

AN ABSTRACT OF THE THESIS OF

Guoning Chen for the degree of Doctor of Philosophy in Computer Science

presented on June 24, 2009.

Title:

Topological Analysis, Visualization,and Design of Vector Fields on Surfaces

Abstract approved:

Eugene Zhang

Analysis, visualization, and design of vector fields on surfaces have a wide

variety of major applications in both scientific visualization and computer

graphics. On the one hand, analysis and visualization of vector fields provide

critical insights to the flow data produced from simulation or experiments of

various engineering processes. On the other hand, many graphics applications

require vector fields as input to drive certain graphical processes. This thesis

addresses vector field analysis and design for both visualization and graphics

applications.

Topological analysis of vector fields provides the qualitative (or structural)

information of the underlying dynamics of the given vector data, which helps the

domain experts identify the critical features and behaviors efficiently. In this

thesis, I introduce a more complete vector field topology called Entity Connection

Graph (ECG) by including periodic orbits, an essential component in vector field

topology. An efficient technique for periodic orbit extraction is introduced and

incorporated into the algorithm for ECG construction. The analysis results are

visualized using the improved evenly-spaced streamline placement with all

separation features being highlighted. This is the first time that periodic orbits

have been extracted from surface flows. Through applications to engine

simulation datasets, I demonstrate how the extracted topology helps engineers

interpret the flow data that contains certain desirable behaviors which indicate

the ideal engineering process.

Accuracy is typically of paramount importance for visualization and analysis

tasks. However, the trajectory-based vector field topology approaches are

sensitive to small perturbations such as error and noise which are contained in

the given data and introduced during data acquisition and processing. This

makes rigorous interpretation of vector field topology and flow dynamics difficult.

To overcome that, I advocate the use of Morse decomposition to define a more

reliable vector field topology called Morse Connection Graph (MCG). In

particular, I present the pipeline of Morse decomposition of an input vector field.

A technique based on the idea of τ−map is introduced to produce desirably fine

Morse decompositions of vector fields. To address the issue of slow performance

of the global τ−map framework, I describe a hierarchical MCG refinement

framework. It enables the τ−map approach to be conducted within a Morse set

of interest which greatly reduces the computation cost and leads to faster

analysis. It is my hope that the work on Morse decomposition will invoke the

investigation of other similar data analysis problems such as scalar field and

tensor field analysis.

The techniques of time-independent vector field design have been well-studied.

However, there is little attention on the systematic design of time-varying vector

fields on surfaces. This dissertation addresses this by developing a design system

that allows the creation and modification of time-varying vector fields on

surfaces. More specifically, I present a number of novel techniques to enable

efficient design over important characteristics in the vector field such as

singularity paths, pathlines, and bifurcations. These vector field features are used

to generate a vector field by either blending basis vector fields or performing a

constrained optimization process. Unwanted singularities and bifurcations can

lead to visual artifacts, and I address them through singularity and bifurcation

editing. I demonstrate the capabilities of the design system by applying it to the

design of two types of vector fields: the orientation field and the advection field

for the application of texture synthesis and animation.

c©Copyright by Guoning Chen
June 24, 2009

All Rights Reserved

Topological Analysis, Visualization,
and Design of Vector Fields on Surfaces

by

Guoning Chen

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Presented June 24, 2009
Commencement June 2010

Doctor of Philosophy thesis of Guoning Chen presented on June 24, 2009.

APPROVED:

Major Professor, representing Computer Science

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of
Oregon State University libraries. My signature below authorizes release of my
thesis to any reader upon request.

Guoning Chen, Author

ACKNOWLEDGEMENTS

First of all, I would like to express my sincere gratitude to my advisor,

Professor Eugene Zhang, whose wisdom, encouragement, and support have

helped me through my Ph.D. study at Oregon State University. He has been a

role model for me because of not only his rigorous attitude in research but also

kindness toward people. I cherish what I have learned from him. It has been my

honor to work with him.

I would like to thank Professor Konstantin Mischaikow whose mathematical

expertise has set the solid backbone of the presented work. I appreciate every

discussion with him, which has helped me grow as a serious researcher.

I wish to thank Professor Robert S. Laramee who provides me not only the

datasets used in this thesis, but also invaluable suggestions and help in every

aspect of my research and academic career. It has always been my pleasure to

collaborate with him.

I would also like to thank Professor Peter Wonka who brought me the

exciting project of street modeling. Our collaboration has led to a wide range of

possibilities of future research. I highly appreciate his help in the development of

my career.

I thank Dr. Vivek Kwatra for sharing his texture synthesis and animation

tool to enable the project of time-dependent vector field design. I also thank

Professor Andrzej Szymczak for providing the efficient computation algorithm of

Conley index. I am also grateful for the valuable discussion with Professor Gerik

Scheuermann, Professor Harry Yeh, and Dr. Pawe l Pilarczyk. I wish to thank Dr.

Pascal Mueller for creating the beautiful images for the street modeling project.

My thanks goes to Professor Mike Bailey and Professor Ronald A. Metoyer.

From them I have learned not only cutting-edge graphics knowledge and

techniques but also how to be a good teacher.

I would like to thank all my colleagues, Jonathan Palacios, William Brendal,

Nadia Payet, Madhu Srinivasan, Zhongzang Lin, Qingqing Deng, Gregory Esch,

Patrick Neil, Randy Rauwendaal, Mizuki Kagaya, and all other members of the

graphics group at Oregon State University. Working with them has brought me

knowledge and happiness. I thank all of my friends for always being around me

and providing me the priceless support.

Finally, I would express my deepest gratitude to my parents for their love

and unconditional support through my whole life. Most of all, I am utterly

grateful to my wife, Rui Lu, for her love, support, and always being by my side. I

would also thank my parents-in-law for their support during the early life time of

our lovely son, Kevin. I love you all.

TABLE OF CONTENTS

Page

1 Introduction 1

1.1 Topological Analysis of Vector Field 2
1.1.1 Entity Connection Graph (ECG) 3
1.1.2 Morse Decompositions of Vector Fields 5

1.2 Time-Varying Vector Field Design on Surfaces 7

1.3 Thesis Structure . 9

2 Topological Analysis of Time-Independent Vector Field 11

2.1 Previous Work . 12

2.2 Time-Independent Vector Fields . 13
2.2.1 Hyperbolicity and Limit Sets 16
2.2.2 Entity Connection Graph (ECG) 17
2.2.3 Poincaré Index . 18

2.3 Conley Index . 20
2.3.1 Definitions of Conley Index 21
2.3.2 Computing Betti Numbers of A Quotient Space 22

2.4 Morse Decomposition and Morse Connection Graph 25
2.4.1 Morse Decompositions . 26
2.4.2 Computation of Morse Decompositions 27
2.4.3 MCG vs. ECG . 29

2.5 Vector Field Representation . 30

3 ECG Computation 32

3.1 Periodic Orbit Extraction . 32

3.2 ECG Construction and Display . 37

3.3 Applications . 40
3.3.1 Application to Analytic Data 40
3.3.2 Application to Engine Simulation Data 41

3.4 Topology-Based Streamline Visualization 45

4 Vector Field Simplification Based on ECG 47

4.1 Previous Work . 47

TABLE OF CONTENTS (Continued)

Page

4.2 Constrained Optimization . 49

4.3 Vector Field Simplification Using Pairwise Cancellation 50

4.4 User Guided Flow Smoothing . 56

5 Periodic Orbit Design in Time-Independent Vector Fields 58

5.1 Previous Work . 58

5.2 Periodic Orbit Creation . 60
5.2.1 Attracting and Repelling Basis Vector Fields 60
5.2.2 Constrained Optimization for Periodic Orbit Creation 64

6 Morse Decompositions of Vector Fields 66

6.1 Revisiting Morse Decomposition and Morse Connection Graphs (MCGs) 70

6.2 MCG Construction . 73

6.3 Flow Combinatorialization Based on τ -maps 76

6.4 The Stability of MCGs . 80

7 Flow Combinatorialization Using the Idea of τ -map 83

7.1 Efficient Outer Approximation Computation 84
7.1.1 Adaptive Edge Sampling . 86
7.1.2 Backward Mapping . 90
7.1.3 Complete Algorithm . 92
7.1.4 Results and Discussion . 93

7.2 Temporal τ vs. Spatial τs . 94

7.3 Applications to Simulation Data . 97

8 Hierarchical Refinement of Morse Decompositions 102

8.1 Overview . 102

8.2 Hierarchical Morse Decompositions 104
8.2.1 Local Flow Combinatorialization 107
8.2.2 Implementation . 110
8.2.3 Conley index of Morse sets obtained with τ -map 111

8.3 Identifying Morse Sets To Refine 116

TABLE OF CONTENTS (Continued)

Page

8.4 Applications . 119

9 Time-Varying Vector Fields in Graphics Applications 125

9.1 Applications and Impact . 125

9.2 Orientation Field and Advection Field 126

9.3 Requirements and Challenges . 128

10 Time-Varying Vector Fields 131

10.1 Time-Varying Vector Fields . 131
10.1.1 Definition . 131
10.1.2 Integral Curves in Time-Varying Vector Fields 132
10.1.3 Instantaneous Topology . 134
10.1.4 Bifurcation . 135

10.2 2D Parameterized Vector Field . 136

11 Time-Varying Vector Field Design On Surfaces 138

11.1 Initialization . 139
11.1.1 Setting . 139
11.1.2 Designing Instantaneous Fields 140
11.1.3 Designing Parameterized Vector Fields 142
11.1.4 Bifurcation Design . 150

11.2 Editing . 152
11.2.1 Instantaneous Field Editing 153
11.2.2 Bifurcation Editing . 153

11.3 Application: Texture Synthesis and Animation 155

12 Conclusion and Future Work 160

12.1 Vector Field Analysis . 160
12.1.1 Summary . 161
12.1.2 Future Directions . 162

12.2 Vector Field Design . 164
12.2.1 Summary . 164
12.2.2 Future Directions . 164

TABLE OF CONTENTS (Continued)

Page

Bibliography 166

LIST OF FIGURES

Figure Page

1.1 The visualization of CFD data simulating in-cylinder flow through
a gas engine from two viewpoints (top), and the corresponding ECG
(bottom). 3

1.2 Example vector fields created using our design system. The visu-
alization makes use of the enhanced streamline-based method pro-
posed in this work. 5

1.3 This figure provides an example of locally refining a Morse decom-
position of an analytic flow data over different Morse sets. 8

2.1 The visualization of CFD data simulating in-cylinder flow through
a diesel engine from two viewpoints. 14

2.2 An example vector field (upper left) and its ECG (lower left). . . . 15

2.3 A number of simple examples of isolating blocks. 22

2.4 An example for building a directed graph based on the input vector
field defined on a triangular mesh. 29

2.5 This example shows the difference between ECG and MCG for a
piecewise linear vector field created using our tool. 29

3.1 An example of the presented periodic orbit detection algorithm. . . 33

3.2 An example scenario in which inconsistent tensor assignment can
lead to false separation or attachment points. 35

3.3 This figure illustrates the algorithm for construction of ECG’s. . . . 36

3.4 The vector field defined in Equation 3.1 over the region {(x, y)|max(|x|, |y|) <
11π}. 41

3.5 Visualizing the simulation of flow in a diesel engine. 42

3.6 Idealized in-cylinder flow through a gas engine (left) and a diesel
engine (right). 44

3.7 An example of the enhanced streamline-based visualization tech-
nique on the plane. 44

4.1 The six direct cancelation scenarios. 52

LIST OF FIGURES (Continued)

Figure Page

4.2 The seven indirect cancellation scenarios. 53

4.3 An example shows the regions obtained for cancelling a repeller R
and an attractor A pair. 54

4.4 User-guided flow smoothing on CFD data simulating in-cylinder flow
through a gas engine: before (upper-left) and after (upper-right). . 56

4.5 User-guided flow smoothing on CFD data simulating in-cylinder flow
through a diesel engine: before (left) and after (right). 57

5.1 Given an oriented loop (left), the design system produces a sequence
of sample points (middle: dots) and evaluates tangent vectors at
those locations (middle: arrows). 63

5.2 This figure compares the basis vector field corresponding to a regular
element (left) and an attachment element (middle). 63

6.1 Examples of the instability of individual trajectory-based topologi-
cal analysis of vector field (i.e. ECGs) due to the choice of discretiza-
tion scheme (a), noise (b), and the error from numerical integration
scheme (c). 68

6.2 This figure shows the various analysis results of an experimental
field using ECG and MCGs, respectively. 71

6.3 This figure illustrates the pipeline of MCG construction. I first
compute F (top) based on the underlying flow. 74

6.4 This figure compares two ways of performing flow combinatorializa-
tion: (left) geometry-based method, and (right) τ -maps. 77

6.5 This figure illustrates that using outer approximation, Morse de-
composition is stable under certain error bound ε. 80

7.1 Some possible cases of the image of a triangle under a flow. 85

7.2 This figure provides the notion of adaptive sampling on an edge
e(v1v2) (right). 87

7.3 A general example of the image of a triangle under a flow showing
the scenario of case (6) in Figure 7.1. 89

LIST OF FIGURES (Continued)

Figure Page

7.4 This figure describes how the backward mapping and the adaptive
edge sampling help to find the complete edges of the directed graph
under a highly stretched flow. 91

7.5 This figure shows various analysis results of an analytical data set. . 95

7.6 This figure compares the results of the Morse decompositions of the
gas engine simulation data obtained using geometry-based method
(a), a temporal τ -map with τ = 0.1 (b) and a temporal τ -map with
τ = 0.3 (c), respectively. 98

7.7 A comparison of various Morse decompositions of the diesel engine
simulation data set. 101

8.1 The pipeline of the proposed locally hierarchical refinement of Morse
decompositions of vector fields. 105

8.2 This figure provides an example of locally refining a Morse decom-
position of an analytic flow data over different Morse sets. 112

8.3 This illustrates the classification of boundary edges. 113

8.4 This figure illustrates an example on how the upper bound of the
Conley index can help identify Morse set with complex flow. 115

8.5 The computed upper bounds of the Conley indices of all Morse sets
extracted from two analytical vector fields. 117

8.6 The figure provides the result of Morse decomposition using the
presented hierarchical framework (left). 120

8.7 This figure illustrates the refinement process of the MCG of the gas
engine simulation data. 121

8.8 This figure compares the results of the Morse decompositions using
local refinement (bottom) and global update of τ -map (top) for the
gas engine simulation dataset. 122

8.9 This figure shows the results of Morse decomposition before (left)
and after automatic hierarchical refinement (right) for the diesel
engine simulation dataset. 124

LIST OF FIGURES (Continued)

Figure Page

9.1 This example demonstrates the different utility of orientation field
and advection field. 127

9.2 This figure shows an example of saddle-node bifurcation in an ori-
entation vector field, the creation of a pair of saddle and sink, which
causes the break of texture structure on the back of the bunny. . . . 129

10.1 This figure demonstrates the difference between streamlines (left)
and pathlines (right) [75]. 133

10.2 This example demonstrates a saddle-node bifurcation, i.e. a source-
saddle cancellation. 136

11.1 The design pipeline. 139

11.2 An key frame design example. 144

11.3 A time-varying vector field produced using simple linear interpola-
tion from the specified key frames. 144

11.4 This figure provides some results of brush stroke design. 146

11.5 A saddle sink creation bifurcation happens at (0.5, 0.5; 0.5) in the
spatio-parameterized domain X using equation 11.6. 151

11.6 Example of bifurcation editing. 154

11.7 Different effects obtained using texture synthesis and animations. . 156

11.8 This image shows a number of frames from a texture animation on
sphere which simulates the collision of two storm systems. 157

11.9 This image shows a number of frames from a texture animation on
venus. 158

11.10The designed results of an orientation field (first row) and and ad-
vection field (second row) on bunny. 159

LIST OF TABLES

Table Page

3.1 The complexity and timing results for two CFD data simulating
in-cylinder flow through a combustion engine (Figures 1.1 and 2.1). 45

7.1 The complexity and timing results for two CFD data simulating
in-cylinder flow through a combustion engine (Figures 7.6 and 7.7). 100

8.1 The complexity and timing results for two CFD data simulating
in-cylinder flow through a combustion engine. 121

Chapter 1 – Introduction

Vector fields are of particular interest in many scientific and engineering processes

including Computational Fluid Dynamics (CFD), aerodynamics, weather study,

automotive and aircraft design, and tsunami and hurricane modeling. Studying

the vector fields derived from these applications provides insights to the behaviors

of the underlying dynamical systems, which enables the evaluation and control of

these processes. Vector fields also have a wide range of applications in computer

graphics. For instance, in the applications of surface parameterization, remesh-

ing, non-photorealistic rending, texture synthesis, and computer animation, vec-

tor fields are typically required as the initial input. To that end, extracting the

essential characteristics from the given vector fields and developing effective tech-

niques for the design of various vector fields are the two themes of the presented

work. In this thesis, I will restrict the discussion of analysis to the context of

time-independent vector fields. Similarly, since the problems on time-independent

vector field design have been well-studied [8, 21, 71, 101], this work will focus on a

harder problem, i.e, time-varying vector field design on surfaces.

2

1.1 Topological Analysis of Vector Field

Vector field visualization and analysis has been successfully applied to help inter-

pret the dynamical systems of a wide variety of applications. Among all analysis

techniques, vector field topology conveys the qualitative (i.e. structural) informa-

tion of the underlying dynamics of the given vector fields. Vector field topology

consists of a number of recurrent flow features and their connectivity informa-

tion. It is typically expressed as a topological graph with these features of interest

as nodes and their connectivity relations as edges. The corresponding embedded

graph partitions the flow domain into sub-regions with equivalent qualitative char-

acteristics. Therefore, this graph allows an efficient interpretation of the essential

dynamics of the flow.

There are two requirements for computing vector field topology: accuracy and

efficiency. Accuracy requires a high fidelity of the recovered information in the

composed images with respect to the given data. It is of paramount importance

for visualization and analysis tasks. Efficiency provides the evaluation of the com-

putation performance, which determines the practicality of an analysis technique.

Both accuracy and efficiency are addressed in the topological analysis techniques

introduced in this dissertation. First, in order to provide the engineers a more

complete topology of their vector data, I extend the topological graph of vector

fields by including an essential component, periodic orbits, that was not incorpo-

rated before, and define Entity Connection Graph (ECG). Second, I examine the

instability of trajectory-based topology representations of vector fields, and pro-

3

pose Morse Connection Graph (MCG) as a more reliable representation of vector

field topology.

1.1.1 Entity Connection Graph (ECG)

Figure 1.1: The visualization of CFD data simulating in-cylinder flow through
a gas engine from two viewpoints (top), and the corresponding ECG (bottom).
Through the application of the periodic orbit extraction algorithm we can observe
a closed streamline about a central axis corresponding to the ideal pattern of
tumble motion in the gas engine simulation results. This is precisely the type of
re-circulation that the engineers strive to realize when designing the intake ports
of a gas engine cylinder.

4

Helman and Hesselink introduced the notion of flow topology to the visual-

ization community in [27, 28]. Since then, much research has been carried out on

topological analysis of vector fields in the past two decades (Chapter 3). Most of

these techniques focus on the analysis of local features such as fixed points which

represent local recurrent behavior or stagnant points. Little work addresses the de-

tection of large-scale recurrent features such as periodic orbits. Periodic orbits are

essential structures of non-gradient vector fields, such as those in electromagnetism,

chemical reactions, fluid dynamics, locomotion control, population modeling, and

economics. There is a fundamental need to be able to incorporate them into the

subject of vector field visualization. For example, in the application of automo-

bile engine design and combustion simulation, the existence and locations of the

periodic orbits provide clues to the swirl motion inside the chamber of the engine.

Efficient periodic orbit detection and visualization can help design engineers better

understand how the shape of the chamber and the initial speed of the fluid through

the intake ports impact engine efficiency [8].

To include the detected periodic orbits into the topological graph, I extend the

traditional vector field topological skeleton and introduce the entity connection

graph (ECG) (see Figure 1.1). Efficient algorithm of computing an ECG of a given

vector field is introduced as well as a novel and practical algorithm for periodic

orbit extraction. The ECG computation significantly reduces the computation

time even for large datasets constituting hundreds of thousands of sample points.

The results are visualized using an enhanced streamline-based method in which

periodic orbits and separatrices are highlighted. This is particularly desirable for

5

vector fields on surfaces since only portions of a periodic orbit may be visible

for any given viewpoint (see Figure 1.2). In addition, I introduce a technique

that allows the user to create periodic orbits on surfaces. Finally, I provide a

general framework and efficient algorithms that allow topological simplification on

arbitrary vector fields defined on surfaces.

Figure 1.2: Example vector fields created using our design system. The visualiza-
tion makes use of the enhanced streamline-based method proposed in this work.
The red cycles represent the attracting periodic orbits and the green ones represent
the repelling periodic orbits.

1.1.2 Morse Decompositions of Vector Fields

Reliable analysis of vector fields is crucial for the rigorous interpretation of the

flow data stemming from engineering applications. However, any numerical or

experimental method is subject to errors and thus one must be concerned with

whether these errors are significant enough to produce misleading information. In

the domain of numerical analysis the existence of spurious solutions would be an

example of such misleading information. The reason is because the vector field

topology based on individual trajectories is sensitive to errors and noise.

6

In order to address this challenge I present a rather different approach for the

representation, extraction and visualization of flow topology. The representation

of the global dynamics is realized in terms of an acyclic directed graph called

the Morse connection graph (MCG). The nodes in this graph, which I refer to as

Morse sets, correspond to polygonal regions in the phase space, which I define

to be Morse neighborhoods. All the recurrent dynamics is contained in the Morse

neighborhoods. The edges in an MCG indicate how the flow moves from one Morse

neighborhood to another. In contrast to trajectory-based topological analysis, such

as vector field skeleton and ECG, an MCG is stable with respect to perturbations,

i.e. given sufficient information on errors of the vector field it is possible to make

rigorous interpretations about the underlying dynamics [35].

My contributions in this work lie in the following. First, I present a theoret-

ically sound framework based on Morse decompositions from which more rigorous

statements can be made with respect to the extraction of flow topology than the

individual trajectory-based analysis. Second, two approaches, the geometry-based

method and the τ -map based approach, are then proposed to realize the process

called flow combinatorialization which is considered a key step in the presented

Morse decomposition pipeline. The result of this process is a directed graph F

whose nodes are the underlying polygonal primitives (e.g. triangles) and edges

indicate the flow dynamics (e.g. the advection of particles from one triangle to

another). The geometry-based approach constructs F by simply examining the

flow behaviors across mesh edges, which typically leads to coarser MCG than de-

sired (see Figure 1.3, (a)). On the other hand, τ -map based method resolves this

7

issue by constructing a more accurate F using the idea of outer approximation

computation. It keeps track of the image of each polygonal primitive advected by

the flow over time τ . This improvement results in finer MCGs than the ones using

a geometry-based method (see Figure 1.3, (e)). However, the τ -map approach re-

quires a large amount of tracing operations. Furthermore, because an ideal τ value

is typically not known for a given flow, the user must carry out multiple compu-

tations with different τ values before a satisfying result is achieved. This leads to

a slow analysis process which can be prohibitive for large datasets. To approach

that, I propose an efficient Morse decomposition framework based on a hierarchi-

cal refinement process. This framework determines a Morse set of a coarse MCG

to refine based on a number of criteria including the Conley index of this Morse

set. The refinement is then conducted locally inside the Morse neighborhood of

this Morse set. It is worth noting that an efficient algorithm to compute the upper

bound of the Conley index of a Morse set based on flow combinatorialization graph

is introduced to assist the automatic refinement process.

1.2 Time-Varying Vector Field Design on Surfaces

In this section, I turn to a different but related topic: vector field design. A wide

variety of computer graphics applications require vector fields as the input, such

as texture synthesis [21,38,43,44,49,84,91,101], non-photorealistic rendering [29,

30,101], fluid simulation [65], hair modeling [23], crowd animation [11], and shape

deformation [89]. The design and control of steady (time-independent) vector fields

8

(a) (b) (c) (d) (e)

A5

S1

A1

A3

S3

A4

R2

S2

A2

R1

A5

S1

A1

A3

S3

A4

R2

S2

A2

R1

S1

A2

R2

A1

S3

A4

A3
S2

R1

S2

A2

R1

A1

S1

S3

A3

R1

S1

S2

S3

A2

A1

Figure 1.3: This figure provides an example of locally refining a Morse decompo-
sition of an analytic flow data over different Morse sets (b): R1, (c): S1, and (d):
S3 with τ = 7.8, 10, 10, respectively. (a) provides the Morse decomposition using
a geometry-based method. In addition, the MCG generated using a global τ -map
idea with τ = 12 is also shown in (e) for comparison. Note how our finest MCG is
comparable to the one using global Morse decomposition. Different colors indicate
different Morse sets. The color-dotted regions indicate the connection between
Morse neighborhoods. Note that the connection regions are also refined during the
process. In the MCGs, green dots stand for the source Morse sets, red dots for the
sink Morse sets, and blue dots for the saddle Morse sets.

on two dimensional manifolds has been well explored in the recent years [8,21,101].

In contrast, there has been relatively little work in designing time-varying vector

fields despite the potential benefits in applications such as controlled fluid and

crowd simulation, shape deformation design, hair animation, artistic rendering of

videos, and texture synthesis and animation. I address the problem of the design

of time-varying vector fields on surfaces in this work.

More specifically, I have identified time-varying vector field design as an im-

portant problem in computer graphics. I present an approach to this problem by

designing parameterized vector fields to approximate time-varying vector field de-

sign. This enables the techniques for steady vector field design to be extended to

9

time-varying vector field design. I describe the disparate usage of various vector

field characteristics in diverse computer graphics applications. This distinction

shows the need of design of different types of time-varying vector fields to achieve

various effects. Particularly, I show the design of orientation field and advection

field for the orientation and movement of the texture structures in texture syn-

thesis and animation. I present a number of techniques to enable different vector

field features such as singularity paths, pathlines, and bifurcations to be input as

user specifications. The extended radial basis field approach and an extended con-

strained optimization technique are introduced to produce a parameterized vector

field with coherent transition. I provide operations to support topological control

in a parameterized vector field, including bifurcation removal and movement, and

singularity movement. To my best knowledge, this is the first time a time-varying

vector field design tool is developed for the general purpose of computer graphics

applications.

1.3 Thesis Structure

The structure of the thesis is as follows.

Vector Field Analysis (ECG): The mathematical foundations of time-independent

vector fields on surfaces are introduced in Chapter 2. An important concept, Con-

ley index that is used to classify flow features in general is introduced as well as

its computation algorithm. The entity connection graph and an efficient algorithm

for its construction are introduced in Chapter 3. A novel and efficient approach

10

for periodic orbit extraction is also described in this chapter. Based on the ECG, I

investigate a number of topological simplification scenarios in Chapter 4 and pro-

vide a uniform framework to accomplish these simplifications. Chapter 5 describes

efficient techniques to create periodic orbits in surface vector fields which has been

applied to create the synthetic vector fields used in this dissertation. An enhanced

streamline-based technique is presented for time-independent vector field visualiza-

tion which highlights the embedded ECG structure of the given vector field during

the visualization.

Vector Field Analysis (MCG): I review the basic concepts of Morse decom-

positions and describe a general pipeline for the efficient computation of Morse

decompositions of vector fields in Chapter 6. The Morse decompositions based

on the idea of τ -map approach is detailed in Chapter 7 to compute finer MCGs.

A hierarchical framework for the fast computation is proposed in Chapter 8. In

addition, the computation of the upper bound of a Conley index is first introduced

to the visualization community.

Time-Varying Vector Field Design on Surfaces: Chapter 10 reviews the

time-varying vector field background, especially an important concept known as

bifurcation. The concept of parameterized vector field is introduced. In Chapter 11,

I present a novel design system for the creation and control of time-varying vector

fields on surfaces. A number of novel interfaces for the creation of a time-varying

vector field is introduced. The design vector fields have been applied to guide the

texture synthesis and animation to convey various effects on surfaces such as fluid

animation, caustic reflection, lava, and weather animation.

11

Chapter 2 – Topological Analysis of Time-Independent Vector Field

Vector field topology depicts the qualitative structure of a given flow. This struc-

tural information typically provides critical insights to the underlying dynamics

of the given data. For instance, in the study of combustion process of an engine

using CFD techniques, the locations where fuels enter (i.e. intakes) and leave (i.e.

outlets) typically correspond to sources and sinks of the flow in the cross sections

perpendicular to the flow direction at intakes or outlets, respectively. Sources and

sinks are examples of topological features called fixed points. The encounter of fuel

and oxygen induces stretching behaviors which may exhibit as saddles in the flow

patterns (see the front of the gas engine in Figure 1.1, upper-left). If the engine

is well designed, the two different materials are then gradually mixed and their

motion starts forming circular patterns, i.e. periodic orbits (see the back of the gas

engine in Figure 1.1, upper-right). Therefore, through detecting these topological

features, the engineer is able to evaluate the designed engine. In this chapter, I

briefly review a number of important topological concepts that will be applied in

the following chapters where detailed computation algorithms are discussed.

