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ABSTRACT

In today’s computerized and information-based society, text data is rich but often also

“messy”. We are inundated with vast amounts of text data, written in different genres (from

grammatical news articles and scientific papers to noisy social media posts), covering topics in

various domains (e.g., medical records, corporate reports, and legal acts). Can computational

systems automatically identify various real-world entities mentioned in a new corpus and use

them to summarize recent news events reliably? Can computational systems capture and

represent different relations between biomedical entities from massive and rapidly emerging

life science literature? How might computational systems represent the factual information

contained in a collection of medical reports to support answering detailed queries or running

data mining tasks?

While people can easily access the documents in a gigantic collection with the help of

data management systems, they struggle to gain insights from such a large volume of text

data: document understanding calls for in-depth content analysis, content analysis itself may

require domain-specific knowledge, and over a large corpus, a complete read and analysis

by domain experts will invariably be subjective, time-consuming and relatively costly. To

turn such massive, unstructured text corpora into machine-readable knowledge, one of the

grand challenges is to gain an understanding of the typed entity and relation structures in

the corpus. This thesis focuses on developing principled and scalable methods for extracting

typed entities and relationship with light human annotation efforts, to overcome the barriers

in dealing with text corpora of various domains, genres and languages. In addition to our

effort-light methodologies, we also contribute effective, noise-robust models and real-world

applications in two main problems:

• Identifying Typed Entities: We show how to perform data-driven text segmen-

tation to recognize entities mentioned in text as well as their surrounding relational

phrases, and infer types for entity mentions by propagating “distant supervision” (from

external knowledge bases) via relational phrases. In order to resolve data sparsity issue

during propagation, we complement the type propagation with clustering of function-

ally similar relational phrases based on their redundant occurrences in large corpus.

Apart from entity recognition and coarse-grained typing, we claim that fine-grained

entity typing is beneficial for many downstream applications and very challenging due

to the context-agnostic label assignment in distant supervision, and we present prin-

cipled, efficient models and algorithms for inferring fine-grained type path for entity
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mention based on the sentence context.

• Extracting Typed Entity Relationships: We extend the idea of entity recognition

and typing to extract relationships between entity mentions and infer their relation

types. We show how to effectively model the noisy distant supervision for relationship

extraction, and how to avoid the error propagation usually happened in incremental

extraction pipeline by integrating typing of entities and relationships in a principled

framework. The proposed approach leverages noisy distant supervision for both entities

and relationships, and simultaneously learn to uncover the most confident labels as well

as modeling the semantic similarity between true labels and text features.

In practice, text data is often highly variable: corpora from different domains, genres or

languages have typically required for effective processing a wide range of language resources

(e.g., grammars, vocabularies, and gazetteers). The massive and messy nature of text data

poses significant challenges to creating tools for automated extraction of entity and relation

structures that scale with text volume. State-of-the-art information extraction systems have

relied on large amounts of task-specific labeled data (e.g., annotating terrorist attack-related

entities in web forum posts written in Arabic), to construct machine-learning models (e.g.,

deep neural networks). However, even though domain experts can manually create high-

quality training data for specific tasks as needed, both the scale and efficiency of such a

manual process are limited. This thesis harnesses the power of “big text data” and focuses on

creating generic solutions for efficient construction of customized machine-learning models

for mining typed entities and relationships, relying on only limited amounts of (or even

no) task-specific training data. The approaches developed in the thesis are thus general

and applicable to all kinds of text corpora in different natural languages, enabling quick

deployment of data mining applications. We provide scalable algorithmic approaches that

leverage external knowledge bases as sources of supervision and exploit data redundancy in

massive text corpora, and we show how to use them in large-scale, real-world applications,

including structured exploration and analysis of life sciences literature, extracting document

facets from technical documents, document summarization, entity attribute discovery, and

open-domain information extraction.
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CHAPTER 1: INTRODUCTION

The success of data mining technology is largely attributed to the efficient and effec-

tive analysis of structured data. However, the majority of existing data generated in our

computerized society is unstructured or loosely-structured, and is typically “text-heavy”.

Figure 1.1: An illustration of entity and relation
structures extracted from some text data. The
nodes correspond to entities and the links
represent their relationships.

People are soaked with vast amounts of

natural-language text data, ranging from

news articles, social media posts, online ad-

vertisements, scientific publications, to a

wide range of textual information from vari-

ous domains (e.g., medical notes and corpo-

rate reports). Big data leads to big opportu-

nities to uncover structures of real-world en-

tities (e.g., person, company, product) and

relations (e.g., employee of, manufacture)

from massive text corpora. Can machines

automatically identify person, organization

and location entities in a news corpus and

use them to summarize recent news events

(Fig. 1.1)? Can we mine different relations

between proteins, drugs and diseases from

massive and rapidly emerging life science literature? How would one represent entity and

relation structures hidden in a collection of medical reports to support answering precise

queries or running data mining tasks?

While accessing documents in a gigantic collection is no longer a hard thing with the help

of data management systems, people, especially those who are not domain experts, struggle

to gain insights from such a large volume of text data: document understanding calls for

in-depth content analysis, content analysis itself may require domain-specific knowledge,

and over a large corpus, a complete read and analysis by domain experts will invariably

be subjective, time-consuming and relatively costly. Moreover, text data is highly variable:

corpora from different domains, genres or languages have typically required for effective

processing a wide range of language resources (e.g., grammars, vocabularies, gazetteers).

The “massive” and “messy” nature of text data poses significant challenges to creating tools

for automated processing and algorithmic analysis of content that scale with text volume.

This thesis develops principled and scalable methods for the mining of typed entity and
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relation structures from unstructured text corpora, with a focus on overcoming the barriers

in dealing with text corpora of various domains, genres and languages. State-of-the-art

information extraction (IE) approaches have relied on large amounts of task-specific labeled

data (e.g., annotating terrorist attack-related entities in web forum posts written in Arabic),

to construct machine-learning models (e.g., deep neural networks). However, even though

domain experts can manually create high-quality training data for specific tasks as needed,

both the scale and efficiency of such a manual process are limited. My thesis research

harnesses the power of “big text data” and focuses on creating generic solutions for efficient

construction of customized machine-learning models for factual structure extraction, relying

on only limited amounts of (or even no) task-specific training data.

The main directions of our work are: (1) entity recognition and typing, which automatically

identifies token spans of real-world entities of interests from text and classifies them into a

set of coarse-grained entity types; (2) fine-grained entity typing, which assigns the most

appropriate type path in a given type hierarchy to entity mention based on their sentence

context; and (3) relation extraction, which determine what kind of relations is expressed

between two entities based on the sentences where they co-occur. We provide scalable

algorithmic approaches that leverage external knowledge bases as sources of supervision and

exploit data redundancy in massive text corpora, and we show how to use them in large-

scale, real-world applications, including structured exploration and analysis of life sciences

literature, extracting document facets from technical documents, document summarization,

entity attribute discovery, and open-domain information extraction.

1.1 OVERVIEW AND CONTRIBUTIONS

This thesis studies how to automate the process of extracting typed entity and relation

structures from a large corpus with light human efforts (i.e., Effort-Light StructMine),

that is, with no task-specific manual annotation on the corpus. In contrast to existing knowl-

edge base population approaches (e.g., Google Knowledge Vault [1], NELL [2], KnowItAll [3],

DeepDive [4]) that harvests facts incrementally from the whole Web to cover common knowl-

edge in the world, my approach aim to generate a structured (typed) view of all the entities

and their relationships in a given corpus, to enable semantic, holistic and fast analysis of all

content in the full corpus. Thus the extraction of a corpus-specific entity/relation structures

is distinct from, but also complements the task of knowledge base population. As a re-

sult, the application of effort-light StructMine techniques for extracting entity and relation

structures focuses on establishing only corpus-specific factual knowledge (e.g. identifying

the entities and relations disambiguated for that corpus), a task that is outside the scope of
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general knowledge bases or graphs.

Challenges. We have witnessed the great success of machine-learning approaches in yielding

state-of-the-art performance on information extraction when abundant amounts of training

data are available. In contrast to rule-based systems, supervised learning-based systems

shift the human expertise in customizing systems away from the complex handcrafting of

extraction rules to the annotation of training data and feature engineering. The resulting

effectiveness of supervised learning systems largely depends on the amount of available an-

notated training data and complexity of the task. When the quantity of annotated data

is limited and the complexity of the task is high, these factors become bottlenecks in ex-

tracting corpus-specific entity/relation structures. Recent advances in bootstrapping pattern

learning (e.g., NELL [2], KnowItAll [3], OpenIE [5]) aim to reduce the amount of human

involvement—only an initial set of annotated examples/patterns is required from domain

experts, to iteratively produce more patterns and examples for the task. Such a process,

however, still needs manual spot-checking of system intermediate output on a regular basis

to avoid error propagation, and suffers from low coverage on “implicit relations”, i.e., those

that are not overtly expressed in the corpus and so fail to match textual patterns generated

by the systems.

Human
labeling
effort

Feature engineering effort

Weakly-supervised
learning methods

Hand-crafted
methods

Supervised
learning methods

Distantly-supervised
learning methods

CMU NELL, 2009 - present
UW KnowItAll, Open IE, 2005 - present
Max-Planck YAGO, 2008 - present

Stanford CoreNLP, 2005 - present
UT Austin Dependency Kernel, 2005
IBM Watson Language APIs

UCB Hearst Pattern, 1992
NYU Proteus, 1997

Stanford: Snorkel, MIML-RE 2012 - present
U Washington: FIGER, MultiR, 2012
Effort-Light StructMine (this thesis)
(KDD’15, 16, 17, WWW’15, 17, 18, EMNLP’16, 17…)

Figure 1.2: Overview of the related work. Our method, effort-light StructMine, has relied on
lightest efforts on human laboring and feature engineering when compared with prior arts.
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Corpus-specific
ModelsText Corpus

Entity & Relation
Structures

News
articles

PubMed
papers

Knowledge
Bases (KB)

Figure 1.3: Illustration of the proposed framework. Effort-light StructMine leverages existing
structures stored in external knowledge bases to automatically generate large amounts of
corpus-specific, potentially noisy training data, and builds corpus-specific models for extracting
entity and relation structures.

Proposed Framework. Our solution to effort-light StructMine aims to bridge the gap

between customized machine-learning models and the absence of high-quality task-specific

training data. It leverages the information overlap between background facts stored in

external knowledge bases (KBs) (e.g., Freebase [6], BioPortal [7]) and the given corpus to

automatically generate large amounts of (possibly noisy) task-specific training data; and

it exploits redundant text information within the massive corpus to reduce the complexity

of feature generation (e.g., sentence parsing). This solution is based on two key intuitions

which are described below.

First, in a massive corpus, structured information about some of the entities (e.g., entity

types, relationships to other entities) can be found in external KBs. Can we align the corpus

with external KBs to automatically generate training data for extracting entity and relation

structures at a large scale? Such retrieved information supports the automated annotation

of entities and relations in text and labeling of their categories, yielding (possibly noisy)

corpus-specific training data (Figure 1.3). Although the overlaps between external KBs

and the corpus at hand might involve only a small proportion of the corpus, the scale of

the automatically labeled training data could still be much larger than that of manually

annotated data by domain experts.

Second, text units (e.g., word, phrase) co-occur frequently with entities and other text

units in a massive corpus. Can we exploit the textual co-occurrence patterns to characterize

the semantics of text units, entities, and entity relations? For example, having observed
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that “government”, “speech”, “party” co-occur frequently with politician entities in the

training data, the next time these text units occur together with an unseen entity in a

sentence, the algorithm can more confidently guess that entity is a politician. As such

patterns become more apparent in a massive corpus with rich data redundancy, big text data

leads to big opportunities in representing semantics of text unit without complex feature

generation.

To systematically model the intuitions above, effort-light StructMine approaches the struc-

ture extraction tasks as follows: (1) annotate the text corpus automatically with target fac-

tual structure instances (e.g., entity names, entity categories, relationships) by referring to

external KBs, to create a task-specific training data (i.e., distant supervision); (2) extract

shallow text units (e.g., words, n-grams, word shapes) surrounding the annotated instances

in local context; (3) learn semantic vector representations for target instances, text units,

and their category labels based on distant supervision and corpus-level co-occurrence statis-

tics, through solving joint optimization problems; and (4) apply learned semantic vector

representations to extract new factual instances in the remaining part of the corpus. The

resulting framework, which integrate these ideas, has minimal reliance on human efforts, and

thus can be ported to solve structure extraction tasks on text corpora of different kinds (i.e.,

domain-independent, language-independent, genre-independent).

The thesis is organized into two main parts: (1) identifying typed entities, and (2) ex-

tracting entity relationships. We summarize the main problems of each part in the form of

questions in Table 1.1.

Part Research Problem Chapter

I: Identifying
Typed
Entities

Entity Recognition and Typing: How can we identify
token spans of real-world entities and their types from text?

4

Fine-grained Entity Typing: How can we assign fine-
grained types to mentions of entities in text?

5

II: Extracting
Typed Entity
Relationships

Joint Extraction of Entities and Relations: What
types of entities are mentioned in text and what typed of
relationships are expressed between them?

6

Table 1.1: Thesis Organization
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1.1.1 Part I: Identifying Typed Entities

Real-world entities are important factual structures that can be identified from text to

represent the factual knowledge embedded in massive amounts of text documents, and can

server as fundamental building blocks for many downstream data mining and natural lan-

guage processing tasks such as knowledge base construction and recommender systems. At

a macroscopic level, how can we extract entities of types of interests from text with minimal

reliance on labeled training data? At a microscopic level, how can we determine the fine-

grained categories of an entity based on the context where it occurs? Our work proposes

effective and distantly-supervised methods for recognizing and typing entities from text by

leveraging external knowledge bases and exploiting rich data redundancy in large corpora.

With the entities and their coarse-grained types extracted, we further look into how to assign

more fine-grained entity types given the context and noisy distant supervision.

Entity Recognition and Typing

How can we identify token spans of real-world entities and their categories from text?

One of the most important factual structures in text is entity. Recognizing entities from

text and labeling their types (e.g., person, location) enables effectives structured analysis of

unstructured text corpora (Chapter 4). Traditional named entity recognition (NER) systems

are usually designed for several major types and general domains, and so require additional

steps for adaptation to a new domain and new types. Our method, ClusType [8], aims

at identifying typed entities of interests from text without task-specific human supervision.

While most existing NER methods treat the problem as sequence tagging task and require

significant amounts of manually labeled sentences (with typed entities), ClusType makes use

of entity information stored in freely-available knowledge bases to create large amounts of

(yet potentially noisy) labeled data and infers types of other entities mentioned in text in a

robust and efficient way.

We formalize the entity recognition and typing task as a distantly-supervised learning

problem. The solution workflow is: (1) detect entity mentions from a corpus; (2) map can-

didate entity mentions to KB entities of target types; and (3) use those confidently mapped

{mention, type} pairs as labeled data to infer the types of remaining candidate mentions.

ClusType runs data-driven phrase mining to generate entity mention candidates and relation

phrases (thus having no reliance on pre-trained name recognizer), and enforces the principle

that relation phrases should be softly clustered when propagating type information between
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The best BBQ I’ve tasted 
in Phoenix ! I had the 
pulled pork sandwich 
with coleslaw and baked 
beans for lunch. The
owner is very nice. …

food location person

The best BBQ I’ve tasted 
in Phoenix! I had the 
pulled pork sandwich 
with coleslaw and baked 
beans for lunch. The
owner is very nice. …

Figure 1.4: An example for illustration of entity recognition and typing.

their argument entities. We formulate a joint optimization to integrate type propagation via

relation phrases and clustering of relation phrases.

Contributions:

• Problem: We study the problem of distantly-supervised entity recognition and typing

in a domain-specific corpus, where only a corpus and a reference knowledge base are

given as input.

• Methodology : We develop an efficient, domain-independent phrase segmentation al-

gorithm for extracting entity mentions and relation phrases. Entity types can be

estimated for entity mentions by solving the clustering-integrated type propagation.

• Effectiveness on real-world corpora: Our experiments on three datasets of different

genres – news, reviews and tweets – demonstrate that ClusType achieves significant

improvement over the state-of-the-art.

Impact:

• ClusType system was transferred to US Army Research Lab, Microsoft and National

Institute of Health.

• It was taught in a graduate class at University of Illinois at Urbana-Champaign, covered

as a major part of the keynote at ACL 2015, and presented in conference tutorials at

SIGKDD, WWW and SIGMOD [9, 10].
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Fine-grained Entity Typing

How can we assign fine-grained types to mentions of entities in text?

ClusType provides a data-driven way to identify typed entities from text with the helps

from external knowledge bases. It is able to distinguish types of entities at a coarse-grained

level (e.g., location versus organization) based on the context surrounding the entity

mention. However, many downstream applications will benefit if one can assign type to an

entity mention from a much larger set of fine-grained types (for example, over 100) from

a tree-structured hierarchy. Fine-grained entity typing allows one entity mention to have

multiple types, which together constitute a type path in the given type hierarchy, depending

on the local context. This task require in-depth modeling of local context and thus becoming

very challenging for relation phrase-based method like ClusType.

How can we build models to automatically estimate the fine-grained type path for entity

mention, without heavy reliance on human supervision? This is the problem we address

in Chapter 5. When external knowledge bases are available for generating fine-grained

labels, a key issue with such distant supervision is that it assign types to entity mentions

in a context-agnostic way – one entity (e.g., Barack Obama) can have multiple entity types

(e.g., person, politician, writer) in KB but within a specific context only some of these

types may describe the entity properly. While prior arts follow supervised learning methods

to train typing models on noisy distant supervision, we propose noise-aware embedding

approaches [11, 12] to denoise the set of labels given by distant supervision as we are learning

the embeddings for text features. Such weakly-supervised learning setting yields model the

root

person location organization

politician artist businessman

author actor singer

..
.

Entity types from
knowledge base

Entity:
Donald 
Trump

S1: Donald Trump

Entity Types: person, artist, actor,
author, businessman, politician

ID Sentence

S1
Donald Trump spent 14 television 
seasons presiding over a game show, 
NBC’s The Apprentice

Figure 1.5: An illustration of the fine-grained entity typing problem.
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correlation between “true” labels and features in a more reliable way and thus can produce

more effective feature embeddings for prediction.

Contributions:

• Problem: The first systematic study of noisy labels in distant supervision for entity

typing problem.

• Methodology 1 : An embedding-based framework, PLE [11], to model and measure

semantic similarity between text features and type labels, and is robust to noisy labels.

• Methodology 2 : A novel rank-based optimization problem is formulated to model noisy

type label and type correlation [12].

• Effectiveness on real data: The proposed methods achieve significant improvement

over the state of the art on multiple fine-grained typing datasets, and demonstrate the

effectiveness on recovering true labels from the noisy label set.

Impact:

• It was taught in a graduate class at University of Illinois at Urbana-Champaign, and

presented in conference tutorials at WWW and SIGMOD [9, 10].

1.1.2 Part II: Extracting Typed Entity Relationships

Our studies on entity structure mining (Part I) provide the basic building blocks of entity

relationships, i.e., the entity arguments mentioned in text. To further structure the text

corpus the next step is to identify typed relationships between entities based on the local

context in sentences (i.e., relation extraction). Identifying typed relationships is key to

structuring content from text corpora for fa wide range of downstream applications. For

example, when an extraction system finds a “produce” relation between “company” and

“product” entities in news articles, it supports answering questions like “what products does

company X produce?”. Once extracted, such relationship information is used in many ways,

e.g., as primitives in knowledge base population and question-answering systems. Traditional

relation extraction systems have relied on human-annotated corpora for training supervised

learning models. Here we ask: how can we design a domain-independent relation extraction

system that can apply to text corpora from different domains in the absence of human-

annotated, domain training data? To address this question, we propose a distant-supervised

relation extraction method in Chapter 6, which is able to reference existing relationship

information stored in external KBs as a source of supervision and integrates the extraction

models for both entities and relationships.
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Donald
Trump

located at

protest

Women’s
March

Washington
D.C.

Washington
United
States

president of

located at

located at

aim at

Person Location
Organization Event

The Women’s March was a 
worldwide protest on January 21, 

2017. The protest was aimed 
at Donald Trump, the recently 
inaugurated president of the 

United States. The first protest was 
planned in Washington, D.C., and 

was known as the Women‘s March
on Washington.

Figure 1.6: An illustration of the joint entity and relationship extraction problem.

Joint Extraction of Entities and Relationships

What types of entities are mentioned in text and what typed of relationships are expressed

between them?

With facts about entities, their types and the relationships between them stored in ex-

ternal knowledge bases, one can automatically generate large amounts of (potentially noisy)

labeled training data for building entity recognition models (Part I) and relation extraction

models. Prior arts focusing on this task have two major limitations: (1) partition the rela-

tion extraction process into several subtasks and solve them incrementally (thus there are

errors propagating cascading down the pipeline); and (2) ignore the noises brought in during

the automatic label generation process and directly train machine learning models over the

noisy labeled data.

To overcome these challenges, we study the problem of joint extraction of typed entities

and relationships with knowledge bases. Given a domain-specific corpus and an external

knowledge base, we aim to detect relation mentions together with their entity arguments

from text, and categorize each in context by relation types of interests. Our method, Co-

Type [13], approaches the joint extraction task as follows: (1) it designs a domain-agnostic

text segmentation algorithm to detect candidate entity mentions with distant supervision

(i.e., minimal linguistic assumption); (2) models the mutual constraints between the types

of relation mentions and the types their entity arguments to enable feedbacks between the

two subtasks; (3) model the true type labels in a candidate type set as latent variables and

require only the most confident type to be relevant to the mention. CoType achieved the
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state-of-the-art relation extraction performance under distant supervision, and demonstrates

robust domain-independence across various datasets.

Contributions:

• Methodology : We propose a novel distant supervision framework, CoType, to extract

typed entities and relationships in domain-specific corpora with minimal linguistic

assumption.

• Effectiveness on real data: Experiments with three public datasets demonstrate that

CoType improves the performance of state-of-the-art systems of entity typing and

relation extraction significantly, demonstrating robust domain-independence.

• It was taught in a graduate class at University of Illinois at Urbana-Champaign and

presented in conference tutorials at WWW, CIKM and SIGMOD.

• Software and demo system: We open sourced the CoType software and datasets used

in our experiment, and further developed a demo system to facilitate exploring and

analyzing over the typed entity and relation structures extracted using CoType from

PubMed papers.

Impact:

• The work was selected as 2017 SIGMOD Research Competition finalist.

• The open-sourced software on GitHub receives over 100 subscriptions from users.

• The typed entities and relationships extracted from 21 millions PubMed publications

was adopted by researchers at Stanford Medical School to facilitate the development

of drug re-purposing and adverse drug event discovery techniques.

1.2 OVERALL IMPACT

The core of the thesis focuses on developing effective, human effort-light and scalable

methods for extracting typed entities and relationships from massive, domain-specific text

corpora. Our contributions are in the area of text mining and information extraction, within

which we focus on domain-independent and noise-robust approaches using distant supervi-

sion (in conjunction with publicly-available knowledge bases). The work has broad impact on

a variety of applications: knowledge base construction, question-answering systems, struc-

tured search and exploration of text data, recommender systems, network analysis, and

many other text mining tasks. Finally, our work has been used in the following settings:
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• Used in real world:

– Our entity recognition and typing technique (ClusType [14]) has been transferred

to U.S. Army Research Lab, Microsoft Bing Ads and NIH Big Data to Knowledge

Center to identify typed entities of different kinds from low-resource, domain-

specific text corpora. ClusType is also used by Stanford sociologists to identify

scientific concepts from 37 millions of scientific publications in Web of Science

database to study innovation and translation of scientific ideas.

– A biomedical knowledge graph (i.e., Life-iNet [15]) constructed automatically

from millions of PubMed publications using our effort-light StructMine pipeline

is used by researchers at Stanford Medical school to facilitate drug re-purposing.

It yields significant improvement of performance on new drugs and rare diseases.

– Our effort-light StructMine techniques (ClusType, PLE, CoType) is adopted by

veterinarians at Veterinary Information Network Inc. (VIN) to construct the

first veterinary knowledge graph from multiple sources of information including

research articles, books, guidelines, drug handbooks and message board posts.

• Taught in classes and conference tutorials: Our methods on entity recognition

and typing (ClusType), fine-grained entity typing (PLE [11], AFET [12]), and relation

extraction (CoType [13]) are being taught in graduate courses, e.g., University of

Illinois at Urbana-Champaign (CS 512), and are introduced as major parts of the

conference tutorial in top data mining and database conferences such as SIGKDD,

WWW, CIKM and SIGMOD.

• Awards: The thesis work on effort-light StructMine has been awarded a Google PhD

fellowship in 2016 (sole winner in the category of Structured Data and Data Manage-

ment in the world) and a Yahoo!-DAIS Research Excellence Award, and a C. W. Gear

Outstanding Graduate Student Award from University of Illinois.

Next, we present background in mining structured factual information and introduce useful

factual structure notions and definitions.
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CHAPTER 2: BACKGROUND

In this chapter we introduce the key definitions and notions in information extraction and

knowledge graph construction that are useful for understanding the methods and algorithms

described in this thesis. At the end of this chapter we give a table with the common notations

and their descriptions.

2.1 ENTITY STRUCTURES

We start with the definition of common text structures, followed by entity, and other

entity-related concepts (e.g., entity mention, entity types).

Phrase: A phrase is a group of words (or possibly a single word) that functions as a

constituent in the syntax of a sentence, a single unit within a grammatical hierarchy. Phrase

acts as a semantic unit in a sentence with some special idiomatic meaning or other significance

(e.g., “machine learning”, “watch TV ”, “before that happened”, “too slowly”).

Noun Phrase: A noun phrase (or nominal phrase) is a phrase which has a noun as its head

(i.e., the word that determines the syntactic category of that phrase). It usually consists

of groups made up of nouns – a person, place, thing or idea – and the modifiers such as

determiners, adjectives, conjunctions. When looking at the structure of language, we treat

a noun phrase the same way we treat a common noun. Like all nouns, a noun phrase can

be a subject, object, or complement in a sentence.

Example 2.1 (Noun Phrase) In the sentence “The quick, brown fox jumped over the

lazy dog”, there are two noun phrases: “the quick, brown fox” and “the lazy dog”. “the

quick, brown fox” is the subject of the sentence and “the lazy dog” is the object.

Proper Name: A proper name is a noun phrase that in its primary application refers to

a unique entity (e.g., University of Southern California, Computer Science, United States),

as distinguished from a common noun which usually refers to a class of entities (e.g., city,

person, company), or non-unique instances of a specific class (e.g., this city, other people,

our company). When a noun refers to a unique entity, it is also called proper noun.

Entity: In information extraction and text mining, an entity (or named entity) is a real-

world object, such as persons, locations, organizations, products, scientific concepts, etc.,

that can be denoted with a proper name. It can be abstract or have a physical existence.
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Examples of named entities include Barack Obama, Chicago, University of Illinois . An

entity is denoted as e in this thesis.

Remark 2.1: Ambiguous Proper Names for Named Entity

In the expression of “named entity”, the word named restricts the scope to those

entities for which one or many strings stands consistently for some referent. In practice,

one named entity may be referred by many proper names and one proper name may

refer to multiple named entity. For example, the entity, automotive company created

by Henry Ford in 1903, can be referred to using proper names “Ford” or “Ford Motor

Company”, although “Ford” can refer to many other entities as well.

Entity Mention: An entity mention, denoted by m, is a token span (i.e., a sequence of

words) in text that refers to a named entity. It consists of the proper name and the token

index in the sentence.

Example 2.2 (Entity Mention) In the sentences “I had the pulled pork sandwich

with coleslaw and baked beans for lunch. The pulled pork sandwich is the best Ive

tasted in Phoenix!”, the entity mentions are bold-faced. The proper name “pulled pork

sandwich” appear twice in the sentence, corresponding to the same named entity but

different entity mentions (thus will have different entity mention IDs).

Entity Type: An entity type (or entity class, entity category), is a conceptual label for a

collection of entities that share the same characteristics and attributes (e.g., person, artist,

singer, location). Entities with the same entity types are similar to one another. Entity

type instances refer to entities that are assigned with the specific entity type. In many

applications, a set of entity types of interests are usually pre-specified by domain experts via

providing example entity type instances. There also exists cases that entity types are related

to each other (vs. mutually exclusive), forming a complex, tree-structured type hierarchy.

Example 2.3 (Entity Types in ACE Shared Task) The Automatic Content Extrac-

tion (ACE) Program [16] was to develop information extraction technology to support

automatic processing of natural language data. In the Entity Detection and Tracking

(EDT) task of ACE, it focuses on seven types of entities: Person, Organization,

Location, Facility, Weapon, Vehicle, and Geo-Political Entity. Each type was

further divided into subtypes (for instance, Organization subtypes include Government,

Commercial, Education, Non-profit, Other).
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2.2 RELATION STRUCTURES

This section introduces the basic concepts on relations. We start with the definition of

relation, followed by definitions of relation instance and mention.

Relation: a relation (or relation type, relation class), denoted as r, is a (pre-defined) pred-

ication about two or more entities. For example, from the sentence fragment “Facebook

co-found Mark Zuckerberg” one can extract the FounderOf relation between entities Mark

Zuckerberg and Facebook . In this thesis, we focus on binary relations, that is, relations

between two entities.

Example 2.4 (Relations in ACE Shared Task) Much of the prior work on extract-

ing relations from text is based on the task definition from ACE program [16]. A

set of major relation types and their subtypes are defined by ACE. Examples of ACE

major relation types include physical (an entity is physically near another entity),

personal/social (a person is a family member of another person), employment/affiliation

(a person is employed by an organization).

Relation Instance: A relation instance denotes a relationship over two or more entities

in a specific relation. When only considering binary relations, a relation instance can be

represented as a triple with a pair of entities ei and ej, and their relation type r, i.e., (ei, r,

ej). For example,

Entity Argument: The two entities involved in a relation instance are referred to as entity

arguments. The former one is also referred to as head entity while the later is also referred

to as tail entity.

