4 research outputs found

    Supervision distante pour l'apprentissage de structures discursives dans les conversations multi-locuteurs

    Get PDF
    L'objectif principal de cette thèse est d'améliorer l'inférence automatique pour la modélisation et la compréhension des communications humaines. En particulier, le but est de faciliter considérablement l'analyse du discours afin d'implémenter, au niveau industriel, des outils d'aide à l'exploration des conversations. Il s'agit notamment de la production de résumés automatiques, de recommandations, de la détection des actes de dialogue, de l'identification des décisions, de la planification et des relations sémantiques entre les actes de dialogue afin de comprendre les dialogues. Dans les conversations à plusieurs locuteurs, il est important de comprendre non seulement le sens de l'énoncé d'un locuteur et à qui il s'adresse, mais aussi les relations sémantiques qui le lient aux autres énoncés de la conversation et qui donnent lieu à différents fils de discussion. Une réponse doit être reconnue comme une réponse à une question particulière ; un argument, comme un argument pour ou contre une proposition en cours de discussion ; un désaccord, comme l'expression d'un point de vue contrasté par rapport à une autre idée déjà exprimée. Malheureusement, les données de discours annotées à la main et de qualités sont coûteuses et prennent du temps, et nous sommes loin d'en avoir assez pour entraîner des modèles d'apprentissage automatique traditionnels, et encore moins des modèles d'apprentissage profond. Il est donc nécessaire de trouver un moyen plus efficace d'annoter en structures discursives de grands corpus de conversations multi-locuteurs, tels que les transcriptions de réunions ou les chats. Un autre problème est qu'aucune quantité de données ne sera suffisante pour permettre aux modèles d'apprentissage automatique d'apprendre les caractéristiques sémantiques des relations discursives sans l'aide d'un expert ; les données sont tout simplement trop rares. Les relations de longue distance, dans lesquelles un énoncé est sémantiquement connecté non pas à l'énoncé qui le précède immédiatement, mais à un autre énoncé plus antérieur/tôt dans la conversation, sont particulièrement difficiles et rares, bien que souvent centrales pour la compréhension. Notre objectif dans cette thèse a donc été non seulement de concevoir un modèle qui prédit la structure du discours pour une conversation multipartite sans nécessiter de grandes quantités de données annotées manuellement, mais aussi de développer une approche qui soit transparente et explicable afin qu'elle puisse être modifiée et améliorée par des experts.The main objective of this thesis is to improve the automatic capture of semantic information with the goal of modeling and understanding human communication. We have advanced the state of the art in discourse parsing, in particular in the retrieval of discourse structure from chat, in order to implement, at the industrial level, tools to help explore conversations. These include the production of automatic summaries, recommendations, dialogue acts detection, identification of decisions, planning and semantic relations between dialogue acts in order to understand dialogues. In multi-party conversations it is important to not only understand the meaning of a participant's utterance and to whom it is addressed, but also the semantic relations that tie it to other utterances in the conversation and give rise to different conversation threads. An answer must be recognized as an answer to a particular question; an argument, as an argument for or against a proposal under discussion; a disagreement, as the expression of a point of view contrasted with another idea already expressed. Unfortunately, capturing such information using traditional supervised machine learning methods from quality hand-annotated discourse data is costly and time-consuming, and we do not have nearly enough data to train these machine learning models, much less deep learning models. Another problem is that arguably, no amount of data will be sufficient for machine learning models to learn the semantic characteristics of discourse relations without some expert guidance; the data are simply too sparse. Long distance relations, in which an utterance is semantically connected not to the immediately preceding utterance, but to another utterance from further back in the conversation, are particularly difficult and rare, though often central to comprehension. It is therefore necessary to find a more efficient way to retrieve discourse structures from large corpora of multi-party conversations, such as meeting transcripts or chats. This is one goal this thesis achieves. In addition, we not only wanted to design a model that predicts discourse structure for multi-party conversation without requiring large amounts of hand-annotated data, but also to develop an approach that is transparent and explainable so that it can be modified and improved by experts. The method detailed in this thesis achieves this goal as well