12

2.1 Previous Work

Conventional vector field topology, such as topological skeleton of vector fields was

introduced by Helman and Hesselink [27, 28] to the visualization community. It

consists of fixed points as nodes and certain special integral curves known as sep-

aratrices connecting these fixed points as edges. This embedded graph-like config-

uration partitions the flow domain into different regions. Inside each region, the

flow dynamics possesses similar qualitative nature [78]. This allows the domain

experts to abstract the structure of the flow dynamics and extracts the essential

information of the flow dynamics efficiently.

Following Helman and Hesselink, much research has been conducted to address

the computation of vector field topology in 2D vector fields. Tricoche et al. [80]

and Polthier and Preuß [53] present efficient algorithms to locate fixed points in a

vector field. Scheuermann et al. extend the work on first-order fixed points to the

analysis of higher-order fixed points using Clifford algebra and present solutions to

the visualization of higher-order fixed points [62]. The approaches of visualizing

non-linear topology of a given vector field are presented in their work [61, 62].

In addition to fixed points, periodic orbits are also essential structures of non-

gradient vector fields. There is a fundamental need to be able to incorporate

them into the subject of vector field visualization. To approach that, Wischgoll

and Scheuermann [97] develop a method to extract closed streamlines in a 2D

vector field defined on a triangle mesh. Note that closed streamlines are in fact

attracting and repelling periodic orbits. This technique has also been extended to

13

3D vector fields and time-dependent flows [98]. Theisel et al. [74] propose a mesh-

independent technique for the detection of periodic orbits in planar flow. Interested

readers can find a complete survey of these aforementioned work in [39, 40, 54,

94]. However, the conventional vector field topology does not incorporate periodic

orbits into the topological graph. In this work, I develop a system for vector field

visualization and analysis that extracts and visualizes boundary flow topology.

It provides the user with a variety of capabilities in that fixed points, periodic

orbits, and separatrices can be identified (see Figure 2.1). A comprehensive vector

field topology, called entity connection graph (ECG) is defined to include periodic

orbits. Furthermore, an efficient periodic orbit extraction algorithm is proposed

which permits the efficient extraction of these recurrent features and can be applied

to surface flow. This technique has been applied to the analysis of the engine

simulation data and airfoil simulation and experiment data. It is the first time

periodic orbit extraction and visualization has found utility in a real application.

2.2 Time-Independent Vector Fields

The control of vector fields on surfaces is realized using concepts from the topolog-

ical theory of dynamical systems. Consider a manifold M and a subset X ⊂ M .

The boundary of X is denoted by ∂X and closure by cl(X). A vector field and

the corresponding topological concepts can be defined as follows.

Definition 2.2.1 A time-independent vector field can be expressed in terms of a

differential equation ẋ = V (x) (where ẋ = dx
dt

). The set of solutions to it gives

14

Figure 2.1: The visualization of CFD data simulating in-cylinder flow through
a diesel engine from two viewpoints. Compare them to the idealized flow shown
in Figure 3.6 (left). Figure 3.5 provides complementary visualization of the flow
inside the diesel engine. Both the texture and the topology-based visualizations
indicate a nice pattern of swirl motion at the boundary of the combustion chamber
while the regions near the intake ports reveal deviation from the ideal.

rise to a flow on M ; that is a continuous function ϕ : R × M → M satisfying

ϕ(0, x) = x, for all x ∈ M , and

ϕ(t, ϕ(s, x)) = ϕ(t + s, x) (2.1)

for all x ∈ M and t, s ∈ R.

Definition 2.2.2 Given x ∈ M , its trajectory is

ϕ(R, x) := ∪t∈Rϕ(t, x). (2.2)

where

ϕ(t, x) = x +

∫ t

0

V (ϕ(s, x))ds

15

Figure 2.2: An example vector field (upper left) and its ECG (lower left). The
vector field contains a source (green), three sinks (red), three saddles (blue), a
repelling periodic orbit (green), and two attracting periodic orbits (red). Separa-
trices that connect a saddle to a repeller (a source or a periodic orbit) are colored
in green, and to an attractor (a sink or a periodic orbit) are colored in red. The
fixed points and periodic orbits are the nodes in the ECG (lower left) and separa-
trices are the edges. In addition, a periodic orbit can be connected directly to a
source, sink, or another periodic orbit. Such connections are also depicted as edges
in the ECG. The simplified field of (upper left) is shown in (upper right) and its
corresponding ECG is (lower right). Notice the Conley index for both vector fields
inside the white loop are the same, which allows the vector field in the left to be
simplified into the one shown in the right.

Definition 2.2.3 S ⊂ M is an invariant set if ϕ(t, S) = S for all t ∈ R.

Definition 2.2.4 A point x ∈ M is a fixed point if ϕ(t, x) = x for all t ∈ R.

More generally, x is a periodic point if there exists T > 0 such that ϕ(T, x) = x.

The trajectory of a periodic point is called a periodic orbit.

Remark: Observe that for every x ∈ M , its trajectory is an invariant set.

Other simple examples of invariant sets include fixed points and periodic orbits.

16

2.2.1 Hyperbolicity and Limit Sets

Consideration of the important qualitative structures associated with vector fields

on a surface requires familiarity with hyperbolic fixed points, periodic orbits, and

separatrices which I define as follows.

Definition 2.2.5 Let x0 be a fixed point of a vector field ẋ = V (x); that is V (x0) =

0. The linearization of V about x0, results in a 2×2 matrix Df(x0) which has two

(potentially complex) eigenvalues σ1 + iµ1 and σ2 + iµ2. If σ1 6= 0 6= σ2, then x0 is

called a hyperbolic fixed point.

Observe that on a surface there are three types of hyperbolic fixed points: sinks

σ1, σ2 < 0, saddles σ1 < 0 < σ2, and sources 0 < σ1, σ2. Because I consider systems

with invariant sets such as periodic orbits, the definition of the limit of a solution

with respect to time is non-trivial. The alpha and omega limit sets of x ∈ M are

α(x) := ∩t<0cl(ϕ((−∞, t), x)), ω(x) := ∩t>0cl(ϕ((t,∞), x))

respectively. A periodic orbit Γ is attracting if there exists ε > 0 such that for every

x which lies within a distance ε of Γ, ω(x) = Γ. A repelling periodic orbit can be

similarly defined (α(x) = Γ)). Finally, given a point x0 ∈ M , its trajectory is a

separatrix if the pair of limit sets (α(x), ω(x)) consist of a saddle fixed point and

another object that can be a source, a sink, or a periodic orbit. Figure 2.2 provides

an example vector field (upper-left). Fixed points are highlighted by colored dots

17

(sources: green; sinks: red; saddles: blue). Periodic orbits are colored in green

if repelling and in red if attracting. Separatrices that terminate in a source or

a repelling periodic orbit are shown in green and those terminate in a sink or an

attracting periodic orbit are colored in red. For convenience, I will refer to a source

and a sink as a node in the remainder of the thesis wherever appropriate.

2.2.2 Entity Connection Graph (ECG)

As indicated before, conventional topological skeleton of vector fields consists of

fixed points and their connectivity information. This connectivity typically corre-

sponds to the separatrices that start from saddles and end at other fixed points.

I have pointed out that periodic orbits are important recurrent features in the

flow (i.e. examples of invariant sets) that are interesting to flow experts. How-

ever, periodic orbits are not incorporated in the conventional topological skeleton

which makes this representation of vector field topology incomplete. To overcome

that, I define Entity Connection Graph (ECG) which includes periodic orbits as

an essential component of the topological graph.

Definition 2.2.6 An Entity Connection Graph, or ECG is a topological graph

G = (S,E) where S represents the extracted fixed points and periodic orbits, and

E indicate the direct connections of the connected pairs in the flow.

To better understand the structure of an ECG, consider a vector field V on a

surface S that contains at least a fixed point or periodic orbit, i.e., the ECG of V is

not empty. V induces a partition of S. Each sub-region in the partition is a basin

18

that can be bounded by fixed points, periodic orbits, and/or separatrices (e.g. the

region bounded by A2 and R2 in Figure 2.2 upperleft). A streamline inside a basin

flows from a source object α to a destination object ω. Both α and ω can be a

node fixed point (a source or a sink) or a periodic orbit. In addition, for each of

the three cases (node-node, node-periodic orbit, and periodic orbit-periodic orbit),

the link between α and ω can be either direct, i.e., there is an edge connecting

them in the ECG, or indirect, i.e., they are connected to some common saddles

through separatrices. Note that a periodic orbit separates nearby flow into two

parts. On either side, there can be one or more basins. When there is one basin,

the periodic orbit is directly linked to a node or another periodic orbit. In the case

of multiple basins, the periodic orbit is linked to other nodes or periodic orbits

through saddles.

2.2.3 Poincaré Index

There is a topological descriptor, called Poincaré index that has been applied to

locate and characterize an isolated fixed point. A fixed point x0 is called isolated

if there exists a neighborhood N surrounding x0 such that x0 is the unique fixed

point in the interior of N . The definition and computation of Poincaré index is

based on the rotation of a vector field along a simple closed curve. Mathematically,

the Poincaré index of a block N is defined as the winding number of the Gauss map

along ∂N , the boundary curve of N [102]. In other words, the index of a simple

closed curve Γ in a plane relative to a continuous vector field V = (VX , VY)T is the

19

number of the positive field rotations while traveling along Γ in positive direction

(i.e. counter-clockwise), which is denoted as [78].

I(Γ, V) =
1

2π

∮

Γ+

dθ

where θ is the angle between V and x−axis satisfying

cos θ =
VX

√

V 2
X + V 2

Y

, sin θ =
VY

√

V 2
X + V 2

Y

Note that θ ∈ [0, 2π) (i.e. modulo 2π). According to this definition and compu-

tation, the Poincaré index of a fixed point free region is 0, and the isolated fixed

points can be characterized as follows:

if I(∂N, V) = 1, x0 is either a source or a sink;

if I(∂N, V) = −1, x0 is a saddle.

From these results, we observe that Poincaré index is not able to distinguish

the difference between a source and a sink. Furthermore, the Poincaré index for a

periodic orbit is zero, which equals that of an emptyset. Therefore, Poincaré index

theory does not provide enough utility to handle periodic orbits, thus limiting its

potential uses. In the next, I will introduce a more general topological descriptor

that can be used to characterize invariant sets including fixed points and periodic

orbits.

20

2.3 Conley Index

In this section, I introduce a topological invariant, called Conley index that can

be used to classify the types of different invariant sets . Furthermore, it will be

employed in the simplification process (Chapter 4) which provides a topological

constraint on the possible simplification or modification of the vector field within

the isolating neighborhood (or isolating block) of cancellation.

Definition 2.3.1 A compact set N ⊂ M is an isolating neighborhood if for all

x ∈ ∂N , ϕ(R, x) 6⊂ N .

That is, the flow enters or leaves N eventually everywhere on ∂N .

An invariant set S is isolated if there exists an isolating neighborhood N such

that S is the maximal invariant set contained in N . Observe that hyperbolic

fixed points and periodic orbits are examples of isolated invariant sets. Isolated

invariant sets posses two essential properties. First, there are efficient algorithms

for identifying isolating neighborhoods [35]. Second, there exists an index, i.e.

Conley index [45], that identifies the types of modifications to the structure of the

invariant set that are topologically permissible. For example, the Conley index of

the vector field shown in Figure 2.2 (upper-left) inside the white loop is identical

to that of a sink. Topological simplification of the complex field inside the region

can result in the field shown in the right.

I now turn to the definition of Conley index. The rigorous definition of Conley

index requires the introduction of homology and cohomology [70] which is beyond

the scope of this dissertation. Given the 2D spatial discretization (a triangulation),

21

it is possible to define Conley index of an isolating neighborhood through the

homotopy type of the quotient space of this neighborhood. This also leads to an

efficient computation algorithm of the Conley index.

2.3.1 Definitions of Conley Index

The Conley index of a set M is easy to define if M is an isolating block (i.e. isolating

neighborhood), i.e. if every point x on the boundary of M is an exit point or an

entry point. An entry point is a point x whose trajectory for sufficiently small

negative times is outside M . Similarly, x is an exit point if its trajectory is outside

M for all sufficiently small positive times. Let S be the maximal invariant set in

the isolating block M . The Conley index of S is the relative homology [33] of the

index pair (M,L). Because we are restricting our attention to flows on orientable

surfaces, for an isolating block M , its Conley index is the homotopy type of the

quotient space M/L where L is the exit set: the subset of the boundary of M

consisting of all exit points. The quotient space is the pointed topological space

obtained from M by identifying all points of L to a single distinguished point.

A few simple examples of isolating blocks with exit sets shown in red can be

found in Figure 2.3. Any Morse set computed using the geometry method is an

isolating block. However, Morse sets arising from flow combinatorialization are not

guaranteed to be isolating blocks. Therefore, they require a different technique for

Conley index estimation which will be described in Section 8.3.

22

(a) (b) (c)

M
M M

L
L

L=Φ

Figure 2.3: A number of simple examples of isolating blocks. (a) shows a region
containing a sink (1, 0, 0); (b) is a region with a saddle (0, 1, 0); (c) displays a
ring-like region enclosing a repelling periodic orbit (0, 1, 1). In all cases, M is the
shadow region. Red lines represent the exit sets.

2.3.2 Computing Betti Numbers of A Quotient Space

Because the Conley index defined as the homotopy type is hard to deal with, I

represent it by its Betti numbers CH∗(M) = (β0, β1, β2) that are computed as

described below. In what follows, βk denotes the k-dimensional Betti number

of M/L. Assume that M is a subset of a two-dimensional manifold surface, a

triangulation of M is available and that L is a union of boundary edges of M .

β0 simply counts the number of connected components in M/L that do not

contain the distinguished point (i.e. disconnected point), i.e. the number of con-

nected components in M that are disjoint with L. Thus, β0 is easy to compute. In

particular, if M is connected, then β0 is zero if L 6= ∅ and 1 otherwise. In the left

isolating block shown in Figure 2.3, there is one single connected component, and

there is no exit set. Therefore, the β0 for this block is 1. For the other two blocks,

there is also only one connected component for each case, but there exit sets are

non-empty. Therefore, the β0’s for these two isolating blocks shown are both 0.

23

β2 is equal to the number of connected components of M whose entire boundary

is contained in L. This is because if there is a boundary edge of M that is not

in L, the pair (M,L) can be reduced to a homotopy equivalent pair where both

sets are one-dimensional by means of elementary collapses [69]. On the other

hand, the formal sum of all triangles in each connected component M0 of M whose

boundary is contained in L defines a generator of the two-dimensional homology

group of M/L and these generators span the entire homology group [18]. Based

on this criterion, the β2’s for the first two isolating blocks shown in Figure 2.3 are

0 because there are no pure exit boundary. The β2 of the right block is 1 since

both its boundaries belong to the exit set.

To compute β1, one can view the quotient space M/L as a two-dimensional

CW-complex whose two-, one- and zero- dimensional cells correspond to triangles,

edges and vertices (respectively) in M \ L. Additionally, there is one special zero-

dimensional cell that corresponds to L. Therefore, βk = 0 for k > 2. Also, the

Euler characteristic of the quotient space, χ(M/L), is easy to compute: it is equal

to n2 − n1 + n0, where ni is the number of its i-dimensional cells of M/L with the

distinguished point taken out. On the other hand, χ(M/L) = β2 − β1 + β0 ([18]).

Since β2 and β0 are already known, this equation uniquely determines β1. Note

that the Euler characteristic of the quotient space can also be computed from the

characteristics of M and L: χ(M/L) = χ(M) − χ(L) [18]. In summary, β1 can be

24

computed given the information above:

β1 = β0 + β2 − (χ(M) − χ(L))

= β0 + β2 − (|V (M)| + |F (M)| − |E(M)| − (|V (L)| − |E(L)|))

where |V (·)|, |E(·)|, and |F (·)| represent the number of vertices, edges, and faces

of (·). Note that the Euler characteristic of L is computed as (|V (L)| − |E(L)|)

because there is no 2-dimensional components for a one-dimensional curve.

Figure 2.3 provides a number of simple cases of Conley index computation. For

instance, consider a region M containing a sink (Figure 2.3, left). Clearly χ(M) = 1

since M is a topological disk and hence χ(M/L) = χ(M) − χ(L) = 1. β0 = 1 and

β2 = 0 according to previous analysis. β1 can be determined to be 0 from the

equation χ(M/L) = β2 − β1 + β0. Hence the Conley index for a sink (represented

as the vector of Betti numbers (β0, β1, β2)) is (1, 0, 0). Similarly, one can compute

the Conley index of a saddle (middle), which is (0, 1, 0). In this case, the Euler

characteristic of the quotient space is χ(M/L) = χ(M) − χ(L) = 1 − 2 = −1.

Now, let us examine the case of a repelling periodic orbit (right). In this case,

β2 = 1 since M is connected and L is equal to its boundary. β0 = 0 because the

only connected component of M intersects L. Also, χ(M) = 0 and χ(L) = 0 (M

is homotopy equivalent to a circle and L - to two circles). Hence χ(M/L) = 0 and

β1 = β2 + β0 − χ(M/L) = 1. The index is (0, 1, 1).

In terms of Morse decomposition and MCGs, given the three Betti numbers

of the Conley index, a Morse set can be classified as follows. If β0 = 1, it is a

25

sink-like Morse set (colored in red); if β2 = 1, it is a source-like Morse set (colored

in green); otherwise, it is a saddle-like Morse set (colored in blue).

The most important Conley indices are as follows:

x0 an attracting fixed point(e.g.sink) ⇒ CH∗(x0) = (1, 0, 0)

x0 a saddle fixed point ⇒ CH∗(x0) = (0, 1, 0)

x0 a repelling fixed point(e.g.source) ⇒ CH∗(x0) = (0, 0, 1)

Γ an attracting periodic orbit ⇒ CH∗(Γ) = (1, 1, 0)

Γ a repelling periodic orbit ⇒ CH∗(Γ) = (0, 1, 1)

S = ∅ ⇒ CH∗(S) = (0, 0, 0)

It shows that Conley index is a more general topological descriptor than Poincaré

index in the characterization of invariant sets.

2.4 Morse Decomposition and Morse Connection Graph

Even for flows restricted to surfaces, invariant sets can be extremely complicated

and cannot be assumed to consist of hyperbolic fixed points, periodic orbits and

separatrices [51]. Furthermore, even if the recurrent dynamics is restricted to

fixed points and periodic orbits, it is impossible to develop an algorithm that will

identify all of them. For example, it is easy to generate continuous vector fields

that contain infinitely many isolated fixed points and/or periodic orbits. Even for

continuous piecewise linear vector fields, it is not clear whether infinitely many

26

isolated periodic orbits may exist. Further investigation is required to answer this

question. Thus it requires a language that allows us to manipulate a broader but

useful class of invariant sets.

In this section, I introduce an important process to which I will resort during

the topology computation.

2.4.1 Morse Decompositions

Central to our effort is the need for a computationally robust decomposition of

invariant sets.

Definition 2.4.1 A Morse decomposition, M(S), of S consists of a finite collec-

tion of isolated (or disjoint compact) invariant subsets of S, called Morse sets,

M(S) := {M(p) | p ∈ P} (2.3)

such that if x ∈ S, then there exists p, q ∈ P such that α(x) ⊂ M(q) and ω(x) ⊂

M(p).

It has proved that any structures associated with recurrent dynamics of ϕλ,

i.e. fixed points, periodic orbits, chaotic dynamics, must lie in the Morse sets

[35]. Furthermore, there exists a partial order > on P satisfying q > p if there

exists x ∈ S such that α(x) ⊂ M(q) and ω(x) ⊂ M(p). Let C(p, q) := {x ∈

M | α(x) ⊂ M(p) and ω(x) ⊂ M(q)}. An efficient means of presenting the partial

order on a Morse decomposition is given by the associated Morse Connection Graph

27

(MCG) which is the minimal directed graph whose vertices consist of the Morse

sets {M(p) | p ∈ P} and whose directed edges M(q) → M(p) imply q > p. Note

that a MCG contains supplementary information with respect to the topological

skeleton presented by Helmann and Hesselink [28]. For example, consider the

idealized magnetic field over the Earth’s surface in which only two fixed points

exist and none of the connecting orbits between them is a separatrix. Similarly, a

periodic orbit can be connected to a source (Figure 1.2, left) or another periodic

orbit (Figure 1.2, middle) without any separatrices in the field. The detail of the

computation of MCG and the pipeline of Morse decomposition will be presented

in the later chapters.

2.4.2 Computation of Morse Decompositions

Computing a Morse decomposition and its associated MCG can be done as fol-

lows. Let T denote a triangulation of the phase space. An edge in this trian-

gulation is classified as a transverse edge if the flow leaves one of incident trian-

gles completely (a one-way road, or exit/entrance edge). Otherwise, the edge is

nontransverse (two-way, or mixed edge). See the inlet image for an illustration.

exit edge entrance edge

T

mixed edge

transverse edge

nontransverse edge

Construct equivalence classes on T using the following

relationship and transitivity. Two triangles T0, T1 ∈ T

are equivalent if T0∩T1 consists of a nontransverse edge.

Taking the union of all triangles in an equivalence class

produces a polygonal region, whose boundary consists

28

of transverse edges only. This results in an isolating

neighborhood by definition. According to the classification of the triangle edges,

a directed graph can be constructed. The nodes of this directed graph are the

individual triangles of the triangulation. A directed edge is inserted between two

neighboring triangles if the flow direction points from one triangle to the other

crossing the common edge of these two triangles. For instance, consider an edge e

shared by triangles T0 and T1. If e is an exit edge with respect to triangle T0 (i.e. the

vector field points from T0 to T1), a directed edge pointing from T0 to T1 is inserted

to the directed graph. Figure 2.4 illustrates such a construction. The orange arrows

(right) represent the obtained directed edges. It is proven in [35] that the maximal

invariant sets within the strongly connected path components of this directed graph

produce a Morse decomposition for the vector field and furthermore, the MCG can

be obtained from the tree that results from the collapsing each strongly connected

component to a single vertex. Standard algorithms [12] indicate that this procedure

can be performed in linear time in the number of vertices and edges in the graph. In

particular, the flow experts are interested in strongly connected components with

non-trivial Conley index (0,0,0). This technique is sufficient for the computation

of a Morse decomposition of a vector field, which I refer to as the geometry-based

method. It enables the definition and computation of the following vector field

topology analysis. A general pipeline of Morse decomposition in practice will be

presented in Chapter 6.

29

Figure 2.4: An example for building a directed graph based on the input vector
field defined on a triangular mesh. In the obtained directed graph, each node refers
to a particular triangle, the direction of each directed edge are determined by the
type of the edge. Based on the input vector field (left), I build the directed graph
and compute the strongly connected components in the graph (right).

2.4.3 MCG vs. ECG

A1

A2

R1

R2

ECG MCG

Figure 2.5: This example shows the difference between ECG and MCG for a
piecewise linear vector field created using our tool. The vector field shown in the
left contains one fixed point and three periodic orbits. Therefore, the ECG consists
of four nodes (middle). However, due to the resolution of the underlying mesh,
there are only two Morse sets (colored regions) with one containing the fixed point
and the other containing the periodic orbits. Consequently, there are two nodes in
the MCG (right).

A node in the MCG is an isolated invariant set, which may contain multiple

fixed points and periodic orbits (Figure 2.5). For many engineering applications,

such as the study of in-cylinder flow, engineers are often more concerned with

individual fixed points and periodic orbits. Therefore, there is a need to build a

30

graph G, whose nodes consist of fixed points and periodic orbits. Similar to an

MCG, the edges in G represent the connectivity information between the nodes

according to the vector field. This graph is an Entity Connection Graph (ECG).

Based on this discussion, an ECG is a refinement of the MCG of the same vector

field. Figure 2.2 (lower-left) shows an ECG of the vector field in the upper-left.

Here P is the set of labels (R1 and R2, S1-S3, and A1-A5), and M(p) is the actual

object that p represents, i.e., M(R1) is a source. In fact, an MCG can be obtained

from the corresponding ECG by merging nodes that are in the same Morse set

(Figure 2.5: R1, R2, are A1 are merged as R1 in the MCG). Furthermore, the

MCG is equal to the ECG when the vector field has a finite number of fixed points

and periodic orbits, all of which have an isolating neighborhood of their own.

Figure 2.5 shows the difference between the MCG and ECG of a piecewise linear

vector field created with our system.

Given that the ECG is a refinement of the MCG, the reader may wonder why

I emphasize the existence of both graphs. There are two reasons. The first is

that I make use of information from the MCG to compute the ECG. The second

has to do with the validity of the information which will be discussed in detail in

Chapter 6. Note that the ECG will not be complete without boundary analysis.

2.5 Vector Field Representation

I now describe the computational model of our system. In this model, the under-

lying domain is represented by a triangular mesh. Vector values are defined at the

31

vertices only, and interpolation is used to obtain values on the edges and inside

triangles. This applies to vector field editing, simplification, and analysis such as

fixed point and periodic orbit extraction.

For the planar case, I use the popular piecewise linear interpolation method [80].

On curved surfaces, I borrow the interpolation scheme of Zhang et al. [101], which

guarantees vector field continuity across the vertices and edges of the mesh. These

interpolation schemes support efficient flow analysis operations on both planes and

surfaces.

32

Chapter 3 – ECG Computation

In this chapter, I describe the detail of the computation of the ECG of given a

vector field. In brief, I first extract the topological features from the flow including

fixed points and periodic orbits (Section 3.1). Then, the connectivity between these

detected features is computed to construct the ECG (Section 3.2). In addition,

the constructed ECG is visualized in the embedded fashion in the flow field to

highlight the critical structural information (Section 3.4).

3.1 Periodic Orbit Extraction

Periodic orbits are essential features in a non-linear vector field, we need the ability

to detect and locate periodic orbits in a fast and accurate manner. In this section,

I present a new algorithm for periodic orbit identification

The proposed periodic orbit detection method is inspired by Wischgoll and

Scheuermann [97], in which they locate periodic orbits in a planar vector field by

starting streamline tracing from a neighborhood of a fixed point and keeping track

of repeated cell cycles. While this method is capable of detecting periodic orbits

in many situations, it assumes that any periodic orbit can be approached by a

fixed point, which is not always true. One example case is the repelling periodic

orbit (the green closed curve) between the two surrounding attracting orbits (the

33

Figure 3.1: An example of the presented periodic orbit detection algorithm. First,
I compute strongly connected components and only consider components where
periodic orbits may exist (left: colored regions). Next, I extract attachment points
(right: cyan) and separation points (right: magenta) on the interior edges in these
connected components. By combining the ideas of strongly connected components
with the extraction of attachment and separation points, the presented algorithm
is fast and efficient in finding periodic orbits.

red closed curves) in Figure 3.1. To detect periodic orbits even when they are not

approached by any fixed point, I have developed a new periodic orbit detection

method that has drawn ideas from the Morse decomposition [20] and separation

and attachment lines [36].

A periodic orbit must situate inside a region of flow recurrence, which cor-

responds to certain types of strongly connected components in the domain (Sec-

tion 2.4). Note that a strongly connected component does not contain a periodic

orbit if it either consists of a single triangle or is a topological disk that contains

no fixed point. Figure 3.1 shows an example of the strongly connected components

that may contain periodic orbits (left: colored regions). The actual periodic orbits

are highlighted for visualization purpose.

Recall that multiple periodic orbits may exist in an isolated Morse set (a

34

strongly connected component, Figure 3.1, left). To extract individual periodic

orbits in a fast and efficient manner, we need a good geometric indicator as to

which strongly connected components might contain periodic orbits. Kenwright

presents efficient techniques in extracting open and closed separation and attach-

ment lines [36]. I now apply these ideas to periodic orbit extraction. The algorithm

is as follows:

1. Step 1: I compute the strongly connected components of a directed graph

derived from the flow 2.4.2. In addition, the components that do not contain

a periodic orbit are discarded, i.e., if a component S consists of a single

triangle or if S is a topological disk that contains no fixed points. Let S be

the set of strongly connected components that may contain a periodic orbit.

2. Step 2: I extract the attachment and separation points for every edge in the

interior of a strongly connected component in S.

3. Step 3: For every strongly connected component S ∈ S, I start streamline

tracing for each attachment point in S according to the flow. If the streamline

reaches a fixed point or the boundary of S, I stop tracing and discard the

attachment point. Otherwise, the streamline will approach an attracting

periodic orbit. In case the periodic orbit has been discovered previously, it

will be ignored. Otherwise, the periodic orbit is recorded, and a sequence of

dense and evenly-spaced points are placed along the orbit. These points allow

tracing from subsequent attachment points to quickly determine whether it

is approaching an existing or new periodic orbit.