Relation Mention: A relation mention, z, denotes a specific occurrence of some relation

instance in text. It records the two entity mentions for the pair of entity arguments, the

relation type between these two entities, and the sentence s where the relation mention is

found, i.e., z = (mi, r,mj; s).

Example 2.5 (Relation Mention) Suppose we are given two sentences: “Obama was

born in Hawaii, USA” (s1) and “Barack Obama, the president of United States” (s2).

There are two relation mentions between entities Barack Obama and United States: z1

= (Obama, BirthPlace, USA; s1) and z2 = (Barack Obama, PresidentOf, United

States; s2). Although the entity arguments are the same, the two relation mentions have

different relation types based on the sentence context.
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2.3 DISTANT SUPERVISION FROM KNOWLEDGE BASES

Knowledge bases are emerging as a popular and useful way to represent and leverage

codified knowledge for a variety of use cases. For example, codifying the key entities and

relationships of a particular domain can greatly accelerate a variety of tasks from providing

semantic and natural language search over more traditional business intelligence data, to

providing enabling query expansion and matching, to discovery and exploration of related

entities and relations extracted from a large corpus of unstructured documents.

In information extraction, the term “knowledge base” is most frequently used with large

collections of curated, structured knowledge, such as WikiData [17], Freebase [6], YAGO [18],

DBpedia [19] or CYC [20]. It is also applied when such structured knowledge is automatically

extracted, such as NELL [2], SnowBall [21] or OpenIE [5]. We use it to refer to any collection

of relation triples, no matter their source or underlying ontology, if any. This can include

subject-verb-object triples automatically extracted from large text corpora or curated from

domain experts.

Fact: A fact in knowledge base (KB) can refer to either a binary relation triple in the form of

(ei, r, ej) or an is-A relation between an entity and a concept, such as Facebook is a company.

Formally, A knowledge base, Ψ, consists of a set of entities EΨ and curated facts on both

relation instances IΨ and entity types TΨ (i.e., is-A relation between entities and their entity

types). The set of relation types in the KB is denoted as RΨ.

Example 2.6 (Freebase) Curating a universal knowledge graph is an endeavor which

is infeasible for most individuals and organizations. Thus, distributing that effort on

as many shoulders as possible through crowdsourcing is a way taken by Freebase [6], a

public, editable knowledge graph with schema templates for most kinds of possible entities

(i.e., persons, cities, movies, etc.). After MetaWeb, the company running Freebase, was

acquired by Google, Freebase was shut down on March 31st, 2015. The last version

of Freebase contains roughly 50 million entities and 3 billion facts. Freebases schema

comprises roughly 27,000 entity types and 38,000 relation types a. types

ahttps://developers.google.com/freebase/
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Example 2.7 (DBpedia) DBpedia is a knowledge graph which is extracted from struc-

tured data in Wikipedia [19]. The main source for this extraction are the key-value pairs

in the Wikipedia infoboxes. In a crowd-sourced process, types of infoboxes are mapped

to the DBpedia ontology, and keys used in those infoboxes are mapped to properties in

that ontology. Based on those mappings, a knowledge graph can be extracted. The most

recent version of the main DBpedia (i.e., DBpedia 2016-10, extracted from the English

Wikipedia based on dumps from October 2016) contains 6.6 million entities and 13 billion

facts about those entities. The ontology comprises 735 classes and 2,800 relations.

2.4 MINING ENTITY AND RELATION STRUCTURES

Here we describe the basic tasks in mining factual structures from text corpora, followed

by short introduction on related information extraction tasks.

Entity Recognition and Typing: Entity recognition and typing (or named entity recog-

nition) addresses the problem of identification (detection) and classification of pre-defined

types of entities, such as organization (e.g., “United Nation”), person (e.g., “Barack

Obama”), location (e.g., “Los Angeles”), etc. The detection part aims to find the to-

ken span of entities mentioned in text (i.e., entity mention) and the classification part aims

to assign the suitable type to entity mention based on its sentence context.

Fine-grained Entity Typing: The goal of fine-grained entity typing is to classify each en-

tity mention m (based on its sentence context s) into a pre-defined set

Figure 2.1: Illustration example for fine-grained entity typing.

of types where the types are

correlated and organized into

a tree-structured type hierar-

chy Y . Each entity mention

with be assigned with an en-

tity type path – a path in the

given type hierarchy that may

not end at a leaf node. For

example, in Figure 2.1, the en-

tity mention “Donald Trump”

is assigned with the type path

“person-artist-actor” based

on the given sentence.

17



Relation Extraction: The task of relation extraction aims to detect and classify pre-

defined relationships between entities recognized in text. In the corpus-level relation ex-

traction setting, all sentences {s} where a pair of entities (ei, ej) (proper names) occur are

collected as evidences for determining the appropriate relation type r. In the mention-level

relation extraction, the correct label for a relation mention m is determined based on the

sentence it occurs, i.e., s. In particular, a label (class) called “None” is included into the

label set so as to classify a false positive candidate as “no relation”.

2.5 COMMON NOTATIONS

We provide the most common notations and their brief definitions in Table 6.4. More

specific notations used to explain proposed methods are introduced in the corresponding

chapters.

Notation Definition

s sentence
d, D document, corpus
e entity

t, T entity type, entity type set
m entity mention

r, R relation type, relation type set
(ei, r, ej) relation instance of type r between entities ei and ej

z relation mention

E finite set of entities in a corpus
Z finite set of relationships between entities in a corpus

G = (E ,Z) directed, labeled graph that represents StructNet

Ψ knowledge base (e.g., Freebase, DBpedia)
EΨ set of entities in KB
TΨ entity types in KB
IΨ set of relation instances in KB
RΨ relation types in KB
Y tree-structured entity type hierarchy

Table 2.1: Common notations and definitions used throughout the thesis.
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CHAPTER 3: LITERATURE REVIEW

This chapter provides an overview of prior arts and related studies in mining typed entities

and relationships from text. Methods are categorized and organized based on the amounts

of human labeled data required in the model training process, which also demonstrate the

trajectory of research on reducing human supervision in entity and relation structure mining.

We also review techniques developed for learning with noisy labeled data as well as open-

domain information extraction, followed by a summary of our contributions.

The existing methods on mining entity and relation structures can be roughly catego-

rized along two dimensions – (1) the amount of human supervision required and (2) the

extraction task (problem formulation) it is solving. Table 3.1 gives a few examples for each

category. A method can be fully hand-crafted, supervised, weakly supervised or distantly

supervised. The second dimension is that the problem formulation of the task can be either

sequence labeling (e.g., CRFs), transdutive classification (e.g., pattern bootstrapping, and

label propagation), and inductive classification (e.g., SVM). More in-depth discussion about

the literature related to concrete tasks and the proposed approaches can be found in each

chapter.

Method Category
Prior Work on Entity

Extraction
Prior Work on Relation

Extraction

Hand-crafted meth-
ods

DIPRE [22], FASTUS [23] Hearst Pattern [24]

Supervised learning
methods

Sequence tagging models like
CRFs, HMMs, CMMs [25, 26]

Inductive classifiers like SVM,
kernel methods [27, 28], and var-
ious deep neural networks

Weakly-supervised
methods

KnowItAll [29], SEISA [30],
Gupta et al. [31], semi-
supervised CRFs [32]

SnowBall, NELL [33]

Distantly-supervised
methods

[34, 35, 36]
Mintz et al. [37], MIME-RE [38],
[39]

Open-domain extrac-
tion methods

Liberal IE [40], OpenIE sys-
tems [5, 41, 42, 43]

OpenIE systems [5, 41, 42, 43]

Table 3.1: A few examples to give an idea about the categories of methods developed based on
the amount of human supervision and the task.
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… cities such as NPList …

New York
Los

Angeles
Dallas

City
“The tour includes 
major cities such as

[New York], [Los 
Angeles], and [Dallas]”

NPList[0]
NPList[1]
…

City

Text
Entities

Figure 3.1: An illustration of hand-crafted extraction methods for extracting entity structures.

3.1 HAND-CRAFTED METHODS

One straightforward way of finding entities and relationships in text is to write a set

of textual patterns or rules (e.g., regular expression) for the different types of entities (or

relationships between entities), with each pattern using some clue to identify the type of

entity and relation. For example, in Figure 3.1, the pattern “city such as NPList” is designed

to extract a list of city entities from text. The NPList matches different noun phrases such

as “New York”. Therefore, from the sentence in Figure 3.1, this pattern is able to extract

three entity mentions of city type, i.e., ‘New York”, “Los Angeles” and “Dallas”. Such

patterns can be further enhanced with various lexical and syntactic constraints including

part-of-speech tags and dependency parse structures.

Hand-crafted systems often rely on extensive lists of people, organizations, locations, and

other entity or relation types. Many such lists are now available from the Web. These lists

can be quite helpful, and for some entity types they are essential because good contextual

patterns are not available, but they should be used with some caution. Systems which

are primarily list based will suffer when new names arise, either because of changes in the

input texts or the passage of time. Also, large lists may include entries which are proper

names but more often are capitalized forms of common words. By building up a set of rules

for each entity or relation type, it is possible to create a quite effective extraction system.

However, obtaining high performance on corpus of specific domain, genre or language does

require some degree of skill. It also generally requires an annotated corpus which can be

used to evaluate the rule set after each revision; without such a corpus there is a tendency

after a certain point for added rules to actually worsen overall performance.It requires

human experts to define rules or regular expressions or program snippets for performing

the extraction. That person needs to be a domain expert and a programmer, and possess

descent linguistic understanding to be able to develop robust extraction rules.
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3.2 TRADITIONAL SUPERVISED LEARNING METHODS

If the creation of a high-quality entity and relation extractor by hand requires an annotated

corpus, it is natural to ask whether extraction models can be trained automatically from

such a corpus. Such supervised methods for training an fully-supervised extraction model

will be considered in this section.

3.2.1 Sequence Labeling Methods

Many statistical learning-based named entity recognition algorithms treat the task as a

sequence labeling problem. Sequence labeling is a general machine learning problem and

has been used to model many natural language processing tasks including part-of-speech

tagging, chunking and named entity recognition. It can be formulated as follows. We are

given a sequence of observations, denoted as x = (x1, x2, ..., xn). Usually each observation

is represented as a feature vector. We would like to assign a label yi to each observation

xi. While one may apply standard classification to predict the label yi based solely on xi,

in sequence labeling, it is assumed that the label yi depends not only on its corresponding

observation xi but also possibly on other observations and other labels in the sequence.

Typically this dependency is limited to observations and labels within a close neighborhood

of the current position i.

To map entity recognition to a sequence labeling problem, we treat each word in a sentence

as an observation. The class labels have to clearly indicate both the boundaries and the types

of named entities within the sequence. Usually the BIO notation, initially introduced for

text chunking, is used. With this notation, for each entity type T , two labels are created,

[San Francisco], in 
northern California, 
is a hilly city on the 
tip of a peninsula.

Features

Machine-learning model

Domain experts

Training data
Manual

annotation

Feature
engineering

Figure 3.2: An illustration of supervised learning methods for extracting entity structures.
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namely, B − T and I − T . A token labeled with B-T is the beginning of a named entity of

type T while a token labeled with I − T is inside (but not the beginning of) a named entity

of type T . In addition, there is a label O for tokens outside of any named entity.

Such supervised methods [26, 44] use fully annotated documents and different linguistic

features to train sequence labeling model. To obtain an effective model, the amount of

labeled data is significant [26], despite of semi-supervised sequence labeling [32].

3.2.2 Supervised Relation Extraction Methods

Instead of creating and refining these patterns by hand, we can build a relation extractor

from an annotated corpus. We will need a corpus which has been annotated both for entity

mentions and for relations. We then want to convert relation tagging into a classification

problem. To handle a single type of relation, we will train a classifier which classifies each

pair of entity mentions appearing in the same sentence as either having or not having this

relation. To handle n relation types, we can train an n + 1-way classifier. Alternatively,

we can create two classifiers: a binary classifier which determines whether the entities bear

some relation, and an n-way classifier (applied to instances which are passed by the first

classifier) which determines which relation is involved. To apply this to new data, we first

run an entity tagger and then apply the relation classifier to every pair of entities.

Traditional systems for relation extraction [45, 46, 47] partition the process into several

subtasks and solve them incrementally (i.e., detecting entities from text, labeling their types

and then extracting their relations). Such systems treat the subtasks independently and so

may propagate errors across subtasks in the process. Recent studies [48, 49, 50] focus on

joint extraction methods to capture the inherent linguistic dependencies between relations

and entity arguments (e.g., the types of entity arguments help determine their relation type,

and vice versa) to resolve error propagation.

3.3 WEAKLY-SUPERVISED EXTRACTION METHODS

Weakly-supervised methods utilize a small set of typed entities or relation instances as

seeds, and extract more entities or relationships of target types, which can largely reduce

the amount of required labeled data.

3.3.1 Semi-supervised Learning

Supervised methods spare us the task of writing rules by hand but still require substantial

labor to prepare an annotated corpus. Can we reduce the amount of corpus which we need to
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annotate? This is possible through semi-supervised learning methods, including in particular

those based on co-training [51, 52]. Semi-supervised methods make use of limited amounts of

labeled data together with large amounts of unlabeled data. The basic observation, already

made use of in the long-range features of the supervised tagger, is that multiple instances of

the same name have the same type. Some of these instances may occur in contexts which are

indicative of a particular name type, and these may be used to tag other instances of the same

name. In semi-supervised learning we apply these principles repeatedly: starting from a few

common names of each type, we look for the contexts in which each of these names appears.

If a context appears only with names of one type, we treat this as a predictive context; we

look for other names which appear in this context and tag them with the predicted type.

We add them to the set of names of known type, and the process repeats.

This is an example of co-training. In co-training, we have two views of the data - two

sets of features which can predict the label on the data. In our case the two views are the

context of a name and the “spelling” of a name (this includes the complete name and the

individual tokens of the name). For each view, we are able to build a model from the labeled

data; then we can use this model to label the unlabeled data and associate a confidence with

each label. We build a model based on the first view, generate a label for each unlabeled

datum, and keep the most confident labels, thus growing the labeled set. Then we do the

same using the second view. Gradually the labeled set grows and the models are refined.

3.3.2 Pattern-based Bootstrapping

Pattern-based bootstrapping [31, 53] derives patterns from contexts of seed entities or

relation instances, and uses them to incrementally extract new entities / relationships and

new patterns unrestricted by specific domains, but often suffers low recall and semantic

drift [36].

Iterative bootstrapping, such as probabilistic method [51] and label propagation [54] softly

assign multiple types to an entity name and iteratively update its type distribution, yet

cannot decide the exact type for each entity mention based on its local context.

The DIPRE system [22] was one of the first systems for weakly-supervised, pattern-based

relation extraction, and one of the first designed to operate on the Web. The context

patterns were based on character sequences before, between, and after the entities, and so

could make use of both lexical contexts and XML mark-up contexts. The patterns were

associated with particular web sites. There was no ranking of patterns or entity pairs;

instead, some heuristics were used to insure that the patterns were sufficiently specific. The

entire procedure was demonstrated on the bookauthor relation. The Snowball system [21]
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introduced several improvements, including the use of name types, the ranking of patterns

and entity pairs (as described above, using negative examples) and more relaxed patten

matching. It was applied to the companyheadquarters relation, a functional relation.

3.4 DISTANTLY-SUPERVISED LEARNING METHODS

Distantly supervised methods [37, 39, 38, 34, 35, 36] avoid expensive human labels by

leveraging type information of entity and relation mentions which are confidently mapped

to entries in KBs. Linked mentions are used to type those unlinkable ones in different ways,

including training a contextual classifier [34], learning a sequence labeling model [36] and

serving as labels in graph-based semi-supervised learning [35].

In the context of distant supervision, label noise issue has been studied for other informa-

tion extraction tasks such as relation extraction [55]. In relation extraction, label noise is

introduced by the false positive textual matches of entity pairs. In entity typing, however,

label noise comes from the assignment of types to entity mentions without considering their

contexts. The forms of distant supervision are different in these two problems. Recently,

[56] has tackled the problem of label noise in fine-grained entity typing, but focused on how

to generate a clean training set instead of doing entity typing.

3.5 LEARNING WITH NOISY LABELED DATA

Our proposed framework incorporates embedding techniques used in modeling words and

phrases in large text corpora [57, 58, 59] ,and nodes and links in graphs/networks [60, 61].

Theses methods assume links are all correct (in unsupervised setting) or labels are all true

(in supervised setting). CoType seeks to model the true links and labels in the embedding

process (e.g., see our comparisons with LINE [60], DeepWalk [61] and FCM [62] in Sec. 6.4.2).

Different from embedding structured KB entities and relations [63, 64], our task focuses on

embedding entity and relation mentions in unstructured contexts.

In the context of modeling noisy labels, our work is related to partial-label learning [56,

65, 66] and multi-label multi-instance learning [38], which deals with the problem where each

training instance is associated with a set of noisy candidate labels (whereonly one is correct).

Unlike these formulations, our joint extraction problem deals with both classification with

noisy labels and modeling of entity-relation interactions. In Sec 6.4.2, we compare our full-

fledged model with its variants CoType-EM and CoType-RM to validate the Hypothesis

on entity-relation interactions.
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3.6 OPEN-DOMAIN INFORMATION EXTRACTION

Traditional techniques for mining entity and relation structures usually work on a corpus

from a single domain, e.g.articles describing terrorism events, because the goal is to discover

the most salient relations from such a domain-specific corpus. In some cases, however, our

goal is to find all the potentially useful facts from a large and diverse corpus such as the

Web. This is the focus of open information extraction, first introduced in [5], then followed

by several other open IE systems [41, 42, 43].

Open information extraction does not assume any specific target relation type. It makes

a single pass over the corpus and tries to extract as many relations as possible. Because no

relation type is specified in advance, part of the extraction results is a phrase that describes

the relation extracted. In other words, open information extraction generates (ei, r, ej) tuples

where r is not from a finite set of pre-defined relation types, but can be arbitrary predicate or

relation phrases. In [5], Banko and Etzioni introduced an unlexicalized CRF-based method

for open information extraction. The method is based on the observation that although

different relation types have very different semantic meanings, there exists a small set of

syntactic patterns that cover the majority of semantic relation mentions. It is therefore

possible to train a relation extraction model that extracts arbitrary relations. The key is

not to include lexical features in the model.

Extracting textual relation between subjective and objective from text has been exten-

sively studied [41] and applied to entity typing [35]. Fader et al. [41] utilize POS patterns to

extract verb phrases between detected noun phrases to form relation assertion. Schmitz et

al. [42] further extend the textual relation by leveraging dependency tree patterns. These

methods rely on linguistic parsers that may not generalize across domains. They also do

not consider significance of the detected entity mentions in the corpus (see comparison with

NNPLB [35]). There have been some studies on clustering and and canonicalizing synony-

mous relations generated by open information extraction [67]. These methods either ignore

entity type information when resolving relations, or assume types of relation arguments are

already given.

3.7 CONTRIBUTIONS OF THIS THESIS

There have been extensive studies on extracting typed entities and relations in text (i.e.,

context-dependent extraction). Most existing work follows an incremental diagram—they

first perform entity recognition and typing [44, 26] to extract typed entity mentions, and

then solve relation extraction [45, 47] to identify relation mentions of target types. Work
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along both lines can be categorized in terms of the degree of supervision. While supervised

entity recognition systems [25, 44] focus on a few common entity types, weakly-supervised

methods [31, 34] and distantly-supervised methods [8, 58, 36] use large text corpus and a

small set of seeds (or a knowledge base) to induce patterns or to train models, and thus

can apply to different domains without additional human annotation labor. For relation

extraction, similarly, weak supervision [68, 3] and distant supervision [69, 70, 38, 71, 39, 37]

approaches are proposed to address the domain restriction issue in traditional supervised

systems [45, 28, 47]. However, such a “pipeline” diagram ignores the dependencies between

different sub tasks and may suffer from error propagation between the tasks.

Some recent efforts have been done on integrating entity extraction with relation ex-

traction by performing global sequence labeling for both entities and relations [48, 49, 72],

incorporating type constraints between relations and their arguments [50], or modeling fac-

tor graphs [73]. However, these methods require human-annotated corpora (cleaned and

general) for model training, and rely on existing entity detectors to provide entity mentions.

In particular, [72] integrates entity classification with relation extraction using distant su-

pervision but it ignores label noise issue in the automatically labeled training corpora.

By contrast, our effort-light StructMine framework runs domain-agnostic text segmenta-

tion algorithm to mine entity mentions, and adopts a label noise-robust objective to train

models using distant supervision in conjunction with external knowledge bases – it carefully

models the noisy labels given by distant supervision by leverage the rich data redundancy

in the massive corpus. Our method combines the best of two worlds—it leverages the noisy

distant supervision in a robust way to address domain restriction (vs. existing joint extrac-

tion methods [48, 49]), and models entity-relation interactions jointly with other signals to

resolve error propagation (vs. current distant supervision methods [38, 37]).
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Part I

Identifying Typed Entities
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CHAPTER 4: ENTITY RECOGNITION AND TYPING WITH
KNOWLEDGE BASES

4.1 PROPOSED METHOD: OVERVIEW AND MOTIVATION

Entity recognition is an important task in text analysis. Identifying token spans as entity

mentions in documents and labeling their types (e.g., people, product or food) enables

effective structured analysis of unstructured text corpus. The extracted entity information

can be used in a variety of ways (e.g., to serve as primitives for information extraction [42] and

knowledge base (KB) population [1]. Traditional named entity recognition systems [26, 44]

are usually designed for several major types (e.g., person, organization, location) and general

domains (e.g., news), and so require additional steps for adaptation to a new domain and

new types.

Entity linking techniques [74] map from given entity mentions detected in text to entities

in KBs like Freebase [6], where type information can be collected. But most of such infor-

mation is manually curated, and thus the set of entities so obtained is of limited coverage

and freshness (e.g., over 50% entities mentioned in Web documents are unlinkable [35]). The

rapid emergence of large, domain-specific text corpora (e.g., product reviews) poses signifi-

cant challenges to traditional entity recognition and entity linking techniques and calls for

methods of recognizing entity mentions of target types with minimal or no human supervi-

sion, and with no requirement that entities can be found in a KB.

There are broadly two kinds of efforts towards that goal: weak supervision and distant

supervision. Weak supervision relies on manually-specified seed entity names in applying

pattern-based bootstrapping methods [31, 75] or label propagation methods [54] to identify

more entities of each type. Both methods assume the seed entities are unambiguous and

sufficiently frequent in the corpus, which requires careful seed entity selection by human [76].

Distant supervision is a more recent trend, aiming to reduce expensive human labor by

utilizing entity information in KBs [34, 35] (see Fig. 6.1). The typical workflow is: i) detect

entity mentions from a corpus, ii) map candidate mentions to KB entities of target types,

and iii) use those confidently mapped {mention, type} pairs as labeled data to infer the

types of remaining candidate mentions.

In this paper, we study the problem of distantly-supervised entity recognition in a domain-

specific corpus : Given a domain-specific corpus and a set of target entity types from a KB,

we aim to effectively and efficiently detect entity mentions from that corpus, and categorize

each by target types or Not-Of-Interest (NOI), with distant supervision. Existing distant

supervision methods encounter the following limitations when handling a large, domain-
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    ID  Document Text

     1         ... has concerns whether Kabul is an ally of Washington.

     2         ... Australia becomes a close ally of the United States. ...

     3       He has offices in Washington, Boston and San Francisco.

     4        ... The Cardinal will share the title with California if the 
       Golden Bears beat Washington later Saturday. ... 

     5          ... Auburn won the game 34-28 over the defending 
        national champions. ...

Text corpus

Knowledge base

1_Washington

3_Washington

4_national 
 champion

2_United States
2_Australia

4_Golden Bears

5_Aubrun

1_Kabul

won the game 34-28 over

beat

becomes a close ally of

is an ally of

Government

GovernmentGovernment

Sport team

? (sport team)

? (government)

? (sport team)

? (sport team)

Figure 4.1: An example of distant supervision.

specific corpus.

• Domain Restriction: They assume entity mentions are already extracted by existing

entity detection tools such as noun phrase chunkers. These tools are usually trained on

general-domain corpora like news articles (clean, grammatical) and make use of various

linguistic features, but do not work well on specific, dynamic or emerging domains (e.g.,

tweets or restaurant reviews).

• Name Ambiguity: Entity names are often ambiguous—multiple entities may share the

same surface name. In Fig. 6.1, for example, the surface name “Washington” can refer to

either the U.S. government, a sport team, or the U.S. capital city. However, most existing

studies [77, 75] simply output a type distribution for each surface name, instead of an exact

type for each mention of the entity.

• Context Sparsity: Previous methods have difficulties in handling entity mentions with

sparse context. They leverage a variety of contextual clues to find sources of shared se-

mantics across different entities, including keywords [54], Wikipedia concepts [77], linguistic

patterns [34] and textual relations [35]. However, there are often many ways to describe

even the same relation between two entities (e.g., “beat” and “won the game 34-28 over” in

Fig. 6.1). This poses challenges on typing entity mentions when they are isolated from other

entities or only share infrequent (sparse) context.
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We address these challenges with several intuitive ideas. First, to address the domain

restriction, we consider a domain-agnostic phrase mining algorithm to extract entity mention

candidates with minimal dependence of linguistic assumption (e.g., part-of-speech (POS)

tagging requires fewer assumptions of the linguistic characteristics of a domain than semantic

parsing). Second, to address the name ambiguity, we do not simply merge the entity mention

candidates with identical surface names but model each of them based on its surface name

and contexts. Third, to address the context sparsity, we mine relation phrases co-occurring

with the mention candidates, and infer synonymous relation phrases which share similar type

signatures (i.e., express similar types of entities as arguments). This helps to form connecting

bridges among entities that do not share identical context, but share synonymous relation

phrases.

To systematically integrate these ideas, we develop a novel solution called ClusType.

First, it mines both entity mention candidates and relation phrases by POS-constrained

phrase segmentation; this demonstrates great cross-domain performance (Sec. 6.3.1). Sec-

ond, it constructs a heterogeneous graph to faithfully represent candidate entity mentions,

entity surface names, and relation phrases and their relationship types in a unified form (see

Fig. 4.2). The entity mentions are kept as individual objects to be disambiguated, and linked

to surface names and relation phrases (Sec. 4.3.2-4.3.4). With the heterogeneous graph, we

formulate a graph-based semi-supervised learning of two tasks jointly: (1) type propagation

on graph, and (2) relation phrase clustering. By clustering synonymous relation phrases, we

can propagate types among entities bridged via these synonymous relation phrases. Con-

versely, derived entity argument types serve as good features for clustering relation phrases.

These two tasks mutually enhance each other and lead to quality recognition of unlinkable

entity mentions. In this paper, we present an alternating minimization algorithm to effi-

ciently solve the joint optimization problem, which iterates between type propagation and

relation phrase clustering (Sec. 6.3). To our knowledge, this is the first work to integrate

entity recognition with textual relation clustering.

The major novel contributions of this paper are as follows: (1) we develop an efficient,

domain-independent phrase mining algorithm for entity mention candidate and relation

phrase extraction; (2) we propose a relation phrase-based entity recognition approach which

models the type of each entity mention in a scalable way and softly clusters relation phrases,

to resolve name ambiguity and context sparsity issues; (3) we formulate a joint optimiza-

tion problem for clustering-integrated type propagation; and (4) our experiments on three

datasets of different genres—news, Yelp reviews and tweets— demonstrate that the proposed

method achieves significant improvement over the state-of-the-art (e.g., 58.3% enhancement

in F1 on the Yelp dataset over the best competitor from existing work).
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Figure 4.2: The constructed heterogeneous graph.

4.2 PROBLEM DEFINITION

The input to our proposed ER framework is a document collection D, a knowledge base

Ψ with type schema TΨ, and a target type set T ⊂ TΨ. In this work, we use the type schema

of Freebase [6] and assume T is covered by Freebase.

An entity mention, m, is a token span in the text document which refers to a real-world

entity e. Let cm denote the surface name of m. In practice, people may use multiple surface

names to refer to the same entity (e.g., “black mamba” and “KB” for Kobe Bryant). On the

other hand, a surface name c could refer to different entities (e.g., “Washington” in Fig. 6.1).

Moreover, even though an entity e can have multiple types (e.g., J.F.K. airport is both a

location and an organization), the type of its specific mention m is usually unambiguous.

We use a type indicator vector ym ∈ {0, 1}T to denote the entity type for each mention m,

where T = |T |+1, i.e., m has type t ∈ T or is Not-of-Interest (NOI). By estimating ym, one

can predict type of m as type (m) = argmax1≤i≤T ym,i .

Extracting textual relations from documents has been previously studied [41] and applied

to entity typing [34, 35]. A relation phrase is a phrase that denotes a unary or binary relation

in a sentence [41] (see Fig. 4.3 for example). We leverage the rich semantics embedded in

relation phrases to provide type cues for their entity arguments. Specifically, we define the

type signature of a relation phrase p as two indicator vectors p
L
,p

R
∈ RT . They measure

how likely the left/right entity arguments of p belong to different types (T or NOI). A large

positive value on pL,t (pR,t) indicates that the left/right argument of p is likely of type t.

Let M = {m1, ...,mM} denote the set of M candidate entity mentions extracted from D.

Suppose a subset of entity mentions ML ⊂ M can be confidently mapped to entities in Ψ.
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The type of a linked candidate m ∈ ML can be obtained based on its mapping entity κe(m)

(see Sec. 4.4.1). This work focuses on predicting the types of unlinkable candidate mentions

MU = M\ML, where MU may consist of (1) mentions of the emerging entities which are not

in Ψ; (2) new names of the existing entities in Ψ; and (3) invalid entity mentions. Formally,

we define the problem of distantly-supervised entity recognition as follows

Problem 4.1: Entity Recognition and Typing

Given a document collection D, a target type set T and a knowledge base Ψ, our task

aims to: (1) extract candidate entity mentions M from D; (2) generate seed mentions

ML with Ψ; and (3) for each unlinkable candidate mention m ∈ MU , estimate its type

indicator vector ym to predict its type.

