494 research outputs found

    Improving Syntactic Parsing of Clinical Text Using Domain Knowledge

    Get PDF
    Syntactic parsing is one of the fundamental tasks of Natural Language Processing (NLP). However, few studies have explored syntactic parsing in the medical domain. This dissertation systematically investigated different methods to improve the performance of syntactic parsing of clinical text, including (1) Constructing two clinical treebanks of discharge summaries and progress notes by developing annotation guidelines that handle missing elements in clinical sentences; (2) Retraining four state-of-the-art parsers, including the Stanford parser, Berkeley parser, Charniak parser, and Bikel parser, using clinical treebanks, and comparing their performance to identify better parsing approaches; and (3) Developing new methods to reduce syntactic ambiguity caused by Prepositional Phrase (PP) attachment and coordination using semantic information. Our evaluation showed that clinical treebanks greatly improved the performance of existing parsers. The Berkeley parser achieved the best F-1 score of 86.39% on the MiPACQ treebank. For PP attachment, our proposed methods improved the accuracies of PP attachment by 2.35% on the MiPACQ corpus and 1.77% on the I2b2 corpus. For coordination, our method achieved a precision of 94.9% and a precision of 90.3% for the MiPACQ and i2b2 corpus, respectively. To further demonstrate the effectiveness of the improved parsing approaches, we applied outputs of our parsers to two external NLP tasks: semantic role labeling and temporal relation extraction. The experimental results showed that performance of both tasks’ was improved by using the parse tree information from our optimized parsers, with an improvement of 3.26% in F-measure for semantic role labelling and an improvement of 1.5% in F-measure for temporal relation extraction

    Integrating speculation detection and deep learning to extract lung cancer diagnosis from clinical notes

    Full text link
    Despite efforts to develop models for extracting medical concepts from clinical notes, there are still some challenges in particular to be able to relate concepts to dates. The high number of clinical notes written for each single patient, the use of negation, speculation, and different date formats cause ambiguity that has to be solved to reconstruct the patient’s natural history. In this paper, we concentrate on extracting from clinical narratives the cancer diagnosis and relating it to the diagnosis date. To address this challenge, a hybrid approach that combines deep learning-based and rule-based methods is proposed. The approach integrates three steps: (i) lung cancer named entity recognition, (ii) negation and speculation detection, and (iii) relating the cancer diagnosis to a valid date. In particular, we apply the proposed approach to extract the lung cancer diagnosis and its diagnosis date from clinical narratives written in Spanish. Results obtained show an F-score of 90% in the named entity recognition task, and a 89% F-score in the task of relating the cancer diagnosis to the diagnosis date. Our findings suggest that speculation detection is together with negation detection a key component to properly extract cancer diagnosis from clinical notesThis work is supported by the EU Horizon 2020 innovation program under grant agreement No. 780495, project BigMedilytics (Big Data for Medical Analytics). It has been also supported by Fundación AECC and Instituto de Salud Carlos III (grant AC19/00034), under the frame of ERA-NET PerMe

    Extraction of Information Related to Adverse Drug Events from Electronic Health Record Notes: Design of an End-to-End Model Based on Deep Learning

    Get PDF
    BACKGROUND: Pharmacovigilance and drug-safety surveillance are crucial for monitoring adverse drug events (ADEs), but the main ADE-reporting systems such as Food and Drug Administration Adverse Event Reporting System face challenges such as underreporting. Therefore, as complementary surveillance, data on ADEs are extracted from electronic health record (EHR) notes via natural language processing (NLP). As NLP develops, many up-to-date machine-learning techniques are introduced in this field, such as deep learning and multi-task learning (MTL). However, only a few studies have focused on employing such techniques to extract ADEs. OBJECTIVE: We aimed to design a deep learning model for extracting ADEs and related information such as medications and indications. Since extraction of ADE-related information includes two steps-named entity recognition and relation extraction-our second objective was to improve the deep learning model using multi-task learning between the two steps. METHODS: We employed the dataset from the Medication, Indication and Adverse Drug Events (MADE) 1.0 challenge to train and test our models. This dataset consists of 1089 EHR notes of cancer patients and includes 9 entity types such as Medication, Indication, and ADE and 7 types of relations between these entities. To extract information from the dataset, we proposed a deep-learning model that uses a bidirectional long short-term memory (BiLSTM) conditional random field network to recognize entities and a BiLSTM-Attention network to extract relations. To further improve the deep-learning model, we employed three typical MTL methods, namely, hard parameter sharing, parameter regularization, and task relation learning, to build three MTL models, called HardMTL, RegMTL, and LearnMTL, respectively. RESULTS: Since extraction of ADE-related information is a two-step task, the result of the second step (ie, relation extraction) was used to compare all models. We used microaveraged precision, recall, and F1 as evaluation metrics. Our deep learning model achieved state-of-the-art results (F1=65.9%), which is significantly higher than that (F1=61.7%) of the best system in the MADE1.0 challenge. HardMTL further improved the F1 by 0.8%, boosting the F1 to 66.7%, whereas RegMTL and LearnMTL failed to boost the performance. CONCLUSIONS: Deep learning models can significantly improve the performance of ADE-related information extraction. MTL may be effective for named entity recognition and relation extraction, but it depends on the methods, data, and other factors. Our results can facilitate research on ADE detection, NLP, and machine learning

    From Large Language Models to Knowledge Graphs for Biomarker Discovery in Cancer

    Full text link
    Domain experts often rely on most recent knowledge for apprehending and disseminating specific biological processes that help them design strategies for developing prevention and therapeutic decision-making in various disease scenarios. A challenging scenarios for artificial intelligence (AI) is using biomedical data (e.g., texts, imaging, omics, and clinical) to provide diagnosis and treatment recommendations for cancerous conditions.~Data and knowledge about biomedical entities like cancer, drugs, genes, proteins, and their mechanism is spread across structured (knowledge bases (KBs)) and unstructured (e.g., scientific articles) sources. A large-scale knowledge graph (KG) can be constructed by integrating and extracting facts about semantically interrelated entities and relations. Such a KG not only allows exploration and question answering (QA) but also enables domain experts to deduce new knowledge. However, exploring and querying large-scale KGs is tedious for non-domain users due to their lack of understanding of the data assets and semantic technologies. In this paper, we develop a domain KG to leverage cancer-specific biomarker discovery and interactive QA. For this, we constructed a domain ontology called OncoNet Ontology (ONO), which enables semantic reasoning for validating gene-disease (different types of cancer) relations. The KG is further enriched by harmonizing the ONO, metadata, controlled vocabularies, and biomedical concepts from scientific articles by employing BioBERT- and SciBERT-based information extractors. Further, since the biomedical domain is evolving, where new findings often replace old ones, without having access to up-to-date scientific findings, there is a high chance an AI system exhibits concept drift while providing diagnosis and treatment. Therefore, we fine-tune the KG using large language models (LLMs) based on more recent articles and KBs.Comment: arXiv admin note: substantial text overlap with arXiv:2302.0473

    Theory and Applications for Advanced Text Mining

    Get PDF
    Due to the growth of computer technologies and web technologies, we can easily collect and store large amounts of text data. We can believe that the data include useful knowledge. Text mining techniques have been studied aggressively in order to extract the knowledge from the data since late 1990s. Even if many important techniques have been developed, the text mining research field continues to expand for the needs arising from various application fields. This book is composed of 9 chapters introducing advanced text mining techniques. They are various techniques from relation extraction to under or less resourced language. I believe that this book will give new knowledge in the text mining field and help many readers open their new research fields
    • …
    corecore