35

4. Step 4: I locate the repelling periodic orbits by repeating step 3 with the

following two modifications: tracing will now (1) start from separation points,

and (2) be in the backward direction of flow.

Figure 3.2: An example scenario in which inconsistent tensor assignment can lead
to false separation or attachment points. In the left image, given the vector values
u at the vertices of an edge (cyan arrows) and the Jacobian tensor (red arrows
represent the major eigenvectors e1), it is clear that there is not any separation
point on the edge. However, by converting the tensor field into a vector field
(middle and right) and evaluating e1×u can cause false separation point to appear
(right).

Kenwright evaluates ei×u at the vertices of the edge and use linear interpolation

to locate attachment and separation points. This formulation assumes that an

eigenvector field can be treated as a vector field. However, as pointed out by Zhang

et al. [103], treating an eigenvector field as a vector field will lead to discontinuities

in the vector field and cause visual artifacts in tensor field visualization and non-

photorealistic rendering. I have observed similar problems during the computation

of attachment and separation points. For instance, consider the example shown

in Figure 3.2, in which the vector field is constant along an edge e (cyan arrows)

and the Jacobian along the edge is nearly constant (major eigenvectors are shown

in red bidirectional arrows). When choosing a consistent direction assignment

for the eigenvectors at the vertices (middle), I conclude that no separation or

36

(a) (b) (c) (d) (e)

Figure 3.3: This figure illustrates the algorithm for construction of ECG’s. First
(a), I perform fixed point and periodic orbit extraction. I mark as unvisited (white
disks) for every source/sink and for both sides of every periodic orbit. Next (b), I
compute all the separatrices and mark as visited (black disks) for R2 and the outer
side of R3 since they are connected to the saddle S1 in the ECG. In (c), I start from
the inner side of R3 and follow the flow forward to find the link to the outer sider
of A2. An edge is added to the ECG, and both sides in the link are now marked
as visited. In (d), I perform similiar operations to the unvisited sides of every
repelling orbits (both sides of R4) to find all the links to a sink or an attracting
orbit. Finally (e), I start from any unvisited side of an attracting periodic orbit
and follow the flow in the reverse direction to locate links to unmarked sources.

37

attachment point exists on e. However, the assignment in the right will lead to

a false identification of a separation point. To overcome this problem, I simply

assume the Jacobian is constant along an edge and evaluate it at the middle of

an edge by performing linear interpolation on the Jacobians at the vertices. This

efficiently removes the need to carefully assign directions to eigenvectors at the two

vertices of an edge.

To perform tracing on surfaces, I use a Runge-Kutta scheme [7] that has been

adapted to surfaces with a piecewise interpolation scheme that guarantees vector

field continuity across vertices and edges [101].

It should be pointed out that the presented detection technqiue of periodic

orbits detects all orbits given a triangulation of the flow domain and the piecewise

linear interpolation scheme. In order to extract all the periodic orbits in the flow,

we need the ability of subdividing the mesh or seeking non-linear interpolation

scheme which are beyond the scope of this work.

3.2 ECG Construction and Display

I now describe how to construct the ECG for a vector field. Recall that ECG

represents the fixed points, periodic orbits, and their connectivity in the given

flows. To compute the ECG, I perform a three-stage operation. First, I locate the

fixed points and periodic orbits. These are the nodes in the ECG. Next, I compute

all the separatrices by tracing from every saddle in its incoming and outgoing

directions until the trajectories end in a node or a periodic orbit. Finally, I identify

38

edges in the ECG that are not separatrices. The methods for fixed point extraction

and separatrix computation are according to Helmann and Hesselink [28]. Periodic

orbits are identified using the algorithm described in Section 3.1.

I now describe how to compute non-separatrix edges in the ECG. As discussed

earlier, this corresponds to an edge in the ECG that does not involves any saddle.

There are four cases: (1) a source and a sink (type 1), (2) a source and an attracting

periodic orbit (type 2), (3) a sink and a repelling periodic orbit (type 3), and (4)

a repelling periodic orbit and an attracting periodic orbit (type 4). Note a node

(i.e. a source or a sink) can only be involved in one non-separatrix edge, and so

does each side of a periodic orbit. A flag is assigned to every node. The flag is

set to 1 if the node is connected to a saddle in the ECG. Otherwise, the flag is

set to 0. Similarly, a flag is defined for each side of a periodic orbit to record

whether there is at least one separatrix approaching the periodic orbit from that

side. To compute non-separatrix edges, edges emanating from repelling orbits are

first located. For each repelling periodic orbit γ and each side, if the corresponding

flag is 0, I find a nearby point on that side of γ and perform tracing in the direction

of the flow until the streamline terminates at a sink or an attracting periodic orbit.

In case of a sink, its flag is marked as 1 and insert an edge (type 3) in the ECG.

If the streamline ends in an attracting periodic orbit, the flag is marked to be

1 for the side of the attracting orbit from which the streamline approaches. An

edge (type 4) is then inserted into the ECG. Notice that at the end of this step,

all non-separatrix edges of types 3 and 4 are found. I now perform the same

operations to all the extracted attracting periodic orbits whose side or sides are

39

still marked as 0, except that tracing is now done in the reverse direction of the

flow. This allows us to find all type 2 edges. Finally, I go through every source

that still has a flag of 0 and trace from a nearby point in the forward direction

until it terminates at a sink. This will find all the type 1 edges. It appears that

type 1 edges are rather uncommon. In fact, the only instance that I know of is

the idealized magnetic field over a sphere, which contains two fixed points and

no periodic orbits. Figure 3.3 illustrates this process of ECG construction with

an example vector field that contains two sources, one saddle, and four periodic

orbits. In (a), all fixed points and periodic orbits are extracted. I also mark as

unvisited (white disks) for all the sources and sinks and for both sides of every

periodic orbit. Next (b), I compute separatrices and mark as visited (black disks)

any node or any side of a periodic orbit that is connected to a saddle. In the

next stage, I start from any unvisited side of a repelling periodic orbit and follow

the flow forward to locate links to a sink or an attracting orbit. In (c), such an

operation found a link between the inner side of R3 and the outer side of A2, both

of which are now marked as visited. Performing this operation on all the extracted

repelling periodic orbits leads to (d), in which links such as R4/A1 and R4/A2 are

found. Finally (e), I start from any unvisited side of an attracting periodic orbit

and follow the flow in the reverse direction to locate the remaining edges in the

ECG.

To display an ECG, I arrange the detected fixed points and periodic orbits

in three rows, with sources and repelling periodic orbits in the top row, sinks

and attracting periodic orbits in the bottom row, and saddles in the middle row

40

(Figures 2.2 and 2.5). I also provide the user with the capability to select an

object either in the flow display or the graph display, and the presented system

will highlight the object in both screens. This allows a user to navigate through a

rather complex flow field with relative ease.

3.3 Applications

3.3.1 Application to Analytic Data

For all the fields designed with the presented system, I use the proposed techniques

in previous sections to detect periodic orbits and construct ECG’s. In addition, I

have tested the presented method on other datasets generated from mathematical

formulas and from fluid simulation. Figure 3.4 shows a vector field that corresponds

to

V (x, y) =







y

−x + y cos(x)






(3.1)

It has been proven that this system has exactly n periodic orbits in the region
√

x2 + y2 < (n + 1)π [100]. I sample the vector field at the vertices of a bounded

underlying mesh, and employ the piecewise linear interpolation scheme [80] to

obtain values inside triangles. The left of this figure shows the periodic orbits

extracted using the proposed method, and the right portion displays the corre-

sponding ECG. There are five periodic orbits. Notice the proposed method is able

to detect periodic orbits even when there are no saddles in the field.

41

Figure 3.4: The vector field defined in Equation 3.1 over the region
{(x, y)|max(|x|, |y|) < 11π}. There is one source in the region enclosed by five
periodic orbits. The proposed algorithm was able to capture all of these orbits
without requiring the presence of any separatrices.

3.3.2 Application to Engine Simulation Data

The technique has also been applied to two datasets from automotive engine sim-

ulation [42], more specifically, the design and optimization of in-cylinder flow.

Engineers responsible for the design of, in this case, a diesel engine try to create

an ideal pattern of motion, which can be described by a swirling flow around an

imaginary axis. Achieving these ideal patterns of flow optimizes the mixture of

oxygen and fuel during the ignition phase of the valve cycle. Optimal ignition leads

to very desirable consequences associated with the combustion process including:

more burnt fuel (less wasted fuel), lower emissions, and more output power. One

type of flow, referred to as the swirl motion, is shown in Figure 3.6 (right). Such

an ideal is often strived for diesel engines.

In Figure 3.5 I visualize the flow and its topology inside the combustion chamber

from the diesel engine simulation. I have sliced through the geometry in the same

manner that engineers do when analyzing the simulation results. The first slice,

42

Figure 3.5: Visualizing the simulation of flow in a diesel engine: the combustion
chamber (leftmost) and four planar slices of the flow inside the chamber for which
the plane normals are along the main axis of the chamber. From left to right are
slices cut at 10%, 25%, 50%, and 75% of the length of the cylinder from the top
where the intake ports meet the chamber. The vector fields are defined as zeros on
the boundary of the geometry (no-slip condition). The automatic extraction and
visualization of flow topology allows the engineer to gain insight into where the
ideal pattern of swirl motion is realized inside the combustion chamber. In fact, the
behavior of the flow and its associated topology, including periodic orbits, is much
more complicated than the ideal. Figure 2.1 provides complementary visualization
of the flow on the boundary of the diesel engine.

at 10% the length of the volume, indicates a swirl pattern that deviates rather

strongly from the ideal -which would result in a simple recirculation orbit around

the center. The second slice, at 25% down the chamber geometry we see a periodic

orbit very close to the center that starts to approximate the ideal swirl motion.

However, other less ideal fixed points are found near the perimeter of the geometry.

The method applied here is similar to the moving cutting plane topology approach

of Tricoche et al. [79]. It is noted that caution must be used when interpreting

these results since the vector field has been projected onto 2D slices. On the other

hand, the engineers involved are very familiar with the simulation data and are

well aware of its overall characteristics.

Figure 2.1 shows from two viewpoints some simulation results in which unde-

sired fixed points and periodic orbits are present. There are a total of 226 fixed

43

points and 52 periodic orbits. The total time to construct the ECG for the flow

is 29.15 seconds on a 3.6 GHz PC with 3.0 GB RAM. Another type of motion,

termed tumble flow, is shown in Figure 3.6 (left). The axis of rotation in the tumble

case is orthogonal to that of the swirl case. The dataset that is being visualized

(Figure 1.1) is also from simulation, and it contains 56 fixed points and 9 periodic

orbits. The ECG for this dataset is shown in the bottom row. Through the ap-

plication of the introduced algorithm for automatic periodic orbit extraction and

visualization we can observe a closed streamline about a central axis corresponding

to the ideal pattern of tumble motion in the gas engine simulation results. This

is precisely the type of re-circulation that the engineers strive to realize when de-

signing the intake ports of a gas engine cylinder. The proposed algorithm enables

the CFD engineers to automatically detect and visualize this highly sought-after

pattern of flow in a direct manner for the first time (see Figure 1.1). The total

time for computing the ECG of this time is 31.58 seconds. The ECG produced

from the diesel engine simulation results is of even higher complexity than that of

the gas engine. Table 3.1 shows the complexity for both simulation datasets and

the timing results in seconds.

This vector field analysis technique is also applied to other experimental and

simulation data sets such as the airfoil data [25,67] and a cooling jacket data [59].

44

Figure 3.6: Idealized in-cylinder flow through a gas engine (left) and a diesel
engine (right). Figures 1.1 and 2.1 show the visualization of CFD data simulating
such flows.

(a) (b) (c) (d)

Figure 3.7: An example of the enhanced streamline-based visualization tech-
nique on the plane: (a) a texture-based method (IBFV [86]), (b) a streamline-
method [31], (c) the enhanced streamline method which uses vector field topology,
(d) same image from (c) with periodic orbits and separatrices being highlighted.
Notice with the proposed method (c and d), vector field topology is well-maintained
by streamlines and they are easily discernable.

45

Table 3.1: The complexity and timing results for two CFD data simulating in-
cylinder flow through a combustion engine (Figures 1.1 and 2.1). An edge in the
ECG corresponds to a link between a source and destination object pair, in which
both objects can be a fixed point or a periodic orbit. Times (in seconds) are
measured on a 3.6 GHz PC with 3GB RAM.

dataset # # fixed # periodic # edges time extracting time extracting time computing time
name polygons points orbits in ECG fixed points periodic orbits edges total

gas engine 105,192 56 9 97 0.16 22.33 9.09 31.58
diesel engine 886,296 226 52 295 3.16 21.52 4.48 29.15

3.4 Topology-Based Streamline Visualization

Visualization is crucial for the analysis and design of vector fields. Most exist-

ing visualization techniques, such as texture- and streamline-based methods, are

designed for fixed points. While they perform well for illustrating local patterns

such as fixed points, other features (separatrices and periodic orbits) are often not

well-preserved. In Figure 3.7, a vector field with three periodic orbits is depicted

using IBFV [86] (a), and evenly-placed streamlines [31] (b). Notice that it is dif-

ficult to see periodic orbits and separatrices using texture-based methods such as

IBFV. Streamline-based methods can better illustrate trajectories. However, most

existing methods such as Jobard and Lefer [31] and Verma et al. [88] do not take

into account periodic orbits or separatrices in seed placement and streamline ter-

mination criteria. This causes visual discontinuity in periodic orbits and missing

separatrices.

Several researchers have incorporated vector field topology into texture-based

methods [93]. Most of the figures in this paper are created in that fashion. On the

other hand, streamline-based methods can better illustrate individual streamlines,

46

which makes it an attractive approach when interactive display is not required.

In this section, I describe a method for which vector field topology is used for

streamline placement.

I adapt the evenly-placed streamline method of Jobard and Lefer [31] with

the following modifications. First, periodic orbits and separatrices are extracted in

the vector field and make them the initial streamlines. To avoid visual clusterings

near sources, sinks, and periodic orbits, a separatrix is terminated if it is within a

distance from the non-saddle end. Next, additional streamlines are added in the

same manner as Jobard and Lefer [31]. This modification ensures that vector field

topology is maintained in the visualization and no visual discontinuity for periodic

orbits (Figure 3.7, c). Finally, vector field topology is highlighted with colors

(d) such that attracting periodic orbits and outgoing separatrices from saddles

are colored in red while repelling periodic orbits and incoming separatrices are

colored in green. To avoid confusions near sources and sinks, the only fixed points

included in the visualization are saddles, which are colored in blue. Figure 1.2

shows additional examples. Notice a periodic orbit on a 3D surface (middle-left

and middle right) is often partially visible from any given viewpoint. They are

difficult to discern without being highlighted.

47

Chapter 4 – Vector Field Simplification Based on ECG

Overly excessive information may be extracted from the raw flow data which is

also subject to noise and error during simulations and analysis. This greatly offsets

the advantages of topological analysis of vector fields and makes the interpretation

difficult (see the clusters of fixed points at the top of the intake ports of the diesel

engine (the inlet image from Figure 2.1, right). An efficient simplification technique

is needed to extract the topology graph consisting of features of more importance.

Vector field topological simplification allows the user to do so.

It refers to the process of reducing the complexity of a vector

field. It has many applications, such as flow visualization, tex-

ture synthesis, and non-photorealistic rendering. In this chap-

ter, I present a uniform framework for topological simplification

based of the extracted ECG of a given vector field. This frame-

work allows the pairwise cancellation of any object pairs that

are connected in the ECG.

4.1 Previous Work

In general, there are two classes of simplification techniques:

topology-based (TB), and non-topology-based (NTB) [101]. Existing NTB tech-

48

niques are usually based on performing Laplacian smoothing on the potential of a

vector field inside the specified region. One example of these work is by Tong et

al. [76], who decompose a vector field using Hodge-decomposition and then smooth

each-component independently before summing them.

TB techniques simplify the topology of a vector field explicitly which reduce

vector field complexity with topological guarantee. One of the earliest investiga-

tions on the subject of topology simplification in visualization was done by De

Leeuw and Van Liere [13]. They make use of the distance to determine the pair

of fixed points to be cancelled. In follow-up work, they perform topology simplifi-

cation based on area metrics [15]. Boundary regions in the local neighborhood of

sources and sinks are computed and topology is simplified based on flow regions

with small areas. These techniques are applied to two important applications from

vector field simulation [14]. Tricoche et al. [83] present a simplification method that

also provides a piecewise analytic description for the simplified field. In this way,

complementary visualizations such as texture-based methods [39] may be com-

bined with the visualization result. They extend this method to time-dependent,

2D flows [81]. Tricoche et al. [80] also present a topology simplification method very

similar to De Leuuw and Van Liere [15] however simplifications are achieved by

actually modifying the vectors of the original, underlying data field. Particularly,

they perform a sequence of cancelling operations on fixed point pairs that are con-

nected by a separatrix. They refer to this operation as pair annihilation. A similar

operation, named pair cancellation, has been used to remove a wedge and trisector

pair in a tensor field [16]. Theisel et al. [73] present an algorithm for compressing

49

vector fields while preserving their topology. Later, they combine both topological

simplification and topology preserving compression techniques [72]. The technique

simplifies the topology of the underlying vector field based on assigning an impor-

tance to each critical point and separatrix. Features with less importance (below a

certain weight threshold) are simplified. Compression is applied to the vector field

with the simplified topology. Edelsbrunner et al. [19] perform pair cancellation on

scalar fields defined on surfaces by changing the values of the scalar function near

the fixed point pair. This is equivalent to simplifying the gradient vector field of

the scalar function. I will follow this convention and refer to such an operation as

fixed point pair cancellation. Zhang et al. [101] provide a fixed point pair cancella-

tion method based on Conley theory (Chapter 2). They also extend this operation

to surfaces and to fixed point pairs that are not connected by a separatrix, such

as a center and saddle pair. For an overview of related work on vector field topol-

ogy, see Laramee et al. [40]. In this chapter, I describe a more general framework

for cancelling object pairs such as fixed points and periodic orbits based on the

obtained ECG (Chapter 3).

4.2 Constrained Optimization

One of the essential operations in the presented system is constrained optimization,

which refers to solving a vector-valued discrete Laplacian equation over a region N

in the domain (a triangular mesh) where the vector values at the boundary vertices

of N are the constraints. This operation is used to create periodic orbits (Chap-

50

ter 5) and to perform topological simplification. The equation has the following

form:

V (vi) =
∑

j∈J

ωijV (vj) (4.1)

where vi is an interior vertex, vj’s are the adjacent vertices that are either in the

interior or on the boundary of N , and V represents the vector field. The weights

ωij’s are determined using Floater’s mean-value coordinates [22]. Equation 4.1 is

a sparse linear system, which I solve by using a bi-conjugate gradient method [55].

For convenience, a vertex v is referred to be fixed if the vector value at v is part

of the constraints. Otherwise, v is free. Note that a similar formulation has been

used to reduce the complexity of vector fields [101], tensor fields [2] and N-RoSy

fields [50].

4.3 Vector Field Simplification Using Pairwise Cancellation

A well-known topological simplification operation is pair cancellation on a pair of

fixed points with opposite Poincaré indices and a unique orbit connecting them.

This operation has also been referred to as pair annihilation [80]. After cancella-

tion, both fixed points disappear. Tricoche et al. [80] perform this operation in

planar domains based on Poincaré index theory, which does not apply to periodic

orbits. Zhang et al. [101] provide an efficient implementation of the pair cancel-

51

lation operation based on Conley index theory. They also extend fixed point pair

cancellation to surfaces and for pairs that are not connected by a separatrix, such

as a center and saddle pair. However, neither technique deals with periodic orbits,

which limits their potential applications in visualization and graphics. Ir address

this by providing a general framework that allows cancellations of a repeller and

attractor pair in which either object or both can be a periodic orbit. Similar to

Zhang [101], the proposed framework is based on Conley index theory. Before

providing the details on the general framework, I first comment on what I mean

by pair cancellation.

Pair cancellation P involves a repeller R and an attractor A. P is direct if there

is at least one edge between R and A in the ECG, and P is indirect if R and A

are linked through either one or two saddles. When a node or a periodic orbit is

linked to a saddle through one connecting separatrix, the pair are singly connected.

Otherwise, they are doubly connected. I have identified six direct cancellation

scenarios (Figure 4.1) and seven indirect ones (Figure 4.2) on the plane. The

presented system can handle all of these cases. To my best knowledge, previous

pair cancellation methods are only available to handle case (1) in Figure 4.1.

When performing pair cancellation, we expect the complexity of the flow to

be reduced near the object pair, such as the case in Figure 4.1 (1). However,

the reduction in the complexity does not mean the resulting flow will always be

free of fixed points and periodic orbits. For instance, a sink and periodic orbit

cancellation results a source as shown in Figure 4.1 (2). In fact, the characteristic

of the resulting flow is constrained topologically by the Conley index of the isolating

52

(1) (2) (3) (4) (5) (6)

Figure 4.1: The six direct cancelation scenarios: (1) a source and saddle with
a unique connecting separatrix, (2) a sink and a periodic orbit, (3) an attracting
periodic orbit and a repelling one, (4) a periodic orbit and a saddle with a unique
connecting separatrix, (5) a sink and a saddle with two connecting separatrices,
and (6) a periodic orbit and a saddle with two connecting separatrices. The top
row shows the original vector fields, while the bottom row displays the vector
field after cancellation. Notice that the presented cancellation operations are only
applied to the intended objects.

block over which the flow is modified. When cancelling a node and saddle pair,

the Conley index of such a block is (0, 0, 0), which is the same as a fixed point-free

vector field. For a sink and periodic orbit pair, the Conley index is (0, 0, 1) which

is that of a source. To that end, the Conley index of the isolated block predicts

the minimal complexity of the flow we can possibly achieve after cancellation.

Furthermore, pair cancellation does not always lead to simpler behaviors, such as

Figure 4.1 (5). Cancelling a doubly-connected node-saddle pair leads to a periodic

orbit. In fact, the only other case in which the flow is not simplified through pair

cancellation is shown in Figure 4.1 (6), where a doubly-connected periodic orbit

and saddle pair is replaced by another such pair. Both cases are direct cancellations

53

(1) (2) (3) (4) (5) (6) (7)

Figure 4.2: The seven indirect cancellation scenarios: (1) a source and a sink pair
with two saddles between them, (2) a source and a sink with one saddle between
them, (3) a sink and a periodic orbit with two saddles between them, (4) a sink and
periodic orbit with one saddle between them and two orbits between the saddle
and the sink, (5) a sink and periodic orbit with one saddle between them and two
orbits between the saddle and the periodic orbit, (6) two periodic orbits with two
saddles between them, and (7) two periodic orbits with a saddle between them.
The top row shows the original vector fields, while the bottom row displays the
vector field after cancellation. Notice that presented cancellation operations are
only applied to the intended objects.

of doubly-connect object pair. In all other cases, pair cancellation leads to simpler

but not necessarily trivial flow.

I now describe the framework for a single pair cancellation that can now handle

(1) periodic orbits, (2) doubly connections, and (3) indirect cancellation. Given a

repeller R and an attractor A, the algorithm first searches the ECG to find the

smallest interval that contains both R and A. This is achieved by finding all the

nodes in the ECG that can both reach A and be reached from R. There are three

possibilities: (1) R and A are directly related, (2) R and A are indirectly linked

through a set of saddles Si’s, and (3) there are no paths from R to A in the ECG.

Case (3) will be ignored. Note that the first stage is conducted purely on the

54

UR

UA

A

R

S1S A

U

S2

Figure 4.3: An example shows the regions obtained for cancelling a repeller R
and an attractor A pair. The region growing first follows the flow forward from R
and the interval Si respectively to get UR, then follows the flow backward from A
and the interval Si respectively to get UA. Thus, U = UR

⋂

UA is the region (the
shadow region) in which I will perform smoothing.

graph level. Let R = {R}
⋃

{Si} and A = {A}
⋃

{Si}. Note when R and A are

directly connected, the set of {Si} is empty. It should also be noted that Kalies

and Ban [35] provide a dimension independent algorithm for determining intervals

in a Morse decomposition.

In the second stage, I consider the minimal set of triangles in the domain

that contain R. I then grow from these triangles by adding one triangle at a

time across mixed or exit edges. We now have a region UR that contains all the

triangles reachable from any object in R. Then, I perform region growing [101]

from the minimal set of triangles that contain A by adding triangles across mixed

or entrance edges. This results in a region UA that consists of triangles that can

reach any object in A. U = UR

⋂

UA is an isolating block that is necessary to

perform pair cancellation.

In the last step, I replace the flow inside U by performing constrained opti-

mization (Section 4.2). While this method does not guarantee that the flow will

55

Algorithm 1: A general framework for pair cancellation

Input: A vector field V , its ECG, a repeller R and an attractor A

Output: The vector field V after cancellation
triangles original T and neighbor T
Begin

Search ECG for any intermediate nodes Si between R and A.
T+ = set of triangles containing either R or Si for some i.
Perform region growing from T+ according to V by adding triangles across exit or mixed edges.

Let UR be the resulting set of triangles.
T− = the set of triangles containing either A or Si for some i.
Perform region growing from T− according to −V by adding triangles across entrance or mixed edges.

Let UA be the resulting set of triangles.
U = UR UA(See Figure 4.3)
Perform vector field smoothing on the interior vertices of U accroding to Equation(4.1).

The resulting vector field is V .

Return V .
End

be simpler, in practice I have observed that it performs well. Note that other

methods can also be used to modify the flow.

This framework is illustrated as the following algorithm.

For any pair cancellation operation relying on the ECG, it is possible that

region growing from the repellers and attractors can “walk” over fixed points, pe-

riodic orbits, and separatrices that are not intended for cancellation. Including

these triangles in the constrained optimization may cause unwanted topological

modifications. To address this issue, I tag all the triangles in the mesh that con-

tain either a fixed point, or part of a periodic orbit or separatrix. During the

construction of isolating blocks, I do not allow triangles to be added if they are

tagged and contain features not intended for cancellation.

56

Figure 4.4: User-guided flow smoothing on CFD data simulating in-cylinder flow
through a gas engine: before (upper-left) and after (upper-right). Compare the
ECG after smoothing (lower) with before smoothing (Figure 1.1, lower).

4.4 User Guided Flow Smoothing

In the proceeding section, I have described techniques that automatically determine

a region where the flow needs to be modified. Sometimes it is desirable to provide

a user with control over the location and shape of the region. Zhang et al. [101]

describe such an operation for graphics applications such as non-photorealistic

rendering and texture synthesis. I apply their algorithm to large scale CFD sim-

ulation datasets. In addition, unlike Zhang et al. who only accept a topological

disk, I now allow a region to have any number of boundaries. Figure 4.4 shows the

results of user-guided flow smoothing on CFD simulation data of in-cylinder flow

57

Figure 4.5: User-guided flow smoothing on CFD data simulating in-cylinder flow
through a diesel engine: before (left) and after (right).

in a gas engine. The field on the upper-right was obtained by a sequence of five

user-guided smoothing operations (the actual region boundaries are not shown).

Notice the field is considerably simpler than the original field (upper-left). The

simplified vector field retains the important larger scale tumble motion character-

istics while smoothing non-ideal behavior. Also compare the ECG of the smoothed

field (Figure 4.4, lower) with that of the field before smoothing (Figure 1.1, lower).

Figure 4.5 compares the diesel engine dataset (left) with the one obtained from

a series of six user-guided simplification operations (right). Flow smoothing is an

efficient method of reducing the complexity of a vector field.

58

Chapter 5 – Periodic Orbit Design in Time-Independent Vector

Fields

There are a wide variety of computer graphics applications require vector fields as

input. For instances, vector fields are used to orient the texture patches in texture

synthesis [21, 38, 43, 44, 49, 84, 91, 101], place brush strokes in non-photorealistic

rendering [29, 30, 101], exert external forces in fluid simulation [65, 66], and aero-

dynamic animation [95] and for hair modeling [23], steer crowds [11], control tex-

ture transfer during surface deformation [17], guide surface parameterization and

remeshing [57], and conduct shape deformation [89,90]. Design and control of the

vector fields with desired behaviors provides these applications an intuitive way

to obtain the controllable effects with sufficient mathematical guarantee. In this

chapter, I present techniques that allow the user to create periodic orbits in surface

vector fields, which is a complement to the existing design features. I have applied

these techniques to create synthetic vector fields that are used to experiment the

proposed analysis techniques.