In our study, we assume each mention within a sentence is only associated with a single

type t ∈ T . We also assume the target type set T is given (It is outside the scope of this

study to generate T ). Finally, while our work is independent of entity linking techniques [74],

our ER framework output may be useful to entity linking.

Framework Overview. Our overall framework is as follows:

1. Perform phrase mining on a POS-tagged corpus to extract candidate entity mentions

and relation phrases, and construct a heterogeneous graph G to represent available

information in a unified form, which encodes our insights on modeling the type for

each entity mention (Sec. 4.3).

2. Collect seed entity mentions ML as labels by linking extracted candidate mentions M
to the KB Ψ (Sec. 4.4.1).

3. Estimate type indicator y for unlinkable candidate mention m ∈ MU with the proposed

type propagation integrated with relation phrase clustering on G (Sec. 6.3).

4.3 RELATION PHRASE-BASED GRAPH CONSTRUCTION

We first introduce candidate generation in Sec. 6.3.1, which leads to three kinds of objects,

namely candidate entity mentionsM, their surface names C and surrounding relation phrases

P . We then build a heterogeneous graph G, which consists of multiple types of objects and

multiple types of links, to model their relationship. The basic idea for constructing the graph

is that: the more two objects are likely to share the same label (i.e., t ∈ T or NOI), the larger

the weight will be associated with their connecting edge.
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Over:RP the weekend the system:EP dropped:RP nearly inches of snow in:RP 
western Oklahoma:EP and at:RP [Dallas Fort Worth International Airport]:EP sleet 
and ice caused:RP hundreds of [flight cancellations]:EP and delays. ...... It is 
forecast:RP to reach:RP [northern Georgia]:EP by:RP [Tuesday afternoon]:EP, 
Washington:EP and [New York]:EP by:RP [Wednesday afternoon]:EP, 
meteorologists:EP said:RP. 
 EP: entity mention candidate; RP: relation phrase.

Figure 4.3: Example output of candidate generation.

Specifically, the constructed graph G unifies three types of links: mention-name link

which represents the mapping between entity mentions and their surface names, entity name-

relation phrase link which captures corpus-level co-occurrences between entity surface names

and relation phrase, and mention-mention link which models distributional similarity be-

tween entity mentions. This leads to three subgraphs GM,C, GC,P and GM, respectively. We

introduce the construction of them in Secs. 4.3.2–4.3.4.

4.3.1 Candidate Generation

To ensure the extraction of informative and coherent entity mentions and relation phrases,

we introduce a scalable, data-driven phrase mining method by incorporating both corpus-

level statistics and syntactic constraints. Our method adopts a global significance score to

guide the filtering of low-quality phrases and relies on a set of generic POS patterns to

remove phrases with improper syntactic structure [41]. By extending the methodology used

in [78], we can partition sentences in the corpus into non-overlapping segments which meet

a significance threshold and satisfy our syntactic constraints. In doing so, entity candidates

and relation phrases can be jointly extracted in an effective way.

First, we mine frequent contiguous patterns (i.e., sequences of tokens with no gap) up to a

fixed length and aggregate their counts. A greedy agglomerative merging is then performed

to form longer phrases while enforcing our syntactic constraints. Suppose the size of corpus

D is N and the frequency of a phrase S is denoted by υ(S). The phrase-merging step

selects the most significant merging, by comparing the frequency of a potential merging

of two consecutive phrases, υ(S1 ⊕ S2), to the expected frequency assuming independence,

N υ(S1)
N

υ(S2)
N . Additionally, we conduct syntactic constraint check on every potential merging

by applying an entity check function Ie(·) and a relation check function Ip(·). Ie(S) returns
one if S is consecutive nouns and zero otherwise; and Ip(S) return one if S (partially) matches

one of the patterns in Table 4.2. Similar to Student’s t-test, we define a score function ρX(·)
to measure the significance and syntactic correctness of a merging [78], where X can be e
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Table 4.1: Performance on entity detection.

Method NYT Yelp Tweet
Prec Recall Prec Recall Prec Recall

Our method 0.469 0.956 0.306 0.849 0.226 0.751
NP chunker 0.220 0.609 0.296 0.247 0.287 0.181

(entity mention) or p (relation phrase).

ρX(S1, S2) =
υ(S1 ⊕ S2)−N υ(S1)

N
υ(S2)
N√

υ(S1 ⊕ S2)
· IX(S1 ⊕ S2) (4.1)

At each iteration, the greedy agglomerative algorithm performs the merging which has

highest scores (ρe or ρp), and terminates when the next highest-score merging does not meet

a pre-defined significance threshold. Relation phrases without matched POS patterns are

discarded and their valid sub-phrases are recovered. Because the significance score can be

considered analogous to hypothesis testing, one can use standard rule-of thumb values for

the threshold (e.g., Z-score≥2) [78]. Overall the threshold setting is not sensitive in our

empirical studies. As all merged phrases are frequent, we have fast access to their aggregate

counts and thus it is efficient to compute the score of a potential merging.

Fig. 4.3 provides an example output of the candidate generation on New York Times

(NYT) corpus. We further compare our method with a popular noun phrase chunker1

in terms of entity detection performance, using the extracted entity mentions. Table 4.1

summarizes the comparison results on three datasets from different domains (see Sec. 6.4 for

details). Recall is most critical for this step, since we can recognize false positives in later

stages of our framework, but no chance to later detect the misses, i.e., false negatives.

4.3.2 Mention-Name Subgraph

In practice, directly modeling the type indicator for each candidate mention may be infeasi-

ble due to the large number of candidate mentions (e.g., |M| > 1 million in our experiments).

This results in an intractable size of parameter space, i.e., O(|M |T ). Intuitively, both the

entity name and the surrounding relation phrases provide strong cues on the type of a can-

didate entity mention. In Fig. 6.1, for example, the relation phrase “beat” suggests “Golden

Bears” can mention a person or a sport team, while the surface name “Golden Bears” may

1TextBlob: http://textblob.readthedocs.org/en/dev/
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Table 4.2: POS tag patterns for relation phrases.

Pattern Example
V disperse; hit; struck; knock;
P in; at; of; from; to;

V P locate in; come from; talk to;
VW∗(P) caused major damage on; come lately
V-verb; P-prep; W-{adv | adj | noun | det | pron}

W∗ denotes multiple W; (P) denotes optional.

refer to a sport team or a company. We propose to model the type indicator of a candidate

mention based on the type indicator of its surface name and the type signatures of its asso-

ciated relation phrases (see Sec. 6.3 for details). By doing so, we can reduce the size of the

parameter space to O
(
(|C|+ |P|)T

)
where |C|+ |P| ≪ |M| (see Table 6.5 and Sec 6.4.1). This

enables our method to scale up.

Suppose there are n unique surface names C = {c1, ..., cn} in all the extracted candidate

mentions M. This leads to a biadjacency matrix ΠC ∈ {0, 1}M×n to represent the subgraph

GM,C, where ΠC,ij = 1 if the surface name of mj is cj, and 0 otherwise. Each column of ΠC

is normalized by its ℓ2-norm to reduce the impact of popular entity names. We use a T -

dimensional type indicator vector to measure how likely an entity name is subject to different

types (T or NOI) and denote the type indicators for C by matrix C ∈ Rn×T . Similarly, we

denote the type indicators for M by Y ∈ RM×T .

4.3.3 Name-Relation Phrase Subgraph

By exploiting the aggregated co-occurrences between entity surface names and their sur-

rounding relation phrases across multiple documents collectively, we weight the importance

of different relation phrases for an entity name, and use their connected edge as bridges

to propagate type information between different surface names by way of relation phrases.

For each mention candidate, we assign it as the left (right, resp.) argument to the closest

relation phrase appearing on its right (left, resp.) in a sentence. The type signature of a

relation phrase refers to the two type indicators for its left and right arguments, respectively.

The following hypothesis guides the type propagation between surface names and relation

phrases.
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This place:EP [serves up]:RP the best [cheese steak sandwich]:EP west of:RP the 
Mississippi:EP. ...... Four Peaks:EP [serves up]:RP some beers:EP and great eats:RP. ...... 
They [provide a decent selection of]:RP beers:EP and high-end wines:EP. ...... Tons of:RP 
[places in the valley]:EP, [Jimmy Joes]:EP [serves up]:RP good PIZZA:EP. ..... Pizza:EP [is 
very average]:RP. ...... The Moussaka:EP [is very average]:RP with:RP no flavor:EP.....
 

beers

wines

pizza

Moussaka

serves up

provide a decent selection of

is very average

cheese steak sandwich
Relation phrase

Entity 
string 
name

Text 
Corpus

right argument

left argument

Figure 4.4: Example entity name-relation phrase links from Yelp reviews.

Hypothesis 4.1: Entity-Relation Co-occurrences

If surface name c often appears as the left (right) argument of relation phrase p, then

c’s type indicator tends to be similar to the corresponding type indicator in p’s type

signature.

In Fig. 4.4, for example, if we know “pizza” refers to food and find it frequently co-

occurs with the relation phrase “serves up” in its right argument position, then another

surface name that appears in the right argument position of “serves up” is likely food. This

reinforces the type propagation that “cheese steak sandwich” is also food.

Formally, suppose there are l different relation phrases P = {p1, ..., pl} extracted from the

corpus. We use two biadjacency matrices ΠL,ΠR ∈ {0, 1}M×l to represent the co-occurrences

between relation phrases and their left and right entity arguments, respectively. We define

ΠL,ij = 1 (ΠR,ij = 1) if mi occurs as the closest entity mention on the left (right) of pj in

a sentence; and 0 otherwise. Each column of ΠL and ΠR is normalized by its ℓ2-norm to

reduce the impact of popular relation phrases. Two bipartite subgraphs GC,P can be further

constructed to capture the aggregated co-occurrences between relation phrases P and entity

names C across the corpus. We use two biadjacency matrices WL,WR ∈ Rn×l to represent

the edge weights for the two types of links, and normalize them.

WL = ΠT
CΠL and WR = ΠT

CΠR;

SL = D
(C)−

1
2

L WL D
(P )−

1
2

L and SR = D
(C)− 1

2
R WR D

(P )− 1
2

R ,

where SL and SR are normalized biadjacency matrices. For left-argument relationships,

we define the diagonal surface name degree matrix D
(C)
L ∈ Rn×n as D

(C)
L,ii =

∑l
j=1WL,ij and
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Sad to think:RP the [White House]:EP felt:RP it 
hard to release :EP [birth certificate]:EP. 
   
... The [White House]:EP explains:RP the 
decision:EP to release Obama:EP  long-form 
[birth certificate]:EP. ... 
   
Ceremony:EP [is located in]:RP [White 
House]:EP [Rose Garden:]EP to honor now. 
   
   
[Michelle Obama]:EP to [write book about]:RP 
[White House]:EP [rose garden]:EP. 
   
President:EP fetes:RP [San Francisco Giants]:EP 
at:RP the [rose garden]:EP, [White House]:EP. 
  

Tweet collection

174_White House

2345_White House

6568_White House

12_White House

89279_White House

Entity surface name: White House

(birth certificate, 
Obama)

(rose garden, ...)

Figure 4.5: Example mention-mention links for entity surface name “White House” from Tweets.

the relation phrase degree matrix D
(P)
L ∈ Rl×l as D

(P)
L,jj =

∑n
i=1WL,ij. Likewise, we define

D
(C)
R ∈ Rn×n and D

(P)
R ∈ Rl×l based on WR for the right-argument relationships.

4.3.4 Mention Correlation Subgraph

An entity mention candidate may have an ambiguous name as well as associate with

ambiguous relation phrases. For example, “White House” mentioned in the first sentence in

Fig. 4.5 can refer to either an organization or a facility, while its relation phrase “felt” can

have either a person or an organization entity as the left argument. It is observed that other

co-occurring entity mentions (e.g., “birth certificate” and “rose garden” in Fig. 4.5) may

provide good hints to the type of an entity mention candidate. We propose to propagate the

type information between candidate mentions of each entity name based on the following

hypothesis.

Hypothesis 4.2: Mention correlation

If there exists a strong correlation (i.e., within sentence, common neighbor mentions)

between two candidate mentions that share the same name, then their type indicators

tend to be similar.

Specifically, for each candidate entity mention mi ∈ M, we extract the set of entity
surface names which co-occur with mi in the same sentence. An n-dimensional TF-IDF
vector f (i) ∈ Rn is used to represent the importance of these co-occurring names for mi

where f
(i)
j = υs(cj) · log

(
|D|/υD(cj)

)
with term frequency in the sentence υs(cj) and document

frequency υD(cj) in D. We use an affinity subgraph to represent the mention-mention link
based on k-nearest neighbor (KNN) graph construction [79], denoted by an adjacency matrix
WM ∈ RM×M . Each mention candidate is linked to its k most similar mention candidates
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which share the same name in terms of the vectors f .

WM,ij =


sim(f (i), f (j)), if f (i) ∈ Nk(f

(j)) or f (j) ∈ Nk(f
(i))

and c(mi) = c(mj);

0, otherwise.

where we use the heat kernel function to measure similarity, i.e., sim(f (i), f (j)) = exp
(
−∥f (i)−

f (j)∥2/t
)
with t = 5 [79]. We use Nk(f) to denote k nearest neighbors of f and c(m) to denote

the surface name of mentionm. Similarly, we normalizeWM into SM = D
− 1

2
M WMD

− 1
2

M where

the degree matrix DM ∈ RM×M is defined by DM,ii =
∑M

j=1WM,ij.

4.4 CLUSTERING-INTEGRATED TYPE PROPAGATION ON GRAPHS

This section introduces our unified framework for joint type propagation and relation

phrase clustering on graphs.

A straightforward solution is to first perform hard clustering on the extracted relation

phrases and then conduct type propagation between entity names and relation phrase clus-

ters. Such a solution encounters several problems. One relation phrase may belong to

multiple clusters, and the clusters so derived do not incorporate the type information of

entity arguments. As such, the type prediction performance may not be best optimized by

the mined clusters.

In our solution, we formulate a joint optimization problem to minimize both a graph-based

semi-supervised learning error and a multi-view relation phrase clustering objective.

4.4.1 Seed Mention Generation

We first collect type information for the extracted mention candidates M by linking them

to the KB. This yields a set of type-labeled mentions ML. Our goal is then to type the

remaining unlinkable mention candidates MU = M/ML.

We utilize a state-of-the-art entity name disambiguation tool2 to map each candidate

mention to Freebase entities. Only the mention candidates which are mapped with high

confidence scores (i.e., η ≥ 0.8) are considered as valid output. We denote the mapping

entity of a linked mention m as κe(m), and the set of types of κe(m) in Freebase as T (m).

The linked mentions which associate with multiple target types (i.e., |T (m) ∩ T | > 1) are

discarded to avoid type ambiguity. This finally leads to a set of labeled (seed) mentions ML.

In our experiments, we found that only a very limited amount of extracted candidate entity

2http://spotlight.dbpedia.org/
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Table 4.3: Statistics for seed generation.

Dataset NYT Yelp Tweet

#Extracted mentions 4.88M 1.32M 703k

%Seed mentions 6.98 4.57 1.83

#Entities 17,326 5,662 12,211

mentions can be confidently mapped to Freebase entities (i.e., |ML|/|M| < 7%). We define

the type indicator ym for a linked mention m ∈ ML as ym,t = 1 if T (m) ∩ T = {t} and 0

otherwise, for t ∈ T . Meanwhile, ym,NOI is assigned with 1 if T (m) ∩ T = ∅ and 0 otherwise.

4.4.2 Relation Phrase Clustering

In practice, we observe that many extracted relation phrases have very few occurrences

in the corpus. This makes it hard to model their type signature based on the aggregated

co-occurrences with entity names (i.e., Hypothesis 4.3.3). In our experimental datasets,

about 37% of the relation phrases have less than 3 unique entity surface names (in right or

left arguments) in GC,P . Intuitively, by softly clustering synonymous relation phrases, the

type signatures of frequent relation phrases can help infer the type signatures of infrequent

(sparse) ones that have similar cluster memberships, based on the following hypothesis.

Hypothesis 4.3: Type signature consistency

If two relation phrases have similar cluster memberships, the type indicators of their

left and right arguments (type signature) tend to be similar, respectively.

There has been some studies [67, 80] on clustering synonymous relation phrases based

on different kinds of signals and clustering methods. We propose a general relation phrase

clustering method to incorporate different features for clustering, which can be integrated

with the graph-based type propagation in a mutually enhancing framework, based on the

following hypothesis.

Hypothesis 4.4: Relation phrase similarity

Two

relation phrases tend to have similar cluster memberships, if they have similar (1)

strings; (2) context words; and (3) left and right argument type indicators.
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In particular, type signatures of relation phrases have proven very useful in clustering of

relation phrases which have infrequent or ambiguous strings and contexts [67]. In contrast to

previous approaches, our method leverages the type information derived by the type propa-

gation and thus does not rely strictly on external sources to determine the type information

for all the entity arguments.

Formally, suppose there are ns (nc) unique words {w1, ..., wns} ({w′
1, ..., w

′
nc
}) in all the

relation phrase strings (contexts). We represent the strings and contexts of the extracted

relation phrases P by two feature matrices fs ∈ Rl×ns and fc ∈ Rl×nc , respectively. We set

Fs,ij = 1 if pi contains the word wj and 0 otherwise. We use a text window of 10 words

to extract the context for a relation phrase from each sentence it appears in, and construct

context features fc based on TF-IDF weighting. Let PL,PR ∈ Rl×T denote the type signatures

of P . Our solution uses the derived features (i.e., {fs, fc,PL,PR}) for multi-view clustering of

relation phrases based on joint non-negative matrix factorization, which will be elaborated

in the next section.

4.4.3 The Joint Optimization Problem

Our goal is to infer the label (type t ∈ T or NOI) for each unlinkable entity mention

candidate m ∈ MU , i.e., estimating Y. We propose an optimization problem to unify two

different tasks to achieve this goal: (i) type propagation over both the type indicators of

entity names C and the type signatures of relation phrases {PL,PR} on the heterogeneous

graph G by way of graph-based semi-supervised learning, and (ii) multi-view relation phrase

clustering. The seed mentions ML are used as initial labels for the type propagation. We

formulate the objective function as follows.

Oα,γ,µ = F(C,PL,PR) + Lα

(
PL,PR, {U(v),V(v)},U∗ )

+ Ωγ,µ(Y,C,PL,PR). (4.2)

The first term F follows from Hypothesis 4.3.3 to model type propagation between entity

names and relation phrases. By extending local and global consistency idea [79], it ensures

that the type indicator of an entity name is similar to the type indicator of the left (or right)

argument of a relation phrase, if their corresponding association is strong.

F(C,PL,PR) =
∑

Z∈{L,R}

n∑
i=1

l∑
j=1

WZ,ij

∥∥∥∥∥ Ci√
D

(C)
Z,ii

− PZ,j√
D

(P)
Z,jj

∥∥∥∥∥
2

2

, (4.3)
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The second term Lα in Eq. (4.2) follows Hypotheses 4.4.2 and 4.4.2 to model the multi-
view relation phrase clustering by joint non-negative matrix factorization. In this study,
we consider each derived feature as one view in the clustering, i.e., {f (0), f (1), f (2), f (3)} =

{PL,PR, fs, fc} and derive a four-view clustering objective as follows.

Lα

(
PL,PR, {U(v),V(v)},U∗ ) (4.4)

=

d∑
v=0

β(v)
(
∥f (v) −U(v) V(v)T ∥2F + α∥U(v) Q(v) −U∗ ∥2F

)
.

The first part of Eq. (4.4) performs matrix factorization on each feature matrix. Suppose

there exists K relation phrase clusters. For each view v, we factorize the feature matrix f (v)

into a cluster membership matrix U(v) ∈ Rl×K
≥0 for all relation phrases P and a type indica-

tor matrix V(v) ∈ RT×K
≥0 for the K derived clusters. The second part of Eq. (4.4) enforces

the consistency between the four derived cluster membership matrices through a consensus

matrix U* ∈ Rl×K
≥0 , which applies Hypothesis 4.4.2 to incorporate multiple similarity mea-

sures to cluster relation phrases. As in [81], we normalize {U(v)} to the same scale (i.e.,

∥U(v)Q(v) ∥F ≈ 1) with the diagonal matrices {Q(v)}, where Q
(v)
kk =

∑T
i=1 V

(v)
ik /∥f (v)∥F , so that

they are comparable under the same consensus matrix. A tuning parameter α ∈ [0, 1] is used

to control the degree of consistency between the cluster membership of each view and the

consensus matrix. {β(v)} are used to weight the information among different views, which

will be automatically estimated. As the first part of Eq. (4.4) enforces {U(0),U(1)} ≈ U* and

the second part of Eq. (4.4) imposes PL ≈ U(0)V(0)T and PR ≈ U(1)V(1)T , it can be checked

that U∗
i ≈ U∗

j implies both PL,i ≈ PL,j and PR,i ≈ PR,j for any two relation phrases, which

captures Hypothesis 4.4.2.

The last term Ωγ,µ in Eq. (4.2) models the type indicator for each entity mention candidate,

the mention-mention link and the supervision from seed mentions.

Ωγ,µ(Y,C,PL,PR) =
∥∥Y−f(ΠC C,ΠLPL,ΠR PR)

∥∥2
F

+
γ

2

M∑
i,j=1

WM,ij

∥∥∥∥∥ Yi√
D

(M)
ii

− Yj√
D

(M)
jj

∥∥∥∥∥
2

2

+ µ∥Y−Y0 ∥2F . (4.5)

In the first part of Eq. (4.5), the type of each entity mention candidate is modeled by a

function f(·) based on the the type indicator of its surface name as well as the type sig-

natures of its associated relation phrases. Different functions can be used to combine the

information from surface names and relation phrases. In this study, we use an equal-weight

linear combination, i.e., f(X1,X2,X3) = X1+X2+X3. The second part follows Hypothe-

sis 4.3.4 to model the mention-mention correlation by graph regularization, which ensures
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the consistency between the type indicators of two candidate mentions if they are highly

correlated. The third part enforces the estimated Y to be similar to the initial labels from

seed mentions, denoted by a matrix Y0 ∈ RM×T (see Sec. 4.4.1). Two tuning parameters

γ, µ ∈ [0, 1] are used to control the degree of guidance from mention correlation in GM and

the degree of supervision from Y0, respectively.

To derive the exact type of each candidate entity mention, we impose the 0-1 integer

constraint Y ∈ {0, 1}M×T and Y1 = 1. To model clustering, we further require the cluster

membership matrices {U(v)}, the type indicator matrices of the derived clusters {V(v)} and

the consensus matrix U* to be non-negative. With the definition of O, we define the joint

optimization problem as follows.

min
Y,C,PL,PR,U

∗

{U(v),V(v), β(v)}

Oα,γ,µ (4.6)

s.t.
Y ∈ {0, 1}M×T

,Y1 = 1, U* ≥ 0,

{U(v), V(v)} ≥ 0,
∑d

v=0 e
−β(v)

= 1,

where
∑d

v=0 e
−β(v)

= 1 is used for avoiding trivial solution, i.e., solution which completely

favors a certain view.

4.4.4 The ClusType Algorithm

The optimization problem in Eq. (4.6) is mix-integer programming and thus is NP-hard.

We propose a two-step approximate solution: first solve the real-valued relaxation of Eq. (4.6)

which is a non-convex problem with Y ∈ RM×T ; then impose back the constraints to predict

the exact type of each candidate mention mi ∈ MU by type (mi) = argmax Yi.

Directly solving the real-valued relaxation of Eq. (4.6) is not easy because it is non-convex.

We develop an alternating minimization algorithm to optimize the problem with respect to

each variable alternatively, which accomplishes two tasks iteratively: type propagation on

the heterogeneous graph, and multi-view clustering of relation phrases.

First, to learn the type indicators of candidate entity mentions, we take derivative on O
with respect to Y while fixing other variables. As links only exist between entity mentions

sharing the same surface name in WM, we can efficiently estimate Y with respect to each

entity name c ∈ C. Let Y(c) and S
(c)
M denote the sub-matrices of Y and SM, which correspond

to the candidate entity mentions with the name c, respectively. We have the update rule for

Y(c) as follows:
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Y(c) =
[
(1 + γ + µ) Ic−γ S

(c)
M

]−1(
Θ(c)+µY

(c)
0

)
, ∀c ∈ C, (4.7)

where Θ = ΠC C+ΠLPL+ΠR PR. Similarly, we denote Θ(c) and Y
(c)
0 as sub-matrices of

Θ and Y0 which correspond to the candidate mentions with name c, respectively. It can

be shown that [(1 + γ + µ) Ic−γ S
(c)
M] is positive definite given µ > 0 and thus is invertible.

Eq. (4.7) can be efficiently computed since the average number of mentions of an entity name

is small (e.g., < 10 in our experiments). One can further parallelize this step to reduce the

computational time.

Second, to learn the type indicators of entity names and the type signatures of relation

phrases, we take derivative on O with respect to C, PL and PR while fixing other variables,

leading to the following closed-form update rules.

C =
1

2

[
SLPL+SR PR+ΠT

C (Y−ΠLPL−ΠR PR)
]
; (4.8)

PL = X
−1

0

[
ST
L C+ΠT

L(Y−ΠC C−ΠR PR) + β(0)U(0)V(0)T
]
;

PR = X
−1

1

[
ST
R C+ΠT

R(Y−ΠC C−ΠLPL) + β(1)U(1)V(1)T
]
;

where we define X0 = [(1 + β(0)) Il +ΠT
LΠL] and X1 = [(1 + β(1)) Il +ΠT

RΠR] respectively. Note

that the matrix inversions in Eq. (4.8) can be efficiently calculated with linear complexity

since both ΠT
LΠL and ΠT

RΠR are diagonal matrices.

Finally, to perform multi-view clustering, we first optimize Eq. (4.2) with respect to

{U(v),V(v)} while fixing other variables, and then update U* and {β(v)} by fixing {U(v),V(v)}
and other variables, which follows the procedure in [81].
We first take the derivative of O with respect to V(v) and apply Karush-Kuhn-Tucker

complementary condition to impose the non-negativity constraint on it, leading to the mul-
tiplicative update rules as follows:

V
(v)
jk = V

(v)
jk

[f (v)T U(v)]jk + α
∑l

i=1 U
∗
ikU

(v)
ik

∆
(v)
jk +α

(∑l
i=1 U

(v)2
ik

)(∑T
i=1 V

(v)
ik

) , (4.9)

where we define the matrix ∆(v) = V(v)U(v)T U(v)+f (v)
−
U(v). It is easy to check that {V(v)}

remains non-negative after each update based on Eq. (4.9).
We then normalize the column vectors of V(v) and U(v) by V(v) = V(v)Q(v)−1 and U(v) =

U(v)Q(v). Following similar procedure for updating V(v), the update rule for U(v) can be
derived as follows:

U
(v)
ik = U

(v)
ik

[f (v)
+

V(v) +αU*]ik

[U(v) V(v)T V(v) +f (v)− V(v) +αU(v)]ik
. (4.10)

In particular, we make the decomposition f (v) = f (v)
+ − f (v)

−
, where A+

ij = (|Aij |+Aij)/2 and

A−
ij = (|Aij | −Aij)/2, in order to preserve the non-negativity of {U(v)}.
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Algorithm 4.1 The ClusType algorithm
Input: biadjacency matrices {ΠC ,ΠL,ΠR,WL,WR,WM}, clustering features {fs, fc}, seed labels
Y0, number of clusters K, parameters {α, γ, µ}
1: Initialize {Y,C,PL,PR} with {Y0,Π

T
C Y0,Π

T
L Y0,Π

T
R Y0}, {U(v),V(v), β(v)} andU* with pos-

itive values.
2: repeat
3: Update candidate mention type indicator Y by Eq. (4.7)
4: Update entity name type indicator C and relation phrase type signature {PL,PR} by

Eq. (4.8)
5: for v = 0 to 3 do
6: repeat
7: Update V(v) with Eq. (4.9)
8: Normalize U(v) = U(v)Q(v), V(v) = V(v)Q(v)−1

9: Update U(v) by Eq. (4.10)
10: until Eq. (4.11) converges
11: end for
12: Update consensus matrix U* and relative feature weights {β(v)} using Eq. (4.12)
13: until the objective O in Eq. (4.6) converges
14: Predict the type of mi ∈ MU by type(mi) = argmax Yi.

The proposed algorithm optimizes {U(v),V(v)} for each view v, by iterating between
Eqs. (4.9) and (4.10) until the following reconstruction error converges.

δ(v) = ∥f (v) −U(v) V(v)T ∥2F + α∥U(v) Q(v) −U* ∥2F (4.11)

With optimized {U(v),V(v)}, we update U* and {β(v)} by taking the derivative on O with

respect to each of them while fixing all other variables. This leads to the closed-form update

rules as follows:

U* =

∑d
v=0 β

(v)U(v)Q(v)∑d
v=0 β

(v)
; β(v) = −log

( δ(v)∑d
i=0 δ

(i)

)
. (4.12)

Algorithm 4.1 summarizes our algorithm. For convergence analysis, ClusType applies block

coordinate descent on the real-valued relaxation of Eq. (4.6). The proof procedure in [82]

(not included for lack of space) can be adopted to prove convergence for ClusType (to the

local minimum).

4.4.5 Computational Complexity Analysis

Given a corpus D with ND words, the time complexity for our candidate generation and

generation of {ΠC ,ΠL,ΠR, fs, fc} is O(ND). For construction of the heterogeneous graph G,

the costs for computing GC,P and GM are O(nl) and O(MMCdC), respectively, where MC
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denotes average number of mentions each name has and dC denotes average size of feature

dimensions (MC < 10, dC < 5000 in our experiments). It takes O(MT ) and O(MM2
C + l2) time

to initialize all the variables and pre-compute the constants in update rules, respectively.

