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Samenvatting
– Summary in Dutch –

Technieken voor artificiële intelligentie hebben een enorm potentieel om
via innovatieve toepassingen ons leven comfortabeler te maken. Het on-
derzoeksdomein van natuurlijke taalverwerking of computerlinguïstiek stelt
systemen voor AI ertoe instaat om taal te interpreteren and taken uit te
voeren zoals entiteitsherkenning, extractie van relaties of sentiment detec-
tie. Veel systemen voor taalverwerking vandaag zijn gebaseerd op machi-
naal lerende systemen die getraind worden met gelabelede, tekstuele data.
Deze methodes leren autonoom van data en detecteren de onderliggende
structuur en patronen. De hoeveelheid ongelabelde linguïstische data is
echter veel groter dan de gelabelede en groeit veel sneller dan de hoeveel-
heid gelabelede tekst. De vraag naar methodes die efficiënt aan machinaal
leren doen is daarom groot, i.e., methodes die met slechts kleine hoeveel-
heden gelabelede data complexe modellen kunnen trainen. Deze thesis
focust op efficiënt gesuperviseerd machinaal leren voor een selectie van
toepassingen binnen het domein van natuurlijke taalvewerking. We tonen
hoe, via sterk gereduceerde manuele supervisie, we performante systemen
kunnen bouwen voor geautomatiseerde extractie van informatie, evaluatie
van topic modellen, extractie van keyphrases en sequentie-naar-sequentie
modellen.

In een eerste applicatie bestuderen we automatische populatie van ken-
nisdatabanken met feiten. Omdat feiten in kennisdatabanken vaak manu-
eel moeten worden toegevoegd, zijn ze al snel onvolledig en niet up-to-
date volgens de laatste informatie. Een systeem dat automatisch informatie
extraheert uit allerlei soorten ongestructureerde data is daarom noodzake-
lijk. We kunnen beroep doen op technieken uit natuurlijke taalverwerking
voor automatische aanvulling van deze kennisdatabanken uit tekst. Een
belangrijke component van zulke systemen is de relatie extractor welke re-
laties detecteert tussen entiteiten in de tekst. Het trainen van zulke extrac-
tors vergt doorgaans echter grote hoeveelheden van voorbeelden van elke
relatie in de kennisdatabase die automatisch dient te worden aangevuld
(e.g., is_getrouwd_met, is_werknemer_van). We tonen dat de hoeveelheid
benodigde gelabelede data sterk gereduceerd kan worden door gebruik te
maken van zwakke supervisie, welke training data genereert door feiten
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uit een bestaande kennisdatabase te aligneren met een grote collectie van
tekst. Dit resulteert doorgaans in training data van lage kwaliteit, waar
veel zinnen niet de relatie uitdrukken voor de welke ze gegenereerd wer-
den. We introduceren een nieuwe techniek genaamd semantische label pro-
pagatie waarvoor we laag-dimensionale representaties gebruiken van het
kortste-pad in de afhankelijkheid-graaf tussen de entiteiten, om zo data
voor de relatie te bootstrappen. We tonen dat, met slechts enkele minuten
van annotatie werk, we in staat zijn om de precisie van de relatie extractors
sterk te vergroten. Door deze techniek toe te passen in een benchmark voor
informatie extractie systemen van kennisdatabanken, zijn we in staat een
hoge precisie score te behalen, hoger dan systemen die voor de benchmark
gebruik maakten van complexere modellen en ensemble technieken.

Als tweede applicatie presenteren we een efficiënte methode om onge-
superviseerd, topicmodellen te evalueren. Topicmodellen werken op grote
hoeveelheden tekst en geven ons een overzicht van de thematische inhoud
aan de hand van topics of verzamelingen van woorden. Hoewel deze mo-
dellen statistisch onderbouwd zijn, bieden ze geen garantie om topics te
genereren die interpreteerbaar zijn. Bestaande evaluatiemethoden om de
kwaliteit van een topicmodel te meten zijn gebaseerd op statistische me-
thodes of vragen gebruikers om alle topics handmatig te scoren. We stel-
len een nieuwe meettechniek voor die gebaseerd is op het gebruik van be-
staande, kleinere collecties van gecategoriseerde tekst. Door de similariteit
te meten tussen ongesuperviseerde en gesuperviseerde topics kunnen we
scores aan de topics toekennen die veel sterker gecorreleerd zijn met ma-
nuele scores dan de bestaande methodes.

Automatische extractie van keyphrases is het automatisch samenvat-
ten van lange documenten aan de hand van een selectie van korte zinnen
die de inhoud van het volledige document kort samenvatten. Evaluatie
van systemen voor extractie van keyphrases vereist grote collecties van
documenten die voorzien zijn van keyphrases door meerdere annotato-
ren. Zulke collecties zijn lang niet beschikbaar geweest voor onderzoek.
We organiseerden daarom de annotatie van collecties van nieuws, sport-
artikels en modeartikels door een divers panel van lezers en professionele
schrijvers. Voordien was ook weinig consensus over de performantie van
de verschillende methodes voor automatische extractie. We doen een sys-
tematische vergelijking tussen de bestaande ongesuperviseerde en gesu-
perviseerde technieken voor de test collecties. Nadien herformuleren we
het probleem van keyphrase extractie als positief-ongelabelde classifica-
tie, een vorm van semi-gesuperviseerde classificatie waarin we gelabelede
keyphrases als positieve data zien en andere kandidaten zien als ongela-
beled. Het gebruik van meerdere opinies voor keyphrase extractie lijdt tot
betere modellen maar is duur. We stellen een procedure voor die, gebruik
makende van slechts een enkele opinie, in staat is om gelijkaardige preci-
sie te behalen dan de duurdere training data. Deze methode behaalt ook
betere scores op andere, bestaande test collecties.
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Tot slot stellen we twee applicaties voor van sequentie-naar-sequentie
modelering via training op data van lage kwaliteit of inconsistente aligne-
ring. Sequentie-naar-sequentie modellen zijn een van de belangrijkste toe-
passingen van deep learning modellen voor natuurlijke taalverwerking,
met state-of-the-art performantie voor automatische vertaling. Deze mo-
dellen zijn vaak gebaseerd op recurrente neurale netwerken welke een
groot aantal parameters bevatten die doorgaans dus grote hoeveelheden
training data nodig hebben. We presenteren twee applicaties waarvoor
grote collecties van training data voorheen niet beschikbaar waren. In
een eerste setting stellen we een nieuwe taak, automatische lyric verkla-
ring, voor met een bijhorende dataset die een groot aantal lyrics samen
met bijhorende verklaringen bevat. Het doel van deze taak is om poë-
zie en straattaal te vertalen, een soort tekst waar bestaande systemen voor
taalverwerking grote moeilijkheden ondervinden. De uitgebrachte dataset
is de grootste van zijn soort en zal onderzoek in tekst normalisatie, ver-
werking van poëzie, en generatie van parafrasering stimuleren. In een
tweede bijdrage, presenteren we een mechanisme om stijl-attributen van
output-sequenties te controleren in sequentie-naar-sequentie modellen, via
attentie-waardes en een verborgen latente vector, gegenereerd voor verta-
ling. We demonstreren dit principe voor automatische tekst simplificatie
en tonen dat, door de latente vector waardes uit specifieke regionen te kie-
zen, we de lengte en alignering van output-sequenties kunnen controleren.

We geloven dat efficiënte supervisie in combinatie met deep learning
modellen veel potentieel heeft en we verwachten dat in de toekomstige
meer nieuwe applicaties gebruiken zullen maken van zwakke supervisie
of gebruik zullen maken van efficiëntere, flexibelere supervisie. Dit zal
uiteindelijk zorgen voor meer verspreide toepassing van natuurlijke taal-
verwerking en machinaal leren.





Summary

Artificial intelligence technologies offer great potential for creating new
and innovative solutions to improve our daily lives. Natural language
processing (NLP) enables artificial intelligence systems to interpret human
language and perform tasks such as automatic summarization, translation,
dialogue, named entity recognition, relationship extraction, and sentiment
analysis. Many effective modern NLP systems are built using supervised
machine learning methods. These methods learn from the data, by detect-
ing and extracting underlying patterns and structure from examples, and
rely on labeled training data. However, the amount of unlabeled linguis-
tic data available to us is much larger and growing much faster than the
amount of labeled data. Recent efforts in machine learning have addressed
the increasing need for data-efficient machine learning: the ability to learn
in complex domains without requiring large quantities of labeled data.

In this thesis we emphasize the use of efficient supervised learning for a
selection of core tasks within NLP by making use of a variety of techniques
which reduce the need for large quantities of supervision. We show how to
build effective models from limited training data while still reaching state-
of-the-art performance for information extraction, topic model evaluation,
automatic keyphrase extraction and sequence-to-sequence modelling.

In a first application we present knowledge base population (KBP), the
process of populating a knowledge base (KB), i.e., a relational database
storing factual information, from unstructured and/or structured input,
e.g., text, tables, or even maps and figures. Because KBs are often man-
ually constructed, they are incomplete and not up-to-date with the latest
information. KBP systems are crucial to keep KBs up-to-date by extracting
information from unstructured data such as webtext. Relation extractors
are important components of KBP systems. Training relation extractors for
the purpose of automated knowledge base population requires the avail-
ability of sufficient labeled training data for each predicate or relation in
the KB (e.g., spouse_of, top_member_of ). We show that the amount of man-
ual labeling can be significantly reduced by first applying distant super-
vision, which generates training data by aligning large text corpora with
existing knowledge bases. However, this typically results in a highly noisy
training set, where many training sentences do not express the intended re-
lation. We introduce a technique called semantic label propagation in which
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we use low dimensional representations of shortest dependency paths be-
tween entities of interest to bootstrap classifiers. We show that, with only
minutes of labeling per relation we are able to match or improve on the
accuracy obtained by fully supervised relation extractors. By including
this technique in a KBP system, we achieved top-ranking submissions to
a shared task for KBP systems. Using more but less noisy training data,
our sparse-feature-based linear classifiers were able to obtain higher accu-
racies than systems using more sophisticated ensembles and deep learning
architectures.

In a second application, we present an efficient method for the eval-
uation of topic models by making use of small labeled text collections.
State-of-the-art unsupervised topic models lead to reasonable statistical
models of documents but offer no guarantee of creating topics that are
interpretable by humans. A careful evaluation requires manual supervi-
sion which can be costly for large topic models. Instead, we use existing,
smaller labeled text collections to provide us with reference concepts and
present a new measure for topic quality based on alignment between these
supervised and unsupervised topics. Our proposed measure was shown
to correlate better with human evaluation than existing unsupervised eval-
uation measures.

Automatic keyphrase extraction is the task of automatically extracting
the most important and topical phrases of a document. Proper evaluation
of keyphrase extraction requires large test collections with multiple opin-
ions which were not available for research. We developed large corpora of
news, sports and fashion articles annotated with keyphrases by a diverse
crowd of laymen and professional writers. Prior, there was little consen-
sus on the definition of the task of keyphrase extraction, few large bench-
mark collections of keyphrase-labeled data, and a lack of overview of the
effectiveness of different techniques. We benchmark existing techniques
for supervised and unsupervised keyphrase extraction on the newly intro-
duced corpora. Next to benchmarking existing techniques, we study the
influence of overlap in the annotations on the performance metrics. We
rephrase the supervised keyphrase extraction problem as positive unla-
beled learning in which a binary classifier is learned in a semi-supervised
way from only positive keyphrases and unlabeled candidate phrases. The
use of multiple annotations leads to more robust automatic keyphrase ex-
tractors, we propose reweighting of labels by a single annotator, based on
probabilities by a first-stage classifier. This reweighting approach outper-
forms other state-of-the-art automatic keyphrase extractors using a single
opinion on different test collections.

As a final contribution we present two applications of sequence-to-
sequence models trained on noisy or poorly aligned training data. Sequence-
to-sequence models are one of the most impactful applications of deep
learning architectures to NLP, providing state-of-the-art results for ma-
chine translation. These architectures, mostly relying on recurrent neural
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networks are heavily parameterized and require large amounts of high-
quality training data. We present two applications of sequence-to-sequence
learning using weak supervision. We study two applications where only
noisy or low quality training data is available. In a first setting we present
the novel task of automated lyric annotation and an accompanying dataset
providing explanations to lyrics and poetic text. The goal of this task is
generating explanations to poetic and slang text, a type text which exist-
ing NLP systems have great difficulty with. The presented dataset is one
of the largest of its kind and will stimulate research in text normalization,
metaphor processing and paraphrase generation. In a second contribution,
we extend sequence-to-sequence models with the possibility to control the
characteristics or style of the generated output, via attention that is gen-
erated a priori (before decoding) from a latent code vector space. After
training an initial attention-based sequence-to-sequence model, we use a
variational autoencoder conditioned on representations of input sequences
and a latent code vector to generate attention matrices. By sampling the
code vector from specific regions of a latent space during decoding and
imposing prior attention in the seq2seq model, output can be steered to-
wards having certain attributes. This was demonstrated for the task of
sentence simplification, where the latent code vector allows control over
output length and lexical simplification, and enables fine-tuning to opti-
mize for different evaluation metrics.

We believe applications of reduced supervision in combination with
deep learning models offer great potential and we expect weak supervision
approaches will continue to be translated into more efficient, more flexible,
and eventually more usable systems for NLP and machine learning.





1
Introduction

“Content without method leads to fantasy,
method without content to empty sophistry."

— Johann Wolfgang von Goethe [1]

Artificial Intelligence (AI) technologies offer great potential for creat-
ing new and innovative solutions to improve people’s lives, address chal-
lenges in health and wellbeing, climate change, safety and security. In re-
cent years AI has seen incredible progress and increasingly found its way
into our daily lives. Rather than programming computers explicitly for a
specific task, a shift towards data-driven approaches has taken place.

Natural Language Processing (NLP) is the field that focuses on the in-
teractions between human language and computers. It is situated at the
intersection of Artificial Intelligence, computer science, and computational
linguistics. NLP is a way for computers to analyze, understand, and derive
meaning from human language, and enables AI systems to perform tasks
such as automatic text summarization, translation, named entity recogni-
tion, relationship extraction, sentiment analysis, speech recognition, and
topic segmentation.

Early attempts to solve NLP tasks relied on expensive hand-engineered
manual rules. Such rule-based systems suffer from many drawbacks such
as cost and difficulty to train experts in order to define and maintain the
rules [2]. This is why today, many effective modern NLP systems are
achieved using statistical machine learning methods.
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Machine learning studies artificial systems that learn from data. Ma-
chine learning is critical for AI applications such as computer vision, data
mining, clinical decision support systems and NLP. Because machine learn-
ing systems learn from data by detecting and extracting underlying pat-
terns and structure from examples, they provide potential solutions for
many of the problems faced in these domains.

Most of the successful applications of machine learning techniques used
for NLP are currently supervised methods, which rely on labeled training
data. However, the amount of unlabeled linguistic data available to us
is much larger and growing much faster than the amount of labeled data
which expensive and slow to generate. This is why recent efforts in ma-
chine learning have addressed the increasing need for supervision-efficient
machine learning: the ability to learn in complex domains without requir-
ing large quantities of labeled data. In the past, techniques such as semi-
supervised learning, active learning, transfer learning, multitask learning
addressed this need and searched for ways to build better models at lower
cost. This thesis presents several applications of data-efficient supervised
learning for a selection of core tasks within NLP. In this introduction we sit-
uate our research and present the contributions made by this thesis. This
chapter contains five sections:

• Section 1.1 discusses recent developments in AI and the increasing
need for labeled data resulting in the so-called data bottleneck.

• Section 1.2 reviews some existing alternatives for traditional super-
vision in general machine learning research motivated by the lack of
labeled training data, and provides simple, working definitions of
established techniques.

• Section 1.3 then zooms in on several successful applications of effi-
cient supervision applied to NLP.

• We then conclude the introduction by summarizing the contributions
made by this thesis in Section 1.4, and present the accompanying pa-
pers Section 1.5. Each chapter presents a particular research question
in the context of tackling a NLP task from the perspective of applying
supervision more efficiently.

1.1 The Data Bottleneck

“Perhaps the most important news of our day is that datasets – not algo-
rithms – might be the key limiting factor to development of human-level
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artificial intelligence," Alexander Wissner-Gross argued in a written re-
sponse to the question raised by technology blog Edge: “What do you con-
sider the most interesting recent scientific news?".1 Getting labeled train-
ing data has become a key development bottleneck for supervised machine
learning.

At the dawn of the field of artificial intelligence, two of its founders,
Seymour Papert and Marvin Minksy predicted that solving the problem of
computer vision would only take a summer [3]. We know now that they
were off by at least half a century. One can ask: what took the research
community this long? By reviewing the timing of several of the recent
most publicized AI advances, he found evidence that suggests an explana-
tion, maybe many major AI breakthroughs have been constrained by the
availability of high-quality training datasets, not by algorithmic advances.

Table 1.1 provides an overview of several key AI advances along with
enabling algorithms and datasets.2 Examining these advances, the aver-
age elapsed time between the key algorithm proposals and corresponding
advances is about ten years, whereas the average elapsed time between
key dataset availability and the corresponding advance was less than three
years, or about six times faster, suggesting that datasets might have been
limiting factors in the advances.

Many of the recent breakthroughs in computer vision and NLP are due
to the advent of deep learning (neural net architectures with many hidden
layers), which allow ML practitioners to get state-of-the-art scores without
using hand-engineering features. Whereas building an image classification
model ten years ago required advanced knowledge of tools like Sobel op-
erators and Fourier analysis to craft an adequate set of features for a model,
deep learning models learn expressive representations inherently from the
raw data. Moreover, given the availability of multiple professional-quality
open-source machine learning frameworks such as TensorFlow3 and Py-
Torch4, combined with an abundance of available state-of-the-art models,
it can be argued that high-quality machine learning models are almost a
commoditized resource now.

A caveat with such models is that they tend to rely on massive sets
of often hand-labeled training data. Deep learning models are massively
more complex than most traditional models: many standard deep learn-
ing models today have hundreds of millions of free parameters and thus
require more labeled training data. These hand-labeled training sets are
expensive and time-consuming to create, taking months or years for large

1https://www.edge.org/response-detail/26587
2Table based on https://hazyresearch.github.io/snorkel/blog/ws_blog_post.html
3https://www.tensorflow.org
4http://pytorch.org

https://www.edge.org/response-detail/26587
https://hazyresearch.github.io/snorkel/blog/ws_blog_post.html
https://www.tensorflow.org
http://pytorch.org
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benchmark sets, or when domain expertise is required. Afterwards, the la-
beled datasets often can not be practically repurposed for new objectives.
The cost and inflexibility of hand-labeling of such training sets is the key
bottleneck to actually deploying machine learning in many cases.

Therefore, in practice today, most large deep learning systems actually
use some form of weak supervision: noisier, lower-quality, but large-scale
training sets constructed via alternative strategies such as using less ex-
pensive annotators, scripts, or more creative and higher-level input from
domain experts.

1.2 Beyond Traditional Supervision

As discussed in previous section, current supervised models require large
quantities of labeled data. A distinction can be made between traditional
supervised learning and semi- or weakly supervised methods.

In traditional supervised learning the goal is, given a training set made
of pairs (xi, yi), to learn a mapping from x to y. Here, the yi ∈ Y are
called the labels or targets of the examples xi . There are two families of
algorithms for supervised learning. Generative algorithms try to model
the joint probability distribution p(x, y) by some unsupervised learning
procedure. Discriminative algorithms do not try to characterize items x for
a given label y but instead concentrate on estimating p(y|x) directly.

Many traditional lines of research in machine learning are motivated by
the appetite of modern machine learning models for labeled training data
and propose more efficient techniques. These are divided at a high-level
by what information they leverage and how they leverage it. Figure 1.1
provides an overview of different established sources for supervision in
machine learning.4 We briefly describe some of the most prominent tech-
niques.

1.2.1 Semi-Supervised Learning

Semi-supervised learning (SSL) is halfway between supervised and unsu-
pervised learning. In addition to unlabeled data, the algorithm is provided
with some supervision but not necessarily for all examples. Often, this in-
formation will be the targets associated with some of the examples. The
standard setting in SSL involves the availability of two types of data:

• Labeled data Xu = x1, . . . , xl , for which labels Yl = y1, . . . , yl are
provided.

4Overview and Figure based on https://hazyresearch.github.io/snorkel/blog/ws_blog_
post.html

https://hazyresearch.github.io/snorkel/blog/ws_blog_post.html
https://hazyresearch.github.io/snorkel/blog/ws_blog_post.html
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• Unlabeled data Xu = xl+1, . . . , xl+u, a much larger set but its labels
are not known.

At a high level, assumptions are made about smoothness, low dimensional
structure, or distance metrics to leverage the unlabeled data (either as part
of a generative model, as a regularizer for a discriminative model, or to
learn a compact data representation), for a recent survey see [11]. Broadly,
rather than soliciting more input from experts, the idea in SSL is to leverage
domain- and task-agnostic assumptions to exploit the unlabeled data that
is often cheaply available in large quantities.

More recent methods use generative adversarial training [12], heuristic
transformation models [13], and other generative approaches to effectively
help regularize decision boundaries.

1.2.2 Active Learning

In active learning, the goal is to make use of labels by experts more effi-
ciently by having them label data points which are estimated to be most
valuable to the model (for a recent survey, see [14]). Traditionally, applied
to the standard supervised learning setting, this means intelligently select-
ing new data points to be labeled. Common strategies to select data points
are based on the uncertainty of the prediction, the expected model change
or the expected error reduction.

1.2.3 Multi-Task Learning

When training models for a single task, labels from related tasks can pro-
vide additional signal to do better on the metric which is optimized. By
sharing representations between related tasks, models are able to general-
ize better on the original task. This approach is called Multi-Task Learn-
ing. Multi-task learning has been used successfully across all applications
of machine learning, from speech recognition [15] to computer vision [16]
and drug discovery [17].

1.2.4 Transfer Learning

In the transfer learning setting, the goal is to take one or more models
trained on a different dataset and apply them to our dataset and task; for a
recent survey, see [18]. A common transfer learning approach in the deep
learning community is to “pre-train" a model on one large dataset, and
then “fine-tune" it on the task of interest. Another related line of work
is multi-task learning, where several tasks are learned jointly [19]. Some
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transfer learning approaches take one or more pre-trained models (poten-
tially with some heuristic conditioning of when they are each applied) and
use these to train a new model for the task of interest.

1.2.5 Weak Supervision

The aforementioned machine learning paradigms potentially potentially
facilitate training without having to rely on expensive annotators for many
additional training labels. An alternative option is to provide supervision
at a higher-level which is arguably faster and easier but otherwise less pre-
cise. This is the key motivation for weak supervision approaches.

In the weak supervision setting, the objective is the same as in the su-
pervised setting, however, instead of a ground-truth labeled training set
we have:

• Unlabeled data Xu = x1, . . . , xN

• One or more weak supervision sources pi(y|x), i = 1, . . . , M pro-
vided by an expert, where each source provides a weak label to the
data.

Weak labels serve as a way for human supervision to be provided more
cheaply and efficiently: either by providing higher-level, less precise su-
pervision (e.g., heuristic rules, expected label distributions), cheaper, lower-
quality supervision (e.g., crowdsourcing), or taking advantage of existing
resources (e.g., knowledge bases, pre-trained models, labeled text collec-
tions). These weak label distributions could thus take one of many forms:

• Deterministic functions: The weak label distributions could be deter-
ministic functions. We might have a set of noisy labels for each data
point. These could come from crowd workers, be the output of heuris-
tic rules fi(x), or the result of distant supervision [20], where an ex-
ternal knowledge base is heuristically mapped onto unlabeled data
Xu. These could also be the output of other classifiers which only
yield maximum a posteriori estimates, or which are combined with
the heuristic rules to output discrete labels.

• Constraints: One can also consider constraints represented as weak la-
bel distributions. For example, a structured prediction setting leads
to a wide range of very interesting constraint types, such as physics-
based constraints [21] or output constraints on the execution of logi-
cal forms [22], which encode various forms of domain expertise cheaper
supervision from, e.g., layman annotators.
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• Distributions: We might also have direct access to a probability dis-
tribution. For example, we could have the posterior distributions of
one or more weak (i.e., low accuracy or coverage) or biased classi-
fiers, such as classifiers trained on different data distributions as in
the transfer learning setting. We could also have one or more user-
provided label or feature expectations or measurements [22, 23], i.e.,
an expected distribution pi(y) or pi(y| f (x)) (where f (x) is some fea-
ture of x) provided by a domain expert as in e.g., in [24]

• Invariances: Finally, given a small set of labeled data, we can express
functional invariances as weak label distributions, e.g., extend the
coverage of the labeled distribution to all transformations of t(x) or x,
and set pi(y|t(x)) = pi(y|x). Techniques such as data augmentation
(see Section 1.3.5) can be seen as a form of weak supervision as well.

1.3 Efficient Supervision for NLP

SSL has a long history in NLP dating back to the 1990s, mostly due to ap-
plications in text classification problems [25, 26]. In this section we provide
an overview of more recent developments and important uses of SSL and
weak supervision for NLP.

1.3.1 Semi-Supervised Learning for NLP

Two prominent SSL methods used in NLP are self-training and co-training.
The term self-training has been used to refer to a variety of schemes

for using unlabeled data. Ng and Cardie [27] implement self-training by
bagging and majority voting. A committee of classifiers are trained on
the labeled examples, then classify the unlabeled examples independently.
Only those examples, to which all the classifiers give the same label, are
added to the training set and those classifiers are retrained. Self-training
has been applied to NER [28], machine translation [29], parsing [30] and
text classification [31].

Co-training [25] is another algorithm for learning from labeled and un-
labeled data which assumes that each data point can be described by two
distinct models of the data. Co-training learns two classifiers, one for each
view, Dasguptaet al. [32] show that the classifier trained on one view has
low generalization error if it agrees on unlabeled data with the classifier
trained on the other view. Co-training has been applied to large-scale doc-
ument classification [33], word sense disambiguation [34], named entity
classification [35], statistical parsing [36] and part-of-speech tagging [37].
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Tri-training [38] is another multi-view training method. Tri-training lever-
ages the agreement of three independently trained models to reduce the
bias of predictions on unlabeled data.

1.3.2 Distant Supervision

One of the most proficient forms of weak supervision in NLP is distant
supervision (DS). DS automatically labels its own training data by heuris-
tically aligning facts from a knowledge base with an unlabeled corpus.

The last decade of machine learning-based information extraction re-
search has focused on models that require large amounts of labeled data.
However, most real-world information extraction tasks do not have any
fully labeled data. Labeling new data to train a reasonably accurate se-
quence model is not only expensive, it also requires labeling data for each
new domain.

Mintz et al. [39] first propose the term distant supervision and are the
first to use Freebase as the database to generate training data for a knowledge-
base population task. The positive training data is obtained by a simple
textual match with facts in the knowledge base, special negative training
data is included which is generated from entity pairs that are in none of the
considered relations according to the knowledge base. A multi-class logis-
tic classifier is used with lexical and named-entity-tag features, as well as
features derived from dependency trees.

Since its introduction, DS has known many applications and exten-
sions, most of which find ways to reduce the noise generated by the proce-
dure [40–44].

1.3.3 Information Extraction using Weak Supervision

An interesting line of research using weak supervision are end-to-end data
pipelines for information extraction systems. DeepDive [45] introduced a
data management system that enables extraction, integration, and predic-
tion problems in a single system, which allows users to rapidly construct
sophisticated end-to-end data pipelines by programming features. It views
every piece of data as an imperfect observation which may or may not be
correct. It uses these observations and domain knowledge expressed by
the user to build a statistical model. DeepDive-based systems are used by
users without machine learning expertise in a number of domains from
paleobiology to genomics to human trafficking. DeepDive was commer-
cialized as Lattice Data and acquired by Apple in 2016 for $200M.5

5https://techcrunch.com/2017/05/13/apple-acquires-ai-company-lattice-data-a-specialist- in-unstructured-dark-data/

https://techcrunch.com/2017/05/13/apple-acquires-ai-company-lattice-data-a-specialist-in-unstructured-dark-data/
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Research on DeepDive was continued under the name Snorkel [46]
which focuses on programming weak supervision instead of feature engi-
neering. Snorkel enables users to train models without hand labeling any
training data. Instead, users write labeling functions that express arbitrary
heuristics, which can have unknown accuracies and correlations.

Snorkel then de-noises their outputs without access to the ground truth
by incorporating an end-to-end implementation of their proposed machine
learning paradigm, data programming [47]. By modeling a noisy training
set creation process in this way, Snorkel can take potentially low-quality
labeling functions from the user, and use these to train high-quality end
models. In a user study, subject matter experts build models 2.8× faster
than manually labeling data and increase predictive performance by on
average 45.5% compared to systems needing seven hours of hand labeling.

1.3.4 Crowdsourcing

Many prominent datasets enabling deep learning for NLP are based on
crowdsourcing. Crowdsourcing is a way of generating annotation labels
cheaply and is an increasingly utilized source of annotation labels to com-
putational linguists as a source of labeled training data to use in machine
learning. Recent prominent datasets include the SNLI corpus for text en-
tailment by Bowman et al. [48] and the SQUAD dataset by Rajpurkar et
al. [49] for question answering, which enabled the application of deep
learning models which consequently obtained state-of-the-art performance
on these tasks. Another example is the Fake News challenge [50] in which
the task of fact verification was modelled as stance classification. A dataset
was generated with claims and corresponding articles curated and labeled
by journalists in the context of the Emergent Project [51].

In a common annotation task, multiple labels are collected for an in-
stance, and are aggregated together into a single aggregated label. While
crowdsourcing offers solicitors of information or services nearly unlimited
cheap labels, the major challenge lies in aggregating the multiple, noisy
contributor inputs to create a consistent corpus. The output of crowdsourc-
ing, especially in the case of micro-tasks and when monetary incentives
are involved, often suffers from low quality. Moreover, crowd workers are
usually not experts and they are of different age, education and ethnics. A
high number of labels is needed to compensate for worker bias, task mis-
understanding, lack of interest, incompetence, and malicious intent [52].
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1.3.5 Data Augmentation for NLP

Data augmentation aims to create additional training data by producing
variations of existing training examples through transformations, which
can mirror those encountered in the real world. Data augmentation has a
proven track record in computer vision, common augmentation techniques
are mirroring, random cropping, shearing, etc. For instance, it has been
used very effectively in AlexNet [53] to combat overfitting and in most
state-of-the-art models since. In addition, data augmentation makes in-
tuitive sense as it makes the training data more diverse and should thus
increase a model’s ability to generalize.

In NLP, data augmentation is far less obvious to realize and hence,
has seen little success so far. In speech recognition, data is augmented
by adding artificial background noise and changing the tone or speed of
speech signal [54]. In terms of text, it is not reasonable to augment data us-
ing signal transformations as done in image or speech recognition, because
the exact order of characters may form rigorous syntactic and semantic
meaning. Zhang et al. [55] do data augmentation for training of convo-
lutional neural networks for language understanding by replacing words
or phrases with synonyms. Xie et al. [56] replace words with samples
from different distributions for language modelling and machine trans-
lation. Recent work focuses on creating adversarial examples either by
replacing words or characters [57], concatenation [58], or adding adversar-
ial perturbations [59]. An adversarial setup is also used by Li et al. [60]
who train a system to produce sequences that are indistinguishable from
human-generated dialogue utterances.

Back-translation [61] is a common data augmentation method in ma-
chine translation that allows to incorporate monolingual training data. For
instance, when training a EN-FR system, monolingual French text is trans-
lated to English using an FR-EN system, the synthetic parallel data can
then be used for training. Back-translation can also be used for paraphras-
ing [62]. Paraphrasing has also been used for data augmentation in ques-
tion answering systems [63]. Another method that is close to the use of
paraphrases is generating sentences from a continuous space using a vari-
ational autoencoder [64].

1.3.6 Transfer Learning for NLP

In the transfer learning setting, a model trained for a different task is ap-
plied to a different task of interest. Transfer learning has had a large impact
on computer vision and has greatly lowered the entry threshold for peo-
ple wanting to apply computer vision algorithms to their own problems.
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Computer vision practitioners are no longer required to perform extensive
feature-engineering for every new task, but can simply start from a model
pre-trained on a large dataset and fine-tune it further with a small number
of examples for their particular task at hand.

In NLP, transfer learning mostly focused on initializing the first layer
of a neural network architecture using pre-trained word representations
or embeddings. Recent approaches [65] add pre-trained language model
embeddings, but these still require custom architectures for every task. To
unlock the true potential of transfer learning for NLP, models need to be
pre-trained and fine-tuned on the target task, akin to fine-tuning ImageNet
models. Language modeling, for instance, is a great task for pre-training
and could be to NLP what ImageNet classification is to CV [66].

Next to word embeddings, sentence representations have also been
pre-trained e demonstrated sentence embeddings outperform state-of-the-
art unsupervised and supervised representation learning methods on sev-
eral downstream NLP tasks that involve understanding sentence seman-
tics while achieving an order of magnitude speedup in training time [67].