5.1 Previous Work

There has been some work in creating vector fields on the plane and surfaces,

most of which is for graphics applications [49, 65, 84, 91]. These methods do not

59

address vector field topology, such as fixed points. There are a few vector field

design systems that make use of topological information. For instance, Rockwood

and Bunderwala [60] use ideas from geometric algebra to create vector fields with

desired fixed points. Van Wijk [86] develops a vector field design system to demon-

strate his image-based flow visualization technique (IBFV). The basic idea of this

system is the use of basis vector fields that correspond to various types of fixed

points. This system is later extended to surfaces [41, 87]. None of these methods

provide explicit control over the number and location of fixed points since unspec-

ified fixed points may appear. Theisel [71] proposes a planar vector field design

system in which the user has complete control over fixed points and separatrices.

However, this requires the user to provide the complete topological skeleton of the

vector field, which can be labor-intensive. There has also been recent work by

Weinkauf et al. [92] on the design of 3D vector fields. Recently, Zhang et al. [101]

develop a design system for both planar domains and surfaces. This system pro-

vides explicit control over the number and location of fixed points through fixed

point pair cancellation and movement operations. The presented vector field de-

sign system is inspired by their system. However, it enables the creation of periodic

orbits in surface fields. To my best knowledge, this is the first time periodic orbits

can be created and modified (see Chapter 4) in surface flow.

60

5.2 Periodic Orbit Creation

In this section, I describe novel algorithms for creating periodic orbits in the plane

and on surfaces. The input to the design algorithms consists of the desired type of

the orbit (attracting or repelling) and a prescribed path, which is an oriented loop.

Figure 5.1 shows an example path (left: blue loop). I then generate a sequence of

evenly-spaced sample points on the loop (middle: green dots) and treat the tangent

vectors at these points as constraints (middle: magenta arrows). Finally, I produce

a vector field with a periodic orbit that closely matches the user input (right: red

dashed lines). I use the dashed lines to represent the continuous periodic orbit

so that it can be visually compared with the user-specified path. In vector field

design, there are two approaches to initialize a vector field from the user specified

constraints: basis vector fields [86, 101] and constrained optimization (Chapter 4

Section 4.2).

5.2.1 Attracting and Repelling Basis Vector Fields

An intuitive way to build a vector field that satisfies the constraints is to use basis

vector fields [49] [86]. In this approach, every user-specified constraint is used to

create a basis vector field defined in the plane. A vector field is then constructed

as a weighted sum of these basis vector fields [86,101]:

V (P) =
∑

i

ωi(P)Vi(P) (5.1)

61

where P is any position in the vector field, Vi(P) is the ith basis vector field, that

refers to either a singular or a regular design element [101], and ωi(P) is the weight

for the ith basis vector field. In the implementation, ωi(P) = e−‖P−Pi‖
2

is used for

the ith basis vector field, where Pi is the center position of the ith basis vector field.

This idea has been applied to creating wind forces to guide computer anima-

tion [95], to testing a vector field visualization technique [86], and to generating

vector fields for non-photorealistic rendering and texture synthesis [101].

In theory, any vector field can be created by using regular elements. In practice,

however, it often requires an excessive number of regular elements to generate

certain vector field features. For example, at least three regular elements are needed

to specify a source or a center. To produce a periodic orbit, regular elements must

be specified not only along the prescribed path, but also near the orbit in order

to enforce the type of the orbit (attracting or repelling). Given that the cost

of summing basis vector fields is proportional to the number of design elements,

we wish to reduce the number of basis vector fields while maintaining efficient

control. This is achieved with the introduction of two new types of design elements:

attachment elements and separation elements.

Before describing these elements, let us briefly review the concepts of attach-

ment and separation points from Kenwright [36]. Recall that given a vector field

V and a point p0 in the plane, I consider the following two values: e1 × u and

e2 × u, where u is the vector value at p0 and e1 and e2 are the major and mi-

nor eigenvectors of the Jacobian. p0 is an attachment point if e1 × u = 0, and a

separation point if e2 × u = 0. An attachment line consists of attachment points.

62

Geometrically, such a line attract nearby flow. A separation line can be defined

in a similar fashion except that nearby flow is repelled from the curve. Ideally, an

attachment element will result in a basis vector field that has an attachment line as

illustrated in Figure 5.2 (middle). The following formula describes an attachment

element that has a desired vector value of (1, 0) at (x0, y0).

V (x, y) = B(x, y)







1

c(y − y0)






(5.2)

where B(x, y) = e−((x−x0)2+(y−y0)2) is the blending function for the element and

c < 0 is a parameter that describes the speed at which the flow leaves the line

y = y0. The larger |c| is, the more quickly the vectors near the attachment line

point towards it. Notice the basis field contains an attachment line at y = y0.

Formula 5.2 can also be used to specify a separation element (c > 0) and a regular

element (c = 0). When the vector value is (cos θ0, sin θ0) for some constant θ0 (θ0

denotes the angle between the vector and x−axis), the formula has the following

form:

V (x, y) = B(x, y)













cos θ0

sin θ0






+ cP (x, y)







− sin θ0

cos θ0












(5.3)

where P (x, y) = − sin θ0(x − x0) + cos θ0(y − y0) is the signed distance of a point

(x, y) to the line that is specified by the location and direction of the design ele-

ment. Figure 5.2 compares two basis vector fields generated from a regular element

(left) and an attachment element (middle). The right image shows an attracting

periodic orbit created from four attachment elements. The ideas of attachment

63

Figure 5.1: Given an oriented loop (left), the design system produces a sequence
of sample points (middle: dots) and evaluates tangent vectors at those locations
(middle: arrows). I then compute a vector field that contains a periodic orbit
(right: red dashed lines) by generating constraints based on these vector values.
Notice that the periodic orbit matches closely the user-specified loop.

Figure 5.2: This figure compares the basis vector field corresponding to a regular
element (left) and an attachment element (middle). The periodic orbit in the right
was created by using four attachment elements.

and separation has been used again in the periodic orbit extraction algorithm

(Section 3.1).

Vector field design using basis vector fields is intuitive and generates smooth

results. However, the cost associated with this approach is proportional to the

number of basis vector fields. To specify a relative large periodic orbit with high

curvature often requires hundreds of attachment or separation elements, which

makes interactive design a difficult task. The problem is magnified on surfaces on

3D as every basis vector field requires a global surface parameterization that is

64

specific to the underlying design element [101]. Constructing hundreds of surface

parameterizations makes it impractical to create a periodic orbit interactively.

Next, I describe a different strategy that is based on constrained optimization.

5.2.2 Constrained Optimization for Periodic Orbit Creation

Given a user-specified oriented loop γ and the desired type of the periodic orbit, the

design system performs the following operations to create a periodic orbit closely

matching the input.

First, I identify a region Rγ, which is a set of triangles that enclose γ. Next, I

assign vector values to the vertices of Rγ according to the desired type, path, and

orientation of the periodic orbit. Finally, the design system performs a constrained

optimization to compute vector values for vertices outside Rγ, i.e., the free vertices

in the domain. The quality of the resulting periodic orbit depends on the choice

of Rγ and the vector assignment on the boundary of Rγ .

The attachment and separation elements can be used to obtain vector values

on Rγ. Basically, each line segment on the loop γ is used to infer a design element.

I then compute vector values at the vertices of Rγ using the basis vector fields

corresponding to these elements. Note when Rγ is chosen to be the whole domain,

this technique becomes the basis vector field method mentioned earlier, which is

computationally expensive. In practice, I choose Rγ be the smallest triangle strip

containing γ. This greatly reduces the amount of computation that is associated

with basis vector fields. In addition, it seems to produce reasonable results both on

65

the plane and surfaces. I further speed up the process by only evaluating a basis

field at the three vertices of the triangle that contains the corresponding element.

When a vertex is shared by more than one triangle in Rγ, I simply take the average

of the vector values computed from each incident triangle. Fig 5.1 shows that this

method tends to produce a periodic orbit (right: dashed red loop) that matches

the user-specified loop (right: blue loop). To obtain smoother results, a larger Rγ

can be constructed.

I have also extended a similar framework to create fixed points on surfaces.

Every fixed point results in three constraints on the vertices that contains the

desired fixed point. Vector values elsewhere in the mesh are obtained through

constrained optimization. This framework avoids the need to construct a surface

parameterization for each basis [101] and makes it possible to interactively create

periodic orbits on surfaces in 3D. Figure 1.2 shows a number of vector fields that

were created using the design system. Although it works very well in practice, it

should be pointed out that the proposed approach does not guarantee to create a

periodic orbit according to user input.

66

Chapter 6 – Morse Decompositions of Vector Fields

In previous chapters I have defined the topology of two-dimensional vector fields as

fixed points and periodic orbits as well as the separatrices that connect them [8,27].

This leads to a graph representation of the vector field which is referred to as Entity

Connection Graph, or ECG. The features and connectivity information in ECG

as well as conventional topological skeleton of vector fields are defined according

to trajectory (Section 2.2). I refer to this vector field topology as trajectory-based

topology. However, analysis and visualization of vector field topology based on

individual trajectories can raise questions with respect to interpretation as the

discrete nature of fluid flow data poses several challenges. First, data samples are

only given at discrete locations, such as cell vertices or cell centers. Interpolation

schemes are then used to reconstruct the vector field between the given samples.

Second, the given data samples themselves are numerical approximations, e.g.,

approximate solutions to a set of partial differential equations. Third, the given

flow data are often only a linear approximation of the underlying dynamics. Fi-

nally, the visualization algorithms themselves, e.g., streamline integrators, have a

certain amount of inherent error associated with them. In short, how can we be

sure that what we see is authentic when extracting and visualizing the topological

skeleton of the flow field? Could the error inherent to multiple numerical approx-

imations produce misleading information? Figure 6.1 provides examples in which

67

proper interpretation can be difficult when performing analysis based on individual

trajectories.

Figure 6.1(a) shows an analytical vector field which contains pitchfork bifurca-

tion [26]. The results shown in the two columns of (a) are obtained by computing

sample vector values using two different meshes: (left) a regular triangulated mesh

with 6144 triangles, and (right) a triangulated mesh with 1000 triangles. Notice

that using different meshes leads to different ECGs (third row of Figure 6.1(a)).

Figure 6.1(b) demonstrates a saddle-saddle connection bifurcation [26]. The images

to the left of Figure 6.1(b) show the original flow, while the images to the right show

the flow that was obtained from the original one after introducing a small amount

of perturbation (I have randomly perturbed the vector direction at each vertex

by an angle between 0◦ and 1◦.) Notice that ECGs (third row of Figure 6.1(b))

are sensitive to noise. Figure 6.1(c) provides a case of Hopf-bifurcation [40]. The

image to the left of Figure 6.1(c) (second row) shows the resulting topology using

an adaptive fourth-order Runge-Kutta integration, while the image to the right

illustrates the topology of the same vector field using a second-order Runge-Kutta

integration [3] [55]. This clearly demonstrates that the ECGs rely on the employed

numerical scheme. (The ECGs in all the example flows are computed using the

algorithms proposed in Chapter 3.) These observations motivate the study of a

more reliable way of defining and extracting vector field topology than the existing

techniques. It should be noted that addressing such uncertainty in visualization

was identified as one of the most important future challenges by Johnson [32].

In order to address this important challenge I present a rather different ap-

68

R1
R1

A1 A1

R1
R1

A1
A1

A2

R2

ECGs

MCGs

S1

S2

S1

S2

S1 S1

S2 S2

S1S1

S1 S1

R1

A1

A1

R1
R2

V (r, θ) =
r ((r − 1)) k − (r − 1)2

1
V (x, y) =

−xy
(y2 − 1)

V (x, y) =
y

kx− x(1− x)

(a) (b) (c)

Figure 6.1: Examples of the instability of individual trajectory-based topological
analysis of vector field (i.e. ECGs) due to the choice of discretization scheme (a),
noise (b), and the error from numerical integration scheme (c). (a) shows a vector
field containing pitchfork bifurcation (k = 0.05). It illustrates the deviated ECGs
obtained under two different discretization schemes. The vector field shown in (b)
is an example flow having saddle-saddle connection. The two ECGs are computed
based on the original result flow and its perturbation version. It illustrates the
possible influence of the unexpected noise in the data. (c) uses a vector field with
Hopf-bifurcation (k = 0.0025) to illustrate that ECGs can be different using differ-
ent numerical schemes. The image to the left shows the resulting topology using
the adaptive fourth-order Runge-Kutta integration, while the image to the right
shows the topology of the same flow using a second-order Runge-Kutta integration.
The two bottom rows provide the results of Morse decompositions and the associ-
ated MCGs of these fields using the idea of τ -maps proposed in this paper. The
τ ’s for these fields are 40, 20 and 80, respectively. Note that for all the examples
shown here, the MCGs are stable.

69

proach to the representation, extraction and visualization of flow topology. The

representation of the global dynamics is done in terms of an acyclic directed graph

called the Morse connection graph (MCG) which has been introduced in Chapter 2.

The nodes in this graph are Morse sets, whose corresponding polygonal regions in

the phase space are Morse neighborhoods. All the recurrent dynamics is contained

in the Morse neighborhoods. The edges in an MCG indicate how the flow moves

from one Morse neighborhood to another. In contrast to trajectory-based topolog-

ical analysis, such as vector field skeleton and ECG, an MCG is stable with respect

to perturbations, i.e. given sufficient information on errors of the vector field it is

possible to make rigorous interpretations about the underlying dynamics [35]. In

other words, a well defined error, ε > 0, can be bounded and included into the map

of the flow domain. I demonstrate the stability of MCGs in Figure 6.1 (the last

two rows). In previous discussion, MCG is used as the pre-step for ECG compu-

tation. From this chapter, I will emphasize the MCG as a topology representation

of particular interest.

In this chapter, I start with the review of Morse decomposition. Different from

the discussion of the same subject in Section 2.4, I will particularly focus on its

stability and computation rather than its relation to ECG. Recall that to perform

Morse decomposition, i.e., compute MCGs, I first construct another directed graph

by considering the behaviors of the vector field along edges of the triangles, which

is referred to as the geometry-based method (Section 2.4.2). I refer to the process

of encoding the flow dynamics into a directed graph as flow combinatorialization.

Because the triangulation is not adapted to the vector field, this can result in

70

coarse Morse sets (Figure 6.2(b)). In this work I exploit a temporal discretization,

which I refer to as a τ -map, that is obtained by integrating a finite set of points

for a finite amount of time. Theoretically this method can produce as detailed an

MCG as is desired and in practice it produces a finer MCG (Figure 6.2(c) (d)) than

the geometry-based method. The key challenges with the τ -map guided approach

are choosing an appropriate temporal discretization of the flow and constructing a

high-quality flow combinatorialization, which is the discrete outer approximation

of a τ -map. In the implementations, I will compute it as a directed graph, denoted

by Fτ under a time τ . From it I extract the Morse sets.

6.1 Revisiting Morse Decomposition and Morse Connection Graphs

(MCGs)

We are interested in describing the topological structures of the flow generated by

a vector field ẋ = f(x) defined on a triangulated surface X ⊂ M . However, the

information we are given consists of a finite set of vectors

{fd(vi) | vi a vertex of X} (6.1)

obtained either by a numerical simulation or from experiment. This means that

at best we can assume that we have a uniform bound on the errors of the observed

vector field versus the true vector field, that is for each vi,

||f(vi) − fd(vi)|| ≤ ε. (6.2)

71

A1

R1

S1

A2

S1

A3

R4

R2

R1

R3

A2

A1

S1

A2

R3

R1

R2

R4

A1

A3

R1A1

R2

A2
S1

R3

(a) (b) (c) (d)

Figure 6.2: This figure shows the various analysis results of an experimental field
using ECG and MCGs, respectively: (a) ECG, (b) MCG (geometry-based method),
(c) MCG (τ = 6), (d) MCG (τ = 24). The computation time for (b-d) is 0.14s,
1.78s, and 4.31s, respectively. Observe that the larger the τ used, the better (closer
to optimal) the Morse decompositions, but the time for computing the Morse
decomposition increases accordingly. The coloring scheme of the MCG is described
in Figure 6.1. Notice that the graphs shown in (a) and (d) are essentially the same
although they are labeled differently. The execution time was measured on a 3.0
GHz PC with 1.0 GB RAM. The color-dotted regions indicate the connections
between a saddle Morse set to another Morse set: source (green), sink (red), and
saddle (blue).

72

In addition, since we are only given the data (Eq. 6.1) I extend fd to a vector field

on X by some means of interpolation (typically linear interpolation). Assuming

that f is well approximated by fd it is reasonable to assume that the bounds of

(Eq. 6.2) are global, that is ||f(x) − fd(x)|| ≤ ε for all x ∈ X.

The easiest way to encode the aforementioned information is to consider a

family of vector fields F defined on the surface X and parameterized by some

abstract parameter space Λ. I assume that for each λ ∈ Λ, the vector field ẋ =

F (x, λ) gives rise to a flow ϕλ : R × X → X.

In this setting I assume that there exist parameter values λ0, λ1 ∈ Λ such that

f(x) = F (x, λ0) and fd(x) = F (x, λ1). Bifurcation theory tells us that even if

λ0 ≈ λ1, the orbits, i.e. fixed points, periodic orbits, separatrices, of ϕλ0 and ϕλ1

need not agree [26]. The implication is that computing such orbits for the vector

field fd does not imply that these orbits exist for the true vector field f . This leads

us to weaken the topological structures which we use to classify the dynamics.

As defined before, a Morse decomposition of X for a flow ϕλ is a finite collection

of disjoint compact invariant sets, called Morse sets [35]

M(X,ϕ) := {Mλ(p) | p ∈ (Pλ,�λ)} ,

where �λ is a strict partial order on the indexing set Pλ, such that for every

x ∈ X \ ∪p∈Pλ
Mλ(p) there exist indices p �λ q such that

ω(x) ⊂ Mλ(q) and α(x) ⊂ Mλ(p).

73

It has proven that the Morse sets enclose recurrent dynamics (e.g. fixed points,

periodic orbits, chaotic dynamics) [35]. The dynamics outside the Morse sets is

gradient-like. Morse decompositions of invariant sets always exist, though they

may be trivial, i.e. consisting of a single Morse set X.

Observe that since Pλ is a strictly partially ordered set a Morse decomposition

can be represented as an acyclic directed graph. The nodes of the graph correspond

to the Morse sets and the edges of the graph are the minimal order relations which

through transitivity generate �λ. This graph is called the Morse connection graph

and denoted by MCGλ [8] (Figures 6.1, 6.2 bottom rows). Moreover, without

worrying about the potential noise and numerical errors, an ECG indicates the

finest MCG when the vector field has a finite number of fixed points and periodic

orbits, all of which have an isolating neighborhood of their own [8]. Though, there

may not exist a finest Morse decomposition. Consider the flow generated by the

differential equation x′ = x2 sin(1/x). It has an infinite number of isolated fixed

points and hence there is no finest Morse decomposition (remember that there can

only be a finite number of Morse sets). Any Morse decomposition of it can be

refined further.

6.2 MCG Construction

I now summarize the pipeline of constructing an MCG given the vector field V

defined on a triangulated surface X.

First, I perform flow combinatorialization. That is, I encode the flow dynamics

74

MCG

T1

T7 T8

T5

T3T2

T6T4

T9

A1R1

A1R1

The quotient graph

derived from

Using the point of

view of a graph

Extracting strongly con-

nected components

Quotient operation

MCG construction

T1
T3

T6

T8T7

geometry-based method τ map guided method

vector field V surface X

OR

 flow

combinatorialization

F

F
F

Figure 6.3: This figure illustrates the pipeline of MCG construction. I first com-
pute F (top) based on the underlying flow. The edges in the multi-valued map
demonstrate the mapping relations of the polygons. Based on the F , I extract the
strongly connected components, which represent either the Morse sets (middle-top,
inside colored boxes) or intermediate nodes that describe gradient-like behaviors
(middle-top, T3, T7, T8). I then collapse each strongly connected component of
the F into a single node to obtain a quotient graph F . Note that the nodes in
this graph correspond to either Morse sets or the polygonal regions of gradient-like
flow behaviors (i.e. trivial Conley index). Finally, the MCG (the bottom graph)
is obtained by collapsing nodes with trivial Conley index and removing redundant
edges.

75

into a directed graph, denoted by F , whose nodes represent the elements (e.g.

triangles) of the underlying mesh and edges indicate the flow dynamics, i.e., an

edge from triangle Ti to triangle Tj indicates that ϕ(Ti)
⋂

Tj 6= ∅ (Figure 6.4, left).

The details of this will be described in Section 6.3.

Second, I find the strongly connected components of the directed graph F ,

which gives rise to the Morse neighborhoods that are the polygonal regions con-

strained by the given mesh in the phase space. They contain the Morse sets

M(X,V) of the flow and have a non-trivial Conley index [35] (Figure 6.3, middle-

top).

Third, I compute a quotient graph F from F by treating each strongly con-

nected component of F as a node (Figure 6.3, middle-bottom). The nodes in this

quotient graph F include Morse sets (non-trivial Conley index) and the intermedi-

ate nodes corresponding to the polygonal regions with gradient-like flow behaviors

(i.e. trivial Conley index). An edge
−→
mn in F indicates that there is at least one

edge
−→
kl in F such as k = m and l = n.

Finally, I extract the MCG from F by removing intermediate nodes from F as

illustrated in Figure 6.3 (the bottom graph). The algorithm for MCG construction

can be found in [34].

To visualize the MCG, I classify the nodes of the MCG into three types (Sec-

tion 2.3): Source Morse sets, Ri, are nodes whose Conley indices have non-zero

second Betti number (i.e. β2 = 1); Sink Morse sets, Ai, are nodes whose Conley

indices have non-zero zeroth Betti number (i.e. β0 = 1); Saddle Morse sets, Si,

are neither source Morse sets nor sink Morse sets. The Ri’s are colored green,

76

the Ai’s are colored red and the Si’s are colored blue. According to the partial

order determined by the edges in the MCG, I lay out the nodes such that the

source Morse sets appear at the top of the graph, the sink Morse sets are placed at

the bottom of the graph and the saddle Morse sets are placed between the source

and sink Morse sets. Figures 6.1, 6.2 and 7.5 display the MCGs of a number

of analytical vector fields. Compared to the three-layer structure of the ECG, an

MCG has a multi-layer structure, which provides more information than the ECG.

Furthermore, unlike ECGs, saddle-saddle connection is a generic case in MCG

(Figure 6.1(b), Figure 7.5(b)). Note that finer classification of Morse sets, e.g.,

Saddle Morse sets, can be realized based on Conley index theory [45].

I wish to emphasize that some graphics applications may pursue the individual

trajectory-based vector field topology without being concerned with the fact that

the obtained ECGs may not be topologically rigorous, such as, the applications in

texture synthesis [84,91] and fluid simulation [65]. For such applications, an ECG

can still be extracted from Morse decomposition as an additional step [8].

6.3 Flow Combinatorialization Based on τ -maps

I now turn to the issue of flow combinatorialization, i.e., the process of generating

the graph F based on a vector field V defined on a triangulated mesh X. Re-

call that the geometry-based approach is as follows: The vertices of the directed

graph F correspond to the triangles of the mesh. The edges of F are obtained by

considering the flow behavior across each edge of each triangle. An edge Ti → Tj

77

T1

T2
T3

T4
T5

T6

T7

T8
T9

T10

T1

T2
T3

T4

T5

T6

T7
T8

T9

T10

T1

T3T2

T6

T4

T5

T8
T9

T7

T10

T1 T3T2 T6T4 T5

T8 T9T7 T10

T

IT T’

v1

v1’

v3

v2’

v3’

v2

Fg Fτ

τ map guidedgeometry-based

Figure 6.4: This figure compares two ways of performing flow combinatorialization:
(left) geometry-based method, and (right) τ -maps. In the directed graphs, each
node corresponds to a triangle of the mesh. The red triangle T = T1 is the starting
triangle, the light brown curved closure is the real image of T , the blue dashed
triangle is the approximation of the real image.

78

in F indicates the flow can enter from Ti to Tj, where Ti and Tj are neighboring

triangles (Figure 6.4, left). The resulting directed graph is denoted as Fg. An

MCG can then be obtained from Fg using the pipeline described in Section 6.2.

Since the mesh is not fitted to the flow, this approach is not guaranteed to ob-

tain the correct dynamics of the flow. In the experiments, I have found that it of-

ten results in a rather coarse outer approximation of the underlying dynamics, i.e.,

Morse sets that contain multiple fixed points and periodic orbits (Figure 6.2(b))

or no structures at all (Figure 7.7 left column). This makes subsequent analysis

and physical interpretation less effective. To obtain the Morse decomposition that

are closer to optimal, I introduce the concept of τ -maps, which allows us to move

from the continuous time of a flow to discrete time of a map. This leads to the

following definition.

Definition 6.3.1 Let τ : X → (0,∞) be a continuous map. A τ -time discretiza-

tion of the flow ϕ is a map fτ : X → X defined by

fτ (x) := ϕ(τ(x), x).

I refer to this map as a τ -map. Thus, finding Morse decompositions for the flow ϕ

is equivalent to finding Morse decompositions for fτ .

The fact that X is a triangulated surface provides us with an appropriate

discretization in space. Let X be the triangulation of X (i.e., a set of triangles).

I will approximate fτ using a combinatorial multi-valued map F : X −→→X , that

is a map such that for each triangle T ∈ X , its image is a set of triangles, i.e.

79

F(T) ⊂ X .

The correct notion of approximation is given by the following definition. Con-

sider fτ : X → X. The combinatorial multi-valued map F : X −→→X is an outer

approximation of fτ if

fτ (T) ⊂ int (|F(T)|)

for every T ∈ X where |F(T)| := ∪R∈F(T)R, int denotes the interior. As an exam-

ple, I refer readers to Figure 6.4 (right). In this example, I assume that the true

image of the triangle T = T1 is IT . It is obtained by advecting T according to the

underlying flow over a time τ . According to the definition, the outer approxima-

tion of IT is the set of triangles T4, T5, T6, T7, T8, T9, T10. Mathematically, we say

that T has been mapped to multiple triangles of the same mesh by a function (or

a map) fτ that is determined by the underlying flow under a certain time τ .

From the point of view of computation it is useful to view F as a directed

graph, which I denote as Fτ . (Figure 6.4, right). Similar to Fg, the vertices, Ti,

of an Fτ are the triangles of the underlying mesh and the edges indicate the outer

approximation of the images of the triangles over time τ . For instance, an edge

Ti → Tj indicates that the image of the triangle Ti over time τ will intersect with

the triangle Tj (Figure 6.4, right).

Observe that the definition of an outer approximation requires a lower bound

on the set of triangles in F(T), but not an upper bound. In general larger images of

F are easier to compute. For example, one can obtain an outer approximation, by

declaring F(T) = X for all T ∈ X . However, the larger the image the poorer the

80

approximation of the dynamical system of interest, fτ . I discuss how to compute

an Fτ in Chapter 7.

6.4 The Stability of MCGs

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

T

IT

v1

v1’

v3

v2’

v3’

v2

IT’

v1’’

v2’’

v3’’

T1

T3T2

T6

T4

T5

T8
T9

T7

T10Fτ

......T1 T3T2 T6T4 T5

T8 T9T7 T10Fg
......

τ map guidedgeometry-based

Figure 6.5: This figure illustrates that using outer approximation, Morse decom-
position is stable under certain error bound ε. The original image of triangle T is
IT (region inside the blue curve), and the outer approximation of that is the set
of shaded triangles T4, T5, T6, T7, T8, T9, T10. After a random perturbation (shown
by magenta arrows) of the original field (shown by black arrows), I recalculate the
image I ′T of triangle T , which is shown as the magenta curved closure. Although
it is different from IT , the outer approximation consists of the same set of the
triangles. Therefore, the corresponding portion of the direction graph Fτ remains
the same. Hence, we say that Morse decomposition is stable under an error bound
ε, which here is the maximal allowed perturbation that will not change the outer
approximation of the image of each triangle.

The definition of an outer approximation and the fact that the triangles in the

strongly connected components of F form isolating neighborhoods (Chapter 2) for

81

the Morse sets demonstrate why the MCG remains constant under small pertur-

bations of the vector field (Figure 6.1(b)). Since fτ is a continuous map and each

triangle T is compact, the image fτ (T) is a compact set. If F is an outer approx-

imation, then by definition fτ (T) is contained in the interior of the set |F(T)|.