We then study the computational complexity of ClusType in Algorithm 4.1 with the

pre-computed matrices. In each iteration of the outer loop, ClusType costs O(MMCT )

to update Y, O(nlT ) to update C and O
(
nT (K + l)

)
to update {PL,PR}. The cost for

inner loop is O
(
tinlK(T + ns + nc)

)
supposing it stops after tin iterations (tin < 100 in

our experiments). Update of U* and {β(v)} takes O(lK) time. Overall, the computational

complexity of ClusType is O
(
toutnlT + touttinlK(T + ns + nc)

)
, supposing that the outer loop

stops in tout iterations (tout < 10 in our experiments).

4.5 EXPERIMENTS

4.5.1 Data Preparation

Our experiments use three real-world datasets3: (1) NYT: constructed by crawling 2013

news articles from New York Times. The dataset contains 118,664 articles (57M tokens

and 480k unique words) covering various topics such as Politics, Business and Sports; (2)

Yelp: We collected 230,610 reviews (25M tokens and 418k unique words) from the 2014

Yelp dataset challenge; and (3) Tweet: We randomly selected 10,000 users in Twitter and

crawled at most 100 tweets for each user in May 2011. This yields a collection of 302,875

tweets (4.2M tokens and 157k unique words).

1. Heterogeneous Graphs. We first performed lemmatization on the tokens using NLTK

WordNet Lemmatizer4 to reduce variant forms of words (e.g., eat, ate, eating) into their

lemma form (e.g., eat), and then applied Stanford POS tagger [83] on the corpus. In candi-

date generation (see Sec. 6.3.1), we set maximal pattern length as 5, minimum support as

30 and significance threshold as 2, to extract candidate entity mentions and relation phrases

from the corpus. We then followed the introduction in Sec. 4.3 to construct the heterogeneous

graph for each dataset. We used 5-nearest neighbor graphs when constructing the mention

correlation subgraph. Table 6.5 summarizes the statistics of the constructed heterogeneous

graphs for all three datasets.

2. Clustering Feature Generation. Following the procedure introduced in Sec. 4.4.2, we

used a text window of 10 words to extract the context features for each relation phrase (5

3Code and datasets used in this paper can be downloaded at: http://web.engr.illinois.
edu/~xren7/clustype.zip.

4 http://www.nltk.org/
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Table 4.4: Statistics of the heterogeneous graphs.

Data sets NYT Yelp Tweet

#Entity mention candidates (M) 4.88M 1.32M 703k
#Entity surface names (n) 832k 195k 67k
#Relation phrases (l) 743k 271k 57k
#Links 29.32M 8.64M 3.59M
Avg#mentions per string name 5.86 6.78 10.56

Table 4.5: Target type sets T for the datasets.

NYT person, organization, location, time event

Yelp food, time event, job title, location, organization

Tweet
time event, business consumer product, person, location, organiza-
tion, business job title, time year of day

words on the left and the right of a relation phrase), where stop-words are removed. We

obtained 56k string terms (ns) and 129k context terms (nc) for the NYT dataset, 58k string

terms and 37k context terms for the Yelp dataset and 18k string terms and 38k context

terms for the Tweet dataset, respectively all unique term counts. Each row of the feature

matrices were then normalized by its ℓ-2 norm.

3. Seed and Evaluation Sets. For evaluation purposes, we selected entity types which

are popular in the dataset from Freebase, to construct the target type set T . Table 4.5

shows the target types used in the three datasets. To generate the set of seed mentions ML,

we followed the process introduced in Sec. 4.4.1 by setting the confidence score threshold

as η = 0.8. To generate the evaluation sets, we randomly selected a subset of documents

from each dataset and annotated them using the target type set T (each entity mention is

tagged by one type). 1k documents are annotated for the NYT dataset (25,451 annotated

mentions). 2.5k reviews are annotated for the Yelp dataset (21,252 annotated mentions). 3k

tweets are annotated for the Tweet dataset (5,192 annotated mentions). We removed the

mentions from the seed mention sets if they were in the evaluation sets.

4.5.2 Experimental Settings

In our testing of ClusType and its variants, we set the number of clustersK = {4000, 1500, 300}
for NYT, Yelp and Tweet datasets, respectively, based on the analyses in Sec. 6.4.2. We set

{α, γ, µ} = {0.4, 0.7, 0.5} by five-fold cross validation (of classification accuracy) on the seed
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Table 4.6: Performance comparisons on three datasets in terms of Precision, Recall and F1 score.

Data sets NYT Yelp Tweet
Method Precision Recall F1 Precision Recall F1 Precision Recall F1

Pattern [31] 0.4576 0.2247 0.3014 0.3790 0.1354 0.1996 0.2107 0.2368 0.2230
FIGER [36] 0.8668 0.8964 0.8814 0.5010 0.1237 0.1983 0.7354 0.1951 0.3084

SemTagger [75] 0.8667 0.2658 0.4069 0.3769 0.2440 0.2963 0.4225 0.1632 0.2355
APOLLO [77] 0.9257 0.6972 0.7954 0.3534 0.2366 0.2834 0.1471 0.2635 0.1883
NNPLB [35] 0.7487 0.5538 0.6367 0.4248 0.6397 0.5106 0.3327 0.1951 0.2459

ClusType-NoClus 0.9130 0.8685 0.8902 0.7629 0.7581 0.7605 0.3466 0.4920 0.4067
ClusType-NoWm 0.9244 0.9015 0.9128 0.7812 0.7634 0.7722 0.3539 0.5434 0.4286
ClusType-TwoStep 0.9257 0.9033 0.9143 0.8025 0.7629 0.7821 0.3748 0.5230 0.4367

ClusType 0.9550 0.9243 0.9394 0.8333 0.7849 0.8084 0.3956 0.5230 0.4505

mention sets. For convergence criterion, we stop the outer (inner) loop in Algorithm 4.1 if

the relative change of O in Eq. (4.6)
(
reconstruction error in Eq. (4.11)

)
is smaller than 10−4,

respectively.

Compared Methods: We compared the proposed method (ClusType) with its variants

which only model part of the proposed hypotheses. Several state-of-the-art entity recogni-

tion approaches were also implemented (or tested using their published codes): (1) Stan-

ford NER [25]: a CRF classifier trained on classic corpora for several major entity types;

(2) Pattern [31]: a state-of-the-art pattern-based bootstrapping method which uses the

seed mention sets ML; (3) SemTagger [75]: a bootstrapping method which trains contex-

tual classifiers using the seed mention set ML in a self-training manner; (4) FIGER [36]:

FIGER trains sequence labeling models using automatically annotated Wikipeida corpora;

(5) NNPLB [35]: It uses ReVerb assertions [41] to construct graphs and performs entity

name-level label propagation; and (6) APOLLO [77]: APOLLO constructs heterogeneous

graphs on entity mentions, Wikipedia concepts and KB entities, and then performs label

propagation.

All compared methods were first tuned on our seed mention sets using five-fold cross

validation. For ClusType, besides the proposed full-fledged model, ClusType, we compare

(1) ClusType-NoWm: This variant does not consider mention correlation subgraph, i.e.,

set γ = 0 in ClusType; (2) ClusType-NoClus: It performs only type propagation on the

heterogeneous graph, i.e., Eq. (4.4) is removed from O; and (3) ClusType-TwoStep: It first

conducts multi-view clustering to assign each relation phrase to a single cluster, and then

performs ClusType-NoClus between entity names, candidate entity mentions and relation

phrase clusters.

Evaluation Metrics: We use F1 score computed from Precision and Recall to evaluate the

entity recognition performance. We denote the #system-recognized entity mentions as J and

the # ground truth annotated mentions in the evaluation set as A. Precision is calculated

by Prec =
∑

m∈J∩A ω(t′m = tm)/|J | and Recall is calculated by Rec =
∑

m∈J∩A ω(t′m = tm)/|A|.
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Figure 4.6: Performance breakdown by types.

Here, tm and t′m denote the true type and the predicted type for m, respectively. Function

ω(·) returns 1 if the predicted type is correct and 0 otherwise. Only mentions which have

correct boundaries and predicted types are considered correct. For cross validation on the

seed mention sets, we use classification accuracy to evaluate the performance.

4.5.3 Experiments and Performance Study

1. Comparing ClusType with the other methods on entity recognition. Table 4.6

summarizes the comparison results on the three datasets. Overall, ClusType and its three

variants outperform others on all metrics on NYT and Yelp and achieve superior Recall and

F1 scores on Tweet. In particular, ClusType obtains a 46.08% improvement in F1 score and

168% improvement in Recall compared to the best baseline FIGER on the Tweet dataset

and improves F1 by 48.94% compared to the best baseline, NNPLB, on the Yelp dataset.

FIGER utilizes a rich set of linguistic features to train sequence labeling models but

suffers from low recall moving from a general domain (e.g., NYT) to a noisy new domain

(e.g., Tweet) where feature generation is not guaranteed to work well (e.g., 65% drop in F1

score). Superior performance of ClusType demonstrates the effectiveness of our candidate

generation and of the proposed hypotheses on type propagation over domain-specific corpora.

NNPLB also utilizes textual relation for type propagation, but it does not consider entity

surface name ambiguity. APOLLO propagates type information between entity mentions but

encounters severe context sparsity issue when using Wikipedia concepts. ClusType obtains

superior performance because it not only uses semantic-rich relation phrases as type cues for

each entity mention, but also clusters the synonymous relation phrases to tackle the context

sparsity issues.

2. Comparing ClusType with its variants. Comparing with ClusType-NoClus and ClusType-

TwoStep, ClusType gains performance from integrating relation phrase clustering with type
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Table 4.7: F1 score comparison with trained NER.

Method NYT Yelp Tweet
Stanford NER [25] 0.6819 0.2403 0.4383
ClusType-NoClus 0.9031 0.4522 0.4167

ClusType 0.9419 0.5943 0.4717

propagation in a mutually enhancing way. It always outperforms ClusType-NoWm on Pre-

cision and F1 on all three datasets. The enhancement mainly comes from modeling the

mention correlation links, which helps disambiguate entity mentions sharing the same sur-

face names.

3. Comparing on different entity types. Fig. 4.6 shows the performance on different types

on Yelp and Tweet. ClusType outperforms all the others on each type. It obtains larger gain

on organization and person, which have more entities with ambiguous surface names. This

indicates that modeling types on entity mention level is critical for name disambiguation.

Superior performance on product and food mainly comes from the domain independence of

our method because both NNPLB and SemTagger require sophisticated linguistic feature

generation which is hard to adapt to new types.

4. Comparing with trained NER. Table 4.7 compares ours with a traditional NER method,

Stanford NER, trained using classic corpora like ACE corpus, on three major types—person,

location and organization. ClusType and its variants outperform Stanford NER on the

corpora which are dynamic (e.g., NYT) or domain-specific (e.g., Yelp). On the Tweet

dataset, ClusType has lower Precision but achieves a 63.59% improvement in Recall and

7.62% improvement in F1 score. The superior Recall of ClusType mainly comes from the

domain-independent candidate generation.

5. Testing on sensitivity over the number of relation phrase clusters, K. Fig. 4.7(a),

ClusType was less sensitive to K compared with its variants. We found on the Tweet

dataset, ClusType achieved the best performance when K=300 while its variants peaked at

K=500, which indicates that better performance can be achieved with fewer clusters if type

propagation is integrated with clustering in a mutually enhancing way. On the NYT and the

Yelp datasets (not shown here), ClusType peaked at K=4000 and K=1500, respectively.

6. Testing on the size of seed mention set. Seed mentions are used as labels (distant

supervision) for typing other mentions. By randomly selecting a subset of seed mentions as

labeled data (sampling ratio from 0.1 to 1.0), Fig. 4.7(b) shows ClusType and its variants are

not very sensitive to the size of seed mention set. Interestingly, using all the seed mentions
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Figure 4.7: Performance changes in F1 score with #clusters, #seeds and corpus size on Tweets.

does not lead to the best performance, likely caused by the type ambiguity among the

mentions.

7. Testing on the effect of corpus size. Experimenting on the same parameters for

candidate generation and graph construction, Fig. 4.7(c) shows the performance trend when

varying the sampling ratio (subset of documents randomly sampled to form the input corpus).

ClusType and its variants are not very sensitive to the changes of corpus size, but NNPLB

had over 17% drop in F1 score when sampling ratio changed from 1.0 to 0.1 (while ClusType

had only 5.5%). In particular, they always outperform FIGER, which uses a trained classifier

and thus does not depend on corpus size.

4.6 RELATED WORK

Entity Recognition. Existing work leverages various levels of human supervision to recognize

entities, from fully annotated documents (supervised), seed entities (weakly supervised), to

knowledge bases (distantly supervised).

Traditional supervised methods [26, 44] use fully annotated documents and different lin-

guistic features to train sequence labeling model (e.g., CRF classifier). To obtain an effective

model, the amount of labeled data is significant [26], despite the effort of semi-supervised

sequence labeling methods [84, 85, 32].

Weakly-supervised methods utilize a small set of typed entities as seeds and extract more

entities of target types, which can largely reduce the amount of required labeled data.

Pattern-based bootstrapping methods [31, 53, 86] derive patterns from contexts of seed

entities and use them to incrementally extract new entities and new patterns, which do

not restrict to specific domains. However, assigning a single type to each entity name may

cause semantic drift [36]. Also, such methods are constrained to the information matched
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by the pattern and often suffer from recall [87]. Iterative bootstrapping methods such as

probabilistic method [51] and label propagation method [88, 87, 54] softly assign multiple

types to an entity name and iteratively update its type distribution. In particular, Web

data (e.g., Web lists, query logs) has been explored to conduct set expansion based on seed

entities [89, 30, 90]. However, above methods simply derive a global type distribution for

entity name and thus cannot decide the exact type for each entity mention based on its

local context. Also, careful seed selection by human is required to ensure effective entity

extraction [76].

Distantly supervised (unsupervised) methods [34, 35, 36] avoid expensive human labels

by leveraging type information of entity mentions which are confidently mapped to entries

in KBs. Linked mentions are used to type those unlinkable ones in different ways, including

training a contextual classifier [34], learning a sequence labeling model [36] and serving as

labels in graph-based semi-supervised learning [35]. In particular, Li et al. [91] conduct

domain-specific, unsupervised entity recognition on tweet data based on Web data.

Aforementioned methods adopt general entity detection tools (e.g., noun phrase chunker)

to extract candidates and rely on linguistic processing (e.g., dependency parser) to generate

features, which may be hard to generalize across different domains. Also, they overlook

entity name ambiguity and context sparsity issues when modeling type of entity mention by

its contextual information (e.g., keyword, context sequence, Wikipedia concept).

Our work uses a domain-independent phrase mining algorithm to generate candidate men-

tions, models the exact type for each entity mention based on its string name and surrounding

relation phrases to handle name ambiguity, and conduct clustering-integrated type propa-

gation to resolve context sparsity. Knowledge base population methods [92, 77] study entity

linking and fine-grained categorization of unlinkable mentions in a unified framework, which

shares the similar idea of modeling each entity mention individually to resolve name ambi-

guity. Our work is also related to noun phrase chunking [93] and keyphrase extraction [78]

in terms of extracting noun phrase or significant phrases from corpus, but we focus on ex-

tracting candidate entity mentions which satisfy POS constraints and relation phrases in a

joint manner.

Open Relation Mining. Extracting textual relation between subjective and objective from

text has been extensively studied [41, 94] and applied to entity typing [35]. Fader et al. [41]

utilize POS patterns to extract verb phrases between detected noun phrases to form relation

assertion. Schmitz et al. [42] further extend the textual relation by leveraging dependency

tree patterns. However, these methods reply on linguistic parsers, which may not generalize

to different domains, and do not consider significance of the detected entity mentions in the
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Table 4.8: Example output of ClusType and the compared methods on the Yelp dataset.

ClusType SemTagger NNPLB

The best BBQ:Food I’ve
tasted in Phoenix:LOC
! I had the [pulled pork
sandwich]:Food with
coleslaw:Food and [baked
beans]:Food for lunch. ...

The best BBQ I’ve tasted
in Phoenix:LOC ! I
had the pulled [pork
sandwich]:LOC with
coleslaw:Food and [baked
beans]:LOC for lunch. ...

The best BBQ:Loc I’ve
tasted in Phoenix:LOC ! I
had the pulled pork sand-
wich:Food with coleslaw
and baked beans:Food for
lunch:Food. ...

I only go to ihop:LOC
for pancakes:Food because
I don’t really like anything
else on the menu. Or-
dered [chocolate chip pan-
cakes]:Food and a [hot
chocolate]:Food.

I only go to ihop for pan-
cakes because I don’t re-
ally like anything else on the
menu. Ordered [chocolate
chip pancakes]:LOC and a
[hot chocolate]:LOC.

I only go to ihop for pancakes
because I don’t really like
anything else on the menu.
Ordered chocolate chip pan-
cakes and a hot chocolate.

corpus (see comparison between NNPLB [35] and ClusType).

On the other hand, there has been some studies on clustering synonymous relations gen-

erated by open information extraction, and forming canonicalized relation phrase for each

cluster [67, 80, 95]. However, these methods either ignore entity type information when

resolving relations, or assume types of relation arguments are already given. Our work in-

tegrate entity type learning and relation phrase clustering in a joint framework where these

two tasks can mutually enhance each other.

Liu et al. [81] formulate multi-view clustering based on joint non-negative matrix factor-

ization. Ji et al. [96] propose a graph-based semi-supervised learning method for transduc-

tive classification on heterogeneous information network. To our knowledge, the proposed

method is the first to model graph-based semi-supervised learning and multi-view clustering

in a joint optimization problem, leading to a multi-task multi-view learning framework.

4.7 DISCUSSION

1. Example output on two Yelp reviews. Table 6.9 shows the output of ClusType, Sem-

Tagger and NNPLB on two Yelp reviews: ClusType extracts more entity mention candidates

(e.g., “BBQ”, “ihop”) and predicts their types with better accuracy (e.g., “baked beans”,

“pulled pork sandwich”).

2. Testing on context sparsity. The type indicator of each entity mention candidate is

modeled in ClusType based on the type indicator of its surface name and the type signatures

of its co-occurring relation phrases. To test the handling of different relation phrase sparsity,
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Figure 4.8: Case studies on context sparsity and surface name popularity on the Tweet dataset.

two groups of 500 mentions are selected from Yelp: mentions in Group A co-occur with

frequent relation phrases (∼4.6k occurrences in the corpus) and those in Group B co-occur

with sparse relation phrases (∼3.4 occurrences in the corpus). Fig. 4.8(a) compares their

F1 scores on the Tweet dataset. In general, all methods obtained better performance when

mentions co-occurring with frequent relation phrases than with sparse relation phrases. In

particular, we found that ClusType and its variants had comparable performance in Group A

but ClusType obtained superior performance in Group B. Also, ClusType-TwoStep obtained

larger performance gain over ClusType-NoClus in Group B. This indicates that clustering

relation phrases is critical for performance enhancement when dealing with sparse relation

phrases, as expected.

3. Testing on surface name popularity. We generated the mentions in Group A with high

frequency surface names (∼2.7k occurrences) and those in Group B with infrequent surface

names (∼1.5). Fig. 4.8(b) shows the degraded performance of all methods in both cases—

likely due to ambiguity in popular mentions and sparsity in infrequent mentions. ClusType

outperforms its variants in Group B, showing it handles well mentions with insufficient

corpus statistics.

4. Example relation phrase clusters. Table 4.9 shows relation phrases along with their

corpus frequency from three example relation phrase clusters for the NYT dataset (K =

Table 4.9: Example relation phrase clusters and their corpus frequency from the NYT dataset.

ID Relation phrase

1 recruited by (5.1k); employed by (3.4k); want hire by (264)

2
go against (2.4k); struggling so much against (54); run for re-election against (112);
campaigned against (1.3k)

3
looking at ways around (105); pitched around (1.9k); echo around (844); present at
(5.5k);
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4000). We found that not only synonymous relation phrases, but also both sparse and

frequent relation phrases can be clustered together effectively (e.g., “want hire by” and

“recruited by”). This shows that ClusType can boost sparse relation phrases with type

information from the frequent relation phrases with similar group memberships.

4.8 SUMMARY

Entity recognition is an important but challenging research problem. In reality, many

text collections are from specific, dynamic, or emerging domains, which poses significant

new challenges for entity recognition with increase in name ambiguity and context spar-

sity, requiring entity detection without domain restriction. In this work, we investigate

entity recognition (ER) with distant-supervision and propose a novel relation phrase-based

ER framework, called ClusType, that runs data-driven phrase mining to generate entity

mention candidates and relation phrases, and enforces the principle that relation phrases

should be softly clustered when propagating type information between their argument en-

tities. Then we predict the type of each entity mention based on the type signatures of its

co-occurring relation phrases and the type indicators of its surface name, as computed over

the corpus. Specifically, we formulate a joint optimization problem for two tasks, type prop-

agation with relation phrases and multi-view relation phrase clustering. Our experiments on

multiple genres—news, Yelp reviews and tweets—demonstrate the effectiveness and robust-

ness of ClusType, with an average of 37% improvement in F1 score over the best compared

method.
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CHAPTER 5: FINE-GRAINED ENTITY TYPING WITH KNOWLEDGE
BASES

5.1 PROPOSED METHOD: OVERVIEW AND MOTIVATION

Assigning types (e.g., person, organization) to mentions of entities in context is an impor-

tant task in natural language processing (NLP). The extracted entity type information can

serve as primitives for relation extraction [37] and event extraction [97], and assists a wide

range of downstream applications including knowledge base (KB) completion [1], question

answering [35] and entity recommendation [98]. While traditional named entity recognition

systems [26, 44] focus on a small set of coarse types (typically fewer than 10), recent stud-

ies [36, 99] work on a much larger set of fine-grained types (usually over 100) which form

a tree-structured hierarchy (see the blue region of Fig. 6.1). Fine-grained typing allows one

mention to have multiple types, which together constitute a type-path (not necessarily ending

in a leaf node) in the given type hierarchy, depending on the local context (e.g., sentence).

Consider the example in Fig. 6.1, “Arnold Schwarzenegger” could be labeled as {person,
businessman} in S3 (investment). But he could also be labeled as {person, politician} in

S1 or {person, artist, actor} in S2. Such fine-grained type representation provides more

informative features for other NLP tasks. For example, since relation and event extraction

pipelines rely on entity recognizer to identify possible arguments in a sentence, fine-grained

argument types help distinguish hundreds or thousands of different relations and events [36].

Traditional named entity recognition systems adopt manually annotated corpora as train-

ing data [44]. But the process of manually labeling a training set with large numbers of

fine-grained types is too expensive and error-prone (hard for annotators to distinguish over

100 types consistently). Current fine-grained typing systems annotate training corpora au-

tomatically using knowledge bases (i.e., distant supervision) [36, 100]. A typical workflow of

distant supervision is as follows (see Fig. 6.1): (1) identify entity mentions in the documents;

(2) link mentions to entities in KB; and (3) assign, to the candidate type set of each men-

tion, all KB types of its KB-linked entity. However, existing distant supervision methods

encounter the following limitations when doing automatic fine-grained typing.

•Noisy Training Labels. Current practice of distant supervision may introduce label noise

to training data since it fails to take a mention’s local contexts into account when assigning

type labels (e.g., see Fig. 6.1). Many previous studies ignore the label noises which appear in

a majority of training mentions (see Table. 6.1, row (1)), and assume all types obtained by

distant supervision are “correct” [58, 36]. The noisy labels may mislead the trained models

and cause negative effect. A few systems try to denoise the training corpora using simple
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Mention: “Schwarzenegger”; Context: S3;
Candidate Type Set: {person, politician, artist, 

actor, author, businessman, althete}

ID Sentence 

S1

S2

S3

...

  Governor Arnold Schwarzenegger gives a speech at
  Mission Serve's serv ice project on Veterans Day 2010.

  The fourth movie in the Predator series entitled 'The 
  Predator' may see the return of action-movie star Arnold
  Schwarzenegger to the franchise.

  Schwarzenegger’s first property investment was a block
  of six units, for which he scraped together $US27,000.

...

Entity: Arnold Schwarzenegger

Knowledge Bases

Noisy Training Examples

Candidate Type 
Set (Sub-tree)

root

product person location
organiz
ation

...

...

politician artist business
man

...

... ...

author actor singer ...

Target Type 
Hierarchy

Mention: “Arnold Schwarzenegger”; Context: S1;
Candidate Type Set: {person, politician, artist, 

actor, author, businessman, althete}

...

Mention: “Arnold Schwarzenegger”; Context: S2;
Candidate Type Set: {person, politician, artist, 

actor, author, businessman, althete}

S1

Distant 
Supervision

althete

S2

S3

Figure 5.1: Current systems may detect Arnold Schwarzenegger in sentences S1-S3 and assign the
same types to all (listed within braces), when only some types are correct for context (blue labels
within braces).

pruning heuristics such as deleting mentions with conflicting types [101]. However, such

strategies significantly reduce the size of training set (Table 6.1, rows (2a-c)) and lead to

performance degradation (later shown in our experiments). The larger the target type set,

the more severe the loss.

• Type Correlation. Most existing methods [58, 36] treat every type label in a training

mention’s candidate type set equally and independently when learning the classifiers but

ignore the fact that types in the given hierarchy are semantically correlated (e.g., actor is

more relevant to singer than to politician). As a consequence, the learned classifiers may

bias toward popular types but perform poorly on infrequent types since training data on

infrequent types is scarce. Intuitively, one should pose smaller penalty on types which are

semantically more relevant to the true types. For example, in Fig. 6.1 singer should receive

a smaller penalty than politician does, by knowing that actor is a true type for “Arnold

Schwarzenegger” in S2. This provides classifiers with additional information to distinguish

between two types, especially those infrequent ones.

In this paper, we approach the problem of automatic fine-grained entity typing as follows:

(1) Use different objectives to model training mentions with correct type labels and mentions

with noisy labels, respectively. (2) Design a novel partial-label loss to model true types within
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Dataset Wiki OntoNotes BBN NYT

# of target types 113 89 47 446
(1) noisy mentions (%) 27.99 25.94 22.32 51.81

(2a) sibling pruning (%) 23.92 16.09 22.32 39.26
(2b) min. pruning (%) 28.22 8.09 3.27 32.75
(2c) all pruning (%) 45.99 23.45 25.33 61.12

Table 5.1: A study of label noise. (1): %mentions with multiple sibling types (e.g., actor,
singer); (2a)-(2c): %mentions deleted by the three pruning heuristics [101] (see Sec. 6.4), for
three experiment datasets and New York Times annotation corpus [102].

the noisy candidate type set which requires only the “best” candidate type to be relevant

to the training mention, and progressively estimate the best type by leveraging various text

features extracted for the mention. (3) Derive type correlation based on two signals: (i) the

given type hierarchy, and (ii) the shared entities between two types in KB, and incorporate

the correlation so induced by enforcing adaptive margins between different types for mentions

in the training set. To integrate these ideas, we develop a novel embedding-based framework

called AFET. First, it uses distant supervision to obtain candidate types for each mention,

and extract a variety of text features from the mentions themselves and their local contexts.

Mentions are partitioned into a “clean” set and a “noisy” set based on the given type

hierarchy. Second, we embed mentions and types jointly into a low-dimensional space,

where, in that space, objects (i.e., features and types) that are semantically close to each

other also have similar representations. In the proposed objective, an adaptive margin-based

rank loss is proposed to model the set of clean mentions to capture type correlation, and

a partial-label rank loss is formulated to model the “best” candidate type for each noisy

mention. Finally, with the learned embeddings (i.e., mapping matrices), one can predict the

type-path for each mention in the test set in a top-down manner, using its text features.

The major contributions of this paper are as follows:

1. We propose an automatic fine-grained entity typing framework, which reduces label

noise introduced by distant supervision and incorporates type correlation in a principle

way.

2. A novel optimization problem is formulated to jointly embed entity mentions and types

to the same space. It models noisy type set with a partial-label rank loss and type

correlation with adaptive-margin rank loss.

3. We develop an iterative algorithm for solving the joint optimization problem efficiently.
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4. Experiments with three public datasets demonstrate that AFET achieves significant

improvement over the state of the art.

5.2 PRELIMINARIES

Our task is to automatically uncover the type information for entity mentions (i.e., token

spans representing entities) in natural language sentences. The task takes a document col-

lection D (automatically labeled using a KB Ψ in conjunction with a target type hierarchy

Y) as input and predicts a type-path in Y for each mention from the test set Dt.

Type Hierarchy and Knowledge Base. Two key factors in distant supervision are the

target type hierarchy and the KB. A type hierarchy, Y, is a tree where nodes represent types

of interests from Ψ. Previous studies manually create several clean type hierarchies using

types from Freebase [36] or WordNet [99]. In this study, we adopt the existing hierarchies

constructed using Freebase types1. To obtain types for entities EΨ in Ψ, we use the human-

curated entity-type facts in Freebase, denoted as FΨ =
{
(e, y)

}
⊂ EΨ × Y.

Automatically Labeled Training Corpora. There exist publicly available labeled cor-

pora such as Wikilinks [103] and ClueWeb [104]. In these corpora, entity mentions are

identified and mapped to KB entities using anchor links. In specific domains (e.g., product

reviews) where such public corpora are unavailable, one can utilize distant supervision to

automatically label the corpus [36]. Specifically, an entity linker will detect mentions mi

and map them to one or more entity ei in EΨ. Types of ei in KB are then associated with

mi to form its type set Yi, i.e., Yi =
{
y | (ei, y) ∈ FΨ, y ∈ Y

}
. Formally, a training corpus

D consists of a set of extracted entity mentions M = {mi}Ni=1, the context (e.g., sentence,

paragraph) of each mention {ci}Ni=1, and the candidate type sets {Yi}Ni=1 for each mention.

We represent D using a set of triples D =
{
(mi, ci,Yi)

}N

i=1
.

Problem Description. For each test mention, we aim to predict the correct type-path

in Y based on the mention’s context. More specifically, the test set T is defined as a set of

mention-context pairs (m, c), where mentions in T (denoted as Mt) are extracted from their

sentences using existing extractors such as named entity recognizer [25]. We denote the gold

type-path for a test mention m as Y∗. This work focuses on learning a typing model from

the noisy training corpus D, and estimating Y∗ from Y for each test mention m (in set Mt),

based on mention m, its context c, and the learned model.

