3,459 research outputs found

    Time-Dependent 2-D Vector Field Topology: An Approach Inspired by Lagrangian Coherent Structures

    Full text link
    This paper presents an approach to a time-dependent variant of the concept of vector field topology for 2-D vector fields. Vector field topology is defined for steady vector fields and aims at discriminating the domain of a vector field into regions of qualitatively different behaviour. The presented approach represents a generalization for saddle-type critical points and their separatrices to unsteady vector fields based on generalized streak lines, with the classical vector field topology as its special case for steady vector fields. The concept is closely related to that of Lagrangian coherent structures obtained as ridges in the finite-time Lyapunov exponent field. The proposed approach is evaluated on both 2-D time-dependent synthetic and vector fields from computational fluid dynamics

    Extraction of topological structures in 2D and 3D vector fields

    Get PDF
    feature extraction, feature tracking, vector field visualizationMagdeburg, Univ., Fak. für Informatik, Diss., 2008von Tino WeinkaufZsfassung in dt. Sprach

    The State of the Art in Flow Visualization: Partition-Based Techniques

    Get PDF
    Flow visualization has been a very active subfield of scientific visualization in recent years. From the resulting large variety of methods this paper discusses partition-based techniques. The aim of these approaches is to partition the flow in areas of common structure. Based on this partitioning, subsequent visualization techniques can be applied. A classification is suggested and advantages/disadvantages of the different techniques are discussed as well

    Spectral, Combinatorial, and Probabilistic Methods in Analyzing and Visualizing Vector Fields and Their Associated Flows

    Get PDF
    In this thesis, we introduce several tools, each coming from a different branch of mathematics, for analyzing real vector fields and their associated flows. Beginning with a discussion about generalized vector field decompositions, that mainly have been derived from the classical Helmholtz-Hodge-decomposition, we decompose a field into a kernel and a rest respectively to an arbitrary vector-valued linear differential operator that allows us to construct decompositions of either toroidal flows or flows obeying differential equations of second (or even fractional) order and a rest. The algorithm is based on the fast Fourier transform and guarantees a rapid processing and an implementation that can be directly derived from the spectral simplifications concerning differentiation used in mathematics. Moreover, we present two combinatorial methods to process 3D steady vector fields, which both use graph algorithms to extract features from the underlying vector field. Combinatorial approaches are known to be less sensitive to noise than extracting individual trajectories. Both of the methods are extensions of an existing 2D technique to 3D fields. We observed that the first technique can generate overly coarse results and therefore we present a second method that works using the same concepts but produces more detailed results. Finally, we discuss several possibilities for categorizing the invariant sets with respect to the flow. Existing methods for analyzing separation of streamlines are often restricted to a finite time or a local area. In the frame of this work, we introduce a new method that complements them by allowing an infinite-time-evaluation of steady planar vector fields. Our algorithm unifies combinatorial and probabilistic methods and introduces the concept of separation in time-discrete Markov chains. We compute particle distributions instead of the streamlines of single particles. We encode the flow into a map and then into a transition matrix for each time direction. Finally, we compare the results of our grid-independent algorithm to the popular Finite-Time-Lyapunov-Exponents and discuss the discrepancies. Gauss\'' theorem, which relates the flow through a surface to the vector field inside the surface, is an important tool in flow visualization. We are exploiting the fact that the theorem can be further refined on polygonal cells and construct a process that encodes the particle movement through the boundary facets of these cells using transition matrices. By pure power iteration of transition matrices, various topological features, such as separation and invariant sets, can be extracted without having to rely on the classical techniques, e.g., interpolation, differentiation and numerical streamline integration

    Localized flow, particle tracing, and topological separation analysis for flow visualization

    Get PDF
    Since the very beginning of the development of computers they have been used to accelerate the knowledge gain in science and research. Today they are a core part of most research facilities. Especially in natural and technical sciences they are used to simulate processes that would be hard to observe in real world experiments. Together with measurements from such experiments, simulations produce huge amounts of data that have to be analyzed by researchers to gain new insights and develop their field of science
    corecore