Thus, this property will also hold for any sufficiently small perturbation of fτ ,

which means that given a multi-valued map for fτ we have the same Fτ for any

sufficiently small perturbation of fτ . Figure 6.5 provides an illustrative example to

explain this property of an outer approximation. In this figure, A triangle T = T1

is advected according to the original flow (represented by the black arrows). Its

image IT is shown as the closure bounded by a blue curve. It intersects with a

set of triangles (the shaded triangles) T4, T5, T6, T7, T8, T9, T10 of the mesh, which

forms the outer approximation of IT . When I artificially introduce a random per-

turbation for each vector value (shown as magenta arrows) and advect the triangle

T under the new flow, I obtain a new image I ′T of it (shown as magenta dashed

curved closure). If we bound the perturbation of each vector to guarantee that

the new obtained image I ′T will intersect the same set of the triangles as the IT

obtained under the original vector field, we will obtain the same outer approxima-

tion of the image of T . Hence, the corresponding portion of the directed graph

Fτ will not change. The MCG is consequently stable. In other words, the outer

approximation provides more tolerance for error in the given data. I also point out

that the MCGs obtained using the geometry-based method are also stable. Con-

sider the example shown in Figure 6.5. Note that the flow behavior across each

edge of the mesh does not change after a smaller perturbation, neither does the

82

corresponding portion of Fg. Therefore, the MCG remains the same. On the other

hand, in this setting this need not be the case for any particular trajectory such

as a periodic orbit or even a fixed point. That is, a particular trajectory may be

changed after any perturbation. Of course, we can go one step further and insist

that an ε-neighborhood of fτ (T) be contained in |F(T)|. We will in general get

a coarser Fτ , but the resulting Morse decompositions will be valid for any vector

field whose τ -map lies within ε of fτ .

After applying the idea of τ -map based Morse decomposition to the analytical

field shown in Figure 6.2, we obtain a finer Morse decomposition (Figure 6.2(d)).

The colored regions there indicate the isolating neighborhoods of the Morse sets.

Different color regions indicate different Morse sets. The flow-like texture regions

without color indicate the regions of gradient-like flow (Section 6.1). The color-

dotted regions indicate the connections between a saddle Morse set to another

Morse set: source (green), sink (red), and saddle (blue).

In the following chapter, I will present efficient algorithms to compute the flow

combinatorialization based on the idea of τ−map.

83

Chapter 7 – Flow Combinatorialization Using the Idea of τ -map

As we have seen in Chapter 6, when employing the idea of τ -maps, computing the

correct flow combinatorialization Fτ is the most crucial step in the pipeline of the

Morse decomposition. To obtain an accurate Fτ , it is essential to compute the

accurate (sufficient) outer approximation of the image of each triangle of the given

mesh over τ time and obtain the directed edges of Fτ accordingly.

To approach that, a rigorous method is applicable to any τ -time discretization

and produces a rigorous outer approximation assuming that a bound ε on the errors

in the underlying vector field is known. More specifically, given a triangle T one

covers it with squares of size ε. For each square S define τ∗(S) = min{τ(x) | x ∈ S}

and τ ∗(S) = max{τ(x) | x ∈ S}. Using rigorous enclosure techniques [1, 46] one

obtains an outer enclosure IS of the true image of the square S integrated forward

for all times τ∗(S) ≤ t ≤ τ ∗(S). Then IT = ∪IS, where the union is taken over all

squares S, is an outer approximation for fτ (T).

This method is computationally costly. First, the number of squares needed

to cover the triangle T is of order ε−2, which for small ε is large. Second, due

to the Gronwall inequality [26] the size of the image of IS grows exponentially as

a function of the integration time. Thus, to get tight outer approximations one

must choose small ε. On the other hand, variants of this method have been used

to obtain rigorous computer assisted proofs in dynamics [1].

84

In this chapter, I describe a more practical algorithm for performing flow com-

binatorialization based on τ -maps. This method can obtain enough information of

the image of each triangle through the tracing of vertices and the heuristically cho-

sen samples on the edges of the given mesh without having to compute the outer

approximation explicitly. While this method is not rigorous in theory, it works for

all the applications I have applied it to in practice. The presented method is based

on the following observation: the image of a connected object under a continuous

map is still connected. More specifically, the image of a triangle under a τ -map

which is a continuous map is either a connected region, a simple curve or a point.

And, the image of a line segment (e.g. an edge of the mesh) is a simple curve or a

point. I now discuss this method in detail as follows [9].

7.1 Efficient Outer Approximation Computation

Let us start with the study of some possible scenarios of the outer approximation

of the image of a triangle T . Assume that T consists of three vertices v1, v2, v3 and

three edges e1, e2, e3, where e1 = (v2, v3), e2 = (v3, v1) and e3 = (v1, v2). Consid-

ering the definition of an outer approximation in Section 6.3, I let I(T) represent

the outer approximation of T obtained using certain numerical integration (such

as, Runge-Kutta method). Similarly, let I(vi) represent the outer approximations

of the images of the three vertices and I(ei) represent the outer approximations of

the images of the three edges of T , respectively. Typically, I(vi) is a single triangle

that contains the image of vi if the integration error is smaller than the diameter of

85

(1) (2) (3)

(4) (5)

?

?

??

T1

T2

T5

T3

T4T6T1
T1

T2

T1

T2

T6

T5

T4

T3
T2

T1

vp

ej

v2’

v1’

v3’

v1’ v1’

v1’

v1’

v1’

v2’ v2’

v2’

v2’

v2’

v3’
v3’

v3’

v3’

v3’?

?
?

(6) (7)

?

?

?

v1’

v2’

v3’

T1

T2

T3

T4

T5 T6

vp

Figure 7.1: Some possible cases of the image of a triangle under a flow.

86

the triangle. To guarantee obtaining a sufficient outer approximation, if the image

of vi is located at a vertex vp, I set I(vi) to be the one-ring neighborhood of vp

(Figure 7.1, cases (3) and (6)). If the image of vi is located on an edge ej, I set

I(vi) to be the two triangles that have ej as one common edge (Figure 7.1, case

(3)).

Cases (1), (2) and (3) of Figure 7.1 show the first scenario. In this scenario,

I(T) ⊆ ∪3
i=1I(vi). That is, we only need to trace from the three vertices of T , the

union of the outer approximations of them will give rise to the outer approximation

of T .

Cases (4) and (5) of Figure 7.1 provide examples of Scenario 2. In this scenario,

I(T) ⊆ ∪3
i=1I(ei). Therefore, the union of I(vi) will not provide us a sufficient outer

approximation (for instance, triangles T1, T3, T5 of case (4) in Figure 7.1 will be

missing), but the union of I(ei) will. This requires us to keep track of the image

of an edge.

7.1.1 Adaptive Edge Sampling

Since we are interested in the outer approximation of an edge instead of the exact

image of it, the connected triangle strip that contains the image of the edge is

sufficient. The connected triangle strip I refer to here is a triangle strip in which

a pair of neighboring triangles share a common edge due to the aforementioned

observation of the image of an edge under a continous map (τ− map here)(for

example, Figure 7.2). I introduce the idea of adaptive edge sampling (Algorithm

87

T

T1

T2

T5

T4

T6

T3

T7

T8 T9

v1

v2

v1’

v2’
e

vm

Figure 7.2: This figure provides the notion of adaptive sampling on an edge e(v1v2)
(right). T is the original triangle. The image of edge v1v2 is v′1v

′
2. The dash lines

show the mapping of the samples to the points on the image. The indexing of the
triangles (right) indicate the order of computation.

Algorithm 1: Adaptive sampling on an edge

Routine: adaptive edge sampling(v1, v2, T1, original T , neighbor T , V , X, τ , L)
Input: v1,v2: two vertices;

T1, original T , neighbor T : triangles
V : vector field; X: surface; L: recursion level;
τ : user specified integral time

Output: the edges in the graph Fτ related to the two triangles original T and neighbor T
Global variables: Fτ : the directed graph
Local variables: T2: a triangle; s: a vertex
Begin

L← L + 1;
if (L > maximum recursion level || ||v1 − v2||2 < minimum distance)

v1 ← v2; T1 ← T2;
new edge(original T, T1,Fτ);
new edge(neighbor T, T1,Fτ);
return;

T2←trace(v2, τ);
if(T1 == T2 || share common edge(T1, T2))

v1 ← v2; T1 ← T2;
new edge(original T, T1,Fτ);
new edge(neighbor T, T1,Fτ);
return;

else
v1 ← v2; s← v2;
v2 ← (v1 + v2)/2;
call adaptive edge sampling(v1, v2, T1, original T , neighbor T , V , X, τ , L);
v2 ← s;
call adaptive edge sampling(v1, v2, T1, original T , neighbor T , V , X, τ , L);

return;
End

88

1). The basic idea is that I first trace from the two vertices of an edge e(v1, v2)

(Figure 7.2, right). If the two triangles T1 and T2 containing the two advected

vertices are the same triangle or they share a common edge, then we do not process

e further. Otherwise, more samples are then used until we obtain a connected

triangle strip containing the image of e. To compute new samples, I make use of a

binary search along the edge e . In detail, if the two triangles containing the images

of the two vertices v1, v2 are neither the same nor neighbors, I then trace from the

middle point vm of the line segment (v1, v2) and determine whether the triangle T3

that contains the image of vm and the two triangles T1 and T2 form a connected

triangle strip or not. If they are not, assume that among them T1 and T3 are not

neighbors, It means that we need more samples on the line segment (v1, vm) to

obtain the connected triangle strip between T1 and T3. Therefore, I compute the

middle point of the line segment (v1, vm) and trace from it to obtain the triangle

containing the image of it. Repeat this process until a connected triangle strip is

found. Figure 7.2 demonstrates the idea of this algorithm. The indexing of the

triangles indicate the order of computation. I wish to point out that due to a

discrete representation, there is no guarantee of finding a continuous map under

a highly divergent flow with a large τ , even though we sample densely along the

edges. However, I have not experienced this problem in practice.

89

?

T

T

?
?

?
? ?

IT

IT

Forward mapping

Backward mapping

Figure 7.3: A general example of the image of a triangle under a flow showing
the scenario of case (6) in Figure 7.1. Through this example, I introduce the
idea of backward mapping. The image in the top row illustrates the forward
mapping. The red, green and black dashed curves indicate the forward mapping.
Using adaptive edge sampling, we can find the connected triangle strip (the shaded
region) that contains the image of the boundary of the triangle T . The bottom row
image illustrates the idea of backward mapping. The interior vertices have been
traced over the same time τ based on the inversed flow. The images of them will
fall in the triangle T . The brown dashed curves indicate the backward mapping.
Thus, we can obtain the remaining edges in the directed graph. Note that the
boundary of the forward image IT of T intersects with one vertex (highlighted by
an orange circle). To obtain a sufficient outer approximation, I add the one-ring
neighborhood of the vertex to the outer approximation.

90

7.1.2 Backward Mapping

Using the adaptive edge sampling scheme, I successfully compute the outer ap-

proximation of scenario 2. But the method fails in case (6) of Figure 7.1, which is

an example of scenario 3. In this scenario, I(T) ⊃ ∪3
i=1I(ei). Therefore, keeping

track of the images of the three edges is not sufficient. More specificially, consider

the image IT of a triangle T under a flow V over time τ (Figure 7.3, top). In this

case, we can find all the triangles that contain the images of the three edges of

T using the adaptive edge sampling algorithm. But we are not able to find the

interior triangles intersecting with IT . I observe that any sample inside T will be

mapped to the image IT , and any sample inside IT should be able to be mapped

back to the interior of T as well (Figure 7.3, bottom row). That is, if we sample

any point inside each inner triangle, and trace the sample point with respect to

the inverse flow −V over the same time τ , the image of it should fall in T . These

observations motivate me to introduce the backward mapping as the complement

of forward mapping when computing the outer approximation of the image of a

triangle. Figure 7.3 (bottom row) illustrates the idea of the backward mapping.

For the updating of the graph F , if we trace backward from any sample of a tri-

angle Ti over time τ , and its image falls in triangle Tj, we add an edge Tj → Ti to

F .

With the assist of backward tracing combined with the adaptive samping

scheme, we now can compute a sufficient outer approximation for case (6) in Fig-

ure 7.1. Furthermore, more difficult case could be handled as well. Consider case

91

?

(1)

(1)

(2)

(3)

(4)

(6)

T

Ti

Tj

v1’

v2’

v2

v1

(5)

(7)

Figure 7.4: This figure describes how the backward mapping and the adaptive
edge sampling help to find the complete edges of the directed graph under a highly
stretched flow. The edge (v1v2) has been sampled to obtain the continuous triangle
strip that contains the image of it using Algorithm 1. The brown dashed curves
illustrate the backward tracing along −V . (1)–(7) indicate the sampling and trac-
ing order. Note that step (2) gives rise to the edge T → Tj that is missed in the
case (7) of Figure 7.1.

(7) in Figure 7.1, IT intersects with two triangles. Therefore, the outer approx-

imation should include these two triangles, even though the images of the three

vertices fall in the same triangle. Using both adaptive edge sampling and backward

mapping, I can compute the outer approximation of this case correctly as follows. I

first perform forward tracing, which will eventually generate an edge from triangle

T to Ti. When I perform backward tracing, I first trace the two vertices of edge

(v1v2) (step (1) of Figure 7.4) of the edge and determine whether the two triangles

containing the images of the vertices of the edge are not neighbors. In here, they

are not. I then choose the middle point of the edge and trace from it over time τ .

It ends at triangle T . Therefore, I obtain the edge from T to Tj, since the edge

(v1, v2) is shared by both Ti and Tj.

92

Algorithm 2: An efficient outer approximation computation

Routine: construct multivaluemap(V , X, τ , L)
Input: V : vector field; X: surface; τ : integral time

L: maximum recursion level
Output: Fτ : the completed graph
Local variables: T : current triangle; e : current edge;

N T : the triangle sharing the edge e with T ;
v1,v2: the two vertices of e

Begin

for each vertex v of X
T ← trace forward(v, τ);
new edges(one-ring of v, T);

for each vertex v of X
T ← trace backward(v, τ);
new edges(T , one-ring of v);

for each triangle T of X
for each edge e of T

if e is visited
continue;

else
e ← visited;
v1, v2 ← two vertices of e;
N T ← the triangle sharing e with T ;
/*forward mapping*/
call adaptive edge sampling(v1, v2, T , T , N T , V , X, τ , L);
/*backward mapping*/
call adaptive edge sampling(v1, v2, T , T , N T , −V , X, τ , L);

End

7.1.3 Complete Algorithm

The logic of the complete algorithm is shown in Algorithm 2. I first trace each

vertex v of a triangle T forward for the time τ . If it falls in triangle Ti, I add

the edges from the triangles of the one-ring neighbors of v to Ti in Fτ . Second, I

trace each vertex v of T backward with τ and find the triangle T ′i containing the

advected vertex of v. I then add the edges from T ′i to the one-ring neighbors of

v. Note that if the image of v is located at a vertex v ′ or on an edge e, Ti (or T ′i)

becomes a set of one-ring triangle of v′ or the two triangles sharing the edge e.

Third, I compute the image of each edge following the original flow and inversed

flow, respectively. The adaptive edge sampling algorithm is employed to produce

93

an outer approximation in a practical and effective manner. The directed edges

are added accordingly during the process. Note that the algorithm doesn’t deal

with the interior triangles of an image (Figure 7.3) explicitly, since the backward

tracing using the same manner of forward tracing stage (i.e. proceed the vertices

and edges, respectively) will eventually take care of those interior triangles.

7.1.4 Results and Discussion

I have applied this algorithm to a number of analytical vector fields. Figure 6.2

provides the comparison of different Morse decompositions of a synthetic vector

field using the geometry-based method (b) and the τ -maps with different time τ ’s

(c) (d). The ECG of the vector field is shown (a). The corresponding MCGs of

the obtained Morse decompositions (Figure 6.2(b-d)) are shown in the second row.

From the results, we observe that the geometry-based approach is fast (0.14s),

but tends to result in a Morse decomposition that is too coarse (only four Morse

sets have been extracted), while the MCG derived from an Fτ has finer Morse

decomposition (Figure 6.2(d), ten Morse sets have been found). Note that the

MCG in (d) matches the ECG (a), although they are labeled differently. We also

observe that the larger the τ , the finer the Morse decomposition is (i.e. closer to

the optimal). Larger τ can provide more detailed information of the flow behavior.

On the other hand, larger τ requires more computation time to construct MCGs,

and larger integration errors may be introduced as well.

As is indicated in Figure 6.4, the τ -map approach leads to a combinatorial

94

multi-valued map F with smaller images (than the geometry-based method) and

hence a finer Morse decomposition. An important point that can easily be over-

looked is the freedom of choice in the construction of F . I have chosen an approach

that is a compromise between accuracy of F and speed of computation. For prob-

lems in which computational time is not a concern we can expand on the adaptive

sampling technique and the choice of τ to refine the images. Alternatively, if we

know that the original vector field contains significant errors, and since the F

needs only to be an outer approximation, these errors can be incorporated into

the construction of the images of F (Figure 6.5). Thus, even in the presence of

considerable small perturbation (Figure 6.5) we can ascertain that the resulting

MCG is valid.

7.2 Temporal τ vs. Spatial τs

The τ -map introduced previously refers to a time discretization, i.e., every particle

travels for a time τ . I refer to it as a temporal τ -map. In many scientific data sets,

the vector field magnitude of the underlying flow varies significantly. If a constant

time τ is used, the advection of some triangles corresponding to the flow region

with a slow speed may not be advected far enough in order to construct the edges

of Fτ . One solution is to choose a τ that makes sure every triangle is advected

sufficiently far. However, this is likely to affect the overall performance and in-

troduce errors. Similar problems have appeared in texture- and streamline-based

flow visualization. One popular approach is to normalize the vector field before

95

A5

S1

A1

A3

S3

A4

R2

S2

A2

R1R1

R2
A2

A5

S1

S2

S3

A4

A3

A1

R1

S1

S2

S3

A2

A1

A3

S1

A1

A4

S2

A5

R2

S3

A2

R1

(a) (b) (c) (d)

Figure 7.5: This figure shows various analysis results of an analytical data set:
(a) ECG, (b) MCG (geometry-based method), (c) MCG (temporal τ = 12) and
(d) MCG (spatial τs = 0.049). The computational time for (b)-(d) is 0.17s, 2.42s
and 1.57s, respectively. Notice how the Morse sets are refined by using the idea of
τ -maps. We also observe that using a spatial τs-map for the analysis of this field
can give rise to a comparable Morse decomposition (having the same Morse sets)
to the one using a temporal τ with a faster performance. The visualization scheme
of ECGs and MCGs are described in Figure 6.1.

96

generating the streamlines or advecting the textures. Under these normalized vec-

tor fields, the vector values at the vertices are scaled to have the same magnitude

except for fixed points. Therefore, the streamline computation can be executed

efficiently. Motivated by this observation, I propose the idea of a spatial τ -map,

which I refer to τs-map.

More specifically, a τs-map is defined on a spatial discretization τs. When

computing a τs-map in the computational domain (a triangle mesh X here), for

each sample of the triangle T in X I keep track of the integral length of the

sample following the flow until the accumulated integral length reaches the spatial

constraint τs. Since all the particles will travel the same distance in the same

speed (e.g. the maximum speed) everywhere except for the neighborhoods of the

fixed points, one can expect a faster computation than tracing with respect to the

original (non-normalized) vector field. When considering spatial τs, we still can

reuse the framework in Algorithm 2 to compute the Fτ with only difference being

that we now accumulate integral length instead of integral time. One important

concern is how to compute the correct trajectory when the tracing enters the

neighborhoods of the fixed points. The basic rule is that the trajectory should not

cross any fixed points. Fortunately, the flow will slow down in those neighborhoods

according to the properties of fixed points (where vector magnitude equals zero)

and the continuous approximation of the flow guaranteed by the interpolation

schemes that are used. Hence, I stop tracing when the vector magnitude is below

a certain threshold (for instance, 0.01 times the uniform vector magnitude). I

point out that after normalization, we have artificially introduced deviation to the

97

original vector field.

I apply the idea of spatial τs to a designed vector field (Figure 7.5). The

geometry domain of the vector field consists of 6144 triangles. Ten Morse sets

have been extracted using a temporal τ = 12. The extraction took 2.42 seconds

on a 3.0 GHz PC with 1.0 GB RAM. With a spatial τs-map (τs = 0.049), I extract

the similar Morse sets using only 1.57 seconds. The result of the geometry-based

method is also shown (Figure 7.5(b)). The corresponding MCGs and ECG of

the field are also shown in the bottom row of Figure 7.5. Based on the results,

we observe that using a spatial τs, we can achieve faster Morse decomposition

(Figure 7.5(d)). The use of τs also extends our understanding of τ -maps. In the

previous section, I set a constant τ for all flow regions during the Fτ computation.

It is not necessary and may lead to distortion of the outer approximation when

large τ is used. The success of τs-maps shows that it is possible to use different

τ ’s in different flow regions. This is because given a constant distance τs and

different flow speed vs, we will obtain different tracing time t = τs/vs in different

flow regions. Therefore, more heuristic information from the dynamics of the flow

can be employed to guide the choice of a proper τ for a specific flow region. This

is the challenge I plan to address in future research.

7.3 Applications to Simulation Data

In this section, I provide the analysis results of the given vector fields using the

efficient Morse decomposition framework for two engine simulation data sets. They

98

(a) The MCG using the geometry-based Method (b) The MCG using a temporal τ map (τ=0.1) (c) The MCG using a temporal τ map (τ=0.3)

The ECG

Figure 7.6: This figure compares the results of the Morse decompositions of the
gas engine simulation data obtained using geometry-based method (a), a temporal
τ -map with τ = 0.1 (b) and a temporal τ -map with τ = 0.3 (c), respectively.
Note that the color disk-like region at the back of the cylinder bounds the area of
recirculating flow corresponding to tumble motion which indicates an ideal pattern
of motion with good mixing properties. Notice that using the τ -maps can greatly
improve the quality of the Morse decomposition (the zoom in images). The corre-
sponding MCGs of different Morse decompositions and the ECG of the data are
also shown.

99

are the extrapolated boundary velocity fields that are obtained through simulation

of in-cylinder flow. Engineers are interested in knowing whether or not the flows

on the surface follow the ideal patterns (Chapter 3) [42].

Figure 7.6 shows the results of the gas engine simulation data. The first column

shows the results using the geometry-based method. The second and third columns

provide the results using the temporal τ -maps with τ = 0.1 and τ = 0.3, respec-

tively. The corresponding MCGs are also displayed under the flow images. We

observe that a Morse set has been extracted at the back of the chamber. It shows a

recurrent pattern which indicates the flow starting to approximate the ideal tum-

ble motion. The Morse sets obtained based on a τ -map capture regions that are

more faithful to important features, while the approach using the geometry-based

map could give rise to fewer Morse sets that cover large regions, which makes the

identification of important features more difficult.

The results shown in Figure 7.7 are from the diesel engine simulation. The first

column shows the results using the geometry-based method. Notice the rainbow-

like regions indicate the recurrence behavior that does not actually exist. That

is, the geometry-based method generates a Morse decomposition with misleading

information. In the remaining columns, I provide two Morse decomposition results

of the same data using a temporal τ -map (τ = 0.3) and a spatial τs-map (τs = 0.08),

respectively. For the temporal case, the obtained Morse decomposition contains

200 Morse sets. It took 1, 146.807 seconds to obtain the result. For the spatial case,

the number of the extracted Morse sets of the Morse decomposition is 201. The

time for computing this Morse decomposition is 740.826 seconds. Either temporal

100

Table 7.1: The complexity and timing results for two CFD data simulating in-
cylinder flow through a combustion engine (Figures 7.6 and 7.7). Times (in sec-
onds) are measured on a 3.6 GHz PC with 3GB RAM.

dataset # # edges # Morse time constructing time extracting time computing time
name(τ) polygons in Fτ sets Fτ Morse sets MCG total

gas engine 26,298 195,694 50 27.844 0.218 7.922 35.984
(temporalτ = 0.1)

gas engine 26,298 215,774 57 75.357 0.25 1.219 76.826
(temporalτ = 0.3)

diesel engine 221,574 2,035,133 200 1,101.323 7.781 37.703 1,146.807
(temporal τ = 0.3)

diesel engine 221,574 2,167,914 201 689.451 8.141 43.234 740.826
(spatial τs = 0.08)

τ method or spatial τs method provides accurate information of the recurrence

behavior of the bottom of the in-cylinder of the diesel engine, but the spatial

τs-map shows faster Fτ computation than temporal τ -map scheme.

Table 7.1 provides the performance information of the two data sets using

different Fτ s.

101

Geometry-based
τ = 0.3

View 1

View 2

Temporal
τs = 0.08

 Spatial

Figure 7.7: A comparison of various Morse decompositions of the diesel engine
simulation data set. The first column shows the Morse neighborhoods obtained
using the geometry based mapping. The color rainbow-like regions indicate the
possible recurrent flow behavior. The second column provides the results using
a temporal τ -map with τ = 0.3, while the third column gives the results using a
spatial τs map with τs = 0.08. Note how much more refined the topological regions
become. We also observe that using a proper spatial τs, we can obtain comparable
Morse decomposition with higher performance (See Table 7.1).

102

Chapter 8 – Hierarchical Refinement of Morse Decompositions

In previous discussion, I show that given a vector field, the MCG is not unique.

It is desirable to obtain fine MCGs (Figure 1.3, (e)). An MCG can be made finer

by making use of the idea of a τ -map (Chapters 6 and 7) that is computed using

particle tracing with respect to a time τ (see Chapters 6 and 7). Because an ideal

τ value is typically not known for a given flow, the user must carry out multiple

computations with different τ values before a satisfying result is achieved. Further-

more, each recomputation is conducted for the whole flow domain. This leads to a

slow analysis process which can be prohibitive for large datasets. In this chapter,

I re-examine the Morse decomposition with a focus on the τ -map computation of

vector fields and propose an efficient Morse decomposition framework based on a

hierarchical refinement process.

8.1 Overview

The slow performance of the previous τ -map approach stems from the repetitive

computation during the flow combinatorialization stage which relies on a large

amount of particle tracing operations. Flow combinatorialization encodes the flow

dynamics into a standard directed graph where the nodes are the polygonal primi-

tives of the space discretization (e.g. triangles) and the edges indicate the mapping

103

relations between polygons. τ -map computation is employed to determine these

mapping relations. As mentioned, multiple trials of recomputing the whole flow

combinatorialization (a directed graph) with different τ values are needed during

the analysis. Furthermore, this approach does not exploit the results of previous

computation as they are treated as separate experiments rather than an integrated

process. In this chapter, I modify this procedure as follows. I first perform MCG

computation using the geometry-based method [8] which is fast but coarse. Next,

I enter an iterative process in which a Morse set in the current MCG is identified

and refined through localized flow combinatorialization with the τ -map method

of increasing τ values. This process repeats until none of the Morse sets can be

further refined. See Figure 1.3 (a)-(d) for an example. The validity of the proposed

approach is justified by Graph Theory. The presented framework is faster because

the more expensive computations (higher τ values) are only performed in a small

percentage of the mesh. Furthermore, particle tracing results from smaller tau

values can be reused for higher τ values.

One of the key elements in my approach is the ability to identify the Morse

sets that need further refinement. A simple approach is to let the user manually

select a Morse set to refine that may contain more detailed information. This

approach provides the user sufficient control but is labor intensive and error-prone

when a large data set is investigated. Therefore, an automatic scheme is more

preferable. The challenge of an automatic scheme lies in defining proper metrics

needed to identify the Morse sets that require refinement. To handle this, I in-

vestigate a number of metrics including the Conley indices of Morse sets. I show

104

that the complexity of a Conley index typically indicates the complexity of the

flow features inside the region of interest (Section 2.3). This makes Conley index

a natural criterion to identify the Morse sets with more complicated flow behav-

iors. Due to the challenge posted by the flow combinatorialization graph, instead

of computing the actual Conley index of a given Morse set I compute its upper

bound. In practice, this upper bound is a sufficient approximation to the actual

Conley index. In addition, when the flow combinatorialization graph is computed

using a geometry-based method, the obtain upper bound is identical to the actual

Conley index of a Morse set.

8.2 Hierarchical Morse Decompositions

Theory of dynamical systems shows that an isolating neighborhood (a polygonal

region under discrete setting) exists for each Morse set [35]. In addition, in Chap-

ter 7 I have demonstrated that computing the flow combinatorialization does not

require a constant τ value everywhere in the domain [9]. This leads us to a local

refinement scheme with various τ values. Next I describe the pipeline which is

inspired but significantly different from the approach of shown in Chapters 6 and

7.

First, an MCG is computed from the Morse decomposition using a geometry-

based flow combinatorialization. Denote the resulting Morse sets as M(X,V)

associated with their connectivity graph MCG. Second, I compute an upper bound

of the Conley index of each detected Morse set (Section 2.3) and compute a priority

105

Figure 8.1: The pipeline of the proposed locally hierarchical refinement of Morse
decompositions of vector fields.

106

value based on this upper bound, the area of the Morse set, and the variance of

vector magnitude inside it (Section 8.3). Third, I add these Morse sets into a

priority queue Q with the Morse set having larger priority values close to the

top of the queue. I also initalize τ = τmin and set numiter = 0. In practice,

a good heuristic of τmin is the ratio between the average edge length of local

mesh of a Morse set and the minimum vector magnitude inside the Morse set.