1We use the Freebase dump as of 2015-06-30.
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Figure 5.2: Framework Overview of AFET.

Framework Overview. At a high level, the AFET framework (see also Fig. 6.3) learns

low-dimensional representations for entity types and text features, and infers type-paths for

test mentions using the learned embeddings. It consists of the following steps:

1. Extract text features for entity mentions in training set M and test set Mt using their

surface names as well as the contexts. (Sec. 5.3.1).

2. Partition training mentionsM into a clean set (denoted asMc) and a noisy set (denoted

as Mn) based on their candidate type sets (Sec. 5.3.2).

3. Perform joint embedding of entity mentions M and type hierarchy Y into the same

low-dimensional space where, in that space, close objects also share similar types

(Secs. 5.3.3-5.3.6).

4. For each test mention m, estimate its type-path Y∗ (on the hierarchy Y) in a top-down

manner using the learned embeddings (Sec. 5.3.6).
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Feature Description Example

Head Syntactic head token of the mention “HEAD Turing”
Token Tokens in the mention “Turing”, “Machine”
POS Part-of-Speech tag of tokens in the mention “NN”

Character
All character trigrams in the head of the men-
tion

“:tu”, “tur”, ..., “ng:”

Word Shape Word shape of the tokens in the mention “Aa” for “Turing”
Length Number of tokens in the mention “2”

Context
Unigrams/bigrams before and after the men-
tion

“CXT B:Maserati
,”, “CXT A:and the”

Brown Cluster
Brown cluster ID for the head token (learned
using D)

“4 1100”, “8 1101111”

Dependency
Stanford syntactic dependency [105] associ-
ated with the head token

“GOV:nn”, “GOV:turing”

Table 5.2: Text features used in this paper. “Turing Machine” is used as an example mention
from “The bands former drummer Jerry Fuchs—who was also a member of Maserati, Turing
Machine and The Juan MacLean—died after falling down an elevator shaft.”.

5.3 THE AFET FRAMEWORK

This section introduces the proposed framework and formulates an optimization problem

for learning embeddings of text features and entity types jointly.

5.3.1 Text Feature Generation

We start with a representation of entity mentions. To capture the shallow syntax and

distributional semantics of a mention mi ∈ M, we extract various features from both mi

itself and its context ci. Table 6.3 lists the set of text features used in this work, which is

similar to those used in [58, 36]. We denote the set of M unique features extracted from D
as F = {fj}Mj=1.

5.3.2 Training Set Partition

A training mention mi (in set M) is considered as a “clean” mention if its candidate type

set obtained by distant supervision (i.e., Yi) is not ambiguous, i.e., candidate types in Yi can

form a single path in tree Y. Otherwise, a mention is considered as “noisy” mention if its

candidate types form multiple type-paths in Y. Following the above hypothesis, we judge

each mention mi (in set M) and place it in either the “clean” set Mc, or the “noisy” set

Mn. Finally, we have M = Mc ∪Mn.
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5.3.3 The Joint Mention-Type Model

We propose to learn mappings into low-dimensional vector space, where, both entity

mentions and type labels (in the training set) are represented, and in that space, two objects

are embedded close to each other if and only if they share similar types. In doing so, we later

can derive the representation of a test mention based on its text features and the learned

mappings. Mapping functions for entity mentions and entity type labels are different as they

have different representations in the raw feature space, but are jointly learned by optimizing

a global objective of interests to handle the aforementioned challenges.

Each entity mention mi ∈ M can be represented by a M -dimensional feature vector mi ∈
RM , where mi,j is the number of occurrences of feature fj (in set F) for mi. Each type

label yk ∈ Y is represented by a K-dimensional binary indicator vector yk ∈ {0, 1}K , where
yk,k = 1, and 0 otherwise.

Specifically, we aim to learn a mapping function from the mention’s feature space to a

low-dimensional vector space, i.e., ΦM(mi) : RM 7→ Rd and a mapping function from type

label space to the same low-dimensional space, i.e., ΦY(yk) : RK 7→ Rd. In this work, we

adopt linear maps, as similar to the mapping functions used in [106].

ΦM(mi) = Umi; ΦY(yk) = Vyk, (5.1)

where U ∈ Rd×M and V ∈ Rd×K are the projection matrices for mentions and type labels,

respectively.

5.3.4 Modeling Type Correlation

In type hierarchy (tree) Y, types closer to each other (i.e., shorter path) tend to be more

related (e.g., actor is more related to artist than to person in the right column of Fig. 6.3).

In KB Ψ, types assigned to similar sets of entities should be more related to each other than

those assigned to quite different entities [107] (e.g., actor is more related to director than

to author in the left column of Fig. 5.3). Thus, type correlation between yk and yk′ (denoted

as wkk′) can be measured either using the one over the length of shortest path in Y, or using
the normalized number of shared entities in KB, which is defined as follows.

wkk′ =
(∣∣Ek ∩ Ek′

∣∣/∣∣Ek∣∣+ ∣∣Ek ∩ Ek′
∣∣/∣∣Ek′∣∣)/2. (5.2)

Although a shortest path is efficient to compute, its accuracy is limited—It is not always

true that a type (e.g., athlete) is more related to its parent type (i.e., person) than to its
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...
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Figure 5.3: An illustration of KB-based type correlation computation, and the proposed adaptive
margin.

sibling types (e.g., coach), or that all sibling types are equally related to each other (e.g.,

actor is more related to director than to author). We later compare these two methods

in our experiments.

With the type correlation computed, we propose to apply adaptive penalties on different

negative type labels (for a training mention), instead of treating all of the labels equally as

in most existing work [106]. The hypothesis is intuitive: given the positive type labels for

a mention, we force the negative type labels which are related to the positive type labels

to receive smaller penalty. For example, in the right column of Fig. 5.3, negative label

businessman receives a smaller penalty (i.e., margin) than athele does, since businessman

is more related to politician.

Hypothesis 5.1: Adaptive Margin

For a mention, if a negative type is correlated to a positive type, the margin between

them should be smaller.

We propose an adaptive-margin rank loss to model the set of “clean” mentions (i.e., Mc),

based on the above hypothesis. The intuition is simple: for each mention, rank all the

positive types ahead of negative types, where the ranking score is measured by similarity

between mention and type. We denote fk(mi) as the similarity between (mi, yk) and is defined

62



Types ranked w.r.t. mi 
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Figure 5.4: An illustration of the partial-label rank loss.

as the inner product of ΦM(mi) and ΦY(yk).

ℓc(mi,Yi,Y i) =
∑
yk∈Yi

∑
yk̄∈Yi

L
⌊
rankyk

(
f(mi)

)⌋
Θi,k,k̄;

Θi,k,k̄ = max
{
0, γk,k̄ − fk(mi) + fk̄(mi)

}
;

rankyk

(
f(mi)

)
=

∑
yk̄∈Yi

1
(
γk,k̄ + fk̄(mi) > fk(mi)

)
.

Here, γk,k̄ is the adaptive margin between positive type k and negative type k̄, which is

defined as γk,k̄ = 1+1/(wk,k̄+α) with a smooth parameter α. L(x) =
∑x

i=1
1
i transforms rank

to a weight, which is then multiplied to the max-margin loss Θi,k,k̄ to optimize precision at

x [106].

5.3.5 Modeling Noisy Type Labels

True type labels for noisy entity mentions Mn (i.e., mentions with ambiguous candidate

types in the given type hierarchy) in each sentence are not available in knowledge bases. To

effectively model the set of noisy mentions, we propose not to treat all candidate types (i.e.,

{Yi} as true labels. Instead, we model the “true” label among the candidate set as latent
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value, and try to infer that using text features.

Hypothesis 5.2: Partial-Label Loss

For a noisy mention, the maximum score associated with its candidate types should

be greater than the scores associated with any other non-candidate types

We extend the partial-label loss in [66] (used to learn linear classifiers) to enforce Hypoth-

esis 5.3.5, and integrate with the adaptive margin to define the loss for mi (in set Mn).

ℓn(mi,Yi,Y i) =
∑
k̄∈Yi

L
⌊
rankyk∗

(
f(mi)

)⌋
Ωi,k̄;

Ωi,k = max
{
0, γk∗,k̄ − fk∗(mi) + fk̄(mi)

}
;

rankyk∗

(
f(mi)

)
=

∑
yk̄∈Yi

1
(
γk∗,k̄ + fk̄(mi) > fk∗(mi)

)

where we define . yk∗ = argmaxyk∈Yi
fk(mi) and yk̄∗ = argmaxyk∈Yi

fk(mi).

Minimizing ℓn encourages a large margin between the maximum scores maxyk∈Yi fyk(mi)

and maxyk̄∈Yi
fyk(mi). This forces mi to be embedded closer to the most “relevant” type in

the noisy candidate type set, i.e., y∗ = argmaxyk∈Yi
fyk(mi), than to any other non-candidate

types (i.e., Hypothesis 5.3.5). This constrasts sharply with multi-label learning [99], where

a large margin is enforced between all candidate types and non-candidate types without

considering noisy types.

5.3.6 Hierarchical Partial-Label Embedding

Our goal is to embed the heterogeneous graph G into a d-dimensional vector space, follow-

ing the three proposed hypotheses in the section. Intuitively, one can collectively minimize

the objectives of the two kinds of loss functions ℓc and ℓn, across all the training mentions.

To achieve the goal, we formulate a joint optimization problem as follows.

min
U, V

O =
∑

mi∈Mc

ℓc(mi,Yi,Y i) +
∑

mi∈Mn

ℓn(mi,Yi,Y i).

We use an alternative minimization algorithm based on block-wise coordinate descent [82]

to jointly optimize the objective O. One can also apply stochastic gradient descent to do

online update.

Type Inference. With the learned mention embeddings {ui} and type embeddings {vk},
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Data sets Wiki OntoNotes BBN

#Types 113 89 47
#Documents 780,549 13,109 2,311
#Sentences 1.51M 143,709 48,899
#Training mentions 2.69M 223,342 109,090
#Ground-truth mentions 563 9,604 121,001
#Features 644,860 215,642 125,637
#Edges in graph 87M 5.9M 2.9M

Table 5.3: Statistics of the datasets.

we perform top-down search in the given type hierarchy Y to estimate the correct type-

path Y∗
i . Starting from the tree’s root, we recursively find the best type among the children

types by measuring the dot product of the corresponding mention and type embeddings,

i.e., sim(ui,vk). The search process stops when we reach a leaf type, or the similarity score

is below a pre-defined threshold η > 0.

5.4 EXPERIMENTS

5.4.1 Data Preparation

Datasets. Our experiments use three public datasets. (1) Wiki [36]: consists of 1.5M

sentences sampled from Wikipedia articles; (2) OntoNotes [108]: consists of 13,109 news

documents where 77 test documents are manually annotated [101]; (3) BBN [109]: consists

of 2,311 Wall Street Journal articles which are manually annotated using 93 types. Statistics

of the datasets are shown in Table 6.5.

Training Data. We followed the process in [36] to generate training data for the Wiki

dataset. For the BBN and OntoNotes datasets, we used DBpedia Spotlight2 for entity

linking. We discarded types which cannot be mapped to Freebase types in the BBN dataset

(47 of 93).

Table 6.3 lists the set of features used in our experiments, which are similar to those used

in [58, 36] except for topics and ReVerb patterns. We used a 6-word window to extract

context unigrams and bigrams for each mention (3 words on the left and the right). We

applied the Stanford CoreNLP tool [105] to get POS tags and dependency structures. The

word clusters were derived for each corpus using the Brown clustering algorithm3. Features

2http://spotlight.dbpedia.org/
3https://github.com/percyliang/brown-cluster
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for a mention is represented as a binary indicator vector where the dimensionality is the

number of features derived from the corpus. We discarded the features which occur only

once in the corpus. The number of features generated for each dataset is shown in Table 6.5.

5.4.2 Evaluation Settings

For the Wiki and OntoNotes datasets, we used the provided test set. Since BBN corpus is

fully annotated, we followed a 80/20 ratio to partition it into training/test sets. We report

Accuracy (Strict-F1), Micro-averaged F1 (Mi-F1) and Macro-averaged F1 (Ma-F1) scores

commonly used in the fine-grained type problem [36, 58]. Since we use the gold mention set

for testing, the Accuracy (Acc) we reported is the same as the Strict F1.

Baselines. We compared the proposed method (AFET) and its variant with state-of-the-art

typing methods, embedding methods and partial-label learning methods 4: (1) FIGER [36];

(2) HYENA [99]; (3) FIGER/HYENA-Min [101]: removes types appearing only once

in the document; (4) ClusType [8]: predicts types based on co-occurring relation phrases;

(5) HNM [110]: proposes a hybrid neural model without hand-crafted features; (6) Deep-

Walk [61]: applies Deep Walk to a feature-mention-type graph by treating all nodes as

the same type; (7) LINE [60]: uses a second-order LINE model on feature-type bipartite

graph; (8) PTE [111]: applies the PTE joint training algorithm on feature-mention and

type-mention bipartite graphs. (9) WSABIE [58]: adopts WARP loss to learn embeddings

of features and types; (10) PL-SVM [66]: uses a margin-based loss to handle label noise.

(11) CLPL [65]: uses a linear model to encourage large average scores for candidate types.

We compare AFET and its variant: (1)AFET: complete model with KB-induced type cor-

relation; (2) AFET-CoH: with hierarchy-induced correlation (i.e., shortest path distance);

(3) AFET-NoCo: without type correlation (i.e., all margin are “1”) in the objective O;

and (4) AFET-NoPa: without label partial loss in the objective O.

5.4.3 Performance Comparison and Analyses

Table 5.4 shows the results of AFET and its variants.

Comparison with the other typing methods. AFET outperforms both FIGER and

HYENA systems, demonstrating the predictive power of the learned embeddings, and the

effectiveness of modeling type correlation information and noisy candidate types. We also

4We used the published code for FIGER, ClusType, HNM, LINE, PTE, and DeepWalk, and implemented
other baselines which have no public code. Our implementations yield comparable performance as those
reported in the original papers.
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observe that pruning methods do not always improve the performance, since they aggres-

sively filter out rare types in the corpus, which may lead to low Recall. ClusType is not

as good as FIGER and HYENA because it is intended for coarse types and only utilizes

relation phrases.

Comparison with the other embedding methods. AFET performs better than all

other embedding methods. HNM does not use any linguistic features. None of the other

embedding methods consider the label noise issue and treat the candidate type sets as clean.

Although AFET adopts the WARP loss in WSABIE, it uses an adaptive margin in the

objective to capture the type correlation information.

Comparison with partial-label learning methods. Compared with PL-SVM and

CLPL, AFET obtains superior performance. PL-SVM assumes that only one candidate

type is correct and does not consider type correlation. CLPL simply averages the model

output for all candidate types, and thus may generate results biased to frequent false types.

Superior performance of AFET mainly comes from modeling type correlation derived from

KB.

Comparison with its variants. AFET always outperforms its variant on all three datasets.

It gains performance from capturing type correlation, as well as handling type noise in the

embedding process.

5.5 RELATED WORK

There has been considerable work on named entity recognition (NER) [105], which focuses

on three types (e.g., person, location) and cast the problem as multi-class classification

following the type mutual exclusion assumption (i.e., one type per mention) [44].

Recent work has focused on a much larger set of fine-grained types [99, 36]. As the type

mutual exclusion assumption no longer holds, they cast the problem as multi-label multi-

class (hierarchical) classification problems [101, 99, 36]. Embedding techniques are also

recently applied to jointly learn feature and type representations [58, 110]. Del Corro et

al. [112] proposed an unsupervised method to generate context-aware candidates types, and

subsequently select the most appropriate type. Gillick et al. [101] discuss the label noise

issue in fine-grained typing and propose three pruning heuristics. However, these heuristics

aggressively delete training examples and may suffer from low recall (see Table. 5.4).

In the context of distant supervision, label noise issue has been studied for other informa-

tion extraction tasks such as relation extraction [55]. In relation extraction, label noise is

introduced by the false positive textual matches of entity pairs. In entity typing, however,
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Typing Wiki OntoNotes BBN

Method Acc
Ma-
F1

Mi-
F1

Acc
Ma-
F1

Mi-
F1

Acc
Ma-
F1

Mi-
F1

CLPL [65] 0.162 0.431 0.411 0.201 0.347 0.358 0.438 0.603 0.536
PL-SVM [66] 0.428 0.613 0.571 0.225 0.455 0.437 0.465 0.648 0.582
FIGER [36] 0.474 0.692 0.655 0.369 0.578 0.516 0.467 0.672 0.612
FIGER-Min [101] 0.453 0.691 0.631 0.373 0.570 0.509 0.444 0.671 0.613
HYENA [99] 0.288 0.528 0.506 0.249 0.497 0.446 0.523 0.576 0.587
HYENA-Min 0.325 0.566 0.536 0.295 0.523 0.470 0.524 0.582 0.595
ClusType [8] 0.274 0.429 0.448 0.305 0.468 0.404 0.441 0.498 0.573
HNM [110] 0.237 0.409 0.417 0.122 0.288 0.272 0.551 0.591 0.606
DeepWalk [61] 0.414 0.563 0.511 0.479 0.669 0.611 0.586 0.638 0.628
LINE [60] 0.181 0.480 0.499 0.436 0.634 0.578 0.576 0.687 0.690
PTE [111] 0.405 0.575 0.526 0.436 0.630 0.572 0.604 0.684 0.695
WSABIE [58] 0.480 0.679 0.657 0.404 0.580 0.527 0.619 0.670 0.680

AFET-NoCo 0.526 0.693 0.654 0.486 0.652 0.594 0.655 0.711 0.716
AFET-NoPa 0.513 0.675 0.642 0.463 0.637 0.591 0.669 0.715 0.724
AFET-CoH 0.433 0.583 0.551 0.521 0.680 0.609 0.657 0.703 0.712
AFET 0.533 0.693 0.664 0.551 0.711 0.647 0.670 0.727 0.735

Table 5.4: Study of typing performance on the three datasets.

label noise comes from the assignment of types to entity mentions without considering their

contexts. The forms of distant supervision are different in these two problems.

Partial Label Learning. - averaging strategy: - directly model –¿ max-margin: PL-SVM

Partial label learning (PLL) [113, 66, 65] deals with the problem where each training example

is associated with a set of candidate labels, where only one is correct. One intuitive strategy

to solve the problem is to assume equal contribution of each candidate label and average the

outputs from all candidate labels for prediction [65]. Another strategy is to disambiguate the

candidate label set by identifying the true label [113]. Existing disambiguation approaches

treat true label as latent variable and adopt expectation-maximization procedure to opti-

mize different objectives, such as maximum likelihood criterion [114] and maximum margin

...	his	friend	[Travis]	would	take	a	
psychiatrist	on	a	date	to	analyze	...	
Candidate	Types:	{organization,	
music,	person,	artist}

WSABIE:					 {organization}
PTE:	 {music,	person,	artist}
AFET:	 {person}

Figure 5.5: Example output of AFET and the compared methods on a training sentence from
OntoNotes dataset.
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Text

“... going to be an imminent easing of
monetary policy, ” said Robert Dederick ,
chief economist atNorthern Trust Co.
in Chicago.

...It’s terrific for advertisers to know the
reader will be paying more , ” said
Michael Drexler , national media di-
rector at Bozell Inc. ad agency.

Ground
Truth

organization, company person, person title

FIGER organization organization

WSABIEorganization, company, broadcast organization, company, news company

PTE organization person

AFET organization, company person, person title

Table 5.5: Example output of AFET and the compared methods on two news sentences from
OntoNotes dataset.

criterion [66]. There also exist methods which adopt error-correcting output codes [113] and

instance-level label propagation [115] to disambiguate candidate labels. Unlike existing PLL

methods, our method considers type hierarchy and correlation. We compare with simple

extensions of PL-SVM [66] and CLPL [65] by applying the learned partial-label classifiers

to predicted type-paths in a top-down manner (see Table. 5.4).

Text and Network Embedding. The proposed PLE framework incorporate embedding

techniques used in modeling text data [58, 110, 57], and networks/graphs [111, 61, 79].

These methods can be generally classified as supervised [] or unsupervised [], based on how

they use labeled data. differences However, existing methods assume links are all correct

(unsupervised) or labels are all true (supervised)—our approach seeks to delete noisy links

and lables in the embedding process. We compare with several embedding methods like

PTE [60] to validate the proposed Hypothesis 5.3.5 on noisy labels. With respect to modeling

type correlation, our work is related to KB embedding [116, 63], which focuses on embedding

global information of the KB elements (e.g., entities, relations, types) into a low-dimensional

space, although ours incorporates local context information of entity mentions in text, and

models KB-based type correlation jointly.

5.6 DISCUSSION AND CASE ANALYSIS

Example output on news articles. Table 6.9 shows the types predicted by AFET,

FIGER, PTE and WSABIE on two news sentences from OntoNotes dataset: AFET predicts

fine-grained types with better accuracy (e.g., person title) and avoids overly-specific pre-

dictions (e.g., news company). Figure 5.5 shows the types estimated by AFET, PTE and

WSABIE on a training sentence from OntoNotes dataset. We found AFET could discover
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the best type from noisy candidate types.
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Figure 5.6: Performance change with respect to (a) sampling ratio of training mentions on the
Wiki dataset; and (b) embedding dimension d on the BBN dataset.

Testing the effect of training set size and dimension. Experimenting with the same

settings for model learning, Fig. 5.6(a) shows the performance trend on the Wiki dataset

when varying the sampling ratio (subset of mentions randomly sampled from the training

set D). Fig. 5.6(b) analyzes the performance sensitivity of AFET with respect to d—the

embedding dimension on the BBN dataset. Accuracy of AFET improves as d becomes large

but the gain decreases when d is large enough.
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Figure 5.7: Performance change (a) at different levels of the type hierarchy on the OntoNotes
dataset; and (b) with respect to smooth parameter α on the BBN dataset.

Testing sensitivity of the tuning parameter. Fig. 5.7(b) analyzes the sensitivity of

AFET with respect to α on the BBN dataset. Performance increases as α becomes large.

When α is large than 0.5, the performance becomes stable.
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Testing at different type levels. Fig. 5.7(a) reports the Ma-F1 of AFET, FIGER, PTE

and WSABIE at different levels of the target type hierarchy (e.g., person and location on

level-1, politician and artist on level-2, author and actor on level-3). The results show that

it is more difficult to distinguish among more fine-grained types. AFET always outperforms

the other two method, and achieves a 22.36% improvement in Ma-F1, compared to FIGER

on level-3 types. The gain mainly comes from explicitly modeling the noisy candidate types.

5.7 SUMMARY

In this chapter, we study automatic fine-grained entity typing and propose a hierarchical

partial-label embedding method, AFET, that models “clean” and “noisy” mentions separately

and incorporates a given type hierarchy to induce loss functions. APEFT builds on a joint

optimization framework, learns embeddings for mentions and type-paths, and iteratively

refines the model. Experiments on three public datasets show that AFET is effective, robust,

and outperforms other comparing methods.

As future work, the framework can be considered to incorporate additional language fea-

tures, to conduct integrated modeling of multiple sources, and to be extended to relationship

typing.
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Part II

Extracting Typed Relationships
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CHAPTER 6: JOINT EXTRACTION OF TYPED ENTITIES AND
RELATIONSHIPS WITH KNOWLEDGE BASES

6.1 PROPOSED METHOD: OVERVIEW AND MOTIVATION

The extraction of entities and their relations is critical to understanding massive text cor-

pora. Identifying the token spans in text that constitute entity mentions and assigning types

(e.g., person, company) to these spans as well as to the relations between entity mentions

(e.g., employed by) are key to structuring content from text corpora for further analyt-

ics. For example, when an extraction system finds a “produce” relation between “company”

and “product” entities in news articles, it supports answering questions like “what products

does company X produce?”. Once extracted, such structured information is used in many

ways, e.g., as primitives in information extraction, knowledge base population [1, 117], and

question-answering systems [118, 119]. Traditional systems for relation extraction [45, 46, 47]

partition the process into several subtasks and solve them incrementally (i.e., detecting en-

tities from text, labeling their types and then extracting their relations). Such systems treat

the subtasks independently and so may propagate errors across subtasks in the process. Re-

cent studies [48, 49, 50] focus on joint extraction methods to capture the inhereent linguistic

dependencies between relations and entity arguments (e.g., the types of entity arguments

help determine their relation type, and vice versa) to resolve error propagation.

A major challenge in joint extraction of typed entities and relations is to design domain-

independent systems that will apply to text corpora from different domains in the absence of

human-annotated, domain data. The process of manually labeling a training set with a large

number of entity and relation types is too expensive and error-prone. The rapid emergence of

large, domain-specific text corpora (e.g., news, scientific publications, social media content)

calls for methods that can jointly extract entities and relations of target types with minimal

or no human supervision.

Towards this goal, there are broadly two kinds of efforts: weak supervision and distant

supervision. Weak supervision [68, 34, 3] relies on a small set of manually-specified seed

instances (or patterns) that are applied in bootstrapping learning to identify more instances

of each type. This assumes seeds are unambiguous and sufficiently frequent in the corpus,

which requires careful seed selection by human [45]. Distant supervision [37, 39, 71, 38]

generates training data automatically by aligning texts and a knowledge base (KB) (see

Fig. 6.1). The typical workflow is: (1) detect entity mentions in text; (2) map detected

entity mentions to entities in KB; (3) assign, to the candidate type set of each entity mention,

all KB types of its KB-mapped entity; (4) assign, to the candidate type set of each entity
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ID Sentence 

S1

S2

S3

S4

  Obama was born in Honolulu, Hawai i, USA as he has always said.

  President Clinton and Obama attended the funeral of former Israeli
  Prime Minister, and were scheduled to fly back to the US together.

  Barack Obama is the 44th and current  President of the United States

  A cl ip of Barack Obama  reading from his book "Dreams of My Father"
  has been shared out of context.

Text 
Corpus

Ent ity 1:
Barack Obama

Relation Instance

Automatically Labeled Training Data

root

art person location organization

...

politicianactor author

... ... ...

Relation Mention: (“Obama”, “USA”,  S1)
Types of Entity 1: {person, politician, artist, author},  Entity 2: {ORG, LOC}

Relation Types: {president_of, born_in, citizen_of, travel_to}

Relation Mention: (“Obama”, “US”,  S2)
Types of Entity 1: {person, politician, artist, author},  Entity 2: {ORG, LOC}

Relation Types: {president_of, born_in, citizen_of, travel_to}

Relation Mention: (“Barack Obama”, “United States”,  S3)
Types of Entity 1: {person, politician, artist, author},  Entity 2: {ORG, LOC}

Relation Types: {president_of, born_in, citizen_of, travel_to}

film book artist

KB Relations of Target Types

Relation Type Entity 1 Entity 2

president_of

born_in

citizen_of

visit

Barack Obama United States

Barack Obama United States

Barack Obama United States

Barack Obama United States

Ent ity 2:
United States

... ...

Relation Mention: (“Barack Obama”, “Dreams of My Father”,  S4)
Types of Entity 1: {person, politician, artist, author},  Entity 2: {book}

Relation Types: {author_of}

Candidate relat ion types

Candidate 
entity types

Target Entity 
Type Hierarchy

Figure 6.1: Current systems find relations (Barack Obama, United States) mentioned in sentences
S1-S3 and assign the same relation types (entity types) to all relation mentions (entity mentions),
when only some types are correct for context (highlighted in blue font).

mention pair, all KB relation types between their KB-mapped entities. The automatically

labeled training corpus is then used to infer types of the remaining candidate entity mentions

and relation mentions (i.e., unlinkable candidate mentions).

In this paper, we study the problem of joint extraction of typed entities and relations

with distant supervision. Given a domain-specific corpus and a set of target entity and

relation types from a KB, we aim to detect relation mentions (together with their entity

arguments) from text, and categorize each in context by target types or Not-Target-Type

(None), with distant supervision. Current distant supervision methods focus on solving the

subtasks separately (e.g., extracting typed entities or relations), and encounter the following

limitations when handling the joint extraction task.

• Domain Restriction: They rely on pre-trained named entity recognizers (or noun phrase

chunker) to detect entity mentions. These tools are usually designed for a few general types

(e.g., person, location, organization) and require additional human labors to work on

specific domains (e.g., scientific publications).

• Error Propagation: In current extraction pipelines, incorrect entity types generated in

entity recognition and typing step serve as features in the relation extraction step (i.e., see

Figure 6.2, errors are propagated from upstream components to downstream ones). Cross-

task dependencies are ignored in most existing methods.
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Dataset NYT [39] Wiki-KBP [120], BioInfer [121]

# of entity types 47 126 2,200
noisy entity mentions (%) 20.32 28.31 59.80

# of relation types 24 19 94
noisy relation mentions (%) 15.54 8.54 41.12

Table 6.1: A study of type label noise. (1): %entity mentions with multiple sibling entity types
(e.g., actor, singer) in the given entity type hierarchy; (2): %relation mentions with multiple
relation types, for the three experiment datasets.

• Label Noise: In distant supervision, the context-agnostic mapping from relation (entity)

mentions to KB relations (entities) may bring false positive type labels (i.e., label noise) into

the automatically labeled training corpora and results in inaccurate models.

In Fig. 6.1, for example, all KB relations between entities Barack Obama and United States

(e.g., born in, president of) are assigned to the relation mention in sentence S1 (while only

born in is correct within the context). Similarly, all KB types for Barack Obama (e.g.,

politician, artist) are assigned to the mention “Obama” in S1 (while only person is true).

Label noise becomes an impediment to learn effective type classifiers. The larger the target

type set, the more severe the degree of label noise (see Table 6.1).

We approach the joint extraction task as follows: (1) Design a domain-agnostic text seg-

mentation algorithm to detect candidate entity mentions with distant supervision and mini-

Entity mention
detection

Context-aware
entity typing

Relation mention
detection

Context-aware
relation typing (women, protest) à

(protest, January 21, 2017)

The Women ’s March was a worldwide 
protest on January 21, 2017.