    Deep learning methods for knowledge base population

    Get PDF
    Knowledge bases store structured information about entities or concepts of the world and can be used in various applications, such as information retrieval or question answering. A major drawback of existing knowledge bases is their incompleteness. In this thesis, we explore deep learning methods for automatically populating them from text, addressing the following tasks: slot filling, uncertainty detection and type-aware relation extraction. Slot filling aims at extracting information about entities from a large text corpus. The Text Analysis Conference yearly provides new evaluation data in the context of an international shared task. We develop a modular system to address this challenge. It was one of the top-ranked systems in the shared task evaluations in 2015. For its slot filler classification module, we propose contextCNN, a convolutional neural network based on context splitting. It improves the performance of the slot filling system by 5.0% micro and 2.9% macro F1. To train our binary and multiclass classification models, we create a dataset using distant supervision and reduce the number of noisy labels with a self-training strategy. For model optimization and evaluation, we automatically extract a labeled benchmark for slot filler classification from the manual shared task assessments from 2012-2014. We show that results on this benchmark are correlated with slot filling pipeline results with a Pearson's correlation coefficient of 0.89 (0.82) on data from 2013 (2014). The combination of patterns, support vector machines and contextCNN achieves the best results on the benchmark with a micro (macro) F1 of 51% (53%) on test. Finally, we analyze the results of the slot filling pipeline and the impact of its components. For knowledge base population, it is essential to assess the factuality of the statements extracted from text. From the sentence "Obama was rumored to be born in Kenya", a system should not conclude that Kenya is the place of birth of Obama. Therefore, we address uncertainty detection in the second part of this thesis. We investigate attention-based models and make a first attempt to systematize the attention design space. Moreover, we propose novel attention variants: External attention, which incorporates an external knowledge source, k-max average attention, which only considers the vectors with the k maximum attention weights, and sequence-preserving attention, which allows to maintain order information. Our convolutional neural network with external k-max average attention sets the new state of the art on a Wikipedia benchmark dataset with an F1 score of 68%. To the best of our knowledge, we are the first to integrate an uncertainty detection component into a slot filling pipeline. It improves precision by 1.4% and micro F1 by 0.4%. In the last part of the thesis, we investigate type-aware relation extraction with neural networks. We compare different models for joint entity and relation classification: pipeline models, jointly trained models and globally normalized models based on structured prediction. First, we show that using entity class prediction scores instead of binary decisions helps relation classification. Second, joint training clearly outperforms pipeline models on a large-scale distantly supervised dataset with fine-grained entity classes. It improves the area under the precision-recall curve from 0.53 to 0.66. Third, we propose a model with a structured prediction output layer, which globally normalizes the score of a triple consisting of the classes of two entities and the relation between them. It improves relation extraction results by 4.4% F1 on a manually labeled benchmark dataset. Our analysis shows that the model learns correct correlations between entity and relation classes. Finally, we are the first to use neural networks for joint entity and relation classification in a slot filling pipeline. The jointly trained model achieves the best micro F1 score with a score of 22% while the neural structured prediction model performs best in terms of macro F1 with a score of 25%

    Mining entity and relation structures from text: An effort-light approach

    Get PDF
    In today's computerized and information-based society, text data is rich but often also "messy". We are inundated with vast amounts of text data, written in different genres (from grammatical news articles and scientific papers to noisy social media posts), covering topics in various domains (e.g., medical records, corporate reports, and legal acts). Can computational systems automatically identify various real-world entities mentioned in a new corpus and use them to summarize recent news events reliably? Can computational systems capture and represent different relations between biomedical entities from massive and rapidly emerging life science literature? How might computational systems represent the factual information contained in a collection of medical reports to support answering detailed queries or running data mining tasks? While people can easily access the documents in a gigantic collection with the help of data management systems, they struggle to gain insights from such a large volume of text data: document understanding calls for in-depth content analysis, content analysis itself may require domain-specific knowledge, and over a large corpus, a complete read and analysis by domain experts will invariably be subjective, time-consuming and relatively costly. To turn such massive, unstructured text corpora into machine-readable knowledge, one of the grand challenges is to gain an understanding of the typed entity and relation structures in the corpus. This thesis focuses on developing principled and scalable methods for extracting typed entities and relationship with light human annotation efforts, to overcome the barriers in dealing with text corpora of various domains, genres and languages. In addition to our effort-light methodologies, we also contribute effective, noise-robust models and real-world applications in two main problems: - Identifying Typed Entities: We show how to perform data-driven text segmentation to recognize entities mentioned in text as well as their surrounding relational phrases, and infer types for entity mentions by propagating "distant supervision" (from external knowledge bases) via relational phrases. In order to resolve data sparsity issue during propagation, we complement the type propagation with clustering of functionally similar relational phrases based on their redundant occurrences in large corpus. Apart from entity recognition and coarse-grained typing, we claim that fine-grained entity typing is beneficial for many downstream applications and very challenging due to the context-agnostic label assignment in distant supervision, and we present principled, efficient models and algorithms for inferring fine-grained type path for entity mention based on the sentence context. - Extracting Typed Entity Relationships: We extend the idea of entity recognition and typing to extract relationships between entity mentions and infer their relation types. We show how to effectively model the noisy distant supervision for relationship extraction, and how to avoid the error propagation usually happened in incremental extraction pipeline by integrating typing of entities and relationships in a principled framework. The proposed approach leverages noisy distant supervision for both entities and relationships, and simultaneously learn to uncover the most confident labels as well as modeling the semantic similarity between true labels and text features. In practice, text data is often highly variable: corpora from different domains, genres or languages have typically required for effective processing a wide range of language resources (e.g., grammars, vocabularies, and gazetteers). The “massive” and “messy” nature of text data poses significant challenges to creating tools for automated extraction of entity and relation structures that scale with text volume. State-of-the-art information extraction systems have relied on large amounts of task-specific labeled data (e.g., annotating terrorist attack-related entities in web forum posts written in Arabic), to construct machine-learning models (e.g., deep neural networks). However, even though domain experts can manually create high-quality training data for specific tasks as needed, both the scale and efficiency of such a manual process are limited. This thesis harnesses the power of ``big text data'' and focuses on creating generic solutions for efficient construction of customized machine-learning models for mining typed entities and relationships, relying on only limited amounts of (or even no) task-specific training data. The approaches developed in the thesis are thus general and applicable to all kinds of text corpora in different natural languages, enabling quick deployment of data mining applications. We provide scalable algorithmic approaches that leverage external knowledge bases as sources of supervision and exploit data redundancy in massive text corpora, and we show how to use them in large-scale, real-world applications, including structured exploration and analysis of life sciences literature, extracting document facets from technical documents, document summarization, entity attribute discovery, and open-domain information extraction
    corecore