6,456 research outputs found

    leave a trace - A People Tracking System Meets Anomaly Detection

    Full text link
    Video surveillance always had a negative connotation, among others because of the loss of privacy and because it may not automatically increase public safety. If it was able to detect atypical (i.e. dangerous) situations in real time, autonomously and anonymously, this could change. A prerequisite for this is a reliable automatic detection of possibly dangerous situations from video data. This is done classically by object extraction and tracking. From the derived trajectories, we then want to determine dangerous situations by detecting atypical trajectories. However, due to ethical considerations it is better to develop such a system on data without people being threatened or even harmed, plus with having them know that there is such a tracking system installed. Another important point is that these situations do not occur very often in real, public CCTV areas and may be captured properly even less. In the artistic project leave a trace the tracked objects, people in an atrium of a institutional building, become actor and thus part of the installation. Visualisation in real-time allows interaction by these actors, which in turn creates many atypical interaction situations on which we can develop our situation detection. The data set has evolved over three years and hence, is huge. In this article we describe the tracking system and several approaches for the detection of atypical trajectories

    Knowledge discovery from trajectories

    Get PDF
    Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial TechnologiesAs a newly proliferating study area, knowledge discovery from trajectories has attracted more and more researchers from different background. However, there is, until now, no theoretical framework for researchers gaining a systematic view of the researches going on. The complexity of spatial and temporal information along with their combination is producing numerous spatio-temporal patterns. In addition, it is very probable that a pattern may have different definition and mining methodology for researchers from different background, such as Geographic Information Science, Data Mining, Database, and Computational Geometry. How to systematically define these patterns, so that the whole community can make better use of previous research? This paper is trying to tackle with this challenge by three steps. First, the input trajectory data is classified; second, taxonomy of spatio-temporal patterns is developed from data mining point of view; lastly, the spatio-temporal patterns appeared on the previous publications are discussed and put into the theoretical framework. In this way, researchers can easily find needed methodology to mining specific pattern in this framework; also the algorithms needing to be developed can be identified for further research. Under the guidance of this framework, an application to a real data set from Starkey Project is performed. Two questions are answers by applying data mining algorithms. First is where the elks would like to stay in the whole range, and the second is whether there are corridors among these regions of interest

    Dealing with multiple source spatio-temporal data in urban dynamics analysis

    Get PDF
    Capturing, representing, modelling and visualizing the dynamics of urban mobility have been attracting the interest of the research community recently. One of the drivers for recent work in this area is the availability of large datasets representing many aspects of the urban dynamics. Applications for these studies are diverse and include urban planning, security, intelligent transportation systems and many others. Quite often, the proposed approaches are highly dependent on the data type. This paper describes the definition of a set of basic concepts for the representation and processing of spatio-temporal data, sufficiently flexible to deal with various types of mobility data and to support multiple forms of processing and visualization of the urban mobility. A place learning algorithm is also described to illustrate the flexibility of the proposed framework. Available results obtained by the integration of geometric and symbolic data reveal the adequacy of the proposed concepts, and uncover new possibilities for the fusion of heterogeneous datasets.Research group supported by FEDER Funds through the COMPETE and National Funds through FCT – Fundação para a Ciência e a Tecnologia under the Project: FCOMP-01-FEDER-0124-022674

    Conflict in pedestrian networks

    Get PDF
    Encouraging pedestrian activity is increasingly recognised as beneficial for public health, the environment and the economy. As our cities become more crowded, there is a need for urban planners to take into account more explicitly pedestrian needs. The term that is now in use is that a city should be ‘walkable’. For route planning, whereas much attention has been given to shortest path, in distance or time, much less attention has been paid to flow levels and the difficulties they pose on the route. This paper considers problems posed by conflicting paths, for example cross-traffic. We use network centrality measures to make a first estimate of differing levels of conflict posed at the network nodes. We take special note of the role of collective motion in determining network usage. A small case study illustrates the method

    Developing new approaches for the analysis of movement data : a sport-oriented application

    Get PDF

    Biodiversity beyond species census: assessing organisms' traits and functional attributes using computer vision

    Get PDF
    César Herrera studied the functions of intertidal crabs in estuarine mudflats in Townsville. He developed a novel workflow and software that use computer vision to monitor crab movement and behaviour. His analytical framework is more effective than traditional sampling techniques, and it will help ecologists to gather more and better ecological information on crabs

    A planetary nervous system for social mining and collective awareness

    Get PDF
    We present a research roadmap of a Planetary Nervous System (PNS), capable of sensing and mining the digital breadcrumbs of human activities and unveiling the knowledge hidden in the big data for addressing the big questions about social complexity. We envision the PNS as a globally distributed, self-organizing, techno-social system for answering analytical questions about the status of world-wide society, based on three pillars: social sensing, social mining and the idea of trust networks and privacy-aware social mining. We discuss the ingredients of a science and a technology necessary to build the PNS upon the three mentioned pillars, beyond the limitations of their respective state-of-art. Social sensing is aimed at developing better methods for harvesting the big data from the techno-social ecosystem and make them available for mining, learning and analysis at a properly high abstraction level. Social mining is the problem of discovering patterns and models of human behaviour from the sensed data across the various social dimensions by data mining, machine learning and social network analysis. Trusted networks and privacy-aware social mining is aimed at creating a new deal around the questions of privacy and data ownership empowering individual persons with full awareness and control on own personal data, so that users may allow access and use of their data for their own good and the common good. The PNS will provide a goal-oriented knowledge discovery framework, made of technology and people, able to configure itself to the aim of answering questions about the pulse of global society. Given an analytical request, the PNS activates a process composed by a variety of interconnected tasks exploiting the social sensing and mining methods within the transparent ecosystem provided by the trusted network. The PNS we foresee is the key tool for individual and collective awareness for the knowledge society. We need such a tool for everyone to become fully aware of how powerful is the knowledge of our society we can achieve by leveraging our wisdom as a crowd, and how important is that everybody participates both as a consumer and as a producer of the social knowledge, for it to become a trustable, accessible, safe and useful public good. Graphical abstrac
    corecore