Entity boundary errors:

(women, protest)✗
(protest, January 21, 2017)

Relation mention errors:

is a ✗

The Women ’s March was a worldwide 
protest on January 21, 2017. à

Entity type errors:

person

✗

(women, protest) à
(protest, January 21, 2017)

Relation type errors
is a ✗

Figure 6.2: An illustration of error propagation in the incremental relation extraction pipeline.
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mal linguistic assumption (i.e., assuming part-of-speech (POS) tagged corpus is given [122]).

(2) Model the mutual constraints between the types of the relation mentions and the types

of their entity arguments, to enable feedbacks between the two subtasks. (3) Model the

true type labels in a candidate type set as latent variables and require only the “best” type

(progressively estimated as we learn the model) to be relevant to the mention—this is a

less limiting requirement compared with existing multi-label classifiers that assume “every”

candidate type is relevant to the mention.

To integrate these elements of our approach, a novel framework, CoType, is proposed.

It first runs POS-constrained text segmentation using positive examples from KB to mine

quality entity mentions, and forms candidate relation mentions (Sec. 6.3.1). Then CoType

performs entity linking to map candidate relation (entity) mentions to KB relations (entities)

and obtain the KB types. We formulate a global objective to jointly model (1) corpus-level

co-occurrences between linkable relation (entity) mentions and text features extracted from

their local contexts; (2) associations between mentions and their KB-mapped type labels;

and (3) interactions between relation mentions and their entity arguments. In particular,

we design a novel partial-label loss to model the noisy mention-label associations in a robust

way, and adopt translation-based objective to capture the entity-relation interactions. Min-

imizing the objective yields two low-dimensional spaces (for entity and relation mentions,

respectively), where, in each space, objects whose types are semantically close also have

similar representation (see Sec. 6.3.2). With the learned embeddings, we can efficiently es-

timate the types for the remaining unlinkable relation mentions and their entity arguments

(see Sec. 6.3.3).

The major contributions of this paper are as follows:

1. A novel distant-supervision framework, CoType, is proposed to extract typed entities

and relations in domain-specific corpora with minimal linguistic assumption. (Fig. 6.3.)

2. A domain-agnostic text segmentation algorithm is developed to detect entity mentions

using distant supervision. (Sec. 6.3.1)

3. A joint embedding objective is formulated that models mention-type association, mention-

feature co-occurrence, entity-relation cross-constraints in a noise-robust way. (Sec. 6.3.2)

4. Experiments with three public datasets demonstrate that CoType improves the per-

formance of state-of-the-art systems of entity typing and relation extraction signifi-

cantly, demonstrating robust domain-independence.(Sec. 6.4)
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ID Sentence 

S1

S2

S3

S4

  US president Barack Obama  visit China today.

  A cl ip of Obama reading from his book "Dreams of My Father"
  has been shared out of context.

  Barack Obama is the 44th and current  President of the United States

  President Clinton and Obama attended the funeral of former Israeli
  Prime Minister, and were scheduled to fly back to the US together.

Text 
Corpus

Automatically Labeled Training Data

Relation Mention: (“Barack Obama”, “US”,  S1)
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Relation Types: {president_of, born_in, citizen_of, travel_to}

Relation Mention: (“Barack Obama”, “United States”,  S3)
Types of Entity 1: {person, politician, artist, author},  Entity 2: {ORG, LOC}

Relation Types: {president_of, born_in, citizen_of, travel_to}
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Figure 6.3: Framework Overview of CoType.

6.2 PRELIMINARIES

The input to our proposed CoType framework is a POS-tagged text corpus D, a knowl-

edge bases Ψ (e.g., Freebase [6]), a target entity type hierarchy Y and a target relation type

set R. The target type set Y (set R) covers a subset of entity (relation) types that the users

are interested in from Ψ, i.e., Y ⊂ YΨ and R ⊂ RΨ.

Entity and Relation Mention. An entity mention (denoted bym) is a token span in text which

represents an entity e. A relation instance r(e1, e2, . . . , en) denotes some type of relation r ∈ R
between multiple entities. In this work, we focus on binary relations, i.e., r(e1, e2). We define

a relation mention (denoted by z) for some relation instance r(e1, e2) as a (ordered) pair of

entities mentions of e1 and e2 in a sentence s, and represent a relation mention with entity

mentions m1 and m2 in sentence s as z = (m1,m2, s).

Knowledge Bases and Target Types. A KB with a set of entities EΨ contains human-curated

facts on both relation instances IΨ = {r(e1, e2)} ⊂ RΨ×EΨ × EΨ, and entity-type facts TΨ =

{(e, y)} ⊂ EΨ × YΨ. Target entity type hierarchy is a tree where nodes represent entity types

of interests from the set YΨ. An entity mention may have multiple types, which together

constitute one type-path (not required to end at a leaf) in the given type hierarchy. In existing

studies, several entity type hierarchies are manually constructed using Freebase [123, 101]

or WordNet [99]. Target relation type set is a set of relation types of interests from the set

RΨ.

Automatically Labeled Training Data. Let M = {mi}Ni=1 denote the set of entity mentions

extracted from corpus D. Distant supervision maps M to KB entities EΨ with an entity dis-

ambiguation system [124, 125] and heuristically assign type labels to the mapped mentions.

In practice, only a small number of entity mentions in set M can be mapped to entities in

EΨ (i.e., linkable entity mentions, denoted by ML). As reported in [8, 35], the ratios of ML

over M are usually lower than 50% in domain-specific corpora.
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Between any two linkable entity mentions m1 and m2 in a sentence, a relation mention zi

is formed if there exists one or more KB relations between their KB-mapped entities e1 and

e2. Relations between e1 and e2 in KB are then associated to zi to form its candidate relation

type set Ri, i.e., Ri = {r | r(e1, e2) ∈ RΨ}. In a similar way, types of e1 and e2 in KB are

associated with m1 and m2 respectively, to form their candidate entity type sets Yi,1 and Yi,2,

where Yi,x = {y | (ex, y) ∈ YΨ}. Let ZL = {zi}NL
i=1 denote the set of extracted relation mentions

that can be mapped to KB. Formally, we represent the automatically labeled training corpus

for the joint extraction task, denoted as DL, using a set of tuples DL = {(zi,Ri,Yi,1,Yi,2)}NL
i=1.

Problem Description. By pairing up entity mentions (from set M) within each sentence in

D, we generate a set of candidate relation mentions, denoted as Z. Set Z consists of (1)

linkable relation mentions ZL, (2) unlinkable (true) relation mentions, and (3) false relation

mention (i.e., no target relation expressed between).

Let ZU denote the set of unlabeled relation mentions in (2) and (3) (i.e., ZU = Z\ZL). Our

main task is to determine the relation type label (from the set R∪{None}) for each relation

mention in set ZU , and the entity type labels (either a single type-path in Y or None) for each

entity mention argument in z ∈ ZU , using the automatically labeled corpus DL. Formally,

we define the joint extraction of typed entities and relations task as follows.

Problem 6.1: Joint Entity and Relation Extraction

Given a POS-tagged corpus D, a KB Ψ, a target entity type hierarchy Y ⊂ YΨ and

a target relation type set R ⊂ RΨ, the joint extraction task aims to (1) detect entity

mentions M from D; (2) generate training data DL with KB Ψ; and (3) estimate

a relation type r∗ ∈ R∪{None} for each test relation mention z ∈ ZU and a single

type-path Y∗ ⊂ Y (or None) for each entity mention in z, using DL and its context s.

Non-goals. This work relies on an entity linking system [124] to provide disambiguation

function, but we do not address their limits here (e.g., label noise introduced by wrongly

mapped KB entities). We also assume human-curated target type hierarchies are given (It

is out of the scope of this study to generate the type hierarchy).

6.3 THE COTYPE FRAMEWORK

This section lays out the proposed framework. The joint extraction task poses two unique

challenges. First, type association in distant supervision between linkable entity (relation)

mentions and their KB-mapped entities (relations) is context-agnostic—the candidate type
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sets {Ri,Yi,1,Yi,2} contain “false” types. Supervised learning [47, 62] may generate models

biased to the incorrect type labels [56]. Second, there exists dependencies between relation

mentions and their entity arguments (e.g., type correlation). Current systems formulates

the task as a cascading supervised learning problem and may suffer from error propagation.

Our solution casts the type prediction task as weakly-supervised learning (to model the

relatedness between mentions and their candidate types in contexts) and uses relational

learning to capture interactions between relation mentions and their entity mention argu-

ment jointly, based on the redundant text signals in a large corpus.

Specifically, CoType leverages partial-label learning [66] to faithfully model mention-

type association using text features extracted from mentions’ local contexts. It uses the

translation embedding-based objective [63] to model the mutual type dependencies between

relation mentions and their entity (mention) arguments.

Framework Overview. We propose a embedding-based framework with distant supervision

(see also Fig. 6.3) as follows:

1. Run POS-constrained text segmentation algorithm on POS-tagged corpus D using pos-

itive examples obtained from KB, to detect candidate entity mentions M (Sec. 6.3.1).

2. Generate candidate relation mentions Z from M, extract text features for each rela-

tion mention z ∈ Z and their entity mention argument (Sec. 6.3.1). Apply distant

supervision to generate labeled training data DL (Sec. 6.2).

3. Jointly embed relation and entity mentions, text features, and type labels into two

low-dimensional spaces (for entities and relations, respectively) where, in each space,

close objects tend to share the same types (Sec. 6.3.2).

4. Estimate type labels r∗ for each test relation mention z ∈ ZU and type-path Y∗ for

each test entity mention m in ZU from learned embeddings, by searching the target

type set Y or the target type hierarchy R (Sec. 6.3.3).

6.3.1 Candidate Generation

Entity Mention Detection. Traditional entity recognition systems

[25, 44] rely on a set of linguistic features (e.g., dependency parse structures of a sentence) to

train sequence labeling models (for a few common entity types). However, sequence labeling

models trained on automatically labeled corpus DL may not be effective, as distant supervi-

sion only annotates a small number of entity mentions in DL (thus generates a lot of “false
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negative” token tags). To address domain restriction, we develop a distantly-supervised text

segmentation algorithm for domain-agnostic entity detection. By using quality examples

from KB as guidance, it partitions sentences into segments of entity mentions and words, by

incorporating (1) corpus-level concordance statistics; (2) sentence-level lexical signals; and

(3) grammatical constraints (i.e., POS tag patterns).

We extend the methdology used in [126, 127] to model the segment quality (i.e., “how

likely a candidate segment is an entity mention”) as a combination of phrase quality and

POS pattern quality, and use positive examples in DL to estimate the segment quality. The

workflow is as follows: (1) mine frequent contiguous patterns for both word sequence and

POS tag sequence up to a fixed length from POS-tagged corpus D; (2) extract features

including corpus-level concordance and sentence-level lexical signals to train two random

forest classifiers [126], for estimating quality of candidate phrase and candidate POS pattern;

(3) find the best segmentation of D using the estimated segment quality scores (see Eq. (6.1));

and (4) compute rectified features using the segmented corpus and repeat steps (2)-(4) until

the result converges.

p
(
bt+1, c | bt

)
= p

(
bt+1 − bt

)
· p
(
c | bt+1 − bt

)
·Q(c) (6.1)

Specifically, we find the best segmentation Sd for each document d (in D) by maximizing

the “joint segmentation quality”, defined as ∑D
d log p(Sd, d) =

∑D
d

∑|d|
t=1 log p

(
b
(d)
t+1, c

(d) | b(d)t

)
, where

p
(
b
(d)
t+1, c

(d) | b(d)t

)
denote the probability that segment c(c) (with starting index b

(d)
t+1 and ending

index in document d) is a good entity mention, as defined in Eq. (6.1). The first term

in Eq. (6.1) is a segment length prior, the second term measures how likely segment c

is generated given a length (bt+1 − bt) (to be estimated), and the third term denotes the

segment quality. In this work, we define function Q(c) as the equally weighted combination

of the phrase quality score and POS pattern quality score for candidate segment c, which

is estimated in step (2). The joint probability can be efficiently maximize using Viterbi

Training with time complexity linear to the corpus size [126]. The segmentation result

provides us a set of candidate entity mentions, forming the set M.

Table 6.2 compares our entity detection module with a sequence labeling model [36] (linear-

chain CRF) trained on the labeled corpus DL in terms of F1 score. Fig. 6.4 show the high/low

quality POS patterns learned using entity names found in DL as examples.

Relation Mention Generation. We follow the procedure introduced in Sec. 6.2 to generate the

set of candidate relation mentions Z from the detected candidate entity mentions M: for

each pair of entity mentions (ma,mb) found in sentence s, we form two candidate relation

mentions z1 = (ma,mb, s) and z2 = (mb,ma, s). Distant supervision is then applied on Z to
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POS Tag Pattern Example

Good
(high score)

NNP NNP
NN NN
CD NN
JJ NN

San Francisco/Barack Obama/United States
comedy	drama/car	accident/club	captain
seven	network/seven	 dwarfs/2001	census
crude	oil/nucletic acid/baptist church

Bad
(low score)

DT JJ NND
CD	CD	NN	IN

NN IN NNP NNP
VVD	RB	IN

a	few	miles/the	early	stages/the	late	1980s
2 : 0	victory	over/1	: 0	win	over

rating	on	rotten	tomatoes
worked	together	on/spent	much	of

Figure 6.4: Example POS tag patterns learned using KB examples.

generate the set of KB-mapped relation mentions ZL. Similar to [37, 71], we sample 30%

unlinkable relation mentions between two KB-mapped entity mentions (from set ML) in a

sentence as examples for modeling None relation label, and sample 30% unlinkable entity

mentions (from set M\ML) to model None entity label. These negative examples, together

with type labels for mentions in ZL, form the automatically labeled data DL for the task.

Text Feature Extraction. To capture the shallow syntax and distributional semantics of a

relation (or entity) mention, we extract various lexical features from both mention itself

(e.g., head token) and its context s (e.g., bigram), in the POS-tagged corpus. Table 6.3

lists the set of text features for relation mention, which is similar to those used in [37, 128]

(excluding the dependency parse-based features and entity type features). We use the same

set of features for entity mentions as those used in [56, 36]. We denote the set of Mz (Mm)

unique features extracted of relation mentions ZL (entity mentions in ZL) as Fz = {fj}Mz
j=1(

and Fm = {fj}Mm
j=1

)
.

6.3.2 Joint Entity and Relation Embedding

This section formulates a joint optimization problem for embedding different kinds of

interactions between linkable relation mentions ZL, linkable entity mentions ML, entity and

relation type labels {R, Y} and text features {Fz, Fm} into a d-dimensional relation vector

space and a d-dimensional entity vector space. In each space, objects whose types are close

Dataset NYT Wiki-KBP BioInfer

FIGER segmenter [36] 0.751 0.814 0.652
Our Approach 0.837 0.833 0.785

Table 6.2: Comparison of F1 scores on entity mention detection.
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Feature Description Example
Entity mention (EM) head Syntactic head token of each entity mention “HEAD EM1 Obama”
Entity Mention Token Tokens in each entity mention “TKN EM1 Barack”
Tokens between two EMs Each token between two EMs “was”, “elected”, “President”, “of ”, “the”
Part-of-speech (POS) tag POS tags of tokens between two EMs “VBD”, “VBN”, “NNP”, “IN”, “DT”
Collocations Bigrams in left/right 3-word window of each EM “Honolulu native”, “native Barack”, ...
Entity mention order Whether EM 1 is before EM 2 “EM1 BEFORE EM2”
Entity mention distance Number of tokens between the two EMs “EM DISTANCE 5”
Entity mention context Unigrams before and after each EM “native”, “was”, “the”, “in”
Special pattern Occurrence of pattern “em1 in em2” “PATTERN NULL”
Brown cluster (learned on D) Brown cluster ID for each token “8 1101111”, “12 111011111111”

Table 6.3: Text features for relation mentions used in this work [47, 39] (excluding dependency
parse-based features and entity type features). (“Barack Obama”, “United States”) is used as an
example relation mention from the sentence “Honolulu native Barack Obama was elected
President of the United States on March 20 in 2008.”.

to each other should have similar representation (e.g., see the 3rd col. in Fig. 6.3).

As the extracted objects and the interactions between them form a heterogeneous graph

(see the 2nd col. in Fig. 6.3), a simple solution is to embed the whole graph into a single low-

dimensional space [79, 8]. However, such a solution encounters several problems: (1) False

types in candidate type sets (i.e., false mention-type links in the graph) negatively impact

the ability of the model to determine mention’s true types; and (2) a single embedding space

cannot capture the differences in entity and relation types (i.e., strong link between a relation

mention and its entity mention argument does not imply that they have similar types).

In our solution, we propose a novel global objective, which extends a margin-based rank

loss [66] to model noisy mention-type associations and leverages the second-order proximity

idea [60] to model corpus-level mention-feature co-occurrences. In particular, to capture the

entity-relation interactions, we adopt a translation-based embedding loss [63] to bridge the

vector spaces of entity mentions and relation mentions.

Modeling Types of Relation Mentions. We consider both mention-feature co-occurrences and

mention-type associations in the modeling of relation types for relation mentions in set ZL.

Intuitively, two relation mentions sharing many text features (i.e., with similar distribution

over the set of text features Fm) likely have similar relation types; and text features co-

occurring with many relation mentions in the corpus tend to represent close type semantics.

We propose the following hypothesis to guide our modeling of corpus-level mention-feature

co-occurrences.

Hypothesis 6.1: Mention-Feature Co-occurrence

Two entity mentions tend to share similar types (close to each other in the embedding

space) if they share many text features in the corpus, and the converse way also holds.
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For example, in column 2 of Fig. 6.3, (“Barack Obama”, “US”, S1) and (“Barack Obama”,

“United States”, S3) share multiple features including context word “president” and first

entity mention argument “Barack Obama”, and thus they are likely of the same relation

type (i.e., president of).

Formally, let vectors zi, cj ∈ Rd represent relation mention zi ∈ ZL and text feature fj ∈ Fz

in the d-dimensional relation embedding space. Similar to the distributional hypothesis [57]

in text corpora, we apply second-order proximity [60] to model the idea that objects with

similar distribution over neighbors are similar to each other as follows.

LZF = −
∑
zi∈ZL

∑
fj∈Fz

wij · log p(fj|zi), (6.2)

where p(fj |zi) = exp(zTi cj)
/∑

f ′∈Fz
exp(zTi cj′) denotes the probability of fj generated by zi,

and wij is the co-occurrence frequency between (zi, fj) in corpus D. Function LZF in Eq. (6.2)

enforces the conditional probability specified by embeddings, i.e., p(·|zi) to be close to the

empirical distribution.

To perform efficient optimization by avoiding summation over all features, we adopt neg-

ative sampling strategy [57] to sample multiple false features for each (zi, fj), according to

some noise distribution Pn(f) ∝ D
3/4
f [57] (with Df denotes the number of relation mentions

co-occurring with f). Term log p(fj |zi) in Eq. (6.2) is replaced with the term as follows.

log σ(zTi cj) +
V∑

v=1

Efj′∼Pn(f)

[
log σ(− zTi cj′)

]
, (6.3)

where σ(x) = 1/
(
1+exp(−x)

)
is the sigmoid function. The first term in Eq. (6.3) models the

observed co-occurrence, and the second term models the Z negative feature samples.

In DL, each relation mention zi is heuristically associated with a set of candidate types Ri.

Existing embedding methods rely on either the local consistent assumption [79] (i.e., objects

strongly connected tend to be similar) or the distributional assumption [57] (i.e., objects

sharing similar neighbors tend to be similar) to model object associations. However, some

associations between zi and r ∈ Ri are “false” associations and adopting the above assump-

tions may incorrectly yield mentions of different types having similar vector representations.

For example, in Fig. 6.1, mentions (“Obama”, “USA”, S1) and (“Obama”, “US”, S2) have

several candidate types in common (thus high distributional similarity), but their true types

are different (i.e., born in vs. travel to).

We specify the likelihood of “whether the association between a relation mention and

its candidate entity type being true” as the relevance between these two kinds of objects
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(measured by the similarity between their current estimated embedding vectors). To impose

such idea, we model the associations between each linkable relation mention zi (in set ZL)

and its noisy candidate relation type set Ri based on the following hypothesis.

Hypothesis 6.2: Partial-Label Association

A relation mention’s embedding vector should be more similar (closer in the low-

dimensional space) to its “most relevant” candidate type, than to any other non-

candidate type.

Specifically, we use vector rk ∈ Rd to represent relation type rk ∈ R in the embedding space.

The similarity between (zi, rk) is defined as the dot product of their embedding vectors, i.e.,

ϕ(zi, rk) = zTi rk. We extend the margin-based loss in [66] and define a partial-label loss ℓi

for each relation mention zi ∈ ML as follows.

ℓi = max
{
0, 1−

[
max
r∈Ri

ϕ(zi, r)− max
r′∈Ri

ϕ(zi, r
′)
]}

. (6.4)

The intuition behind Eq. (6.4) is that: for relation mention zi, the maximum similarity

score associated with its candidate type set Ri should be greater than the maximum similarity

score associated with any other non-candidate types Ri = R \Ri. Minimizing ℓi forces zi to

be embedded closer to the most “relevant” type in Ri, than to any other non-candidate types

in Ri. This contrasts sharply with multi-label learning [36], where mi is embedded closer to

every candidate type than any other non-candidate type.

To faithfully model the types of relation mentions, we integrate the modeling of mention-

feature co-occurrences and mention-type associations by the following objective.

OZ = LZF +

NL∑
i=1

ℓi +
λ

2

NL∑
i=1

∥ zi ∥22 +
λ

2

Kr∑
k=1

∥ rk ∥22, (6.5)

where tuning parameter λ > 0 on the regularization terms is used to control the scale of the

embedding vectors.

By doing so, text features, as complements to mention’s candidate types, also participate

in modeling the relation mention embeddings, and help identify a mention’s most relevant

type—mention-type relevance is progressively estimated during model learning. For exam-

ple, in the left column of Fig. 6.5, context words “president”helps infer that relation type

president of is more relevant (i.e., higher similarity between the embedding vectors) to
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Partial-Label Loss for Modeling Noisy Types

sentence S3: “Barack Obama is the 44th and current   
president of the United States”

founder_of

employed_by

author_of produce

Noisy candidate type set

sentence S4: “President Clinton and Obama at tended 
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scheduled to fly back to the US together.”
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Figure 6.5: Illustrations of the partial-label associations, Hypothesis 6.3.2 (the left col.), and the
entity-relation interactions, Hypothesis 6.3.2 (the right col.).

relation mention (“Mr. Obama”, “USA”, S2), than type born in does.

Modeling Types of Entity Mentions. In a way similar to the modeling of types for rela-

tion mentions, we follow Hypotheses 6.3.2 and 6.3.2 to model types of entity mentions. In

Fig. 6.3 (col. 2), for example, entity mentions “S1 Barack Obama” and “S3 Barack Obama”

share multiple text features in the corpus, including head token “Obama” and context word

“president”, and thus tend to share the same entity types like politician and person (i.e.,

Hypothesis 6.3.2). Meanwhile, entity mentions “S1 Barack Obama” and “S2 Obama” have

the same candidate entity types but share very few text features in common. This implies

that likely their true type labels are different. Relevance between entity mentions and their

true type labels should be progressively estimated based on the text features extracted from

their local contexts (i.e., Hypothesis 6.3.2).

Formally, let vectors mi, c
′
j ,yk ∈ Rd represent entity mention mi ∈ ML, text features (for

entity mentions) fj ∈ Fm, and entity type yk ∈ Y in a d-dimensional entity embedding space,

respectively. We model the corpus-level co-occurrences between entity mentions and text

features by second-order proximity as follows.

LMF = −
∑

mi∈ML

∑
fj∈Fm

wij · log p(fj|mi), (6.6)

where the conditional probability term log p(fj |mi) is defined as log p(fj |mi) = log σ(mT
i c′j)+∑V

v=1 Efj′∼Pn(f)

[
log σ(−mT

i c′j′)
]
. By integrating the term LMF with partial-label loss ℓ′i =
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max
{
0, 1−

[
maxy∈Yi ϕ(mi, y)−maxy′∈Yi

ϕ(mi, y
′)
]}

for N ′
L unique linkable entity mentions (in

set ML), we define the objective function for modeling types of entity mentions as follows.

OM = LMF +

N ′
L∑

i=1

ℓ′i +
λ

2

N ′
L∑

i=1

∥mi ∥22 +
λ

2

Ky∑
k=1

∥yk ∥22. (6.7)

Minimizing the objective OM yields an entity embedding space where, in that space, objects

(e.g., entity mentions, text features) close to each other will have similar types.

Modeling Entity-Relation Interactions. In reality, there exists different kinds of interactions

between a relation mention z = (m1,m2, s) and its entity mention arguments m1 and m2.

One major kind of interactions is the correlation between relation and entity types of these

objects—entity types of the two entity mentions provide good hints for determining the

relation type of the relation mention, and vice versa. For example, in Fig. 6.5 (right col-

umn), knowing that entity mention “S4 US” is of type location (instead of organization)

helps determine that relation mention (“Obama”, “US”, S4) is more likely of relation type

travel to, rather than relation types like president of or citizen of.

Intuitively, entity types of the entity mention arguments pose constraints on the search

space for the relation types of the relation mention (e.g., it is unlikely to find a author of

relation between a organization entity and a location entity). The proposed Hypothe-

ses 6.3.2 and 6.3.2 model types of relation mentions and entity mentions by learning an entity

embedding space and a relation embedding space, respectively. The correlations between

entity and relation types (and their embedding spaces) motivates us to model entity-relation

interactions based on the following hypothesis.

Hypothesis 6.3: Entity-Relation Interaction

For a relation mention z = (m1,m2, s), embedding vector of m1 should be a nearest

neighbor of the embedding vector of m2 plus the embedding vector of relation mention

z.

Given the embedding vectors of any two members in {z,m1,m2}, say z and m1, Hypoth-

esis 6.3.2 forces the “m1+ z ≈ m2”. This helps regularize the learning of vector m2 (which

represents the type semantics of entity mention m2) in addition to the information encoded

by objective OM in Eq. (6.7). Such a “translating operation” between embedding vectors

in a low-dimensional space has been proven effective in embedding entities and relations in
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D Automatically generated training corpus
M = {mi}Ni=1 Entity mentions in D (size N)
Y = {yk}Kk=1 Target entity types (size K)
Yi Candidate types of mi

Y i Non-candidate types of mi, i.e., Y i = Y \ Yi

F = {fj}Mj=1 Text features in D (size M)

ui ∈ Rd Embedding of mention mi (dim. d)

cj ∈ Rd Embedding of feature fj (dim. d)

vk,v
′
k ∈ Rd Embeddings of type yk on two views (dim. d)

Table 6.4: Notations.

a structured knowledge baes [63]. We extend this idea to model the type correlations (and

mutual constraints) between embedding vectors of entity mentions and embedding vectors

of relation mentions, which are modeled in two different low-dimensional spaces.

Specifically, we define error function for the triple of a relation mention and its two entity

mention arguments (z,m1,m2) using ℓ-2 norm: τ(z) = ∥m1+ z−m2 ∥22. A small value on

τ(z) indicates that the embedding vectors of (z,m1,m2) do capture the type constraints. To

enforce small errors between linkable relation mentions (in set ZL) and their entity mention

arguments, we use margin-based loss [63] to formulate a objective function as follows.

OZM =
∑
zi∈ZL

V∑
v=1

max
{
0, 1 + τ(zi)− τ(zv)

}
, (6.8)

where {zv}Vv=1 are negative samples for z, i.e., zv is randomly sampled from the negative

sample set {(z′,m1,m2)} ∪ {(z,m′
1,m2)} ∪ {(z,m1,m

′
2)} with z′ ∈ ZL and m′ ∈ ML [63]. The

intuition behind Eq. (6.8) is simple (see also the right col. in Fig. 6.5): embedding vectors

for a relation mention and its entity mentions are modeled in the way that, the translating

error τ between them should be smaller than the translating error of any negative sample.

A Joint Optimization Problem. Our goal is to embed all the available information for relation

and entity mentions, relation and entity type labels, and text features into a d-dimensional

entity space and a d-dimensional relation space, following the three proposed hypotheses.

An intuitive solution is to collectively minimize the three objectives OZ OM and OZM , as the

embedding vectors of entity and relation mentions are shared across them. To achieve the

goal, we formulate a joint optimization problem as follows.

min
{zi},{cj},{rk},{mi},{c′j},{yk}

O = OM +OZ +OZM . (6.9)
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Optimizing the global objective O in Eq. (6.9) enables the learning of entity and relation

embeddings to be mutually influenced, such that, errors in each component can be con-

strained and corrected by the other. The joint embedding learning also helps the algorithm

to find the true types for each mention, besides using text features.

In Eq. (6.9), one can also minimize the weighted combination of the three objectives

{OZ , OM , OZM} to model the importance of different signals, where weights could be manually

determined or automatically learned from data. We leave this as future work.

6.3.3 Model Learning and Type Inference

The joint optimization problem in Eq. (6.9) can be solved in multiple ways. One solu-

tion is to first learn entity mention embeddings by minimizing OM , then apply the learned

embeddings to optimize OMZ+OZ . However, such a solution does not fully exploit the entity-

relation interactions in providing mutual feedbacks between the learning of entity mention

embeddings and the learning of relation mention embeddings (see CoType-TwoStep in

Sec. 6.4).

We design a stochastic sub-gradient descent algorithm [129] based on edge sampling strat-

egy [60], to efficiently solve Eq. (6.9). In each iteration, we alternatively sample from each

of the three objectives {OZ , OM , OZM} a batch of edges (e.g., (zi, fj)) and their negative

samples, and update each embedding vector based on the derivatives. The proof procedure

in [129] can be adopted to prove convergence of the proposed algorithm (to the local mini-

mum). Eq. (6.9) can also be solved by a mini-batch extension of the Pegasos algorithm [129],

which is a stochastic sub-gradient descent method and thus can efficiently handle massive

text corpora. Due to lack of space, we do not include derivation details here.

