29 {"label":"PK","pattern":[{"LOWER":"free"},{"LOWER":"fraction

"}]}
30 {"label":"PK","pattern":[{"LOWER":"absorbtion"},{"LOWER":"

rate"}]}
31 {"label":"PK","pattern":[{"DEP":"amod"},{"LOWER":"absorbtion

"},{"LOWER":"rate"}]}
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32 {"label":"PK","pattern":[{"LOWER":{"IN":["kel","ka","tmin","
tss","fe","krel","tlag","kpc","kc","kf","kelp","k\u03b2",

"pmax","\u03b8z","fue","ko","kobs","tlc","vm","

absorbencies","ku","kl","vmax","vs","kout","mru","fu","k1

2","k21","tmax","cl","cl12","q","ke","keff","kmax","

biodisponibility","qh","q","e","eh","v1","v2","\u03bb","\

u03bbz"]}}]}
33 {"label":"PK","pattern":[{"DEP":"amod"},{"LOWER":{"IN":["kel

","ka","tmin","tss","fe","krel","tlag","kpc","kc","kf","

kelp","k\u03b2","pmax","\u03b8z","fue","ko","kobs","tlc",

"vm","absorbencies","ku","kl","vmax","vs","kout","mru","

fu","k12","k21","tmax","cl","cl12","q","ke","keff","kmax"

,"biodisponibility","qh","q","e","eh","v1","v2","\u03bb",

"\u03bbz"]}}]}
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Appendix C: Guidelines Relation

Extraction

This appendix includes guidelines developed to annotate entities and relations of PK

estimations from scientific sentences. Annotators were asked to base their labelling de-

cisions on these guidelines. As new cases appeared, guidelines were updated accordingly.
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Annotation Guidelines PK Relation
Extraction

Background
Aim: We aim to develop a relation extraction model to retrieve numerical estimations of PK
parameter values from scientific articles. To do so, we focus on relations existing at the
sentence level between multiple entities. In this annotation task, we will focus on information
around the PK numerical estimations and future studies will complement numerical
estimations with contextual data e.g. drugs, diseases, conditions, covariates etc.
In this annotation task, we aim to collect annotation data to train a relation extraction
algorithm capable of (1) detecting all the relevant entities involved (e.g. PK mentions,
numerical values, units, etc.) and (2) their relations in scientific text.

Method: To do so, we sample sentences from the abstract, methods, results and discussion
sections within our corpus of PK articles. Then, annotators will be asked to label spans of
text corresponding to 5 entities and their relations.

Entities and relations
In this annotation task, PK experts will have to annotate (1) entities and (2) relations for
every sentence displayed in the interface. In this section, we describe the types of entities
and relations involved.

Entities
In natural language processing (NLP) entities are spans of text that correspond to specific
concepts. For instance, mentions of organisations, persons, countries etc. In this task, we
are interested in five entities:

1. PK
Mentions of pharmacokinetic (PK) parameters. This entity refers to spans of text that
mention kinetic parameters. Any type of kinetic parameter in the context of PKs will
be highlighted. For a list of PK, parameter types see the following tables: in vivo, in
vitro. If not sure whether a specific mention should be labelled see but see the
Questions & Answers section. Example:
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TO ANNOTATE: PK parameters are pre-highlighted in the interface by our model.
But, there will be cases in which the model missed those mentions or incorrectly
predicted them. Therefore, we need to check that PK mentions are well annotated
and correct any mistakes.

2. UNITS
Spans of text corresponding to units of numerical PK estimations. Example:

TO ANNOTATE: In the initial annotation rounds, UNITS will not be pre-highlighted.
This means that in every example the user needs to look for any units and highlight
their spans. This is the entity that requires the most attention from the annotator.
After the initial annotation rounds, UNITS will be pre-highlighted.

3. VALUE
Spans of text that refer to numerical values. This includes single numbers, decimals,
exponential expressions etc. Example:

TO ANNOTATE: For this, we use a set of rules to pre-highlight values in the
interface. In general, the rules work well and tend to encapsulate numerical values.
However, there might be eventual mistakes and the user might need to correct
them if that happens.

4. RANGE
Two numerical values defining a range. On some occasions, numerical estimations
might be expressed in the form of ranges:

TO ANNOTATE: We pre-highlight those terms using regular expressions. However,
the rules are still quite limited and new cases are likely to appear. This means that
the user will need to pay attention to potential new RANGE spans.
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5. COMPARE
Comparative terms. The mentions of this entity aim to provide information on whether
specific PK estimations refer to the maximum or minimum estimated value. In the
literature one might find:

The COMPARE entity will help us to acknowledge that 3.0 is the minimum value.
Some COMPARE terms include: >, <, higher, lower, maximum, minimum,  exceeded
etc. In essence, COMPARE will give information on whether the extracted number
refers to an estimated boundary (e.g. max, min, >, <, exceeded). Mentions like
“approximately”, “~”, “close to” are not considered COMPARE mentions since
they do not indicate whether the value is a minimum or maximum but the confidence
of the prediction.