1.3.7 Multi-Task Learning for NLP

Multi-task learning (MTL) has become more commonly used in NLP [68–
70]. One of the main questions is, which tasks are useful for multi-task
learning. Language modelling has been shown to be beneficial for many
NLP tasks and can be incorporated in various ways. Most word embed-
dings are trained using an objective similar to language modelling; lan-
guages models have been used to pre-train machine translation and sequence-
to-sequence models [71], contextual language model embeddings have also
been found useful for many tasks [65]. One of the main questions in this
domain is determining which NLP tasks are useful for multi-task learning.

1.4 Research contributions

Now that we have introduced techniques for more efficient supervision in
machine learning for NLP, we present the core research topics contributed
by this thesis. Each chapter presents a core NLP problem that is tackled
using new techniques, requiring less supervision and annotation effort by
domain experts. In Table 1.2 we provide an overview of the different NLP
tasks at hand and the source of (weak) supervision. One will notice that
for none of the applied models or techniques a fully labeled collection by
domain experts is put forward.
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Table 1.2: Overview of contributions presented in this thesis.

Chapter Task Source of Supervision

2 Knowledge base population Distant supervision and small
amounts of feature annotations

3 Topic model evaluation Small existing datasets
4 Automatic keyphrase extrac-

tion
Single opinions by layman annota-
tors

5 Sequence-to-sequence mod-
eling

Crowd sourced data from a gami-
fied platform and noisy parallel text

Chapter 2 – Weak Supervision for Knowledge Base Popula-
tion

Knowledge Base Population (KBP) is the process of populating a knowl-
edge base (KB) from unstructured and/or structured input, e.g., , filling
a relational database with facts extracted from text, tables, or even maps
and figures. Because KBs are often manually constructed, they tend to be
incomplete. KBP systems are crucial to keep KBs up-to-date by extracting
information from unstructured data such as webtext. An important com-
ponent of a KBP system is the relation extractor which detects relations oc-
curring between entities. Training such relation extractors for the purpose
of automated knowledge base population requires the availability of suffi-
cient training data. Fortunately, the amount of manual labeling can be sig-
nificantly reduced by applying distant supervision, which generates train-
ing data by aligning large text corpora with available knowledge bases.
Yet, this typically results in a highly noisy training set, where many train-
ing sentences do not express the intended relation. This chapter presents a
method for training relation extractors in knowledge base population sys-
tems at very low manual label effort. We use low dimensional representations
of shortest dependency paths between entities of interest to bootstrap classifiers for
relation extraction. We show that at only minutes of labeling per relation
we are able to match or improve on accuracy of fully supervised relation
extractors. By applying this technique in a participation in the Knowledge
Base Population shared task, we achieved top-ranking submissions. These
KBP systems are described in more detail in Appendix A.

Chapter 3 – Topic Model Evaluation

In chapter 3 we present an efficient method for evaluation of topic models
by making use of existing categorized text collections. While state-of-the-
art unsupervised topic models lead to reasonable statistical models of doc-
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uments, they offer no guarantee of creating topics that are interpretable by
humans and require a manual evaluation of interpretability of the output.
Existing methods evaluate statistical goodness-of-fit, offer no guarantee of
interpretability. Alternatively an evaluation would require full supervi-
sion which can be costly for large topic models. We use small available la-
beled text collections to provide us with reference topics and present a new
measure for topic quality based on alignment. Our proposed measure shows
a higher correlation with human evaluation than existing unsupervised
measures.

Chapter 4 – Creation and Evaluation of Large-scale Collec-
tions

Automatic keyphrase extraction (AKE) is the task of automatically extract-
ing the most important and topical phrases of a document [72]. Keyphrases
are meant to cover all document topics and capture the complete content
of a document in but a handful of phrases. Applications of keyphrases
are rich and diverse, ranging from document summarization [73] to clus-
tering [74], contextual advertisement [75], or simply to enhance naviga-
tion through large corpora. While several Automatic Keyphrase Extraction
(AKE) techniques have been developed and analyzed, there is little consen-
sus on the definition of the task and a lack of overview of the effectiveness
of different techniques. Proper evaluation of keyphrase extraction requires
large test collections with multiple opinions, which were before, not avail-
able for research at the start of our research. In Chapter 4, we present a
set of test collections derived from various sources with multiple, noisy annota-
tions (which we also refer to as opinions in the chapter) for each document,
systematically evaluate keyphrase extraction using several supervised and
unsupervised AKE techniques, and experimentally analyze the effects of
disagreement between annotators on AKE evaluation. Next to benchmark-
ing existing techniques we study the influence of aggregating multiple annotations
in the training data on the performance metrics. We conclude this chapter
by rephrasing the supervised keyphrase extraction problem as positive un-
labeled learning in which a binary classifier is learned in a semi-supervised way
from only positive keyphrases and unlabeled candidate phrases. We show that
using only a single opinion per document we are able to achieve scores
similar to models trained using multiple opinions per document.

A disadvantage of supervised approaches is that they require a lot of
training data and show bias towards the domain on which they are trained,
undermining their ability to generalize well to new domains. Unsuper-
vised approaches are a viable alternative in this regard. In Appendix B
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we make two focused contributions to the area of unsupervised keyphrase
extraction by studying the use of to topic models in graph-based word
ranking models.

Chapter 5 – Sequence-To-Sequence Models on Noisy Train-
ing Data

In the final research chapter, we present two applications of sequence-to-
sequence models trained on noisy or poorly aligned training data. Sequence-
to-Sequence models [76, 77] are one of the most successful applications
of neural network architectures to natural language processing, providing
state-of-the-art results for machine translation. However, these architec-
tures, mostly relying on recurrent neural networks, are heavily parame-
terized and require large amounts of high-quality training data. In this
chapter we study two applications where only noisy or low quality train-
ing data is available. In a first setting we present the novel task of automated
lyric annotation and an accompanying dataset providing explanations to lyrics
and poetic text. These models generate explanations to poetic text. The cre-
ated dataset is one of the largest of its kind and stimulates research in text
normalization, metaphor processing and paraphrasing.

In the second part of this chapter, we extend sequence-to-sequence mod-
els with the possibility to control the characteristics or style of the generated
output, via attention that is generated a priori (before decoding) from a
latent code vector. After training an initial attention-based sequence-to-
sequence model, we use a variational auto-encoder conditioned on repre-
sentations of input sequences and a latent code vector space to generate
attention matrices. By sampling the code vector from specific regions of
this latent space during decoding and imposing prior attention generated
from it in the sequence-to-sequence model, output can be steered towards
having certain attributes. This is demonstrated for the task of sentence sim-
plification, where the latent code vector allows control over output length
and lexical simplification, and enables fine-tuning to optimize for different
evaluation metrics.

1.5 Publications

The research results obtained during this PhD research have been pub-
lished in scientific journals and presented at a series of international con-
ferences and workshops. The following list provides an overview of these
publications.
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1.5.1 Publications in international journals
(listed in the Science Citation Index6 )

I L. Sterckx, T. Demeester, J. Deleu and C. Develder, Knowledge base
population using semantic label propagation. Published in Knowledge
Based Systems, 108:79–91, 2016.

II L. Sterckx, T. Demeester, J. Deleu and C. Develder, Creation and evalu-
ation of large keyphrase extraction collections with multiple opinions. Pub-
lished in Language Resources and Evaluation, online, 2017.

1.5.2 Publications in international conferences
(listed in the Science Citation Index7)

III L. Sterckx, T. Demeester, J. Deleu, L. Mertens and C. Develder, Assess-
ing quality of unsupervised topics in song lyrics . Published in Lecture
notes in computer science, Presented at the European Conference on
Information Retrieval. 8416:547–552, Amsterdam, Netherlands, 2014.

IV L. Sterckx, T. Demeester, J. Deleu and C. Develder, When topic models
disagree: keyphrase extraction with mulitple topic models . Published in
WWW’15 companion : Proceedings of the 24th International Confer-
ence on World Wide Web, p. 123–124, Florence, Italy, 2015.

V L. Sterckx, T. Demeester, J. Deleu and C. Develder, Topical word impor-
tance for fast keyphrase extraction. Published in WWW’15 companion
: Proceedings of the 24th International Conference on World Wide
Web, p. 121–122 Florence, Italy, 2015.

VI B. Vandersmissen, L. Sterckx, T. Demeester, A. Jalalvand, W. De Neve
and R. Van de Walle, An automated end-to-end pipeline for fine-grained
video annotation using deep neural networks. Published in ICMR’16:
Proceedings of the 2016 ACM International Conference on Multime-
dia Retrieval, p409–412, New York, New York, USA, 2016.

6The publications listed are recognized as ‘A1 publications’, according to the following
definition used by Ghent University: A1 publications are articles listed in the Science Citation
Index, the Social Science Citation Index or the Arts and Humanities Citation Index of the ISI
Web of Science, restricted to contributions listed as article, review, letter, note or proceedings
paper.

7The publications listed are recognized as ‘P1 publications’, according to the following de-
finition used by Ghent University: P1 publications are proceedings listed in the Conference
Proceedings Citation Index - Science or Conference Proceedings Citation Index - Social Sci-
ence and Humanities of the ISI Web of Science, restricted to contributions listed as article,
review, letter, note or proceedings paper, except for publications that are classified as A1.
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1.5.3 Publications in other international conferences

VII L. Sterckx, T. Demeester, J. Deleu and C. Develder, Ghent University-
IBCN participation in TAC-KBP 2014 slot filling and cold start tasks
Published in 7th Text Analysis Conference, Proceedings. p.1-10,
Gaithersburg (MD), USA, 2014

VIII L. Sterckx, T. Demeester, J. Deleu and C. Develder, Using active
learning and semantic clustering for noise reduction in distant supervision
Published in Fourth Workshop on Automated Base Construction at
NIPS2014, Proceedings. p.1-6, Montreal, Canada, 2014.

IX L. Sterckx, T. Demeester, J. Deleu and C. Develder, Ghent University-
IBCN participation in TAC-KBP 2015 slot filling and cold start tasks
Published in 8th Text Analysis Conference, Proceedings. p.1-
10,Gaithersburg (MD), USA, 2015.

X L. Sterckx, T. Demeester, J. Deleu and C. Develder, Supervised
keyphrase extraction as positive unlabeled learning. Published in the Pro-
ceedings of the 2016 Conference on Empirical Methods in Natural
Language Processing, p. 1924–1929, Austin (Texas), USA, 2016.

XI L. Sterckx, T. Demeester, J. Deleu and C. Develder, Break it down for
me : a study in automated lyric annotation. Published in the Proceedings
of the 2017 Conference on Empirical Methods in Natural Language
Processing, p. 2074–2080, Copenhagen, Denmark, 2017.

XII L. Sterckx, J. Deleu, C. Develder and T. Demeester, Prior Attention
for Style-aware Sequence-to-Sequence Models. Submitted to Proceedings
of the 2018 Conference on Empirical Methods in Natural Language
Processing, Brussels, Belgium, 2018.
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2
Weak Supervision for Automatic

Knowledge Base Population

This paper presents a method for training relation extractors in knowledge
base population systems with very low manual labeling effort. We use low-dimensional
representations of shortest dependency paths between entities of interest in order
to bootstrap training data. We show that at only minutes of labeling per relation
we are able to match or improve on accuracy of fully supervised relation extrac-
tors. This technique was developed while participating in the TAC-KBP shared
task, and generated top-ranking submissions. Other components of the KBP sys-
tem are described in more detail in Appendix A. In Section 2.A, we then present a
method for cluster-aware active learning to distantly supervised training data.

? ? ?

L. Sterckx, T. Demeester, J. Deleu and C. Develder

Appeared in Knowledge Based Systems, online, 2016.

Abstract Training relation extractors for the purpose of automated knowl-
edge base population requires the availability of sufficient training data.
The amount of manual labeling can be significantly reduced by applying
distant supervision, which generates training data by aligning large text
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corpora with existing knowledge bases. This typically results in a highly
noisy training set, where many training sentences do not express the in-
tended relation. In this paper, we propose to combine distant supervi-
sion with minimal human supervision by annotating features (in partic-
ular shortest dependency paths) rather than complete relation instances.
Such feature labeling eliminates noise from the initial training set, result-
ing in a significant increase of precision at the expense of recall. We further
improve on this approach by introducing the Semantic Label Propagation
(SLP) method, which uses the similarity between low-dimensional rep-
resentations of candidate training instances to again extend the (filtered)
training set in order to increase recall while maintaining high precision.
Our strategy is evaluated on an established test collection designed for
knowledge base population (KBP) from the TAC KBP English slot filling
task. The experimental results show that SLP leads to substantial perfor-
mance gains when compared to existing approaches while requiring an
almost negligible human annotation effort.

2.1 Introduction

In recent years we have seen significant advances in the creation of large-
scale knowledge bases (KBs), databases containing millions of facts about
persons, organizations, events, products, etc. Examples include Wikipedia-
based KBs (e.g., YAGO [1], DBpedia [2], and Freebase [3]), KBs gener-
ated from Web documents (e.g., NELL [4], PROSPERA [5]), or open in-
formation extraction approaches (e.g., TextRunner [6], PRISMATIC [7]).
Other knowledge bases like ConceptNet [8] or SenticNet [9] collect con-
ceptual information conveyed by natural language and make them easily
accessible for systems performing tasks like commonsense reasoning and
sentiment analysis [10]. Besides the academic projects, several commer-
cial projects were initiated by major corporations like Microsoft (Satori1),
Google (Knowledge Graph [11]), Facebook2, Walmart [12] and others. This
is driven by a wide variety of applications for which KBs are increasingly
found to be essential, e.g., digital assistants, or for enhancing search engine
results with semantic search information.

Because KBs are often manually constructed, they tend to be incom-
plete. For example, 78.5% of persons in Freebase have no known nation-
ality [13]. To complete a KB we need a knowledge base population (KBP)
system that extracts information from various sources of which a large frac-
tion comprises unstructured written text items [11]. A vital component of a

1https://blogs.bing.com/search/2013/03/21/understand-your-world-with-bing
2http://www.insidefacebook.com/2013/01/14/

https://blogs.bing.com/search/2013/03/21/understand-your-world-with-bing
http://www.insidefacebook.com/2013/01/14/
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Knowledge Base
Relation (r) Entity 1 (e1) Entity 2 (e2)
born in Barrack Obama U.S.
spouse Barrack Obama Michelle
. . . . . . . . .

Mentions in free text True +?
Barack was born in Honolulu, Hawaii, U.S. ✓
Barrack Obama ended U.S. military involvement in the Iraq War. ✗
Michelle and Barack are visiting Cuba. ✗
Barack and his wife Michelle are meeting with Xi Jinpeng ✓

Figure 2.1: Illustration of the distant supervision paradigm and errors

KBP system is a relation extractor to populate a target field of the KB with
facts extracted from natural language. Relation extraction (RE) is the task
of assigning a semantic relationship between (pairs of) entities in text.

There are two categories of RE systems: (i) closed-schema information
extraction (IE) systems extract relations from a fixed schema or for a closed
set of relations while (ii) open domain IE systems extract relations defined
by arbitrary phrases between arguments. We focus on the completion of
KBs with a fixed schema, i.e., closed IE systems.

Effective approaches for closed schema RE apply some form of super-
vised or semi-supervised learning [14–19] and generally follow three steps:
(i) sentences expressing relations are transformed to a data representation,
e.g., vectors are constructed to be used in feature-based methods, (ii) a
binary or multi-class classifier is trained from positive and negative in-
stances, and (iii) the model is then applied to new or unseen instances.

Supervised systems are limited by the availability of expensive training
data. To counter this problem, the technique of iterative bootstrapping has
been proposed [20, 21] in which an initial seed set of known facts is used
to learn patterns, which in turn are used to learn new facts and incremen-
tally extend the training set. These bootstrapping approaches suffer from
semantic drift and are highly dependent on the initial seed set.

When an existing KB is available, a much larger set of known facts can
be used to bootstrap training data, a procedure known as distant super-
vision (DS). DS automatically labels its own training data by heuristically
aligning facts from a KB with an unlabeled corpus. The KB, written as D,
can be seen as a collection of relational tables r(e1, e2), in which r ∈ R (R is
the set of relation labels), and < e1, e2 > is a pair of entities that are known
to have relation r. The corpus is written as C.

The intuition underlying DS is that any sentence in C which mentions
the same pair of entities (e1 and e2) expresses a particular relationship r̂
between them, which most likely corresponds to the known fact from the
KB, r̂(e1, e2) = r(e1, e2), and thus forms a positive training example for an
extractor of relation r. DS has been successfully applied in many relation
extraction tasks [22, 23] as it allows for the creation of large training sets
with little or no human effort.
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Equally apparent from the above intuition is the danger of finding in-
correct examples for the intended relation. The heuristic of accepting each
co-occurrence of the entity pair < e1, e2 > as a positive training item be-
cause of the KB entry r(e1, e2) is known to generate noisy training data or
false positives [24], i.e., two entities co-occurring in text are not guaranteed
to express the same relation as the field in the KB they were generated from.
The same goes for the generation of negative examples: training data con-
sisting of facts missing from the KB are not guaranteed to be false since a
KB in practice is highly incomplete. An illustration of DS generating noisy
training data is shown in Figure 2.1.

Several strategies have been proposed to reduce this noise. The most
prominent make use of latent variable models, in which the assumption is
made that each known fact is expressed at least once in the corpus [24–26].
These methods are cumbersome to train and are sensitive to initialization
parameters of the model.

An active research direction is the combination of DS with partial su-
pervision. Several recent works differ in the way this supervision is chosen
and included. Some focus on active learning, selecting training instances to
be labeled according to an uncertainty criterion [22, 27], while others focus
on annotations of surface patterns and define rules or guidelines in a semi-
supervised learning setting [28]. Existing methods for fusion of distant and
partial supervision require thousands of annotations and hours of manual
labor for minor improvements (4% in F1for 23,425 annotations [27] or 2,500
labeled sentences indicating true positives for a 3.9% gain in F1 [28]). In this
work we start from a distantly supervised training set and demonstrate
how noise can be reduced, requiring only 5 minutes of annotations per re-
lation, while obtaining significant improvements in precision and recall of
the extracted relations.

We define the following research questions:

RQ 1. How can we add supervision more effectively to reduce noise and
optimize relation extractors?

RQ 2. Can we combine semi-supervised learning and dimensionality re-
duction techniques to further enhance the quality of the training data and
obtain state-of-the-art results using minimal manual supervision?

With the following contributions, we provide answers to these research
questions:

1. In answer to RQ 1, we demonstrate the effectiveness and efficiency of
filtering training data based on high-precision trigger patterns. These
are obtained by training initial weak classifiers and manually label-
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ing a small amount of features chosen according to an active learning
criterion.

2. We tackle RQ 2 by proposing a semi-supervised learning technique
that allows one to extend an initial set of high-quality training in-
stances with weakly supervised candidate training items by measur-
ing their similarity in a low-dimensional semantic vector space. This
technique is called Semantic Label Propagation.

3. We evaluate our methodology on test data from the English Slot Fill-
ing (ESF) task of the knowledge base population track at the 2014
Text Analysis Conference (TAC). We compare different methods by
using them in an existing KBP system. Our relation extractors attain
state-of-the-art effectiveness (a micro averaged F1value of 36%) while
depending on a very low manual annotation effort (i.e., 5 minutes per
relation).

In Section 2.2 we give an overview of existing supervised and semi-
supervised RE methods and highlight their remaining shortcomings. Sec-
tion 2.3 describes our proposed methodology, with some details on the DS
starting point (Section 2.3.1), the manual feature annotation approach (Sec-
tion 2.3.2), and the introduction of the semantic label propagation method
(Section 2.3.3). The experimental results are given in Section A.2.4, fol-
lowed by our conclusions in Section 2.5.

2.2 Related Work

The key idea of our proposed approach is to combine DS with a minimal
amount of supervision, i.e., requiring as few (feature) annotations as pos-
sible. Thus, our work is to be framed in the context of supervised and
semi-supervised relation extraction (RE), and is related to approaches de-
signed to minimize the annotation cost, e.g., active learning. Furthermore,
we use compact vector representations carrying semantics, i.e., so-called
word embeddings. Below, we therefore briefly summarize related work in
the areas of (i) supervised RE, (ii) semi-supervised RE, (iii) evaluations of
RE, (iv) active learning and (v) word embeddings.

2.2.1 Supervised Relation Extraction

Supervised RE methods rely on training data in the form of sentences
tagged with a label indicating the presence or absence of the considered
relation. There are three broad classes of supervised RE: (i) methods based
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on manual feature engineering, (ii) kernel based methods, and (iii) convo-
lutional neural nets.

Methods based on feature-engineering [17, 29] extract a rich list of manu-
ally designed structural, lexical, syntactic and semantic features to repre-
sent the given relation mentions as sparse vectors. These features are cues
for the decision whether the relation is present or not. Afterwards a classi-
fier is trained on positive and negative examples. In contrast, kernel based
methods [19, 30, 31] represent each relation mention as an object such as an
augmented token sequence or a parse tree, and use a carefully designed
kernel function, e.g., subsequence kernel or a convolution tree kernel, to
calculate their similarity with test patterns. These objects are usually aug-
mented with extra features such as semantic information. With the recent
success of deep neural networks in natural language processing, Convo-
lutional neural networks (CNNs) have emerged as effective relation ex-
tractors [32–34]. CNNs avoid the need for preprocessing and manual fea-
ture design by transforming tokens into dense vectors using embeddings
of words and extract n-gram based features independent of the position in
the sentence.

Supervised approaches all share the need for training data, which is ex-
pensive to obtain. Two common methods have emerged for the generation
of large quantities of training data, both require an initial set of known in-
stances. When this number is initially small, the technique of bootstrapping
is used. When a very large number of instances is available from an exist-
ing knowledge base, distant supervision is the preferred technique. Both are
briefly discussed below.

2.2.1.1 Bootstrapping models for Relation Extraction

When a limited set of labeled instances is available, bootstrapping meth-
ods have proven to be effective methods to generate high-precision rela-
tion patterns [20, 21, 35, 36]. The objective of bootstrapping is to expand an
initial ‘seed’ set of instances with new relationship instances. Documents
are scanned for entities from the seed instances and linguistic patterns con-
necting them are extracted. Patterns are then ranked according to coverage
(recall) and low error rate (precision). Using the top scoring patterns, new
seed instances are extracted and the cycle is repeated.

An important step in bootstrapping methods is the calculation of sim-
ilarity between new patterns and the ones in the seed set. This measure
decides whether a new pattern is relevant for the relation or not, based
on the existing set. Systems use measures based on exact matches [35],
cosine-similarity [20] or kernels [36]. A fundamental problem of these
methods is semantic drift [37, 38]: bootstrapping, after several iterations,
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deviates from the semantics of the seed relationship and extracts unrelated
instances which in turn generate faulty patterns. This phenomenon wors-
ens with the number of iterations of the bootstrapping process.

Recently, Batista et al. [39] proposed the use of word embeddings for
capturing semantic similarity between patterns. Contexts are modeled us-
ing linear combinations of the word embeddings and similarity is mea-
sured in the resulting vector space. This approach has shown to reduce
semantic drift compared to previous similarity measures.

2.2.1.2 Distant Supervision

Distant supervision (DS) was first proposed in [40], where labeled data
was generated by aligning instances from the Yeast Protein Database into
research articles to train an extractor. This approach was later applied for
training of relation extractors between entities [13] and jointly training the
named entity classifier and the relation extractor [41].

Automatically gathering training data with DS is governed by the as-
sumption that all sentences containing both entities engaged in a reference
instance of a particular relation, represent that relation. Many methods
have been proposed to reduce the noise in training sets from DS. In a se-
ries of works the labels of DS data are seen as latent variables. Riedel et al.
[24] relaxed the strong all sentences-assumption to an at-least-one-sentence-
assumption, creating a multi-instance learner. Hoffman et al. [42] modified
this model by allowing entity pairs to express multiple relations, result-
ing in a multi-instance multi-label setting (MIML-RE). Surdeanu et al. [26]
further extended this approach and included a secondary classifier, which
jointly modeled all the sentences in texts and all labels in knowledge bases
for a given entity pair.

Other methods apply heuristics [43], model the training data as a gen-
erative process [44, 45] or use a low-rank representation of the feature-label
matrix to exploit the underlying semantic correlated information.

2.2.2 Semi-supervised Relation Extraction

Semi-supervised Learning is situated between supervised and unsuper-
vised learning. In addition to unlabeled data, algorithms are provided
with some supervised information. The training data comprises labeled
instances Xl = (x1 . . . xl) for which labels Yl = (y1 . . . yl) are provided,
and typically a large set of unlabeled ones Xu = (x1 . . . xu).

Semi-supervised techniques have been applied to RE on multiple occa-
sions. Chen et al. [46] apply label propagation by representing labeled and
unlabeled examples as nodes and their similarities as the weights of edges
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in a graph. In the classification process, the labels of unlabeled examples
are then propagated from the labeled to unlabeled instances according to
similarity. Experimental results demonstrate that this graph-based algo-
rithm can outperform SVM in terms of F1when very few labeled examples
are available. Sun et al. [18] show that several different word cluster-based
features trained on large corpora can compensate for the sparsity of lexical
features and thus improve the RE effectiveness.

Zhang et al. [47] compare DS and complete supervision as training re-
sources but do not attempt to fuse them. They observe that DS systems
are often recall gated: to improve DS quality, large input collections are
needed. They also report modest improvements by adding crowd-sourced
yes/no votes to the training instances. Training instances were selected
at random as labeling using active learning criteria did not affect perfor-
mance significantly.

Angeli et al. [27] show that providing a relatively small number of
mention-level annotations can improve the accuracy of MIML-RE. They
introduce an active learning criterion for the selection of instances incor-
porating both the uncertainty and the representativeness, and show that
a sampling criterion which incorporates not only disagreement but also
representativeness in selecting examples to annotate, outperforms existing
baselines for active learning.

The MIML-RE model of Surdeanu et al. [26] marginally outperforms
the Mintz++ baseline using solely DS: initialization of the latent variables
using labeled data is needed for larger improvements. For this, a total of
10, 000 instances were labeled, resulting in a 3% increase on the micro-F1.

Guided DS as proposed by Pershina et al. [28] incorporates labeled pat-
terns and trigger words to guide MIML-RE during training. They make use
of a labeled dataset from TAC KBP to extract training guidelines, which are
intended to generalize across many examples.

2.2.3 TAC KBP English Slot Filling

The knowledge base population (KBP) shared task is part of the NIST Text
Analysis Conference and aims to evaluate different approaches for discov-
ering facts about entities and expansion of knowledge bases. A selection
of entities is distributed among participants for which missing facts need
to be extracted from a given large collection of news articles and inter-
net fora. Important components of these systems are query expansion,
entity linking and relation extractors. Over the years DS has become a
regular feature of effective systems [22, 48]. Other approaches use hand-
coded rules or are based on question answering systems [48]. The top
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performing 2014 KBP ESF system [49] uses DS, the manual labeling of
100, 000 features, and is built on DeepDive, a database system allowing
users to rapidly construct sophisticated end-to-end knowledge base popu-
lation techniques [50]. After initial DS, features are manually labeled and
only pairs associated with labeled features are used as positive examples.
This approach has proven to be very effective but further investigation is
needed to reduce the amount of feature labeling. Here, we show how we
can strongly reduce this effort while maintaining high precision.

2.2.4 Active Learning and Feature Labeling

Active learning is used to reduce the amount of supervision required for
effective learning. The most popular form of active learning is based on
iteratively requiring manual labels for the most informative instances, an
approach called uncertainty sampling. In relation extraction, typical ap-
proaches include query-by-committee [27, 51] and cluster-based sampling [52].
While the focus in RE has been on labeling relation instances, alternative
methods have been proposed in other tasks in which features (e.g., pat-
terns, or the occurrence of terms) are labeled as opposed to instances [53,
54], resulting in a higher performance using less supervision.

Getting positive examples for certain relations can be hard, especially
when training data is weakly supervised. Standard uncertainty sampling
is ineffective in this case: it is likely that a feature or instance has a low
certainty score because it does not carry much discriminative information
about the classes. Assigning labels to the most certain features has much
greater impact on the classifier and can remove the principle sources of
noise. This approach has been coined as feature certainty [54], and we
show that this approach is especially effective in DS for features that gen-
eralize across many training instances.

2.2.5 Distributional Semantics

The Distributional Hypothesis [55] states that words that tend to occur
in similar contexts are likely to have similar meanings. Representations
of words as dense, low-dimensional vectors (as opposed to the standard
one-hot vectors), called word embeddings, exploit this hypothesis and are
trained from large amounts of unlabeled text. Representations for words
will be similar to those of related words, allowing the model to generalize
better to unseen events. The resulting vector space is also called a vec-
tor model of meaning [56]. Common techniques for generating very dense,
short vectors use dimensionality reduction techniques (e.g., singular value
decomposition) or neural nets to create so-called word embeddings. Word
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embeddings have proven to be beneficial for many natural language pro-
cessing tasks including POS-tagging, machine translation and semantic
role labeling. Two prominent methods for the embedding of words are
Skip-Gram-with-Negative-Sampling implemented in Word2Vec [57], and GloVe [58].

While much research has been directed at ways of constructing distri-
butional representations of individual words, for example co-occurrence
based representations and word embeddings, there has been far less con-
sensus regarding the representation of larger constructions such as phrases
and sentences from these representations. Blacoe et al. [59] show that, for
short phrases, a simple composition like addition or multiplication of the
distributional word representations is competitive with more complex su-
pervised models such as recursive neural networks.

2.3 Labeling Strategy for Noise Reduction

In this section we introduce our strategy to combine distantly supervised
training data with minimal amounts of supervision. Briefly summarized,
we designed our labeling strategy such as to minimize the amount of false
positive instances or noise while maintaining the diversity of relation expressions
generated by DS.

We perform a highly selective form of noise reduction starting from a
fully distantly supervised relation extractor, described in Section 2.3.1, and
use the feature weights of this initial extractor to guide manual supervision
in the feature space. Various questions arise from this. When do we over-
constrain the original training set generated by DS? What is the trade-off
between the application of DS with highly diverse labeled instances, and
the constraining approach of labeling features, with a highly accurate yet
restricted set of training data? This is discussed in detail in Sections 2.3.2
and 2.3.3.

Our approach is depicted in Figure 2.2, and comprises the following
steps:

(1) An existing KB is used to generate distantly supervised training in-
stances by matching its facts with sentences from a large text corpus.
We discuss the characteristics of this weakly labeled training set as
well as the features extracted from each sentence (see Section 2.3.1).

(2) An initial relation extractor is trained using the noisy training data
generated in Step (1).

(3) Confident positive features learned by this initial classifier are pre-
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Documents

R1 <x11, y11>
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...
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       semantic feature space

Figure 2.2: Workflow Overview. Note that only Step (3) involves human annota-
tions.

sented to an annotator with knowledge of the semantics of the rela-
tion and labeled as true positive or false positive.

(4) The collection of training instances is filtered according to the labeled
features and a second classifier is trained. This framework, in which
we combine supervision and DS, is explained in Section 2.3.2.

(5) In a semi-supervised step, the filtered distantly supervised training
data is added to training data by propagating labels from labeled
features to distantly supervised instances based on similarity in a
semantic vector space of reduced dimension. The technique is pre-
sented in Section 2.3.3 as Semantic Label Propagation.

(6) A final relation extractor is trained on the augmented training set.
We evaluate and discuss results of the proposed techniques in Sec-
tion A.2.4.

2.3.1 Distantly Supervised Training Data

The English Gigaword corpus [60] is used as unlabeled text collection to
generate relation mentions. The corpus consists of 1.8 million news arti-
cles published between January 1987 and June 2007. Articles are first pre-
processed using different components of the Stanford CoreNLP toolkit [61],
including sentence segmentation, tokenizing, POS-tagging, named entity
recognition, and clustering of noun phrases which refer to the same entity.

As KB we use a snapshot of Freebase (now Wikidata) from May 2013.
The relation schema of Freebase is mapped to that used for evaluation,
the NIST TAC KBP ESF Task, which defines 41 relations, including 25 re-
lations with a person as subject entity and 16 with organizations as sub-



38 CHAPTER 2

ject. 26 relations require objects or fillers that are themselves named enti-
ties (e.g., Scranton as place of birth of Joe Biden), whereas others require
string-values (e.g., profession (senator, teacher,. . . ), cause of death (cancer,
car accident,. . . )).

We perform weak entity linking between Freebase entities and textual
mentions using surface string matching, for which an exact between the
name in Freebase and the named entity in the text is needed. We reduce
the effect of faulty entity links by thresholding the amount of training data
per subject entity [62]. Most frequently occurring entities from the train-
ing data (e.g., John Smith, Robert Johnson, . . . ) are often most ambiguous,
hard to link to a KB and thus result in noisy training data. Thresholding the
amount of training data per entity also prevents the classifier from overfit-
ting on several, popular entities. This follows from the observation that
training data is initially skewed towards several entities frequently occur-
ring in news articles, like Barack Obama or the United Nations, resulting
in over-classifying professions of persons as president or seeing countries
as members of the organization.