Fourth, if the first Morse set in Q has a priority value larger than the user specified

minimal priority value r. I proceed as follows. Let Mi be the first Morse set in

Q. I remove it from Q, and set τ = 2τ . Then, I perform a τ -map based flow

combinatorialization inside the bounded Morse neighborhood of Mi to obtain an

updated directed subgraph Fi. Next, the strongly connected components Mi(X,V)

of Fi are extracted and a local MCGi is computed. If the number of Morse sets

in Mi(X,V) is larger than 1, which means selected Morse set is refined, I compute

the upper bounds of the Conley indices of the new Morse sets and their priority

values. Then, I incorporate MCGi into MCG and add Mi(X,V) into Q based

on their priority values. If the number of Morse sets in Mi(X,V) equals 1 and

2τ ≤ τmax (where τmax is a user specified maximum τ . A good example of τmax is

23τmin), I increase τ as τ = 2τ and proceed as before until either Mi(X,V) contains

more than one Morse set or τ > τmax. If the selected Morse set can not be refined

even if τ > τmax, I remove this Morse set from the priority queue and should not

consider it in the future process. Then, I proceed to step 4 and iterate the process

until Q is empty, i.e., no Morse sets have a larger metric than the threshold r or

have been tested and found to be not refinable. Figure 8.1 illustrates this pipeline.

107

This pipeline proceeds in a hierarchical fashion and is expected to produce a MCG

(Figure 1.3, (d)) similar to the one produced by previous manual τ -map approach

with respect to globally applied τ (Figure 1.3, (e)).

8.2.1 Local Flow Combinatorialization

Similar to the general Morse decomposition, in the hierarchical Morse decompo-

sition pipeline the local flow combinatorialization is a key step. In this section, I

show that locally updating the flow combinatorialization will not affect the flow

structure with respect to MCG outside of the bounded Morse neighborhood of

interest. Before presenting the theorem on that, I first prove the follow lemma.

Lemma 8.2.1 Given a directed graph G = (V,E). Let V = ∪iVi be the decompo-

sition of strongly connected components of G. Let Ei = {(vp, vq) ∈ E|vp, vq ∈ Vi}.

Select an integer j, let G′ = (V,E ′) such that E ′ = (E−Ej)∪E ′j where E ′j contains

edges whose end points are both in Vj and Ej 6= E ′j (i.e. they represent different

sets of edges). We make two claims:

1. Any strongly connected component Vi in G with (i 6= j) is contained in a

strongly connected component in G′.

2. Any strongly connected component V ′i in G′ is contained in a strongly con-

nected component in G.

If we can show 1 and 2 are true, then we immediately have the following: A strongly

connected component Vi (i 6= j) in G is also a strongly connected component in G′.

108

On the other hand, Vj corresponds to possibly more than one strongly connected

components.

Proof: To show (1) is true, let a, b be two nodes in Vi (i 6= j), i.e., there are

paths entirely contained in Ei from a to b and b to a. Given the construction of

G′, we know these paths are also contained in G′. Consequently, it is possible for

a to reach b and vice versa using edges in G′. This means a and b are in the same

connected component of G′.

To show (2) is true, assume that a and b are two nodes in the same connected

component in G′ but in different strongly connected components Va and Vb with

respect to G. This means that there is a minimal oriented loop γ containing a and

b using edges in E ′.

Since Va 6= Vb, one of them is different from Vj. Without loss of generality,

assume Va 6= Vj, i.e., a /∈ Vj.

Let s ∈ Vj be the last node on the loop γ before reaching a, and t ∈ Vj the first

node on γ after a. Note that either s and t both exist or neither exists. In the

first case, we have a path from s to t using edges in E − Ej through a, i.e, such a

path exists in G. Note that s and t both belong to Ej, so there is a path from t to

s with edges in E. Consequently, there is a loop from s to a with edges entirely

in E. Consequently, a and s belong to the same strongly connected component

Vj since s ∈ Vj. However, this contrasts our assumption Va 6= Vj. In the second

case, i.e., there are no nodes on γ that belong to Vj. Consequently, edges on γ

are entirely contained in E − Ej ⊂ E. This means a and b belong to the same

connected component. However, this contradicts our assumption that Va 6= Vb.

109

Q.E.D.

Theorem 8.2.2 Consider a flow combinatorialization F = (V,E) of a vector field

computed with respect to a τ . Let M = ∪iMi be the set of extracted Morse sets from

F , Fi = (Vi, Ei) be the subgraph of F with Vi the set of triangles corresponding to

the Morse neighborhood of Mi, and Ei = {(vp, vq) ∈ E|vp, vq ∈ Vi}. For an integer

j, let F ′ = (V,E ′) such that E ′ = (E − Ej) ∪ E ′j where E ′j consists of edges that

are computed using a τ ′ > τ and whose end nodes are both in Vj and Ej 6= E ′j (i.e.

they represent different sets of edges). Then,

1. Any Morse set Mi of F with (i 6= j) is a Morse set of F ′.

2. Mj is a) a Morse set, b) decomposed to be more than two separate Morse

sets, or c) removed from M .

Combining 1 and 2 of Theorem 8.2.2 I prove: By fixing all Morse sets but one

and replacing edges of the local flow combinatorialization graph for that specific

Morse set using a larger τ value, it is to obtain a likely refined Morse sets for that

Morse set without changing the rest of F in practice. Consequently, the whole

MCG is refined. Note that in some cases the selected Morse set needs not be

a true Morse set (with non-trivial Conley index) and can be removed from the

Morse set list after replacing its local flow combinatorialization graph with a more

accurate one. This is because the flow combinatorialization constructed using a

small τ or the geometry-based method is typically coarse and contains misleading

information, e.g. inaccurate Morse sets (see the rainbow-like regions in Figure 7.7,

110

left column). Nonetheless, this error can be corrected by a more accurate graph

obtained using a larger τ (Figure 7.7, middle and right columns). The proof of this

theorem follows from Lemma 8.2.1. This theorem also provides the algorithm to

realize the local MCG refinement which I will describe in the following section.

8.2.2 Implementation

Given a Morse set Mi, I now explain how to refine it locally. Let Fi be its local

flow combinatorialization graph whose nodes are the triangles of the Morse neigh-

borhood of Mi and directed edges encode the flow dynamics in Mi. First, I remove

all the edges that are completely in Fi, i.e, the edges whose both end points are

nodes in Mi. Second, I reconstruct Fi by applying the τ -map approach locally

inside Mi. Third, I extract strongly connected components from the updated Fi.

Finally, I compute the subgraph MCGi based on the extracted Morse sets and

incorporate it into the original MCG. Algorithm 1 provides the pseudo code of

this process. The reconstruction of local flow combinatorialization is crucial. To

accomplish that, I implement a function similar to the construct multivaluemap

routine (Section 7.1) but input a bounded flow region Xi ⊂ X. The obtained flow

combinatorialization graph Ftemp is incorporated into F with edges not completely

falling in Xi excluded. This process is described in the routine Reconstruct Fi().

Figure 8.2 provides an example of the MCG refinement results using the pro-

posed local updating scheme. I start from an MCG (left) computed from a flow

111

Algorithm 1: Locally refining one Morse set
Input: Mi: the given Morse set

Xi: the list of triangles of Morse set Mi

Fi: the local flow combinatorialization of Mi

V (Mi): the local flow inside Morse set Mi

L: the maximum level for adaptive edge sampling
Output: MCGi: the local MCG with updated Morse sets
Begin

Delete Edges in Fi(Fi);
Fi ← Reconstruct Fi(Xi, V (Mi), τ, L);
Extract SCC Fi(Fi);
MCGi ← Construct Local MCGi(Fi);

End

Local flow combinatorialization using τ -map
Routine: Reconstruct Fi(Xi, V (Mi), τ, L)
Input: Xi: the list of triangles of Morse set Mi

V (Mi): the local flow inside Morse set Mi

τ : a positive real number
L: the maximum level for adaptive edge sampling

Output: Fi: the local flow combinatorialization of Mi

Local variables: Ftemp : temporary Fi

e: an edge in Ftemp

node[2] : two nodes that connected by e
Begin

Ftemp ← construct multivaluemap(V (Mi), Xi, τ, L);
For each edge e in Ftemp

If node[0] /∈ Xi or node[0] /∈ Xi

remove e from Ftemp;
EndFor

Fi ← Ftemp;
End

combinatorialization using a geometry-based method. Next, I perform the local

updating inside the obtained Morse sets with large area. Note that in addition

to the refined Morse sets, the connection regions [9] between two Morse sets are

refined as well due to the refinement of the underlying F which I use to compute

the connection region (the dotted regions in Figure 1.3 (a)-(d)).

8.2.3 Conley index of Morse sets obtained with τ -map

112

(a) (b) (c) (d) (e)

A5

S1

A1

A3

S3

A4

R2

S2

A2

R1

A5

S1

A1

A3

S3

A4

R2

S2

A2

R1

S1

A2

R2

A1

S3

A4

A3
S2

R1

S2

A2

R1

A1

S1

S3

A3

R1

S1

S2

S3

A2

A1

Figure 8.2: This figure provides an example of locally refining a Morse decompo-
sition of an analytic flow data over different Morse sets (b): R1, (c): S1, and (d):
S3 with τ = 7.8, 10, 10, respectively. (a) provides the Morse decomposition using
a geometry-based method. In addition, the MCG generated using a global τ -map
idea with τ = 12 is also shown in (e) for comparison. Note how our finest MCG is
comparable to the one using global Morse decomposition. Different colors indicate
different Morse sets. The color-dotted regions indicate the connection between
Morse neighborhoods. Note that the connection regions are also refined during the
process. In the MCGs, green dots stand for the source Morse sets, red dots for the
sink Morse sets, and blue dots for the saddle Morse sets.

In this section, I introduce a simple and efficient algorithm to compute an upper

bound on the Conley index of a Morse set M obtained using the τ -map. In all

cases we looked at, the bound is identical to the Conley index (hence I call it the

estimate of the Conley index) and is much simpler to compute. In addition, being

an upper bound means that a Morse set containing complex dynamics will not be

missed during the identification stage.

Because we use flow combinatorialization the detected Morse sets are not guar-

anteed to be isolating neighborhoods. Fortunately, they can still be used to relate

the topological properties of the map φτ that moves any point by τ along its tra-

jectory to the Conley index of the flow. This map can be viewed as a dynamical

113

T1

......

......

T2

T3

T4

T5

T6

T7

T8

T9

T10

T11 T12

T1

T2

T3

T4

T5

T6

T7

T8

......

......

Morse set M

T10

T11 T12

T9

Fτ

exit set

entrance set

e1

e2

e3 e4

Figure 8.3: This illustrates the classification of boundary edges. Image to the
left provides a portion of the mesh with a Morse set Mi inside the shadow region.
Right diagram provides the configuration of a discrete map (i.e. a flow combinato-
rialization) Fτ . Note that I ignore the inner configuration of the graph inside the
Morse set Mi because it does not affect the classification.

system with discrete rather than continuous time. Generalizations of the Conley

index theory to flows with discrete time are described in [47,58,68].

The analysis is based on the concept of an index pair, that is used to define the

Conley index for dynamical systems with discrete time. For a continuous map f ,

an index pair (N,L) may be defined in a few ways. The key property that needs

to be satisfied is the existence and continuity of the map induced by f on the

quotient space N/L [58]. Recall that the quotient space is a pointed topological

space obtained by collapsing all points in L to a single distinguished point. Thus,

every point in the quotient space is represented by some point in N . Points of

L represent the distinguished point. The point of N/L represented by x ∈ N

is denoted by [x]. The induced map takes a point [x] into [f(x)] if f(x) ∈ N .

Otherwise, it takes [x] into the distinguished point.

A relationship between the map induced by φτ on N/L and the Conley index

114

of the flow is described in [47]. Let (N,L) be an index pair for φτ and φτ,k be

the induced map on k-dimensional homology of N/L. The k-dimensional (k ≤

2 in our discussion) Betti number of the Conley index of the flow is equal to

limn→∞ rankφn
τ,k. Typically, homology with coefficients in a field is used in this

computation, which makes φτ,k a linear transformation acting on Hk(N/L). The

rank of any iterate of φτ,k is smaller or equal than the dimension of Hk(N/L). We

conclude that the k-dimensional Betti number of the Conley index of the flow is

less or equal to the k-dimensional Betti number of the quotient space N/L. This

is the upper bound I use in the rest of the thesis.

A procedure for computing an index pair for a continuous map based on a

regular grid discretization of the domain is described in [69]. Even though I use

a discretization based on an irregular triangle mesh in this work, the results still

hold and the proofs are exactly the same. An index pair for a Morse set M is

(M,L) where L consists of boundary edges of M that I still call exit edges. In

order to decide if an edge e on the boundary of M is an exit edge, take a triangle

T incident upon e and outside M . e is an exit edge if and only if there is an

edge of the flow combinatorialization that starts at a triangle in M and ends at T .

Figure 8.3 illustrates an example. Consider a boundary edge e1 shared by triangles

T1 and T9 with T1 outside of M . There is a directed edge pointing from T1 into

a triangle T2 of M in F . Therefore, e1 is classified as an entrance edge, so is e2.

Now consider edge e3. Triangle T11 is incident to e3 and out side of M . There is

a directed edge from T4 inside M to T11. Hence, e3 is an exit edge. Similarly, we

classify e4.

115

R1

A1

A2

X(M): Euler characteristic of M

X(L): Euler characteristic of boundary exit set L

The left B(0)-B(2) are Betti numbers for L

The rightmost B(0)-B(2) are the Betti numbers of

the upper bound

MCG

Figure 8.4: This figure illustrates an example on how the upper bound of the
Conley index can help identify Morse set with complex flow. Note that Morse set
R1 has an upper bound on its Conley index as (0, 2, 1). In the meantime, the flow
in this Morse set contains two repelling periodic orbits (green loops) and a saddle
(blue dot). Therefore, based on its upper bound, we determine that R1 should be
further refined.

From the above discussion, I conclude the Betti numbers of the quotient space

M/L, where (M,L) is the index pair for φτ described above, are an upper bound of

the Betti numbers of the Conley index of the flow on Morse set M . It is worth not-

ing that this computation is essentially identical to the examples of Conley index

computation shown in Section 2.3.2.The only difference is the approach of deter-

mining the exit edges. In the examples of Figure 2.3, I make use of the flow at the

edges to classify the edges, while in upper bound computation, the directed edges

in the flow combinatorialization graph F are used for classification. Furthermore,

the aforementioned computation on a discrete map (a flow combinatorialization

graph) obtained using a geometry-based method returns the true Conley index of

the given region based on the flow at the boundaries. Figure 8.4 provides such

116

an example. I have applied this computation algorithm of upper bound to two

analytic datasets. Figure 8.5 provides the upper bounds of the Conley indices of

the Morse sets extracted from two designed vector fields. The left image shows the

Conley indices of the Morse sets from a geometry-based method, while the right

displays those from a τ−map based approach. Note that in the implementation,

I include the strongly connected components whose Conley indices are trivial but

with larger size (i.e. containing more than two triangles). This typically indicates

regions with more than one recurrent features such that the sum of their Conley

indices is trivial. S1 of Figure 8.5 (left) is such an example. Therefore, further

refinement of these ”Morse sets” is likely to produce finer decompositions.

8.3 Identifying Morse Sets To Refine

In this section, I introduce a number of metrics that are used to identify Morse

sets for refinement in the automatic framework.

The first intuition in the selection of a Morse set to refine is to consider the

Morse set with complex flow inside the corresponding region. From the previous

discussion on Conley index and its computation, we observe that the Conley index

provides information on the complexity of the flow. For instance, if the Conley

index of a Morse set is (0, 2, 1) (Figure 8.4, R1), it is likely there could be separable

periodic orbits and a saddle. Recall that Section 2.3 provides a number of impor-

tant Conley indices. They also represent the Conley indices of the five simplest

invariant sets. To measure the complexity of the Conley index of a Morse set M ,

117

R1

S1

S2

S3

A2

A1

S1

A3

R4

R2

R1

R3

A2

A1

Figure 8.5: The computed upper bounds of the Conley indices of all Morse sets ex-
tracted from two analytical vector fields. (left) shows the results using a geometry-
based method, while (right) provides the results of a MCG derived from a τ -map
with τ = 24. Note that the upper bounds for the Morse sets in the left example
are their actual Conley indices. In addition, in my experience the obtained upper
bounds for the Morse sets computed from a τ -map approach are typically equal to
the ideal Conley indices, such as, in the example to the right.

we compute the distances between it and the five basic Conley indices as

dist(CH∗(M), CH∗(x0)) =
2

∑

k=0

|βk(M) − β0(x0)|

The shortest distance then indicates how complex the flow inside the Morse set

based on the flow behaviors on the boundaries of M . Therefore, I make use of this

shortest distance of a given Conley index to the five basic Conley indices as one

criterion. This should provide the necessary topological information of the region

of interest. I refer to this metric the topology metric.

118

Still, there are a number of cases that examining Conley index is not sufficient.

For instance, the Morse set S3 in Figure 8.5 (left) has a simple Conley index (0, 1, 0)

which is the same as region containing only a saddle, while detailed analysis shows

a saddle and an attracting periodic orbit are enclosed. To handle this, I make use

of the number of triangles in each Morse set as a heuristic for identification. I refer

to this metric the geometry metric. It is intuitive that a Morse set covering a large

portion of the flow domain may contain more detailed dynamics. For instance,

Figure 8.7 (left) shows the result of the Morse decomposition of the gas engine

dataset using a geometry-based approach. Note that there is a Morse set at the

back of the cylinder of the engine which covers a large portion of the engine surface.

I wish to point out that in our experiments some regions of flow recurrence have

trivial Conley index (0, 0, 0) (e.g. S1 in Figure 8.5, left). They consist of more than

one triangle which indicates multiple features (i.e. invariant sets) included. This

causes the Conley index of the region to be trivial, a property similar to Poincaré

index which is particularly useful in topological simplification [80]. Therefore, in

all experiments I include this kind of regions with trivial Conley index but more

than one triangle in the MCG.

Combining the aforementioned topology and geometry factors, I define the

formula for computing the priority value of each Morse set Mi as follows:

P (Mi) = (1 + min (dist(CH∗(Mi), CH∗(x0)))) × N(Mi) (8.1)

where N(Mi) represents the number of triangles in the Morse set Mi. This priority

119

value is used to determine the order of the refinement of Morse sets in current MCG.

The larger the value is, the earlier the Morse set will be refined. Morse sets with

priority value smaller than a threshold r will be discarded. In the implementation,

I use r = 2 as the threshold, because any Morse set whose P value is larger than

2 could contain separable features by equation 8.1. Note that a ring-like region

containing a periodic orbit may have larger P value, for instance, Morse sets R1

and R4 in Figure 8.5 (right). In this case, further refinement will discover that

no more Morse sets can be extracted. The system then discards this Morse set

from the list of Morse sets that are considered to refine according to the pipeline

(Figure 8.1).

I make use of this metric to identify the Morse sets for refinement. Figure 8.7

provides the result of the consecutive refinement of an analytic data.

8.4 Applications

I have applied the proposed hierarchical refinement framework to a number of

design datasets. Figure 8.6 (left) provides the result of such a dataset. This

dataset consists of 6, 144 triangles. The experiment took 7.58 seconds to return

the result given the parameters r = 2, τmax = 28, and maximum number of

iterations equal 12. I compare the local refinement result with the one obtained

using a manually refining process with τ = 7, 14, and 28, respectively. This

requires 11.15s computation time in addition to the user interaction time. Note

that our result achieves the similar MCG structure to the one using a global τ -map

120

S1

A3

R4

R2

R1

R3

A2

A1

S1

A3

R4

R2

R1

R3

A2

A1

Figure 8.6: The figure provides the result of Morse decomposition using the pre-
sented hierarchical framework (left). The minimum priority value r, the maximum
allowed τmax, and the maximum number of iterations for the result of this data are
10, 28, and 12, respectively. The time for the computation is 7.58 seconds. Similar
result using the previous global τ -map approach is given (right). It is obtained by
experimenting τ = 7, 14, and 28, respectively. The times spent on these compu-
tations are 2.63s, 2.9s, and 5.63s. Therefore, totally I spend 11.15s computation
time using manually selecting τ approach.

approach.

I also provide the Morse decomposition results of a gas engine simulation

dataset using the proposed hierarchical framework. This data set is the extrap-

olated boundary velocity fields that are obtained through a simulation of an in-

cylinder flow [42]. Figure 8.7 provides the analysis results of this data set com-

posed of 26, 298 triangles. From (1)-(3)of Figure 8.7 I refine the circulated Morse

set with τ = 0.1, 0.3, and 0.3, respectively. The times spent on these refinement

are 1.469s, 27.845s, and 42.094s, respectively. The MCG obtained using a global

τ = 0.3 shows the similar results (right-most) which took around 227s. to com-

121

(1) (2) (3)

Figure 8.7: This figure illustrates the refinement process of the MCG of the gas
engine simulation data. Left-most shows the MCG of a geometry-based approach.
From (1)-(3) I refine the circulated Morse set with τ = 0.1, 0.3, and 0.3, respec-
tively. The times spent on these refinement are 1.469s, 27.845s, and 42.094s,
respectively. The MCG obtained using a global τ = 0.3 shows the similar results
(right-most) which took around 227s to compute. This is assuming that the user
has already known τ = 0.3 is sufficient for this dataset.

Table 8.1: The complexity and timing results for two CFD data simulating in-
cylinder flow through a combustion engine. Times (in seconds) are measured on
a 3.6 GHz PC with 2GB RAM. Note that I compare only the performance of the
automatic refinement framework with the global τ approach with the τ = τmax.
Additional time spent on smaller τ values and the user interactions for the global
τ scheme is not considered. Even though, our automatic refinement framework
exhibits better performance in time.

Dataset # Local Update Global Update
name polygons τmax #Morse sets time(s) τ #Morse sets time(s)

gas engine 26,298 1 62 158.5 1 62 335.49

diesal engine 221,574 0.4 152 278.7 0.4 207 1,326.08

122

Geometry-based Auto-refine with τmax=1 Global τ=1

Figure 8.8: This figure compares the results of the Morse decompositions using
local refinement (bottom) and global update of τ -map (top) for the gas engine
simulation dataset. The setting for the hierarchical refinement is r = 2, τmax = 1,
and maximum number of iterations equal 40.

123

pute. This is assuming that the user has already known τ = 0.3 is sufficient for

this dataset. Figure 8.8 compares the results of Morse decompositions using the

presented scheme of automatic hierarchical refinement and the manually adjusting

τ values approach. In the setting of r = 2, τmax = 1, and maximum number of

iterations equal 40, my framework takes 158.5 seconds to return the results. On

the other hand, the manually adjusting τ scheme uses 215.29s for τ = 0.25, 277.24s

for τ = 0.5, and 335.49s for τ = 1 before obtaining the final result. This takes

828.02s in total.

Figure 8.9 provides the automatic simplification results of a diesel engine dataset

with 221, 574 triangles. The running time for this analysis is 278.7s under the set-

ting: r = 2, τmax = 0.4, and maximum iterations is 60, compared to the 1, 326.08s

using a global τ = 0.4. From these results, we see the proposed automatic re-

finement framework achieve the analysis results about four times faster than the

global τ scheme.

Table 8.1 provides the timing information of the automatic refinement that is

applied to the two engine datasets. Note that I compare only the performance of

the automatic refinement framework with the global τ approach with the τ = τmax.

Additional time spent on smaller τ values and the user interactions for the global

τ scheme is not considered. Even though, our automatic refinement framework

exhibits better performance in time. Note all times (in seconds) are measured on

a 3.6 GHz PC with 2GB RAM.

124

Geometry-based Local refinement with τmax=0.4 Global τ=0.4

Figure 8.9: This figure shows the results of Morse decomposition before (left)
and after automatic hierarchical refinement (right) for the diesel engine simulation
dataset. The setting for the hierarchical refinement is r = 2, τmax = 0.4, and
maximum number of iterations equal 60. The Morse sets are colored differently to
emphasize their difference. Note that how the automatic framework produces the
comparable results (middle) to the ones using a global τ (right).

125

Chapter 9 – Time-Varying Vector Fields in Graphics Applications

Chapter 5 has elaborated the importance of vector fields for a wide variety of

graphics applications. The techniques of time-independent vector field design on

surfaces have been well-studied. However, there is little work on the design of time-

varying (i.e. time-dependent) vector fields on surfaces. Nevertheless, time-varying

vector fields are more common in practice. Different from time-independent vector

fields where given a fixed position the vector value remains constant for any time,

the vector value of a fixed point in a time-varying vector fields could vary with

respect to time. For instance, the velocity field associated with wind is a time-

varying vector field. That is, at a given location the wind direction varies over

time. Otherwise, weather prediction is no longer necessary. From this chapter, I

turn my discussion to a more complicated subject: time-varying vector fields.

9.1 Applications and Impact

In many computer graphics applications, time-varying vector fields arise implic-

itly, such as the velocity fields in fluid simulation [65,66], the force fields in crowd

animation [77] and hair modeling [23], and the displacement fields in shape de-

formation [89] and video editing [99]. The ability of design and control of these

time-varying vector fields will help researchers and artists achieve controllable fluid

126

and smoke animation, steerable interactive crowd simulation, temporally coherent

video editing and painterly rendering of videos, controllable cloth and hair anima-

tion, and tractable object morphing.

Before starting the discussion on time-varying vector fields, it is important to

realize the different functions of vector fields in various applications. A vector field

can be used to describe many physical phenomena such as displacement, velocity,

acceleration, orientation, and momentum. The definitions of features in a vector

field is application-dependent. For example, in texture synthesis and animation,

one vector field is used to guide the placement of texture patches, while another is

used to move the patches. Therefore, understanding the differences between vector

fields involved and separating their design tasks will not only ease the discussion

of different design interfaces and primitives, but also enable us to achieve various

effects. The following introduces two types of vector fields that are employed widely

in different applications.

9.2 Orientation Field and Advection Field

In graphics applications such as texture synthesis and animation, two types of

vector fields are required as the input. One is used to orient texture patches,

which we refer to as an orientation field, while the other describes the advection of

texture patches over time, which we call an advection field. Figure 9.1 shows the

effect of both types of fields in texture synthesis and animation. The directions

of strip-like pattern depict the orientation field, and the cyan arrows in the left

127

image illustrate the advection field (difficult to see with still images). We have

specified the orientation field only for the first frame, which is then advected by

the advection field using the technique proposed by Kwatra et al. [37]. Hence,

the orientation field over time need not be stationary. This is reflected through

the texture movement in the three frames from the animation (Figure 9.1). Note

that the orientation field in this example does not convey any interesting effects

on the surface. It is preferable to control this appearance to achieve meaningful

effects, for example highlighting certain features of the shapes. Further, for the

movement of the graphical properties (e.g. moving a texture patch from one place

to the other), it can be valuable to allow the user to design their animation paths.

Therefore, it is necessary to address the design of these two types of fields.

frame 1 frame 35 frame 70

Figure 9.1: This example demonstrates the different utility of orientation field and
advection field.

128

9.3 Requirements and Challenges

Design and control time-varying vector field poses a number of requirements and

challenges as well. To be more precise, it has been observed that in time-varying

graphics applications solving for a series of time-independent vector fields to pro-

duce each frame can lead to visual discontinuity artifacts. It has also been demon-

strated that these types of artifacts are less prevalent when graphics applications

are generated by solving a time-varying vector field. This suggests the desirability

of designing time-varying vector field V (x, t) with specific properties. This poses

a number of challenges to the design task. For example, a number of fundamental

concepts, such as a singularity of a vector field, used in steady field design are no

longer mathematically well-defined in the time-varying setting. More importantly,

the theory for the analysis and control of time-varying dynamics is much more

primitive than that for time-independent vector fields.

As previously mentioned, vector fields have different functions in various graph-

ics applications. This requires distinct sets of design functionality and design prim-

itives to pursue specific results that serve different purposes. For instance, the de-

sign of instantaneous appearance is the focus in orientation field design, while for

advection field the emphasis is on the evolution of time-dependent features such

as the trajectories of particles.

In many graphics applications structural changes of certain graphical properties

are often observed, such as the splitting and merging of texture structures in

texture synthesis and animation. In some cases, these structural changes may

129

Figure 9.2: This figure shows an example of saddle-node bifurcation in an ori-
entation vector field, the creation of a pair of saddle and sink, which causes the
break of texture structure on the back of the bunny. Note that I sample the two
frames before (left column) and after (right) bifurcation happens to reveal the
discontinuity.

130

cause visual artifacts. Figure 9.2 shows an example where the break of texture

structures could cause visual discontinuity in the animation. These structural

variations are typically associated with the topological changes of the underlying

fields, i.e. bifurcations, which I review later. This poses a requirement of the ability

of manipulating them with desired properties.