TO ANNOTATE: We pre-highlight those terms using an in-house dictionary. The
dictionary is still quite limited and new cases are likely to appear. This means that the
user will need to pay attention to potential new COMPARE mentions.

Relations
Once entities are annotated, the next step is to annotate relations between entities.
Relations always need to happen between entities and some relations only happen
between specific types of entities.

In this task we consider three relations:

1. C_VAL
Central Value. This is a relation between a PK parameter mention and its estimated
value. This type of relation only happens between the following entity types:

PK → VALUE
PK → RANGE

It’s only annotated when the VALUE/RANGE refers to a measurement but NOT A
COMPARISON. For instance, there are many comparative sentences that mention:

“The CL of midazolam increased by 3% when co-administered with amoxicillin”
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In this case, there is no C_VAL relation between CL and 3 since 3 is not a numerical
estimate of CL.

Examples:

2. D_VAL
Deviation Value. This relation happens between central measurements and their
deviation values/ranges. This relation is only annotated if a C_VAL relation exists
and between deviation values/ranges and central values/ranges. So, this type of
relationship only happens between the following entity types:

VALUE → VALUE (previously labelled with C_VAL relation)
VALUE → RANGE (previously labelled with C_VAL relation)
RANGE → VALUE (previously labelled with C_VAL relation)
RANGE → RANGE (previously labelled with C_VAL relation)

Example:

3. RELATED
This type of relation happens between multiple entity types and serves for adding any
complementary information for the central or deviation values:

COMPARE → VALUE/RANGE (previously labelled with C_VAL or D_VAL)

UNITS → VALUE/RANGE (most common)
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Example:

NOTE: We will only annotate relations between units and values/ranges if the
VALUE/RANGE is part of a C_VAL or D_VAL relation.

Task description and interface

The interface displays a single sentence with some entities pre-highlighted by the NER
model. There are several options available on the interface:

Click here for a video tutorial on the interface

233



Questions, Answers and Common doubts

Q: “What happens if I want to label a span across two lines?”
A: You will need to unselect the “Wrap” tick to be able to see the sentence in a single
line. Then select the span and you can click “Wrap” again. For an example see the
clip in the next question

Q: “How are we meant to erase spans?”
A: Select one of the available entities, then click on top of the entity that you’d like to
erase and select the bin button on the top right. See following clip:

Q: “Do we need to annotate relations between COMPARE and VALUE if the relation
doesn’t refer to a central value (C_VAL) or deviation (D_VAL) measurement?”
A: Let’s not label it. We only associate COMPARE-VALUE if that VALUE is also part of a
C_VAL or D_VAL relation.

In-depth doubts and resolutions from the initial sentences in the test set can be found here:
Comments test set 0-200

● Percentages and fold increases
Often authors report a comparison of PK parameters between different
conditions/drug treatments/patients in the form of % of increase or fold-increase.
Some of you had doubts about whether we needed to annotate the relation between
PK and those %/fold increases.
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The answer is no. In this task, we are trying to extract exact measurements for PK
parameters mentioned in the sentence. Unless the PK mention itself is a ratio (e.g.
AUCR, AUC/MIC, relative bioavailability (see next point below)) we won’t link their
relation to the fold/% of increase. So in these examples, there won’t be any C_VAL
relation between PK and VALUES:

However, if the PK mention is a ratio itself (AUC/MIC, AUC1/AUC2) we will annotate
the numerical value associated with it.

● Ratios
Single mentions in the form of ratios such as AUC/MIC, AUC1/AUC2, AUCR, relative
bioavailability can be considered PK parameters and linked to their estimated values.
However, if we cannot understand that the measurement is a ratio given the PK span
mention we will not label it. For instance in the example:

“geometric mean ratios for AUC were 1,2,3…

We would need an additional entity type potentially “type of measurement” (instead,
relative bioavailability, AUC/MIC etc, are known parameters that people might search
for) to understand that 1,2,3 are ratios of AUCs and not AUC so we won’t annotate
any C_VAL in that case.

On the other hand, if the sentence says:
“The AUC1/AUC2 were 1,2,3”
From the PK mention “AUC1/AUC2” we can understand that this is a ratio without
additional information, so we will label the C_VAL and related entities.
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● P-values
Since p-values are the result of a comparison to a null hypothesis and not an
estimated PK value we won’t annotate them. When finding p-values you can leave
them as they are without the need to correct entities or annotate any relations

● PD parameters
Yes, we are including PD parameters if they are mentioned, so please label/correct
them if not detected by the algorithm

● Remove irrelevant VALUE entities?

We often find numerical values that are part of chemicals, enzymes, genes, tables,
equations and don’t have anything to do with real estimations of values that have
units associated with them.