For each generated pair of mentions, we compute various lexical, syn-
tactic and semantic features. Table 2.1 shows an overview of all the features
applied for the relation classification. We use these features in a binary lo-
gistic regression classifier. Features are illustrated for an example relation-
instance <Ray Young, General Motors> and the sentence “Ray Young, the
chief financial officer of General Motors, said GM could not bail out Delphi”.

For each relation Ri, we generate a set of (noisy) positive examples de-
noted as R+

i and defined as

R+
i = { (m1, m2) | Ri(e1, e2)EL(e1, m1)EL(e2, m2) }

with e1 and e2 being subject and object entities from the KB and EL(e1, m1)
being the entity e1 linked to mention m1 in the text. As in previous work [29,
42], we impose the constraint that both entity mentions (m1, m2) ∈ R+

i are
contained in the same sentence. To generate negative examples for each
relation, we sample instances from co-occurring entities for which the re-
lation is not present in the KB.

We measured the amount of noise, i.e., false positives, in the training
set of positive DS instances, for a selection of 15 relations: we manually
verified 2,000 randomly chosen instances (that DS found as supposedly
positive examples) for each of these relations. Table 2.2 shows the percent-
age of true positives among these 2,000 instances for each of these relations,
which strongly varies among relations, ranging from 10% to 90%.
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Table 2.1: Overview of different features used for classification for the sentence
“Ray Young, the chief financial officer of General Motors, said GM could
not bail out Delphi”.

Feature Description Example Feature Value

Dependency
tree

Shortest path connecting the two names in
the dependency parsing tree coupled with

entity types of the two names

PERSON←appos←officer
→ prep_of→ ORGANIZATION

The head word for name one said

The head word for name two officer

Whether 1dh is the same as e2dh false

The dependent word for name one officer

The dependent word for name two nil

Token
sequence
features

The middle token sequence pattern , the chief financial officer of

Number of tokens between the two names 6

First token in between ,

Last token in between of

Other tokens in between {the, chief, financial, officer}
First token before the first name nil

Second token before the first name nil

First token after the second name ,

Second token after the second name said

Entity
features

String of name one Ray_Young

String of name two General_Motors
Conjunction of e1 and e2 Ray_Young–General_Motors

Entity type of name one PERSON

Entity type of name two ORGANIZATION

Conjunction of et1 and et2 PERSON–ORGANIZATION

Semantic
feature Title in between True

Order
feature

1 if name one comes before name two;
2 otherwise. 1

Parse Tree POS-tags on the path connecting
the two names

NNP→DT→JJ→JJ
→NN→IN→NNP
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85
22.7%
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Relation: per:cities_of_residence
Knowledge Base Entry: < Sherman, Greenwich >
Dependency Tree:

Sherman , 63 , grew up in a middle-class neighborhood of Greenwich .

nsubj

prt

prep_in

amod prep_of
case

det
nn case

Shortest Dependency Path:

PERSON
nsubj←−−− grew

prep_in−−−−→ neighborhood
prep_o f−−−−→ LOCATION

Figure 2.3: Example of a dependency tree feature.

2.3.2 Labeling High Confidence Shortest Dependency Paths

This section describes the manual feature labeling step that allows trans-
forming a full DS training set into a strongly reduced yet highly accurate
training set, based on feature labeling. We focus on a particular kind of fea-
ture, i.e., a relation’s shortest dependency path (SDP). Dependency paths
have empirically been proven to be very informative for relation extrac-
tion: their capability of capturing information is evidenced by a systematic
comparison in effectiveness of different kernel methods [63] or as features
in feature-based systems [17]. This was originally proposed by Bunescu et
al. [19], who claimed that the relation expressed by a sentence is often cap-
tured in the shortest path connecting the entities in the dependency graph.
Figure 2.3 shows an example of an SDP for a sentence expressing a relation
between a person and a city of residence.

As shown in Table 2.2, the fraction of false positive items among all
weakly supervised instances can be very large. Labeling features based
on the standard active learning approach of uncertainty sampling is in-
effective in our case since it is likely that a feature or instance has a low
certainty score simply because not much discriminative information about
the classes is carried. Annotating many such instances would be a waste
of effort. Assigning labels to the most certain features has much greater
impact on the classifier and can remove the principal sources of noise. This
approach is called feature certainty sampling [54]. It is intuitively an at-
tractive method, as the goal is to reduce the most influential sources of
noise as quickly as possible. For example for the relation founded_by, there
are many persons that founded a company who were also top_members,
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leading to instances that we wish to remove when cleaning up the training
data for the relation founded_by. SDPs offer all the information needed to
assess the relationship validity of the training instances, are easily labeled,
and generalize over a considerable fraction of the training set as opposed
to many of the feature-unigrams which remain ambiguous in many cases.
We implement the feature certainty idea by ranking SDP features accord-
ing to the odds that when a particular SDP occurs, it corresponds to a valid
relation instance. This corresponds to ranking by the following quantity,
which we call the considered SDP’s confidence

Confidence(SDP) =
P(+|SDP)
P(−|SDP)

. (2.1)

It can be directly estimated from the original DS training set, based on
each SDP feature’s (smoothed) occurrence frequencies among the positive
and negative distantly supervised instances. In particular, P(+|SDP) in-
dicates the SPD’s fraction of occurrences among the positive training data
and P(−|SDP)) among the negative.

All dependency paths are ranked from most to least confident and the
top-k are assigned to a human annotator to select the true positive SDPs.
The annotator is asked to select only the patterns which unambiguously
express the relation. That is, a pattern is accepted only if the annotator
judges it a sufficient condition for that relation. The annotator is provided
with several complete sentences containing the dependency path to this
cause. When the SDP does not include any verbs, e.g., when entities are
both part of the same Noun Phrase like “Microsoft CEO Bill Gates", all
words between the subject and object are included and the complete path
is added to the filter set. In our experiments, we restrict the time of SDP
annotations to a limited effort of 5 minutes for each relation. On average
our expert annotator was able to label around 250 SDPs per relation this
way. The ease of annotating SDPs becomes apparent when compared with
annotating random relation instances, of which they managed to annotate
only 100 in the same period of time. Examples of annotated confident pat-
terns are shown in Table 2.3. Section 2.4.3 provides further details on the
different annotation methodologies for the experiments.

The motivation behind limiting the annotation time per relation to only
a few hundred patterns comes from the following analysis. First of all, a
small subset of all different patterns is responsible for the majority of re-
lation instances in the DS training set. In fact, the sparsity of distantly
supervised training data becomes apparent when extracting all SDPs for
each fact in the KB in one pass over the corpus. Figure 2.4a shows the ap-
proximately Zipfian distribution of the frequency of the dependency paths
generated by DS in the positively labeled training set for several example
relations. The abscis shows the rank of dependency paths for various rela-
tions, sorted from most to least frequent, normalized by the total number
of paths for the respective relations (to allow visualization on the same
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graph). In line with our goal of getting a highly accurate training set with
the largest sources of noise removed at a low annotation cost, we focused
on capturing those top most frequent patterns. Secondly, we noticed that
beyond the first few hundred most confident SDPs, which took around 5
minutes to annotate, further true positives tend to occur less frequently.
Annotating many more SDPs would only marginally increase the diver-
sity in the training set, and reduce the gain of . Figure 2.4b illustrates the
occurrence of true positive patterns for decreasing confidence scores. For
several example relations, the figure shows the true positive patterns as
markers on the confidence distribution of the 1, 000 most confident SDPs.
We do stress the importance of labeling highly confident SDPs carefully.
A false positive SDP can have large effects on the quality of the resulting
training data. Therefore, we advise to have multiple annotators annotate
the most confident SDPs.

Finally, using the manually selected set of SDPs, the complete training
set is filtered by enforcing that one of these SDPs be present in the feature
set of the instance. We include all mention pairs associated with that fea-
ture as positive examples of the considered relation. The classifier trained
on the resulting training set is intuitively of high precision but does not
generalize well to unseen phrase constructions. Note that the classifier is
quite different from a regular pattern based relation extractor. Although
all training instances satisfy at least one of the accepted SDPs, the classifier
itself is trained on a set of features including, but not restricted to, these
SDPs (see Table 2.1). Still, most of the benefits of DS are lost by having the
selection of training instances governed by a limited set of patterns.

The fourth column of Table 2.2 lists the fraction of training data re-
maining after filtering out all patterns apart from those classified as in-
dicative of the relation at hand. The amount of training data remaining
after this filtering step strongly depends on the specific relation, varying
from 5% to more than half of the original training set. Yet on the whole,
the filtering results in a strong reduction of the purely DS-based training
data, often removing much more than the actual fraction of noise (column
2). For example, for the relation per:employee_or_member_of, we note only
100% − 87.8% = 12.2% false positives, but the manual filtering leads to
discarding 83.5% of the DS instances.

The strategy described in the previous paragraphs is related to the guide-
lines strategy from Pershina et al. [28] (without the MIML model) in label-
ing features, but it differs in some essential aspects. Instead of needing a
fully annotated corpus to do so, we rank and label features entirely based
on DS. Labeling features based on a fully labeled set ignores the variety
of DS and risks being biased towards the smaller set of labeled instances.
Also, no active learning criteria were applied when choosing which fea-
tures to label, making the process even more efficient.
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Table 2.3: Examples of top-ranked patterns

Relation Top SDP Assessment

top_employees PER
appos←−−− executive

prep_o f−−−−→ ORG 3

PER
appos←−−− chairman

appos−−−→ ORG 3

ORG nn←− f ounder
prep_o f−−−−→ PER 7

children PER-2
appos←−−− son

prep_o f−−−−→ PER-1 3

PER-1
appos←−−− f ather

prep_o f−−−−→ PER-2 3

PER-2 nn←− grandson
prep_o f−−−−→ PER-1 7

city_of_birth PER rcmod←−−− born
prep_in−−−−→ LOC 3

PER
nsubj←−−− mayor

prep_o f−−−−→ LOC 7

PER
appos←−−− historian

prep_ f rom−−−−−−→ LOC 7

schools_attended PER
nsubj←−−− graduated

prep_ f rom−−−−−−→ ORG 3

PER
dep←−− student

prep_at−−−−→ ORG 3

PER
appos←−−− teacher

prep_at−−−−→ ORG 7

(org:)parents ORG-2
appos←−−− subsidiary

prep_o f−−−−→ ORG-1 3

ORG-1
appos←−−− division

prep_o f−−−−→ ORG-2 3

ORG-2
prep_to←−−−− shareholder

dep−−→ ORG-1 7

2.3.3 Noise Reduction using Semantic Label Propagation

If we strictly follow the approach proposed in Section 2.3.2 and only retain
DS training instances that satisfy a positively labeled SDP, an important
advantage of DS is lost, namely its potential of reaching high recall. If we
limit the feature annotation effort, we risk losing highly valuable SDPs. To
counteract this effect, we introduce a second (re)labeling stage, adopting a
semi-supervised learning (SSL) strategy to expand the training set. This is
done by again adding some instances from the set of previously discarded
DS instances with SDPs not matching any of the manually labeled patterns.
We rely on the basic SSL approach of self-training by propagating labels
from known instances to the nearest neighboring unlabeled instances. This
method requires a method of determining the distance between labeled
and unlabeled instances. Dangers of self-training include the failure to
expand beyond the initial training data or the introduction of errors into
the labeled data. In order to avoid an overly strong focus on the filtered
training data, we use low-dimensional vector representations of words,
also called word embeddings.

Word embeddings allow for a relaxed semantic matching between the
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labeled seed patterns and the remaining weakly labeled patterns. As shown
by Sterckx et al. [52], representing small phrases by summing each individ-
ual word’s embedding leads to semantic representations of small phrases
that are meaningful for the goal of relation extraction. We represent each
relation instance by a single vector by first removing stop-words and aver-
aging the embeddings of the words on the dependency path. For example,
consider the sentence:

Geagea on Friday for the first time addressed the court judging him

for murder charges.

which has the following SDP,

PER
nsubj←−− addressed

dobj−−→ court vmod−−→ judging
prep_ f or−−−−→ charges nn−→ Criminal_Charge

Its low-dimensional representation C is hence generated as

C =
E(“addressed”) + E(“court”) + E(“judging”) + E(“charges”)

4
,

(2.2)
with E(x) the word embedding of word x. The similarity between a labeled
pattern Ct and a weakly labeled pattern CDS is then measured using cosine
similarity between the vector representations.

Sim(Ct, CDS) =
Ct.CDS
|Ct|.|CDS|

(2.3)

In the special case that no verbs occur between two entities, all the words
between the two entities are used to build the representations for the con-
text vector.

Using these low-dimensional continuous representations of patterns,
we can calculate similarity with longer, less frequently occurring patterns
in the training data and the patterns from the initial seed set which are
the most frequently occurring ones. We can now increase recall by adding
similar but less frequent patterns. More specifically, we calculate the simi-
larity of the average vector of the labeled patterns (as in the Rocchio clas-
sifier type of self-training) with each of the remaining patterns in the DS
set and extend the training data with the patterns that have a sufficiently
high similarity with the labeled ones. We call this technique Semantic Label
Propagation.

2.4 Experimental Results

2.4.1 Testing Methodology

We evaluate the relation extractors in the context of a Knowledge Base Pop-
ulation system [62, 64] using the NIST TAC KBP English Slot Filling (ESF)
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Evaluation from 2012 to 2014. We choose this evaluation because of the
diversity and difficulty of entities in the queries. In the end-to-end ESF
framework, the input to the system is a given entity (the ‘query’), a set
of relations, and a collection of articles. The output is a set of slot fillers,
where each slot filler is a triple consisting of two entities (including the
query entity) and a relation predicted to hold among these entities.

2.4.2 Knowledge Base Population System

Systems participating in the TAC KBP ESF need to handle each task of fill-
ing missing slots in a KB. Participants are only provided with one surface-
text occurrence of each query entity in a large collection of text provided
by the organizers. This means that an information retrieval component
is needed to provide the relation extractor with sentences containing can-
didate fillers. Our system performs query expansion using Freebase aliases
and Wikipedia pages. Each document containing one of the aliases is parsed
and named entities are automatically detected. Persons, organizations, and
locations are recognized, and locations are further categorized as cities,
states, or countries. Non-entity fillers like titles or charges are tagged us-
ing lists and table-lookups. For further details of the KBP system we refer
to Appendix A.

2.4.3 Methodologies for Supervision

In this section we detail the different procedures for human supervision.
Supervision is obtained in two forms: by labeling shortest dependency
paths (SDPs) and by labeling single training instances indicated as positive
by DS, as either true positives or as false positives (noise). After a back-
ground corpus is linked with a knowledge base, phrases containing facts
are stored in a database for further feature extraction, post processing, and
calculation of feature confidence values. Our annotators for the labeling
of single training instances were undergraduate students from different
backgrounds with little or no experience in machine learning or natural
language processing. First, they were briefed on the semantics of the rela-
tion to be extracted using the official TAC KBP guidelines. They were then
presented with training instances, i.e., phrases from the database. Each
instance was shown with entity and subject highlighted and colored. The
average time needed to annotate a batch of 2,000 instances was three hours,
corresponding to about 5 seconds per instance, including the time needed
to read and judge the sentence. As this procedure was relatively expensive
(annotators were paid $15 per hour), only the 15 most frequent relations,
strongly influencing the optimal micro-F1score shown in Table 2.2, were
selected. Other relations received between 200 and 1,000 annotations each.
In contrast, the time for annotation of the SDPs was limited to merely 5
minutes per relation, during which, on average, 200 SDPs were judged.
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SDPs were presented in a spreadsheet as a list, and true positives were
labeled using a simple checkbox. All SDP annotations were done by a sin-
gle expert annotator. To measure the degree of expertise needed for these
annotations, we also assigned a novice annotator (student) with the same
task. We measured annotator agreement and time needed for a selection of
the relations. For this experiment the student was explained the meaning
of dependency paths and the aim of choosing valid SDPs. Several lists of
SDPs that the expert was able to label in 5 minutes were presented to the
student. For the first two relations the student needed more than 10 min-
utes to label, but for the subsequent relations, annotation time dropped to 5
minutes per relation, equivalent to the time needed by an expert annotator.
We measured inter annotator agreement using Cohen’s kappa coefficient κ.
Inter-annotator agreement between student and expert was initially mod-
erate (κ = 0.65) and increased after the student completed lists of SDPs
for two relations (κ varies between 0.85 and 0.95), indicating a very good
agreement.

2.4.4 Pattern-based Restriction vs. Similarity-based Exten-
sion

As Table 2.2 shows, applying the manually annotated features as described
in Section 2.3.2 often leads to a drastic reduction of training instances, com-
pared to the original distantly labeled training set. Using similarity metrics
described in Section 2.3.3, we again add weakly supervised training data to
the filtered data. An important question is therefore how to optimally com-
bine initial reduction with subsequent expanding of the training instances.
On the one hand, one would expect a high-precision-low-recall effect in
the extreme case of adding no similar patterns, and a low-precision-high-
recall effect when adding all weakly labeled patterns, both leading to a
sub-optimal F1 measure. On the other hand, adding a limited amount of
similar patterns may increase recall without harming precision too much.
In this section, we investigate a selection strategy for the relations, how the
quality of the training set depends on the fraction of similar patterns it is
extended with. In our experimental setup, we start from the training set
that only contains the Nfiltered instances that match the manually labeled
patterns, gradually adding weakly labeled data, and each time training bi-
nary classifiers on the corresponding training set. We chose to let the addi-
tional data grow exponentially, which allows studying the effect of adding
few extra instances initially, but extending towards the full weakly super-
vised training set of size NDS in a limited number of cases. More specif-
ically, in K experiments of adding additional instances, the intermediate
training set size Nk at step k is given by
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Figure 2.5: Example of the proposed sampling strategy for training set sizes, with
N f iltered = 0.05NDS, and in K = 10 steps.

Nk = Nfiltered.

(
NDS

Nfiltered

)k/K

(2.4)

Figure 2.5 illustrates how an initial training set containing only 5% of
the amount of instances from the full weakly labeled training set, is in-
creased in K = 10 consecutive experiments.

Apart from studying the addition of varying amounts of similar pat-
terns, in this section we also investigate the influence of the type of sim-
ilarity measure used. In Section 2.3.2 we suggested the use of word em-
beddings, but is there a difference between different types of embeddings?
Would embeddings work better than traditional dimension reduction tech-
niques? And would such techniques indeed perform better than the orig-
inal one-hot vector representations? These questions can be answered by
considering several similarity measures. As a classical baseline, we rep-
resent SDPs using the average one-hot or bag-of-words (BOW) represen-
tations of the words contained in the SDPs. We also transform the set of
one-hot representations using singular value decomposition (SVD) [65] fit-
ted on the complete training set. For representations using the summed
average of word embeddings described in Section 2.3.3, we use two sets of
pre-trained Word2Vec embeddings1 (trained on news text) and GloVe em-
beddings2 (trained on Wikipedia text).

Figure 2.6 shows the effect of adding different amounts of weakly la-
beled data, for different values of k as in eq. 2.4 (with K = 10 steps) and
for similarity measures based on the different types of representations de-
scribed above. Six frequently occurring relations were selected such that
they give an idea of the various forms of behavior that we observed dur-

1https://code.google.com/p/word2vec/
2http://nlp.stanford.edu/projects/glove/

https://code.google.com/p/word2vec/
http://nlp.stanford.edu/projects/glove/
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Figure 2.6: Illustration of the behavior of Semantic Label Propagation for differ-
ent dimension reduction techniques, and different amounts of added
weakly labeled data, quantified by k (as in eq. 2.4), with K = 10. k = 0
corresponds to only accepting manually filtered SDPs, and k = 10 cor-
responds to using all weakly labeled (DS) data for training.
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ing our investigation of all extracted relations. The chosen effectiveness
measure is the optimal F1value of classification on a development set, con-
sisting of training data from 2012 and 2013. (In the next Section we will
evaluate on a held-out test set, which consists of queries from the 2014 TAC
ESF task, whereby the optimal value of k and type of dimension reduction
is selected based on the development set.) Also shown are standard devia-
tions on these optimal F1-values, obtained by resampling different positive
and negative instances for training the classifier. Several insights can be
gained from Fig. 2.6:
• SDPs vs full DS training set: We observe that the effect of expanding the

initial training set is strongly dependent on the specific relation and the
quality of the initial training data. In many cases training data filtered
using only highly confident SDPs (k = 0) generates a better relation
extractor than pure DS (k = K). This holds for all shown relations, except
for the age relation. We have to be aware that wrongly annotating an
important pattern, or by chance missing any in the top most confident
ones, can strongly reduce recall when only using the accepted SDPs.
Adding even a small amount of similar patterns may hence result in a
steep increase in effectiveness, such as for k = 1 in the age and country_-
of_headquarters relations.

• Effect of semantic label propagation: When relaxing the filtering (i.e., in-
creasing k) by adding unlabeled data, the optimal F1tends to increase
until a certain point, and then again drops towards the behavior of a
fully DS training set, because the quality or similarity of the added train-
ing data declines and too many false positives are re-introduced. The
threshold on the amount of added DS instances is thus an important pa-
rameter to tune on a development set. For some of the relations there
is an optimal amount of added unlabeled data, whereas other relations
show no clear optimum and fluctuate between distant and filtered clas-
sifiers’ values.

• Impact of dimensionality reduction: The use of word embeddings often
leads to an improved maximum F1value with respect to the BOW rep-
resentations or SVD-based dimension reduction. This is for example
very clear for the charges, city_of_headquarters, or cities_of_residence rela-
tions, with a slight preference of the GloVe embeddings with respect to
Word2Vec for this application. However, we also noticed that word em-
beddings are not always better than the BOW or SVD based representa-
tions. For example, the highest optimal F1for the age relation is reached
with the BOW model.

2.4.5 End-to-End Knowledge Base Population Results

This section presents the results of training binary relation classifiers ac-
cording to our new strategy for each of the 41 relations of the TAC KBP
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schema. We tuned hyperparameters on data of the 2012 and 2013 tracks
and now test on the last edition of the ESF track of 2014.

Besides the thresholds for choosing the amount of unlabeled data added
as discussed previously (i.e., the value of k), other parameters include reg-
ularization and the ratio between positive and negative instances, which
appeared to be an important parameter influencing the confidence of an
optimal F1value greatly. Different ratios of negative to positive instances
resulted in shifting the optimal trade-off between precision and recall. The
amount of available negative training data was on many occasions larger
than the amount of available positive data. More negative than positive
training data overall appeared to result in lower positive classification prob-
abilities assigned by the classifier to test instances. Negative instances had
to be down-weighted multiple times to prevent the classifier from being
too strict and rarely classify a relation as true. For each relation, this para-
meter was tuned for optimal F1value at the 0.5 probability threshold of the
logistic regression classifier.

We use the official TAC KBP evaluation script which calculates the micro-
average of all classifications. All methods are evaluated while ignoring
provenances (the character offsets in the documents which contain the jus-
tification for extraction of the relation), so as not to penalize any system for
finding a new provenance not validated in the official evaluation key. A
listing of precision, recall and F1for the top 20 most frequently occurring
relations in the test set is shown in Table 2.4.

Besides traditional distant supervision (also known as Mintz++ [29],
indicated as ‘distant Supervision’ in Table 2.4), we compare our new semi-
supervised approach (‘Semantic Label Propagation’) to a fully supervised
classifier trained by manually labeling 50, 000 instances (‘Fully Supervised’),
and to the classifiers obtained by purely filtering on manually labeled pat-
terns (‘SDP Filtered’). We also use the fully supervised classifiers in a tra-
ditional self-training scheme, classifying distantly supervised instances in
the complete feature space and adding confident instances to the training
set (‘Self-Training (Instances)’). The supervision needed for these classi-
fiers required far more annotation effort than the feature certainty sam-
pling of Semantic Label Propagation.

The official F1value of 36.4% attained using Semantic Label Propaga-
tion is equivalent to the second best entry out of eighteen submissions to
the 2014 ESF track [22]. A relation extractor is but a part of a KBP sys-
tem and is influenced by each of the other modules (e.g., recognition and
disambiguation of named entities), which makes it hard to compare to
other systems. This is the case for the absolute values of Table 2.4, but
still, it demonstrates the overall quality of our relation extractors. Espe-
cially, our system relying on very limited annotations has a competitive
place among systems that rely on many hours of manual feature engineer-
ing [49]. Comparing the results for Semantic Label Propagation with the
other approaches shows that the proposed method that combines a small
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labeling effort based on feature certainty with the Semantic Label Propa-
gation technique, outperforms the DS method, semi-supervision using in-
stance labeling, and full supervision methods. This is also confirmed in
Fig. 2.7, which shows the trade-off between the precision and recall aver-
aged over all TAC KBP relations for the different methods described above,
using the TAC KBP evaluation script (varying the thresholds on classifica-
tion).
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Figure 2.7: Precision-Recall Graph displaying the output of the TAC KBP evalua-
tion script on different systems, for varying classifier decision thresh-
olds.

One would expect the SDP filtered and fully supervised extractors to at-
tain high precision, but this is not the case for some of the relations. For ex-
ample, for relation countries_of_residence recall of these extractors is higher
than recall of the SLP method. However, only those precision and recall
scores are shown that correspond to the maximum values for F1and while
precision could have been higher for these extractors at the cost of lower
recall, recall is equally important for this type of evaluation. The SDP fil-
tered and fully supervised extractors are likely to attain high precision val-
ues, but this will not compensate for the loss in recall when evaluating
F1scores. We conclude by noting that the results may also be influenced to
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peculiarities of the data. Entities chosen by TAC may not always be repre-
sentative for the majority of persons or organizations in the training data:
TAC entities are in many cases more difficult than the average entity from
the training set and the most common way of expressing a relationship for
these entities might not be present in the test set.

2.4.6 2015 TAC KBP Cold Start Slot Filling

The Slot filling task in TAC KBP in 2015 was organized as part of the Cold
Start Slot Filling track, where the goal is to search the same document col-
lection to fill in values for specific slots for specific entities, and in a second
stage fill slots for answers given during the first stage. In the authors’ TAC
KBP 2015 submission [64], the ideas presented in this paper were applied,
leading to a second place in the Slot Filling Variant. The results showed
the influence of a clean training set and the effectiveness of self-training.
A top-performing entry was again based on a database system similar to
DeepDive [50] and training set filtering using high-precision patterns. We
note that the idea of self-training using a first stage high-precision classifier
was also included in this system, independently of the work presented in
this paper. Some participants successfully used ensembles of neural archi-
tectures for relation extraction. However, a selection of our linear classifiers
in combination with a careful filtering of distantly supervised training data
was shown to outperform these more sophisticated ensembles.

2.5 Conclusions

In this paper we set out to create high quality training data for relation ex-
tractors for automatic knowledge base population systems, while requir-
ing negligible amounts of supervision. To achieve this, we combine the
following techniques for the unsupervised generation of training data and
manual supervision: (i) distant supervision (DS): known relations from an
existing knowledge base are used to automatically generate training data,
(ii) feature annotation: rather than labeling instances, features (e.g., text pat-
terns expressing a relationship) are annotated, selected by means of an ac-
tive learning criterion based on confidence, and (iii) semantic feature space
representation: low dimensional vector representations are used to detect
additional, semantically related patterns that do not occur in the thus far
selected training data, leaving useful patterns undetected otherwise. Thus,
we address the problem of noisy training data obtained when using DS
alone, by filtering of the training data using high-precision patterns to in-
crease precision (see [52]). After this, to improve recall, we introduce the
semi-supervised Semantic Label Propagation method, that allows relax-
ing the pattern-based filtering of the DS training data by again including
weakly supervised items that are sufficiently “similar” to highly confident
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instances. We found that a simple linear combination of the embeddings
of words in a relation pattern is an effective representation when propa-
gating labels from supervised to weakly supervised instances. Tuning a
threshold parameter for similarity creates an improved training set for re-
lation extraction.

The main contributions of this paper to the domain of relation extrac-
tion and automatic knowledge base population, are (i) the novel methodol-
ogy of filtering an initial DS training set, where we motivated and demon-
strated the effectiveness of an almost negligible manual annotation effort,
and (ii) the Semantic Label Propagation model for again expanding the fil-
tered set in order to increase diversity in the training data. We evaluated
our classifiers on the knowledge base population task of TAC KBP and
showed the competitiveness with respect to established methods that rely
on a much heavier annotation cost.

2.A Using Active Learning and Semantic Clus-
tering for Noise reduction in Distant Super-
vision

Previously we discussed a method for noise reduction using a single batch of
supervision of labeled shortest dependency paths for the task of relation extrac-
tion. As an alternative direction for noise reduction, we apply cluster-aware ac-
tive learning to distantly supervised training data. To improve the efficiency of
the standard active learning procedure, we transform the text to a semantic vector
space using a simple averaged embedding of the tokens in between the correspond-
ing entities. We provide an evaluation for several frequently occuring relations.

? ? ?

L. Sterckx, T. Demeester, J. Deleu and C. Develder

Presented at the Fourth Workshop on Automated Base Construction at
NIPS2014, Proceedings. p.1-6, Montreal, Canada, 2014.

Abstract The use of external databases to generate training data, also known
as Distant Supervision, has become an effective way to train supervised
relation extractors but this approach inherently suffers from noise. In this
paper we propose a method for noise reduction in distantly supervised
training data, using a discriminative classifier and semantic similarity be-
tween the contexts of the training examples. We describe an active learn-
ing strategy which exploits hierarchical clustering of the candidate train-
ing samples. To further improve the effectiveness of this approach, we
study the use of several methods for dimensionality reduction of the train-
ing samples. We find that semantic clustering of training data combined
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with cluster-based active learning allows filtering the training data, hence
facilitating the creation of a clean training set for relation extraction, at a
reduced manual labeling cost.

2.A.1 Introduction

For the task of extracting relations between entities according to a fixed
schema (also known as Knowledge Base Population (KBP)), distantly su-
pervised approaches are currently state-of-the-art [66]. A requisite for the
effectiveness of these techniques is the availability of labeled data, which
is expensive to obtain. An approach to solve this issue and produce large
quantities of training data is distant supervision (DS) [29]. DS creates la-
beled data using readily available repositories like FreeBase or DBpedia
with facts like “Person → city-of-residence→ Location” (for the remainder
denoted as “per:city_of_residence”) and the assumption that every phrase
mentioning both entities participating in the relation expresses the corre-
sponding relation from the database. Using this approach, a large quantity
of training data can be generated automatically. However, intuitively this
assumption only holds for a fraction of the extracted mentions, as two en-
tities may co-occur in one sentence for many alternative reasons. A chal-
lenge we address in this paper is to develop strategies to improve the qual-
ity of the training data and reduce the amount of noise.

In our participation in the Text Analysis Conference for Knowledge
Base Population (TAC-KBP) slot filling track organized by NIST [67], a
baseline supervised classification using DS was implemented as described
in [68]. In our submissions, we already showed the value of noise re-
duction based on straightforward human annotation of randomly selected
training instances: cleaning based on a classifier (trained on the annotated
instances) resulted in 8% higher precision. As this required extra manual
annotation of the training samples, we search for an efficient way to query
the distantly supervised data and train a classifier using a minimal amount
of supervision but an improved noise reduction.

This work contributes by presenting a strategy for noise reduction us-
ing a supervised classifier trained using labeled mentions from distantly
supervised data. By incorporating semantic relatedness between the men-
tions we can use an active learning approach which exploits the resulting
clustering of training data. Intelligent querying of training data clusters
and assigning labels to similar unknown training examples trains a clas-
sifier based on less human supervision while optimizing the capability of
separating noisy from true relation contexts.

2.A.2 Related Work

The approach of DS was first presented by Mintz et al. [29] for training of
binary Support Vector Machines which used a set of lexical and non-lexical
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features for classification. Since then, several methods for noise reduction
of the data have been proposed. For a recent survey we refer to Roth et
al. [69]. Models like the one proposed by Riedel et al. [24], MultiR [25]
and MIML-RE [70] involve latent variables which model the assumption
that at least one generated example for an entity pair and relation is a true
positive, or apply a generative model [45]. Our approach is less complex,
using a discriminative classifier based on manually annotated examples of
true positive and false positive relation mentions within each of the gen-
erated training sets. Using this classifier, we filter training data explicitly,
independent of the entities involved and for each relation separately, solely
based on the surface text.

Recent work has combined DS with small amounts of labeled data,
these labels are either included directly in a latent variable model [71] or
used in an active learning setting. Active learning was previously per-
formed in relation extraction by Sun and Grishman [72] for extending a
relation extraction system to recognize a new type of relation. An ap-
proach which uses active learning for DS was recently proposed by An-
geli et al. [73] and successfully applied in the top performing system in
the TAC slot filling competition [66]: they show that a small number of
examples can yield improvements in end-to-end accuracy of the relation
extraction using several approaches from active learning literature and a
new metric incorporating uncertainty and representativeness. Our work
differs from this and others in that we use a cluster based active learning
approach, evaluating directly on a set of labeled training examples.