131

Chapter 10 – Time-Varying Vector Fields

This chapter provides a brief review of a number of important concepts for the

discussion of time-varying vector field design. More importantly, the concept of

parameterized vector fields is introduced to enable the design of a time-varying

vector field in the form of a collection of time-independent vector fields.

10.1 Time-Varying Vector Fields

In this section, I review the important concepts of time-varying vector fields for

the design tasks.

10.1.1 Definition

Consider a manifold M and a subset X ⊂ M . The boundary of X is denoted by

∂X and closure by cl(X). A time-varying vector field can be defined as follows.

Definition 10.1.1 A time-varying vector field can be expressed in terms of a par-

tial differential equation ẋ = V (x; t) where x ∈ X and t ∈ R. Given tc ∈ R,

V (x; tc) is a time-independent which is referred to as an instantaneous vector field.

Remark: Time-independent vector fields is clearly a special case of time-

varying vector fields such that V (x; t) = V (x; s) for any x ∈ X and all t, s ∈ R.

132

10.1.2 Integral Curves in Time-Varying Vector Fields

Given the definition of a time-varying vector field, I now review a number of

important curves which are the integral solutions under different initial conditions

and integrand.

Definition 10.1.2 Given x ∈ M at time t0 ∈ R, its trajectory in a time-varying

vector field ẋ = V (x; t) is ∪t∈Rx(t) where

x(t) = x(t0) +

∫ t−t0

0

V (x(s); t0 + s)ds .

It is also referred to as pathline.

Definition 10.1.3 If V is time-independent, its trajectory through x ∈ M is of

the following form

x(t) = x(t0) +

∫ t−t0

0

V (x(s); t0)ds

which I referred to as streamline (Section 2.2).

Remark: [75] provides an example illustrating the difference between the

streamlines and pathlines of the same time-varying vector field. Comparison and

definitions of these two concepts shows that streamlines depict the instantaneous

appearance of a time-varying vector field, while pathlines convey the real paths

of the particles over time. Therefore, streamlines can be a design primitive to

achieve desired instantaneous appearance in the orientation field design. Similarly,

pathlines can be applied to control the moving paths of specific particles for the

advection field design.

133

Figure 10.1: This figure demonstrates the difference between streamlines (left) and
pathlines (right) [75].

In the later presented design system, streamlines and pathlines are the main

curve primitives I will employ to accomplish the design tasks. However, there are

other important feature descriptors that can help understand the time-dependent

dynamics.

Definition 1 Given x ∈ M , a streakline is defined to be the curve traced out by

particles injected at x over time. It is computed as follows.

xt0(t) = x(t0) +

∫ t−t0

0

V (xt0(s); t0 − t + s)ds .

Remark: Different from pathlines who considers the trajectory of a single

particle, a streakline consists of the current positions of multiple particles released

at different time step but same location. If we are able to record the trajectories

134

of all particles of a streakline, we can produce a set of pathlines with different life

span.

Definition 2 Given t ∈ R, a subset X ∈ M . The set of trajectories traced by

particles injected at each point of X at t is called the timeline at t.

Remark: Different from streaklines, we are tracking particles that are release

at the same time but different locations. Similarly, from timeline, we can resemble

a set of pathlines with same life span.

10.1.3 Instantaneous Topology

In this section, I briefly review the basic concepts of instantaneous topology which

is equivalent to time-independent vector field topology (Section 2.2). I consider

the instantaneous vector field V (x; tc) at time tc. A point p is called a singularity

at tc if V (p; tc) = 0. Note that from this chapter I will use the conventional

notion for singularities instead of fixed points which I have used to define and

analyze this vector field characteristic. According to the Jacobian analysis of

a linearization of V (p; tc), a singularity can be classified as sources, sinks, and

saddles. The streamlines of V (x; tc) that connect at least one saddle are referred

to as separatrices. The closed streamlines that partition the vector field domain

are called periodic orbits. The instantaneous topology of V (x; tc) is defined as the

topological graph of the instantaneous field V (x; tc). It consists of singularities,

periodic orbits, and their connectivity (i.e. ECG) (Section 2.2.2) and conveys the

qualitative structure of the vector field at tc. It should be pointed out that if all

135

singularities and periodic orbits in an ECG are hyperbolic, the ECG is structurally

stable. That is, the ECG remains unchanged under small perturbation with certain

bound [78]. I have not identified graphics applications in which design and control

of periodic orbits is important. Consequently, I will focus on singularities and

singularity-related bifurcations in this paper.

10.1.4 Bifurcation

Given the instantaneous vector field topology of V (x; t), we are able to keep track of

the evolution of it with respect to t by extracting instantaneous topological graph at

each discrete step tj and matching singularities and other features. This technique

has been adapted to analyze time-varying flow datasets [82]. The movement of a

singularity in the space-time domain gives rise to a curve which is referred to as

a singularity path. Singularity characteristics, such as Jacobian property, can also

be advected along the path. Therefore, the Jacobian can be computed at any time

t given a continuous path and can be used to determine the local field structures

near the singularity at t. Two singularity paths can intersect in domain M × R

only if they have opposite poincaré indices, for instance, the paths of a source

and a saddle, or a sink and a saddle, respectively. Note that I have excluded

higher-order singularities in my discussion. At the intersections, no hyperbolic

singularities exist. Thus, these intersections indicate certain qualitative changes

(i.e. the number and types of singularities vary, which results in the changes of

the topological graph). We refer to these structural changes as bifurcations, and

136

the positions (x; t0) where these happen as bifurcation points. Figure 10.2 provides

an illustration of such process in a saddle-source bifurcation. More comprehensive

introduction of the bifurcation theory can be found in [26]. Bifurcation points for

saddle-node bifurcations can be extracted [82].

tj0-1 tj0 tj0+1

saddle source unstable singularity

(bifurcation point) t

instantaneous vector fields

Figure 10.2: This example demonstrates a saddle-node bifurcation, i.e. a source-
saddle cancellation. The directional curves illustrates the flow behaviors. Two
singularities are shown in the left at tj0−1. They move toward each other when t
evolves and collide at tj0 (middle). The two singularities are cancelled after they
meet, which results in a singularity-free vector field at tj0+1 (right).

10.2 2D Parameterized Vector Field

To overcome the representation of time-varying vector fields and enable its design

process, I now introduce the concept of parameterized vector field. Consider a

2-manifold M .

Definition 10.2.1 A parameterized vector field is defined as a series of instanta-

neous vector fields with respect to a parameter λ, denoted by V (x; λ), where x ∈ M

and λ ∈ R. An instantaneous field of V at λc is denoted by V (x; λc).

137

There is considerable freedom to move from the parameterized family of vector

fields V (x; λ) to a time-varying system. For example, let g : R → R be any smooth

positive function. Then

dx

dt
= V (x, λ),

dλ

dt
= g(λ)

is a time-varying system. As a first approximation the reader can assume that we

are using the time-varying system dx
dt

= V (x; λ), dλ
dt

= s where s is a positive

constant. In other words, parameter λ and physical time t possess a linear relation

such that dλ = s · dt. Therefore, if s = 1, λ is equivalent to t. Further, it shows

when s → 0, the variation of the vector field is sufficiently small which guarantees

a smooth transition. This is particularly useful for graphics applications where

an input field with smooth transition over time is expected to achieve visually

coherent results. It also reveals the relation between a time-varying vector field

and a corresponding parameterized vector field which enables the discussion of

certain concepts under the parameterized vector field framework.

Note that the rest of the thesis will discuss the design of the parameterized

vector fields without further clarification.

138

Chapter 11 – Time-Varying Vector Field Design On Surfaces

I conduct the design of the parameterized vector fields, an approximation of time-

varing vector fields using a three-stage pipeline. Figure 11.1 provides an illustrative

diagram for this pipeline. In the first stage, the design system supports the creation

of a parameterized vector field through a number of types of user specifications,

such as singularities, streamlines, singularity paths, pathlines, and bifurcations.

These specifications are either converted into basis fields and summed or treated

as constraints of a relaxation process (Section 11.1). In the second step, the system

analyzes the initial field and provides necessary feedback to the user for further

editing. To enable control over unwanted flow behaviors such as singularities and

bifurcations, I provide topological editing functionalities to remove them or move

them to more desirable locations in spacetime in the third stage (Section 11.2).

The techniques employed in vector field analysis (stage 2) is based on previous

research. Thus, I will only describe the details of the initialization (stage 1) and

editing (stage 3) of the design system. I demonstrate the utility of the proposed

design system through the application of texture synthesis and animation.

139

Initialization

Analysis

Editing

User input

Vector Field Design

A parameterized

vector fieldTopology

info.

Editing

ops.

Figure 11.1: The design pipeline.

11.1 Initialization

In this section, I discuss two approaches that I employ to generate a parameter-

ized vector field. First, instantaneous vector fields are created in key frames and

propagated to the rest of the field. The advantage of this approach is that we can

reuse past techniques in designing instantaneous (steady) vector fields [8, 21, 101].

However, this approach does not address features unique to time-varying vector

fields such as bifurcations and pathlines. In the second approach, such features can

be generated through the extended basis vector fields or constrained optimization

in a spatio-parameterized domain.

11.1.1 Setting

Computation Domain: Given the definition of a parameterized vector field on a

2-manifold, I define the spatio-parameterized domain as D = M × R.

Ti

Ti
λj

λj-1

In the implementation, I am concerned with a sub-

domain X ⊂ D such that X = (X; λ) where X is a

triangulation of a 3D surface, and λ ∈ [0, 1] is a pa-

rameter that I use to approximate time (see the inlet

140

figure). For representing and storing the field, I discretize λ evenly. I denote these

discretely sampled λ values as {λj}. A typical number for the discretization is 100

for the examples in this thesis. I then compute and store the instantaneous fields

at these discrete {λj} in order.

Interpolation scheme: I resort to the interpolation scheme that has been

successfully applied by Zhang et al. [101], Palacios and Zhang [50], and Chen et

al. [8] for continuous surface flow construction in the spatial subspace. Over X,

The similar interpolation technique proposed by Tricoche et al. [82] is employed to

guarantee a linear field along the parameter λ dimension. Particularly, in planar

case this configuration can be formulated as follows.

V (x; λ) = a(λ)x + b(λ)y + c(λ) (x; λ) ∈ X ⊂ D

where a = (ax, ay) and a(λ) =
λj+1−λ

λj+1−λj
aλj

+
λ−λj

λj+1−λj
aλj+1

, where aλj
and aλj+1

are

the coefficient of the linearaztion of the vector field at λj and λj+1, respectively.

b(λ) and c(λ) are similarly defined.

11.1.2 Designing Instantaneous Fields

I start with a review of the steady vector field creation using basis fields (Sec-

tion 5.2.1) and constrained optimization (Section 4.2). To design an instantaneous

field, the user can either specify the singular or regular design elements (locally)

at desired locations [86, 101] or provide a set of streamlines indicating the flow

141

directions along the streamline and in nearby regions. The provided streamlines

are eventually sampled and converted into polylines which are used to construct

the regular elements. A regular element is an arrow pointing from a basis point

to a certain direction. This idea has been employed by Chen et al. [10] to design

street networks that follow the boundaries of natural features such as rivers. Each

design element is associated with a Jacobian Ji, and gives rise to a basis field which

I use to compute a weighted sum to obtain the global field. Equation 11.1 defines

such a weighted sum.

V (x) =
∑

i

e−d‖x−pi‖
2

Ji (11.1)

where d is a decay constant, x is a point in space, Ji is the Jacobian corresponding

to a design element, and pi is the position of the design element in space.

The radial basis field approach (equation 11.1) cannot be applied to the design

on surfaces without a global parameterization of the surface. Consequently, I

resort to the constrained optimization, or relaxation to design a surface field, which

possesses the following form:

V (vi) =
∑

j∈J

ωijV (vj) (11.2)

where vi is an interior vertex of a triangle region N , vj’s are the adjacent vertices

of vi that are either in the interior or on the boundary of N . V (vi) represents the

average vector value at vertex vi.

142

11.1.3 Designing Parameterized Vector Fields

I now describe the techniques that are used to produce a parameterized vector

field. A natural idea is to set the designed instantaneous fields as key frames and

derive a parameterized vector field from them.

11.1.3.1 Key Frame Design

In field design using key frames, the user first designs a sparse set of instantaneous

fields that indicate the desired effects at specific frames (λ ’s). The system then

generates a parameterized vector field achieving these effects using an extended

constrained optimization.

Extended Constrained Optimization: By taking into account the addi-

tional parameter λ, I introduce an extended constrained optimization technique

vivi vi

λjλj-1 λj+1

to create parameterized vector fields on surfaces. Given a

vertex (vi; λj) in the underlying mesh in domain X, I con-

sider a stencil of it shown in the figure to the right. In

this stencil configuration, I assume there are (virtual) edges

between (vi; λj) and (vi; λj−1), and (vi; λj) and (vi; λj+1), re-

spectively. Therefore, the computation of discrete Laplacian

under this setting needs to consider (vi; λj−1) and (vi; λj+1)

as the direct neighbors of (vi; λj). The spatio-temporal dis-

143

crete Laplace can be expressed as follows:

ωV (vi; λj) =
∑

l∈N(i) ωj,lV (vl; λj) + ωj,j−1V (vi; λj−1)

+ωj,j+1V (vi; λj+1) (11.3)

where N(i) denotes the one-ring neighbors of (vi; λj), V (vi; λj) represents the aver-

age vector value at position (vi; λj). ωj,j−1 and ωj,j+1 are positive weights determin-

ing how fast the relaxation process is. In the implementation ωj,j−1=ωj,j+1 = 10.

ω =
∑

l∈N(i) ωj,l + ωj,j−1 + ωj,j+1 is the normalization coefficient. I point out that

this formula can be further extended by taking into account more sampled steps

along λ axis to achieve smoother results as bi-Laplace smoothing does in time-

independent case [21]. It is worth noting that similar spatio-temporal relaxation

process has also been applied in the space-time surface reconstruction by Sharf et

al. [64] where regular grid configuration is considered instead of irregular one used

in this work.

Figure 11.2 shows a planar field generated using key frame design and the

extended constrained optimization. Many surface fields (Figures 9.2, 11.8, 11.9,

and 11.10) shown in this paper are also generated using this method.

It should be pointed out that other interpolation scheme can be employed to

obtain a parameterized vector field from a set of instantaneous field as well, such

as vector linear interpolation. This typically does not produce smooth results due

to the potential degenerate vectors and discontinuity (Figure 11.3).

For planar field design, an extended basis field approach can also be applied to

144

......

Keyframe 1 Keyframe 2

Figure 11.2: An key frame design example. The purple curves are the user spec-
ified streamlines. The flow-like textures shown in the paper are generated using
IBFV(S) techniques of van Wijk [86,87].

λ0

λ1

λi

λ axis

Keyframe 0 Keyframe 1

Figure 11.3: A time-varying vector field produced using simple linear interpolation
from the specified key frames. Note that the discontinuity appear in the middle
instantaneous field.

145

generate a parameterized vector field from the user specifications (singularities and

streamlines) directly.

Extended Basis Field Approach: Similar to the instantaneous field de-

sign, we have the concepts of design elements with the additional parameter λ

being considered. That is, the position of a singular or regular element in the

computation domain D has the form of (p; λ). For instance, if the user inserts a

singularity in the spatial position pi at λi, its position in D is (pi; λi). Similarly,

all the regular elements stemming from a streamline defined at λi will be assigned

this parameter value λi. Accordingly, the generated basis field will affect not only

a single instantaneous field, but also the parameterized vector fields with the in-

stantaneous field at λi as center. I update the basis field summation equation as

follows:

VI(x; λ) =
∑

i

e−b‖λ−λi‖
2

e−d‖x−xi‖
2

Ji (11.4)

where b is a decay constant along λ axis, the ratio of b/d reflects the ratio of the

propagation speeds over the spatial and parameter spaces. In the experiments, I

make use of b/d = 10 without considering particular physical constraints.

Further, a brush streamline interface inspired by the brush interface by my

previous work (not included in this thesis) for tensor field design [10] is used for

instantaneous vector field design. More specifically, the user sketches a curve. A

local region with the curve as the skeleton is found [63]. The vector field inside the

region is computed according to the derived regular elements from the curve. As

146

pointed out by Chen et al., the brush interface can easily introduce large variations

along boundaries of the brush region which may be interesting to segmented texture

synthesis. Figure 11.4 shows three examples using brush streamlines.

Figure 11.4: This figure provides some results of brush stroke design. They are
the sampled frames from the accompany animations.

11.1.3.2 Singularity Path Design

In many cases, we want to animate the moving of certain singular patterns over

surfaces, for instance, the moving of a storm system in environment modeling (Fig-

ure 11.8).

Bi(x;λ)=0
λ0

(xi;λ0)

y

x
λj λn

λ

(xi;λj)
(xi;λn)

λ0

λj

λn

......

The design system supports this by allowing the

user to specify the paths of the singular design

elements along positive λ direction. The nega-

tive direction is similar. To do so, the user first

specifies the path of s singular design element

on the surface in the spatial domain. The pa-

rameter (λ) information associated with the path is then provided by the user,

147

including the parameter value λs at the start point and the value λe at the end

point, or the parameter values corresponding to the discrete sample points along

the paths if provided (see the hollow circles in the inlet figure). I denote the singu-

larity path of ith singular element as Bi(pi; λ) = 0 (λ ∈ [λs, λe]) . That is, given

λj ∈ [λs, λe]), the position of this singular element (pij; λj) satisfies Bi(pij; λj) = 0.

For simplicity, I evenly sample this specified path to obtain the position for the

singular element corresponding to each λj. The system then induces a parame-

terized vector field by computing the positions of these singular elements along

their paths at each sampled parameter value and summing up all the basis fields

as follows.

VSp
(x; λ) =

∑

i

Vi(pi; λ)|Bi(pi; λ)=0 (11.5)

where VSp
denotes the basis fields generated by the singularities that are currently

at λ. Vi(pi; λ) = e−d‖x−pi‖
2

Ji is the basis field stemming from the ith singularity at

λ and λ ∈ [λs, λe]). The figure above provides an illustrative example of singularity

path design.

Singularity path design on surfaces is handled differently compared to the de-

sign on plane. Due to the lack of a global parameterization, I resort to the con-

strained optimization to generate the individual instantaneous fields at the desired

sampled λj.

148

11.1.3.3 Pathline Design

It is often necessary to specify trajectories of a particle according to a time-varying

vector field. The trajectory, a pathline, can be designed using our system as fol-

lows. Note that a pathline is different from a singularity path despite the similar

design mechanisms in our system for both. To create a field from a pathline, the

user first specifies a curve to infer the desired pathline. The system then induces

a parameterized vector field based on the sampled positions along the pathline.

This technique is based on the following observation. Given a pathline P and a

point pj on it at time λj, it was advected from previous position on P , pj−1. If

pj−1 and pj are sufficiently close, the vector pointing from pj−1 to pj approxi-

mates the true vector value at (pj−1; λj−1). We then can set this vector to be

a regular element at λj−1. In the design system, I offer the user a similar inter-

face to the streamline design for sketching the desired pathline. But during the

discretization process, each sampled point will be assigned a unique λ value ac-

cording to the parameter information associated with the corresponding pathlines.

λ3

λ4

......

A user input pathline

λ0

λ1
λ2

elements for time λ0

elements for time λ1

Assume the start value λs and end value λe are known.

Then, for the ith sampled point (out of n samples), its as-

signed λ value is computed as λs+i×(λe−λs)/(n−1). Fig-

ure to the right provides an illustrative example of pathline

based design. Note that the ith regular element stemmed

from line segment (i, i + 1) is located at λi. The extended

basis field approach can be adapted to induce a parameter-

149

ized vector field for the planar case (equation 11.4), while a constrained optimiza-

tion process is needed for the generation of the individual instantaneous fields on

surfaces.

11.1.3.4 Jacobian-Based Design

Matrix-based Design is also provided by our system for the user to determine how

the vector field transforms (rotates, scales, stretches) over λ. The matrix (field) has

the form of M(λ) =







M11(λ) M12(λ)

M21(λ) M22(λ)






, where Mij(λ) are functions of λ. In

the implementation, I require the user to provide an affine transformation matrix

(i.e. the combination of 2D rotation and scaling) to

act on the initial instantaneous field (at λs) to ob-

tain the last field (at λe). The system then interpo-

lates the rotation (rotation angles) and scaling (scal-

ing factors). The vector field V at λj is computed as

V (λj) = M(λj)V (λj−1), where M(λj) is the combina-

tion of the rotation and scaling matrices at time λj.

Figure to the right provides the texture synthesis re-

sults guided by an orientation field generated using matrix-based approach where

the field is rotated w.r.t. λ.

150

11.1.4 Bifurcation Design

As a significant and novel contribution, our system allows the user to insert a bifur-

cation at specific location in the spatio-parameterized domain. This is particually

useful for the applications where the split or merge of the graphical primitives are

desired. Figures 11.8 and 11.9 provide examples of desirable bifurcations in the

texture synthesis and animation. Recall that we are only concerned with saddle-

node bifurcations in this thesis. Equation 11.6 provides a formula that is used

to create a saddle-node bifurcation (saddle and node pair creation) at position

(x, y; 0) in X (see Figure 11.5).

ẋ =







ẋ

ẏ






=







λ − x2

−y






(11.6)

Similarly, we can enforce a saddle and source pair cancellation at position

(x, y; 0) in X using equation 11.7.

ẋ =







ẋ

ẏ






=







λ + x2

y






(11.7)

In addition, we can scale the range of the bifurcation in both space and time,

and re-orient the axis (a straight line in this case) to control where and how the

bifurcation happens.

Other types of bifurcations [26] can be created in the similar manner. The

global field induced from a set of bifurcations can be computed as the weighted

151

λ
0− +

Figure 11.5: A saddle sink creation bifurcation happens at (0.5, 0.5; 0.5) in the
spatio-parameterized domain X using equation 11.6.

sum of the individual bifurcations (equation 11.8). In other words, each bifurcation

is a design element.

VB(x; λ) =
∑

i

e−d‖x−xi‖
2

Vi(x; λ − λi) (11.8)

where (xi; λi) is the position at which the ith bifurcation happens. Note that the

decay effect along λ axis is considered by the formula Vi(x; λ − λi) (see equa-

tions 11.6 and 11.7). Accordingly, I define the global field as the weighted sum of

the basis fields generated using singular and regular elements VI (equation 11.4),

and bifurcations VB (equation 11.8).

V (x; λ) = ωBVB(x; λ) + ωIVI(x; λ) (11.9)

where ωI and ωB are positive values which I use 0.5 for both in the implementation.

There are two alternative approaches of inserting bifurcations into the designed

field. First, the user can generate a bifurcation through key frame design. Basi-

152

cally, the user sets two instantaneous fields as key frames before and after the λ

value where the bifurcation point is desired. One of these fields is trivial (similar

to the left field shown in Figure 11.5), while the other contains the saddle and

source (or sink) singularity pair (the right field shown in Figure 11.5). Then, a

bifurcation is enforced to occur by the extended constrained optimization. The sec-

ond approach allows the user to design the split of a singularity path to indicate a

saddle-node creation bifurcation or intersect the end points of two singularity paths

to induce a saddle-node cancellation bifurcation. Both approaches were applied to

insert bifurcations into the designed fields in the provided examples (Figures 11.8

and 11.9).

11.2 Editing

Editing functionality is required for a design system because of the appearance

of undesired features such as singularities and bifurcations in the initialization

phase. The design system provides the user with a number of options to edit a

given parameterized vector field. First, the conventional editing operations for

instantaneous vector field modification are provided. Second, the novel bifurcation

removal and movement are introduced along with a general smoothing scheme in

the spatio-parameterized domain.

153

11.2.1 Instantaneous Field Editing

First, the system extracts the instantaneous vector field topology. Then, the user

can cancel two unwanted singularities at a particular λ value using the simpli-

fication techniques proposed in Chapter 4 [8]. This instantaneous field is then

considered as a key frame for the regeneration of the field. Note that this editing

process may potentially introduce more complex dynamics such as unintended bi-

furcations due to the weak constraint along the parameter (λ) axis. I relieve this

by adding the constraint of maximum propagation distance along λ. That is, after

modifying a certain key frame how far (in length) the user wishes the changes to

affect the rest of the field along the λ axis.

11.2.2 Bifurcation Editing

I have demonstrated the relations between saddle-node bifurcations and the struc-

tural changes in texture animations. I now develop techniques to control them. To

do so, we need to first know where the bifurcations occur. In my implementation,

I keep track of singularities and extract bifurcations from the designed fields using

the techniques proposed by Tricoche et al. [82].

Bifurcation Removal: The system allows the user to remove a bifurcation if

the involving singularities do not participate in other bifurcations. I refer to these

bifurcations as isolated bifurcations. If a bifurcation is not isolated, we can not

cancel it without affecting other features. To remove an isolated bifurcation, I keep

track of the involving singularities along the λ axis until their birth (saddle-node

154

cancellation) or their death (saddle-node creation). I assume the λ value of their

birth (or death) is λc. Then, cancelling these singularities at λc will induce the

removal of the corresponding bifurcation. Under our setting of X, only boundary

singularities (i.e. singularities at λ = 0 and 1 of X) will satisfy this requirement.

Figure 11.6 shows an example of saddle-node bifurcation removal. More complex

local control of connected bifurcations is possible which is beyond the scope of

this thesis. Note that this operation is not valid in a real time-dependent vector

field where the range of the physical time is infinite. In that setting, the more

meaningful operation is bifurcation movement.

Figure 11.6: Example of bifurcation editing. Left column shows the effect before
editing; right column shows the results after bifurcation removal.

Bifurcation Movement: Similar to the singularity movement functionality,

a bifurcation can be moved. Moving bifurcation can be achieved by moving the

involving singularities over space at particular λ value. The edited instantaneous

field is then set as a key frame. The extended constrained optimization will smooth

155

the rest of the field. Note that the movement of these involving singularities should

obey the topological constraints proposed by Zhang et al. [101] in their steady

vector field design tool. This guarantees no other topological features will be

affected during the movement.

General Smoothing: The two aforementioned bifurcation control tech-

niques are typically too constrained for the design fields. I then introduce a more

relaxed editing functionality to allow the user to modify the designed fields with-

out concerning with the topological constraints. I refer to this technqiue as general

smoothing.

General Smoothing is a spatio-parameterized smoothing in which the user de-

fines a box in X. The vector values at the inner vertices of the box are replaced

with a hopefully smoother version computed using the extended constrained opti-

mization (equation 11.3), with the boundary vertices as the constraints.

11.3 Application: Texture Synthesis and Animation

I have applied the designed parameterized orientation fields and advection fields

generated using our techniques to create a number of synthetic texture anima-

tions (Figures 9.2, 9.1, 11.8, 11.4, 11.10, and 11.9). Flow-guided texture synthesis

and advection has been introduced to visualization community for dense flow vi-

sualization by van Wijk [86, 87], Laramee et al. [41], and Neyret [48]. Kwatra

et al. [38] present an optimization-based plane texture synthesis which can be

used for flow-guided texture animation. Lefebvre and Hoppe’s [44] introduce an

156

appearance-space texture synthesis technique that can handle texture advection

over static surfaces. Later, Kwatra et al. [37] and Bargteil et al. [5] extend the

advected texturing techniques onto the problem of fluid texturing on surfaces, re-

spectively. In addition, Wiebe and Houston [96] and Rasmussen et al. [56] perform

fluid texturing by advecting texture coordinates along the flow field using level sets

and particles. In this work, I employ Kwatra et al.’s [37] texturing fluid techniques

for the presented texture synthesis and animation examples.

Many applications may want the animated texture on surfaces, such as special

effects, games, and digital arts. In addition, with the proper choice of texture ex-

emplars and careful field design, other graphical effects can be resembled through

advected textures, such as the ripple-like advection, the time-varying caustic re-

flection and the lava effect (Figure 11.7).

Figure 11.7: Different effects obtained using texture synthesis and animations:
ripple advection (left), caustic reflection (middle), and the lava effect (right). All
the texture synthesis and animations are driven by the time-varying vector fields
created using our system.

157

Performance: The intialization of a planar field with 100 frames defined on

a 65 × 65 regular grid typically takes less than 5 seconds on a 3 GHz PC with

1GB RAM. For the design on surface (up to 20, 000 vertices), it can take up to

4 minutes to generate the field with 100 frames without optimization. The times

spent on synthesis vary from 8 hours to 20 hours on a 3.6 GHz PC with 2GB RAM

depending on the number of sample points being put on the surfaces, the volume

sizes of the models, and the sizes of the input texture exemplars [37].

frame 1 frame 20 frame 50 frame 62 frame 70

Figure 11.8: This image shows a number of frames from a texture animation
on sphere which simulates the collision of two storm systems. The animation is
driven by an orientation field and an advection field, both are designed using the
techniques introduced in this paper. Note that two vortex-like patterns (frame 1)
are displaced by the advection field at the middle of the squence (frames 20 and
50). The two storms are then merged (frame 62) and become one system (frame
70).