Type Inference. With the learned embeddings of features and types in relation space (i.e.,

{ci}, {rk}) and entity space (i.e., {c′i}, {yk}), we can perform nearest neighbor search in the

target relation type set R, or a top-down search on the target entity type hierarchy Y, to
estimate the relation type (or the entity type-path) for each (unlinkable) test relation mention

z ∈ ZU (test entity mention m ∈ M\ML). Specifically, on the entity type hierarchy, we start

from the tree’s root and recursively find the best type among the children types by measuring

the cosine similarity between entity type embedding and the vector representation of m in

our learned entity embedding space. By extracting text features from m’s local context

(denoted by set Fm(m)), we represent m in the learned entity embedding space using the

vector m =
∑

fj∈Fm(m) c
′
j. Similarly, for test relation mention z, we represent it in our learned

relation embedding space by z =
∑

fj∈Fz(z)
cj where Fz(z) is the set of text features extracted
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Data sets NYT Wiki-KBP BioInfer

#Relation/entity types 24 / 47 19 / 126 94 / 2,200
#Documents (in D) 294,977 780,549 101,530
#Sentences (in D) 1.18M 1.51M 521k
#Training RMs (in ZL) 353k 148k 28k
#Training EMs (in ZL) 701k 247k 53k
#Text features (from DL) 2.6M 1.3M 575k
#Test Sentences (from ZU) 395 448 708
#Ground-truth RMs 3,880 2,948 3,859
#Ground-truth EMs 1,361 1,285 2,389

Table 6.5: Statistics of the datasets in our experiments.

from z’s local context s. The search process stops when we reach to a leaf type on the type

hierarchy, or the similarity score is below a pre-defined threshold η > 0. If the search process

returns an empty type-path (or type set), we output the predicted type label as None for the

mention.

Computational Complexity Analysis. Let E be the total number of objects in CoType (entity

and relation mentions, text features and type labels). By alias table method [60], setting

up alias tables takes O(E) time for all the objects, and sampling a negative example takes

constant time. In each iteration of the CoType algorithm, optimization with negative sam-

pling (i.e., optimizing second-order proximity and translating objective) takes O(dV ), and

optimization with partial-label loss takes O
(
dV (|R | + |Y|)

)
time. Similar to [60], we find

the number of iterations for the algorithm to converge is usually proportional to the number

of object interactions extracted from D (e.g., unique mention-feature pairs and mention-

type associations), denoted as R. Therefore, the overall time complexity of CoType is

O
(
dRV (|R |+ |Y|)

)
(as R ≥ E), which is linear to the total number of object interactions R

in the corpus.

6.4 EXPERIMENTS

6.4.1 Data Preparation and Experiment Setting

Our experiments use three public datasets1 from different domains. (1) NYT [39]: The

training corpus consists of 1.18M sentences sampled from ∼294k 1987-2007 New York Times

1Codes and datasets used in this paper can be downloaded at: https://github.com/

shanzhenren/CoType.
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news articles. 395 sentences are manually annotated by authors of [71] to form the test data;

(2) Wiki-KBP [36]: It uses 1.5M sentences sampled from ∼780k Wikipedia articles [36]

as training corpus and 14k manually annotated sentences from 2013 KBP slot filling assess-

ment results [120] as test data. (3) BioInfer [121]: It consists of 1,530 manually annotated

biomedical paper abstracts as test data and 100k sampled PubMed paper abstracts as train-

ing corpus. Statistics of the datasets are shown in Table 6.5.

Automatically Labeled Training Corpora. The NYT training corpus has been heuristically

labeled using distant supervision following the procedure in [39]. For Wiki-KBP and BioInfer

training corpora, we utilized DBpedia Spotlight2, a state-of-the-art entity disambiguation

tool, to map the detected entity mentions M to Freebase entities. We then followed the

procedure introduced in Secs. 6.2 and 6.3.1 to obtain candidate entity and relation types,

and constructed the training data DL. For target types, we discard the relation/entity

types which cannot be mapped to Freebase from the test data while keeping the Freebase

entity/relation types (not found in test data) in the training data (see Table 6.5 for the type

statistics).

Feature Generation. Table 6.3 lists the set of text features of relation mentions used in our

experiments. We followed [36] to generate text features for entity mentions. Dependency

parse-based features were excluded as only POS-tagged corpus is given as input. We used

a 6-word window to extract context features for each mention (3 words on the left and the

right). We applied the Stanford CoreNLP tool [105] to get POS tags. Brown clusters were

derived for each corpus using public implementation3. The same kinds of features were used

in all the compared methods in our experiments.

Evaluation Sets. For all three datasets, we used the provided training/test set partitions of

the corpora. In each dataset, relation mentions in sentences are manually annotated with

their relation types and the entity mention arguments are labeled with entity type-paths (see

Table 6.5 for the statistics of test data). We further created a validation set by randomly

sampling 10% mentions from each test set and used the remaining part to form the evaluation

set.

Compared Methods. We compared CoType with its variants which model parts of the

proposed hypotheses. Several state-of-the-art relation extraction methods (e.g., supervised,

embedding, neural network) were also implemented (or tested using their published codes):

(1) DS+Perceptron [36]: adopts multi-label learning on automatically labeled training data

DL. (2) DS+Kernel [28]: applies bag-of-feature kernel [28] to train a SVM classifier using

2http://spotlight.dbpedia.org/
3https://github.com/percyliang/brown-cluster
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NYT Wiki-KBP BioInfer

Method S-F1
Ma-
F1

Mi-F1 S-F1
Ma-
F1

Mi-F1 S-F1
Ma-
F1

Mi-F1

FIGER [36] 0.40 0.51 0.46 0.29 0.56 0.54 0.69 0.71 0.71
Google [101] 0.38 0.57 0.52 0.30 0.50 0.38 0.69 0.72 0.65
HYENA [99] 0.44 0.49 0.50 0.26 0.43 0.39 0.52 0.54 0.56
DeepWalk[61] 0.49 0.54 0.53 0.21 0.42 0.39 0.58 0.59 0.61
WSABIE[58] 0.53 0.57 0.58 0.35 0.55 0.50 0.64 0.66 0.65
PLE [56] 0.56 0.60 0.61 0.37 0.57 0.53 0.70 0.71 0.72
CoType 0.60 0.65 0.66 0.39 0.61 0.57 0.74 0.76 0.75

Table 6.6: Performance comparison of entity recognition and typing (using strict, micro and
macro metrics [36]) on the three datasets.

DL; (3) DS+Logistic [37]: trains a multi-class logistic classifier4 on DL; (4) DeepWalk [61]:

embeds mention-feature co-occurrences and mention-type associations as a homogeneous

network (with binary edges); (5) LINE [60]: uses second-order proximity model with edge

sampling on a feature-type bipartite graph (where edge weight wjk is the number of relation

mentions having feature fj and type rk); (6) MultiR [71]: is a state-of-the-art distant

supervision method, which models noisy label in DL by multi-instance multi-label learning;

(7) FCM [62]: adopts neural language model to perform compositional embedding; (8)

DS-Joint [48]: jointly extract entity and relation mentions using structured perceptron on

human-annotated sentences. We used DL to train the model.

For CoType, besides the proposed model, CoType, we compare (1) CoType-RM: This

variant only optimize objective OZ to learning feature and type embeddings for relation men-

tions; and (2) CoType-TwoStep: It first optimizes OM , then use the learned entity mention

embedding {mi} to initialize the minimization of OZ + OZM—it represents a “pipeline” ex-

traction diagram.

To test the performance on entity recognition and typing, we also compare with several

entity recognition systems, including a supervised method HYENA [99], distant supervision

methods (FIGER [36], Google [101], WSABIE [58]), and a noise-robust approach PLE [56].

Parameter Settings. In our testing of CoType and its variants, we set α = 0.025, η = 0.35

and λ = 10−4 based on the analysis on validation sets. For convergence criterion, we stopped

the loop in the algorithm if the relative change of O in Eq. (6.9) is smaller than 10−4.

For fair comparison, the dimensionality of embeddings d was set to 50 and the number of

negative samples V was set to 5 for all embedding methods, as used in [60]. For other

tuning parameters in the compared methods, we tuned them on validation sets and picked

4We use liblinear package from https://github.com/cjlin1/liblinear
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the values which lead to the best performance.

Evaluation Metrics. For entity recognition and typing, we to use strict, micro, and macro F1

scores, as used in [36], for evaluating both detected entity mention boundaries and predicted

entity types. We consider two settings in evaluation of relation extraction. For relation

classification, ground-truth relation mentions are given and None label is excluded. We focus

on testing type classification accuracy. For relation extraction, we adopt standard Precision

(P), Recall (R) and F1 score [28, 45]. Note that all our evaluations are sentence-level (i.e.,

context-dependent), as discussed in [71].

6.4.2 Experiments and Performance Study

1. Performance on Entity Recognition and Typing. Among the compared methods, only

FIGER [36] can detect entity mention. We apply our detection results (i.e., M) as input for

other methods. Table 6.6 summarizes the comparison results on the three datasets. Over-

all, CoType outperforms others on all metrics on all three datasets (e.g., it obtains a 8%

improvement on Micro-F1 over the next best method on NYT dataset). Such performance

gains mainly come from (1) a more robust way of modeling noisy candidate types (as com-

pared to supervised method and distant supervision methods which ignore label noise issue);

and (2) the joint embedding of entity and relation mentions in a mutually enhancing way

(vs. the noise-robust method PLE [56]). This demonstrates the effectiveness of enforcing

Hypothesis 6.3.2 in CoType framework.

2. Performance on Relation Classification. To test the effectiveness of the learned embeddings

Method NYT
Wiki-
KBP

BioInfer

DS+Perceptron [36] 0.641 0.543 0.470
DS+Kernel [28] 0.632 0.535 0.419
DeepWalk [61] 0.580 0.613 0.408
LINE [60] 0.765 0.617 0.557
DS+Logistic [37] 0.771 0.646 0.543
MultiR [71] 0.693 0.633 0.501
FCM [62] 0.688 0.617 0.467

CoType-RM 0.812 0.634 0.587
CoType-TwoStep 0.829 0.645 0.591
CoType 0.851 0.669 0.617

Table 6.7: Performance comparison on relation classification accuracy over ground-truth relation
mentions on the three datasets.
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NYT [39, 71] Wiki-KBP [120, 36] BioInfer [121]
Method Prec Rec F1 Time Prec Rec F1 Time Prec Rec F1 Time

DS+Perceptron [36] 0.068 0.641 0.123 15min 0.233 0.457 0.308 7.7min 0.357 0.279 0.313 3.3min
DS+Kernel [28] 0.095 0.490 0.158 56hr 0.108 0.239 0.149 9.8hr 0.333 0.011 0.021 4.2hr
DS+Logistic [37] 0.258 0.393 0.311 25min 0.296 0.387 0.335 14min 0.572 0.255 0.353 7.4min
DeepWalk [61] 0.176 0.224 0.197 1.1hr 0.101 0.296 0.150 27min 0.370 0.058 0.101 8.4min
LINE [60] 0.335 0.329 0.332 2.3min 0.360 0.257 0.299 1.5min 0.360 0.275 0.312 35sec
MultiR [71] 0.338 0.327 0.333 5.8min 0.325 0.278 0.301 4.1min 0.459 0.221 0.298 2.4min
FCM [62] 0.553 0.154 0.240 1.3hr 0.151 0.500 0.301 25min 0.535 0.168 0.255 9.7min
DS-Joint [48] 0.574 0.256 0.354 22hr 0.444 0.043 0.078 54hr 0.102 0.001 0.002 3.4hr

CoType-RM 0.467 0.380 0.419 2.6min 0.342 0.339 0.340 1.5min 0.482 0.406 0.440 42sec
CoType-TwoStep 0.368 0.446 0.404 9.6min 0.347 0.351 0.349 6.1min 0.502 0.405 0.448 3.1min
CoType 0.423 0.511 0.463 4.1min 0.348 0.406 0.369 2.5min 0.536 0.424 0.474 78sec

Table 6.8: Performance comparison on end-to-end relation extraction (at the highest F1 point) on
the three datasets.

in representing type semantics of relation mentions, we compare with other methods on clas-

sifying the ground-truth relation mention in the evaluation set by target types R. Table 6.7
summarizes the classification accuracy. CoType achieves superior accuracy compared to all

other methods and variants (e.g., obtains over 10% enhancement on both the NYT and BioIn-

fer datasets over the next best method). All compared methods (except for MultiR) simply

treat DL as “perfectly labeled” when training models. The improvement of CoType-RM

validates the importance on careful modeling of label noise (i.e., Hypothesis 6.3.2). Com-

paring CoType-RM with MultiR, superior performance of CoType-RM demonstrates

the effectiveness of partial-label loss over multi-instance learning. Finally, CoType outper-

forms CoType-RM and CoType-TwoStep validates that the propose translation-based

embedding objective is effective in capturing entity-relation cross-constraints.

3. Performance on Relation Extraction. To test the domain independence of CoType frame-
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Figure 6.6: Precision-recall curves of relation extraction on NYT and BioInfer datasets. Similar
trend is also observed on the Wiki-KBP dataset.
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work, we conduct evaluations on the end-to-end relation extraction. As only MultiR and

DS-Joint are able to detection entity and relation mentions in their own framework, we apply

our detection results to other compared methods. Table 6.8 shows the evaluation results as

well as runtime of different methods. In particular, results at each method’s highest F1 score

point are reported, after tuning the threshold for each method for determining whether a

test mention is None or some target type. Overall, CoType outperforms all other methods

on F1 score on all three datasets. We observe that DS-Joint and MultiR suffer from low

recall, since their entity detection modules do not work well on DL (where many tokens have

false negative tags). This demonstrates the effectiveness of the proposed domain-agnostic

text segmentation algorithm (see Sec. 6.3.1). We found that the incremental diagram of

learning embedding (i.e., CoType-TwoStep) brings only marginal improvement. In con-

trast, CoType adopts a “joint modeling” diagram following Hypothesis 6.3.2 and achieves

significant improvement. In Fig. 6.6, precision-recall curves on NYT and BioInfer datasets

further show that CoType can still achieve descent precision with good recall preserved.
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Figure 6.7: (a) Scalability study on CoType and the compared methods; and (b) Performance
changes of relation extraction with respect to sampling ratio of relation mentions on the Bioinfer
dataset.

4. Scalability. In addition to the runtime shown in Table 6.8, Fig. 6.7(a) tests the scalability

of CoType compared with other methods, by running on BioInfer corpora sampled using

different ratios. CoType demonstrates a linear runtime trend (which validates our time

complexity in Sec. 6.3.3), and is the only method that is capable of processing the full-size

dataset without significant time cost.
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Figure 6.8: Study of entity type error propagation on the BioInfer dataset.

6.5 RELATED WORK

Entity and Relation Extraction. There have been extensive studies on extracting typed en-

tities and relations in text (i.e., context-dependent extraction). Most existing work follows

an incremental diagram—they first perform entity recognition and typing [44, 26] to ex-

tract typed entity mentions, and then solve relation extraction [45, 47] to identify relation

mentions of target types. Work along both lines can be categorized in terms of the de-

gree of supervision. While supervised entity recognition systems [25, 44] focus on a few

common entity types, weakly-supervised methods [31, 34] and distantly-supervised meth-

ods [8, 58, 36] use large text corpus and a small set of seeds (or a knowledge base) to induce

patterns or to train models, and thus can apply to different domains without additional

human annotation labor. For relation extraction, similarly, weak supervision [68, 3] and

distant supervision [69, 70, 38, 71, 39, 37] approaches are proposed to address the domain

restriction issue in traditional supervised systems [45, 28, 47]. However, such a “pipeline”

diagram ignores the dependencies between different sub tasks and may suffer from error

propagation between the tasks.

Recent studies try to integrate entity extraction with relation extraction by performing

global sequence labeling for both entities and relations [48, 49, 72], incorporating type con-

straints between relations and their arguments [50], or modeling factor graphs [73]. However,

these methods require human-annotated corpora (cleaned and general) for model training

and rely on existing entity detectors to provide entity mentions. By contrast, the CoType

framework runs domain-agnostic segmentation algorithm to mine entity mentions and adopts

a label noise-robust objective to train models using distant supervision. In particular, [72] in-

tegrates entity classification with relation extraction using distant supervision but it ignores

label noise issue in the automatically labeled training corpora.
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CoType combines the best of two worlds—it leverages the noisy distant supervision in

a robust way to address domain restriction (vs. existing joint extraction methods [48, 49]),

and models entity-relation interactions jointly with other signals to resolve error propagation

(vs. current distant supervision methods [38, 37]).

Learning Embeddings and Noisy Labels. Our proposed framework incorporates embedding

techniques used in modeling words and phrases in large text corpora [57, 58, 59] ,and nodes

and links in graphs/networks [60, 61]. Theses methods assume links are all correct (in unsu-

pervised setting) or labels are all true (in supervised setting). CoType seeks to model the

true links and labels in the embedding process (e.g., see our comparisons with LINE [60],

DeepWalk [61] and FCM [62] in Sec. 6.4.2). Different from embedding structured KB en-

tities and relations [63, 64], our task focuses on embedding entity and relation mentions in

unstructured contexts.

In the context of modeling noisy labels, our work is related to partial-label learning [56,

65, 66] and multi-label multi-instance learning [38], which deals with the problem where each

training instance is associated with a set of noisy candidate labels (whereonly one is correct).

Unlike these formulations, our joint extraction problem deals with both classification with

noisy labels and modeling of entity-relation interactions. In Sec 6.4.2, we compare our full-

fledged model with its variants CoType-EM and CoType-RM to validate the Hypothesis

on entity-relation interactions.

6.6 DISCUSSION

1. Example output on news articles. Table 6.9 shows the output of CoType, MultiR and

Logistic on two news sentences from the Wiki-KBP dataset. CoType extracts more relation

mentions (e.g., children), and predict entity/relation types with better accuracy. Also,

CoType can jointly extract typed entity and relation mentions while other methods cannot

(or need to do it incrementally).

2. Testing the effect of training corpus size. Fig. 6.7(b) shows the performance trend on

Bioinfer dataset when varying the sampling ratio (subset of relation mentions randomly

sampled from the training set). F1 scores of all three methods improves as the sampling ratio

increases. CoType performs best in all cases, which demonstrates its robust performance

across corpora of various size.

3. Study the effect of entity type error in relation classification. To investigate the “error

propagation” issue of incremental pipeline, we test the changes of relation classification per-

formance by (1) training models without entity types as features; (2) using entity types
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predicted by FIGER [36] as features; and (3) using ground-truth (“perfect”) entity types

as features. Fig. 6.8 summarize the accuracy of CoType, its variants and the compared

methods. We observe only marginal improvement when using FIGER-predicted types but

significant improvement when using ground-truth entity types—this validates the error prop-

agation issue. Moreover, we find that CoType achieves an accuracy close to that of the next

best method (i.e., DS + Logistic + Gold entity type). This demonstrates the effectiveness of

our proposed joint entity and relation embedding.

Text

Blake Edwards, a prolific
filmmaker who kept alive the
tradition of slapstick comedy, died
Wednesday of pneumonia at a
hospital in Santa Monica .

Anderson is survived by his wife
Carol, sons Lee and Albert, daughter
Shirley Englebrecht and nine grand-
children.

MultiR [71]
r∗: person:country of birth,
Y∗
1 : {N/A}, Y∗

2 : {N/A}
r∗: None,
Y∗
1 : {N/A}, Y∗

2 : {N/A}

Logistic [37]
r∗: per:country of birth,
Y∗
1 : {person}, Y∗

2 : {country}
r∗: None, Y∗

1 : {person},
Y∗
2 : {person, politician}

CoType
r∗: person:place of death,
Y∗
1 : {person,artist,director},

Y∗
2 : {location, city}

r∗: person:children,
Y∗
1 : {person}, Y∗

2 : {person}

Table 6.9: Example output of CoType and the compared methods on two news sentences from
the Wiki-KBP dataset.

6.7 SUMMARY

This work studies domain-independent, joint extraction of typed entities and relations in

text with distant supervision. The proposed CoType framework runs domain-agnostic seg-

mentation algorithm to mine entity mentions, and formulates the joint entity and relation

mention typing problem as a global embedding problem. We design a noise-robust objec-

tive to faithfully model noisy type label from distant supervision, and capture the mutual

dependencies between entity and relation based on the translation embedding assumption.

Experiment results demonstrate the effectiveness and robustness of CoType on text corpora

of different domains.

Interesting future work includes incorporating pseudo feedback idea [70] to reduce false

negative type labels in the training data, modeling type correlation in the given type hierar-

chy [56], and performing type inference for test entity mention and relation mentions jointly.

CoType relies on minimal linguistic assumption (i.e., only POS-tagged corpus is required)

and thus can be extended to different languages where pre-trained POS taggers is available.
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Conclusions and Future Directions
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CHAPTER 7: APPLICATION DISCUSSION AND CONCLUSIONS

Entities and relationships are important structures that can be extracted from a text

corpus to represent the factual knowledge inside the corpus. Effective and efficient mining of

entity and relation structures from text helps gaining insights from large volume of text data

(that are infeasible for human to read through and digest), and enables many downstream

applications on understanding, exploring and analyzing the text content. Data analysts and

government agents may want to identify person, organization and location entities in news

everyday news articles and generate concise and timely summary of news events. Biomedical

researchers who cannot digest large amounts of newly-published research papers in relevant

areas would need an effective way to extract different relationships between proteins, drugs

and diseases so as to follow the new claims and facts presented in the research community.

However, text data is highly variable: corpora covering topics from different domains, written

in different genres or languages have typically required for effective processing a wide range

of language resources such as grammars, vocabularies, gazetteers. The massive and messy

nature of text data post significant challenges to creating tools for automated structuring of

unstructured content that scale with text volume.

7.1 EFFORT-LIGHT STRUCTMINE: SUMMARY

In this thesis, we focus on principled and scalable methods for the mining of typed entity

and relation structures from unstructured text corpora in order to overcome the barriers

in dealing with text corpora of various domains, genres and languages. As traditional in-

formation extraction approaches have relied on large amounts of task-specific labeled data,

my thesis work harnesses the power of “big text data” and focuses on creating generic solu-

tions for efficient construction of customized machine-learning models for factual structure

extraction, relying on only limited amounts of (or even no) task-specific training data. Our

proposed methods aim to bridge the gap between customized machine-learning models and

the absence of high-quality task-specific training data. It leverages the information overlap

between background facts stored in external knowledge bases (KBs) and the given corpus

to automatically generate large amounts of (possibly noisy) task-specific training data; and

it exploits redundant text information within the massive corpus to reduce the complexity

of feature generation (e.g., sentence parsing). This solution is based on two key intuitions

which are described below. Overall, the thesis has made the contributions on mining entity

and relation structures in the following aspects.
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1. We propose three key principles on systematically mining typed entities and rela-

tionships from massive corpora, using distant supervision in conjunction with knowledge

bases.

• Automatic labeled data generation by aligning corpus with knowledge bases.

In a massive corpus, structured information about some of the entities (e.g., entity

types, relationships to other entities) can be found in external KBs. Can we align

the corpus with external KBs to automatically generate training data for extracting

entity and relation structures at a large scale? Such retrieved information supports the

automated annotation of entities and relations in text and labeling of their categories,

yielding (possibly noisy) corpus-specific training data. Although the overlaps between

external KBs and the corpus at hand might involve only a small proportion of the

corpus, the scale of the automatically labeled training data could still be much larger

than that of manually annotated data by domain experts.

• Type propagation via co-occurring text features. Text units (e.g., word, phrase)

co-occur frequently with entities and other text units in a massive corpus. We can ex-

ploit the textual co-occurrence patterns to characterize the semantics of text units,

entities, and entity relations. As such patterns become more apparent in a massive

corpus with rich data redundancy, big text data leads to big opportunities in repre-

senting semantics of text unit without complex feature generation. This is a principle

that go through all the chapters, mainly illustrated in Chapter 4.

• Model semantic similarity by exploiting co-occurrence patterns. Text units

used as features in type propagation framework are highly variable – one string can have

multiple semantic meanings and one object can be expressed using different strings. We

propose to learn the low-dimensional representations to model the semantic meaning of

text units based on their surrounding context (i.e., distributional assumption). With

effective semantic representation, we are able to group similar text units together to

facilitate type propagation (i.e., overcome sparsity issue for infrequent text units).

This is a principle that go through all the chapters, mainly illustrated in Chapter 4

and Chapter 6.

2. We study different structure extraction tasks for mining typed entity and re-

lation structures from corpora, which include entity recognition and typing (Chapter 4),

fine-grained entity typing (Chapter 5), and entity relationship extraction (Chapter 6). In

particular, we investigate human effort-light solutions for these several tasks using distant
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supervision in conjunction with external knowledge bases. This yields different problem set-

tings as compared to the fully-supervised learning problem setup in most existing studies on

information extraction. A key challenge in dealing with distant supervision is on designing

effective typing models that are robust to the noisy labels in the automatically generated

training data.

3. We have proposed models and algorithms to solve the above tasks.

• We studied distantly-supervised entity recognition and typing, and proposed a novel

relation phrase-based entity recognition framework, ClusType (Chapter 4). A domain-

agnostic phrase mining algorithm is developed for generating candidate entity mentions

and relation phrases. By integrating relation phrase clustering with type propagation,

the proposed method is effective in minimizing name ambiguity and context problems,

and thus predicts each mention’s type based on type distribution of its string name

and type signatures of its surrounding relation phrases. We formulate a joint opti-

mization problem to learn object type indicators/signatures and cluster memberships

simultaneously.

• For fine-grain entity typing, we propose hierarchical partial-label embedding methods,

AFET and PLE , that models “clean” and “noisy” mentions separately and incorpo-

rates a given type hierarchy to induce loss functions (Chapter 5). Both models build

on a joint optimization framework, learns embeddings for mentions and type-paths,

and iteratively refines the model.

• Our work on extracting typed relationships studies domain-independent, joint extrac-

tion of typed entities and relationships with distant supervision (Chapter 6). The

proposed CoType framework runs domain-agnostic segmentation algorithm to mine

entity mentions, and formulates the joint entity and relation mention typing prob-

lem as a global embedding problem. We design a noise-robust objective to faithfully

model noisy type label from distant supervision, and capture the mutual dependencies

between entity and relation based on the translation embedding assumption.

7.2 APPLICATIONS

Our work on effort-light StructMine is used in several downstream applications, has led

to a few lines of follow-up research, and yield real-world impact. We start with discussing

how to build on top of distant supervision to incorporate human supervision (e.g., curated

rules from domain experts) in the effort-light StructMine framework, followed by showing a
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real application on life sciences domain that make use of the StructNet constructed by our

methods, and introducing several other applications of our proposed work.

7.2.1 Structuring Life Science Papers: Life-iNet System

Biomedical literature is one of the major sources storing biomedical knowledge and new re-

search findings. A lot of useful information, e.g., new drugs discovered and new bio-molecular

interactions, are deeply buried in the literatures. Currently, the most common way to dig

out these information is by human curation. For example, bio-curators will manually read

each paper and try to assign the most appropriate MeSH terms for each paper to facilitate

further literature retrieval. Also, they will manually extract the major biomedical entities

(e.g., genes, proteins, drugs, diseases) and their related information from each paper and add

the extracted information into human curated databases (e.g., MeSH, UniProt, DrugBank,

KEGG, GO) to facilitate further biomedical research. National Institute of Health has a

big group of human annotators performing manual literature annotation. This process is

relatively slow compared with the rapid growth of the number of published biomedical liter-

atures each year, and costs a large amount of money. Therefore, developing an accurate and

efficient way to automatically extract information from literatures has great significance in

facilitating future biomedical research. For example, in the following sentence (taken from

a PubMed publication with the PMID 383855) one can identify several biomedical entities

and their relationships.

Example 7.1 (Biomedical Entity Relationships) These murine models demonstrate

that amikacin has in vivo activity against Nocardia and may be potentially useful in the

treatment of human disease.

The above sentence presents a fact that “amikacin” is a chemical entity, and claims

the finding that “amikacin” can potentially treat ‘Nocardia”, which is a disease. Without

tools for mining entity and relation structures such as effort-light StructMine, human experts

have to read through the whole sentence to identify the chemical and disease entities in the

sentence, and then infer their relationship as a treatment relationship from the sentence.

However, text mining tools, such as CoType [13], will be able to take the large document

collection and some existing biomedical databases as input, and automatically recognize

“amikacin” as a chemical and “Nocardia” as a disease and further infer that there is a

treatment relation between them. This example shows that automatic techniques for mining

entity and relation structures can greatly save time, human effort and costs for biomedical
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Figure 7.1: An illustrative example of the constructed Life-iNet, and its statistics.

information extraction from literatures, which serves as a primary step for many downstream

applications such as new drug discovery, adverse event detection for drug combination, and

biomedical knowledge base construction.

As a follow-up effort, we develop a novel system, called Life-iNet [15] on top of our en-

tity recognition and relation extraction methods, which automatically turns an unstructured

background corpus into a structured network of factual knowledge (see Figure 7.1), and sup-

ports multiple exploratory and analytic functions over the constructed network for knowledge

discovery. To extract factual structures, Life-iNet automatically detects token spans of enti-

ties mentioned from text (i.e., ClusType [8]), labels entity mentions with semantic categories

(i.e., PLE [11]), and identifies relationships of various relation types between the detected

entities (i.e., CoType [13]). These inter-related pieces of information are integrated to form

a unified, structured network, where nodes represent different types of entities and edges

denote relationships of different relation types between the entities. To address the issue of

limited diversity and coverage, Life-iNet relies on the external knowledge bases to provide

seed examples (i.e., distant supervision), and identifies additional entities and relationships

from the given corpus (e.g., using multiple textual resources such as scientific literature and

encyclopedia articles) to construct a structured network. By doing so, we integrate the fac-

tual information in the existing knowledge bases with those extracted from the given corpus.