2.A.3 Semantic-Cluster-Aware Sampling

Our approach assumes that true positive mentions within each training set
are similar to each other, in terms of text and meaning, and tend to cluster
together, unlike false positive mentions which are less similar and more di-
verse. This inspired us for the application of cluster-aware sampling of the
data for training of the noise-reduction classifier. An active learning ap-
proach that exploits cluster structure in data was introduced by Dasgupta
and Hsu [74]. This algorithm takes a pool of unlabeled data and performs
hierarchical clustering, resulting in a tree structure of data points. The al-
gorithm starts out by randomly querying data points in the vector space
and searches for a pruning of the tree that optimizes the pureness of each
cluster. Each iteration, a number of data points are sampled in such a way
that less pure clusters are more likely to be sampled from and unseen sam-
ples receive the label of the majority of known samples in the cluster they
belong to.

As stated in the original paper [74], the algorithm is most effective when
pure clusters are found at the top of the hierarchical tree. Thus, when ap-
plied to noise reduction, this approach benefits from relation contexts that
are clustered according to the meaning or relation they express. The simple
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Figure 2.8: Visualization of relation contexts in a semantic vector space for relation
“per:spouse_of ”.

bag-of-words representation results in a high dimensionality of the relation
contexts with only few ways of clustering contexts with similar meaning.
We need a transformation of the contexts into a vector space of reduced
dimension, with those having a similar expression of relation being trans-
formed into similar representations. This is exactly what semantic cluster-
ing achieves, i.e. clustering contexts according to meaning.

Semantic clustering of relations has been performed on several occa-
sions in the context of Open Information Extraction to cluster output hav-
ing similar meaning and is related to the task of paraphrase and synonym
detection [75–78]. We use a transformation based on a simple composition
of the words participating in the context. While much research has been
directed at ways of constructing distributional representations of individ-
ual words, for example co-occurrence based representations and word em-
beddings, there has been far less consensus regarding the representation
of larger constructions such as phrases and sentences from these represen-
tations. Blacoe et al. [59] show that a simple composition like addition
or multiplication of the distributional word representations is competitive
with more complex operations like the Recursive Neural Networks pro-
posed by Socher et al. [79] for detection of paraphrases and synonyms.
We chose to ignore word order and sum all distributional representations
from words participating in the surrounding context of the mention and
normalize them.

2.A.4 Experiments and Results

We use FreeBase [80] as our source of fact relations by first matching the
schema from the TAC-KBP to fields from FreeBase. The participating enti-
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Figure 2.9: Methodology for filtering of noisy mentions.

ties are matched in phrases from articles from the English GigaWord cor-
pus [60]. As part of a participation in the TAC-KBP slot filing competition,
a team of students was asked to assign 2.000 training samples with a True
or False label with respect to the 2014 TAC-annotation guidelines for a se-
lection of 12 relations with a large quantity of training data. As these sam-
ples were selected at random, some of the relations contained very pure or
highly noisy training sets. Phrases were filtered for duplicates and entity
names were removed from the surface text.

Effective representations should be able to separate true examples of
a relation being expressed from false examples. We visualize this in Fig-
ure 1 for the relation per:spouse_of. Words in between the subject and ob-
ject entities of the relation are transformed to their semantic vectors us-
ing word embeddings which are summed and normalized. In our experi-
ments we use the GloVe word-embeddings with 100 dimensions trained on
Wikipedia text [81], which are made available from the authors’ website.1

The resulting sentence representations are clustered and represented in a
two-dimensional space using the t-SNE algorithm [82] in Figure 1. True ex-
amples of the relation are represented in Figure 1 as dark triangles, while
false examples are the lighter crosses. The resulting figure shows that this
basic transformation alone is able to capture some of the semantic meaning
of relations.

The active learning strategy is performed on 70% of the DS-data, 30%
is set aside to evaluate classification. The general methodology for filter-
ing distantly supervised data is shown in Figure 2. Previously described
active learning iteratively only queries a number of DS-examples, but re-
sults in a fully labeled distantly supervised data set (each unknown sam-
ple then receives the label of the majority of its cluster). The resulting fully
labeled DS-data is used to train a logistic regression classifier using only

1http://nlp.stanford.edu/projects/glove/

http://nlp.stanford.edu/projects/glove/
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Figure 2.10: Performance of cluster-based active learning approach.

word count vectors as features in a basic text classification setting to filter
the training data. At most two words before the entity first mentioned,
the words in between the entities and at most two words following the
entity mentioned last are included. We compare our cluster-based active
learning in the semantic vector space, with uniform sampling, clustering
using Bag-of-Words vectors and clustering after transformation using La-
tent Semantic Indexing (LSI) [83] (also for 100 dimensions). This process is
repeated 20 times using stratified cross-folds.

Using all of the labeled data, supervised noise reduction is able to in-
crease average fraction of true positive of the DS training set from 47% to
84% while maintaining a recall of 88%. Noise reduction using active learn-
ing for a selection of relations is presented in Figure 3. Separately for each
relation, after each increase of 5% sampled data we calculate the averaged
F1 score of the classification for each of the strategies. Performance of the
noise reduction is highly dependent on the relation. For relatively pure
training sets, as is the case for relation “org:state_or_province_of_headquar-
ters”, with more than 85% of the training data being positive examples,
are hard to filter. For these relations supervised filtering appears ineffec-
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Table 2.5: Macro-average filter performance using 70 labeled distantly supervised
training examples

Precision Recall F1

Distant Supervision (Baseline) 51.9 100.0 60.8
Random Sampling 72.0 72.8 66.0
Bag-of-Words Clustering 73.4 65.2 66.6
Latent Semantic Indexing Clustering 73.7 68.5 68.3
Semantic Vector Space Clustering 74.6 71.4 71.2

tive or even detrimental, others need a minimum amount of samples to
benefit like “per:countries_of_residence”. Cluster aware active learning is an
effective strategy for a majority of the noisy relations, converging faster to
the optimal performance of filtering. Overall, performance using seman-
tic clustering of contexts is slightly better than using LSI clustering, while
with very few samples and relations like “per:age” and “per:city_of_death”
performance increase is larger. Another observation is that, because the al-
gorithm also provides the test samples with a label (based on the majority
of the labels in the same cluster as the test sample), classification perfor-
mance surpasses that of a fully labeled training set while approximately
only half is sampled. Table 1 shows macro average precision, recall and F1
using a minimal amount of only 70 samples for noisy relations (fraction of
true positives less than 85%).

2.A.5 Conclusion

In this paper we presented a novel approach for filtering a distantly super-
vised training set by building a binary classifier to detect true relation men-
tions, the classifier is trained using a cluster based active learning strategy.
We show that clustering of relation mentions and adding semantic infor-
mation reduces human effort and makes this a promising approach more
feasible to filter a wide variety of relations. For future work we suggest the
use of more sophisticated methods which take into account composition
for transforming context to a semantic vector space.
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3
Weakly Supervised Evaluation of

Topic Models

In this chapter we present a new method for the evaluation of unsupervised topic
models at reduced human supervision. Topic models such as Latent Dirichlet Allo-
cation lead to reasonable statistical models of documents, but they offers no guar-
antee of producing results that are interpretable by humans and require a thorough
evaluation of the output. Existing methods evaluate statistical goodness-of-fit,
which offer no guarantee of interpretablity which would in turn require a costly
annotation effort. We use small labeled collections as reference topics and present a
measure for topic quality which correlates well with human evaluation. This way
low-quality topics can be filtered out and the time needed for manual inspection of
topics is reduced considerably.

? ? ?

L. Sterckx, T. Demeester, J. Deleu, L. Mertens and C. Develder

Presented at the European Conference on Information Retrieval, Ams-
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Abstract This paper presents an evaluation method for unsupervised topic
models. How useful are topic models based on song lyrics for applications
in music information retrieval? Unsupervised topic models on text corpora
are often difficult to interpret. Based on a large collection of lyrics, we
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investigate how well automatically generated topics are related to manual
topic annotations.

We propose to use the kurtosis metric to align unsupervised topics with
a reference model of supervised topics. This metric is well-suited for topic
assessments, as it turns out to be more strongly correlated with manual
topic quality scores than existing measures for semantic coherence. We also
show how it can be used for a detailed graphical topic quality assessment.

3.1 Introduction

This paper presents an analysis of how well topic models can be used to
detect lyrical themes for use in Music Information Retrieval (MIR), an in-
terdisciplinary science developing techniques including music recommen-
dation.

Probabilistic topic models are a tool for the unsupervised analysis of
text, providing both a predictive model of future text and a latent topic rep-
resentation of the corpus. Latent Dirichlet Allocation (LDA) is a Bayesian
graphical model for text document collections represented by bags-of-words
[1]. In a topic model, each document in the collection of documents is mod-
eled as a multinomial distribution over a chosen number of topics, each
topic is a multinomial distribution over all words. We evaluate the quality
and usefulness of topic models for new music recommendation applica-
tions.

Although lyricism and themes are undeniably contributing to a musi-
cal identity, they are often treated as mere secondary features, e.g., for ob-
taining music or artist similarity, which are dominantly determined by the
audio signal. Nevertheless, previous works have analyzed lyrics, mainly
aimed at determining the major themes they address. Mahadero et al. [2]
performed a small scale evaluation of a probabilistic classifier, classifying
lyrics into five manually applied thematic categories. Kleedorfer et al. [3]
focused on topic detection in lyrics using an unsupervised statistical model
called Non-negative Matrix Factorization (NMF) on 32,323 lyrics.

After clustering by NMF, a limited evaluation was performed by a judg-
ment of the most significant terms for each cluster. We expand on this work
by performing a large-scale evaluation of unsupervised topic models using
a smaller dataset of labeled lyrics and a supervised topic model.

While state-of-the-art unsupervised topic models lead to reasonable
statistical models of documents, they offer no guarantee of producing re-
sults that are interpretable by humans and require a thorough evaluation
of the output. When considering lyrics, there is no general consensus on
the amount and nature of the main themes, as opposed to news-corpora
(sports, science,. . . ). A useful topic model for MIR, appends the music with
a representation of the thematic composition of the lyrics. For use in ap-
plications like music recommendation, playlist generation, . . . , the topics
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should be interpretable. Evaluation methodologies based on statistical [1]
or coherence [4] measures are not optimal for this purpose since they do
not account for interpretability and relevance to the application. Chuang
et al. [5] introduced a framework for the large-scale assessment of topical
relevance using supervised topics and alignment between unsupervised
and supervised topics.

Our contributions presented in this paper apply and build on afore-
mentioned work, by assessing quality of unsupervised topics for use in
MIR, and by introducing a new method for measuring and visualizing
the quality of topical alignment, based on the kurtosis of the similarity
between unsupervised topics and a reference set of supervised topics.

In Section 3.2, we present the data and our experimental set-up. The
main topic model analysis is presented in Section 3.3, followed in Sec-
tion 3.4 by conclusions.

3.2 Experimental Setup

The main dataset used for this research is the ‘Million Song Dataset’ (MSD)
[6], with metadata for one million songs, and lyrics as bags-of-words for a
subset of 237,662 songs from a commercial lyrics catalogue, ‘musiXmatch’.

LDA was applied on the set of lyrics, using the Java-based package
MALLET [7]. Three topic models were inferred from the subset of 181,892
English lyrics for evaluation, one with 60 (T60), 120 (T120) and 200 (T200)
topics. A manual quality assessment of all of these topics was performed,
with scores ranging from 1 (useless) to 3 (highly useful).

As an additional resource, a clean dataset of labels was provided by
the website, ‘GreenbookofSongs.com®’1 (GOS), a searchable database of
songs categorized by subject. This dataset contains 9,261 manually anno-
tated song lyrics matched with the MSD (a small subsample of the GOS’
complete database), with multiple labels from a large class-hierarchy of 24
super-categories with a total of 877 subcategories. Labeled Latent Dirichlet
Allocation (L-LDA) is a variation of LDA for labeled corpora by incorporat-
ing user supervision in the form of a one-to-one mapping between topics
and labels [8]. An L-LDA model with 38 supervised topics was inferred
from the much smaller set of GOS-labeled lyrics, based on the GOS super-
categories (but with the omission of minor categories like ‘Tools’, and split-
ting up of major categories like ‘Love’). These are high-quality topics, but
because of the limited size of the GOS data set, less representative for the
entire scope of themes in the complete MSD lyrics collection.

1http://www.greenbookofsongs.com, the authors would like to thank Lauren Virshup
and Jeff Green for providing access to the GOS-database

http://www.greenbookofsongs.com
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3.3 Topic Model Assessment

We define the suitability of topic models for use in MIR as determined by
the amount of relevant and interpretable topics they produce for MIR. We
first introduce suitable measures to evaluate to what extent unsupervised
topics can be mapped to supervised topics obtained from tagged docu-
ments. We then show how these can be used as a better measure for the
interpretability of topics than an existing alternative, and provide a visual
analysis of topical alignment.

3.3.1 Measuring Topical Alignment

We define high-quality topics as topics for which a human judge finds a
clear semantic coherence between the relevant terms in relation to an un-
derlying concept (such as ‘Love’, or ‘Christmas’). Such concepts are made
explicit by an L-LDA model based on tagged documents, and we detect
high-quality LDA-topics as those that bear a strong resemblance with L-
LDA topics. For an unsupervised topic to represent a highly distinctive
theme, ideally it should be highly similar to only a single supervised topic.
For each of the unsupervised LDA-topics, the cosine similarity between
the word-topic probability distribution is calculated with the distribution
of each L-LDA topic.

We introduce two measures to assess the distribution of these similari-
ties per LDA-topic, which measure how strongly the variance of the mean
cosine similarity depends on extreme values (in this case, because of simi-
larities that are much higher than the average). The first is the excess kur-
tosis (γ2), traditionally used to detect peakedness and heavy tails [9]. The
second is the normalized maximum similarity (zmax), used in several out-
lier detection strategies.

γ2 =
µ4

σ4 − 3, zmax =
Xmax − µ

σ
(3.1)

with µ4 the fourth moment about the mean µ, σ the standard deviation,
and Xmax the maximum similarity. Figure 3.1 shows the similarities with
the unsupervised topics for the high-quality LDA-topic 29, with a clearly
matched supervised topic (and high values for γ2 and zmax), and for the
low-quality LDA-topic 39 (with low γ2 and zmax). The insets show the his-
tograms of the similarities. Various other metrics were evaluated as well,
but with a lower ability of detecting the interesting distributions.
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Figure 3.1: Kurtosis measure and Normalized Maximum Similarity for topic eval-
uation

3.3.2 Semantic Coherence

A second evaluation was performed using metrics presented in [4], where
the authors show that measures for semantic coherence are highly corre-
lated with human quality judgments. These metrics use WordNet, a lexical
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Table 3.1: Spearman correlations with manual quality-scores for the three topic
models

Evaluation Metric T60 T120 T200

Semantic Coherence using Wordnet (LESK) 0,35 0,23 0,31
Kurtosis (γ2) 0,49 0,49 0,56
Normalized Maximum Similarity (zmax) 0,49 0,50 0,53

ontology, to score topics by measuring the average distance between words
of a topic using a variety of metrics based on the ontology. The best per-
forming metric was reported to be the LESK-metric [10], based on lexical
overlap in dictionary definitions. Table 3.1 shows the Spearman rank cor-
relation between the LESK score for each topic and the manually assigned
quality scores. For comparison, the rank correlation between the manual
quality scores and γ2 and zmax (as calculated in Section 3.3.1) are shown
as well, and lead to significantly higher correlation values than with the
LESK metric.

3.3.3 Graphical Alignment of Topics

We can visualize the alignment between the supervised and unsupervised
topics by calculating the kurtosis on the similarities between both topic
sets. These are shown in Fig. 3.2, a correspondence chart similar to the one
presented in [5], for the 60 topics LDA-model (T60). Our chart differs from
the one presented in [5] in that it uses topics from an L-LDA model for the
matching of unsupervised topics instead of a list of words generated by
experts, and uses bar-charts to display the automatically calculated kur-
tosis scores instead of likelihoods of human-assisted matching. The size
of the circles denotes the cosine similarity between the corresponding su-
pervised and unsupervised topics, and the coloring shows which concepts
are matched in a one-to-one fashion by the unsupervised and supervised
topics using the harmonic mean of both kurtosis’ values. Note that the
detection of topics is dependent on the labels included in the supervised
data. High-quality LDA-topics, not present in the supervised set, are not
detected.

The chart shows that topics involving Christmas, Fire and Water are all
very distinguishable by statistical models and human-assisted labeling, or
resolved. Other topics are linked to more labels and contain fused con-
cepts or junk. Another use of this chart is evaluating the reference topics
by the experts of GOS. Some concepts devised by experts may be chosen
too broadly. For example, the supervised topic of Music/Rocking is close
in cosine-distance to Topic 6 and to Topic 54, which in turn is close to
the supervised theme Dancing/Party. This indicates that labeling for Mu-
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sic/Rocking should be confined more to music and exclude songs about
dancing. Topics like Love and Heartbreak correlate with many LDA-topics
which demonstrate their dominance in lyrical themes.

3.4 Conclusion

This paper provides insights into the quality of topic models constructed
from song lyrics using a small supervised reference. We showed that the
kurtosis is a suitable metric to align unsupervised topics with supervised
reference topics, which allows detecting high-quality topics in accordance
to manual quality assessments.
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4
Creation and Evaluation of Large
Keyphrase Extraction Collections

with Multiple Opinions

Automatic keyphrase extraction is the task of automatically extracting the most
important and topical phrases of a document. Proper evaluation of keyphrase
extraction requires large test collections with multiple opinions which were not
available for research. In this paper, we developed large corpora of news, sports
and fashion articles annotated with keyphrases by a diverse crowd of laymen and
professional writers. Prior, there was little consensus on the definition of the task
of keyphrase extraction, with few benchmark collections of keyphrase-labeled data,
and a lack of overview of the effectiveness of different techniques. We benchmark
existing techniques for supervised and unsupervised keyphrase extraction on the
newly introduced corpora. This research was part of the STEAMER project, a col-
laboration with major Flemish media companies to implement various information
retrieval techniques to aid professional writers and funded by IWT (now known as
Flanders Innovation & Entrepreneurship) and Innoviris.

? ? ?
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Abstract While several Automatic Keyphrase Extraction (AKE) techniques



84 CHAPTER 4

have been developed and analyzed, there is little consensus on the defi-
nition of the task and a lack of overview of the effectiveness of different
techniques. Proper evaluation of keyphrase extraction requires large test
collections with multiple opinions, currently not available for research. In
this paper, we (i) present a set of test collections derived from various
sources with multiple annotations (which we also refer to as opinions in
the remainder of the paper) for each document, (ii) systematically evalu-
ate keyphrase extraction using several supervised and unsupervised AKE
techniques, (iii) and experimentally analyze the effects of disagreement on
AKE evaluation. Our newly created set of test collections spans differ-
ent types of topical content from general news and magazines, and is an-
notated with multiple annotations per article by a large annotator panel.
Our annotator study shows that for a given document there seems to be a
large disagreement on the preferred keyphrases, suggesting the need for
multiple opinions per document. A first systematic evaluation of ranking
and classification of keyphrases using both unsupervised and supervised
AKE techniques on the test collections shows a superior effectiveness of
supervised models, even for a low annotation effort and with basic posi-
tional and frequency features, and highlights the importance of a suitable
keyphrase candidate generation approach. We also study the influence
of multiple opinions, training data and document length on evaluation of
keyphrase extraction. Our new test collection for keyphrase extraction is
one of the largest of its kind and will be made available to stimulate future
work to improve reliable evaluation of new keyphrase extractors.

4.1 Introduction

Automatic keyphrase extraction (AKE) is the task of automatically extract-
ing the most important and topical phrases of a document [1]. Keyphrases
are meant to cover all topics and capture the complete content of a doc-
ument in but a handful of phrases. Applications of keyphrases are rich
and diverse, ranging from document summarization [2] to clustering [3],
contextual advertisement [4], or simply to enhance navigation through
large corpora. While much research has been done on developing super-
vised [5–8] and unsupervised methods [9–12], scores for recall and preci-
sion for this task are well below those of standard NLP tasks such as POS-
tagging or Named Entity Recognition. This is due to a variety of difficulties
faced when extracting keyphrases, including the inherent ambiguity of the
task, flaws in evaluation measures (e.g., semantically identical keyphrases
are judged as different), the over-generation of keyphrases, etc. One of the
most pressing issues in AKE research is the lack of large test collections
with multiple opinions. In this paper we aim to address that gap and thus
provide initial answers to the still open questions in solving and evaluating
AKE, e.g., What is the agreement on keyphrases among multiple readers? How
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well do the keyphrase candidates generated using the standard candidate gener-
ation procedures match keyphrases assigned by annotators? How do supervised
and unsupervised methods compare?

Keyphrase extraction has a long history, used in libraries for archiv-
ing and cataloging purposes. In such a library setting, keyphrases are as-
signed by trained experts using detailed manuals and rules, such as the
Anglo-American Cataloging Rules (AACR) in Encyclopedia of Library and
Information Sciences [13], or the German libraries’ “Regeln für den Schlag-
wortkatalog (RSWK)”.1 However, the setting we consider in our work con-
cerns AKE for popular media articles, where keyphrases will be used by a
typically untrained (layman) audience. Thus, also annotators will be lay-
men, and the keyphrase setting is therefore less constrained and the phrase
importance fairly open to interpretation. The key contribution of this pa-
per is the creation of a new dataset (4 corpora of 1000-2000 documents
each) and a comparison in performance of common supervised and unsu-
pervised AKE strategies.

First, in Section 4.2, we describe the construction of our new set of large
and diverse collections of documents annotated with keyphrases. Next,
Section 4.3 gives an overview of common AKE techniques and presents
several strategies to include context-dependent features into supervised
models, leading to increased precision. In Section 4.4, we evaluate the per-
formance of the presented supervised and unsupervised AKE techniques,
which apply knowledge extracted from background corpora (e.g., under
the form of topic models). We study the influence of the amount of train-
ing data on AKE performance and point out the relatively low annotation
effort needed to train competitive supervised models. In Section 4.5 we
conclude by providing readers with guidelines to keep in mind when re-
searching AKE and evaluating new techniques.

4.2 Test Collections

The state-of-the-art in AKE is not only diverse in terms of techniques (see
further, Section 4.3), but also in terms of test collections used for evaluation.
Indeed, these vary from formal scientific articles [14] to more popular con-
tent such as mainstream news, or even blogs and tweets [15]. Issues with
these evaluations are that (i) most collections are fairly limited in size (typ-
ically a few hundred documents) and (ii) annotations substantially vary
from one collection to the next, since they are performed by either the vari-
ous authors of the content or a single reader assigning keyphrases to many
different documents, with possibly different annotation guidelines or goals
from one collection to the next. As [16] noted, “for scientific articles the au-
thors do not always choose keyphrases that best describe the content of

1http://www.dnb.de/DE/Erwerbung/Inhaltserschliessung/rswk.html

http://www.dnb.de/DE/Erwerbung/Inhaltserschliessung/rswk.html
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their paper, but they may choose phrases to slant their work a certain way,
or to maximize its chance of being noticed by searchers.” Due to these lim-
itations, and with the existing collections for AKE, it is hard to study how
AKE performance may be impacted by annotators and the type or topic of
documents.

We set out to systematically construct a rich and diverse set of anno-
tated test collections to investigate this issue. We particularly focus on
rather popular content targeted to a diverse, layman audience (e.g., as op-
posed to specialist scientific literature). Our newly created set of test col-
lections (i) is substantial in size with four different collections of 1200–2000
annotated documents each, (ii) comprises different types of news content
(online news, online sports, lifestyle magazines, newspaper articles), and
(iii) has each document annotated by multiple annotators (on average 6
per document), where annotator guidelines are identical for all collections
(i.e., annotators are only informed with the definition and purpose of the
keyphrases, regardless of the collection the documents are drawn from).

These collections are available for research purposes.2

4.2.1 Document Collection

In order to procure the test collections, we started from a large collection of
candidate documents provided by three major Belgian media companies—
each with their own distinct type of content (all in Dutch). The first media
company involved, is the public-service broadcaster VRT, who offered two
collections: Online News and Online Sports. The Online News collection is
a subset of the texts accompanying the videos on its official news chan-
nel website De Redactie.3 Similarly, the Online Sports collection represents
their specialized sports section Sporza.4 The second company, Sanoma, is a
publishing group owning a selection of lifestyle, fashion, and health mag-
azines, from which we created the Lifestyle Magazines test collection. The
third company, Belga5, offers a digital press database comprising content
from all Flemish and Dutch newspapers, represented in our Printed Press
set.

To verify that these collections indeed contain different topics, we use
an external multi-label document classifier6 trained on documents anno-
tated with IPTC media codes7 to gain insight into the thematic subjects

2For information regarding acquiring the test collections, please contact the paper’s first
author.

3http://www.deredactie.be
4http://www.sporza.be
5http://www.belga.be
6Our multi-label classifier is based on methods from top submissions in the “Greek Media

Monitoring Multilabel Classification” (https://www.kaggle.com/c/wise-2014) and “Large
Scale Hierarchical Text Classification” (https://www.kaggle.com/c/lshtc) hosted by Kaggle.

7https://iptc.org/standards/media-topics/

http://www.deredactie.be
http://www.sporza.be
http://www.belga.be
https://www.kaggle.com/c/wise-2014
https://www.kaggle.com/c/lshtc
https://iptc.org/standards/media-topics/
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covered. The average contributions of IPTC codes (at the first of three lev-
els in the IPTC codes) are shown in Table 4.1, and confirm our intuition
as humans being familiar with the various document collections: a large
focus on sports texts for the Online Sports collection, mostly political sub-
jects in Online News, lifestyle topics in Lifestyle Magazines and general news
(dominated by sports) in Printed Press.

4.2.2 Collecting Keyphrases

Documents were presented to a panel of 357 annotators of various ages
and backgrounds (selected and managed by imec.livinglabs8), who were
asked to “select a limited number of short phrases that concisely summarize
the document’s contents”. Three annotation sessions, of each spanning two
weeks, were organized. Annotators were allowed to participate in multi-
ple sessions. For each session an annotator was assigned 140 articles but
was not obligated to finish the complete assignment. Compensations were
awarded at 60, 100 and 140 articles. The amount of documents annotated
by each of the 357 annotators is shown in Fig. 4.1 a. To ensure overlap,
each document was included in ten different annotators’ task lists. De-
pending on the annotators’ effort each document received at least one and
up to ten different opinions. The final distribution of overlap per docu-
ment is shown in Fig. 4.1 b. Overall, 26% of the documents received more
than 8 opinions. Other descriptive statistics on the annotator panel are
shown in Tables 4.2 and 4.1. As briefly mentioned in the Introduction, our
annotation setup is quite different from traditional keyphrase annotation
scenarios, where typically a small number of well-trained assessors pro-
vide annotations according to strict rules. In our setting, there was a large
number of annotators, sampled from the Flemish media audience, which
forms the target group for applications built on the extracted keyphrases.
Also, we did not impose strict annotation rules, and instead propose that
the results reflect the expectation of what keyphrases should look like for
the target audience. The simplicity of our setup could be an important ad-
vantage for organizations intending to build a keyphrase extraction system
on their own data. However, the lack of strict rules also implies potential
issues of disagreement on the chosen keyphrases among different annota-
tors (see Section 4.2.5).

4.2.3 Annotation Tool

A web application was built for the test panel to perform annotations using
a web browser from home. The annotation process works as follows. An-
notators log in to the application using a personalized password. Each an-

8https://www.iminds.be/en/succeed-with-digital-research/go-to-market-testing/
proeftuinonderzoek

https://www.iminds.be/en/succeed-with-digital-research/go-to-market-testing/proeftuinonderzoek
https://www.iminds.be/en/succeed-with-digital-research/go-to-market-testing/proeftuinonderzoek
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(a) (b)

Figure 4.1: (a) Amount of annotated documents per annotator. (b) Distribution of
overlap per document.

notator was then directed to a briefing on the meaning and purpose of key-
phrases and how to use the application to enrich articles with key-phrases.
These guidelines are explained in detail in the following Section. The ap-
plication chooses an article from the total collection stored in a database
and presents it to the annotator. Articles are selected to increase overlap of
annotators per document as fast as possible. A first document gets ranked
first in the task list of 10 different annotators, a second document is then
ranked second for these ten annotators. This is repeated until each annota-
tor received a task list of 140 articles to be annotated during the two week
session. Keyphrases are selected by sliding the mouse pointer over a se-
lection of words. Unlike many keyphrase extraction tasks where authors
assign free-form phrases to a document, this means keyphrases are guaran-
teed to appear in the text of the document. A theoretical upper bound for
an extractor solely from the text thus would be 100%. One of the reasons
this is often imposed, is the intended use of the keyphrases to highlight
the most important phrases in the articles themselves. While this confines
the task as certain key concepts do not explicitly appear in the text as is
done in in-line keyphrase extraction [?, 14], extraction of such keyphrases is
a problem requiring different strategies, thus, we should not penalize an
inline keyphrase extractor for not extracting these keyphrases. Documents
are tokenized before annotation and annotators’ highlighting is confined to
token boundaries to facilitate annotating and reduce matching errors after-
wards. The annotator is then prompted to add the selection as keyphrase,
after which the keyphrase is shown in a list next to the article with other
assigned keyphrases.

All keyphrases are highlighted after selection. Figure 4.2 shows the ap-
plication as displayed in the web browser. The annotator is also provided
with a button to send a form to provide feedback on a specific article, e.g.,
to indicate confusing cases or articles not suitable for annotation (such as
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Figure 4.2: Web interface for annotation of keyphrases.

articles featuring two entirely different topics or stories, tables of sports
results, cooking recipes, etc.).

4.2.4 Keyphrase Annotation Guidelines

The full guidelines section of the annotation tool is shown in Fig. 4.3. In
addition to guidelines and videos, annotators were provided with multiple
examples of annotated documents. We keep to the standard definition of
keyphrases [1] and impose no constraints on keyphrase form. Whereas the
annotation procedure differs from one collection in literature to the next, all
of the currently presented test collections were created the same way. No
prior limits or constraints were set on the amount, length, or form of the
keyphrases. This allows us to study the interpretation by annotators and
their disagreement, as well as investigate the form of typical keyphrases
that candidate generation approaches should produce. Fig. 4.4 shows an
example of a (translated) Dutch lifestyle article about music artist Anastacia
and her recovery from breast cancer, where bold text represents keyphrases
as annotated by 10 different annotators. A superscript of i indicates the
identifier of the annotator who selected this phrase as keyphrase. This
example is a first demonstration of the lack of consensus on keyphrases:
only few keyphrases are selected by all of the annotators. We expand on
this disagreement issue in Section 4.2.5.

In Table 4.1 we present descriptive statistics on the length of the docu-
ments, the amount of assigned keyphrases, the amount of keyphrase can-
didates per document (candidate generation is presented in the following
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Dear Annotator,
Thank you for participating in the Steamer Bootcamp! The next 2, 4 or 6 weeks, you will
read a lot of news reports and select the most important keywords or keyphrases in them.

Your aid is of major importance
Depending on your choice of keywords, we will develop a system that automatically
recognizes these keywords and adds them to documents. These keywords are not only very
useful for many applications, they also make it easy for search engines to improve the
automatic recommendation of other relevant articles -for you-.

Keyphrases?
The keywords or ‘keyphrases’ are defined as "a selection of short, significant
expressions consisting of one or more words that can summarize the article very
compactly."

Too complicated?
Below you find some videos back with a quick guide.
<Link to instruction video> Reading articles.
<Link to instruction video> Indicating keywords.

Method
There are some tips to get to the best keywords:
Ask yourself, "What words summarize the content of the article?" Or "What words are
most representative of the contents of the article?" This can be an event or an object,
the crucial entities, or organizations that are mentioned in the article. Try to keep
the keyphrase as short as possible. Words that do not contribute may be omitted to the
meaning of the keyphrases. The number of keywords per article depends largely on the
length of the article and the various topics discussed in it. It is rare to select more
than 10 keywords per article.

We demonstrate this with an example:
"Higher education is bracing itself. Once it had ample offer, now it calls for a
economization of supply. The Flemish coalition agrees that the universities themselves
must make proposals to achieve a constrained and transparent offer. In interviews,
the Minister of Education, Hilde Crevits (ISA), indicates that the offer can be safely
pruned to one hundred of majors. "
in this example "higher education" , "economization of supply" and " Hilde Crevits"
would be appropriate keywords.

Still not clear?
Click <Link to more examples> for more examples.

Select keywords or keyphrases
You select a keyphrase by clicking a phrase in its first word and sliding to the last
word in the keyphrase. The tool will then ask if the selected keyword should be added.
Afterwards all selected keywords are displayed in the left column. If you’ve changed
your mind, then a chosen keyword can be removed by clicking on the red cross. Think you
have selected all the keywords? Save the article and go to the next article.

Ready?
Then you can begin! The more articles you read, the faster you will start to find the
keywords. It’s a little hard at first, but hang in there, it gets better. Click "Start"
and you can start!