In these cases, we could either leave those VALUE entities or remove them. We ask
annotators to not modify irrelevant VALUE entities unless they are part of a
C_VAL or D_VAL relation. So, in general, we can leave those values as they appear
and only modify them if they need to be modified in order to make a C_VAL or D_VAL
relation properly (rare case). For instance, if in the following sentence we only find
this highlighted:

“The clearance of MDZ was 3*10-2”

The annotator would need to modify this span in order to annotate the C_VAL
relation between clearance and the estimated value:

“The clearance of MDZ was 3*10-2”

Otherwise, no need to touch VALUE entities since those VALUES with no
associated relations will be removed automatically.
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● Confusing COMPARE entity
COMPARE is only used to identify those values that are maximum, minimums or
lower than or higher than the reported value. For instance:

“The CL was higher than 3”
“The CL was > 3”
“The CL was < 3”

In these cases, we want to relate those COMPARE to the value since it will tell us
that 3 is not the exact estimate for CL. However, on some occasions, it was not clear
whether they should be linked to the value. Consider the following reduced

In this case, reduced does not affect 8.68% since the estimated value for “absolute
bioavailability” is not higher or lower than 8.68% but 8.68%. For this reason, we will
leave it as it is and not annotate any relation to these cases.

● What about all the missing context? Drugs, doses, species, study
design etc are not annotated?

We saw many comments about how to annotate the drugs, doses, and species
related to the PK measurements. We certainly care about this context to
disambiguate values and also to filter for the desired parameters in a specific
drug/population/etc.

However, to simplify the labelling process, we split the task into 2 parts and won’t
annotate this complementary information in this task. When we finish the
annotations of this task, then we will complement the central values with all the
relevant context, but this will come at a later stage.

● Two mentions referring to the same parameter

On some occasions, we observed more than one PK mention referring to the same
PK value and parameter. For instance, in the following sentence we can see that
half-life is mentioned twice, at the beginning, and end of the sentence:
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On these occasions, we will prefer to label only the closest left-side PK mention as part of
the relation

Similarly:

In this case, labelling volume of distribution of fenofibric acid (Vc/F) as a single PK
mention would have the issue of including the compound inside the PK entity, so the
actual PK entities would be volume of distribution of fenofibric acid (Vc/F). In these
cases, we will only consider the second mention (abbreviated form) as part of the
relation and associate it with the central value
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● Range vs Values

Sometimes we might be confused on whether labelling 2 values or 1 range:

In general, if the values refer to different experiment designs (different doses, drugs,
patient cohorts etc) we will label 2 values. However, if the range is for a single
condition and is the result of variability in the measurement we will label it as a range:

“The AUC for midazolam ranged from 3 to 5”
“The AUCs for midazolam and amoxicillin were 3 and 5”

If units are within the range, then we label 2 separate values. For instance:

“Clearance ranged from 0.54 ml/min/kg to 0.62 ml/min/kg”

If we decide to make 0.54 ml/min/kg to 0.62 ml/min/kg a range span, that would
overlap with units, which can be an issue. So we will label two separate values and
C_VAL relations.
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● Value +- Range
This refers to the cases wherein “VALUE (RANGE)” the value is the central value of a
PK parameter and RANGE is the measured range of the parameter. You could either
consider the RANGE a central value of the parameter or a D_VAL of the VALUE. We
decided to label these cases as the latter since then we know both, VALUE and
RANGE come from the same estimation and there is no variation between them
given by the experimental context:

● IIV
We considered inter-individual variability as a form of deviation:
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Appendix D: Unit Dictionaries

UNIT_SYNONYMS = {

"·": ["x", "*", "•", "."],

"µg": [" micrograms", "micro g", "microg", "microgram", "µg", "mug"],

"h": ["hr", "hrs", "hour", "hours"],

"%": [" percent", "percentage "],

"µl": [" microliters", "microliter", "micro l", "microl", "µl"],

"l": [" liters", "litre", "liter", "litres"],

"dl": [" deciliter", "dliter"],

"min": [" minutes", "minute", "mins"],

"d": ["days", "day"],

"month": [" months"],

"kg": [" kilogram", "kilograms"],

"s": ["sec"],

"ms": [" milisec", "miliseconds", "msec"],

"nM": ["nmol", "nanomol"],

"mM": ["mmol", "milimol"],

"µM": ["mumol", "micromol", "micromols", "mumol", "µmol", "µmol", "µM"],

"pM": ["pmol", "pmols", "picomol "]

}

MAGNITUDES = {

"TIME": ["ms", "s", "min", "h", "d", "month"],

"MASS": ["ng", "µg", "mg", "g", "kg", "pg"],

"VOLUME ": ["nl", "µl", "ml", "l", "dl"],

"CONCENTRATION ": ["pM", "nM", "µM", "mM", "M"],

"PERCENTAGE ": ["%"] ,

}
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