To support analytic functionality, the Life-iNet system implements link prediction functions

over the construct network and integrates a distinctive summarization function to provide

insight analysis (e.g., answering questions such as “which genes are distinctively related to

the given disease type under GeneDiseaseAssociation relation?”)

To systematically incorporate these ideas, Life-iNet leverages the novel entity and relation

structure mining techniques [13, 11, 8] developed in effort-light StructMine to implement

an effort-light network construction framework. Specially, it relies on distant supervision in
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Figure 7.2: A screenshot of the graph exploration interface of Life-iNet system. By specifying the
types of two entity arguments and the relation type between them, Life-iNet system returns a
graph which visualize the typed entities and relationship, and allows users to explore the graph to
find relevant research papers.

conjunction with external knowledge bases to (1) detect quality entity mentions [8], (2) label

entity mentions with fine-grained entity types in a given type hierarchy [11], and (3) identify

relationships of different types between entities [13]. In particular, we design specialized

loss functions to faithfully model “appropriate” labels and remove “false positive” labels for

the training instances (heuristically generated by distant supervision), regarding the specific

context where an instance is mentioned [13, 11]. By doing so, we can construct corpus-

specific information extraction models by using distant supervision in a noise-robust way (see

Figure 7.1). The proposed network construction framework is domain-independent—it can

be quickly ported to other disciplines and sciences without additional human labeling effort.

With the constructed network, Life-iNet further applies link prediction algorithms [60, 63]

to infer new entity relationships, and distinctive summarization algorithm [130] to find other

entities that are distinctively related to the query entity (or the given entity types).

Impact of Life-iNet:

• A biomedical knowledge graph constructed by our Life-iNet system is used by re-

searchers at Stanford Medical school to facilitate drug re-purposing. It yields signifi-

cant improvement of performance on new drugs and rare diseases.

• Life-iNet system is adopted by veterinarians at Veterinary Information Network Inc.
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Technique Application
conditional random field; Document summarization;
unsupervised learning; sequence labeling;
support vector machine; statistical classification
hidden markov model
Evaluation Metric Dataset
F1; Rouge-2 DUC

Table 7.1: Example of extracted facets for a research publication.

(VIN) to construct the first veterinary knowledge graph from multiple sources of in-

formation including research articles, books, guidelines, drug handbooks and message

board posts.

• Technologies developed in Life-iNet system have been transferred to Mayo Clinic,

UCLA Medical School, and NIH Big Data to Knowledge Center to facilitate con-

struction of domain knowledge bases from massive scientific literature.

7.2.2 Extracting Document Facets from Technical Corpora

With the ever-increasing number of technical documents being generated every day, includ-

ing, but not limited to, patent folios, legal cases, real-estate agreements, historical archives,

and scientific literature, there is a crucial need to develop automation that can identify the

concepts for key facets for each document, so that readers can quickly get a sense for what

the document is about, or search and retrieve documents based on these facets. Consider

the domain of scientific publications, one we are all intimately familiar with. Given a new

scientific paper, it is impossible for a reader to instantly understand the techniques being

used, the kinds of applications that are addressed, or the metrics that are used to ascertain

whether the techniques have good performance. Thus, we pose the following question: Can

we develop algorithms that can efficiently and automatically identify the key facets of each

document in a large technical document corpora, with little manual supervision?

Therefore, we identify a novel research problem, called Facet Extraction, in making sense

of a large corpus of technical documents. Given a collection of technical documents, the goal

of facet extraction is to automatically label each document with a set of concepts for the

key facets (e.g., application, technique, evaluation metrics, and dataset) that people may

be interested in. The result of Facet Extraction is a summary of the major information of

each document into a structured, multi-dimensional representation format, where the target
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facets serve as different attributes, and extracted concepts correspond to the attribute values

(see Table 7.1).

Extracted facets largely enrich the original structured bibliographic meta information

(e.g., authors, venues, keywords), and thus enables a wide range of interesting applications.

For example, in a literature search, facets can be used to answer questions such as “which

techniques are used in this paper?” and “what are the applications of this work?” (see

Table 7.1), which require a deeper understanding of the paper semantics than analyzing the

author-generated keyword list. One can also answer questions like “what are the popular

applications in the Natural Language Processing or the Database Systems community?” and

“how does the facet of entity recognition vary across different communities?”, by aggregating

the facets statistics across the database. Such results enable the discovery of ideas and the

dynamics of a research topic or community in an effective and efficient way.

Our ClusType method [8] leverages relation phrase as the bridge to propagate type infor-

mation. The proposed relation-based framework is general, and can be applied to different

kinds of classification task. Therefore, we propose to extract document facets by doing

type propagation on corpus-induced graphs. The major challenge in performing facet ex-

traction arises from multiple sources: concept extraction, concept to facet matching, and

facet disambiguation. To tackle these challenges, we extend ClusType approach and de-

velop FacetGist, a framework for facet extraction. Facet extraction involves constructing

a graph-based heterogeneous network to capture information available across multiple local

sentence-level features, as well as global context features. We then formulate a joint opti-

mization problem, and propose an efficient algorithm for graph-based label propagation to

estimate the facet of each concept mention. Experimental results on technical corpora from

two domains demonstrate that FacetGist can lead to an improvement of over 25% in both

precision and recall over competing schemes [131].

7.2.3 Comparative Document Analysis

In many use cases, people want to have a concise yet informative summary to describe the

common and different places between two documents or two set of documents. One of our

recent work presents a novel research problem, Comparative Document Analysis (CDA), that

is, joint discovery of commonalities and differences between two individual documents (or two

sets of documents) in a large text corpus. Given any pair of documents from a (background)

document collection, CDA aims to automatically identify sets of quality phrases (entities)

to summarize the commonalities of both documents and highlight the distinctions of each

with respect to the other informatively and concisely. It makes use of the output from our
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PageRank vector;
importance scores;

PageRank algorithm;
query results;

web graph     web pages;

user-specified     web 
pages;

personalized web search;
dynamic programming;

incremental computation;
...

[12] Scaling Personalized 
Web Search

[7] Topic-sensitive 
PageRank

topic-sensitive     ranking 
vector;

context-specific 
importance score;

topic-sensitive PageRank;
query context;  ...

Commonalities

Distinctions Distinctions

Figure 7.3: Example output of comparative document analysis (CDA) for papers [132] and [133].
CDA combines two proper names which frequently co-occur in the documents into a name pair
using the symbol “⊕”.

entity recognition and typing method to generate candidate phrases for each document.

While there has been some research in comparative text mining, most of these focus on

generating word-based or sentence-based summarization for sets of documents. Word-based

summarization [134, 135] suffers from limited readability as single words are usually non-

informative and bag-of-words representation does not capture the semantics of the original

document well—it may not be easy for users to interpret the combined meaning of the words.

Sentence-based summarization [136, 137, 138], on the other hand, may be too verbose to

accurately highlight the general commonalities and differences—users may be distracted by

the irrelevant information contained there (as later shown in our case study). Furthermore,

previous work compares two sets of documents using redundant contents (e.g., word overlap)

but the task becomes much more challenging when comparing two individual documents, as

there exist a limited number of common content units between the two documents.

We study a novel comparative text mining problem which leverages multi-word noun

phrases (i.e., proper names) to represent the common and distinct information between

two individual documents (or two sets of documents), by referring to a massive background

corpus for measuring semantic relevance between documents and phrases. We refer the task

as Comparative Document Analysis (CDA): Given a pair of documents from a document

collection, the task is to (1) extract from each document salient phrases and phrase pairs

which cover its major content; (2) discover the commonalities between the document pair

by selecting salient phrases which are semantically relevant to both of them; and (3) find the
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distinctions for each document by selecting salient phrases that are exclusively relevant to the

document. CDA can benefit a variety of applications including related item recommendation

and document retrieval. For example, as shown in Fig. 6.1, a citation recommendation

system can show users the common and distinct concepts produced by CDA to help them

understand the connections and differences between a query paper [132] and a recommended

paper [133]. In a similar way, CDA can reduce the efforts on patentbility searching [139].

Our solution uses a general graph-based framework to derive novel measures on phrase

semantic commonality and pairwise distinction, where the background corpus is used for

computing phrase-document semantic relevance. We use the measures to guide the selection

of sets of phrases by solving two joint optimization problems. A scalable iterative algorithm

is developed to integrate the maximization of phrase commonality or distinction measure

with the learning of phrase-document semantic relevance. Experiments on large text corpora

from two different domains—scientific papers and news—demonstrate the effectiveness and

robustness of the proposed framework on comparing documents. Analysis on a 10GB+ text

corpus demonstrates the scalability of our method, whose computation time grows linearly

as the corpus size increases. Our case study on comparing news articles published at different

dates shows the power of the proposed method on comparing sets of documents.

7.2.4 Mining Meta Patterns for Attribute-Value Extraction

Mining textual patterns in news, tweets, papers, and many other kinds of text corpora has

been an active theme in text mining and NLP research. Previous studies adopt a dependency

parsing-based pattern discovery approach. However, the parsing results lose rich context

around entities in the patterns, and the process is costly for a corpus of large scale. In

this follow-up work, we study a novel typed textual pattern structure, called meta pattern,

which is extended to a frequent, informative, and precise subsequence pattern in certain

context. We propose an efficient framework, called MetaPAD, which discovers meta patterns

from massive corpora with three techniques: (1) it develops a context-aware segmentation

method to carefully determine the boundaries of patterns with a learned pattern quality

assessment function, which avoids costly dependency parsing and generates high-quality

patterns; (2) it identifies and groups synonymous meta patterns from multiple facets—their

types, contexts, and extractions; and (3) it examines type distributions of entities in the

instances extracted by each group of patterns, and looks for appropriate type levels to make

discovered patterns precise.

We propose meta-pattern mining, a data-driven method that mines and uses meta patterns

to discover attribute names and values of entities. A meta pattern refers to a sequence of
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Text:
… component of the bacterial cell wall is peptidoglycan …
… Staphylococcus aureus strains are resistant to penicillin …
… Penicillins are used to treat bacterial infections …
Meta patterns:
component of the $Cells. Cellular_Structures is $Carbohydrates
$Bacteria are resistant to $Chemicals
$Chemicals are used to treat $Diseases

Entity and fine-grained type:
bacterial cell wall : $Cells. Cellular_Structures
peptidoglycan : $Carbohydrates
staphylococcus aureus strains : $Bacteria
penicillin : $Chemicals
bacterial infections : $Diseases

Facts (entity, attribute name, attribute value):
(bacterial cell wall, component of, peptidoglycan)
(staphylococcus aureus strains, resistant to, penicillin)
(penicillins, treat, bacterial infections)

Figure 7.4: Discovering structured facts from the text by mining meta patterns: after replacing
entities with their class names, the meta patterns (i.e., segments of class symbols, words, phrases
and possibly marks) become apparent, suggesting attribute names and values of the entities.

class symbols (e.g., $Bacteria, $Chemicals), words (e.g., “treat”), phrases (e.g., “com-

ponent of”, “resistant to”) and possibly punctuation marks that appear contiguously and

frequently in the text and serves as an integral semantic unit of the classes in certain context.

We develop a framework called Meta Pattern-driven Attribute Discovery (MetaPAD). Fig-

ure 7.4 illustrates how MetaPAD automatically extracts entities and their attributes from

the PubMed corpus. Suppose we can replace “penicillins” with the type “$Chemicals” and

“bacterial infections” with the type $Diseases, the pattern “$Chemicals are used to treat

$Diseases” becomes apparent in the corpus. Taking the meta pattern back to the text,

we are able to find the facts that are (entity, attribute name, attribute value) triplets, e.g.,

(penicillins, treat, bacterial infections). We introduce the details of MetaPAD as follows.

First, MetaPAD integrates data-driven text mining techniques to “translate” the docu-

ments into long sequences of the four basic kinds of elements of the meta pattern.

• Quality phrase mining: SegPhrase [126] is a data-driven method that explores auto-

mated quality phrase extraction and phrasal segmentation. In Figure 7.4, SegPhrase

extracted quality phrases such as “bacterial cell wall”, “bacterial infections” and “re-

sistant to”.

• Entity recognition and typing: ClusType [8] finds entity and their types with distant

supervision from Knowledge Bases (e.g., MeSH databases, Freebase, Wikipedia). It

integrates relation phrase clustering with type propagation for entity type prediction.

With ClusType, we type “bacterial infections” as $Diseases and type “penicillins”

as $Chemicals.

• Fine-grained typing: PLE [11] uses embedding to model hierarchical type dependency

that reduces label noise in distant supervision for fine-grained entity typing. Thus, we
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are able to type “bacterial cell wall” as $Cells.Cellular Structures and type

“staphylococcus aureus strains” as $Organisms.Bacteria.

Second, MetaPAD develops three modules to address the issues of quality, rarity and

granularity in Meta Pattern Mining: (1) quality meta pattern classifier, (2) synonym meta

pattern detection, and (3) typing in meta patterns for appropriate granularity.

We implement a preliminary version of MetaPAD as well as Google’s Biperpedia [140].

Unfortunately, we do not have real query log data. We compare F1 scores of the two methods

on extracting entities’ attributes from 4 general datasets including 3 from news and 1 from

tweets. We use Freebase data for distant supervision. MetaPAD consistently gives high

precision as well as recall, and outperforms the baseline method. In addition, the results

demonstrate that each part that has been integrated into the framework has contributed to

significant increase on the F1 score.

7.2.5 Open Information Extraction with Global Structure Constraints

Our work on typed entity and relation extraction focus on a pre-defined set of entity or

relation types. ReMine is a novel open-domain information extraction(Open IE) system

that integrates local context signal and global structural signal in a unified framework with

distant supervision. Prior work on Open IE can be summarized as sharing two common char-

acteristics: (1) conducting extraction based on local context information; and (2) adopting

an incremental system pipeline.

Current Open IE systems focus on analyzing the local context within individual sentences

to extract entity and their relationships, while ignoring the redundant information that can

be collectively referenced across different sentences and documents in the corpus. Previously,

ClusType has reduced local segmentation results via type propagation on text co-occurrence

graph constructed from corpus. Having the same intuition, ReMine designs an effective way

to measure quality of candidate relation tuple from the rich information redundancy in the

massive corpus. For example, entity phrases London and Paris frequently co-occur with

similar relation phrase and tail entities in the corpus. One can infer that they have close

semantics (same for Great Britain and France). On one hand, it enhances that (Paris, is

in, France) is a quality tuple if knowing (London, is in, Great Britain) is a good tuple. On

the other, in sentence ”[Louvre-Lens], a museum approximately 200 kilometers northwest of

[Paris], is building striking [new satellites] to display parts of their collection.”, this helps

rule out the tuple (Paris, build, new satellites) as Louvre-Lens is semantically distant from

Paris.
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Most existing Open IE systems are composed of entity detection tools (e.g., named en-

tity recognizer (NER), noun phrase (NP) chunker) relation tuple extraction module. The

NERs and NP chunkers are often pre-trained for general domain and may not work well

on a domain-specific corpus (e.g., biomedical papers, social media posts). Error propaga-

tion are inevitable in such two-step pipelines. To address this problem, CoType adopted

distant supervision to minimize to minimize language gap between different domains. Fur-

thermore, CoType demonstrated that low-dimensional vector representations of entity and

relations help to reduce noise introduced by distant supervision. More generally, ReMine

managed to extract general relation tuples rather than factual knowledge with specific re-

lation types. Inspired by successful application of translative objective on knowledge base

completion, ReMine measures quality of extracted tuples via a translative-based objective

and incorporate it into an effective sentence segmentation framework. Overall, ReMine is

an End-to-End pipeline that jointly optimizes both the extraction of entity and relation

phrases and the global cohesiveness across the corpus. Experiments on massive real-world

corpus demonstrate effectiveness and robustness of ReMine when compared with other open

IE systems. Global statistics prunes wrong extractions from local context and lead to more

valuable tuples.

7.3 INCORPORATING RULES FROM DOMAIN EXPERTS: HETEROGENEOUS
SUPERVISION

In the thesis, we have been focusing on how to make use of external knowledge bases as

distant supervision to automatically generate large amounts of (potentially noisy) training

data for the task at hand, and propose noise-robust methods to learn effective typing models

over the noisy labeled data. We have seen great successes on leveraging distant supervision

to conduct effective and scalable extraction of typed entities and relationships. Such a

distant supervision setting, however, may lead to two issues in some use cases: (1) in some

domains, there may not exist any externally available knowledge bases for generating distant

supervision, or the existing knowledge base is at very small scalable, resulting in insufficient

amounts of training data; and (2) in some cases it is easy to collect certain amount of human-

annotated data for the extraction tasks in addition to external knowledge bases, but there

is no principled way to integrate these two sources of supervision.

In a recent follow-up work of CoType [13], we propose a general framework, heterogeneous

supervision [141], which unifies various weak supervision sources for relation extraction (e.g.,

knowledge base and domain-specific patterns). As shown in Figure 7.5, these supervisions

often conflict with each other [142]. To address these conflicts, data programming [142]
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Robert Newton "Bob" Ford was an American outlaw best known 
for killing his gang leader Jesse James (   ) in Missouri (   ) 

Hussein (   ) was born in Amman (   ) on 14 November 1935.
Gofraid (   ) died in 989, said to be killed in Dal Riata (   ).

return died_in for <    ,    , s> if DiedIn(    ,    ) in KB
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return born_in for <    ,    , s> if BornIn(    ,    ) in KB

True Label 
Discovery View

Relation Extraction View

`true’
infer `true' labels

training Relation
Extraction model

Interact through 
context representation

representation of proficient subset
representation of relation mention representation of relation type born_in 

representation of relation type died_in 

D

⇤
e1 e2�3

�4 e1 e2 e1 e2

e1 e2�2

�1 e1 e2 e1 e2

e1
e2c2

c3

c1
e1

e1

e2

e2

�1 �2 �4�3

c1

c3
c2Proficient Subsets of 

Labeling Functions

Relation Mentions

Vector Space

training True Label
Discovery model

proficient subset

Figure 7.5: Illustration of relation extraction with heterogeneous supervision from both
knowledge bases and domain rules.

employs a generative model, which encodes supervisions as labeling functions, and adopts

the source consistency assumption: a source is likely to provide true information with the

same probability for all instances. This assumption is widely used in true label discovery

literature [143] to model reliabilities of information sources like crowd-sourcing and infer the

true label from noisy labels. Accordingly, most true label discovery methods would trust

a human annotator on all instances to the same level. However, labeling functions, unlike

human annotators, do not make casual mistakes but follow certain “error routine”. Thus,

the reliability of a labeling function is not consistent among different pieces of instances.

In particular, a labeling function could be more reliable for a certain subset (also known

as its proficient subset) comparing to the rest. We identify these proficient subsets based

on context information, only trust labeling functions on these subsets and avoid assuming

global source consistency.

In heterogeneous supervision framework, we capture context’s semantic meaning through

representation learning, and conduct both relation extraction and true label discovery in a

context-aware manner. Specifically, as depicted in Figure 7.5, we embed relation mentions in

a low-dimension vector space, where similar relation mentions tend to have similar relation

types and annotations. ‘True’ labels are further inferred based on reliabilities of labeling

functions, which are calculated with their proficient subsets’ representations. Then, these

inferred true labels would serve as supervision for all components, including context repre-

sentation, true label discovery and relation extraction. Besides, the context representation

bridges relation extraction with true label discovery, and allows them to enhance each other.

Such representations bridges all components with mutual enhancement in an iterative fash-

ion. The resulting model achieves the state-of-the-art performance on two relation extraction

benchmark datasets. We demonstrate that: (1) with additional domain-specific patterns we
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can further improve the model performance in the presence of distant supervision; and (2)

our proposed method can robust unify the two sources of supervision by resolving label

conflicts – providing a principled approach to build on top of our effort-light StructMine to

achieve even better results given rules from domain experts. This work has been accepted

by the EMNLP 2017 conference as oral presentation [141].

7.4 CONCLUSION

The contributions of this thesis work are in the area of text mining and information

extraction, within which we focus on domain-independent and noise-robust approaches using

distant supervision (in conjunction with publicly-available knowledge bases). The work has

broad impact on a variety of applications: knowledge base construction, question-answering

systems, structured search and exploration of text data, recommender systems, network

analysis, and many other text mining tasks. Finally, our work has been used in the following

settings:

• Introduced in classes and conference tutorials: Our methods on entity recog-

nition and typing (ClusType), fine-grained entity typing (PLE [11], AFET [12]), and

relation extraction (CoType [13]) are being taught in graduate courses, e.g., University

of Illinois at Urbana-Champaign (CS 512), and are introduced as major parts of the

conference tutorial in top data mining and database conferences such as SIGKDD,

WWW, CIKM and SIGMOD.

• Real-world, cross-disciplinary use cases:

– Our entity recognition and typing technique (ClusType [14]) has been transferred

to U.S. Army Research Lab, Microsoft Bing Ads and NIH Big Data to Knowledge

Center to identify typed entities of different kinds from low-resource, domain-

specific text corpora. ClusType is also used by Stanford sociologists to identify

scientific concepts from 37 millions of scientific publications in Web of Science

database to study innovation and translation of scientific ideas.

– A biomedical knowledge graph (i.e., Life-iNet [15]) constructed automatically

from millions of PubMed publications using our effort-light StructMine pipeline

is used by researchers at Stanford Medical school to facilitate drug re-purposing.

It yields significant improvement of performance on new drugs and rare diseases.

– Our effort-light StructMine techniques (ClusType, PLE, CoType) is adopted by

veterinarians at Veterinary Information Network Inc. (VIN) to construct the
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first veterinary knowledge graph from multiple sources of information including

research articles, books, guidelines, drug handbooks and message board posts.

• Awards: The thesis work on effort-light StructMine has been awarded a Google PhD

fellowship in 2016 (sole winner in the category of Structured Data and Data Manage-

ment in the world) and a Yahoo!-DAIS Research Excellence Award, and a C. W. Gear

Outstanding Graduate Student Award from University of Illinois.
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CHAPTER 8: VISION AND FUTURE WORK

This chapter discusses several potential directions for future work. Along this line of

research, there are three exciting directions that could be pursued: (1) exploring more ways

to reduce human annotation efforts other than leverage distant supervision from KBs; (2)

extract implicit language patterns from massive, unlabeled corpora to facilitate supervised

models; and (3) enrich the factual structures currently defined for the corpus-specif StructNet

to enable more use cases.

8.1 INDIRECT SUPERVISION: LEVERAGING KNOWLEDGE FROM AUXILIARY
TASKS

Relation extraction is an important task for understanding massive text corpora by turning

unstructured text data into relation triples for further analysis. To alleviate the exhaustive

human labeling process for generating training data, many recent efforts have been put

to develop relation extraction (RE) models with training data automatically obtained by

distant supervision (DS). DS replaces the manual training data generation with a pipeline

that automatically links texts to a knowledge base (KB). However, the noise introduced to

the automatically generated training data is not negligible. There are two major causes of

error: incomplete KB and context-agnostic labeling process. If we treat unlinkable entity

pairs as the pool of negative examples, false negatives can be commonly encountered as a

result of the insufficiency of facts in KBs, where many true entity or relation mentions fail to

be linked to KBs. On the other hand, context-agnostic labeling can engender false positive

examples, due to the inaccuracy of the DS assumption that if a sentence contains any two

entities holding a relation in the KB, the sentence must be expressing such relation between

them.

Towards the goal of diminishing the negative effects by noisy DS training data, distantly

supervised RE models that deal with training noise, as well as methods that directly im-

prove the automatic training data generation process have been proposed. These methods

mostly involve designing distinct assumptions to remove redundant training information.

They do not have external trustworthy sources as guidance to uncover incorrectly labeled

data. Without other separate information sources, the reliability of false label identification

can be limited. Moreover, these noise reduction systems usually only address one type of

error, either false positives or false negatives, although both types of error are observed to

be significant. With the aim to overcome the above two issues derived from relation ex-
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traction with distant supervision, we study the problem of relation extraction with indirect

supervision from external sources. And due to the rapid emergence of QA systems as well as

datasets of various QA tasks, we are motivated to leverage QA, a downstream application of

relation extraction, to provide additional signals for learning RE models. In our recent work,

ReQuest, the problem we try to solve is: given a domain-specific corpus and a set of target

relation types from a KB, we aim to detect relation mentions from text and categorize each

in context by target types or Non-TargetType (None) by leveraging an independent dataset

of QA pairs in the same domain.

We can design a framework to address the problem and alleviate the two issues in existing

models with the following key ideas: (1) We integrate indirect supervision from another

same-domain data source in the format of QA sentence pairs, that is, each question sentence

maps to several positive (where a true answer can be found) and negative (where no answer

exists) answer sentences. We adopt the principle that for the same question, positive pairs

of (question, answer) should be semantically similar while they should be dissimilar from

negative pairs. (2) Instead of differentiating types of labeling errors at the instance level,

we concentrate on how to better learn semantic representation of features. Wrongly labeled

training examples essentially misguide the understanding of features. It increases the risk

of having a non-representative feature learned to be close to a relation type and vice versa.

Therefore, if the feature learning process is improved, potentially both types of error can be

reduced.

8.2 PATTERN-ENHANCED EMBEDDING LEARNING FOR RELATION
EXTRACTION

Weakly-supervised relation extraction is an important task in data mining and natural

language processing. Given a text corpus and a target relation specified by a set of seed

entity pairs, the task aims at extracting more entity pairs under the target relation from

the corpus. The extracted entity pairs can benefit various downstream applications, such as

knowledge base completion and corpus-level relation extraction.

Existing approaches to weakly-supervised relation extraction can be divided into two

kinds, i.e., the distributional methods and the pattern-based methods. Given a pair of

entities, the distributional methods infer their relations based on the corpus-level statistics

of both entities. Specifically, these methods try to learn low-dimensional representations of

entities to preserve such statistics, so that entities with similar semantic meanings tend to

have similar representations. Then a relation classifier can be learned using the given seed

entity pairs, which takes entity representations as features for relation prediction. Differ-
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ently, the pattern-based methods predict the relation of two entities from several sentences

mentioning both of them. Towards this goal, traditional approaches try to extract discrim-

inative textual patterns from such sentences, while recent approaches leverage deep neural

networks for prediction. However, all these methods rely on a large number of seed entity

pairs for training, and thus their performance is usually poor in our setting, as the seed

entity pairs are very limited.

To tackle this problem, we can follow recent studies on entity typing (ClusType) and

relation extraction (CoType), which show that integrating the global statistics and local

contexts can improve the performance of prediction. Inspired by the idea, in this work we

propose a co-training framework to integrate the distributional methods and the pattern-

based methods, so that they can mutually provide extra supervision to overcome the scarcity

problem of the seed entity pairs. Specifically, the pattern module acts as a generator, as

it can extract some candidate entity pairs based on the discovered patterns; whereas the

distributional module is treated as a discriminator to evaluate the quality of each generated

entity pair, that is, whether a pair has the target relation. To encourage the collaboration

of both modules, we formulate a joint optimization process, in which we iterate between

two sub-processes. In the first sub-process, the discriminator (distributional methods) will

evaluate the entity pairs generated by the generator (pattern-based methods) and the results

serve as extra signals to adjust the generator. In the second sub-process, the generator

(pattern-based methods) will in turn generate a set of highly confident entity pairs, which

serve as extra training seeds to improve the discriminator (distributional methods). During

training, we keep iterating between the two sub-processes, so that both methods can be

consistently improved. Once the training converges, both methods can be applied to relation

extraction, which extract new entity pairs from different perspectives.

8.3 EXTRACTING IMPLICIT PATTERNS FROM MASSIVE UNLABELED
CORPORA

As neural language models can be trained without human annotations but generate texts

of a high quality, we further explore the possibility to extract the abundant and self-contained

knowledge in natural language. So far, we’ve employed two strategies to incorporate such

models with sequence labeling, a general framework in natural language processing which

encompassing various of applications (e.g., Named Entity Recognition, POS Tagging, Event

Detection). The first is to treat such information as additional supervision, and guide the

training of the target task by the knowledge transfer.

Specifically, we leave the word-level knowledge to pre-trained word embedding and co-
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train a character-level language model with the end task. The proposed method can conduct

efficient training and inference, which has been accepted and presented at the AAAI 2017

conference. Alternatively, we further explore the potential of the extensive raw corpora. We

pre-train very large language models on such corpora to capture abundant linguistic features.

Moreover, we design a novel model pruning method to allow us conduct model compression

for better inference efficiency. The resulting model can be incorporated in a plug-in-and-play

manner and greatly improve the performance without much loss of efficiency. This work has

been submitted to a reputed venue for the review.

8.4 ENRICHING FACTUAL STRUCTURE REPRESENTATION

In the current definition of StructNet, edges between two entities are weighted by the

frequency of the facts mentioned in the text corpus. Such a representation has several limi-

tations: (1) raw frequency cannot indicate uncertainty of the fact (e.g., drug A treats drug

B with 75% success rate), (2) conditions of a relation are ignored in the modeling (e.g., if the

patient is under 50 years old), and (3) complex relations involve more than two entities (e.g.,

protein localization relation). To address these challenges, I am interested in collabo-

rating with NLP researchers and linguists to work on domain-independent sentiment

analysis and syntax parsing for large text corpora, and incorporate the sophisticated linguis-

tic features in StructNet construction. In particular, to measure fact uncertainty, it is critical

to mine from a sentence words/phrases that indicate uncertainty (e.g., “unlikely”, “proba-

bly”, “with 50% chance”), negation (e.g., “no”, “barely”), sentiments (e.g., “efficiently”,

“nicely”), or their enhancers (e.g., “very”, “extremely”), and design systematic measures to

quantify these units into weights of the edges in StructNets. To mine conditions for relations,

I aim to extend the meta pattern-based attribute mining algorithm to identify patterns for

“condition descriptions” (e.g., “...[ with age ]...”) and attach the mined conditions to edges

in StructNet for further analysis. To extract complex relations, I plan to design scalable can-

didate generation process (e.g., different pruning strategy) to avoid producing exponential

number of candidate relations, and extend the CoType embedding approach to model types

for n-ary relations, while preserving the mutual constraints between relations and their entity

arguments.
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