Any questions?
Take a look at our FAQ page or use the feedback button. Good luck!
Greetings,
The Steamer research team

Figure 4.3: Instructions shown at the main page of the keyphrase annotation tool.
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In 2013 Anastacia1,2,3,4,5,6,7,8,9,10(45) was struck for the second time with breast can-
cer1,2,3,4,5,6,7,8,9,10. A difficult recovery, including a double mastectomy4 and reconstruction
followed. She gave her first concert2 in Belgium after this dark period, with her best friend
Natalia3,4,8,9,10 in the front row. In January 2013 Anastacia was known for world hits like ‘I’m
outta love’3 and ‘Left Outside Alone’3. Busy working on a new album, her doctor called
with bad news. The lump she felt in her breast was cancerous. Ten years earlier she had al-
ready been treated for breast cancer, but the tumor appeared stronger. Anastacia underwent
a double mastectomy10 and reconstruction, but now feels “great again”. “I’ve learned love
to see myself,” she says. “I am happy, you see. And I let myself be carried away by my work
easily. Now I try to pay more attention to myself. Absolutely. I want to make people happy
with my songs. ‘I’m Outta Love’, for example, I still sing that with pleasure. While other
artists are often tired of their first songs. Take Madonna. Who said herself that she can’t hear
‘Like A Virgin’, let alone sing it herself. That’s right, and even the title (‘Resurrection7’, ed)
seems to refer to it. But this was already determined before I was told I had cancer again.
I am resurrected in different areas, so to speak. I’m more balanced, a lot calmer . . . Yes, but
the result of the breast reconstruction5 is fantastic. I’m not ashamed of my scars. I still feel
sexy. Such a mastectomy8 is not a fairy tale, huh. You must accept the reality. There are a
lot of emotions involved, and you have to beat you through. And my first concert3,10 is in
Belgium2 On October 19, in the AB in Brussels I can finally do what I love to do: act and sing.
Of course, Natalia is one of my best friends. She has supported me the whole recovery period.
We call regularly. No, but I’m not searching. Love has always happened to me. Which does
not mean that true love may turn up little by little. But I’m not desperate. I take life as it
comes and I am grateful for what I’ve got.”

Figure 4.4: Example of annotated article, with indication of keyphrase annotations
by 10 different annotators using superscripts.

section), the entities per document, the distribution over n-grams in key-
phrases, predicted topics and POS-tags, for the four different test collec-
tions. As Table 4.1 indicates, the largest difference between the test collec-
tions is their thematic content. Articles from the collections are relatively
short, with Printed Press featuring slightly longer articles than the three
other collections. Online Sports articles contain more entities, with notably
more entities that are seen as keyphrase by the annotators. On average, a
single annotator assigns 5 keyphrases to each document. The union of all
annotations per document on average contains 15 keyphrases.

4.2.5 Annotator Disagreement

Multiple annotations for each document show that the notion of “what is a
keyphrase?" remains subjective. Figure 4.5 shows the fraction of annotated
keyphrases for different ratios of overlap by the complete set of annota-
tors. This shows that the largest fraction of all keyphrases (≥ 50%) are
selected by less than 20% of all the annotators that assigned keyphrases
to the document. This is due to different interpretations of the article, but
also due to keyphrases with equal semantics appearing in different forms.
This has important consequences for training models on keyphrases an-
notated by a single annotator: in such a setting, many alternate candidate
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Figure 4.5: Illustration of annotator disagreement on keyphrases. The X-axis shows
the fraction of annotators that agree on selecting a single keyphrase for a
given document. For example, if we were to restrict keyphrases to those
selected by 50% of the annotators, this shows that we would retain less
than 5% of all keyphrases.

Table 4.2: Descriptive statistics regarding the annotations (# = number of; � = av-
erage).

# Annotators 357
# Documents with ≥ 1 annotation 7342
max. Annotators/Document 10
min. Annotators/Document 1
� Annotators/Document 6
� Articles/Annotators 140
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phrases that other annotators would pick, would be considered as nega-
tive training data. The performance on evaluation sets can thus greatly
vary depending on the annotator of the test set. Studying disagreement
and the effect of training data by different annotators on the evaluation
confidence is a valuable direction for future research. In our evaluation of
automatic extractors, we use the aggregated set of keyphrases as a refer-
ence but also report on the average and standard deviation on scores for
different reference keyphrase sets assigned by different annotators.

As metric for inter-annotator disagreement we report the Fleiss’ kappa
score [17]. We define a Fleiss’ kappa, κF, for each document as

κF =
P̄− P̄e

1− P̄e
. (4.1)

Here, 1 − P̄e measures the degree of agreement that is attainable above
chance, and, P̄ − P̄e measures the degree of agreement achieved above
chance. For these formulas, we consider the N generated keyphrase can-
didates as rated items, that are scored by each of the n annotators with one
of k = 2 possible scores, to represent the cases where a given phrase is an-
notated as a keyphrase or a non-keyphrase by a given annotator. To find
P̄ and P̄e, first pj, the proportion of all assignments as keyphrase (j = 1) or
non-keyphrase (j = 2), is calculated:

pj =
1

Nn

N

∑
i=1

nij. (4.2)

Then Pi is calculated, which is extent to which annotators agree on the i-th
keyphrase candidate.

Pi =
1

n(n− 1)

[(
k

∑
j=1

n2
ij

)
− n

]
. (4.3)

P̄ is the mean of the Pi’s and P̄e is the sum of the squared pj’s, which are
then used to calculate κF.

P̄ =
1
N

N

∑
i=1

Pi, and P̄e =
k

∑
j=1

p2
j . (4.4)

Median Fleiss kappa across all documents is low at 0.19 with slightly higher
values for Online Sports’ articles. As presented in Table 4.3, higher agree-
ment for sports articles might be due to entities being central to many
of these articles. The annotators were recruited from among the target
audience in the Flemish media landscape by experienced Living Lab re-
searchers [18], including both residential consumers and media profes-
sionals. For the experiments presented in this work, we pooled all anno-
tators. However, the dataset contains additional information that would
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Table 4.3: Annotator agreement on keyphrases, quantified with Fleiss’ kappa κF, is
quite low.

Collection Online Sports Online News Lifestyle Magazines Printed Press

Avg.
κF per
doc.

0.235 0.189 0.193 0.186

allow making a distinction between different types of annotators, in order
to study different use cases. For example, we quantified the difference in
annotation behavior for the most active half versus the least active half of
the annotators. The 50% most active annotators are responsible for 82% of
all sets of keyphrases, assigning on average 4.1 keyphrases per document,
each on average 2.2 tokens long. The other half assigned on average 5.2
keyphrases per document, but slightly longer ones, with on average 2.9
tokens.

4.3 Keyphrase Extraction Techniques

This section provides a brief overview of common AKE techniques. After
explaining how candidate keyphrases are selected (Section 4.3.1), and how
well these common heuristics cover the annotated keyphrases, the most
prominent unsupervised methods are introduced (Section 4.3.2). Next, su-
pervised keyphrase extractors and feature design for AKE are presented
(Section 4.3.3).

4.3.1 Candidate Selection

To avoid spurious keyphrase instances, and to limit the number of candi-
dates, extractors choose a subset of phrases which are selected as candidate
keyphrases. Especially for long documents, the resulting list of candidates
can be long and hard to rank. Current state-of-the-art mainly adopts part-
of-speech (POS) filters, typically after stopword removal. Other heuris-
tics for selecting candidates only allow keyphrases from a curated, fixed
list [19] or Wikipedia article titles [20], which drastically reduces the amount
of possible candidates. Here, we quantitatively address the open ques-
tion as to what extent such POS-filtered keyphrases correspond to those
assigned by human annotators. For that purpose, we calculated the mea-
sure “Maximum POS-filter Recall” shown in Table 4.1 for each collection,
defined as the recall attained by the most common POS-filter based on the
rules defined in [7] over the set of human annotator keyphrases. More
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specifically, the filter is defined by the following regular expression9:

(<Adj|Num>* <N>+<IN|Van >)?<Adj|Num>*<N>+ (4.5)

Applying this common filter to our data sets shows that, if we were to use
it to select candidate phrases from the text, we would maximally reach a
recall of about 66% when considering all the annotated keyphrases as gold
standard, as listed in Table 4.1. This relatively low coverage demonstrates
the mismatch between POS-filters and the interpretation of the keyphrase
concept by the (layman) annotators. POS-filters also extract longest match-
ing sequences of tokens, while keyphrases might be subsequences. Fig-
ure 4.6 shows the complete distribution of POS patterns assigned to the
annotated keyphrases versus those of extracted candidates by the POS-
tagger. While the majority of keyphrases are Noun Phrases, it is shown
that a considerable fraction of keyphrases are not extracted by the stan-
dard POS-filter, such as lone verbs and adjectives. This indicates that peo-
ple also tend to see actions or events, denoted by a verb, central to an ar-
ticle’s content. A topic for future research is to maximize the coverage
of keyphrases by candidates while limiting the total amount of extracted
candidates, i.e., , the trade-off between recall (as the maximum achievable
amount increases), and precision (as keyphrase extraction becomes harder
with more candidates to rank correctly). What POS-filter is the most ef-
fective (for optimal recall versus precision) also depends on the type of
document: while news articles describe events, typically requiring entities
and verbs as keyphrases, we expect this to be less the case for scientific
articles where domain specific technological terms are more common. We
advise to adapt the candidate generation procedure appropriately.

4.3.2 Unsupervised Keyphrase Extraction

A disadvantage of supervised approaches is the requirement of training
data and the resulting bias towards the domain of the training data, un-
dermining their ability to generalize well to new, unseen domains. This
limitation is bypassed by unsupervised approaches that focus on word-
frequency or centrality in graph transformations [10, 21–23]. Note that
unsupervised approaches have been reported as state-of-the-art on many
test collections [12]. Because most of these test collections do not supply a
training and test data split, comparisons of these models with supervised
models is missing. The most important unsupervised AKE approaches are
(variations on) the following baseline methods:

• TF*IDF [24] is the most common strategy for ranking keyphrases
for a given document in both unsupervised and supervised mod-
els [20, 25]. The TF*IDF weight consists of two factors: TF is the

9POS-tag definitions used here: Adj = adjective, N = nouns (including singular and plural),
IN, Van = preposition or subordinating conjunction and Num = quantity expressions.
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Figure 4.6: POS-tags of extracted keyphrase candidates by filters versus complete
distribution of all the annotated keyphrases from all collections.

frequency of the considered keyphrase. The second factor, IDF, is
the Inverse Document Frequency, computed as the logarithm of the
number of the documents in the corpus divided by the number of
documents where the specific phrase appears. The IDF factor is in-
corporated to diminish the weight of terms that occur very frequently
in the document set and increases the weight of terms that occur
rarely.

• TextRank is a completely within-document AKE technique [26], which
represents the document as a graph. Each word corresponds to a
node in the graph, edges are created between words co-occurring
within a window of pre-defined width. Centrality of the nodes is
then calculated using PageRank. Keyphrases are generated using
high-scoring nodes and by merging co-occurring terms. In our evalu-
ation we use the SingleRank variant [11], in which edges are weighted
according to the number of times they co-occur within the window.
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The score for word wi is computed iteratively until convergence us-
ing the recursive formula:

S(wi) = λ · ∑
j:wj→wi

(
e(wj, wi)

O(wj)
· S(wj)

)
+ (1− λ) (4.6)

where S(wi) is the PageRank score for word wi, e(wj, wi) is the weight
of the edge (wj → wi), the number of outbound edges is O(wj) =

∑w′ e(wj, w′) and λ is a damping factor ∈ [0, 1] indicating the proba-
bility of a random jump to another node in the word graph.

• Topical PageRank, as described in [10], calculates a PageRank score
separately for each topic in a pre-trained topic model and boosts the
words with high relevance to the corresponding topic. That topic-
specific PageRank score for word wi is defined as follows:

Sz(wi) = λ · ∑
j:wj→wi

(
e(wj, wi)

O(wj)
· Sz(wj)

)
+ (1− λ) · Pz(wi), (4.7)

where Sz(wi) is the PageRank score for word wi in topic z. A large
Sz(wi) indicates that wi is a good candidate keyword in topic z. The
topic specific preference value Pz(wi) for each word wi is the prob-
ability of arriving at this node after a random jump, thus with the
constraint ∑w∈ν Pz(w) = 1 given topic z. In TPR, the best perform-
ing value for Pz(wi) is reported as being the probability that word wi
occurs given topic z, denoted as P(wi|z). This indicates how much
that topic z is focused on word wi. With the probability of topic z
for document d P(z|d), the final ranking score of word wi in docu-
ment d is computed as the expected PageRank score over that topic
distribution, for a topic model with K topics,

S(wi) =
K

∑
z=1

Sz(wi) · P(z|d). (4.8)

We apply the more efficient, equally effective, single-PageRank vari-
ant proposed in [22]. Other graph based methods using background
information are based on relatedness between candidates in the doc-
ument in thesauri [27].

4.3.3 Supervised Keyphrase Extraction

Supervised methods recast the extraction problem as a binary classification
task, where a model is trained to decide whether a candidate phrase (gen-
erated from the candidate generation procedure discussed in Section 4.3.1)
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is a keyphrase or not [1, 5, 16]. Treating automatic keyphrase extraction
as a supervised machine learning task means that a classifier is trained us-
ing documents with known keyphrases. While the decision is binary, a
ranking of phrases can be obtained using classifier confidence estimates,
or alternatively, by applying a learning-to-rank approach [28].

4.3.3.1 Feature Design and Classification

An important aspect of supervised approaches is feature design. In pre-
vious work, many features have been designed and reported as being ef-
fective on different occasions [1, 5–8, 29]. In these studies, several types of
features can be distinguished:

• Statistical Features: Features such as the term frequency, TF*IDF
(discussed in the following section) and keyphraseness (the total amount
of times a keyphrases occurs in a training collection).

• Structural Features: Features characterizing the position of a term
with respect to the document structure (first location, last location,
occurrence in title, etc.),

• Content: Features characterizing the keyphrase, such as the lexi-
cal cohesion of the keyphrase (Dice Coefficient of the tokens in the
keyphrase and the complete keyphrase), length, the POS-pattern, cap-
italization, etc.

• External Resource Based Features: information is added using exter-
nal resources or dictionaries such as terminological resources (Me-
dial Subject Headings (MeSH), the Gene Ontology, etc.), linguistic
resources (WordNet), thesauri [30], Wikipedia, topic models, or tags
from a Named Entity Recognizer.

After features are extracted, a learning algorithm is applied on the training
collection to distinguish keyphrases from non-keyphrases. Many differ-
ent statistical classifiers have been applied for this task, including Naive
Bayes [31], bagging [5], max-entropy [4], multilayered perceptron [6],sup-
port vector machine [28] and (boosted) decision trees [6]. A detailed com-
parison with each of the designed features in existing supervised tech-
niques is not in the scope of this paper. As for many supervised machine
learning tasks, a classifier needs to be developed, evaluated and separately
optimized for each collection (also known as the no-free-lunch theorem [32]).
We propose a different approach and develop a baseline supervised ex-
tractor, compare with unsupervised techniques, propose several features
modeling the context of the document, and study the influence of the back-
ground collection on the AKE effectiveness.
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4.3.3.2 Supervised Model

As baseline supervised keyphrase extractor, we extract a number of fea-
tures based on prior work presented in the previous section. Features effec-
tive during development and used in the baseline model are: (i) keyphrase
frequency, (ii) number of tokens in the keyphrase, (iii) length of the longest
term in the keyphrase, (iv) a binary feature which indicates whether the
keyphrase contains a named entity, (v) relative position of the keyphrase’s
first occurrence in the full article, (vi) relative position of last occurrence
and (vii) span (relative last occurrence minus relative first occurrence).

Apart from features extracted from the document the keyphrase ap-
pears in, we calculate two features based on background corpora: TF*IDF
( fTF*IDF) and Topical Word Importance ( fLDA), which is based on context.

TF*IDF consists of the multiplication two factors: TF is the frequency of
the considered keyphrase relative to the document length. The second fac-
tor IDF is the Inverse Document Frequency, computed as the logarithm of
the number of the documents in the corpus divided by the number of docu-
ments where the specific phrase appears. Topical word importance was in-
troduced in [22] and is based on topic modeling, for which we use standard
Latent Dirichlet Allocation [33]. Topical word importance is the similarity
between the word-topic probability and the topic-probability from a topic
model trained on the background corpora. This similarity, as a feature for a
word-document pair (w, d), is determined as the cosine similarity between
the vector of topical word probabilities P(w|Z) = [P(w|z1), . . . , P(w|zK)]
and the document topic probabilities, P(Z|d) = [P(z1|d), . . . , P(zK|d)]:

fLDA(w, d) =
P(w|Z) · P(Z|d)

‖P(w|Z)‖ · ‖P(Z|d)‖ . (4.9)

This score is usually included as a weight in a biased graph-ranking algo-
rithm, here we also include it as contextual feature. Both context depen-
dent features stem from unsupervised techniques. Features established in
literature, but which were found to be ineffective include keyphraseness and
keyphrase cohesion [6]. In all experiments, we use a support vector machine
(SVM) classifier with a linear kernel from the libsvm library [34] and gradi-
ent boosted decision trees implemented in the XGBoost package [35]. For
token-based features we use the sum and average of the TF*IDF and Topi-
cal Word Importance values of the tokens constituting the keyphrase. IDF
values and topic models are trained on large background collections stem-
ming from the same source and on a more general Wikipedia corpus.
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Figure 4.7: Schematic representation of the experimental set-up.

4.4 Systematic Evaluation

In this section, we describe our experimental set-up, followed by an eval-
uation of different unsupervised and supervised models, with a careful
study of the effect of multiple opinions during evaluation and training.

4.4.1 Experimental set-up

Creating training and test set

In Fig. 4.1 b, we showed the amounts of annotations per document. Be-
fore separating documents into train and test collections, we remove docu-
ments annotated by less than five annotators. From documents with more
than five opinions we randomly select five opinions as reference annota-
tions. This is to avoid bias towards more frequently annotated documents,
while keeping a reasonable amount of documents to produce meaning-
ful results. From these filtered collections of documents, we sampled 500
documents as test collection for each of the sub-collections, the remain-
ing ones were used for training and development. The amounts of train-
ing and test documents are shown in Table 4.4. The amount of training
documents ranges from around three hundred to close to a thousand for
the different sub-collections, but as will be shown in Section 4.4.5, the ef-
fectiveness of the studied supervised approaches saturates beyond a few
hundreds of training documents. All annotated documents for the differ-
ent sub-collections, with listings of document IDs in the training and test
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Table 4.4: Number of documents in training and test collections after filtering doc-
uments having fewer than five opinions.

Online Sports Online News Lifestyle Magazines Printed Press
#Background
Documents

325,438 325,437 976,318 976,316

#Training Docu-
ments

312 275 981 957

#Test Documents 500 500 500 500

collections, as well as extracted candidate keyphrases are made available
upon request for research purposes.10

System architecture
Figure 4.7 outlines the experimental set-up. After filtering the annotated
data and separating train and test set, all documents were further pre-
processed by extracting POS-tags using the rule-based Fast Brill Tagger [36],
implemented in the NLTK [37] package trained on the CONLL-2002 train-
ing set (accuracy of about 95% on the CONLL test sets). Keyphrase candi-
dates were extracted using the POS-filter presented in Section 4.3.1.

For the supervised models, features for each of the candidate phrases
and keyphrases (as detailed in Section 4.3) were calculated, and the models
were trained on the training subsets.

Contextual information (i.e., IDFs, 1,000-topic LDA-models) was de-
rived for each of the collections individually from a non-annotated back-
ground corpus provided by the corresponding media company (ranging
from 325,000 documents (Online Sports, Online News) to 976,000 (Printed
Press, Lifestyle Magazines)), as well as from a more universal background
corpus, i.e., a 2014 Dutch Wikipedia dump. The Dutch Wikipedia corpus
contains 1,691,421 articles, amounting to a total of 226,080,236 tokens.

When processing the documents in the test collection, each AKE ap-
proach provides a confidence score to the phrases generated during the
candidate generation procedure. For unsupervised models this is the TF*IDF
score or PageRank score, whereas for supervised models this is the pre-
dicted score, i.e., probability of the candidate being a keyphrase. The can-
didate keyphrases of the test documents are ranked according to these
scores (shown in orange in Fig. 4.7). For converting predicted scores to
binary decisions on whether or not to retain the keyphrases, the cut-off
scores with highest F1 score on the training set are used (also for the unsu-
pervised approaches).

Hyperparameter tuning was kept to a minimum, using standard val-
ues for the unsupervised graph algorithms. For wordgraph algorithms,
Textrank and Topical PageRank, length of the sliding window was set to

10Due to copyright issues, the data cannot be published publicly: researchers only can ob-
tain the data (including annotations and candidate keyphrases) after contacting the authors
and signing a non-disclosure agreement.
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10 tokens and a damping factor of 0.85 for TextRank and 0.7 for Topical
PageRank was chosen.

Development of classifiers was done by crossfolding the trainingdata
four times. Hyperparameters for boosted trees are the number of trees and
their depth, for the SVM classifier we tune the regularization. We opti-
mized for micro-averaged F1 scores on the held-out folds.

Note that some of the keyphrases assigned by the annotators are not ex-
tracted by the candidate generator. These are filtered out from the train set
(as indicated by the processing step in the top right of Fig. 4.7), to prevent
classifiers from overfitting on forms of keyphrases that are not generated
by the candidate generator. Such keyphrases that do not match the can-
didate generation pattern are however included in the ground truth set of
keywords for the test collection, so for most documents a recall of 100% is
not attainable.

4.4.2 Evaluation Setup using Multiple Opinions

Several options arise when evaluating keyphrases for documents with mul-
tiple opinions and depending on the goal or application of the keyphrases,
different requirements are to be met or preferred by the keyphrase extrac-
tor’s output. We propose two quite different evaluation scenarios, as well
as a short motivation for both of them, followed by experimental results.
As we will demonstrate, deciding on one of these scenarios strongly influ-
ences the scores and may lead to differently ranked keyphrase extractors.

A straightforward way is to create a reference set of keyphrases by pool-
ing the annotated keyphrases by the different judges. The main advantage
of this pooling approach is the increased robustness when measuring preci-
sion. Different annotators can select different representatives for identical
concepts in an article. This way, the precision of the keyphrase extractor
remains when making a specific choice of keyphrases, provided it covers
the central concepts present in the reference set. However, this scenario
suffers from two drawbacks. First, it does not penalize a possible lack of
diversity among the predicted keyphrases, and second, it is hard to inter-
pret the resulting metrics based on aggregated keyphrases from the point
of view of a single annotator. This scenario is preferable when keyphrases
are applied for visual purposes, e.g., to provide an overview of content by
highlighting all keyphrases, or to get an estimate of the overall precision of
the extractor regardless of redundancy in the output of the extractors. The
second scenario, discussed next, avoids these drawbacks.

In the second scenario, each set of keyphrases from a specific annota-
tor is treated as an independent target set. In this case, averaging over
the obtained evaluation metrics corresponds to measuring the expected
performance for a random annotator, if we can assume that the annotator
population is represented by the set of annotators. This evaluation sce-
nario comes closer to the purpose of summarization by keyphrases, which
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Figure 4.8: Plots on the left show micro-averaged F1 scores (with error bars show-
ing standard deviation) for different fixed amounts of assigned key-
phrases for different annotators. The right column shows the same
models evaluated on aggregated collections of keyphrases.
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is a more common goal of keyphrases and and in line with the instructions
given to the annotators. In this setting, extractors are rewarded for the ex-
traction of small but diverse sets of keyphrases as annotated by different
annotators. We perform this annotator based evaluation by averaging the
scores over different annotators per document and measuring the standard
deviation on this average.

To match predicted keyphrases with the reference keyphrases, we fol-
low the traditional evaluation scheme for keyphrase extraction [12] by ex-
actly matching keyphrases from the golden answer set with those provided
by the automatic extractors without stemming, and apply a standard rank-
or set-based metric. We measure the micro-averaged precision for the 5
(precision@5) top ranked or most confident keyphrases. Note that 5 is ap-
proximately the average amount of keyphrases assigned by a single anno-
tator to a document and is the number of keyphrases the content providers
agreed to assign to each document. To evaluate from a set-based perspec-
tive, we measure the micro-averaged F1 from precision and recall per doc-
ument after setting a threshold (the same for all documents) on the con-
fidence values predicted by the extractors that optimizes F1 scores on the
development set .

In Tables 4.5 and 4.6, we show results for these two different approaches
to evaluation, i.e., the first scenario with aggregated target collections (Aggr.),
and the second scenario with scores averaged per annotator (Av.±Stdv.) for
the precision at 5 extracted keyphrases per document (precision@5) in Ta-
ble 4.5 and F1 scores at a tuned threshold in Table 4.6. We define precision,
recall and F1 as follows:

precision =
|annotated keyphrases∩ extracted keyphrases|

|extracted keyphrases| (4.10)

recall =
|annotated keyphrases∩ extracted keyphrases|

|annotated keyphrases| (4.11)

F1 =
2 · precision · recall
precision + recall

(4.12)

In Fig. 4.8, we plot F1 as a function of a fixed amount of selected keyphrases
per document to further illustrate the difference between these two ways
of evaluating. Graphs in the left column show results for averaging over
sets of keyphrases by the different annotators with standard deviations,
graphs on the right show evaluations on the aggregated set of keyphrases.

4.4.3 Comparison of different techniques

A first observation is that, in terms of performance of different AKE ap-
proaches, supervised models using baseline features (see Section 4.3.3.2)
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Table 4.5: Experimental results over different unsupervised and supervised mod-
els. The precision at 5 selected keyphrases is evaluated on an aggregated
set of keyphrases from different annotator (Aggr.) and for scores aver-
aged over different annotators with standard deviation (Av.±Stdv.). De-
velopment scores for supervised classifiers are included between brack-
ets.

Test Collection→ Online Sports Online News
Model ↓ Aggr. Av.±Stdev. Aggr. Av.±Stdev.
TextRank 39.6 18.8 ±5.1 37.5 16.3 ±5.2
TF*IDF 41.9 20.0 ±5.4 42.8 18.4 ±5.7
Topical PageRank 41.4 20.0 ±5.3 40.0 17.6 ±5.5
XGBoost (57.9) 55.2 (27.5) 26.7 ±6.9 (56.6) 56.0 (24.3) 24.6 ±7.2
XGBoost + fTF*IDF (59.2) 56.2 (28.0) 27.0 ±6.9 (57.4) 56.0 (24.6) 24.9 ±7.2
XGBoost+ fTF*IDF, fLDA (60.5) 55.8 (28.2) 26.9 ±6.9 (59.3) 56.4 (25.3) 24.9 ±7.3
SVM + fTF*IDF, fLDA (53.6) 51.8 (25.6) 24.7 ±6.5 (52.2) 52.4 (22.9) 23.1 ±6.8
Wikipedia Background:
TF*IDF 40.3 19.6 ±5.4 40.1 17.2 ±5.6
Topical PageRank 40.8 19.6 ±5.4 38.1 16.7 ±5.3
XGBoost + fTF*IDF, fLDA (60.0) 56.2 (28.3) 26.9 ±6.9 (59.8) 56.4 (25.4) 25.0 ±7.2

Test Collection→ Lifestyle Magazines Printed Press
Model ↓ Aggr. Av.±Stdev. Aggr. Av.±Stdev.

TextRank 28.8 11.8 ±4.2 28.0 11.5 ±4.1
TF*IDF 30.3 13.1 ±4.4 32.7 13.3 ±4.8
Topical PageRank 29.2 12.5 ±4.3 28.6 11.7 ±4.2
XGBoost (47.1) 45.6 (20.6) 19.4 ±6.2 (48.3) 45.8 (20.8) 19.4 ±6.3
XGBoost + fTF*IDF (47.2) 45.1 (20.8) 19.3 ±6.0 (48.2) 46.8 (20.5) 19.8 ±6.3
XGBoost+ fTF*IDF, fLDA (48.1) 46.0 (20.9) 19.7 ±6.1 (49.8) 47.5 (21.1) 20.2 ±6.3
SVM + fTF*IDF, fLDA (43.3) 42.0 (19.3) 18.0 ±5.7 (42.6) 41.0 (18.0) 17.2 ±5.7
Wikipedia Background:
TF*IDF 26.9 11.2 ±4.0 29.6 12.1 ±4.4
Topical PageRank 27.5 11.6 ±4.1 28.4 11.4 ±4.2
XGBoost + fTF*IDF, fLDA (48.8) 46.4 (21.3) 20.0 ±6.3 (49.4) 46.8 (21.2) 19.8 ±6.4

outperform each of the standard unsupervised techniques on every test
collection by a margin for the different metrics. These results highlight
the (perhaps unsurprising) need for supervision and feature design. Mod-
els show improvement using contextual information ( fTF*IDF, fLDA). Also
for unsupervised models, techniques like TF*IDF and Topical PageRank
which include background information generally perform better than those
that do not, like TextRank. For statistical classifiers, the gradient boosted
decision tree outperforms the linear classifier on each occasion.

For the TF*IDF and Topical PageRank models, using IDFs or topic mod-
els outperform those inferred from the more general Wikipedia background
collection. This is less the case when they are used as features in the super-
vised models.

4.4.4 Comparison of different test collections

Between test collections there is a clear distinction in performance by key-
phrase extractors for the different types of content. Precision@5 and F1
scores for keyphrases predicted on Online Sports content can be up to 10%
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Table 4.6: Experimental results for different unsupervised and supervised mod-
els. The macro-averaged F1 measure selected keyphrases is evaluated
on an aggregated set of keyphrases from different annotators (Aggr.)
and for scores averaged for different annotators with standard deviation
(Av.±Stdv.). Development scores for supervised classifiers are included
between brackets.

Test Collection→ Online Sports Online News
Model ↓ Aggr. Av.±Stdev. Aggr. Av.±Stdev.
TextRank 26.0 22.1 ±5.9 21.3 17.2 ±5.1
TF*IDF 27.5 22.6 ±5.9 24.1 19.3 ±5.9
Topical PageRank 27.1 22.7 ±5.8 22.8 18.6 ±5.5
XGBoost (35.9) 36.0 (31.5) 32.4 ±8.3 (29.2) 31.6 (26.0) 26.7 ±7.4
XGBoost + fTF*IDF (36.7) 36.6 (32.1) 32.1 ±8.1 (29.7) 31.7 (26.3) 26.8 ±7.5
XGBoost+ fTF*IDF, fLDA (37.5) 36.4 (32.3) 32.6 ±8.2 (30.8) 31.8 (27.1) 27.1 ±7.7
SVM + fTF*IDF, fLDA (33.2) 33.9 (29.4) 27.3 ±7.4 (27.1) 29.5 (24.5) 23.8 ±7.2
Wikipedia Background:
TF*IDF 26.4 22.7 ±6.1 22.6 18.1 ±5.7
Topical PageRank 26.9 22.6 ±6.0 21.7 17.8 ±5.1
XGBoost + fTF*IDF, fLDA (37.2) 36.7 (32.4) 33.1 ±8.6 (30.9) 31.8 (27.2) 27.1 ±7.6

Test Collection→ Lifestyle Magazines Printed Press
Model ↓ Aggr. Av.±Stdev. Aggr. Av.±Stdev.

TextRank 16.6 13.6 ±5.0 15.6 12.8 ±4.3
TF*IDF 17.5 15.4 ±5.1 18.1 14.2 ±4.8
Topical PageRank 17.0 14.8 ±5.1 16.1 12.9 ±4.3
XGBoost (26.2) 26.5 (23.0) 23.0 ±7.4 (25.8) 25.6 (22.8) 21.3 ±7.0
XGBoost + fTF*IDF (26.2) 26.0 (23.2) 23.1 ±7.4 (25.8) 26.1 (22.5) 22.0 ±7.0
XGBoost+ fTF*IDF, fLDA (26.7) 26.4 (23.3) 23.1 ±7.2 (26.6) 26.5 (23.2) 22.7 ±7.1
SVM + fTF*IDF, fLDA (24.1) 24.2 (21.6) 19.5 ±6.7 (22.7) 22.4 (19.7) 17.9 ±6.1
Wikipedia Background:
TF*IDF 15.5 13.0 ±4.7 16.4 13.2 ±4.7
Topical PageRank 16.2 13.8 ±4.7 15.8 12.6 ±4.3
XGBoost + fTF*IDF, fLDA (27.1) 26.8 (23.7) 23.3 ±7.2 (26.4) 26.1 (23.2) 22.3 ±7.0

higher than those for Lifestyle and Printed Press. An explanation for this
may be the focus on entities in these Sports documents, and higher annota-
tor agreement for these documents. These types of keyphrases are covered
well by candidate generators and are modeled well by the features. Scores
for Online News are overall better than Lifestyle and Printed Press.

The optimal number of keyphrases for aggregated target sets is eight,
and for per-annotator sets is four. This difference seems reasonable, given
that a single annotator on average assigns about 5 keyphrases, whereas the
per-annotator sets are aggregates of 5 annotations.