158

frame 1 frame 3 frame 20 frame 70 frame 100

Figure 11.9: This image shows a number of frames from a texture animation on
venus. The animation is driven by an orientation field and an advection field, both
are designed using the techniques introduced in this paper. Note that a vortex-like
pattern (frame 1) is displaced by the advection field at the middle of the model
(frames 3 and 20). The vortex is then splitted into two (frame 70), and both of
them continue moving upwards to the upper middle along the model (frame 100).

159

frame 1 frame 35 frame 70 frame 100

Figure 11.10: The designed results of an orientation field (first row) and and
advection field (second row) on bunny. The sampled frames from the corresponding
texture synthesis and animation results are provided below the fields. Particularly,
the third row shows the advection of the orientation field of the first frame.

160

Chapter 12 – Conclusion and Future Work

Vector fields have become one of the major research subjects in both visualization

and computer graphics communities. In engineering and science, vector fields are

used to represent the simulation and experiment results for the evaluation of certain

dynamical systems. In addition, vector fields are used to drive or orient certain

graphical primitive and subjects for a wide range of important applications. In

this work, I investigate the use of vector fields for both engineering and computer

graphics applications. I summarize my contributions in this chapter.

12.1 Vector Field Analysis

Vector field topology plays an important role in vector field analysis. It provides

the qualitative (or structural) information of the vector field of interest, which

helps the domain experts identify the critical features and behaviors efficiently.

Therefore, it has obtained a great deal of attention since 1989. However, a number

of challenges remain unsolved, such as the completeness and stability. I have

addressed both problems in this work which I summarize as follows.

161

12.1.1 Summary

First, I have identified periodic orbits as an important component of the topological

graph (e.g. vector field topological skeleton) and proposed a more complete vector

field topology called ECG with periodic orbits being included. With emphasis on

periodic orbits, I introduce an efficient algorithm to extract periodic orbits from 2D

flows. A robust algorithm for computing the ECG from the detected periodic orbits

and fixed points is presented. With the assistant of ECG, I elaborate a number of

basic scenarios of pairwise cancellation of features in ECG, which are applied to

drive the vector field simplification with topological guarantee. The analysis and

simplification results are visualized using the proposed improved evenly-spaced

streamline placement technique with all separating features being highlighted. In

addition, I introduce two approaches to create periodic orbits in 2D vector fields.

To my best knowledge, this presented work is the first to address the design,

analysis, and control of periodic orbits in surface flows.

Second, I analyze the instability of trajectory-based vector field topology in-

cluding the proposed ECG and advocate the use of the Morse decomposition of a

vector field as a more reliable computation for vector field topology analysis. MCG,

the result of the Morse decomposition of a given vector field, is defined as a more

stable vector field topological graph than ECG. With the focus on MCG compu-

tation, I first describe the pipeline of a Morse decomposition of a vector field. The

key step of this pipeline is a directed graph construction process called flow com-

binatorialization. The obtained graph encodes the flow dynamics whose strongly

162

connected components correspond to the regions with critical (or recurrent) flow

behaviors. To compute an accurate directed graph in flow combinatorialization, I

introduce the idea of τ−map which relies on tracing the image of each polygonal

primitive of the flow domain according to the flow dynamics. The results show fine

decompositions (i.e. detailed MCGs) of vector fields. Despite the desirable out-

put of fine decompositions, the global τ−map approach suffers from the problem

of slow computation due to the demanding tracing process. To overcome that, I

depict a hierarchical refinement framework which localized the τ−map computa-

tion within the Morse neighborhoods. Each iteration, the program automatically

selects a Morse set to refine where it is recognized that more complex flow is con-

tained. This improvement greatly reduces the computation cost and leads to faster

analysis. I should point out that the stable analysis of vector fields is one of the

goals of vector field visualization area that was not resolved before. The presented

work is the first to provide a practical solution to achieve such a goal.

12.1.2 Future Directions

The presented work also points out a number of future directions. First, the

periodic orbit detection method depends on efficient extraction of separation and

attachment points. While I have observed in the experiments that these points

tend to be close to periodic orbits, a rigorous mathematical study on the subject

is needed. Furthermore, other methods for extracting separation and attachment

points, such as that of Peikert and Roth [52], may lead to more numerically

163

stable results. Second, current MCG and ECG construction methods assume closed

surfaces. I plan to investigate means to extend them to handle surfaces with

boundaries. Third, I am exploring more intuitive illustration of the ECG’s and

MCG’s. In particular, I plan to explore graph and network visualization techniques

developed by researchers in the Information Visualization community. Fourth, I

expect to investigate automatic techniques for vector field simplification and make

use MCGs to obtain a multi-scale representation of flow which can be used to

guide vector field clustering, vector field compression, and automatic simplification.

Fifth, more rigorous mathematical analysis and proofs need to be introduced to

guarantee the minimal structure will be obtained after vector field simplification.

Sixth, I plan to study the reconstruction of the original vector field from the

obtained ECG/MCG graph, which can be applied to vector field compression.

Finally, there is a need to extend the work to 3D volume vector fields and much

larger scale (e.g. out-of-core) datasets, as well as the application to other types of

data analysis including scalar fields [4] and tensor fields [104] and more advanced

visualization problems beyond flow visualization [6, 85]. The research on the

extension of the presented techniques to time-dependent vector field analysis [24,75]

is also an important and non-trivial direction.

164

12.2 Vector Field Design

12.2.1 Summary

In the second part of the paper I address the problem of the design of time-varying

vector field on surfaces. More specifically, I propose the use of the parameterized

vector fields to approximate the solution. Two different types of vector fields

are discussed for different purposes in texture synthesis and animation. Various

design techniques are introduced to address the design of these two types of fields

efficiently. The initial fields can be further edited to eliminate undesired effects.

To my best knowledge, the presented design framework is the first in its kind for

general time-varying vector field design with bifurcation control.

12.2.2 Future Directions

I do not currently provide an explicit solution to control the in-between field gen-

eration. Therefore, unexpected behaviors may arise which requires either post

processing or re-configurating the initial setting and re-produce it again. This

regeneration process is expensive compared to steady field design and does not

guarantee that more satisfiable solutions can be found. In the future, I expect to

study a more robust technique that can inform the user what could possibly be

obtained given the specified constraints to address this problem. Second, I have

only focused on a small set of vector field features for the creation of a parameter-

ized vector field. There are other design primitives that may be important such

165

as streaklines and timelines. Third, the bifurcation control techniques proposed

in this work are still limited due to the lack of the support of a systematic time-

varying dynamics theory. Fourth, it will be interesting to experiment other vector

field generation methods such as the one based on discrete calculus (DEC) [21].

This work opens a new range of the field design topic which can be extended

to the design of higher order fields, such as time-varying tensor field design. In

addition, it is likely that in the future more complicated vector field design prob-

lems will attract computer graphics researchers. For instance, 3D shape morphing

and 3D fluid control will require the assistance of time-dependent 3D vector field

design. Of course, 3D vector field design can help to verify existing or newly de-

veloped volume flow visualization techniques and serve for education purposes as

well.

166

Bibliography

[1] Computer assisted proofs in dynamics group. http://capd.wsb-nlu.edu.pl/.

[2] Pierre Alliez, David Cohen-Steiner, Olivier Devillers, Bruno Lévy, and
Mathieu Desbrun. Anisotropic polygonal remeshing. ACM Trans. Graph.,
22(3):485–493, 2003.

[3] Uri M. Ascher and Linda R. Petzold. Computer Methods for Ordinary Differ-
ential Equations and Differential-Algebraic Equations. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 1998.

[4] Valerio Pascucci Attila Gyulassy, Peer-Timo Bremer and Bernd Hamann.
A practical approach to morse smale complex computation: Scalability and
generality. In IEEE Trans. Vis. Comput. Graph. (IEEE Visualization 2008),
volume 14, pages 1619–1626, 2008.

[5] Adam W. Bargteil, Funshing Sin, Jonathan E. Michaels, Tolga G. Goktekin,
and James F. O’Brien. A texture synthesis method for liquid animations. In
Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer
Animation, Sept 2006.

[6] Raghu Machiraju Bela Soni, David Thompson. Visualizing particle/flow
structure interactions in the small bronchial tubes. In IEEE Trans. Vis.
Comput. Graph. (IEEE Visualization 2008), volume 14, pages 1412–1427,
2008.

[7] Jeff R. Cash and Alan H. Karp. A variable order runge-kutta method for
initial value problems with rapidly varying right-hand sides. ACM Trans.
Math. Softw., 16(3):201–222, 1990.

[8] G. Chen, K. Mischaikow, R. S. Laramee, P. Pilarczyk, and E. Zhang. Vector
Field Editing and Periodic Orbit Extraction Using Morse Decomposition.
IEEE Transactions on Visualization and Computer Graphics, 13(4):769–785,
Jul./Aug. 2007.

167

[9] G. Chen, K. Mischaikow, R. S. Laramee, and E. Zhang. Efficient Morse
Decompositions of Vector Fields. IEEE Transactions on Visualization and
Computer Graphics, 14(4):848–862, Jul./Aug. 2008.

[10] Guoning Chen, Gregory Esch, Peter Wonka, Pascal Mller, and Eugene
Zhang. Interactive procedural street modeling. ACM Transactions on Graph-
ics (Siggraph 2008), 27(3), 2008. Article 103: 1–10.

[11] Stephen Chenney. Flow tiles. In SCA ’04: Proceedings of the 2004 ACM
SIGGRAPH/Eurographics symposium on Computer animation, pages 233–
242, Aire-la-Ville, Switzerland, Switzerland, 2004. Eurographics Association.

[12] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to algorithms.
MIT Press, Cambridge, MA, 1990.

[13] W. de Leeuw and R. van Liere. Visualization of Global Flow Structures
Using Multiple Levels of Topology. In Data Visualization ’99 (VisSym ’99),
pages 45–52. May 1999.

[14] W. de Leeuw and R. van Liere. Multi-level Topology for Flow Visualization.
Computers and Graphics, 24(3):325–331, June 2000.

[15] Wim C. de Leeuw and Robert van Liere. Collapsing flow topology using area
metrics. In David Ebert, Markus Gross, and Bernd Hamann, editors, IEEE
Visualization ’99, pages 349–354, San Francisco, 1999.

[16] Thierry Delmarcelle and Lambertus Hesselink. The topology of symmetric,
second-order tensor fields. In VIS ’94: Proceedings of the conference on Visu-
alization ’94, pages 140–147, Los Alamitos, CA, USA, 1994. IEEE Computer
Society Press.

[17] Huong Quynh Dinh, Anthony Yezzi, and Greg Turk. Texture transfer during
shape transformation. ACM Trans. Graph., 24(2):289–310, 2005.

[18] Albrecht Dold. Lectures on Algebraic Topology. Springer-Verlag Berlin Hei-
delberg, New York, 1980. Proposition 5.9.

[19] H. Edelsbrunner, J. Harer, and A Zomorodian. Hierarchical morse-smale
complexes for piecewise linear 2-manifolds. Discrete Comput. Geom, 30:87–
107, 2003.

168

[20] Michael Eidenschink. Exploring global dynamics : a numerical algorithm
based on the Conley index theory. PhD thesis, Georgia Institute of Technol-
ogy, 1996.

[21] Matthew Fisher, Peter Schröder, Mathieu Desbrun, and Hugues Hoppe. De-
sign of tangent vector fields. In SIGGRAPH ’07: ACM SIGGRAPH 2007
papers, page 56, New York, NY, USA, 2007. ACM.

[22] M. S. Floater. Mean value coordinates. CAGD, (20):19–27, 2003.

[23] Hongbo Fu, Yichen Wei, Chiew-Lan Tai, and Long Quan. Sketching
hairstyles. In SBIM ’07: Proceedings of the 4th Eurographics workshop on
Sketch-based interfaces and modeling, pages 31–36, New York, NY, USA,
2007. ACM.

[24] Christoph Garth and Florian Gerhardt. Efficient computation and visual-
ization of coherent structures in fluid flow applications. IEEE Transactions
on Visualization and Computer Graphics, 13(6):1464–1471, 2007. Member-
Xavier Tricoche and Member-Hagen Hans.

[25] Daniel Morse Stephen Sinder Sourabh V. Apte James A. Liburdy Guon-
ing Chen, Zhongzang Lin and Eugene Zhang. Multiscale feature detection in
unsteady separated flows. International Journal of Numerical Analysis and
Modeling, 5, Supp:17–35, 2008.

[26] J. Hale and H. Kocak. Dynamics and Bifurcations. New York: Springer-
Verlag, 1991.

[27] J. L. Helman and L. Hesselink. Representation and Display of Vector Field
Topology in Fluid Flow Data Sets. IEEE Computer, 22(8):27–36, August
1989.

[28] J. L. Helman and L. Hesselink. Visualizing vector field topology in fluid
flows. IEEE Computer Graphics and Applications, 11:36–46, May 1991.

[29] Aaron Hertzmann. Painterly rendering with curved brush strokes of multiple
sizes. In SIGGRAPH ’98: Proceedings of the 25th annual conference on
Computer graphics and interactive techniques, pages 453–460, New York,
NY, USA, 1998. ACM.

169

[30] Aaron Hertzmann and Ken Perlin. Painterly rendering for video and in-
teraction. In NPAR ’00: Proceedings of the 1st international symposium
on Non-photorealistic animation and rendering, pages 7–12, New York, NY,
USA, 2000. ACM.

[31] B. Jobard and W. Lefer. Creating evenly-spaced streamlines of arbitrary
density. In EG Workshop on Visualization in Scientific Computing, pages
43–56, 1997.

[32] C.R. Johnson. Top Scientific Visualization Research Problems. IEEE Com-
puter Graphics and Applications, 24(4):13–17, July/August 2004.

[33] Tomasz Kaczynski, Konstantin Mischaikow, and Marian Mrozek. Compu-
tational homology, volume 157 of Applied Mathematical Sciences. Springer-
Verlag, New York, 2004.

[34] W. D. Kalies and H. Ban. A computational approach to Conley’s decom-
position theorem. Journal of Computational and Nonlinear Dynamics, 1(4),
2006.

[35] W. D. Kalies, K. Mischaikow, and R. C. A. M. VanderVorst. An algorithmic
approach to chain recurrence. Found. Comput. Math., 5(4):409–449, 2005.

[36] D. N. Kenwright. Automatic detection of open and closed separation and
attachment lines. In Proceedings IEEE Visualization 98, pages 151–158,
1998.

[37] Vivek Kwatra, David Adalsteinsson, Theodore Kim, Nipun Kwatra, Mark
Carlson, and Ming Lin. Texturing fluids. IEEE Transactions on Visualization
and Computer Graphics, 13(5):939–952, 2007.

[38] Vivek Kwatra, Irfan Essa, Aaron Bobick, and Nipun Kwatra. Texture op-
timization for example-based synthesis. ACM Transactions on Graphics,
SIGGRAPH 2005, August 2005.

[39] R. Laramee, H. Hauser, H. Doleisch, F. Post, B. Vrolijk, and D. Weiskopf.
The state of the art in flow visualization: Dense and texture-based tech-
niques. Computer Graphics Forum, 23(2):203–221, 2004.

[40] R. S. Laramee, H. Hauser, L. Zhao, and F. H. Post. Topology Based Flow
Visualization: The State of the Art. In Topology-Based Methods in Visual-
ization Workshop (TopoInVis 2005), pages 1–19. Springer–Verlag, 2007.

170

[41] R. S. Laramee, B. Jobard, and H. Hauser. Image space based visualization
of unsteady flow on surfaces. In Proceedings IEEE Visualization ’03, pages
131–138. IEEE Computer Society, October 2003.

[42] Robert S. Laramee, Daniel Weiskopf, Juergen Schneider, and Helwig Hauser.
Investigating swirl and tumble flow with a comparison of visualization tech-
niques. In Proceedings IEEE Visualization 04, pages 51–58, 2004.

[43] Sylvain Lefebvre and Hugues Hoppe. Parallel controllable texture synthesis.
ACM Trans. Graph., 24(3):777–786, 2005.

[44] Sylvain Lefebvre and Hugues Hoppe. Appearance-space texture synthesis.
In SIGGRAPH ’06: ACM SIGGRAPH 2006 Papers, pages 541–548, New
York, NY, USA, 2006. ACM.

[45] Konstantin Mischaikow and Marian Mrozek. Conley index. In Handbook of
dynamical systems, Vol. 2, pages 393–460. North-Holland, Amsterdam, 2002.

[46] M. Mrozek and P. Zgliczy Nski. Set arithmetic and the enclosing problem in
dynamics. Annales Pol. Math., 74:237–259, 2000.

[47] Marian Mrozek. Leray functor and cohomological conley index for discrete
dynamical systems. Trans. Amer. Math. Soc., 318:149–178, 1990.

[48] Fabrice Neyret. Advected textures. In ACM-SIGGRAPH/EG Symposium
on Computer Animation (SCA), july 2003.

[49] Emil P., Adam F., and Hugues H. Lapped textures. In Proceedings of ACM
SIGGRAPH 2000, pages 465–470, July 2000.

[50] Jonathan Palacios and Eugene Zhang. Rotational symmetry field design on
surfaces. ACM Trans. Graph., 26(3):55:1–55:10, 2007.

[51] Jacob Palis, Jr. and Welington de Melo. Geometric theory of dynamical
systems. Springer-Verlag, New York, 1982. An introduction, Translated
from the Portuguese by A. K. Manning.

[52] R Peikert and M. Roth. The parallel vectors operator a vector field visu-
alization primitive. In Proceedings IEEE Visualization 99, pages 263–270,
1999.

171

[53] K. Polthier and E. Preuss. Identifying vector fields singularities using a
discrete hodge decomposition. Ed: H.C. Hege, K. Polthier, 2003.

[54] F. H. Post, B. Vrolijk, H. Hauser, R. S. Laramee, and H. Doleisch. The
State of the Art in Flow Visualization: Feature Extraction and Tracking.
Computer Graphics Forum, 22(4):775–792, Dec. 2003.

[55] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numer-
ical Recipes in C: The Art of Scientific Computing. Cambridge University
Press, New York, NY, USA, 1992.

[56] N. Rasmussen, D. Enright, D. Nguyen, S. Marino, N. Sumner, W. Geiger,
S. Hoon, and R. Fedkiw. Directable photorealistic liquids. In SCA ’04: Pro-
ceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Com-
puter animation, pages 193–202, Aire-la-Ville, Switzerland, Switzerland,
2004. Eurographics Association.

[57] Nicolas Ray, Wan Chiu Li, Bruno Lvy, and Alla Sheffer an d Pierre Alliez.
Periodic global parameterization. ACM Transactions on Graphics, 2006.

[58] J.W. Robbin and D. Salamon. Dynamical systems, shape theory and the
conley index. Ergodic Theory Dynamical Systems, 8:375–393, 1988.

[59] Monika Jankun-Kelly Eugene Zhang Robert S. Laramee, Guoning Chen and
David S. Thompson. Bringing topology-based flow visualization to the ap-
plication domain. In Topology-Based Methods in Visualization II (Proceed-
ings of Topo-In-Vis 2007), Mathematics and Visualization, pages 161–176.
Springer-Verlag, 2009.

[60] A. Rockwood and S. Bunderwala. A toy vector field based on geometric
algebra. In Proceeding Application of Geometric Algebra in Computer Science
and Engineering, (AGACSE2001), pages 179–185, 2001.

[61] G. Scheuermann, H. Hagen, H. Krüger, M. Menzel, and A. Rockwood. Vi-
sualization of Higher Order Singularities in Vector Fields. In Proceedings of
IEEE Visualization ’97, pages 67–74, October 1997.

[62] G. Scheuermann, H. Krger, M. Menzel, and A. P. Rockwood. Visualizing
nonlinear vector field topology. IEEE Transactions on Visualization and
Computer Graphics, 4(2):109–116, 1998.

172

[63] J. Sethian. A fast marching level set method for monotonically advancing
fronts. In Proc. Nat. Acad. Sci., volume 93, pages 1591–1595, 1996.

[64] A. Sharf, D. Alcantara, T. Lewiner, C. Greif, A. Sheffer, N. Amenta, and
D. Cohen-Or. Space-time surface reconstruction using incompressible flow.
In ACM Transactions on Graphics (SIGGRAPH ASIA Conference Proceed-
ings), 2008.

[65] J. Stam. Flows on surfaces of arbitrary topology. In ACM Transactions on
Graphics (SIGGRAPH 2003), volume 22(3), pages 724–731, July 2003.

[66] Jos Stam. Stable fluids. In Alyn Rockwood, editor, Proceedings of ACM
SIGGRAPH 1999, pages 121–128, Los Angeles, 1999. Addison Wesley Long-
man.

[67] Guoning Chen Sourabh V. Apte James A. Liburdy Stephen Snider,
Daniel Morse and Eugene Zhang. Detection and analysis of separated flow
induced vortical structures, January 2008.

[68] Andrzej Szymczak. The conley index for discrete semidynamical systems.
Topology and its Applications, 66(3):215–240, 1995.

[69] Andrzej Szymczak. Index Pairs: from Dynamics to Combinatorics and Back.
PhD thesis, Georgia Institute of Technology, 1999.

[70] K. Mischaikow T. Kaczynski and M. Mrozek. Computational Homology.
Springer, 2004.

[71] H. Theisel. Designing 2d vector fields of arbitrary topology. In Computer
Graphics Forum (Proceedings Eurographics 2002), volume 21, pages 595–604,
July 2002.

[72] H. Theisel, Ch. Rössl, and H.-P. Seidel. Combining Topological Simplifica-
tion and Topology Preserving Compression for 2D Vector Fields. In Pacific
Graphics, pages 419–423, 2003.

[73] H. Theisel, Ch. Rössl, and H.-P. Seidel. Compression of 2D Vector Fields
Under Guaranteed Topology Preservation. In Eurographics (EG 03), volume
22(3) of Computer Graphics forum, pages 333–342, September 1–6 2003.

173

[74] H. Theisel, T. Weinkauf, H.-P. Seidel, and H. Seidel. Grid-Independent
Detection of Closed Stream Lines in 2D Vector Fields. In Proceedings of the
Conference on Vision, Modeling and Visualization 2004 (VMV 04), pages
421–428, November 2004.

[75] Holger Theisel, Tino Weinkauf, Hans-Christian Hege, and Hans-Peter Seidel.
Topological methods for 2d time-dependent vector fields based on stream
lines and path lines. IEEE Transactions on Visualization and Computer
Graphics, 11(4):383–394, 2005.

[76] Yiying Tong, Santiago Lombeyda, Anil N. Hirani, and Mathieu Des-
brun. Discrete multiscale vector field decomposition. ACM Trans. Graph.,
22(3):445–452, 2003.

[77] Adrien Treuille, Seth Cooper, and Zoran Popović. Continuum crowds. ACM
Trans. Graph., 25(3):1160–1168, 2006.

[78] X. Tricoche. Vector and Tensor Field Topology Simplification, Tracking,
and Visualization. Schriftenreihe Fachbereich Informatik (3), University of
Kaiserslautern, 2002.

[79] X. Tricoche, C. Garth, G. L. Kindlmann, E. Deines, G. Scheuermann,
M. Ruetten, and C. D. Hansen. Visualization of intricate flow structures
for vortex breakdown analysis. In Proceedings IEEE Visualization 04, pages
187–194, 2004.

[80] X. Tricoche, G. Scheuermann, and H. Hagen. Continuous topology simplifi-
cation of planar vector fields. In Proceedings IEEE Visualization ’01, pages
159–166. IEEE Computer Society, 2001.

[81] X. Tricoche, G. Scheuermann, and H. Hagen. Topology-Based Visualization
of Time-Dependent 2D Vector Fields. In Proceedings of the Joint Eurograph-
ics - IEEE TCVG Symposium on Visualization (VisSym ’01), pages 117–126,
May 28–30 2001.

[82] X. Tricoche, G. Scheuermann, and H. Hagen. Topology-based visualiza-
tion of time-dependent 2d vector fields. In Data Visualization 2001 (Joint
Eurographics-IEEE TCVG Symposium on Visualization Proceedings), pages
117–126, 2001.

174

[83] Xavier Tricoche, Gerik Scheuermann, and Hans Hagen. A topology simpli-
fication method for 2d vector fields. In Proceedings of IEEE Visualization
2000, pages 359–366, Los Alamitos, CA, USA, 2000. IEEE Computer Society
Press.

[84] G. Turk. Texture synthesis on surfaces. In ACM Transactions on Graphics
(SIGGRAPH 2001), pages 347–354, August 2001.

[85] Robin Vallacher and Andrzej Nowak. Dynamical Systems in Social Psychol-
ogy. Academic Press, 1994. ISBN: 0127099905.

[86] J.J. van Wijk. Image based flow visualization. In ACM Transactions on
Graphics (SIGGRAPH 2002), volume 21(2), pages 745–754, Jul 2002.

[87] J.J. van Wijk. Image based flow visualization for curved surfaces. In Pro-
ceedings IEEE Visualization ’03, pages 123–130. IEEE Computer Society,
2003.

[88] V. Verma, D. Kao, and A. Pang. A flow-guided streamline seeding strategy.
In Proceedings IEEE Visualization 00, pages 163–170, 2000.

[89] Wolfram von Funck, Holger Theisel, and Hans-Peter Seidel. Vector field
based shape deformations. ACM Trans. Graph., 25(3):1118–1125, 2006.

[90] Wolfram von Funck, Holger Theisel, and Hans-Peter Seidel. Explicit control
of vector field based shape deformations. In PG ’07: Proceedings of the 15th
Pacific Conference on Computer Graphics and Applications, pages 291–300,
Washington, DC, USA, 2007. IEEE Computer Society.

[91] L.-Y. Wei and M. Levoy. Texture synthesis over arbitrary manifold surfaces.
In Proceedings of ACM SIGGRAPH 2001, pages 355–360, July 2001.

[92] T. Weinkauf, H. Theisel, H.-C. Hege, and H.-P. Seidel. Topological construc-
tion and visualization of higher order 3d vector fields. In Computer Graphics
Forum (Eurographics 2004), number 3, pages 469–478, October 2004.

[93] T. Weinkauf, H. Theisel, K. Shi, H.-C. Hege, and H.-P. Seidel. Extracting
higher order critical points and topological simplification of 3d vector fields.
In Proceedings IEEE Visualization ’05. IEEE Computer Society, October
2005.

175

[94] Daniel Weiskopf and Gordon Erlebacher. Overview of flow visualization.
Elsevier, Amsterdam, 2005.

[95] J. Wejchert and D. Haumann. Animation aerodynamics. Computer Graphics
Proceedings, Annual Conference Series (SIGGRAPH 91), pages 19–22, 1991.

[96] Mark Wiebe and Ben Houston. The tar monster: creating a character with
fluid simulation. In SIGGRAPH ’04: ACM SIGGRAPH 2004 Sketches,
page 64, New York, NY, USA, 2004. ACM.

[97] T. Wischgoll and G. Scheuermann. Detection and visualization of planar
closed streamline. IEEE Transactions on Visualization and Computer Graph-
ics, 7(2):165–172, 2001.

[98] T. Wischgoll, G. Scheuermann, and H. Hagen. Tracking Closed Streamlines
in Time Dependent Planar Flows. In Proceedings of the Vision Modeling and
Visualization Conference 2001 (VMV 01), pages 447–454, November 2001.

[99] L. Xu, J.N. Chen, and J.Y. Jia. A segmentation based variational model for
accurate optical flow estimation. pages I: 671–684, 2008.

[100] Yan Qian Ye, Sui Lin Cai, Lan Sun Chen, Ke Cheng Huang, Ding Jun Luo,
Zhi En Ma, Er Nian Wang, Ming Shu Wang, and Xin An Yang. Theory of
limit cycles, volume 66 of Translations of Mathematical Monographs. Ameri-
can Mathematical Society, Providence, RI, second edition, 1986. Translated
from the Chinese by C. Y. Lo.

[101] E. Zhang, K. Mischaikow, and G. Turk. Vector field design on surfaces. ACM
Transactions on Graphics, 25(4):1294–1326, 2006.

[102] Eugene Zhang. Surface Topological Analysis for Image Synthesis. Georgia
Institute of Technology, 2004.

[103] Eugene Zhang, James Hays, and Greg Turk. Interactive tensor field de-
sign and visualization on surfaces. IEEE Transactions on Visualization and
Computer Graphics, 13(1):94–107, 2007.

[104] Eugene Zhang, Harry Yeh, Zhongzang Lin, and R. S. Laramee. Asymmetric
tensor analysis for flow visualization. IEEE Transactions on Visualization
and Computer Graphics, 15(1):106–122, 2009.