As a result from the high levels of disagreement between annotators,
standard deviations on averaged scores are equally high, even more so for
supervised models than unsupervised models. Optimal cut-off confidence
thresholds for optimal F1 are highly dependent on the evaluation setting
(aggregated versus annotators based) as is apparent from Fig. 4.8. While
scores calculated for aggregated sets of keyphrases (Aggr.) are not be com-
pared with those averaged over the different annotators (Av.), the differ-
ence between them is most notable for the precision@5 metric. Precision@5
scores are generally much higher for aggregated sets as these contain much
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more keyphrases as they include the same semantic concepts in different
forms. On average precision@5 for an automated extractor is around 50%,
whereas this value drops to around 25% when evaluated for annotators
separately. For the common purpose of summarization by keyphrases, we
advocate the use of multiple opinions per document for evaluation. As
the task is inherently objective, obtaining scores with low deviations is
a desirable aspect of a keyphrase extractor, as this means the keyphrase
sets satisfy different opinions better. When keyphrases are used for visual
purposes, a better objective is to optimize the score for aggregated sets of
keyphrases.

4.4.5 Training set size

In Section 4.4.2 the need for supervision in automatic keyphrase extrac-
tion was highlighted. In this section we study the annotation effort versus
performance. Figure 4.9 plots the performance of supervised models with
contextual features (XGBoost + fTF*IDF + fLDA) for different amounts of an-
notated documents in the training data. We use limited sets of training data
(10, 25, 50, 100 and 300 documents) and measure the annotator-averaged
F1 score using the models. This demonstrates the rapid increase in super-
vised performance over the unsupervised models. From a minimum of 25
annotated documents, the F1 measure exceeds each of the unsupervised
models. Another observation is that the optimal performance is reached
quite rapidly: a maximum value is obtained for as few as a hundred anno-
tated documents. On the one hand, this shows that the annotation cost for
a supervised system that significantly outperforms the best unsupervised
systems is quite low. On the other hand, it highlights the need for more
descriptive features to further improve supervised keyphrase extraction.

4.4.6 Training data from multiple opinions

Previous sections focused on the effect of multiple opinions on the evalu-
ation of keyphrase extraction. Figure 1.1 shows the resulting F1score for
the different subcollections, comparing a supervised method (XGBoost +
fTF*IDF+ fLDA) with an unsupervised method (Topical PageRank), as a func-
tion of the number of training items (ranging from 5 to 300 documents). For
the supervised method, we also show the influence of multiple opinions
during training (‘5 Annotators’ vs. ‘1 Annotator) The ‘5 Annotators’ case
makes use of the aggregated set of annotated keyphrases from all 5 anno-
tators for each document. We observe a limited increase in F1 performance
by aggregating keyphrase sets. This is partly due to the increasing amount
of positive training data. An additional explanation is the following: for
training collections generated by single readers, or document authors, it
is likely that many candidates not tagged as keyphrase, might be seen as
keyphrases by others. Yet during training they are implicitly considered
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Figure 4.9: Supervised model (XGBoost + fTF*IDF+ fLDA) versus various unsuper-
vised model (Topical PageRank) for different amounts of training data.

as negative cases. When multiple opinions are not available, an elegant
solution is to recast the problem into a positive versus unlabeled learning
setting [38, 39].

4.4.7 Effect of Document Length

Finally we study the influence of document length on extraction perfor-
mance. Figure 4.10 shows F1 averaged per annotator for the supervised
models as a function of document length. The overall trend is that scores
get lower for longer documents, most notably for Lifestyle content. Intu-
itively, this is not surprising, since a longer document will produce more
candidate phrases and it thus becomes more difficult to pick the (about 5)
correct ones.

4.5 Guidelines for Automatic Keyphrase Extrac-
tion

In this paper, we presented a number of large, new collections for evalua-
tion of Automatic Keyphrase Extraction, with multiple opinions per docu-
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Figure 4.10: Annotator-averaged F1 for the supervised model (XGBoost + fTF*IDF+
fLDA) versus document length.

ment. A panel of more than 350 annotators provided sets of keyphrases for
different types of content from online news, online sports, lifestyle magazines
and printed press. We were able to quantify the subjectivity of the keyphrase
extraction task in terms of annotator disagreement, thanks to availability
of multiple opinions per annotated document. As shown, this has impor-
tant consequences on evaluation and training of keyphrase extractors. We
studied different ways of assessing keyphrase extractor output for a num-
ber of existing supervised and unsupervised techniques. Our evaluation
experiments demonstrated the importance of a suitable candidate genera-
tion strategy, and the superior effectiveness of supervised models over un-
supervised models, even for low annotation efforts. When training on doc-
uments with multiple opinions, a small increase in performance is found
using aggregated sets of keyphrases for training.

Many challenges and opportunities for effective keyphrase extraction
remain. To conclude, we present several guidelines one should take into
account when automatically extracting keyphrases and future research op-
portunities.

• Candidate generation: Proper candidate generation cannot be un-
derestimated. Depending on the type of the documents, candidate
phrases need to cover the keyphrases assigned by annotators while
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keeping the ratio of candidates versus keyphrases as low as possible.
Figure 4.6 indicates that many valid keyphrases can be lost in this
stage by over-filtering or missing crucial keyphrase forms while gen-
erating too many candidates which seldom appear as a keyphrase.

• Feature Design: A crucial aspect of keyphrase extraction remains
supervision and feature design. As Fig. 4.9 shows, performance of
supervised classifiers tends to stagnate for a relatively low amount
of training data, which indicates limited expressiveness by the fea-
tures. A possibility for future research is the use of neural network
classifiers for more sophisticated representations of keyphrases.

• Evaluation: Our evaluation show the frailty of current keyphrase
evaluation and potentially large fluctuations in scores depending on
what sets of annotations are used for evaluation. As [40] already
noted, a more suitable evaluation for keyphrase extractors would
be to let annotators compare sets of keyphrases output by different
models. A downside of this setting is that different models need to be
evaluated separately, and fine-tuning towards individual opinions is
impractical.

• Task subjectivity: Low agreement between annotators on keyphrases
as demonstrated in Table 4.3 shows that keyphrase extraction remains
a highly subjective natural language processing task with large con-
sequences for evaluation and training.

• Reranking: A topic that received less attention in this first evalua-
tion is topic coverage in keyphrase sets. Some keyphrase extraction
systems have been proposed with ways to optimize the coverage of
topics in sets of keyphrases [41].

The aim of this work was to underline the importance of these issues, and
therefore we make our new test collections available for academic use, to
encourage research on better evaluation and extraction techniques of key-
phrases, addressing a number of open issues in this area.
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4.A Supervised Keyphrase Extraction as Positive
Unlabeled Learning

In follow-up work, making use of the datasets presented above, we study the in-
fluence of multiple opinions of keyphrases on training and evaluation. Multiple
opinions are expensive to obtain but are necessary for reliable evaluation and train-
ing. We show that, by rephrasing the problem of kephrase extraction as positive-
unlabeled learning we obtain scores which approximate scores from the ideal case
of classifiers trained on multiple opinions, even when only based on single anno-
tations, by applying a reweighting strategy of unlabeled candidates and strategies
to counter the imbalance or noise of the training collections.

? ? ?

L. Sterckx, C. Caragea, T. Demeester and C. Develder

Presented at the Conference on Empirical Methods in Natural Language
Processing, Austin (Texas), USA, 2016.

Abstract In previous chapters, the problem of noisy and unbalanced train-
ing data for supervised keyphrase extraction results from the subjectiv-
ity of keyphrase assignment, which we quantify by crowdsourcing key-
phrases for articles with many annotators per document. We show that
annotators exhibit substantial disagreement, meaning that single annota-
tor data could lead to very different training sets for supervised keyphrase
extractors. Thus, annotations from single authors or readers lead to noisy
training data and poor extraction performance of the resulting supervised
extractor. We provide a simple but effective solution to still work with
such data by reweighting the importance of unlabeled candidate phrases
in a two stage Positive Unlabeled Learning setting. We show that perfor-
mance of trained keyphrase extractors approximates a classifier trained on
articles labeled by multiple annotators, leading to higher average F1scores
and better rankings of keyphrases. We apply this strategy to a variety of
test collections from different backgrounds and show improvements over
strong baseline models.

4.A.1 Introduction

Keyphrase extraction is the task of extracting a selection of phrases from
a text document to concisely summarize its contents. Applications of key-
phrases range from summarization [2] to contextual advertisement [4] or
simply as aid for navigation through large text corpora.

Existing work on automatic keyphrase extraction can be divided in su-
pervised and unsupervised approaches. While unsupervised approaches
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are domain independent and do not require labeled training data, super-
vised keyphrase extraction allows for more expressive feature design and
is reported to outperform unsupervised methods on many occasions [42,
43]. A requirement for supervised keyphrase extractors is the availability
of labeled training data. In literature, training collections for supervised
keyphrase extraction are generated in different settings. In these collec-
tions, keyphrases for text documents are either supplied by the authors or
their readers. In the first case, authors of academic papers or news articles
assign keyphrases to their content to enable fast indexing or to allow for
the discovery of their work in electronic libraries [8, 16, 44]. Other collec-
tions are created by crowdsourcing [45] or based on explicit deliberation by
a small group of readers [11]. A minority of test collections provide mul-
tiple opinions per document, but even then the amount of opinions per
document is kept minimal [46].

The traditional procedure for supervised keyphrase extraction is refor-
mulating the task as a binary classification of keyphrase candidates. Su-
pervision for keyphrase extraction faces several shortcomings. Candidate
phrases (generated in a separate candidate generation procedure), which
are not annotated as keyphrases, are seen as non-keyphrase and are used
as negative training data for the supervised classifiers. First, on many occa-
sions these negative phrases outnumber true keyphrases many times, cre-
ating an unbalanced training set [16, 42]. Second, as Frank et al. [16] noted:
authors do not always choose keyphrases that best describe the content of
their paper, but they may choose phrases to slant their work a certain way,
or to maximize its chance of being noticed by searchers. Another problem
is that keyphrases are inherently subjective, i.e., keyphrases assigned by
one annotator are not the only correct ones [46]. These assumptions have
consequences for training, developing and evaluating supervised models.
Unfortunately, a large collection of annotated documents by reliable an-
notators with high overlap per document is missing, making it difficult
to study disagreement between annotators or the resulting influence on
trained extractors, as well as to provide a reliable evaluation setting. In
this paper, we address these problems by creating a large test collection of
articles with many different opinions per article, evaluate the effect on ex-
traction performance, and present a procedure for supervised keyphrase
extraction with noisy labels.

4.A.2 Noisy Training Data for Supervised Keyphrase Ex-
traction

A collection of online news articles and lifestyle magazine articles was pre-
sented to a panel of 357 annotators of various ages and backgrounds, (se-
lected and managed by iMinds - Living Labs11) who were trained to select

11https://www.iminds.be/en/succeed-with-digital-research/proeftuinonderzoek/

https://www.iminds.be/en/succeed-with-digital-research/proeftuinonderzoek/
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Figure 4.11: This plot shows the fraction of all keyphrases from the training set
agreed upon versus the fraction of all annotators.

Figure 4.12: Effect of overlap on extraction performance.

a limited number of short phrases that concisely reflect the documents’ con-
tents. No prior limits or constraints were set on the amount, length, or
form of the keyphrases. Each document was presented multiple times to
different users. Each user was assigned with 140 articles, but was not re-
quired to finish the full assignment. The constructed training collections
have on average six and up to ten different opinions per article.

We visualize the agreement on single keyphrases in Figure 4.11, which
shows the fraction of annotated keyphrases versus agreement by the com-
plete set of readers. Agreement on keyphrases appears low, as a large frac-
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tion of all keyphrases assigned to documents (>50%) are only assigned by
single annotators. We note that different sets of keyphrases by different
annotators are the result of the subjectiveness of the task, of different in-
terpretations by the annotators of the document, but also because of se-
mantically equivalent keyphrases being annotated in different forms, e.g.,
“Louis Michel" vs. “Prime Minister Louis Michel" or “Traffic Collision" vs.
“Car Accident".

The observation in Figure 4.11 has important consequences for training
models on keyphrases annotated by a single annotator, since other anno-
tators may have chosen some among the ones that the single selected an-
notator did not indicate (and hence these should not be used as negative
training data).

A single annotator assigning keyphrases to 100 documents results on
average in a training set with 369 positive training instances and 4,981
negative training instances generated by the candidate extractor. When
assigning these 100 documents to 9 other annotators, the amount of pos-
itive instances increases to 1,258 keyphrases, which means that labels for
889 keyphrase candidates, or 17% of the original negative candidates when
training on annotations by a single annotator, can be considered noise and
relabeled. As a result, ratios of positive to negative data also change dras-
tically. We visualize the effect of using training data from multiple anno-
tators per document in Figure 4.12. Classifiers trained on the aggregated
training collection with multiple opinions (using all assigned keyphrases
at least once as positive training data) perform better on held-out test col-
lections containing only keyphrases of high agreement (assigned by > 2
annotators).

When using keyphrases from many different annotators per document,
the amount of positive candidates increases and as a result, the Macro Av-
erage F1 (MAF1) of the corresponding classifier. We detail our experimen-
tal setup and supervised classifier in Section 4.A.3.1.

4.A.3 Reweighting Keyphrase Candidates

Observations described in Section 4.A.2 indicate that unlabeled keyphrase
candidates are not reliable as negative examples by default. A more suit-
able assumption is to treat supervised keyphrase extraction as Positive Un-
labeled Learning, i.e., an incomplete set of positive examples is available as
well as a set of unlabeled examples, of which some are positive and others
negative. This topic has received much attention as it has many applica-
tions [47, 48], but has not been explored for supervised keyphrase extrac-
tion. We base our approach on work by Elkan and Noto [38] and modify
the supervised extractor by assigning individual weights to training ex-
amples. Instead of assuming the noise to be random, we assign weights
depending on the document and the candidate.
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Table 4.7: String relation features for coreference resolution

Feature Definition

Head match headkeyphrase == headcandidate
Extent match extentkeyphrase == extentcandidate
Substring headkeyphrase substring of headcandidate
Alias acronym(headkeyphrase) == headcandidate

By reweighting importance of training samples, we seek to mimic the
case of multiple annotators, to model the uncertainty of negative keyphrase
candidates, based only on annotations by a single annotator. In a first stage,
we train a classifier on the single annotator data and use predictions on
the negative or unlabeled candidates, to reweigh training instances. The
reweighted training collection is then used to train a second classifier to
predict a final ranking or the binary labels of the keyphrase candidates.

Positive examples are given unit weight and unlabeled examples are
duplicated; one copy of each unlabeled keyphrase candidate x is made
positive with weight w(x) = P(keyphrase|x, s = 0) and the other copy is
made negative with weight 1−w(x) with s indicating whether x is labeled
or not.

Instead of assigning this weight as a constant factor of the predictions
by the initial classifier as in Elkan and Noto [38], we found that two mod-
ifications allow improving the weight estimate, w(x) ≤ 1. We normalize
probabilities P(keyphrase, x, s = 0) to candidates not included in the initial
set of keyphrases per document. Besides this self-predicted probability, we
include a simple measure indicating pairwise coreference between unla-
beled candidates and known keyphrases in a function Coref(candidate,keyphrase)∈
{0, 1},

returning 1 if one of the binary indicator features, presented in [49] and
shown in Table 4.7, is present. In this description, the term head means
the head noun phrase of a candidate or keyphrase and the extent is the
largest noun phrase headed by the head noun phrase. The self-predicted
probability is summed with the output of the coreference resolver and the
final weight becomes:

w(x) =min

(
1,

P(keyphrase|x)
max(x′ ,s=0)∈d P(keyphrase|x′) + max

∀keyphrase∈d
Coref(x, keyphrase)

)

with d being a document from the training collection.

4.A.3.1 Experiments and Results

Hasan and Ng [50] have shown that techniques for keyphrase extraction
are inconsistent and need to be tested across different test collections. Next
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to our collections with multiple opinions (Online News and Lifestyle Maga-
zines), we apply the reweighting strategy on test collections with sets of
author-assigned keyphrases: two sets from CiteSeer abstracts from the
World Wide Web Conference (WWW) and Knowledge Discovery and Data
Mining (KDD), similar to the ones used in [8]. The Inspec dataset is a collec-
tion of 2,000 abstracts commonly used in keyphrase extraction literature,
where we use the ground truth phrases from controlled vocabulary [44].
Descriptive statistics of these test collections are given in Table 4.8.

We use a rich feature set consisting of statistical, structural, and seman-
tic properties for each candidate phrase, that have been reported as effec-
tive in previous studies on supervised extractors [7, 16, 44]: (i) term fre-
quency, (ii) number of tokens in the phrase, (iii) length of the longest term
in the phrase, (iv) number of capital letters in the phrase, (v) the phrase’s
POS-tags, (vi) relative position of first occurrence, (vii) span (relative last
occurrence minus relative first occurrence), (viii) TF*IDF (IDF’s trained on
large background collections from the same source) and (ix) Topical Word
Importance, a feature measuring the similarity between the word-topic
topic-document distributions presented in [22], with topic models trained
on background collections from a corresponding source of content.

As classifier we use gradient boosted decision trees implemented in
the XGBoost package [35]. During development, this classifier consistently
outperformed Naive Bayes and linear classifiers like logistic regression or
support vector machines.

We compare the reweighting strategy with uniform reweighting and
strategies to counter the imbalance or noise of the training collections, such
as subsampling, weighting unlabeled training data as in [38], and self-
training in which only confident initial predictions are used as positive
and negative data. For every method, global thresholds are chosen to opti-
mize the macro averaged F1 per document (MAF1). Next to the threshold
sensitive F1, we report on ranking quality using the Precision@5 metric.

Results are shown in Table A.6 with five-fold cross-validation. To study
the effect of reweighting, we limit training collections during folds to 100
documents for each test collection. Our approach consistently improves on
single annotator trained classifiers, on one occasion even outperforming a
training collection with multiple opinions. Compensating for imbalance
and noise tends to have less effect when the ratio of keyphrases versus
candidates is high (as for Inspec) or training collection is very large. When
the amount of training documents increases, the ratio of noisy versus true
negative labels drops. As future work we suggest using a separate coref-
erence resolver trained on a corpus annotated with coreferential relations
and a coreference resolution system for Dutch [51].
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4.A.4 Conclusion

It has been suggested that keyphrase annotation is highly subjective. We
present two data sets where we purposely gathered multiple annotations
of the same document, as to quantify the limited overlap between key-
phrases selected by different annotators. We suggest to treat non-selected
phrases as unlabeled rather than negative training data. We further show
that using multiple annotations leads to more robust automatic keyphrase
extractors, and propose reweighting of single annotator labels based on
probabilities from a first-stage classifier. This reweighting approach out-
performs other single-annotator state-of-the-art automatic keyphrase ex-
tractors on different test collections, when we normalize probabilities per
document and include co-reference indicators.
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5
Sequence-to-Sequence Applications

using Weak Supervision

This chapter presents two research papers situated in the domain of sequence-
to-sequence models for monolingual data. We introduce these contributions in a
seperate introduction section.

? ? ?

5.1 Introduction

Sequence-to-sequence (seq2seq) models transform sequences of symbols
from a source domain (e.g., a particular language) to sequences of sym-
bols in a target domain (e.g., another language). Seq2seq models [1, 2] are
one of the most successful applications of neural network architectures to
natural language processing. However, these architectures, mostly relying
on recurrent neural networks, are heavily parameterized and require large
amounts of high-quality training data.

The most common seq2seq model, as introduced by Bahdanau et al. [2],
consists of two recurrent neural networks (RNNs, commonly stacked with
LSTM memory cells): an encoder which processes the input and a decoder
which generates the output. Recently, such RNN-based seq2seq models
have been used with success in various natural language processing tasks,
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Figure 5.1: Sequence-to-Sequence modeling using recurrent neural networks.

including constituency parsing [3], and, most notably, machine transla-
tion [1, 4].

The probability of each output sequence (y1, . . . , yT′) is conditioned on
the corresponding input sequence (x1, . . . , xT), and is modeled as

p(y1, . . . , yT′ |x1, . . . , xT) =
T′

∏
t=1

p(yt|v, y1, . . . , yt−1), (5.1)

in which v represents the input sequence. During training, the log prob-
ability of an output sequence y given the considered input sequence x is
maximized over the training set S. The training objective becomes

1
|S| ∑

(x,y)∈S
log p(y|x). (5.2)

Each contribution p(yt|v, y1, . . . , yt−1) in the conditional output distribu-
tion of each training instance in eq. (5.1) is modeled as a categorical dis-
tribution over the output vocabulary terms, by performing a Softmax over
the decoder’s output at position t. Once training is complete, we produce
translations and generated by finding the most likely translation according
to the LSTM:

T = arg max p(T|S) (5.3)

In machine translation, text in a source language is read by the en-
coder RNN, and a decoder RNN produces the translated sentence. NMT
is appealing since it requires minimal domain knowledge and is conceptu-
ally simple. Apart from its application to machine translation, the seq2seq
paradigm has been successfully applied to monolingual text-to-text oper-
ations including text simplification [5], paraphrasing [6], style transfer [7],
sarcasm interpretation [8], and dialogue systems [9]. Figure 5.1 shows a
schematic representation of a seq2seq model for automated lyric annota-
tion. However, there are important differences between both problems,
such as the fact that the alignment between input and output sequences is
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much weaker or often non-existent. While these tasks are gaining in pop-
ularity and more datasets are being released, sizes are often not sufficient
for effectively training seq2seq models.

In this chapter we present a novel application of seq2seq with a large
accompanying dataset and study the task of text simplification for which
only noisy or low quality training data is available. In Section 5.2, we
present a novel application called Automated Lyric Annotation. We cre-
ate a dataset based on annotations generated by users of Genius.com, an
online lyrics database which provide explanations to lyrics and poetic text.
We compare seq2seq models to a retrieval approach and statistical machine
translation baseline and show we are able to provide explanations to poetic
text as evaluated by mechanical turkers. The created dataset is one of the
largest of its kind and we hope it stimulates research in text normalization
for social media text, metaphor processing and paraphrase generation.

In Section 5.3, we propose a task agnostic method to boost performance
on these tasks using large parallel text collections with no consistent oper-
ation going from source to text. We show how attention, generated prior
to translation using a generative model, can be used to steer output to-
wards having certain attributes. We apply this technique for the task of
text simplification. Text simplification transforms text into a more simple
and direct style, using a smaller vocabulary that substitutes infrequent and
otherwise difficult words (such as long composite nouns, technical terms,
neologisms and abstract concepts) by simpler corresponding expressions.
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5.2 Break it Down for Me:
A Study in Automated Lyric Annotation

This paper presents Automated Lyric Annotation. We create a dataset based on
crowdsourced annotations by users of the Genius.com online lyrics database which
allows users to provide explanations to lyrics and poetic text. Our seq2seq model
is able to provide explanations to held-out poetic text. The created dataset is one
of the largest of its kind and stimulates research in text normalization for social
media text, metaphor processing and paraphrase generation.

? ? ?

L. Sterckx, J. Naradowsky, B. Byrne, T. Demeester and C. De-
velder

Presented at the Conference on Empirical Methods in Natural Language
Processing, Copenhagen, Denmark, 2017.

Abstract Comprehending lyrics, as found in songs and poems, can pose a
challenge to human and machine readers alike. This motivates the need
for systems that can understand the ambiguity and jargon found in such
creative texts, and provide commentary to aid readers in reaching the cor-
rect interpretation. We introduce the task of automated lyric annotation
(ALA). Like text simplification, a goal of ALA is to rephrase the original
text in a more easily understandable manner. However, in ALA a system
should often include new or additional information to clarify niche terminol-
ogy and abstract concepts. To stimulate research on this task, we release a
large collection of crowdsourced annotations for song lyrics. We analyze
the performance of translation and retrieval models on this task, measur-
ing performance with both automated and human evaluation. We find that
each model captures a unique type of information important to the task.

5.2.1 Introduction

Song lyrics and poetry often make use of ambiguity, symbolism, irony, and
other stylistic elements to evoke emotive responses. These characteristics
sometimes make it challenging to interpret obscure lyrics, especially for
readers or listeners who are unfamiliar with the genre. To address this
problem, several online lyric databases have been created where users can
explain, contextualize, or discuss lyrics. Examples include MetroLyrics1

and Genius.com2. We refer to such commentary as a lyric annotation (Fig-
ure 5.2).

1http://www.metrolyrics.com
2http://genius.com
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How does it feel?
To be without a home

Like a complete unknown,

Like a rolling stone

The proverb “A rolling stone gathers no
moss" refers to people who are always on

the move, never putting down roots or
accumulating responsibilities and cares.

Figure 5.2: A lyric annotation for “Like A Rolling Stone" by Bob Dylan.

In this work we introduce the task of automated lyric annotation (ALA).
Compared to many traditional NLP systems, which are trained on newswire
or similar text, an automated system capable of explaining abstract lan-
guage, or finding alternative text expressions for slang (and other unknown
terms) would exhibit a deeper understanding of the nuances of language.
As a result, research in this area may open the door to a variety of interest-
ing use cases. In addition to providing lyric annotations, such systems can
lead to improved NLP analysis of informal text (blogs, social media, novels
and other literary works of fiction), better handling of genres with heavy
use of jargon (scientific texts, product manuals), and increased robustness
to textual variety in more traditional NLP tasks and genres.

Our contributions are as follows:
1. To aid in the study of ALA we present a corpus of 803,720 crowd-

sourced lyric annotation pairs suitable for training models for this
task.

2. We present baseline systems using statistical machine translation (SMT),
neural translation (Seq2Seq), and information retrieval.

3. We establish an evaluation procedure which adopts measures from
machine translation, paraphrase generation, and text simplification.
Evaluation is conducted using both human and automated means,
which we perform and report across all baselines.

5.2.2 The Genius ALA Dataset

We collect a dataset of crowdsourced annotations, generated by users of
the Genius online lyric database. For a given song, users can navigate to a
particular stanza or line, view existing annotations for the target lyric, or
provide their own annotation. Discussion between users acts to improve
annotation quality, as it does with other collaborative online databases like
Wikipedia. This process is gamified: users earn IQ points for producing
high quality annotations.

We collect 736,423 lyrics having a total 1,404,107 lyric annotation pairs
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Table 5.1: Properties of gathered dataset (Vlyrics and Vannot denote the vocabulary
for lyrics and annotations, � denotes the average amount).

# Lyric Annotation pairs 803,720
� Tokens per Lyric 15
� Tokens per Annotation 43
|Vlyrics| 124,022
|Vannot| 260,427

from all subsections (rap, poetry, news, etc.) of Genius. We limit the initial
release of the annotation data to be English-only, and filter out non-English
annotations using a pre-trained language identifier. We also remove anno-
tations which are solely links to external resources, and do not provide
useful textual annotations. This reduces the dataset to 803,720 lyric anno-
tation pairs. We list several properties of the collected dataset in Table 5.1.

5.2.3 Context Independent Annotation

Mining annotations from a collaborative human-curated website presents
additional challenges worth noting. For instance, while we are able to gen-
erate large quantities of parallel text from Genius, users operate without
a single, predefined and shared global goal other than to maximize their
own IQ points. As such, there is no motivation to provide annotations for
a song in its entirety, or independent of previous annotations.

For this reason we distinguish between two types of annotations: con-
text independent (CI) annotations are independent of their surrounding con-
text and can be interpreted without it, e.g., explain specific metaphors or
imagery or provide narrative while normalizing slang language. Con-
trastively, context sensitive (CS) annotations provide broader context be-
yond the song lyric excerpt, e.g., background information on the artist.

To estimate contribution from both types to the dataset, we sample
2,000 lyric annotation pairs and label them as either CI or CS. Based on
this sample, an estimated 34.8% of all annotations is independent of con-
text. Table 5.2 shows examples of both types.

While the goal of ALA is to generate annotations of all types, it is evi-
dent from our analysis that CS annotations can not be generated by models
trained solely on parallel text. That is, these annotations cannot be gener-
ated without background knowledge or added context. Therefore, in this
preliminary work we focus on predicting CI lyric annotations.
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Table 5.2: Examples of context independent and dependent pairs of lyrics [L] and
annotations [A].

Type % of Examplesannotations

CI 34.8% [L] Gotta patch a lil kid tryna get at this
cabbage

(Context [A] He’s trying to ignore the people trying to get at his
money.

independent) [L] You know it’s beef when a smart brother
gets stupid

[A] You know an argument is serious when an otherwise
rational man loses rational.

CS 65.2% [L] Cause we ain’t break up, more like broke
down

(Context [A] The song details Joe’s break up with former girl-
friend Esther.

sensitive) [L] If I quit this season, I still be the
greatest, funk

[A] Kendrick has dropped two classic albums and
pushed the artistic envelope further.

5.2.4 Baselines

We experiment with three baseline models used for text simplification and
paraphrase generation.

• Statistical Machine Translation (SMT): One approach is to treat the
task as one of translation, and to use established statistical machine
translation (SMT) methods [10] to produce them. We train a stan-
dard phrase-based SMT model to translate lyrics to annotations, us-
ing GIZA++ [11] for word alignment and Moses [12] for phrasal align-
ment, training, and decoding.

• Seq2Seq: Sequence-to-sequence models [1] offer an alternative to
SMT systems, and have been applied successfully to a variety of tasks
including machine translation. In Seq2Seq, a recurrent neural net-
work (RNN) encodes the source sequence to a single vector repre-
sentation. A separate decoder RNN generates the translation condi-
tioned on this representation of the source sequence’s semantics. We
utilize Seq2Seq with attention [2], which allows the model to addi-
tionally condition on tokens from the input sequence during decod-
ing.

• Retrieval: In practice, similar lyrics may reappear in different con-
texts with exchangeable annotations. We treat the training corpus as
a database of lyrics’ excerpts with corresponding annotations, and at
test time select the annotation assigned to the most similar lyric. This
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Table 5.3: Lyrics excerpts with annotations from Genius (‘Human’) and automated
annotators.

Lyric: and when I slept, I dream g’s, son I need some
Human: he dreams about large amounts of money because he is in need of it .
SMT: and when he slept, and he’s dream, g’s son, he needs some
Seq2Seq: when he sleeps , he dreams of getting money.
Retrieval: g’s refer to the ghetto gangsters in london that the kid has become in-

volved with

Lyric: Mossberg pump I’m ridin’ shotgun literally
Human: riding shotgun means to ride up front in the passenger seat
SMT: Mossberg pump - action shotgun, he’s saying he’s ridin’ shotgun liter-

ally.
Seq2Seq: Mossberg is a firearms manufacturer. He is riding shotgun with his shot-

gun.
Retrieval: he fully respects the people mentioned earlier and is riding for them.

Lyric: and my eyes red cause of all that haze
Human: his eyes turn red due to lack of hydration from the weed one smokes (in

this case , smoking purple haze)
SMT: and his eyes are red because of all that haze.
Seq2Seq: his eyes are red because of all the weed he smokes.
Retrieval: his eyes are red as a sign of the fatigue of travel and , possibly , from

drugs and alcohol .

baseline is referred to as the retrieval model. We use standard TF-
IDF weighted cosine distance as similarity measure between lyrics’
excerpts.

5.2.5 Evaluation

5.2.5.1 Data

We evaluate automatic annotators on a selection of 354 CI annotations and
partition the rest of the annotations into 2,000 instances for development
and the full remainder for training. It is important to note that the annota-
tions used for training and development include CI as well as CS annota-
tions.

Annotations often include multiple sentences or even paragraphs for
a single lyrics excerpt (which does not include end marks), while ma-
chine translation models need aligned corpora at sentence level to perform
well [13]. We therefore transform training data by including each sentence
from the annotation as a single training instance with the same lyric, re-
sulting in a total of 1,813,350 sentence pairs.

We use this collection of sentence pairs (denoted as sent. in results) to
train the SMT model. Seq2Seq models are trained using sentence pairs as
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well as full annotations. Interestingly, techniques encouraging alignment
by matching length and thresholding cosine distance between lyric and
annotation did not improve performance during development.

5.2.6 Measures

For automated evaluation, we use measures commonly used to evaluate
translation systems (BLEU, METEOR), paraphrase generation (iBLEU) and
text simplification (SARI).

BLEU [14] uses a modified form of precision to compare generated an-
notations against references from Genius. METEOR [15] is based on the
harmonic mean of precision and recall and, along with exact word match-
ing, includes stemming and synonymy matching. iBLEU [16] is an ex-
tension of the BLEU metric to measure diversity as well as adequacy of
the annotation, iBLEU = 0.9 × BLEU(Annotation, Reference) − 0.1 ×
BLEU(Annotation, Lyric). SARI [13] measures precision and recall of words
that are added, kept, or deleted separately and averages their arithmetic
means.

We also measure quality by crowdsourcing ratings via the online plat-
form CrowdFlower.3 We present collaborators with a song lyric excerpt an-
notated with output from the annotation generators as well as a reference
annotation from Genius. Collaborators assign a 5-point rating for Fluency
which rates the quality of the generated language, and Information which
measures the added clarification by the annotation, a key aspect of this
task. For each lyric annotation pair, we gather ratings from three different
collaborators and take the average.

5.2.6.1 Hyperparameters and Optimization

Here we describe implementation and some of the optimizations used when
training the models. For seq2seq models, we use OpenNMT [17] and op-
timize for perplexity on the development set. Vocabulary for both lyrics
and annotations is reduced to the 50,000 most frequent tokens and are
embedded in a 500-dimensional space. We use two layers of stacked bi-
directional LSTMs with hidden states of 1024 dimensions. We regularize
using dropout (keep probability of 0.7) and train using stochastic gradi-
ent descent with batches of 64 samples for 13 epochs. The decoder of the
SMT model is tuned for optimal BLEU scores on the development set using
minimum error rate training [18].

3https://www.crowdflower.com/
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Figure 5.3: Attention visualization of seq2seq models for ALA.

5.2.7 Results

To measure agreement between collaborators, we compute the kappa sta-
tistic [19]. Kappa statistics for fluency and information are 0.05 and 0.07
respectively, which indicates low agreement. The task of evaluating lyric
annotations was difficult for CrowdFlower collaborators as was apparent
from their evaluation of the task. For evaluation in future work, we rec-
ommend recruitment of expert collaborators familiar with the Genius plat-
form and song lyrics. Table 5.3 shows examples of lyrics with annotations
from Genius and those generated by baseline models. A notable observa-
tion is that translation models learn to take the role of narrator, as is com-
mon in CI annotations, and recognize slang language while simplifying it
to more standard English.

Automatic and human evaluation scores are shown in Table 5.6. Next
to evaluation metrics, we show two properties of automatically generated
annotations; the average annotation length relative to the lyric and the oc-
currence of profanity per token in annotations, using a list of 343 swear
words.

The SMT model scores high on BLEU, METEOR and SARI but shows
a large drop in performance for iBLEU, which penalizes lexical similarity
between lyrics and generated annotations as apparent from the amount
profanity remaining in the generated annotations.
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Standard SMT rephrases the song lyric from a third person perspective
but is conservative in lexical substitutions and keeps close to the grammar
of the lyric. A more appropriate objective function for tuning the decoder
which promotes lexical dissimilarity as done for paraphrase generation,
would be beneficial for this approach.

Seq2seq models generate annotations more dissimilar to the song lyric
and obtain higher iBLEU and Information scores. To visualize some of
the alignments learned by the translation models, Fig. 5.3 shows word-by-
word attention scores for a translation by the seq2seq model.

While the retrieval model obtains quality annotations when test lyrics
are highly similar to lyrics from the training set, retrieved annotations are
often unrelated to the test lyric or specific to the song lyric it is retrieved
from.

Out of the unsupervised metrics, METEOR obtained the highest Pear-
son correlation [20] with human ratings for Information with a coefficient
of 0.15.

5.2.8 Related Work

Work on modeling of social annotations has mainly focused on the use of
topic models [21, 22] in which annotations are assumed to originate from
topics. They can be used as a preprocessing step in machine learning tasks
such as text classification and image recognition but do not generate lan-
guage as required in our ALA task.

Text simplification and paraphrase generation have been widely stud-
ied. Recent work has highlighted the need for large text collections [23] as
well as more appropriate evaluation measures [13, 24]. They indicated that
especially informal language, with its high degree of lexical variation, e.g.,
as used in social media or lyrics, poses serious challenges [25].

Text generation for artistic purposes, such as poetry and lyrics, has been
explored most commonly using templates and constraints [26]. In regard
to rap lyrics, Wu et al. [27] present a system for rap lyric generation that
produces a single line of lyrics that is meant to be a response to a single
line of input. Most recent work is that of Zhang et al. [28] and Potash et
al. [29], who show the effectiveness of RNNs for the generation of poetry
and lyrics.

The task of annotating song lyrics is also related to metaphor process-
ing. As annotators often explain metaphors used in song lyrics, the Ge-
nius dataset can serve as a resource to study computational modeling of
metaphors [30].

5.2.9 Conclusion and Future Work

We presented and released the Genius dataset to study the task of Auto-
mated Lyric Annotation. As a first investigation, we studied automatic
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generation of context independent annotations as machine translation and
information retrieval. Our baseline system tests indicate that our corpus is
suitable to train machine translation systems.

Standard SMT models are capable of rephrasing and simplifying song
lyrics but tend to keep close to the structure of the song lyric. Seq2Seq
models demonstrated potential to generate more fluent and informative
text, dissimilar to the lyric.

A large fraction of the annotations is heavily based on context and back-
ground knowledge (CS), one of their most appealing aspects. As future
work we suggest injection of structured and unstructured external knowl-
edge [31] and explicit modeling of references [32].
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5.3 Prior Attention for Style-aware Sequence-to-
Sequence Models

This paper proposes a task agnostic method to boost performance on seq2seq tasks
using large parallel text collections with no consistency in operations performed
when going from source to text. We show how attention, generated prior to trans-
lation using a generative model, can be used to steer output towards having certain
stylistic attributes.

? ? ?

L. Sterckx, J. Deleu, C. Develder and T. Demeester

Submitted to Proceedings of the Conference on Empirical Methods in
Natural Language Processing, Brussels, Belgium, 2018.

Abstract We extend sequence-to-sequence models with the possibility to
control the characteristics or style of the generated output, via attention
that is generated a priori (before decoding) from a latent code vector. After
training an initial attention-based sequence-to-sequence model, we use a
variational auto-encoder conditioned on representations of input sequences
and a latent code vector space to generate attention matrices. By sampling
the code vector from specific regions of this latent space during decod-
ing and imposing prior attention generated from it in the seq2seq model,
output can be steered towards having certain attributes. This is demon-
strated for the task of sentence simplification, where the latent code vector
allows control over output length and lexical simplification, and enables
fine-tuning to optimize for different evaluation metrics.

5.3.1 Introduction

Apart from its application to machine translation, the encoder-decoder or
sequence-to-sequence (seq2seq) paradigm has been successfully applied to
monolingual text-to-text tasks including simplification [5], paraphrasing [6],
style transfer [7], sarcasm interpretation [8], automated lyric annotation [33] and
dialogue systems [9]. A sequence of input tokens is encoded to a series of
hidden states using an encoder network and decoded to a target domain
by a decoder network. During decoding, an attention mechanism is used
to indicate which are the relevant input tokens at each step. This atten-
tion component is computed as an intermediate part of the model, and is
trained jointly with the rest of the model.

Alongside being crucial for effective translation, attention — while not
necessarily correlated with human attention — brings interpretability to
seq2seq models by visualizing how individual input elements contribute
to the model’s decisions. Attention values typically match up well with
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Figure 5.4: Training of a conditional variational autoencoder applied to attention
matrices. The seq2seq model translates training sentences from the
source to a target domain while generating attention matrices. These
matrices are concatenated with a representation of the source sentence
and encoded to a low dimensional latent vector space.

word alignments used in traditional statistical machine translation, ob-
tained with tools such as GIZA++ [34] or fast-align [35]. Therefore, several
works have included prior alignments from dedicated alignment software
such as GIZA++ or fast-align [36–38]. In particular, [37] showed that the
distance between the attention-infused alignments and the ones learned by
an independent alignment model can be added to the networks’ training
objective, resulting in improved translation and alignment quality. Fur-
ther, [39] demonstrated that this alignment between given input sentence
and generated output can be planned ahead as part of a seq2seq model:
their model makes a plan of future alignments using an alignment-plan
matrix and decides when to follow this plan by learning a separate com-
mitment vector. In the standard seq2seq model, where attention is calcu-
lated at each time step, such overall alignment or focus is only apparent
after decoding and is thus not carefully planned nor controlled. We hy-
pothesize that many text-to-text operations have varying levels of align-
ment and focus. To enable control over these aspects, we propose to pre-
compute alignments and use this prior attention to determine the structure
or focus before decoding in order to steer output towards having specific
attributes, such as length or level of compression.

We facilitate this control through an input represented in a latent vector
space (rather than, e.g., explicit ‘style’ attributes).

After training of the initial seq2seq model (with standard attention) on
a parallel text corpus, a conditional variational autoencoder [40] learns to
reconstruct matrices of alignment scores or attention matrices from a latent
vector space and the input sentence encoding. At translation time, we are
able to efficiently generate specific attention by sampling from regions in



142 CHAPTER 5

the latent vector space, resulting in output having specific stylistic attrib-
utes. We apply this method on a sentence simplification corpus, showing
that we can control length and compression of output while producing re-
alistic output and allowing fine-tuning for optimal evaluation scores.

5.3.2 Generation of Prior Attention

This section describes our proposed method, sketched in Figure 5.4, with
emphasis on the generation of prior attention matrices.

An encoder recurrent neural network computes a sequence of represen-
tations over the source sequence, i.e., its hidden states hs

i (with i = 1, . . . , n
and n the length of the source sequence). In attention-based models, an
alignment vector aj = [αj,1, ..., αj,n] is obtained by comparing the current
target hidden state ht

j with each source hidden state hs
i . A global context

vector cj is then computed as the weighted average, according to alignment
weights of aj, over all the source states hs

i at time step j (for j = 1, ..., m
over m decoding steps). After decoding, these alignment vectors form a
matrix A of attention vectors, A = [a1; a2; . . . ; am] capturing the alignment
between source and target sequence.

Table 5.5: Output excerpts for prior attention matrices sampled from a 2D latent
vector space. Samples are drawn from outer regions, with + indicating
large positive values and − for negative values.

z1 z2 The wave traveled across the Atlantic , and organized into a tropical depression
off the northern coast of Haiti on September 13 .

- - The wave traveled across the Atlantic , and organized into a tropical depression
off the northern coast of the country on September 13 .

- + The wave traveled across the Atlantic Ocean into a tropical depression off the
northern coast of Haiti on September 13 .

+ - The wave traveled across the Atlantic Ocean and the Pacific Ocean to the south ,
and the Pacific Ocean to the south , and the Atlantic Ocean to the west .

+ + The storm was the second largest in the Atlantic Ocean .

z1 z2 Below are some useful links to facilitate your involvement .
- - Below are some useful links to facilitate your involvement .
- + Below are some useful links to help your involvement .
+ - Below are some useful to be able to help help develop to help develop .
+ + Below is a software program that is used to talk about what is now .

Inspired by the field of image generation, we treat alignment matrices
as grayscale images and use generative models to create previously unseen
attention. Generative models have been applied to a variety of problems
giving state-of-the-art results in image generation, text-to-speech synthe-
sis, and image captioning. One of the most prominent models is the vari-
ational autoencoder (VAE) proposed by [41]. Given an observed variable
x, the VAE introduces a continuous latent variable z, and assumes x to be
generated from z, i.e., p(x, z) = p(x|z)p(z) , with p(z) being a prior over
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the latent variables. pD(x|z) is the conditional distribution that models the
generation procedure parameterized by a decoder network D. For a given
x, an encoder network E outputs a variational approximation qE(z|x) of the
true posterior over the latent values p(z|x) ∝ pD(x|z)pZ(z). The parame-
ters of E, D are learned using stochastic variational inference to maximize a
lower bound for the marginal likelihood of each observation in the training
data. In our setting, x represents the attention matrix.

Next to control over stylistic features, we want attention matrices to
be relevant for a specific source sentence. In the Conditional Variational
Autoencoder (CVAE) [40, 42], the standard VAE is conditioned on addi-
tional variables which can be used to generate diverse images conditioned
on certain attributes, e.g., generating different human faces given a sen-
timent. We view the source contexts as the added conditional attributes
and use the CVAE to generate diverse attention matrices instead of im-
ages. This context vector is represented by the source sentence encoding
hs. The CVAE encoder is conditioned on two variables, the attention ma-
trix A and the sentence encoding qE(z|A, hs). Analogous for the decoder,
the likelihood is now conditioned on two variables, a latent code z and
again the source sentence encoding, pD(A|z, hs). The variational lower
bound objective becomes

L(E, D, c) = Ez∼qE [log pD(X|z, c)]−DKL[qE(z|X, c)‖p(z|c)] (5.4)

i.e. we condition distributions on the additional variable c = hs denoting
the input sentence. This training procedure is visualized in Figure 5.4. This
training procedure of the CVAE is visualized in Figure 5.4. At test time, the
attention scores from the attention matrix, pre-generated from a latent code
sample and the source sentence encoding, are used instead of the standard
seq2seq model’s attention mechanism.

Table 5.6: Quantitative evaluation of existing baselines and seq2seq with prior at-
tention from the CVAE when choosing an optimal z sample for BLEU
scores. For comparison, we include the NTS model from [5] and the
EncDecA by [44].

BLEU SARI Length FKGL

[43] 67.74 35.34 0.90 10.0
[44] 90.00 37.62 0.95 10.4
[5] 88.16 33.86 0.91 10.1

Seq2seq + attention 89.92 33.06 0.91 10.3
Seq2seq + CVAE 90.14 38.30 0.97 10.5
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Figure 5.5: (a) Attention matrices for a single source sentence encoding and a two-
dimensional latent vector space. By conditioning the autoencoder on
the source sentence, the decoder recognizes the length of the source and
reduces attention beyond the last source token.
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5.3.3 Experiments

5.3.3.1 Prior Attention for Text Simplification

While our model is essentially task-agnostic, we demonstrate prior atten-
tion for the task of sentence simplification. The goal of sentence simpli-
fication is to reduce the linguistic complexity of text, while still retaining
its original information and meaning. It has been suggested that sentence
simplification can be defined by three major types of operations: splitting,
deletion, and paraphrasing [45]. We hypothesize that these operations oc-
cur at varying frequencies in the training data. We adopt our model in
an attempt to capture these operations into attention matrices and the la-
tent vector space, and thus control the form and degree of simplification
through sampling from that space. We train on the Wikilarge collection used
by Zhu [46]. Wikilarge is a collection of 296,402 automatically aligned com-
plex and simple sentences from the ordinary and simple English Wikipedia
corpora, used extensively in previous work [5, 43, 44, 47]. The training data
includes 2,000 development and 359 test instances created by [13]. These
are complex sentences paired with simplifications provided by Amazon
Mechanical Turk workers and provide a more reliable evaluation of the
task.

5.3.3.2 Hyperparameters and Optimization

We extend the OpenNMT [17] framework with functions for attention gen-
eration.We use a similar architecture as [46] and [5]: 2 layers of stacked
unidirectional LSTMs with bi-linear global attention as proposed by [48],
with hidden states of 512 dimensions. The vocabulary is reduced to the
50,000 most frequent tokens and embedded in a shared 500-dimensional
space. We train using SGD with batches of 64 samples for 13 epochs after
which the autoencoder is trained by translating sequences from training
data. Both the encoder and decoder of the CVAE comprise 2 fully con-
nected layers of 128 nodes. Weights are optimized using ADAM [49]. We
visualize and evaluate using a two-dimensional latent vector space. Source
and target sequences are both padded or reduced to 50 tokens. The integra-
tion of the CVAE is analogous across the family of attention-based seq2seq
models, i.e., our approach can be applied more generally with different
models or training data.

5.3.3.3 Discussion

To study the influence of sampling from different regions in the latent
vector space, we visualize the resulting attention matrices and measure
simplification quality using automated metrics. Figure 5.5 shows the two-
dimensional latent space for a single source sentence encoding using 64
samples ranging from values −2 to 2. Next to the target-to-source length
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ratio, we apply automated measures commonly used to evaluate simplifi-
cation systems [47, 50]: BLEU, SARI [13], FKGL4 [51]. Automated eval-
uation metrics for matrices originating from samples from different re-
gions of latent codes are shown in Figure 5.6. Inclusion of an attention
mechanism was instrumental to match existing baselines. Our standard
seq2seq model with attention, without prior attention, obtains a score of
89.92 BLEU points, which is close to scores obtained by similar models
used in existing work on neural text simplification [5, 44]. In Table 5.6, we
compare our seq2seq model with attention and without prior attention.
An optimal value for BLEU and SARI scores is found z = [−2, 0] For de-
creasing values of the first hidden dimension z1, we observe that attention
becomes situated at the diagonal, thus keeping closer to the structure of
the source sentence and having one-to-one word alignments. For increas-
ing values of z1, attention becomes more vertical and focused on single
encoder states. This type of attention gives more control to the language
model, as exemplified by output samples shown in Table 5.5. Output from
this region is far longer and less related to the source sentence.

Influence of the second latent variable z2 is less apparent from the at-
tention matrices. However, sampling across this dimension shows large
effects on evaluation metrics. For decreasing values, output becomes more
similar to the source, with higher BLEU as a result. Sampling these val-
ues along the zero-axis results in the overall highest BLEU and SARI score
of 90.14 and 38.30 points respectively, trading similarity for simplification
and readability.

5.3.4 Conclusion

We introduced a method to control the decoding process in sequence-to-
sequence models using attention, in terms of stylistic characteristics of the
output. Given the input sequence and an additional code vector to in-
fluence decoding characteristics, a variational autoencoder generates an
attention matrix, which is used by the decoder to generate the output se-
quence according to the alignment style directed by the code vector. We
demonstrated the resulting variations in output for the task of text simpli-
fication. Yet, our method can be applied to any form of parallel text: we
expect different types of training collections, such as translation or style
transfer, to give rise to different characteristics or mappings in the latent
space.

4Fleish-Kincaid Grade Level index.
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6
Conclusions and Future Research

NLP enables AI systems to interpret human language and perform tasks
such as automatic summarization, translation, named entity recognition,
relationship extraction, and sentiment analysis. Many effective modern
NLP systems are built using supervised machine learning methods, which
rely on labeled training data. However, the amount of unlabeled linguis-
tic data available to us is much larger and growing much faster than the
amount of labeled data. Recent efforts in machine learning have addressed
the increasing need for label-efficient machine learning: the ability to learn
in complex domains without requiring large quantities of labeled data.
This thesis emphasized the use of efficient supervision for a selection of
NLP tasks, and presented a variety of techniques which require less su-
pervision while still reaching state-of-the-art performance. In this section
we summarize our contributions, provide potential future directions, and
discuss the future of weak supervision for NLP.

6.1 Conclusions

As a first application of weak supervision, in Chapter 2 we investigated su-
pervision for knowledge base population systems. Relation extractors are
important components of knowledge base population systems, detecting
relations occurring between entities. Training relation extractors required
the availability of sufficient training data for every relation in the knowl-
edge base’s schema. We showed that the amount of manual labeling can
be significantly reduced by first applying distant supervision, which gen-
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erates training data by aligning large text corpora with existing knowledge
bases. However, this typically results in a highly noisy training set, where
many training sentences do not express the intended relation. We intro-
duced a techniques called semantic label propagation in which we used
low dimensional representations of shortest dependency paths between
entities of interest to bootstrap the classifiers. We showed that, with only
minutes of labeling per relation we are able to match or improve on accu-
racy of fully supervised relation extractors. By applying this technique in a
participation in the TAC-KBP shared task for knowledge base population
systems, we achieved top-ranking submissions. By using more and less
noisy training data, our sparse-feature-based linear classifiers were able to
obtain higher accuracies than systems using more sophisticated ensembles
and deep learning architectures.

In Chapter 3 we developed a more efficient method for the evaluation
of topic models by making use of existing labeled text collections. State-of-
the-art unsupervised topic models lead to reasonable statistical models of
documents but offer no guarantee of creating topics that are interpretable
by humans often a full manual evaluation of topics is needed. Proper eval-
uation required manual supervision which can be costly for large topic
models. Instead, we used existing, smaller labeled text collections to pro-
vide us with reference concepts and present a new measure for topic qual-
ity based on the alignment between these supervised and unsupervised
topics. Our proposed measure was shown to correlate better with human
evaluation than existing unsupervised measures.

Chapter 4 presented the creation of large corpora of news, sports and
fashion articles annotated with keyphrases by a diverse crowd of laymen
and professional writers. Prior, there was little consensus on the definition
of the task, a lack of large benchmark collections of keyphrase-labeled data,
and a lack of overview of the effectiveness of different techniques. Proper
evaluation of keyphrase extraction requires large test collections with mul-
tiple opinions, which were before, not available for research. We bench-
marked existing techniques for supervised and unsupervised keyphrase
extraction on the presented corpora. Next to benchmarking existing tech-
niques we studied the influence of overlap in the annotations on the per-
formance metrics. We concluded this chapter by rephrasing the supervised
keyphrase extraction problem as positive unlabeled learning in which a bi-
nary classifier is learned in a semi-supervised way from only positive key-
phrases and unlabeled candidate phrases. We showed that using multiple
annotations leads to more robust automatic keyphrase extractors, and pro-
posed reweighting of single annotator labels based on probabilities by a
first-stage classifier. This reweighting approach outperforms other single-
annotator state-of-the-art automatic keyphrase extractors on different test
collections, if we normalize probabilities per document and include co-
reference indicators.

In Chapter 5, we presented two applications of sequence-to-sequence
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(seq2seq) models trained on noisy or poorly aligned training data. Seq2seq
models are one of the most successful applications of deep learning archi-
tectures to natural language processing. These architectures, mostly rely-
ing on recurrent neural networks are heavily parameterized and require
large amounts of high-quality training data. We studied two applications
where only noisy or low quality training data is available. In a first setting
we presented the novel task of automated lyric annotation and an accom-
panying dataset providing explanations to lyrics and poetic text. These
models generate explanations to held-out poetic text. Our newly intro-
duced dataset is one of the largest of its kind and will stimulate research
in text normalization, metaphor processing and paraphrase generation. In
the second part of this chapter, we extended sequence-to-sequence models
with the possibility to control the characteristics or style of the generated
output, via attention that is generated a priori (before decoding) from a la-
tent code vector. After training an initial attention-based seq2seq model,
we used a variational auto-encoder conditioned on representations of in-
put sequences and a latent code vector space to generate attention matrices.
By sampling the code vector from specific regions of this latent space dur-
ing decoding and imposing prior attention generated from it in the seq2seq
model, output can be steered towards having certain attributes. This was
demonstrated for the task of sentence simplification, where the latent code
vector allows control over output length and lexical simplification, and en-
ables fine-tuning to optimize for different evaluation metrics.

6.2 Future Directions

Although algorithms received much of the credit for ending the last AI
winter, we believe new datasets and more efficient supervision will be es-
sential for extending the present AI summer. Many exciting opportunities
are still available for the perspective of weak supervision in combination
with deep learning, transfer learning and data augmentation for NLP.
Information Extraction Distant supervision and the patterns used for our
KBP experiments are just two sources of weak supervision. By accepting
weak supervision under many different forms and handling noise using
the appropriate methods behind the scenes, we can allow users to provide
higher-level, more expressive input. We believe that end-to-end informa-
tion extraction systems such as DeepDive and Snorkel are effective ways
of enabling non-ML experts to quickly generate training data and enable
use of deep learning models to new domains.
Keyphrase Extraction In Chapter 4 we showed the subjectivity of the con-
cept of keyphrases and that annotator agreement is low compared to other
NLP tasks. As noted in [1], the field would benefit from evaluation metrics
less sensitive to variations of the keyphrases’ surface form, which eval-
uate correctness on a more semantic level. A more suitable evaluation
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for keyphrase extractors would be to let annotators compare sets of key-
phrases generated by different models. A downside of this setting is that
different models need to be evaluated separately, and optimizing towards
this score is impractical. Our benchmark collections offer many opportu-
nities to further investigate many of these issues.
Text-to-Text generation Applications of sequence-to-sequence models be-
yond machine translation are increasingly appearing. Success is closely
tied to the availability of training data, this is why recently methods study
training methods that do not require parallel text altogether [2, 3]. We ex-
pect many other applications of the paradigm to appear in the near future
based on crowd sourced data or weak supervision.

Other promising directions for future research, which were less preva-
lent in our own research, for reduced supervision for NLP include transfer
learning and zero shot learning.

Transfer Learning Transfer Learning has had a large impact on computer
vision and has enabled many people to use pre-trained models for their
own applications. Transfer learning has found its way to NLP. The choice
of the pre-training task is very important as even fine-tuning a model on
a related task might only provide limited success [4]. Other tasks, such as
those explored in recent work on learning general-purpose sentence em-
beddings [5], might be complementary to language model pre-training or
suitable for other target tasks. Pre-training will be most useful when the
trained model can be applied to many target tasks.

Zero-shot learning Zero-shot, one-shot and few-shot learning, in which
only a handful of training instances are used, are interesting upcoming
research directions. Following the key insight from Vinyals et al. [6] that a
few-shot learning model should be explicitly trained to perform few-shot
learning, this task has seen several recent advances. However, a few-shot
learning benchmark for NLP is currently still lacking which could evaluate
how well existing few-shot learning models from CV perform for NLP.

We believe applications of reduced supervision in combination with
deep learning models offer great potential, and are very excited about how
weak supervision approaches will continue to be translated into more effi-
cient, more flexible, and ultimately more usable systems for NLP and ML.
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A
The Ghent University Slot Filling

Systems

In this appendix we provide a more general description of the Ghent University
Knowledge Base Population systems which participated in the TAC KBP shared
task for two consecutive years. The KBP shared task is part of the NIST Text
Analysis Conference and aims to evaluate different approaches for discovering
facts about entities and expansion of knowledge bases. A selection of entities is
distributed among participants for which missing facts need to be extracted from
a given large collection of news articles and internet fora. Important components
of these systems are query expansion, entity linking and relation extractors. We
provide system descriptions of the 2014 system in section A.1 and the improved
2015 system in section A.2.



162 APPENDIX A

A.1 Ghent University-IBCN participation in TAC-
KBP 2014 slot filling and cold start tasks

In our first participation at the Tex Analysis Conference (TAC) workshop several
baselines for relation extraction were implemented in combinatino with of-the-shelf
components for retrieval, linking and feature extraction. Next to linear sparse-
feature classifiers, a first version of a CNN-based classifier was used for relation
extraction. Our first KBP system obtained scores at the median of the ranked
systems.

? ? ?

M. Feys, L. Sterckx, L. Mertens, J. Deleu, T. Demeester and
C. Develder

Published in 7th Text Analysis Conference, Proceedings. p.1-10, Gaithers-
burg (MD), USA, 2014.

Abstract This paper presents the system of the UGENT_IBCN team for the
TAC KBP 2014 slot filling and cold start (slot filling variant) tasks. This was
the team’s first participation in both tasks. The slot filling system uses dis-
tant supervision to generate training data combined with a noise reduction
step, and two different types of classifiers. We show that the noise reduc-
tion step significantly improves precision, and propose an application of
word embeddings for slot filling.

A.1.1 Introduction

This paper presents the system of the UGENT_IBCN team for the TAC
KBP 2014 slot filling and cold start (slot filling variant) tasks. This was
the team’s first participation in both tasks. The slot filling system uses dis-
tant supervision to generate training data combined with a noise reduction
step, and two different types of classifiers. We show that the noise reduc-
tion step significantly improves precision, and propose an application of
word embeddings for slot filling.

Relation extraction is a vital step for information extraction. This task
has received attention in TAC KBP for a number of years as the Slot Filling
track, and as a vital sub-task of the recently-introduced Cold-Start track. As
this is our first participation in the Knowledge Base Population - Slot Fill-
ing and Cold Start tracks, our system starts from previous work by other
teams, in particular systems described in [1] and [2] which use facts from
external databases to generate training data, also known as distant super-
vision.

Distant supervision has become an effective way for generating train-
ing data in the slot filling task, as proven in last year’s top submission [3].
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Figure A.1: 2014 KBP System Overview

The main contribution of our system is twofold: (1) we add a noise reduc-
tion step that boosts precision of the distant supervision step , and (2) we
explore the use of word embeddings [4] for a relation detection classifier.

In the following Section, we give an overview of the system and de-
scribe different components. A more elaborate discussion of the training
with distant supervision is given in Section A.2.3. Section A.1.5 discusses
some adaptations of the system for the cold start task. Finally, results and
a brief conclusion are given in Sections A.2.4 and A.2.5.

A.1.2 System Overview

Figure A.1 shows an overview of the slot filling system. Interactions be-
tween different components of the system and the different sources of data
are visualized by arrows. In this Section we discuss those parts of the sys-
tem which act at run time for the generation of slot fillers.

A.1.2.1 Query Expansion and Document Retrieval

The first step is the retrieval of all documents containing the entity query
(person or organization) from the TAC 2014 source document collection.
We expand the query by including all alternate names obtained from Free-
base and Wiki-redirects for the given query. When we do not retrieve
any alternate names, we clean the query, e.g., remove middle initials for
persons and remove any company suffixes (LLC, Inc., Corp.) and repeat
the search for alternate names using this filtered query. For indexing and
search of the source collection we use Whoosh1.

1http://pythonhosted.org/Whoosh/

http://pythonhosted.org/Whoosh/
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A.1.2.2 Relation Classifiers

In each retrieved document we identify relevant sentences by checking if
any of the entities from the expanded set of query entity names are present.
Note that we did not use any co-reference resolution to increase recall, as
suggested in earlier work [2, 5]. Next, we assign all slot candidates from
the relevant sentences with a type (e.g., title, state-or-province). Slot candi-
dates are extracted using the Stanford 7-class Named Entity Recognizer [6]
and assigned a type using lists of known candidates for each type. For
each combination of the extracted candidates with the query entity, we per-
form a classification of a type-matching relation from the TAC-schema. We
trained four different sets of classifiers, i.e., two sets of binary Support Vec-
tor Machines (SVMs) and two multiclass classifiers, that resulted in four
different runs submitted for the slot filling task. Only the first classifier
was used for a run in the cold start task.

41 different binary SVMs are used to detect the presence or absence of
each relation in the sentence for the query entity and a possible slot filler.

All binary SVMs trained for different relations use the same set of fea-
tures, which is a combination of dependency tree features, token sequence
features, entity features, semantic features and an order feature. We extract
these features using Stanford CoreNLP tools [7]. This corresponds to the
features used in [2]. A complete overview of the used features is given in
Table A.1 using an illustration of the features for example relation-tuple
<Ray Young, General Motors> and the sentence “Ray Young, the chief
financial officer of General Motors, said GM could not bail out Delphi”2.

The two sets of binary SVM classifiers differ in their training data. Clas-
sifiers for the second run use the original output from the distant supervi-
sion step, while the first set is trained on training examples after a noise
reduction step. Section A.2.3 describes this training data in more detail.

A.1.2.3 Multiclass Convolutional Neural Network

We experiment with word embeddings and see if relation classification can
benefit from their use in the classification task. Therefore, we implement
a single Convolutional Neural Network (CNN) that functions as a multi-
class classifier and we compare the performance of this network with the
classification obtained by a logistic regression classifier with the same set
of features, but without the use of word embeddings (discussed in the next
Section).
The CNN only uses a subset of the features used by the SVMs, as shown in
Table A.2. The network is trained on the cleaned training data, which we
introduce later on.

We use the SENNA-embeddings [4] as word embeddings for the lookup
tables. The length-varying WBO-features are modeled by a convolutional

2The same example sentence as used in [2]
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Table A.1: Overview of different features used for classification for the sentence
“Ray Young, the chief financial officer of General Motors, said GM could
not bail out Delphi”.

Feature Description Example Feature Value

Dependency
tree

Shortest path connecting the two names in
the dependency parsing tree coupled with

entity types of the two names

PERSON←appos←officer
→ prep_of→ ORGANIZATION

The head word for name one said

The head word for name two officer

Whether 1dh is the same as e2dh false

The dependent word for name one officer

The dependent word for name two nil

Token
sequence
features

The middle token sequence pattern , the chief financial officer of

Number of tokens between the two names 6

First token in between ,

Last token in between of

Other tokens in between {the, chief, financial, officer}
First token before the first name nil

Second token before the first name nil

First token after the second name ,

Second token after the second name said

Entity
features

String of name one Ray_Young

String of name two General_Motors
Conjunction of e1 and e2 Ray_Young–General_Motors

Entity type of name one PERSON

Entity type of name two ORGANIZATION

Conjunction of et1 and et2 PERSON–ORGANIZATION

Semantic
feature Title in between True

Order
feature

1 if name one comes before name two;
2 otherwise. 1

Parse Tree POS-tags on the path connecting
the two names

NNP→DT→JJ→JJ
→NN→IN→NNP
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Table A.2: The features used to train the multiclass classifiers.

Name Description

wbo words in between the two entities
bm two words in front of the first entity
am two words after the last entity

et1,et2 the entity types of the two entities
ntw # words in WBO

Figure A.2: Schematic representation of the CNN classifier.

layer combined with a max layer. A schematic representation of our net-
work is shown in Figure A.2.

A.1.2.4 Multiclass Logistic Regression

The final classifier is a multi-class logistic regression classifier. It uses the
same features as the CNN classifier (see Table A.2), and the same training
data. The classifier is constructed to test the impact of the word embed-
dings on the classification results. This classifier consists of a single logistic
regression layer and the features are a concatenation of the features given
in Table A.2. The WBO-features are represented as a Bag of Words, thereby
ignoring the order of the words. To reduce the number of dimensions, we
do not use all word ids, but use only the 6.000 most representative words.
The representative power was measured by the information gain of the
words for the classification task, obtained with PearsonâĂŹs χ2-test.

A.1.2.5 Entity Linking

Finally, the slot fillers extracted from the different documents are com-
bined in an Entity Linking step. We link the entities from different doc-
uments and combine the extracted relation-tuples to obtain our final set
of extracted relations. The output of this step consists of a list of all pos-
sible relation-tuples if the relation can have multiple tuples, e.g., for per-
son_cities_of_residence. If only one relation instance is allowed, e.g., for
city_of_birth, we choose the relation-tuple with the highest evidence. The
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Figure A.3: Classifier Overview

evidence score for each relation-tuple is obtained by summing the evidence
of all relation instances of this relation-tuple, i.e., the sum of the evidence-
score given by the classifier for each sentence that expresses the relation-
tuple.

A.1.3 Distant Supervision with Noise Reduction

Training data for the classifiers is generated using distant supervision. The
left side of Figure A.5 shows the different steps for the generation of the
training data. We start by mapping FreeBase relations to KBP slots and
subsequently search the full GigaWord corpus for possible mentions of
these relations, i.e., two entities from a fact tuple co-occurring in sentences.
Negative examples are all co-occuring entities which are not present in
FreeBase.

A.1.3.1 Noise Reduction

The training data obtained by distant supervision is noisy, i.e., not all ex-
tracted sentences that may indicate a given relationship actually express
this relationship. e.g., , “President Obama visited Honolulu” does not ex-
press the relationship “per:city_of_birth”, although president Obama was
born in Honolulu. To address this problem, we add a noise reduction for
14 (due to time constraints) frequently occurring relationtypes. We let a
team of students label approximately 2.000 distantly supervised instances
per relation type with a true or false label. The fraction of instances labeled
‘True’ for the different relation types is shown in Table A.3.

The fraction of instances labeled ‘True’ strongly depends on the type of
relation. To use these manually refined instances, we train a logistic regres-
sion (LR) classifier for each annotated relation and apply this classifier to
the rest of the examples of the distant supervision output. For the relations
with only a very small fraction of true examples (e.g., city_of_birth etc.) we
did not train a LR classifier, but use a list of trigger words that need to be
included, to filter the data. The results in Table A.4 show that this noise
reduction step indeed results in a significant increase in precision.
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Table A.3: Fraction of instances labeled ‘True’ for 14 relation-types

Relation True fraction

per:title 91.78%
per:employee_or_member_of 90.90%

per:origin 86.48%
org:stateorprovince_of_headquarters 86.64%

org:top_members_employees 73.61%
per:age 65.60%

per:charges 58.97%
per:spouse 56.10%

per:countries_of_residence 58.97%
per:city_of_death 15.26%

org:founded_by 12.89%
per:cities_of_residence 2.15%

per:city_of_birth 1.29%
per:country_of_birth 0.30%

A.1.4 Subsampling

The dataset contains a lot more negative instances than positive instances.
Therefore, we subsample the negative instances for each relation, to obtain
approximately 50% positive instances and 50% negative instances for each
relation.

A.1.5 Adaptations for the Cold Start Task

In our participation for the Cold Start Task (slot filling variant), our setup
only required minimal modifications. We only used our SVM classifier
with noise reduction for this task. The slot filling system and tagger were
extended to handle relations involving Geopolitical Entities for the cold
start variant. A first run is performed on the provided single-slot queries,
and a second on slots for the resulting answers from the first run.

A.1.6 Results

A.1.6.1 Slot Filling task

The results for the slot filling task are shown in Table A.4. Our best re-
sults are the median score for this year’s competition. We ranked at the
10th place of the 18 participating teams and ended as the 3th new team of
the 6 new teams. Furthermore, by only evaluating based on the retrieved
fillers (ignoring document id’s) our F1 increased by 3.15%, resulting in a
9th place.
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Table A.4: Results of the different runs on the slot filling task. b* stands for binary
and m* for multiclass. NR represents the noise-reduction step.

P R F1
b* SVM + NR 24.1 15.9 19.2

b* SVM 16.4 16.3 16.3
m* CNN + NR 5.3 10.7 7.1

m* LR + NR 4.6 8.9 6.0
Median Score 25.8 16.1 19.8

Table A.5: Results of the different hops and the aggregate in the slot filling variant
of the Cold Start task.

P R F1

Hop 0 24.7 16.6 19.9
Hop 1 7.5 4.9 5.9

All Hops 16.7 11.1 13.3

Binary SVMs clearly perform better than the multiclass CNN and the mul-
ticlass LR. This large difference between approaches is mostly due to the
lack of extra features in the multiclass CNN. Unfortunately, this makes it
difficult to assess the impact of using a multiclass classifier vs. the mul-
tiple binary classifiers. Note that the multiclass classifiers use the same
filtered training instances of the binary SVM with noise reduction. The
noise reduction is clearly beneficial for precision. By using the filtered
training data, the precision of the binary SVMs improves from 16.4% to
24.1%, while recall only drops from 16.3% to 15.9%. The comparison of the
CNN with the LR classifier shows a slight increase in F1 obtained by incor-
porating the word embeddings. However, both values are far below the
F1 obtained with the binary SVMs. So far, we were unable to improve any
results by using word embeddings. In future work we will test whether
we can improve these results by also including additional features for the
CNN network.

A.1.6.2 Cold Start task

The results for the different hops of the slot filling variant of the Cold Start
task are shown in Table A.5. Precision and recall on the initial queries (Hop
0) are close to the performance on the regular slot filling task. In the second
iteration (Hop 1) a lot of recall is lost, since a considerable fraction of these
queries were not generated after the first run. Our system achieved second
place out of three teams performing in the slot filling variant.
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A.1.7 Conclusion

This paper described our first setup for the slot filling and cold start task
which achieved results close to the median performance. We can conclude
that the multiclass classifiers, only using lexical data, seriously underper-
formed the more elaborate binary SVMs and that we can significantly in-
crease the performance of the classifiers by incorporating noise reduction
of the training data obtained with distant supervision.
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A.2 Ghent University-IBCN Participation in TAC-
KBP 2015 Slot Filling and Cold Start Tasks

In our second participation we improved many of the components used in the
system of the previous year. Especially in the relation extractors effort was put
into generating clean training data, we described this procedure in more detail in
Chapter 2. Depending on the evaluation metric, this system obtained the second,
third or fourth highest scores out of 12 participating KBP systems. A highest
scoring submission was based on the DeepDive system by the Database group
Stanford University. Similar to our training data generation procedure, DeepDive
generates training data based on feature annotations and regularizes by adding
many weaker features to these instances.

? ? ?

L. Sterckx, T. Demeester, J. Deleu and C. Develder

Published in 8th Text Analysis Conference, Proceedings. p.1-10, Gaithers-
burg (MD), USA, 2015.

Abstract This paper describes the system of team UGENT_IBCN for the
TAC KBP 2015 Cold Start (slot filling variant) task. The slot filling sys-
tem uses Distant Supervision to generate training data for feature-based
relation classifiers, combined with feature labeling and pattern based ex-
tractions. An overall performance 23.3% in micro-mean F1was obtained,
which is an increase of 10% compared to the team’s 2014 participation.

A.2.1 Introduction

This was the second participation of team UGENT_IBCN in the Knowl-
edge Base Population - Cold Start Slot Filling variant, the successor of the
English Slot Filling track. Our system is based on the team’s 2014 sys-
tem [8] and uses techniques described in [9]. The relation extractor is based
on Distant Supervision together with minimal amounts of supervision.

In the following Sections, we give a brief overview of the system and
describe different components of the Knowledge Base Population system.
A more elaborate discussion of the training with Distant Supervision is
given in Section A.2.3. Finally, results and a conclusion are given in Sec-
tions A.2.4 and A.2.5.

A.2.2 System Overview

Figure A.4 shows an overview of the slot filling system. Interactions be-
tween different components of the system and the different sources of data
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Figure A.4: 2015 KBP System Overview

are visualized using arrows. We discuss those parts of the system which
act at run time for the generation of slot fillers.

A.2.2.1 Query Expansion and Document Retrieval

We first retrieve all documents containing entity queries (person or orga-
nization) from the TAC Cold Start 2015 source document collection. We
expand the query by including all alternate names obtained from Freebase
and Wiki-redirects for the given query. When we do not retrieve any alter-
nate names, we clean the query, e.g., remove middle initials for persons,
remove any company suffixes (LLC, Inc., Corp.) and repeat the search
for alternate names using this filtered query. For indexing and search of
the source collection we use the Whoosh3 module for Python. This year
no Named Entity Disambiguation was included, which resulted in wrong
slot fillers for ambiguous entities, e.g., Gotham (New-York), Blues (Everton
FC).

A.2.2.2 Named Entity Tagging

Each document was preprocessed using components of the Stanford CoreNLP
toolkit [7]. In each retrieved document we identify relevant sentences by
searching for any of the entities from the expanded set of query entity
names. This year we include a co-reference module and resolve all syn-
onymous noun phrases to a single entity. Noun phrases linked to any of
the queries are used as subject entities for possible filler extractions. Next,
we assign all slot candidates from the relevant sentences with a type (e.g.,
title, state-or-province). Slot candidates are extracted using the Stanford 7-
class Named Entity Recognizer [6] and assigned a type using lists of known
candidates for each type. Lists were expanded this year with those from
the RelationFactory system [3].

3http://pythonhosted.org/Whoosh/

http://pythonhosted.org/Whoosh/
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A.2.2.3 Relation Classifiers

For each combination of tagged entities with a query entity, we perform a
classification of a type-matching relation from the TAC Cold Start schema.
For classification we extract features from each candidate phrase and use
binary Logistic Regression (LR) classifiers together with a small selection
of High-Precision patterns.

Binary LR classifiers detect the presence or absence of a relation in the
sentence for the query entity and a possible slot filler. All LR classifiers
use the same set of features, which is a combination of dependency tree
features, token sequence features, entity features, semantic features and
an order feature. These correspond for the most part to the features used
in [2]. A complete overview of the used features is given in Table A.1 us-
ing an illustration of the features for example relation-tuple <Ray Young,
General Motors> and the sentence “Ray Young, the chief financial officer
of General Motors, said GM could not bail out Delphi”4.

Next to feature-based classification, a small selection of high precision
patterns was used, some obtained from feature labeling and others from
the Relation Factory KBP system [3]. If an exact match in the surface text
between entities and a pattern is detected, the probability of the classifier
is set to 1.

A.2.2.4 Entity Linking

In a final stage, the slot fillers extracted from the different documents are
combined in an Entity Linking step. We link the entities from different
documents and combine the extracted relation-tuples to obtain a final set
of extracted relations. The output of this step consists of a list of all possible
relation-tuples, if the relation is allowed to have multiple tuples, e.g., for
person_cities_of_residence. If only one relation instance is allowed, e.g.,
for city_of_birth, we choose the relation-tuple with the highest probabil-
ity assigned by the classifier. The evidence score for each relation-tuple is
obtained by choosing the maximum evidence of all relation instances of
this relation-tuple, i.e., the highest probability given by the classifier of all
sentences that express the relation-tuple.

A.2.3 Distant Supervision with Feature Labeling

Distant supervision (DS) has become an effective way for generating train-
ing data in the slot filling task, as proven in many top-performing sub-
missions in previous years [10]. In this year’s competition we looked into
ways of combining DS with minimal amounts of supervision.

The left side of Figure A.5 shows the different steps for the generation
of training data. We start by mapping FreeBase relations to KBP slots and

4The same example sentence as used in [2]
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Figure A.5: Classifier Overview

Table A.6: Results on development sets.

2013 ESF 2014 ESF
P R F1 P R F1

2014 Classifiers 42.8 19.7 27.0 28.0 18.6 22.4

2015 Classifiers 37.7 37.2 37.5 35.7 33.7 34.7
Patterns 60.6 12.1 20.2 53.0 8.7 14.9
Classifiers+Patterns 40.2 36.6 38.6 36.9 35.9 36.4

subsequently search the full GigaWord corpus for possible mentions of
these relations, i.e., two entities from a fact tuple co-occurring in sentences.
Negative examples are all phrases with co-occurring entities for relations
which are not present in FreeBase.

Whereas in [8] instance labeling was used to self-train relation classi-
fiers and reduce noisy mentions, we focus on learned features from an ini-
tial DS classifier. In a second stage, most confident positive features learned
by the initial classifier are presented to an annotator with knowledge of the
semantics of the relation and labeled as true positive, false positive (noise)
or ambiguous. The collection of training instances is then filtered by only

Table A.7: Results of the different hops and the aggregate in the slot filling variant
of the 2015 Cold Start task.

Hop 0 Hop 1 All Hops
Run P R F1 P R F1 P R F1

2014 - Best Run 24.7 16.6 19.9 7.5 4.9 5.9 16.7 11.1 13.3

2015 - Run 1 (High Precision) 34.5 25.0 29.0 14.4 9.9 11.7 27.9 19.8 23.2
2015 - Run 2 (Higher Recall) 33.0 25.2 28.6 12.5 10.6 11.5 25.4 20.2 22.15
2015 - Run 3 (Highest Recall) 28.0 27.4 27.8 13.1 13.7 13.36 22.7 22.7 22.7

2015 - Run 1 (Macro Mean) - - 34.29 - - 13.3 - - 27.0
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including mentions with one of the true positive labeled features present,
after which a second classifier is trained.

Our strategy is related to the guidelines strategy from Pershinaet al. [11],
but instead of extracting guidelines using a fully annotated corpus, we la-
bel features entirely based on distant supervision. We then use a strategy
from active learning literature, feature certainty [12] to rank and present
features to the annotator, in order to further reduce the labeling effort. Fea-
ture Certainty is intuitively an attractive choice, as the goal is to reduce
most influential sources of noise as quickly as possible e.g., for the relation
founded_by there are many persons that founded the company which are
also top_members, leading to many instances that we wish to remove when
cleaning up the training data for the relation founded_by.

In the final set of classifiers an ensemble of two classifiers was chosen
and confidences for relation extraction were averaged.

A.2.4 Results

A.2.4.1 System Development

The system was developed on data from the 2013 and 2014 English Slot
Filling task. We found that important parameters to fine-tune, in order
optimize F1-scores, are classifier regularization, the ratio of true and false
examples and the classification threshold. The highest micro-F1scores ob-
tained for these development sets are shown in Table A.6. Compared to
classifiers used in 2014 participation in the English Slot Filling Task, large
increases in performance (+10%) were attained.

A.2.4.2 Cold Start Results

Four runs were generated using the same set of classifiers. Submissions
differ in the selection of thresholds set on the amount of fillers and con-
fidence values. For each of the runs, at most, 10 fillers with the highest
confidences were used to generate the second hop queries, this to reduce
the generation second-hop fillers for wrong first-hop fillers. The micro-
averaged P/R/F1 at each hop level for the different runs of the slot filling
variant of the Cold Start task are shown in Table A.7. Compared to last
year’s participation an increase of almost 10% in F1was obtained, placing
fourth among 20 KBP systems from all variants and second out of twelve
systems participating in the slot filling variant.

A.2.5 Conclusion

This paper described our second setup for the slot filling variant of the
Cold Start task. We significantly increased the performance of our previous
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relation extraction classifiers by incorporating noise reduction of the dis-
tantly supervised training data using feature labeling and high-precision
patterns.



TAC KBP 177

References

[1] M. Surdeanu, D. McClosky, J. Tibshirani, J. Bauer, A. X. Chang, V. I.
Spitkovsky, and C. D. Manning. A simple distant supervision approach
for the TAC-KBP slot filling task. In Proceedings of Text Analysis Con-
ference 2010 Workshop. Citeseer, 2010.

[2] A. Sun, R. Grishman, W. Xu, and B. Min. New York university 2011
system for KBP slot filling. In Proceedings of the Text Analytics Confer-
ence, 2011.

[3] B. Roth, T. Barth, M. Wiegand, M. Singh, and D. Klakow. Effective
slot filling based on shallow distant supervision methods. arXiv preprint
arXiv:1401.1158, 2014.

[4] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa. Natural language processing (almost) from scratch. The Journal
of Machine Learning Research, 12:2493–2537, 2011.

[5] B. Min, X. Li, R. Grishman, and A. Sun. New York university 2012 system
for KBP slot filling. 2012.

[6] J. R. Finkel, T. Grenager, and C. Manning. Incorporating non-local infor-
mation into information extraction systems by Gibbs sampling. In Proceed-
ings of the 43rd Annual Meeting on Association for Computational
Linguistics, pages 363–370. Association for Computational Linguis-
tics, 2005.

[7] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and
D. McClosky. The Stanford CoreNLP Natural Language Processing
Toolkit. In Proceedings of 52nd Annual Meeting of the Association
for Computational Linguistics: System Demonstrations, pages 55–60,
2014. Available from: http://www.aclweb.org/anthology/P/P14/
P14-5010.

[8] M. Feys, L. Sterckx, L. Mertens, J. Deleu, T. Demeester, and C. De-
velder. Ghent University-IBCN participation in TAC-KBP 2014 slot fill-
ing and cold start tasks. In 7th Text Analysis Conference, Proceedings,
pages 1–10, 2014.

[9] L. Sterckx, T. Demeester, J. Deleu, and C. Develder. Using Active Learn-
ing and Semantic Clustering for Noise Reduction in Distant Supervision. In
4e Workshop on Automated Base Construction at NIPS2014 (AKBC-
2014), pages 1–6, 2014.

[10] M. Surdeanu and H. Ji. Overview of the english slot filling track at the
tac2014 knowledge base population evaluation. Proc. Text Analysis Con-
ference (TAC2014), 2014.

http://www.aclweb.org/anthology/P/P14/P14-5010
http://www.aclweb.org/anthology/P/P14/P14-5010


178 APPENDIX A

[11] M. Pershina, B. Min, W. Xu, and R. Grishman. Infusion of labeled data
into distant supervision for relation extraction. 2014.

[12] J. Attenberg, P. Melville, and F. Provost. A unified approach to active dual
supervision for labeling features and examples. In In European conference
on Machine learning and knowledge discovery in databases, pages
40–55, 2010.



B
Unsupervised Keyphrase

Extraction

A disadvantage of supervised approaches is that they require training data and
show bias towards the domain on which they are trained, undermining their abil-
ity to generalize well to new domains. Unsupervised approaches are a viable al-
ternative in this regard. We make two focused contributions to the area of unsu-
pervised keyphrase extraction by studying the use of topic models in graph-based
word ranking models.
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B.2 Topical Word Importance for Fast Keyphrase
Extraction

In Section B.2 we improve on a state-of-the-art keyphrase extraction algorithm
called topical pagerank (TPR). While the original algorithm requires a random
walk for each topic in the topic model being used, ours is independent of the topic
model, computing but a single pagerank for each text regardless of the amount of
topics in the model. This increases the speed drastically and enables it for use on
large collections of text using big topic models, while not altering performance of
the original algorithm.

? ? ?

L. Sterckx, T. Demeester, J. Deleu, and C. Develder

Presented at the International World Wide Web Conference, Florence,
Italy, 2015.

Abstract We propose an improvement on a state-of-the-art keyphrase ex-
traction algorithm, Topical PageRank (TPR), incorporating topical infor-
mation from topic models. While the original algorithm requires a random
walk for each topic in the topic model being used, ours is independent of
the topic model, computing but a single PageRank for each text regardless
of the amount of topics in the model. This increases the speed drastically
and enables it for use on large collections of text using vast topic models,
while not altering performance of the original algorithm.

B.2.1 Introduction

Automatic Keyphrase Extraction (AKE) is the task of identifying a set of ex-
pressions or noun phrases which concisely represent the content of a given
article. Keyphrases have proven useful for various Information Retrieval
and Natural Language Processing tasks, such as summarization [1] and
contextual advertising on web pages [2]. Currently two types of methods
are used: supervised and unsupervised methods. State-of-the-art unsuper-
vised methods transform the input document into a graph representation.
Each node in this graph corresponds to a candidate-word and edges con-
nect two candidates occurring within a certain text window. The signifi-
cance of each node, i.e., word, is computed using a random walk algorithm
based on PageRank [3]. The top ranked nodes are then selected to generate
keyphrases. TextRank is one of the most well-known examples of a graph-
based approach [4]. Recent work has shown that the quality of keyphrases
is improved by using topic model information in the graph model. Topical
PageRank (TPR) [5] is a variation on the TextRank-algorithm that incor-
porates topical information by increasing the weight of important topical
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words based on the topic-document and word-topic distributions gener-
ated by a topic model. Experimental results showed that TPR outperforms
other existing unsupervised AKE-methods. While TPR is an effective al-
gorithm for the inclusion of topical information from the topic model, it
requires a random walk for each topic in the topic model. This approach
becomes cumbersome for huge collections of text using large topic mod-
els, as PageRank is a computationally intensive algorithm. In this paper
we propose a modification of the original TPR algorithm which is equally
effective but speeds up the algorithm as many times as the amount of top-
ics in the topic model.

B.2.2 Single-Pagerank Topical Keyphrase Extraction

Topical PageRank, as described in [5], requires a PageRank for each topic
separately and boosts the words with high relevance to the corresponding
topic. In a word graph each candidate word (i.e., nouns and adjectives) be-
come a vertex in set ν = {w1, . . . , wN}. For each candidate wj, a window of
the following words in the given article (typically chosen as 10) is selected
and a directed edge from wj to each word wi included in the window is cre-
ated, resulting in a directed graph. Formally, the topic-specific PageRank
can be defined as follows:

Rz(wi) = λ · ∑
j:wj→wi

(
e(wj, wi)

O(wj)
· Rz(wj)

)
+ (1− λ) · Pz(wi), (B.1)

where Rz(wi) is the PageRank score for word wi in topic z, e(wj, wi) is the
weight of the edge (wj → wi), the number of outbound edges is O(wj) =

∑w′ e(wj, w′) and λ is a damping factor ∈ [0, 1] indicating the probability
of a random jump to another node. A large Rz(w) indicates a word w that
is a good candidate keyword in topic z. The topic specific preference value
Pz(wi) for each word wi is the probability of arriving at this node after a
random jump, thus with the constraint ∑w∈ν Pz(w) = 1 given topic z. In
TPR, the best performing value for Pz(wi) is reported as being the proba-
bility that word wi occurs given topic z, denoted as P(wi|z). This indicates
how much that topic z is focused on word wi. With the probability of topic
z for document d P(z|d), the final ranking score of word wi in document d
is computed as the expected PageRank score over that topic distribution,
for a topic model with K topics,

R(wi) =
K

∑
z=1

Rz(wi) · P(z|d). (B.2)

Adjectives and nouns are then merged into keyphrases and corresponding
scores are summed and ranked. Note that original TPR requires a PageR-
ank for each topic in the model. Since topic models with a large amount
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of topics (e.g. K = 1, 000) are reported to empirically perform best, this
requires many computations for each document, especially for long ones.
That is, for D documents the total amount of PageRanks for AKE is K×D.
We propose an alternative strategy to avoid this large computational cost,
by using but a single PageRank per document. We do this by using a sin-
gle weight-value we call W(wi) indicating the full topical importance of
each word wi in the PageRank instead of K topic-specific values and sum-
ming all results. First, we determine the cosine similarity between the vec-
tor of word-topic probabilities P(wi|Z) = (P(wi|z1), . . . , P(wi|zK)) and the
document-topic probabilities of the document, P(Z|d) = (P(z1|d), . . . , P(zk|d)),
to determine the single weight value W(wi) per word wi and document d.

W(wi) =
P(wi|Z) · P(Z|d)

‖P(wi|Z)‖ · ‖P(Z|d)‖ . (B.3)

This quantity W(wi) can be considered the ‘topical word importance’ of
word wi given document d, where the contribution of a particular topic zk
is larger if wi is an important word for that topic, and the topic is strongly
present in the considered document. As a result, the single PageRank
R(wi) becomes

R(wi) = λ · ∑
j:wj→wi

(
e(wj, wi)

O(wj)
· R(wj)

)
+ (1− λ) · W(wi)

∑w∈ν W(w)
. (B.4)

B.2.3 Evaluation

To detect any change in performance, we use a dataset comprised of news
articles built by Wan and Xiao [6], that contains 308 news articles from the
2001 Document Understanding Conference (DUC) summarization-track,
with 2,488 manually assigned keyphrases. We create a mapping between
the keyphrases in the gold standard and those in the system output using
an exact match. We reduce keyphrases to their stems using the Porter-
stemmer and use three standard evaluation metrics for AKE: precision, re-
call, and F1-measure. Other parameters (for the stemmer, tokenizer and
PageRank) are identical to those in the original TPR-paper [5].

Figure B.1 shows how much our modification speeds up the computa-
tion time as compared to the original TPR algorithm for processing of the
complete collection of articles. Both approaches are programmed using
identical pre-processing functions and PageRank implementations. The
graph shows the linear speed up achieved by making the algorithm inde-
pendent of the amount of topics, and thus constant time. Figure B.2 shows
precision-recall curves for the original TPR and ours using a single PageR-
ank, using the same topic model of 1,000 topics trained on Wikipedia data
(a corpus similar to the one used in the original TPR [5]), and two baselines
TF-IDF and TextRank. The effectiveness of our method is close to identical
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Figure B.1: Speed-up with proposed modification
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Figure B.2: Comparison of the original TPR [5] (indicated ‘TPR’) with the more effi-
cient single-PageRank TPR (indicated ‘single-TPR’), and two baselines,
TF-IDF and TextRank [4]

while computation time is reduced by factor ≈ 1/K (i.e., 1,000 times faster
in this example).

B.2.4 Conclusion

We propose a more efficient use of topic models for unsupervised keyphrase
extraction. Using a single value for topical word importance in a PageR-
ank algorithm based on the cosine similarity between the vector of word-
topic probabilities and the document-topic probabilities of the document,
we achieve a constant computation time, independent of the topic model
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being used. We show that this modification does not significantly alter the
performance while reducing the computation time by a large margin.
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B.2 When Topic Models Disagree: Keyphrase Ex-
traction with Multiple Topic Models

In Section B.2 we explore how the unsupervised extraction of topic-related key-
words benefits from combining multiple topic models. We show that averaging
multiple topic models, inferred from different corpora, leads to more accurate key-
phrases than when using a single topic model and other state-of-the-art techniques.

? ? ?

L. Sterckx, T. Demeester, J. Deleu and C. Develder

Presented at the International World Wide Web Conference, Florence,
Italy, 2015.

Abstract We explore how the unsupervised extraction of topic-related key-
words benefits from combining multiple topic models. We show that av-
eraging multiple topic models, inferred from different corpora, leads to
more accurate keyphrases than when using a single topic model and other
state-of-the-art techniques. The experiments confirm the intuitive idea that
a prerequisite for the significant benefit of combining multiple models is
that the models should be sufficiently different, i.e., they should provide
distinct contexts in terms of topical word importance.

B.2.1 Introduction

Keyphrases are defined as a set of terms or noun phrases which concisely
summarize the content of a document. Automatic Keyphrase Extraction
(AKE) has been beneficial for various applications such as document cate-
gorization and contextual advertising on Web pages. A distinction can be
made between supervised and unsupervised methods. State-of-the-art un-
supervised methods apply a graph-based approach. These methods build
a graph from the input documents, each node corresponding to a can-
didate word and edges connecting two co-occurring candidates. Nodes
or vertices are ranked according to their importance using a graph-based
ranking method like PageRank. Top-ranked vertices are then combined to
generate keyphrases. The inclusion of topical information has been shown
to be beneficial for extracting keyphrases from documents. Liu et al. pro-
pose Topical PageRank (TPR) [5], a variation of PageRank that incorporates
topical information by increasing the importance of highly relevant topical
words based on Latent Dirichlet Allocation (LDA) [7]. Each word in the
graph gets an additional weight (denoted as W(wi) for word wi) in the
random-walk algorithm proportional to the cosine distance of the topic-
document distribution and word-topic distribution from the LDA topic
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Figure B.3: Box plot displaying the average standard deviation for all topical word
scores {Wc(wi)}c=1...4 for different topic models c, based on the original
four collections (‘Original Corpora’), versus four topic models based on
a random equal share of all data together (‘Shuffled Corpora’)

model. Experimental results showed that TPR outperforms other unsuper-
vised AKE-methods. We assess that topical importance strongly depends
on the collection of training documents for LDA and their corresponding
context. Specific words can be essential in one context yet only secondary
in another. First we show that topical word importance varies with the cor-
pus the topic model is trained on. Then we show that a simple combination
of multiple different topic models and word scores leads to more accurate
AKE results, a prerequisite being the diversity of the training corpora.

B.2.2 Disagreement by Topic Models

We demonstrate how we can improve the accuracy of a single-model TPR
by combining information from multiple topic models. We use four differ-
ent corpora to study the influence of the topic models on AKE: Wikipedia
(a corpus similar to the one used in the original TPR contribution [5]),
Reuters Corpus Volume I (RCV1) [8] (800,000 manually categorized newswire
stories), Wikinews 1 (A free-content news source wiki, maintained through
collaborative journalism, from February 2013) and New-York Times [9] (a
collection of 300,000 NYT news articles). It is known that ensemble meth-

1http://en.wikinews.org/

http://en.wikinews.org/
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Figure B.4: Precision-recall curve for combinations versus single-model TPR for 1
to 10 extracted keyphrases.
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ods like model averaging obtain better accuracy than can be obtained from
any of the constituent learning algorithms. We assess if and when this is
the case for learning algorithms based on topic models for AKE. We first
investigate how the topical importance scores from the word-document
similarities, which are used in TPR, vary with the corpus the models are
trained on. We then use this disagreement to make a combined weight
applying several methods for averaging. Large test corpora for AKE, con-
taining a broad set of topics, are hard to find and create. The creation
of such a set is in progress, but we wish to report promising results on
an existing, smaller set of news articles built by Wan and Xiao [6], that
contains 308 news articles from the 2001 Document Understanding Con-
ference (DUC) summarization-track, with 2,488 manually assigned key-
phrases. The following experiment is conducted: next to training topic
models on the original corpora, we reassign documents from each of the
mentioned topic model corpora to one of four new collections randomly,
and train a 1,000-topic LDA-model on all collections. As in [5], all of the
models’ vocabularies are reduced to 20,000 words. This results in four dif-
ferent topical word scores indicated as Wc(wi) with c denoting the index
of the model being used. In Figure 1a, standard deviations of the four
weights are shown for the shuffled and for the original corpora for each
word in the 308 documents of the test-corpus. We observe that there is
a much higher variance in the importance of the words between models
when trained on the specific contexts of documents from the original col-
lections. This means that different topic models trained on corpora with
distinct contexts, used in TPR, will produce very different word scores and
thus keyphrases, whereas topic models trained on more uniform contexts
lead to similar keyphrase rankings.

B.2.3 Averaging Topical Importance

In the previous section the disagreement between models showed the de-
pendence of topical word importance on the corpus the topic model was
trained on. We now attempt to leverage this disagreement, composing
word scores which reflect a more realistic importance of the words. For
this purpose we apply several metrics which combine all weights into a
single weight to be used in the PageRank for TPR. For this experiment, all
models are trained on the full vocabulary of their respective corpora. We
apply four ways of averaging the four weights: the arithmetic mean, the
geometric mean, the harmonic mean and the median. We create a map-
ping between the keyphrases in the gold standard and those in the sys-
tem output using an exact match. We reduce keyphrases to their stems
using the Porter-stemmer and use three standard evaluation metrics for
AKE: precision, recall, and F1-measure. Other parameters (for the stem-
mer, tokenizer and PageRank) are identical to those in [5]. The resulting
averaged precision-recall curves for increasing numbers of assigned key-
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phrases (ranging from 1 to 10 keyphrases) are shown in Figure 1b. The
results of all single topic models are approximately equal. When aver-
aging scores generated from topic models from these original corpora, a
change in accuracy is noticed. For each separate combination between dif-
ferent topic models some increase was obtained. All ways of averaging
reach a similar increase in performance with respect to the single models.
When looking at the top keywords, a slightly higher precision is observed
for those averaging methods that penalize values with more spread, like
the harmonic and geometric mean. This increase in accuracy is not ob-
served when randomizing the contexts of the different topic models as
demonstrated in Section B.2.2, when there is less variance in the scores top-
ical importance. A topic model was also trained on a single large corpus,
consisting of all the single corpora, but this resulted in a similar perfor-
mance obtained using one of the single topic models trained on a separate
smaller corpus. We finally compare our new multi-topic-model method
(denoted as ‘MultiTM-TPR’) to existing baseline methods in Figure 1c and
the best single-model TPR. Our MultiTM-TPR outperforms baselines and
the original TPR. Also for the highest scored keyphrases, where a single
topic model TPR is inferior to the TF-IDF baseline. All improvements
of MultiTM-TPR over other methods are verified, using bootstrap resam-
pling, resulting in significance levels of p < 0.05.

B.2.4 Conclusion

In this paper we showed ongoing work demonstrating the benefit of com-
bining multiple topic models for Automatic Keyphrase Extraction. We
studied the influence of the corpus the topic model is trained on, and
showed disagreement between models which are trained on different cor-
pora. Averaging weights from several topic models leads to an increase in
precision of extracted phrases. When training models, an important aspect
is the difference in contexts between the corpora, which leads to different
topic models and thus disagreement about word importance. We lever-
age this disagreement by computing a combined topical word importance
value which, when used as weight in a Topical PageRank, improves accu-
racy of extracted keyphrases. Moreover, we show that this benefit of using
multiple topic models is attained when the models differ substantially. For
future work, we intend to research whether more sophisticated methods
for combining or selection of specific models can be applied.
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